Sample records for steps image acquisition

  1. Comparison of prostate contours between conventional stepping transverse imaging and Twister-based sagittal imaging in permanent interstitial prostate brachytherapy.

    PubMed

    Kawakami, Shogo; Ishiyama, Hiromichi; Satoh, Takefumi; Tsumura, Hideyasu; Sekiguchi, Akane; Takenaka, Kouji; Tabata, Ken-Ichi; Iwamura, Masatsugu; Hayakawa, Kazushige

    2017-08-01

    To compare prostate contours on conventional stepping transverse image acquisitions with those on twister-based sagittal image acquisitions. Twenty prostate cancer patients who were planned to have permanent interstitial prostate brachytherapy were prospectively accrued. A transrectal ultrasonography probe was inserted, with the patient in lithotomy position. Transverse images were obtained with stepping movement of the transverse transducer. In the same patient, sagittal images were also obtained through rotation of the sagittal transducer using the "Twister" mode. The differences of prostate size among the two types of image acquisitions were compared. The relationships among the difference of the two types of image acquisitions, dose-volume histogram (DVH) parameters on the post-implant computed tomography (CT) analysis, as well as other factors were analyzed. The sagittal image acquisitions showed a larger prostate size compared to the transverse image acquisitions especially in the anterior-posterior (AP) direction ( p < 0.05). Interestingly, relative size of prostate apex in AP direction in sagittal image acquisitions compared to that in transverse image acquisitions was correlated to DVH parameters such as D 90 ( R = 0.518, p = 0.019), and V 100 ( R = 0.598, p = 0.005). There were small but significant differences in the prostate contours between the transverse and the sagittal planning image acquisitions. Furthermore, our study suggested that the differences between the two types of image acquisitions might correlated to dosimetric results on CT analysis.

  2. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  3. The Keyword Method of Vocabulary Acquisition: An Experimental Evaluation.

    ERIC Educational Resources Information Center

    Griffith, Douglas

    The keyword method of vocabulary acquisition is a two-step mnemonic technique for learning vocabulary terms. The first step, the acoustic link, generates a keyword based on the sound of the foreign word. The second step, the imagery link, ties the keyword to the meaning of the item to be learned, via an interactive visual image or other…

  4. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  5. Graphical user interface for image acquisition and processing

    DOEpatents

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  6. Accelerated x-ray scatter projection imaging using multiple continuously moving pencil beams

    NASA Astrophysics Data System (ADS)

    Dydula, Christopher; Belev, George; Johns, Paul C.

    2017-03-01

    Coherent x-ray scatter varies with angle and photon energy in a manner dependent on the chemical composition of the scattering material, even for amorphous materials. Therefore, images generated from scattered photons can have much higher contrast than conventional projection radiographs. We are developing a scatter projection imaging prototype at the BioMedical Imaging and Therapy (BMIT) facility of the Canadian Light Source (CLS) synchrotron in Saskatoon, Canada. The best images are obtained using step-and-shoot scanning with a single pencil beam and area detector to capture sequentially the scatter pattern for each primary beam location on the sample. Primary x-ray transmission is recorded simultaneously using photodiodes. The technological challenge is to acquire the scatter data in a reasonable time. Using multiple pencil beams producing partially-overlapping scatter patterns reduces acquisition time but increases complexity due to the need for a disentangling algorithm to extract the data. Continuous sample motion, rather than step-and-shoot, also reduces acquisition time at the expense of introducing motion blur. With a five-beam (33.2 keV, 3.5 mm2 beam area) continuous sample motion configuration, a rectangular array of 12 x 100 pixels with 1 mm sampling width has been acquired in 0.4 minutes (3000 pixels per minute). The acquisition speed is 38 times the speed for single beam step-and-shoot. A system model has been developed to calculate detected scatter patterns given the material composition of the object to be imaged. Our prototype development, image acquisition of a plastic phantom and modelling are described.

  7. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    NASA Astrophysics Data System (ADS)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  8. MR CAT scan: a modular approach for hybrid imaging.

    PubMed

    Hillenbrand, C; Hahn, D; Haase, A; Jakob, P M

    2000-07-01

    In this study, a modular concept for NMR hybrid imaging is presented. This concept essentially integrates different imaging modules in a sequential fashion and is therefore called CAT (combined acquisition technique). CAT is not a single specific measurement sequence, but rather a sequence design concept whereby distinct acquisition techniques with varying imaging parameters are employed in rapid succession in order to cover k-space. The power of the CAT approach is that it provides a high flexibility toward the acquisition optimization with respect to the available imaging time and the desired image quality. Important CAT sequence optimization steps include the appropriate choice of the k-space coverage ratio and the application of mixed bandwidth technology. Details of both the CAT methodology and possible CAT acquisition strategies, such as FLASH/EPI-, RARE/EPI- and FLASH/BURST-CAT are provided. Examples from imaging experiments in phantoms and healthy volunteers including mixed bandwidth acquisitions are provided to demonstrate the feasibility of the proposed CAT concept.

  9. Cardiac imaging with multi-sector data acquisition in volumetric CT: variation of effective temporal resolution and its potential clinical consequences

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.

    2009-02-01

    With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.

  10. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  11. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A comparison study: image-based vs signal-based retrospective gating on microCT

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Salmon, Phil L.; Laperre, Kjell; Sasov, Alexander

    2017-09-01

    Retrospective gating on animal studies with microCT has gained popularity in recent years. Previously, we use ECG signals for cardiac gating and breathing airflow or video signals of abdominal motion for respiratory gating. This method is adequate and works well for most applications. However, through the years, researchers have noticed some pitfalls in the method. For example, the additional signal acquisition step may increase failure rate in practice. X-Ray image-based gating, on the other hand, does not require any extra step in the scanning. Therefore we investigate imagebased gating techniques. This paper presents a comparison study of the image-based versus signal-based approach to retrospective gating. The two application areas we have studied are respiratory and cardiac imaging for both rats and mice. Image-based respiratory gating on microCT is relatively straightforward and has been done by several other researchers and groups. This method retrieves an intensity curve of a region of interest (ROI) placed in the lung area on all projections. From scans on our systems based on step-and-shoot scanning mode, we confirm that this method is very effective. A detailed comparison between image-based and signal-based gating methods is given. For cardiac gating, breathing motion is not negligible and has to be dealt with. Another difficulty in cardiac gating is the relatively smaller amplitude of cardiac movements comparing to the respirational movements, and the higher heart rate. Higher heart rate requires high speed image acquisition. We have been working on our systems to improve the acquisition speed. A dual gating technique has been developed to achieve adequate cardiac imaging.

  13. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less

  14. Cardio-PACs: a new opportunity

    NASA Astrophysics Data System (ADS)

    Heupler, Frederick A., Jr.; Thomas, James D.; Blume, Hartwig R.; Cecil, Robert A.; Heisler, Mary

    2000-05-01

    It is now possible to replace film-based image management in the cardiac catheterization laboratory with a Cardiology Picture Archiving and Communication System (Cardio-PACS) based on digital imaging technology. The first step in the conversion process is installation of a digital image acquisition system that is capable of generating high-quality DICOM-compatible images. The next three steps, which are the subject of this presentation, involve image display, distribution, and storage. Clinical requirements and associated cost considerations for these three steps are listed below: Image display: (1) Image quality equal to film, with DICOM format, lossless compression, image processing, desktop PC-based with color monitor, and physician-friendly imaging software; (2) Performance specifications include: acquire 30 frames/sec; replay 15 frames/sec; access to file server 5 seconds, and to archive 5 minutes; (3) Compatibility of image file, transmission, and processing formats; (4) Image manipulation: brightness, contrast, gray scale, zoom, biplane display, and quantification; (5) User-friendly control of image review. Image distribution: (1) Standard IP-based network between cardiac catheterization laboratories, file server, long-term archive, review stations, and remote sites; (2) Non-proprietary formats; (3) Bidirectional distribution. Image storage: (1) CD-ROM vs disk vs tape; (2) Verification of data integrity; (3) User-designated storage capacity for catheterization laboratory, file server, long-term archive. Costs: (1) Image acquisition equipment, file server, long-term archive; (2) Network infrastructure; (3) Review stations and software; (4) Maintenance and administration; (5) Future upgrades and expansion; (6) Personnel.

  15. Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.

    PubMed

    Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias

    2016-12-01

    Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.

  16. Embedded, real-time UAV control for improved, image-based 3D scene reconstruction

    Treesearch

    Jean Liénard; Andre Vogs; Demetrios Gatziolis; Nikolay Strigul

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) are already broadly employed for 3D modeling of large objects such as trees and monuments via photogrammetry. The usual workflow includes two distinct steps: image acquisition with UAV and computationally demanding postflight image processing. Insufficient feature overlaps across images is a common shortcoming in post-flight image...

  17. QR-on-a-chip: a computer-recognizable micro-pattern engraved microfluidic device for high-throughput image acquisition.

    PubMed

    Yun, Kyungwon; Lee, Hyunjae; Bang, Hyunwoo; Jeon, Noo Li

    2016-02-21

    This study proposes a novel way to achieve high-throughput image acquisition based on a computer-recognizable micro-pattern implemented on a microfluidic device. We integrated the QR code, a two-dimensional barcode system, onto the microfluidic device to simplify imaging of multiple ROIs (regions of interest). A standard QR code pattern was modified to arrays of cylindrical structures of polydimethylsiloxane (PDMS). Utilizing the recognition of the micro-pattern, the proposed system enables: (1) device identification, which allows referencing additional information of the device, such as device imaging sequences or the ROIs and (2) composing a coordinate system for an arbitrarily located microfluidic device with respect to the stage. Based on these functionalities, the proposed method performs one-step high-throughput imaging for data acquisition in microfluidic devices without further manual exploration and locating of the desired ROIs. In our experience, the proposed method significantly reduced the time for the preparation of an acquisition. We expect that the method will innovatively improve the prototype device data acquisition and analysis.

  18. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Gazi, P; Boone, J

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantifymore » image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize the scanning geometry for dedicated breast CT. This work was supported by a grant from the National Institute for Biomedical Imaging and Bioengineering (R01 EB002138)« less

  19. Acquisition and Post-Processing of Immunohistochemical Images.

    PubMed

    Sedgewick, Jerry

    2017-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for insuring that originals are archived, and image manipulation steps reported, scientists not only follow good laboratory practices, but avoid ethical issues associated with post processing, and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of post processing is minimized or eliminated. These procedures include white balancing (for brightfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a non-lossy format (not JPEG).When post-processing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination (flatfield correction), merging color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows.

  20. Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration

    PubMed Central

    Akkaynak, Derya; Treibitz, Tali; Xiao, Bei; Gürkan, Umut A.; Allen, Justine J.; Demirci, Utkan; Hanlon, Roger T.

    2014-01-01

    Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging. PMID:24562030

  1. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-12-01

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  2. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.

    PubMed

    Matovic, Milovan; Jankovic, Milica; Barjaktarovic, Marko; Jeremic, Marija

    2017-01-01

    After radioiodine therapy of differentiated thyroid cancer (DTC) patients, whole body scintigraphy (WBS) is standard procedure before releasing the patient from the hospital. A common problem is the precise localization of regions where the iod-avide tissue is located. Sometimes is practically impossible to perform precise topographic localization of such regions. In order to face this problem, we have developed a low-cost Vision-Fusion system for web-camera image acquisition simultaneously with routine scintigraphic whole body acquisition including the algorithm for fusion of images given from both cameras. For image acquisition in the gamma part of the spectra we used e.cam dual head gamma camera (Siemens, Erlangen, Germany) in WBS modality, with matrix size of 256×1024 pixels and bed speed of 6cm/min, equipped with high energy collimator. For optical image acquisition in visible part of spectra we have used web-camera model C905 (Logitech, USA) with Carl Zeiss® optics, native resolution 1600×1200 pixels, 34 o field of view, 30g weight, with autofocus option turned "off" and auto white balance turned "on". Web camera is connected to upper head of gamma camera (GC) by a holder of lightweight aluminum rod and a plexiglas adapter. Our own Vision-Fusion software for image acquisition and coregistration was developed using NI LabVIEW programming environment 2015 (National Instruments, Texas, USA) and two additional LabVIEW modules: NI Vision Acquisition Software (VAS) and NI Vision Development Module (VDM). Vision acquisition software enables communication and control between laptop computer and web-camera. Vision development module is image processing library used for image preprocessing and fusion. Software starts the web-camera image acquisition before starting image acquisition on GC and stops it when GC completes the acquisition. Web-camera is in continuous acquisition mode with frame rate f depending on speed of patient bed movement v (f=v/∆ cm , where ∆ cm is a displacement step that can be changed in Settings option of Vision-Fusion software; by default, ∆ cm is set to 1cm corresponding to ∆ p =15 pixels). All images captured while patient's bed is moving are processed. Movement of patient's bed is checked using cross-correlation of two successive images. After each image capturing, algorithm extracts the central region of interest (ROI) of the image, with the same width as captured image (1600 pixels) and the height that is equal to the ∆ p displacement in pixels. All extracted central ROI are placed next to each other in the overall whole-body image. Stacking of narrow central ROI introduces negligible distortion in the overall whole-body image. The first step for fusion of the scintigram and the optical image was determination of spatial transformation between them. We have made an experiment with two markers (point radioactivity sources of 99m Tc pertechnetate 1MBq) visible in both images (WBS and optical) to find transformation of coordinates between images. The distance between point markers is used for spatial coregistration of the gamma and optical images. At the end of coregistration process, gamma image is rescaled in spatial domain and added to the optical image (green or red channel, amplification changeable from user interface). We tested our system for 10 patients with DTC who received radioiodine therapy (8 women and two men, with average age of 50.10±12.26 years). Five patients received 5.55Gbq, three 3.70GBq and two 1.85GBq. Whole-body scintigraphy and optical image acquisition were performed 72 hours after application of radioiodine therapy. Based on our first results during clinical testing of our system, we can conclude that our system can improve diagnostic possibility of whole body scintigraphy to detect thyroid remnant tissue in patients with DTC after radioiodine therapy.

  3. Synthetic schlieren—application to the visualization and characterization of air convection

    NASA Astrophysics Data System (ADS)

    Taberlet, Nicolas; Plihon, Nicolas; Auzémery, Lucile; Sautel, Jérémy; Panel, Grégoire; Gibaud, Thomas

    2018-05-01

    Synthetic schlieren is a digital image processing optical method relying on the variation of optical index to visualize the flow of a transparent fluid. In this article, we present a step-by-step, easy-to-implement and affordable experimental realization of this technique. The method is applied to air convection caused by a warm surface. We show that the velocity of rising convection plumes can be linked to the temperature of the warm surface and propose a simple physical argument to explain this dependence. Moreover, using this method, one can reveal the tenuous convection plumes rising from one’s hand, a phenomenon invisible to the naked eye. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques (refer to the video abstract).

  4. High efficient optical remote sensing images acquisition for nano-satellite-framework

    NASA Astrophysics Data System (ADS)

    Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi

    2017-09-01

    It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.

  5. Technical aspects of CT imaging of the spine.

    PubMed

    Tins, Bernhard

    2010-11-01

    This review article discusses technical aspects of computed tomography (CT) imaging of the spine. Patient positioning, and its influence on image quality and movement artefact, is discussed. Particular emphasis is placed on the choice of scan parameters and their relation to image quality and radiation burden to the patient. Strategies to reduce radiation burden and artefact from metal implants are outlined. Data acquisition, processing, image display and steps to reduce artefact are reviewed. CT imaging of the spine is put into context with other imaging modalities for specific clinical indications or problems. This review aims to review underlying principles for image acquisition and to provide a rough guide for clinical problems without being prescriptive. Individual practice will always vary and reflect differences in local experience, technical provisions and clinical requirements.

  6. Multiplex Mass Spectrometric Imaging with Polarity Switching for Concurrent Acquisition of Positive and Negative Ion Images

    NASA Astrophysics Data System (ADS)

    Korte, Andrew R.; Lee, Young Jin

    2013-06-01

    We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.

  7. Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique

    PubMed Central

    Norman, Wendy; Jawad, Noorulhuda; Jones, Rod; Taylor, Andrew M

    2016-01-01

    As post-mortem MRI (PMMR) becomes more widely used for investigation following perinatal and paediatric deaths, the best possible images should be acquired. In this article, we review the most widely used published PMMR sequences, together with outlining our acquisition protocol and sequence parameters for foetal, perinatal and paediatric PMMR. We give examples of both normal and abnormal appearances, so that the reader can understand the logic behind each acquisition step before interpretation, as a useful day-to-day reference guide to performing PMMR. PMID:26916282

  8. Acquisition of multiple image stacks with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Zuschratter, Werner; Steffen, Thomas; Braun, Katharina; Herzog, Andreas; Michaelis, Bernd; Scheich, Henning

    1998-06-01

    Image acquisition at high magnification is inevitably correlated with a limited view over the entire tissue section. To overcome this limitation we designed software for multiple image-stack acquisition (3D-MISA) in confocal laser scanning microscopy (CLSM). The system consists of a 4 channel Leica CLSM equipped with a high resolution z- scanning stage mounted on a xy-monitorized stage. The 3D- MISA software is implemented into the microscope scanning software and uses the microscope settings for the movements of the xy-stage. It allows storage and recall of 70 xyz- positions and the automatic 3D-scanning of image arrays between selected xyz-coordinates. The number of images within one array is limited only by the amount of disk space or memory available. Although for most applications the accuracy of the xy-scanning stage is sufficient for a precise alignment of tiled views, the software provides the possibility of an adjustable overlap between two image stacks by shifting the moving steps of the xy-scanning stage. After scanning a tiled image gallery of the extended focus-images of each channel will be displayed on a graphic monitor. In addition, a tiled image gallery of individual focal planes can be created. In summary, the 3D-MISA allows 3D-image acquisition of coherent regions in combination with high resolution of single images.

  9. Imaging MS Methodology for More Chemical Information in Less Data Acquisition Time Utilizing a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdian, D. C.; Lee, Young Jin

    2010-11-15

    A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser.more » Using this approach, a high spatial resolution of 10 {micro}m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 {micro}m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MSn ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MSn, ion trap, and orbitrap images were all acquired in a single data acquisition.« less

  10. Planning applications in image analysis

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1994-01-01

    We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.

  11. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions

    PubMed Central

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-01-01

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter. PMID:27983669

  12. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.

    PubMed

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-12-15

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.

  13. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef

    2013-12-01

    Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  14. SU-F-R-32: Evaluation of MRI Acquisition Parameter Variations On Texture Feature Extraction Using ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, J; Wang, C

    Purpose: To investigate the sensitivity of classic texture features to variations of MRI acquisition parameters. Methods: This study was performed on American College of Radiology (ACR) MRI Accreditation Program Phantom. MR imaging was acquired on a GE 750 3T scanner with XRM explain gradient, employing a T1-weighted images (TR/TE=500/20ms) with the following parameters as the reference standard: number of signal average (NEX) = 1, matrix size = 256×256, flip angle = 90°, slice thickness = 5mm. The effect of the acquisition parameters on texture features with and without non-uniformity correction were investigated respectively, while all the other parameters were keptmore » as reference standard. Protocol parameters were set as follows: (a). NEX = 0.5, 2 and 4; (b).Phase encoding steps = 128, 160 and 192; (c). Matrix size = 128×128, 192×192 and 512×512. 32 classic texture features were generated using the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from each image data set. Normalized range ((maximum-minimum)/mean) was calculated to determine variation among the scans with different protocol parameters. Results: For different NEX, 31 out of 32 texture features’ range are within 10%. For different phase encoding steps, 31 out of 32 texture features’ range are within 10%. For different acquisition matrix size without non-uniformity correction, 14 out of 32 texture features’ range are within 10%; for different acquisition matrix size with non-uniformity correction, 16 out of 32 texture features’ range are within 10%. Conclusion: Initial results indicated that those texture features that range within 10% are less sensitive to variations in T1-weighted MRI acquisition parameters. This might suggest that certain texture features might be more reliable to be used as potential biomarkers in MR quantitative image analysis.« less

  15. Single-Shot X-Ray Phase-Contrast Computed Tomography with Nonmicrofocal Laboratory Sources

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Hagen, C. K.; Endrizzi, M.; Minuti, M.; Bellazzini, R.; Urbani, L.; De Coppi, P.; Olivo, A.

    2017-04-01

    We present a method that enables performing x-ray phase-contrast imaging (XPCI) computed tomography with a laboratory setup using a single image per projection angle, eliminating the need to move optical elements during acquisition. Theoretical derivation of the method is presented, and its validity conditions are provided. The object is assumed to be quasihomogeneous, i.e., to feature a ratio between the refractive index and the linear attenuation coefficient that is approximately constant across the field of view. The method is experimentally demonstrated on a plastics phantom and on biological samples using a continuous rotation acquisition scheme achieving scan times of a few minutes. Moreover, we show that such acquisition times can be further reduced with the use of a high-efficiency photon-counting detector. Thanks to its ability to substantially simplify the image-acquisition procedure and greatly reduce collection times, we believe this method represents a very important step towards the application of XPCI to real-world problems.

  16. Optical method for measuring the surface area of a threaded fastener

    Treesearch

    Douglas Rammer; Samuel Zelinka

    2010-01-01

    This article highlights major aspects of a new optical technique to determine the surface area of a threaded fastener; the theoretical framework has been reported elsewhere. Specifically, this article describes general surface area expressions used in the analysis, details of image acquisition system, and major image processing steps contained within the measurement...

  17. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  18. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.

  19. Contrast enhanced imaging with a stationary digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Puett, Connor; Calliste, Jabari; Wu, Gongting; Inscoe, Christina R.; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2017-03-01

    Digital breast tomosynthesis (DBT) captures some depth information and thereby improves the conspicuity of breast lesions, compared to standard mammography. Using contrast during DBT may also help distinguish malignant from benign sites. However, adequate visualization of the low iodine signal requires a subtraction step to remove background signal and increase lesion contrast. Additionally, attention to factors that limit contrast, including scatter, noise, and artifact, are important during the image acquisition and post-acquisition processing steps. Stationary DBT (sDBT) is an emerging technology that offers a higher spatial and temporal resolution than conventional DBT. This phantom-based study explored contrast-enhanced sDBT (CE sDBT) across a range of clinically-appropriate iodine concentrations, lesion sizes, and breast thicknesses. The protocol included an effective scatter correction method and an iterative reconstruction technique that is unique to the sDBT system. The study demonstrated the ability of this CE sDBT system to collect projection images adequate for both temporal subtraction (TS) and dual-energy subtraction (DES). Additionally, the reconstruction approach preserved the improved contrast-to-noise ratio (CNR) achieved in the subtraction step. Finally, scatter correction increased the iodine signal and CNR of iodine-containing regions in projection views and reconstructed image slices during both TS and DES. These findings support the ongoing study of sDBT as a potentially useful tool for contrast-enhanced breast imaging and also highlight the significant effect that scatter has on image quality during DBT.

  20. Software manual for operating particle displacement tracking data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.

  1. High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.

    2012-01-01

    Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395

  2. Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery.

    PubMed

    Han, Youkyung; Oh, Jaehong

    2018-05-17

    For time-series analysis using very-high-resolution (VHR) multi-temporal satellite images, both accurate georegistration to the map coordinates and subpixel-level co-registration among the images should be conducted. However, applying well-known matching methods, such as scale-invariant feature transform and speeded up robust features for VHR multi-temporal images, has limitations. First, they cannot be used for matching an optical image to heterogeneous non-optical data for georegistration. Second, they produce a local misalignment induced by differences in acquisition conditions, such as acquisition platform stability, the sensor's off-nadir angle, and relief displacement of the considered scene. Therefore, this study addresses the problem by proposing an automated geo/co-registration framework for full-scene multi-temporal images acquired from a VHR optical satellite sensor. The proposed method comprises two primary steps: (1) a global georegistration process, followed by (2) a fine co-registration process. During the first step, two-dimensional multi-temporal satellite images are matched to three-dimensional topographic maps to assign the map coordinates. During the second step, a local analysis of registration noise pixels extracted between the multi-temporal images that have been mapped to the map coordinates is conducted to extract a large number of well-distributed corresponding points (CPs). The CPs are finally used to construct a non-rigid transformation function that enables minimization of the local misalignment existing among the images. Experiments conducted on five Kompsat-3 full scenes confirmed the effectiveness of the proposed framework, showing that the georegistration performance resulted in an approximately pixel-level accuracy for most of the scenes, and the co-registration performance further improved the results among all combinations of the georegistered Kompsat-3 image pairs by increasing the calculated cross-correlation values.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seetho, Isaac M.; Brown, William D.; Martz, Jr., Harry E.

    This document is a short summary of the steps required for MicroCT evaluation of a specimen. This includes data acquisition through image analysis, for the EXD HME program. Expected outputs for each stage are provided. Data shall be shipped to LLNL as described herein.

  4. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  5. Three-dimensional printing in cardiology: Current applications and future challenges.

    PubMed

    Luo, Hongxing; Meyer-Szary, Jarosław; Wang, Zhongmin; Sabiniewicz, Robert; Liu, Yuhao

    2017-01-01

    Three-dimensional (3D) printing has attracted a huge interest in recent years. Broadly speaking, it refers to the technology which converts a predesigned virtual model to a touchable object. In clinical medicine, it usually converts a series of two-dimensional medical images acquired through computed tomography, magnetic resonance imaging or 3D echocardiography into a physical model. Medical 3D printing consists of three main steps: image acquisition, virtual reconstruction and 3D manufacturing. It is a promising tool for preoperative evaluation, medical device design, hemodynamic simulation and medical education, it is also likely to reduce operative risk and increase operative success. However, the most relevant studies are case reports or series which are underpowered in testing its actual effect on patient outcomes. The decision of making a 3D cardiac model may seem arbitrary since it is mostly based on a cardiologist's perceived difficulty in performing an interventional procedure. A uniform consensus is urgently necessary to standardize the key steps of 3D printing from imaging acquisition to final production. In the future, more clinical trials of rigorous design are possible to further validate the effect of 3D printing on the treatment of cardiovascular diseases. (Cardiol J 2017; 24, 4: 436-444).

  6. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    PubMed

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.

  7. Evaluation of a High-Resolution Benchtop Micro-CT Scanner for Application in Porous Media Research

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Vaz, C. M.; Lasso, P. O.; Kulkarni, R.; Ferre, T. A.

    2010-12-01

    Recent advances in Micro Computed Tomography (MCT) provided the motivation to thoroughly evaluate and optimize scanning, image reconstruction/segmentation and pore-space analysis capabilities of a new generation benchtop MCT scanner and associated software package. To demonstrate applicability to soil research the project was focused on determination of porosities and pore size distributions of two Brazilian Oxisols from segmented MCT-data. Effects of metal filters and various acquisition parameters (e.g. total rotation, rotation step, and radiograph frame averaging) on image quality and acquisition time are evaluated. Impacts of sample size and scanning resolution on CT-derived porosities and pore-size distributions are illustrated.

  8. Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy

    PubMed Central

    German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.

    2018-01-01

    Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666

  9. [Computed tomography of the lungs. A step into the fourth dimension].

    PubMed

    Dinkel, J; Hintze, C; Rochet, N; Thieke, C; Biederer, J

    2009-08-01

    To discuss the techniques for four dimensional computed tomography of the lungs in tumour patients. The image acquisition in CT can be done using respiratory gating in two different ways: the helical or cine mode. In the helical mode, the couch moves continuously during image and respiratory signal acquisition. In the cine mode, the couch remains in the same position during at least one complete respiratory cycle and then moves to next position. The 4D images are either acquired prospectively or reconstructed retrospectively with dedicated algorithms in a freely selectable respiratory phase. The time information required for motion depiction in 4D imaging can be obtained with tolerable motion artefacts. Partial projection and stepladder-artifacts are occurring predominantly close to the diaphragm, where the displacement is most prominent. Due to the long exposure times, radiation exposure is significantly higher compared to a simple breathhold helical acquisition. Therefore, the use of 4D-CT is restricted to only specific indications (i.e. radiotherapy planning). 4D-CT of the lung allows evaluating the respiration-correlated displacement of lungs and tumours in space for radiotherapy planning.

  10. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    PubMed

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  11. Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.

    PubMed

    Kopp, O; Markert, S; Tornow, R P

    2002-01-01

    To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.

  12. Trimodal low-dose X-ray tomography

    PubMed Central

    Zanette, I.; Bech, M.; Rack, A.; Le Duc, G.; Tafforeau, P.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2012-01-01

    X-ray grating interferometry is a coherent imaging technique that bears tremendous potential for three-dimensional tomographic imaging of soft biological tissue and other specimens whose details exhibit very weak absorption contrast. It is intrinsically trimodal, delivering phase contrast, absorption contrast, and scattering (“dark-field”) contrast. Recently reported acquisition strategies for grating-interferometric phase tomography constitute a major improvement of dose efficiency and speed. In particular, some of these techniques eliminate the need for scanning of one of the gratings (“phase stepping”). This advantage, however, comes at the cost of other limitations. These can be a loss in spatial resolution, or the inability to fully separate the three imaging modalities. In the present paper we report a data acquisition and processing method that optimizes dose efficiency but does not share the main limitations of other recently reported methods. Although our method still relies on phase stepping, it effectively uses only down to a single detector frame per projection angle and yields images corresponding to all three contrast modalities. In particular, this means that dark-field imaging remains accessible. The method is also compliant with data acquisition over an angular range of only 180° and with a continuous rotation of the specimen. PMID:22699500

  13. Simultaneous 99mtc/111in spect reconstruction using accelerated convolution-based forced detection monte carlo

    NASA Astrophysics Data System (ADS)

    Karamat, Muhammad I.; Farncombe, Troy H.

    2015-10-01

    Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.

  14. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions.

    PubMed

    Saha, Tanumoy; Rathmann, Isabel; Galic, Milos

    2017-07-11

    Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.

  15. On the reproducibility of expert-operated and robotic ultrasound acquisitions.

    PubMed

    Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir

    2017-06-01

    We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.

  16. Optimisation of radiation dose and image quality in mobile neonatal chest radiography.

    PubMed

    Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C

    2018-05-01

    To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  17. Cardiac phase-synchronized myocardial thallium-201 single-photon emission tomography using list mode data acquisition and iterative tomographic reconstruction.

    PubMed

    Vemmer, T; Steinbüchel, C; Bertram, J; Eschner, W; Kögler, A; Luig, H

    1997-03-01

    The purpose of this study was to determine whether data acquisition in the list mode and iterative tomographic reconstruction would render feasible cardiac phase-synchronized thallium-201 single-photon emission tomography (SPET) of the myocardium under routine conditions without modifications in tracer dose, acquisition time, or number of steps of the a gamma camera. Seventy non-selected patients underwent 201T1 SPET imaging according to a routine protocol (74 MBq/2 mCi 201T1, 180 degrees rotation of the gamma camera, 32 steps, 30 min). Gamma camera data, ECG, and a time signal were recorded in list mode. The cardiac cycle was divided into eight phases, the end-diastolic phase encompassing the QRS complex, and the end-systolic phase the T wave. Both phase- and non-phase-synchronized tomograms based on the same list mode data were reconstructed iteratively. Phase-synchronized and non-synchronized images were compared. Patients were divided into two groups depending on whether or not coronary artery disease had been definitely diagnosed prior to SPET imaging. The numbers of patients in both groups demonstrating defects visible on the phase-synchronized but not on the non-synchronized images were compared. It was found that both postexercise and redistribution phase tomograms were suited for interpretation. The changes from end-diastolic to end-systolic images allowed a comparative assessment of regional wall motility and tracer uptake. End-diastolic tomograms provided the best definition of defects. Additional defects not apparent on non-synchronized images were visible in 40 patients, six of whom did not show any defect on the non-synchronized images. Of 42 patients in whom coronary artery disease had been definitely diagnosed, 19 had additional defects not visible on the non-synchronized images, in comparison to 21 of 28 in whom coronary artery disease was suspected (P < 0.02; chi 2). It is concluded that cardiac phase-synchronized 201T1 SPET of the myocardium was made feasible by list mode data acquisition and iterative reconstruction. The additional findings on the phase-synchronized tomograms, not visible on the non-synchronized ones, represented genuine defects. Cardiac phase-synchronized 201T1 SPET is advantageous in allowing simultaneous assessment of regional wall motion and tracer uptake, and in visualizing smaller defects.

  18. A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai

    2015-11-01

    High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.

  19. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    PubMed Central

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  20. Method for measuring thermal properties using a long-wavelength infrared thermal image

    DOEpatents

    Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  1. Enabling vendor independent photoacoustic imaging systems with asynchronous laser source

    NASA Astrophysics Data System (ADS)

    Wu, Yixuan; Zhang, Haichong K.; Boctor, Emad M.

    2018-02-01

    Channel data acquisition, and synchronization between laser excitation and PA signal acquisition, are two fundamental hardware requirements for photoacoustic (PA) imaging. Unfortunately, however, neither is equipped by most clinical ultrasound scanners. Therefore, less economical specialized research platforms are used in general, which hinders a smooth clinical transition of PA imaging. In previous studies, we have proposed an algorithm to achieve PA imaging using ultrasound post-beamformed (USPB) RF data instead of channel data. This work focuses on enabling clinical ultrasound scanners to implement PA imaging, without requiring synchronization between the laser excitation and PA signal acquisition. Laser synchronization is inherently consisted of two aspects: frequency and phase information. We synchronize without communicating the laser and the ultrasound scanner by investigating USPB images of a point-target phantom in two steps. First, frequency information is estimated by solving a nonlinear optimization problem, under the assumption that the segmented wave-front can only be beamformed into a single spot when synchronization is achieved. Second, after making frequencies of two systems identical, phase delay is estimated by optimizing the image quality while varying phase value. The proposed method is validated through simulation, by manually adding both frequency and phase errors, then applying the proposed algorithm to correct errors and reconstruct PA images. Compared with the ground truth, simulation results indicate that the remaining errors in frequency correction and phase correction are 0.28% and 2.34%, respectively, which affirm the potential of overcoming hardware barriers on PA imaging through software solution.

  2. A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments

    PubMed Central

    Herrera, Pedro Javier; Pajares, Gonzalo; Guijarro, Maria; Ruz, José J.; Cruz, Jesús M.; Montes, Fernando

    2009-01-01

    This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. PMID:22303134

  3. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise, results are and compatible with the results obtained from the previous study. This tool is extremely practical and very effective in imaging the shallow subsurface. Next step, an integrated GPS receiver will be added to recorder to obtain shot and receiver station position information during data acquisition. Also, some mechanical parts will be placed to further improve the stability and durability of the land streamer. In addition, nonlinear geophone layout will be added after completion of test. We are planning to use this land streamer not only in landslide areas but also in archaeological sites, engineering applications such as detection of buried pipelines and faults. This equipment will make it possible to perform these studies both in urban and territory areas.

  4. Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications.

    PubMed

    Bardo, Dianna M E; Brown, Paul

    2008-08-01

    Cardiac MDCT is here to stay. And, it is more than just imaging coronary arteries. Understanding the differences in and the benefits of one CT scanner from another will help you to optimize the capabilities of the scanner, but requires a basic understanding of the MDCT imaging physics.This review provides key information needed to understand the differences in the types of MDCT scanners, from 64 - 320 detectors, flat panels, single and dual source configurations, step and shoot prospective and retrospective gating, and how each factor influences radiation dose, spatial and temporal resolution, and image noise.

  5. Compressive hyperspectral and multispectral imaging fusion

    NASA Astrophysics Data System (ADS)

    Espitia, Óscar; Castillo, Sergio; Arguello, Henry

    2016-05-01

    Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.

  6. High-Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification.

    PubMed

    Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia

    2016-07-01

    High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  7. Classifying magnetic resonance image modalities with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis

    2018-02-01

    Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.

  8. Image reconstruction: an overview for clinicians.

    PubMed

    Hansen, Michael S; Kellman, Peter

    2015-03-01

    Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging (MRI). The MRI raw data is not acquired in image space and the role of the image reconstruction process is to transform the acquired raw data into images that can be interpreted clinically. This process involves multiple signal processing steps that each have an impact on the image quality. This review explains the basic terminology used for describing and quantifying image quality in terms of signal-to-noise ratio and point spread function. In this context, several commonly used image reconstruction components are discussed. The image reconstruction components covered include noise prewhitening for phased array data acquisition, interpolation needed to reconstruct square pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the raw data with image space, and phased array coil combination. The treatment of phased array coils includes a general explanation of parallel imaging as a coil combination technique. The review is aimed at readers with no signal processing experience and should enable them to understand what role basic image reconstruction steps play in the formation of clinical images and how the resulting image quality is described. © 2014 Wiley Periodicals, Inc.

  9. An efficient multiple exposure image fusion in JPEG domain

    NASA Astrophysics Data System (ADS)

    Hebbalaguppe, Ramya; Kakarala, Ramakrishna

    2012-01-01

    In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.

  10. A fully 3D approach for metal artifact reduction in computed tomography.

    PubMed

    Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M

    2012-11-01

    In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.

  11. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  12. 48 CFR 15.202 - Advisory multi-step process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Advisory multi-step... Information 15.202 Advisory multi-step process. (a) The agency may publish a presolicitation notice (see 5.204... participate in the acquisition. This process should not be used for multi-step acquisitions where it would...

  13. Contribution of cardiac-induced brain pulsation to the noise of the diffusion tensor in Turboprop diffusion tensor imaging (DTI).

    PubMed

    Gui, Minzhi; Tamhane, Ashish A; Arfanakis, Konstantinos

    2008-05-01

    To assess the effects of cardiac-induced brain pulsation on the noise of the diffusion tensor in Turboprop (a form of periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER] imaging) diffusion tensor imaging (DTI). A total of six healthy human subjects were imaged with cardiac-gated as well as nongated Turboprop DTI. Gated and nongated Turboprop DTI datasets were also simulated using actual data acquired exclusively during the diastolic or systolic period of the cardiac cycle. The total variance of the diffusion tensor (TVDT) was measured and compared between acquisitions. The TVDT near the ventricles was significantly reduced in cardiac-gated compared to nongated Turboprop DTI acquisitions. Furthermore, the effects of brain pulsation were reduced, but not eliminated, when increasing the amount of data collected. Finally, data corrupted by cardiac-induced pulsation were not consistently detected by the step of the conventional Turboprop reconstruction algorithm that evaluates the quality of data in different blades. Thus, the inherent quality weighting of the conventional Turboprop reconstruction algorithm was unable to compensate for the increased noise in the diffusion tensor due to brain pulsation. Cardiac-induced brain pulsation increases the TVDT in Turboprop DTI. Use of cardiac gating to limit data acquisition to the diastolic period of the cardiac cycle reduces the TVDT at the expense of imaging time. (c) 2008 Wiley-Liss, Inc.

  14. Implementation of sobel method to detect the seed rubber plant leaves

    NASA Astrophysics Data System (ADS)

    Suyanto; Munte, J.

    2018-03-01

    This research was conducted to develop a system that can identify and recognize the type of rubber tree based on the pattern of leaves of the plant. The steps research are started with the identification of the image data acquisition, image processing, image edge detection and identification method template matching. Edge detection is using Sobel edge detection. Pattern recognition would detect image as input and compared with other images in a database called templates. Experiments carried out in one phase, identification of the leaf edge, using a rubber plant leaf image 14 are superior and 5 for each type of test images (clones) of the plant. From the experimental results obtained by the recognition rate of 91.79%.

  15. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    PubMed

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  16. Multienergy CT acquisition and reconstruction with a stepped tube potential scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Le; Xing, Yuxiang, E-mail: xingyx@mail.tsinghua.edu.cn

    Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT canmore » be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed SegMECT can provide both attenuation images and material decomposition images of reasonable image quality. Compared to existing methods, the new system configuration demonstrates advantages in simplicity of implementation, system cost, and dose control. Conclusions: This proposed SegMECT imaging approach has great potential for practical applications. It can be readily realized on a conventional CT system.« less

  17. MR images from fewer data

    NASA Astrophysics Data System (ADS)

    Vafadar, Bahareh; Bones, Philip J.

    2012-10-01

    There is a strong motivation to reduce the amount of acquired data necessary to reconstruct clinically useful MR images, since less data means faster acquisition sequences, less time for the patient to remain motionless in the scanner and better time resolution for observing temporal changes within the body. We recently introduced an improvement in image quality for reconstructing parallel MR images by incorporating a data ordering step with compressed sensing (CS) in an algorithm named `PECS'. That method requires a prior estimate of the image to be available. We are extending the algorithm to explore ways of utilizing the data ordering step without requiring a prior estimate. The method presented here first reconstructs an initial image x1 by compressed sensing (with scarcity enhanced by SVD), then derives a data ordering from x1, R'1 , which ranks the voxels of x1 according to their value. A second reconstruction is then performed which incorporates minimization of the first norm of the estimate after ordering by R'1 , resulting in a new reconstruction x2. Preliminary results are encouraging.

  18. Feature-based US to CT registration of the aortic root

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.

    2011-03-01

    A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.

  19. A marker-free system for the analysis of movement disabilities.

    PubMed

    Legrand, L; Marzani, F; Dusserre, L

    1998-01-01

    A major step toward improving the treatments of disabled persons may be achieved by using motion analysis equipment. We are developing such a system. It allows the analysis of plane human motion (e.g. gait) without using the tracking of markers. The system is composed of one fixed camera which acquires an image sequence of a human in motion. Then the treatment is divided into two steps: first, a large number of pixels belonging to the boundaries of the human body are extracted at each acquisition time. Secondly, a two-dimensional model of the human body, based on tapered superquadrics, is successively matched with the sets of pixels previously extracted; a specific fuzzy clustering process is used for this purpose. Moreover, an optical flow procedure gives a prediction of the model location at each acquisition time from its location at the previous time. Finally we present some results of this process applied to a leg in motion.

  20. Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences.

    PubMed

    De Benedictis, Alessandro; Nocerino, Erica; Menna, Fabio; Remondino, Fabio; Barbareschi, Mattia; Rozzanigo, Umberto; Corsini, Francesco; Olivetti, Emanuele; Marras, Carlo Efisio; Chioffi, Franco; Avesani, Paolo; Sarubbo, Silvio

    2018-04-13

    Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. New subtraction algorithms for evaluation of lesions on dynamic contrast-enhanced MR mammography.

    PubMed

    Choi, Byung Gil; Kim, Hak Hee; Kim, Euy Neyng; Kim, Bum-soo; Han, Ji-Youn; Yoo, Seung-Schik; Park, Seog Hee

    2002-12-01

    We report new subtraction algorithms for the detection of lesions in dynamic contrast-enhanced MR mammography(CE MRM). Twenty-five patients with suspicious breast lesions underwent dynamic CE MRM using 3D fast low-angle shot. After the acquisition of the T1-weighted scout images, dynamic images were acquired six times after the bolus injection of contrast media. Serial subtractions, step-by-step subtractions, and reverse subtractions, were performed. Two radiologists attempted to differentiate benign from malignant lesion in consensus. The sensitivity, specificity, and accuracy of the method leading to the differentiation of malignant tumor from benign lesions were 85.7, 100, and 96%, respectively. Subtraction images allowed for better visualization of the enhancement as well as its temporal pattern than visual inspection of dynamic images alone. Our findings suggest that the new subtraction algorithm is adequate for screening malignant breast lesions and can potentially replace the time-intensity profile analysis on user-selected regions of interest.

  2. Multipinhole SPECT helical scan parameters and imaging volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao; Wei, Qingyang

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluatedmore » by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.« less

  3. Technical Note: Unified imaging and robotic couch quality assurance.

    PubMed

    Cook, Molly C; Roper, Justin; Elder, Eric S; Schreibmann, Eduard

    2016-09-01

    To introduce a simplified quality assurance (QA) procedure that integrates tests for the linac's imaging components and the robotic couch. Current QA procedures for evaluating the alignment of the imaging system and linac require careful positioning of a phantom at isocenter before image acquisition and analysis. A complementary procedure for the robotic couch requires an initial displacement of the phantom and then evaluates the accuracy of repositioning the phantom at isocenter. We propose a two-in-one procedure that introduces a custom software module and incorporates both checks into one motion for increased efficiency. The phantom was manually set with random translational and rotational shifts, imaged with the in-room imaging system, and then registered to the isocenter using a custom software module. The software measured positioning accuracy by comparing the location of the repositioned phantom with a CAD model of the phantom at isocenter, which is physically verified using the MV port graticule. Repeatability of the custom software was tested by an assessment of internal marker location extraction on a series of scans taken over differing kV and CBCT acquisition parameters. The proposed method was able to correctly position the phantom at isocenter within acceptable 1 mm and 1° SRS tolerances, verified by both physical inspection and the custom software. Residual errors for mechanical accuracy were 0.26 mm vertically, 0.21 mm longitudinally, 0.55 mm laterally, 0.21° in pitch, 0.1° in roll, and 0.67° in yaw. The software module was shown to be robust across various scan acquisition parameters, detecting markers within 0.15 mm translationally in kV acquisitions and within 0.5 mm translationally and 0.3° rotationally across CBCT acquisitions with significant variations in voxel size. Agreement with vendor registration methods was well within 0.5 mm; differences were not statistically significant. As compared to the current two-step approach, the proposed QA procedure streamlines the workflow, accounts for rotational errors in imaging alignment, and simulates a broad range of variations in setup errors seen in clinical practice.

  4. Mass spectrometry imaging: Towards a lipid microscope?

    PubMed

    Touboul, David; Brunelle, Alain; Laprévote, Olivier

    2011-01-01

    Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  6. Improved frame-based estimation of head motion in PET brain imaging.

    PubMed

    Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R

    2016-05-01

    Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  7. Graphical user interface for intraoperative neuroimage updating

    NASA Astrophysics Data System (ADS)

    Rick, Kyle R.; Hartov, Alex; Roberts, David W.; Lunn, Karen E.; Sun, Hai; Paulsen, Keith D.

    2003-05-01

    Image-guided neurosurgery typically relies on preoperative imaging information that is subject to errors resulting from brain shift and deformation in the OR. A graphical user interface (GUI) has been developed to facilitate the flow of data from OR to image volume in order to provide the neurosurgeon with updated views concurrent with surgery. Upon acquisition of registration data for patient position in the OR (using fiducial markers), the Matlab GUI displays ultrasound image overlays on patient specific, preoperative MR images. Registration matrices are also applied to patient-specific anatomical models used for image updating. After displaying the re-oriented brain model in OR coordinates and digitizing the edge of the craniotomy, gravitational sagging of the brain is simulated using the finite element method. Based on this model, interpolation to the resolution of the preoperative images is performed and re-displayed to the surgeon during the procedure. These steps were completed within reasonable time limits and the interface was relatively easy to use after a brief training period. The techniques described have been developed and used retrospectively prior to this study. Based on the work described here, these steps can now be accomplished in the operating room and provide near real-time feedback to the surgeon.

  8. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.

    PubMed

    Bednarkiewicz, Artur; Whelan, Maurice P

    2008-01-01

    Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.

  9. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  10. Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Petrov, Petr V.; Newman, Gregory A.

    2014-09-01

    3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is also possible to launch a successful inversion experiment without laddering the damping constants. With this type of acquisition geometry, the solver is still quite effective using a small fixed damping constant. To avoid cycle skipping, we also employ a multiscale imaging approach, in which frequency content of the data is also laddered (with the data now including both reflection and cross-well data acquisition geometries). Thus the inversion process is launched using low frequency data to first recover the long spatial wavelength of the image. With this image as a new starting model, adding higher frequency data refines and enhances the resolution of the image. FWI using laddered frequencies with an efficient damping schemed enables reconstructing elastic attributes of the subsurface at a resolution that approaches half the smallest wavelength utilized to image the subsurface. We show the possibility of effectively carrying out such reconstructions using two to six frequencies, depending upon the application. Using the proposed FWI scheme, massively parallel computing resources are essential for reasonable execution times.

  11. Dictionary Learning for Data Recovery in Positron Emission Tomography

    PubMed Central

    Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama

    2015-01-01

    Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as Total variation (TV), wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications towards reducing scanner cost while maintaining accurate PET image quantification. PMID:26161630

  12. Dictionary learning for data recovery in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Valiollahzadeh, SeyyedMajid; Clark, John W., Jr.; Mawlawi, Osama

    2015-08-01

    Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification.

  13. PACS 2000: quality control using the task allocation chart

    NASA Astrophysics Data System (ADS)

    Norton, Gary S.; Romlein, John R.; Lyche, David K.; Richardson, Ronald R., Jr.

    2000-05-01

    Medical imaging's technological evolution in the next century will continue to include Picture Archive and Communication Systems (PACS) and teleradiology. It is difficult to predict radiology's future in the new millennium with both computed radiography and direct digital capture competing as the primary image acquisition methods for routine radiography. Changes in Computed Axial Tomography (CT) and Magnetic Resonance Imaging (MRI) continue to amaze the healthcare community. No matter how the acquisition, display, and archive functions change, Quality Control (QC) of the radiographic imaging chain will remain an important step in the imaging process. The Task Allocation Chart (TAC) is a tool that can be used in a medical facility's QC process to indicate the testing responsibilities of the image stakeholders and the medical informatics department. The TAC shows a grid of equipment to be serviced, tasks to be performed, and the organization assigned to perform each task. Additionally, skills, tasks, time, and references for each task can be provided. QC of the PACS must be stressed as a primary element of a PACS' implementation. The TAC can be used to clarify responsibilities during warranty and paid maintenance periods. Establishing a TAC a part of a PACS implementation has a positive affect on patient care and clinical acceptance.

  14. Identifying regions of interest in medical images using self-organizing maps.

    PubMed

    Teng, Wei-Guang; Chang, Ping-Lin

    2012-10-01

    Advances in data acquisition, processing and visualization techniques have had a tremendous impact on medical imaging in recent years. However, the interpretation of medical images is still almost always performed by radiologists. Developments in artificial intelligence and image processing have shown the increasingly great potential of computer-aided diagnosis (CAD). Nevertheless, it has remained challenging to develop a general approach to process various commonly used types of medical images (e.g., X-ray, MRI, and ultrasound images). To facilitate diagnosis, we recommend the use of image segmentation to discover regions of interest (ROI) using self-organizing maps (SOM). We devise a two-stage SOM approach that can be used to precisely identify the dominant colors of a medical image and then segment it into several small regions. In addition, by appropriately conducting the recursive merging steps to merge smaller regions into larger ones, radiologists can usually identify one or more ROIs within a medical image.

  15. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less

  16. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering

    PubMed Central

    Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro

    2017-01-01

    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358

  17. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.

    PubMed

    Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2017-11-09

    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.

  18. Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance

    NASA Astrophysics Data System (ADS)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario

    2018-01-01

    Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.

  19. 2D phase sensitive inversion recovery imaging to measure in-vivo spinal cord gray and white matter areas in clinically feasible acquisition times

    PubMed Central

    Papinutto, N.; Schlaeger, R.; Panara, V.; Caverzasi, E.; Ahn, S.; Johnson, K.J.; Zhu, A.H.; Stern, W.A.; Laub, G.; Hauser, S.L.; Henry, R.G.

    2018-01-01

    PURPOSE In-vivo assessment of spinal cord gray matter (GM) and white matter (WM) could become pivotal to study various neurological diseases, but it is challenging because of insufficient GM/WM contrast provided by conventional MRI. Here we present and assess a procedure for measurement of spinal cord total cross-sectional area (TCA) and GM areas based on phase sensitive inversion recovery imaging (PSIR). MATERIALS AND METHODS We acquired 2D PSIR images at 3T at each disc level of the spinal axis on 10 healthy subjects and measured TCA, cord diameters, WM and GM area, and GM area/TCA ratio. We secondly investigated 32 healthy subjects at 4 selected levels (C2–C3, C3–C4, T8–T9, T9–T10, total acquisition time <8 minutes) and generated normative reference values of TCA and GM areas. We assessed test-retest, intra- and inter-operator reliability of the acquisition strategy and measurement steps. RESULTS The measurement procedure based on 2D PSIR imaging allowed TCA and GM area assessments along the entire spinal cord axis. The tests we performed revealed high test-retest/intra-operator reliability (mean coefficient of variation (COV) at C2–C3: TCA=0.41%, GM area=2.75%) and inter-operator reliability of the measurements (mean COV on the 4 levels: TCA=0.44%, GM area= 4.20%; mean intra-class correlation coefficient: TCA=0.998, GM area=0.906). CONCLUSION 2D PSIR allows reliable in-vivo assessment of spinal cord TCA, GM and WM areas in clinically feasible acquisition times. The area measurements presented here are in agreement with previous MRI and post-mortem studies. PMID:25483607

  20. A resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Guan, Huifeng; Anastasio, Mark A.

    2017-03-01

    It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.

  1. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    PubMed

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  2. Defense Intelligence: Additional Steps Could Better Integrate Intelligence Input into DODs Acquisition of Major Weapon Systems

    DTIC Science & Technology

    2016-11-01

    DEFENSE INTELLIGENCE Additional Steps Could Better Integrate Intelligence Input into DOD’s Acquisition of Major Weapon...States Government Accountability Office Highlights of GAO-17-10, a report to congressional committees November 2016 DEFENSE INTELLIGENCE ...Additional Steps Could Better Integrate Intelligence Input into DOD’s Acquisition of Major Weapon Systems What GAO Found The Department of Defense (DOD

  3. Gapped pulses for frequency-swept MRI

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curt; Moeller, Steen; Garwood, Michael

    2008-08-01

    A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HS n pulses). This article describes the experimental steps needed to properly implement HS n pulses in SWIFT. In addition, properties of HS n pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the "gaps" needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HS n pulses, as well as the relative energy deposited by the SWIFT sequence.

  4. Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan

    NASA Astrophysics Data System (ADS)

    Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.

    2006-04-01

    The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.

  5. Quantitative evaluation of phase processing approaches in susceptibility weighted imaging

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Wang, Wen-Tung; Sati, Pascal; Pham, Dzung L.; Butman, John A.

    2012-03-01

    Susceptibility weighted imaging (SWI) takes advantage of the local variation in susceptibility between different tissues to enable highly detailed visualization of the cerebral venous system and sensitive detection of intracranial hemorrhages. Thus, it has been increasingly used in magnetic resonance imaging studies of traumatic brain injury as well as other intracranial pathologies. In SWI, magnitude information is combined with phase information to enhance the susceptibility induced image contrast. Because of global susceptibility variations across the image, the rate of phase accumulation varies widely across the image resulting in phase wrapping artifacts that interfere with the local assessment of phase variation. Homodyne filtering is a common approach to eliminate this global phase variation. However, filter size requires careful selection in order to preserve image contrast and avoid errors resulting from residual phase wraps. An alternative approach is to apply phase unwrapping prior to high pass filtering. A suitable phase unwrapping algorithm guarantees no residual phase wraps but additional computational steps are required. In this work, we quantitatively evaluate these two phase processing approaches on both simulated and real data using different filters and cutoff frequencies. Our analysis leads to an improved understanding of the relationship between phase wraps, susceptibility effects, and acquisition parameters. Although homodyne filtering approaches are faster and more straightforward, phase unwrapping approaches perform more accurately in a wider variety of acquisition scenarios.

  6. Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: First steps towards clinical application.

    PubMed

    Hahnemann, Maria L; Kraff, Oliver; Maderwald, Stefan; Johst, Soeren; Orzada, Stephan; Umutlu, Lale; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2016-06-01

    To perform non-enhanced (NE) magnetic resonance imaging (MRI) of the small bowel at 7 Tesla (7T) and to compare it with 1.5 Tesla (1.5T). Twelve healthy subjects were prospectively examined using a 1.5T and 7T MRI system. Coronal and axial true fast imaging with steady-state precession (TrueFISP) imaging and a coronal T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence were acquired. Image analysis was performed by 1) visual evaluation of tissue contrast and detail detectability, 2) measurement and calculation of contrast ratios and 3) assessment of artifacts. NE MRI of the small bowel at 7T was technically feasible. In the vast majority of the cases, tissue contrast and image details were equivalent at both field strengths. At 7T, two cases revealed better detail detectability in the TrueFISP, and better contrast in the HASTE. Susceptibility artifacts and B1 inhomogeneities were significantly increased at 7T. This study provides first insights into NE ultra-high field MRI of the small bowel and may be considered an important step towards high quality T2w abdominal imaging at 7T MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor.

    PubMed

    Pell, Gaby S; Abbott, David F; Fleming, Steven W; Prichard, James W; Jackson, Graeme D

    2006-05-01

    The characteristics of an MRI technique that could be used for direct detection of neuronal activity are investigated. It was shown that magnitude imaging using echo planar imaging can detect transient local currents. The sensitivity of this method was thoroughly investigated. A partial k-space EPI acquisition with homodyne reconstruction was found to increase the signal change. A unique sensitivity to the position of the current pulse within the imaging sequence was demonstrated with the greatest signal change occurring when the current pulse coincides with the acquisition of the center lines of k-space. The signal change was shown to be highly sensitive to the spatial position of the current conductor relative to the voxel. Furthermore, with the use of optimization of spatial and temporal placement of the current pulse, the level of signal change obtained at this lower limit of current detectability was considerably magnified. It was possible to detect a current of 1.7 microA applied for 20 ms with an imaging time of 1.8 min. The level of sensitivity observed in our study brings us closer to that theoretically required for the detection of action currents in nerves. Copyright (c) 2006 Wiley-Liss, Inc.

  8. Multislice spiral CT simulator for dynamic cardiopulmonary studies

    NASA Astrophysics Data System (ADS)

    De Francesco, Silvia; Ferreira da Silva, Augusto M.

    2002-04-01

    We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.

  9. Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system.

    PubMed

    Troy, Karen L; Edwards, W Brent

    2018-05-01

    Quantitative CT (QCT) analysis involves the calculation of specific parameters such as bone volume and density from CT image data, and can be a powerful tool for understanding bone quality and quantity. However, without careful attention to detail during all steps of the acquisition and analysis process, data can be of poor- to unusable-quality. Good quality QCT for research requires meticulous attention to detail and standardization of all aspects of data collection and analysis to a degree that is uncommon in a clinical setting. Here, we review the literature to summarize practical and technical considerations for obtaining high quality QCT data, and provide examples of how each recommendation affects calculated variables. We also provide an overview of the QCT analysis technique to illustrate additional opportunities to improve data reproducibility and reliability. Key recommendations include: standardizing the scanner and data acquisition settings, minimizing image artifacts, selecting an appropriate reconstruction algorithm, and maximizing repeatability and objectivity during QCT analysis. The goal of the recommendations is to reduce potential sources of error throughout the analysis, from scan acquisition to the interpretation of results. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research.

    PubMed

    Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S

    2016-07-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.

  11. Structure-preserving interpolation of temporal and spatial image sequences using an optical flow-based method.

    PubMed

    Ehrhardt, J; Säring, D; Handels, H

    2007-01-01

    Modern tomographic imaging devices enable the acquisition of spatial and temporal image sequences. But, the spatial and temporal resolution of such devices is limited and therefore image interpolation techniques are needed to represent images at a desired level of discretization. This paper presents a method for structure-preserving interpolation between neighboring slices in temporal or spatial image sequences. In a first step, the spatiotemporal velocity field between image slices is determined using an optical flow-based registration method in order to establish spatial correspondence between adjacent slices. An iterative algorithm is applied using the spatial and temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is used to generate an interpolated image at the desired time by averaging intensities between corresponding points. Three quantitative measures are defined to evaluate the performance of the interpolation method. The behavior and capability of the algorithm is demonstrated by synthetic images. A population of 17 temporal and spatial image sequences are utilized to compare the optical flow-based interpolation method to linear and shape-based interpolation. The quantitative results show that the optical flow-based method outperforms the linear and shape-based interpolation statistically significantly. The interpolation method presented is able to generate image sequences with appropriate spatial or temporal resolution needed for image comparison, analysis or visualization tasks. Quantitative and qualitative measures extracted from synthetic phantoms and medical image data show that the new method definitely has advantages over linear and shape-based interpolation.

  12. Improved frame-based estimation of head motion in PET brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less

  13. Improved frame-based estimation of head motion in PET brain imaging

    PubMed Central

    Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355

  14. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner.

    PubMed

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Mark, E-mail: mark-mueller@ph.tum.de; Yaroshenko, Andre; Velroyen, Astrid

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal andmore » noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.« less

  16. Feature-based pairwise retinal image registration by radial distortion correction

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2007-03-01

    Fundus camera imaging is widely used to document disorders such as diabetic retinopathy and macular degeneration. Multiple retinal images can be combined together through a procedure known as mosaicing to form an image with a larger field of view. Mosaicing typically requires multiple pairwise registrations of partially overlapped images. We describe a new method for pairwise retinal image registration. The proposed method is unique in that the radial distortion due to image acquisition is corrected prior to the geometric transformation. Vessel lines are detected using the Hessian operator and are used as input features to the registration. Since the overlapping region is typically small in a retinal image pair, only a few correspondences are available, thus limiting the applicable model to an afine transform at best. To recover the distortion due to curved-surface of retina and lens optics, a combined approach of an afine model with a radial distortion correction is proposed. The parameters of the image acquisition and radial distortion models are estimated during an optimization step that uses Powell's method driven by the vessel line distance. Experimental results using 20 pairs of green channel images acquired from three subjects with a fundus camera confirmed that the afine model with distortion correction could register retinal image pairs to within 1.88+/-0.35 pixels accuracy (mean +/- standard deviation) assessed by vessel line error, which is 17% better than the afine-only approach. Because the proposed method needs only two correspondences, it can be applied to obtain good registration accuracy even in the case of small overlap between retinal image pairs.

  17. Virtual slides in peer reviewed, open access medical publication.

    PubMed

    Kayser, Klaus; Borkenfeld, Stephan; Goldmann, Torsten; Kayser, Gian

    2011-12-19

    Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images. The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011. Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819.

  18. Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network

    NASA Astrophysics Data System (ADS)

    Nasution, T. H.; Andayani, U.

    2017-03-01

    The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.

  19. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure

    PubMed Central

    Miller, David R.; Hassan, Ahmed M.; Jarrett, Jeremy W.; Medina, Flor A.; Perillo, Evan P.; Hagan, Kristen; Shams Kazmi, S. M.; Clark, Taylor A.; Sullender, Colin T.; Jones, Theresa A.; Zemelman, Boris V.; Dunn, Andrew K.

    2017-01-01

    We perform high-resolution, non-invasive, in vivo deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between λ=1,100 and 1,400 nm. By combining the high repetition rate (511 kHz) and high pulse energy (400 nJ) of our amplifier laser system, we demonstrate imaging of vasculature labeled with Texas Red and Indocyanine Green, and neurons expressing tdTomato and yellow fluorescent protein. We measure the blood flow speed of a single capillary at a depth of 1.2 mm, and image vasculature to a depth of 1.53 mm with fine axial steps (5 μm) and reasonable acquisition times. The high image quality enabled analysis of vascular morphology at depths to 1.45 mm. PMID:28717582

  20. Lesion Border Detection in Dermoscopy Images

    PubMed Central

    Celebi, M. Emre; Schaefer, Gerald; Iyatomi, Hitoshi; Stoecker, William V.

    2009-01-01

    Background Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized analysis of dermoscopy images has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders. Methods In this article, we present a systematic overview of the recent border detection methods in the literature paying particular attention to computational issues and evaluation aspects. Conclusion Common problems with the existing approaches include the acquisition, size, and diagnostic distribution of the test image set, the evaluation of the results, and the inadequate description of the employed methods. Border determination by dermatologists appears to depend upon higher-level knowledge, therefore it is likely that the incorporation of domain knowledge in automated methods will enable them to perform better, especially in sets of images with a variety of diagnoses. PMID:19121917

  1. A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot

    NASA Astrophysics Data System (ADS)

    Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang

    2017-03-01

    An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.

  2. Proteomic analysis of formalin-fixed paraffin embedded tissue by MALDI imaging mass spectrometry

    PubMed Central

    Casadonte, Rita; Caprioli, Richard M

    2012-01-01

    Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE -TMAs using matrix-assisted laser desorption/ionization (MAL DI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE -TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis. PMID:22011652

  3. Education and research in medical optronics in France

    NASA Astrophysics Data System (ADS)

    Demongeot, Jacques; Fleute, M.; Herve, T.; Lavallee, Stephane

    2000-06-01

    First we present here the main post-graduate courses proposed in France both for physicians and engineers in medical optronics. After we explain which medical domains are concerned by this teaching, essentially computer assisted surgery, telemedicine and functional exploration. Then we show the main research axes in these fields, in which new jobs have to be invented and new educational approaches have to be prepared in order to satisfy the demand coming both from hospitals (mainly referent hospitals) and from industry (essentially medical imaging and instrumentation companies). Finally we will conclude that medical optronics is an important step in an entire chain of acquisition and processing of medical data, capable to create the medical knowledge a surgeon or a physician needs for diagnosis or therapy purposes. Optimizing the teaching of medical optronics needs a complete integration from acquiring to modeling the medical reality. This tendency to give a holistic education in medical imaging and instrumentation is called `Model driven Acquisition' learning.

  4. Comparison of Uas-Based Photogrammetry Software for 3d Point Cloud Generation: a Survey Over a Historical Site

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2017-11-01

    Nowadays, Unmanned Aerial System (UAS)-based photogrammetry offers an affordable, fast and effective approach to real-time acquisition of high resolution geospatial information and automatic 3D modelling of objects for numerous applications such as topography mapping, 3D city modelling, orthophoto generation, and cultural heritages preservation. In this paper, the capability of four different state-of-the-art software packages as 3DSurvey, Agisoft Photoscan, Pix4Dmapper Pro and SURE is examined to generate high density point cloud as well as a Digital Surface Model (DSM) over a historical site. The main steps of this study are including: image acquisition, point cloud generation, and accuracy assessment. The overlapping images are first captured using a quadcopter and next are processed by different software to generate point clouds and DSMs. In order to evaluate the accuracy and quality of point clouds and DSMs, both visual and geometric assessments are carry out and the comparison results are reported.

  5. Design and implementation of non-linear image processing functions for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel

    2012-11-01

    Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.

  6. Fundamental limits of image registration performance: Effects of image noise and resolution in CT-guided interventions.

    PubMed

    Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H

    2017-02-11

    In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.

  7. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  8. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  9. Digital-image processing and image analysis of glacier ice

    USGS Publications Warehouse

    Fitzpatrick, Joan J.

    2013-01-01

    This document provides a methodology for extracting grain statistics from 8-bit color and grayscale images of thin sections of glacier ice—a subset of physical properties measurements typically performed on ice cores. This type of analysis is most commonly used to characterize the evolution of ice-crystal size, shape, and intercrystalline spatial relations within a large body of ice sampled by deep ice-coring projects from which paleoclimate records will be developed. However, such information is equally useful for investigating the stress state and physical responses of ice to stresses within a glacier. The methods of analysis presented here go hand-in-hand with the analysis of ice fabrics (aggregate crystal orientations) and, when combined with fabric analysis, provide a powerful method for investigating the dynamic recrystallization and deformation behaviors of bodies of ice in motion. The procedures described in this document compose a step-by-step handbook for a specific image acquisition and data reduction system built in support of U.S. Geological Survey ice analysis projects, but the general methodology can be used with any combination of image processing and analysis software. The specific approaches in this document use the FoveaPro 4 plug-in toolset to Adobe Photoshop CS5 Extended but it can be carried out equally well, though somewhat less conveniently, with software such as the image processing toolbox in MATLAB, Image-Pro Plus, or ImageJ.

  10. Longitudinal assessment of treatment effects on pulmonary ventilation using 1H/3He MRI multivariate templates

    NASA Astrophysics Data System (ADS)

    Tustison, Nicholas J.; Contrella, Benjamin; Altes, Talissa A.; Avants, Brian B.; de Lange, Eduard E.; Mugler, John P.

    2013-03-01

    The utitlity of pulmonary functional imaging techniques, such as hyperpolarized 3He MRI, has encouraged their inclusion in research studies for longitudinal assessment of disease progression and the study of treatment effects. We present methodology for performing voxelwise statistical analysis of ventilation maps derived from hyper­ polarized 3He MRI which incorporates multivariate template construction using simultaneous acquisition of IH and 3He images. Additional processing steps include intensity normalization, bias correction, 4-D longitudinal segmentation, and generation of expected ventilation maps prior to voxelwise regression analysis. Analysis is demonstrated on a cohort of eight individuals with diagnosed cystic fibrosis (CF) undergoing treatment imaged five times every two weeks with a prescribed treatment schedule.

  11. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis.

    PubMed

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L; van de Laar, Mart A; Kuper, Ina H H; Slump, Kees C H; Lafeber, Floris P J G; Bernelot Moens, Hein J

    2016-10-01

    Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp-van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was [Formula: see text] and [Formula: see text] in the two series of radiographs, and of PIP joints [Formula: see text] and [Formula: see text]. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was [Formula: see text], indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than incorrect delineation by the software (25%). Various steps in the validation of an automated measurement system for JSW of MCP and PIP joints are described. The use of serial radiographs from different sources, with a short interval and limited damage, is helpful to detect sources of error. Image acquisition, in particular repositioning, is a dominant source of error.

  12. Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage

    PubMed Central

    Li, Xueming; Zheng, Shawn; Agard, David A.; Cheng, Yifan

    2015-01-01

    Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image acquisition schemes provide opportunities to analyze cryoEM data in ways that were previously impossible. The file size of a dose fractionated image stack is 20 ~ 60 times larger than that of a single image. Thus, efficient data acquisition and on-the-fly analysis of a large number of dose-fractionated image stacks become a serious challenge to any cryoEM data acquisition system. We have developed a computer-assisted system, named UCSFImage4, for semi-automated cryo-EM image acquisition that implements an asynchronous data acquisition scheme. This facilitates efficient acquisition, on-the-fly motion correction, and CTF analysis of dose fractionated image stacks with a total time of ~60 seconds/exposure. Here we report the technical details and configuration of this system. PMID:26370395

  13. Feasibility of intra-acquisition motion correction for 4D DSA reconstruction for applications in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin; Laeseke, Paul; Harari, Colin; Schafer, Sebastian; Speidel, Michael; Mistretta, Charles

    2018-03-01

    The recently proposed 4D DSA technique enables reconstruction of time resolved 3D volumes from two C-arm CT acquisitions. This provides information on the blood flow in neurovascular applications and can be used for the diagnosis and treatment of vascular diseases. For applications in the thorax and abdomen, respiratory motion can prevent successful 4D DSA reconstruction and cause severe artifacts. The purpose of this work is to propose a novel technique for motion compensated 4D DSA reconstruction to enable applications in the thorax and abdomen. The approach uses deformable 2D registration to align the projection images of a non-contrast and a contrast enhanced scan. A subset of projection images is then selected, which are acquired in a similar respiratory state and an iterative simultaneous multiplicative algebraic reconstruction is applied to determine a 3D constraint volume. A 2D-3D registration step then aligns the remaining projection images with the 3D constraint volume. Finally, a constrained back-projection is performed to create a 3D volume for each projection image. A pig study has been performed, where 4D DSA acquisitions were performed with and without respiratory motion to evaluate the feasibility of the approach. The dice similarity coefficient between the reference 3D constraint volume and the motion compensated reconstruction was 51.12 % compared to 35.99 % without motion compensation. This technique could improve the workflow for procedures in interventional radiology, e.g. liver embolizations, where changes in blood flow have to be monitored carefully.

  14. Registration of 3D spectral OCT volumes combining ICP with a graph-based approach

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan

    2012-02-01

    The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.

  15. Automatic retinal interest evaluation system (ARIES).

    PubMed

    Yin, Fengshou; Wong, Damon Wing Kee; Yow, Ai Ping; Lee, Beng Hai; Quan, Ying; Zhang, Zhuo; Gopalakrishnan, Kavitha; Li, Ruoying; Liu, Jiang

    2014-01-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. However, in practice, retinal image quality is a big concern as automatic systems without consideration of degraded image quality will likely generate unreliable results. In this paper, an automatic retinal image quality assessment system (ARIES) is introduced to assess both image quality of the whole image and focal regions of interest. ARIES achieves 99.54% accuracy in distinguishing fundus images from other types of images through a retinal image identification step in a dataset of 35342 images. The system employs high level image quality measures (HIQM) to perform image quality assessment, and achieves areas under curve (AUCs) of 0.958 and 0.987 for whole image and optic disk region respectively in a testing dataset of 370 images. ARIES acts as a form of automatic quality control which ensures good quality images are used for processing, and can also be used to alert operators of poor quality images at the time of acquisition.

  16. 3D acquisition and modeling for flint artefacts analysis

    NASA Astrophysics Data System (ADS)

    Loriot, B.; Fougerolle, Y.; Sestier, C.; Seulin, R.

    2007-07-01

    In this paper, we are interested in accurate acquisition and modeling of flint artefacts. Archaeologists needs accurate geometry measurements to refine their understanding of the flint artefacts manufacturing process. Current techniques require several operations. First, a copy of a flint artefact is reproduced. The copy is then sliced. A picture is taken for each slice. Eventually, geometric information is manually determined from the pictures. Such a technique is very time consuming, and the processing applied to the original, as well as the reproduced object, induces several measurement errors (prototyping approximations, slicing, image acquisition, and measurement). By using 3D scanners, we significantly reduce the number of operations related to data acquisition and completely suppress the prototyping step to obtain an accurate 3D model. The 3D models are segmented into sliced parts that are then analyzed. Each slice is then automatically fitted by mathematical representation. Such a representation offers several interesting properties: geometric features can be characterized (e.g. shapes, curvature, sharp edges, etc), and a shape of the original piece of stone can be extrapolated. The contributions of this paper are an acquisition technique using 3D scanners that strongly reduces human intervention, acquisition time and measurement errors, and the representation of flint artefacts as mathematical 2D sections that enable accurate analysis.

  17. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  18. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE PAGES

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  19. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    2015-01-01

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  20. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.

    PubMed

    Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J

    2015-03-09

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.

  1. Efficient radial tagging CMR exam: A coherent k-space reading and image reconstruction approach.

    PubMed

    Golshani, Shokoufeh; Nasiraei-Moghaddam, Abbas

    2017-04-01

    Cardiac MR tagging techniques, which facilitate the strain evaluation, have not yet been widely adopted in clinics due to inefficiencies in acquisition and postprocessing. This problem may be alleviated by exploiting the coherency in the three steps of tagging: preparation, acquisition, and reconstruction. Herein, we propose a fully polar-based tagging approach that may lead to real-time strain mapping. Radial readout trajectories were used to acquire radial tagging images and a Hankel-based algorithm, referred to as Polar Fourier Transform (PFT), has been adapted for reconstruction of the acquired raw data. In both phantom and human subjects, the overall performance of the method was investigated against radial undersampling and compared with the conventional reconstruction methods. Radially tagged images were reconstructed by the proposed PFT method from as few as 24 spokes with normalized root-mean-square-error of less than 3%. The reconstructed images showed a central focusing behavior, where the undersampling effects were pushed to the peripheral areas out of the central region of interest. Comparing the results with the re-gridding reconstruction technique, superior image quality and high robustness of the method were further established. In addition, a relative increase of 68 ± 2.5% in tagline sharpness was achieved for the PFT images and also higher tagging contrast (72 ± 5.6%), resulted from the well-tolerated undersampling artifacts, was observed in all reconstructions. The proposed approach led to the acceleration of the acquisition process, which was evaluated for up to eight-fold retrospectively from the fully sampled data. This is promising toward real-time imaging, and in contrast to iterative techniques, the method is consistent with online reconstruction. Magn Reson Med 77:1459-1472, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review.

    PubMed

    Spin-Neto, Rubens; Gotfredsen, Erik; Wenzel, Ann

    2013-08-01

    The objective of this study was to make a systematic review on the impact of voxel size in cone beam computed tomography (CBCT)-based image acquisition, retrieving evidence regarding the diagnostic outcome of those images. The MEDLINE bibliographic database was searched from 1950 to June 2012 for reports comparing diverse CBCT voxel sizes. The search strategy was limited to English-language publications using the following combined terms in the search strategy: (voxel or FOV or field of view or resolution) and (CBCT or cone beam CT). The results from the review identified 20 publications that qualitatively or quantitatively assessed the influence of voxel size on CBCT-based diagnostic outcome, and in which the methodology/results comprised at least one of the expected parameters (image acquisition, reconstruction protocols, type of diagnostic task, and presence of a gold standard). The diagnostic task assessed in the studies was diverse, including the detection of root fractures, the detection of caries lesions, and accuracy of 3D surface reconstruction and of bony measurements, among others. From the studies assessed, it is clear that no general protocol can be yet defined for CBCT examination of specific diagnostic tasks in dentistry. Rationale in this direction is an important step to define the utility of CBCT imaging.

  3. Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability

    NASA Astrophysics Data System (ADS)

    Samaille, T.; Colliot, O.; Cuingnet, R.; Jouvent, E.; Chabriat, H.; Dormont, D.; Chupin, M.

    2012-02-01

    White matter hyperintensities (WMH), commonly seen on FLAIR images in elderly people, are a risk factor for dementia onset and have been associated with motor and cognitive deficits. We present here a method to fully automatically segment WMH from T1 and FLAIR images. Iterative steps of non linear diffusion followed by watershed segmentation were applied on FLAIR images until convergence. Diffusivity function and associated contrast parameter were carefully designed to adapt to WMH segmentation. It resulted in piecewise constant images with enhanced contrast between lesions and surrounding tissues. Selection of WMH areas was based on two characteristics: 1) a threshold automatically computed for intensity selection, 2) main location of areas in white matter. False positive areas were finally removed based on their proximity with cerebrospinal fluid/grey matter interface. Evaluation was performed on 67 patients: 24 with amnestic mild cognitive impairment (MCI), from five different centres, and 43 with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoaraiosis (CADASIL) acquired in a single centre. Results showed excellent volume agreement with manual delineation (Pearson coefficient: r=0.97, p<0.001) and substantial spatial correspondence (Similarity Index: 72%+/-16%). Our method appeared robust to acquisition differences across the centres as well as to pathological variability.

  4. An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs

    NASA Astrophysics Data System (ADS)

    Fessler, P.; Coffin, J.; Eberlé, H.; de Raad Iseli, C.; Hilt, B.; Huss, D.; Krummenacher, F.; Lutz, J. R.; Prévot, G.; Renouprez, A.; Sigward, M. H.; Schwaller, B.; Voltolini, C.

    1999-01-01

    Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 μs and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent.

  5. Extended hybrid-space SENSE for EPI: Off-resonance and eddy current corrected joint interleaved blip-up/down reconstruction.

    PubMed

    Zahneisen, Benjamin; Aksoy, Murat; Maclaren, Julian; Wuerslin, Christian; Bammer, Roland

    2017-06-01

    Geometric distortions along the phase encode direction caused by off-resonant spins are still a major issue in EPI based functional and diffusion imaging. If the off-resonance map is known it is possible to correct for distortions. Most correction methods operate as a post-processing step on the reconstructed magnitude images. Here, we present an algebraic reconstruction method (hybrid-space SENSE) that incorporates a physics based model of off-resonances, phase inconsistencies between k-space segments, and T2*-decay during the acquisition. The method can be used to perform a joint reconstruction of interleaved acquisitions with normal (blip-up) and inverted (blip-down) phase encode direction which results in reduced g-factor penalty. A joint blip-up/down simultaneous multi slice (SMS) reconstruction for SMS-factor 4 in combination with twofold in-plane acceleration leads to a factor of two decrease in maximum g-factor penalty while providing off-resonance and eddy-current corrected images. We provide an algebraic framework for reconstructing diffusion weighted EPI data that in addition to the general applicability of hybrid-space SENSE to 2D-EPI, SMS-EPI and 3D-EPI with arbitrary k-space coverage along z, allows for a modeling of arbitrary spatio-temporal effects during the acquisition period like off-resonances, phase inconsistencies and T2*-decay. The most immediate benefit is a reduction in g-factor penalty if an interleaved blip-up/down acquisition strategy is chosen which facilitates eddy current estimation and ensures no loss in k-space encoding in regions with strong off-resonance gradients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    PubMed Central

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-01-01

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results. PMID:25808767

  7. 3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results

    NASA Astrophysics Data System (ADS)

    Gemmeke, Hartmut; Hopp, Torsten; Zapf, Michael; Kaiser, Clemens; Ruiter, Nicole V.

    2017-11-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). Current experimental USCT systems are still focused in elevation dimension resulting in a large slice thickness, limited depth of field, loss of out-of-plane reflections, and a large number of movement steps to acquire a stack of images. 3D USCT emitting and receiving spherical wave fronts overcomes these limitations. We built an optimized 3D USCT, realizing for the first time the full benefits of a 3D system. The point spread function could be shown to be nearly isotropic in 3D, to have very low spatial variability and fit the predicted values. The contrast of the phantom images is very satisfactory in spite of imaging with a sparse aperture. The resolution and imaged details of the reflectivity reconstruction are comparable to a 3 T MRI volume. Important for the obtained resolution are the simultaneously obtained results of the transmission tomography. The KIT 3D USCT was then tested in a pilot study on ten patients. The primary goals of the pilot study were to test the USCT device, the data acquisition protocols, the image reconstruction methods and the image fusion techniques in a clinical environment. The study was conducted successfully; the data acquisition could be carried out for all patients with an average imaging time of six minutes per breast. The reconstructions provide promising images. Overlaid volumes of the modalities show qualitative and quantitative information at a glance. This paper gives a summary of the involved techniques, methods, and first results.

  8. Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2010-01-01

    Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.

  9. Targeted delivery of cancer-specific multimodal contrast agents for intraoperative detection of tumor boundaries and therapeutic margins

    NASA Astrophysics Data System (ADS)

    Xu, Ronald X.; Xu, Jeff S.; Huang, Jiwei; Tweedle, Michael F.; Schmidt, Carl; Povoski, Stephen P.; Martin, Edward W.

    2010-02-01

    Background: Accurate assessment of tumor boundaries and intraoperative detection of therapeutic margins are important oncologic principles for minimal recurrence rates and improved long-term outcomes. However, many existing cancer imaging tools are based on preoperative image acquisition and do not provide real-time intraoperative information that supports critical decision-making in the operating room. Method: Poly lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) were synthesized by a modified double emulsion method. The MB and NB surfaces were conjugated with CC49 antibody to target TAG-72 antigen, a human glycoprotein complex expressed in many epithelial-derived cancers. Multiple imaging agents were encapsulated in MBs and NBs for multimodal imaging. Both one-step and multi-step cancer targeting strategies were explored. Active MBs/NBs were also fabricated for therapeutic margin assessment in cancer ablation therapies. Results: The multimodal contrast agents and the cancer-targeting strategies were tested on tissue simulating phantoms, LS174 colon cancer cell cultures, and cancer xenograft nude mice. Concurrent multimodal imaging was demonstrated using fluorescence and ultrasound imaging modalities. Technical feasibility of using active MBs and portable imaging tools such as ultrasound for intraoperative therapeutic margin assessment was demonstrated in a biological tissue model. Conclusion: The cancer-specific multimodal contrast agents described in this paper have the potential for intraoperative detection of tumor boundaries and therapeutic margins.

  10. Image processing tools dedicated to quantification in 3D fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dieterlen, A.; De Meyer, A.; Colicchio, B.; Le Calvez, S.; Haeberlé, O.; Jacquey, S.

    2006-05-01

    3-D optical fluorescent microscopy now becomes an efficient tool for the volume investigation of living biological samples. Developments in instrumentation have permitted to beat off the conventional Abbe limit. In any case the recorded image can be described by the convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. Due to the finite resolution of the instrument, the original object is recorded with distortions and blurring, and contaminated by noise. This induces that relevant biological information cannot be extracted directly from raw data stacks. If the goal is 3-D quantitative analysis, then to assess optimal performance of the instrument and to ensure the data acquisition reproducibility, the system characterization is mandatory. The PSF represents the properties of the image acquisition system; we have proposed the use of statistical tools and Zernike moments to describe a 3-D PSF system and to quantify the variation of the PSF. This first step toward standardization is helpful to define an acquisition protocol optimizing exploitation of the microscope depending on the studied biological sample. Before the extraction of geometrical information and/or intensities quantification, the data restoration is mandatory. Reduction of out-of-focus light is carried out computationally by deconvolution process. But other phenomena occur during acquisition, like fluorescence photo degradation named "bleaching", inducing an alteration of information needed for restoration. Therefore, we have developed a protocol to pre-process data before the application of deconvolution algorithms. A large number of deconvolution methods have been described and are now available in commercial package. One major difficulty to use this software is the introduction by the user of the "best" regularization parameters. We have pointed out that automating the choice of the regularization level; also greatly improves the reliability of the measurements although it facilitates the use. Furthermore, to increase the quality and the repeatability of quantitative measurements a pre-filtering of images improves the stability of deconvolution process. In the same way, the PSF prefiltering stabilizes the deconvolution process. We have shown that Zemike polynomials can be used to reconstruct experimental PSF, preserving system characteristics and removing the noise contained in the PSF.

  11. Photogrammetric 3D skull/photo superimposition: A pilot study.

    PubMed

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-04-01

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Image denoising for real-time MRI.

    PubMed

    Klosowski, Jakob; Frahm, Jens

    2017-03-01

    To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Identification and restoration in 3D fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dieterlen, Alain; Xu, Chengqi; Haeberle, Olivier; Hueber, Nicolas; Malfara, R.; Colicchio, B.; Jacquey, Serge

    2004-06-01

    3-D optical fluorescent microscopy becomes now an efficient tool for volumic investigation of living biological samples. The 3-D data can be acquired by Optical Sectioning Microscopy which is performed by axial stepping of the object versus the objective. For any instrument, each recorded image can be described by a convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. To assess performance and ensure the data reproducibility, as for any 3-D quantitative analysis, the system indentification is mandatory. The PSF explains the properties of the image acquisition system; it can be computed or acquired experimentally. Statistical tools and Zernike moments are shown appropriate and complementary to describe a 3-D system PSF and to quantify the variation of the PSF as function of the optical parameters. Some critical experimental parameters can be identified with these tools. This is helpful for biologist to define an aquisition protocol optimizing the use of the system. Reduction of out-of-focus light is the task of 3-D microscopy; it is carried out computationally by deconvolution process. Pre-filtering the images improves the stability of deconvolution results, now less dependent on the regularization parameter; this helps the biologists to use restoration process.

  14. Performance of High Resolution Satellite InSAR in Detection of Dangerous Subsidence in Case of Brno Urban Area

    NASA Astrophysics Data System (ADS)

    Lazecky, Milan; Rapant, Petr; Blaha, Pavel; Perissin, Daniele

    2016-08-01

    For the work, we have achieved 20 Radarsat-2 acquisitions in fine beam mode within ESA project C1P.21629 - Evaluation of Potential Threats to Stability of Linear Structures using InSAR Technology. These acquisitions show deformations in Brno city between August 2014 and October 2015 with a regular step of 24 days temporal difference. Also, we have additionally achieved a series of 75 Cosmo SkyMed images with temporal step every 16 days in average, for dates between June 2011 and July 2014. The Cosmo SkyMed dataset partially overlaps with the reference measurements of tilt and height changes. After the end of the intensive measurements, the PS InSAR time series can deliver knowledge about continuation of movement and depict the date of final stabilization of the area. The accuracy can be validated using the limited number of the continuing warranty levelling mission. We have realized that the available dataset can be used also for monitoring of other events. We provide an example of potential detection of a cavity under a house in Brno-Bystrc.

  15. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less

  16. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry.

    PubMed

    Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel

    2015-12-01

    The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.

  17. Ring artifact reduction in synchrotron x-ray tomography through helical acquisition

    NASA Astrophysics Data System (ADS)

    Pelt, Daniël M.; Parkinson, Dilworth Y.

    2018-03-01

    In synchrotron x-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make it difficult or impossible to use the reconstructed image in further analyses. The severity of ring artifacts is often reduced in practice by applying pre-processing on the acquired data, or post-processing on the reconstructed image. However, such additional processing steps can introduce additional artifacts as well, and rely on specific choices of hyperparameter values. In this paper, a different approach to reducing the severity of ring artifacts is introduced: a helical acquisition mode. By moving the sample parallel to the rotation axis during the experiment, the sample is detected at different detector positions in each projection, reducing the effect of systematic errors in detector elements. Alternatively, helical acquisition can be viewed as a way to transform ring artifacts to helix-like artifacts in the reconstructed volume, reducing their severity. We show that data acquired with the proposed mode can be transformed to data acquired with a virtual circular trajectory, enabling further processing of the data with existing software packages for circular data. Results for both simulated data and experimental data show that the proposed method is able to significantly reduce ring artifacts in practice, even compared with popular existing methods, without introducing additional artifacts.

  18. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  19. Fast focus-scanning head in two-photon photoacoustic microscopy with electrically controlled liquid lens

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Kimura, Yuka; Harada, Yoshinori; Takamatsu, Tetsuro; Takahashi, Eiji

    2018-02-01

    Conventional one-photon photoacoustic microscopy (PAM) utilizes high-frequency components of generated photoacoustic waves to improve the depth resolution. However, to obtain optically-high resolution in PAM in the depth direction, the use of high-frequency ultrasonic waves is to be avoided. It is because that the propagation distance is shortened as the frequency of ultrasonic waves becomes high. To overcome this drawback, we have proposed and developed two-photon photoacoustic microscopy (TP-PAM). Two-photon absorption occurs only at the focus point. TPPAM does not need to use the high-frequency components of photoacoustic waves. Thus, TP-PAM can improve the penetration depth while preserving the spatial resolution. However, the image acquisition time of TP-PAM is longer than that of conventional PAM, because TP-PAM needs to scan the laser spot both in the depth and transverse directions to obtain cross-sectional images. In this paper, we have introduced a focus-tunable electrically-controlled liquid lens in TP-PAM. Instead of a mechanical stepping-motor stage, we employed electrically-controlled liquid lens so that the depth of the focus spot can be quickly changed. In our system, the imaging speed of TP-PAM using the liquid lens and one-axis stepping-motor stage was 10 times faster than that using a two-axis stepping-motor stage only. TP-PAM with focus-scanning head consisting of the liquid lens and stepping-motor stage will be a promising method to investigate the inside of living tissues.

  20. The image acquisition system design of floor grinder

    NASA Astrophysics Data System (ADS)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  1. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  2. High Resolution Soil Water from Regional Databases and Satellite Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskly, Vadim N.; Coughlin, Joseph; Dungan, Jennifer; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the ways in which plant growth can be inferred from satellite data and can then be used to infer soil water. There are several steps in this process, the first of which is the acquisition of data from satellite observations and relevant information databases such as the State Soil Geographic Database (STATSGO). Then probabilistic analysis and inversion with the Bayes' theorem reveals sources of uncertainty. The Markov chain Monte Carlo method is also used.

  3. Depth map generation using a single image sensor with phase masks.

    PubMed

    Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki

    2016-06-13

    Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.

  4. Time-jittered marine seismic data acquisition via compressed sensing and sparsity-promoting wavefield reconstruction

    NASA Astrophysics Data System (ADS)

    Wason, H.; Herrmann, F. J.; Kumar, R.

    2016-12-01

    Current efforts towards dense shot (or receiver) sampling and full azimuthal coverage to produce high resolution images have led to the deployment of multiple source vessels (or streamers) across marine survey areas. Densely sampled marine seismic data acquisition, however, is expensive, and hence necessitates the adoption of sampling schemes that save acquisition costs and time. Compressed sensing is a sampling paradigm that aims to reconstruct a signal--that is sparse or compressible in some transform domain--from relatively fewer measurements than required by the Nyquist sampling criteria. Leveraging ideas from the field of compressed sensing, we show how marine seismic acquisition can be setup as a compressed sensing problem. A step ahead from multi-source seismic acquisition is simultaneous source acquisition--an emerging technology that is stimulating both geophysical research and commercial efforts--where multiple source arrays/vessels fire shots simultaneously resulting in better coverage in marine surveys. Following the design principles of compressed sensing, we propose a pragmatic simultaneous time-jittered time-compressed marine acquisition scheme where single or multiple source vessels sail across an ocean-bottom array firing airguns at jittered times and source locations, resulting in better spatial sampling and speedup acquisition. Our acquisition is low cost since our measurements are subsampled. Simultaneous source acquisition generates data with overlapping shot records, which need to be separated for further processing. We can significantly impact the reconstruction quality of conventional seismic data from jittered data and demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, acquisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical requirement of wavefield reconstruction with localized sparsifying transforms. We illustrate our results with simulations of simultaneous time-jittered marine acquisition for 2D and 3D ocean-bottom cable survey.

  5. Modeling human faces with multi-image photogrammetry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a color texture image can be draped over the model to achieve a photorealistic visualization. The advantage of the presented method over laser scanning and coded light range digitizers is the acquisition of the source data in a fraction of a second, allowing the measurement of human faces with higher accuracy and the possibility to measure dynamic events like the speech of a person.

  6. Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Kuan-Hao; Hu, Lingzhi; Traughber, Melanie

    Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spreadmore » functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2{sup ∗} images (1/T2{sup ∗}) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2{sup ∗}, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.« less

  7. Description of patellar movement by 3D parameters obtained from dynamic CT acquisition

    NASA Astrophysics Data System (ADS)

    de Sá Rebelo, Marina; Moreno, Ramon Alfredo; Gobbi, Riccardo Gomes; Camanho, Gilberto Luis; de Ávila, Luiz Francisco Rodrigues; Demange, Marco Kawamura; Pecora, Jose Ricardo; Gutierrez, Marco Antonio

    2014-03-01

    The patellofemoral joint is critical in the biomechanics of the knee. The patellofemoral instability is one condition that generates pain, functional impairment and often requires surgery as part of orthopedic treatment. The analysis of the patellofemoral dynamics has been performed by several medical image modalities. The clinical parameters assessed are mainly based on 2D measurements, such as the patellar tilt angle and the lateral shift among others. Besides, the acquisition protocols are mostly performed with the leg laid static at fixed angles. The use of helical multi slice CT scanner can allow the capture and display of the joint's movement performed actively by the patient. However, the orthopedic applications of this scanner have not yet been standardized or widespread. In this work we present a method to evaluate the biomechanics of the patellofemoral joint during active contraction using multi slice CT images. This approach can greatly improve the analysis of patellar instability by displaying the physiology during muscle contraction. The movement was evaluated by computing its 3D displacements and rotations from different knee angles. The first processing step registered the images in both angles based on the femuŕs position. The transformation matrix of the patella from the images was then calculated, which provided the rotations and translations performed by the patella from its position in the first image to its position in the second image. Analysis of these parameters for all frames provided real 3D information about the patellar displacement.

  8. Image acquisition context: procedure description attributes for clinically relevant indexing and selective retrieval of biomedical images.

    PubMed

    Bidgood, W D; Bray, B; Brown, N; Mori, A R; Spackman, K A; Golichowski, A; Jones, R H; Korman, L; Dove, B; Hildebrand, L; Berg, M

    1999-01-01

    To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. The authors introduce the notion of "image acquisition context," the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries.

  9. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  10. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  11. Redefining the lower statistical limit in x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Marschner, M.; Birnbacher, L.; Willner, M.; Chabior, M.; Fehringer, A.; Herzen, J.; Noël, P. B.; Pfeiffer, F.

    2015-03-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated and developed as a potentially very interesting extension of conventional CT, because it promises to provide high soft-tissue contrast for weakly absorbing samples. For data acquisition several images at different grating positions are combined to obtain a phase-contrast projection. For short exposure times, which are necessary for lower radiation dose, the photon counts in a single stepping position are very low. In this case, the currently used phase-retrieval does not provide reliable results for some pixels. This uncertainty results in statistical phase wrapping, which leads to a higher standard deviation in the phase-contrast projections than theoretically expected. For even lower statistics, the phase retrieval breaks down completely and the phase information is lost. New measurement procedures rely on a linear approximation of the sinusoidal phase stepping curve around the zero crossings. In this case only two images are acquired to obtain the phase-contrast projection. The approximation is only valid for small phase values. However, typically nearly all pixels are within this regime due to the differential nature of the signal. We examine the statistical properties of a linear approximation method and illustrate by simulation and experiment that the lower statistical limit can be redefined using this method. That means that the phase signal can be retrieved even with very low photon counts and statistical phase wrapping can be avoided. This is an important step towards enhanced image quality in PCCT with very low photon counts.

  12. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  13. Image Acquisition Context

    PubMed Central

    Bidgood, W. Dean; Bray, Bruce; Brown, Nicolas; Mori, Angelo Rossi; Spackman, Kent A.; Golichowski, Alan; Jones, Robert H.; Korman, Louis; Dove, Brent; Hildebrand, Lloyd; Berg, Michael

    1999-01-01

    Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. Design: The authors introduce the notion of “image acquisition context,” the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries. PMID:9925229

  14. Omega-3 chicken egg detection system using a mobile-based image processing segmentation method

    NASA Astrophysics Data System (ADS)

    Nurhayati, Oky Dwi; Kurniawan Teguh, M.; Cintya Amalia, P.

    2017-02-01

    An Omega-3 chicken egg is a chicken egg produced through food engineering technology. It is produced by hen fed with high omega-3 fatty acids. So, it has fifteen times nutrient content of omega-3 higher than Leghorn's. Visually, its shell has the same shape and colour as Leghorn's. Each egg can be distinguished by breaking the egg's shell and testing the egg yolk's nutrient content in a laboratory. But, those methods were proven not effective and efficient. Observing this problem, the purpose of this research is to make an application to detect the type of omega-3 chicken egg by using a mobile-based computer vision. This application was built in OpenCV computer vision library to support Android Operating System. This experiment required some chicken egg images taken using an egg candling box. We used 60 omega-3 chicken and Leghorn eggs as samples. Then, using an Android smartphone, image acquisition of the egg was obtained. After that, we applied several steps using image processing methods such as Grab Cut, convert RGB image to eight bit grayscale, median filter, P-Tile segmentation, and morphology technique in this research. The next steps were feature extraction which was used to extract feature values via mean, variance, skewness, and kurtosis from each image. Finally, using digital image measurement, some chicken egg images were classified. The result showed that omega-3 chicken egg and Leghorn egg had different values. This system is able to provide accurate reading around of 91%.

  15. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging.

    PubMed

    Kast, Rachel; Auner, Gregory; Yurgelevic, Sally; Broadbent, Brandy; Raghunathan, Aditya; Poisson, Laila M; Mikkelsen, Tom; Rosenblum, Mark L; Kalkanis, Steven N

    2015-11-01

    In neurosurgical applications, a tool capable of distinguishing grey matter, white matter, and areas of tumor and/or necrosis in near-real time could greatly aid in tumor resection decision making. Raman spectroscopy is a non-destructive spectroscopic technique which provides molecular information about the tissue under examination based on the vibrational properties of the constituent molecules. With careful measurement and data processing, a spatial step and repeat acquisition of Raman spectra can be used to create Raman images. Forty frozen brain tissue sections were imaged in their entirety using a 300-µm-square measurement grid, and two or more regions of interest within each tissue were also imaged using a 25 µm-square step size. Molecular correlates for histologic features of interest were identified within the Raman spectra, and novel imaging algorithms were developed to compare molecular features across multiple tissues. In previous work, the relative concentration of individual biomolecules was imaged. Here, the relative concentrations of 1004, 1300:1344, and 1660 cm(-1), which correspond primarily to protein and lipid content, were simultaneously imaged across all tissues. This provided simple interpretation of boundaries between grey matter, white matter, and diseased tissue, and corresponded with findings from adjacent hematoxylin and eosin-stained sections. This novel, yet simple, multi-channel imaging technique allows clinically-relevant resolution with straightforward molecular interpretation of Raman images not possible by imaging any single peak. This method can be applied to either surgical or laboratory tools for rapid, non-destructive imaging of grey and white matter.

  16. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    NASA Astrophysics Data System (ADS)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.

  17. WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, A.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  18. WE-DE-206-00: MRI Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  19. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  20. WE-DE-206-01: MRI Signal in Biological Tissues - Proton, Spin, T1, T2, T2*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorny, K.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  1. Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors

    NASA Astrophysics Data System (ADS)

    Rottmann, J.; Keall, P.; Berbeco, R.

    2013-06-01

    Compensation of target motion during the delivery of radiotherapy has the potential to improve treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image guided therapy system based on soft tissue localization (STiL) of the target from electronic portal images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The treatment aperture is moved synchronously and in real time with the tumor during the entire breathing cycle. The system is implemented and tested on a Varian TX clinical linear accelerator featuring an AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz throughout the treatment. A position update cycle for the treatment aperture consists of four steps: in the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = ti + δt is predicted to overcome system latencies and in the fourth step, the DMLC control software calculates the required leaf motions and applies them at time t = ti + δt. The prediction model is trained before the start of the treatment with data representing the tumor motion. We analyze the system latency with a dynamic chest phantom (4D motion phantom, Washington University). We estimate the average planar position deviation between target and treatment aperture in a clinical setting by driving the phantom with several lung tumor trajectories (recorded from fiducial tracking during radiotherapy delivery to the lung). DMLC tracking for lung stereotactic body radiation therapy without fiducial markers was successfully demonstrated. The inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller than 1 mm. We demonstrate the feasibility of real-time markerless DMLC tracking with a standard LINAC-mounted (EPID).

  2. 48 CFR 3036.104-90 - Authority for one-step turn-key design-build contracting for the United States Coast Guard (USCG).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Authority for one-step turn-key design-build contracting for the United States Coast Guard (USCG). 3036.104-90 Section 3036.104-90 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY ACQUISITION REGULATION (HSAR) SPECIAL CATEGORIES OF...

  3. Virtual slides in peer reviewed, open access medical publication

    PubMed Central

    2011-01-01

    Background Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Approach Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images. Technology and Performance The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011. Results and Perspectives Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819. PMID:22182763

  4. Externally Calibrated Parallel Imaging for 3D Multispectral Imaging Near Metallic Implants Using Broadband Ultrashort Echo Time Imaging

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.

    2017-01-01

    Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613

  5. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  6. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    PubMed

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  7. A new background subtraction method for Western blot densitometry band quantification through image analysis software.

    PubMed

    Gallo-Oller, Gabriel; Ordoñez, Raquel; Dotor, Javier

    2018-06-01

    Since its first description, Western blot has been widely used in molecular labs. It constitutes a multistep method that allows the detection and/or quantification of proteins from simple to complex protein mixtures. Western blot quantification method constitutes a critical step in order to obtain accurate and reproducible results. Due to the technical knowledge required for densitometry analysis together with the resources availability, standard office scanners are often used for the imaging acquisition of developed Western blot films. Furthermore, the use of semi-quantitative software as ImageJ (Java-based image-processing and analysis software) is clearly increasing in different scientific fields. In this work, we describe the use of office scanner coupled with the ImageJ software together with a new image background subtraction method for accurate Western blot quantification. The proposed method represents an affordable, accurate and reproducible approximation that could be used in the presence of limited resources availability. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Internet Teleprescence by Real-Time View-Dependent Image Generation with Omnidirectional Video Camera

    NASA Astrophysics Data System (ADS)

    Morita, Shinji; Yamazawa, Kazumasa; Yokoya, Naokazu

    2003-01-01

    This paper describes a new networked telepresence system which realizes virtual tours into a visualized dynamic real world without significant time delay. Our system is realized by the following three steps: (1) video-rate omnidirectional image acquisition, (2) transportation of an omnidirectional video stream via internet, and (3) real-time view-dependent perspective image generation from the omnidirectional video stream. Our system is applicable to real-time telepresence in the situation where the real world to be seen is far from an observation site, because the time delay from the change of user"s viewing direction to the change of displayed image is small and does not depend on the actual distance between both sites. Moreover, multiple users can look around from a single viewpoint in a visualized dynamic real world in different directions at the same time. In experiments, we have proved that the proposed system is useful for internet telepresence.

  9. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  10. [Virtual endoscopic navigation and body transparency based on computed tomography. A step towards in vivo imaging].

    PubMed

    Cabanis, Emmanuel-Alain; Gombergh, Rodolphe; Castro, Albert; Gandjbakhch, Iradj; Iba-Zizen, Marie-Thérèse; Dubois, François

    2011-06-01

    Progress in HR-CTdata processing has led to lower X-ray exposure and to better diagnostic performance. We describe 19 adult patients (among 5000) examined by HR CT with 64 detectors, acquisition and exposure protocols in mSv, spiral, 0.6-mm slices, 5To PACS. After the two usual processing steps (60 gray values, 5122 and 10242 matrices, dedicated workstations for coronaroscopy and virtual coloscopy, 2D multiplanar reformation, surfacic, 3D volumes with dissection and navigation), a third original data processing step on additional workstations was added. Variable matrix extrapolated images, flexible colored curves (different from anatomical conventions), lighting (sources) and transparencies (unavailable with traditional endoscopy) were used. The digital film is a 16-minute "journey "consisting of 19 endo-body navigations in 5 regions, from the head to the bronchi, from the heart to the coronary arteries, and from the digestive tract to the abdomen and pelvis. One possible application is post-operative verification of an aortic graft. The movie is illustrated here with ten plates. This new approach is cost-effective and beneficial for the patient, in terms of early diagnosis and therapeutic follow-up. Ethical issues are also examined.

  11. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  12. View-sharing PROPELLER with pixel-based optimal blade selection: application on dynamic contrast-enhanced imaging.

    PubMed

    Chuang, Tzu-Chao; Huang, Hsuan-Hung; Chang, Hing-Chiu; Wu, Ming-Ting

    2014-06-01

    To achieve better spatial and temporal resolution of dynamic contrast-enhanced MR imaging, the concept of k-space data sharing, or view sharing, can be implemented for PROPELLER acquisition. As found in other view-sharing methods, the loss of high-resolution dynamics is possible for view-sharing PROPELLER (VS-Prop) due to the temporal smoothing effect. The degradation can be more severe when a narrow blade with less phase encoding steps is chosen in the acquisition for higher frame rate. In this study, an iterative algorithm termed pixel-based optimal blade selection (POBS) is proposed to allow spatially dependent selection of the rotating blades, to generate high-resolution dynamic images with minimal reconstruction artifacts. In the reconstruction of VS-Prop, the central k-space which dominates the image contrast is only provided by the target blade with the peripheral k-space contributed by a minimal number of consecutive rotating blades. To reduce the reconstruction artifacts, the set of neighboring blades exhibiting the closest image contrast with the target blade is picked by POBS algorithm. Numerical simulations and phantom experiments were conducted in this study to investigate the dynamic response and spatial profiles of images generated using our proposed method. In addition, dynamic contrast-enhanced cardiovascular imaging of healthy subjects was performed to demonstrate the feasibility and advantages. The simulation results show that POBS VS-Prop can provide timely dynamic response to rapid signal change, especially for a small region of interest or with the use of narrow blades. The POBS algorithm also demonstrates its capability to capture nonsimultaneous signal changes over the entire FOV. In addition, both phantom and in vivo experiments show that the temporal smoothing effect can be avoided by means of POBS, leading to higher wash-in slope of contrast enhancement after the bolus injection. With the satisfactory reconstruction quality provided by the POBS algorithm, VS-Prop acquisition technique may find useful clinical applications in DCE MR imaging studies where both spatial and temporal resolutions play important roles.

  13. Validation of early image acquisitions following Tc-99 m sestamibi injection using a semiconductors camera of cadmium-zinc-telluride.

    PubMed

    Meyer, Celine; Weinmann, Pierre

    2017-08-01

    Cadmium-zinc-telluride (CZT) cameras allow to decrease significantly the acquisition time of myocardial perfusion imaging (MPI), but the duration of the examination is still long. Therefore, this study was performed to test the feasibility of early imaging following injection of Tc-99 m sestamibi using a CZT camera. Seventy patients underwent both an early and a delayed image acquisition after exercise stress test (n = 30), dipyridamole stress test (n = 20), and at rest (n = 20). After injection of Tc-99 m sestamibi, the early image acquisition started on average within 5 minutes for the exercise and rest groups, and 3 minutes 30 seconds for the dipyridamole group. Two independent observers evaluated image quality and extracardiac uptake on four-point scales. The difference between early and later images for each patient was scored on a five-point scale. The image quality and extracardiac uptake of early and delayed image acquisitions were not different for the three groups (P > .05). There was no significant difference between early and delayed image acquisitions in the exercise, dipyridamole, and rest groups, respectively, in 63%, 40%, and 80% of cases. In the exercise group and rest group, a defect was only present in early MPI, respectively, in 13% and 20% of cases. A defect was only present in delayed images in 10% of cases in the exercise group and in 45% of cases in the dipyridamole group. There was no difference between early and later image acquisitions in terms of quality. This protocol reduces the length of the procedure for the patient. Beginning with early image acquisitions may help to overcome the artifacts that are observed at the delayed time.

  14. Report of AAPM Task Group 162: Software for planar image quality metrology.

    PubMed

    Samei, Ehsan; Ikejimba, Lynda C; Harrawood, Brian P; Rong, John; Cunningham, Ian A; Flynn, Michael J

    2018-02-01

    The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives. The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE). First, a methodological framework is provided to highlight the theoretical basis of the work. Then, a step-by-step guide is included to assist in proper execution of each component of the code. Lastly, an evaluation of the method is included to validate its accuracy against model-based and experimental data. The code was built using a Macintosh OSX operating system. The software package contains all the source codes to permit an experienced user to build the suite on a Linux or other *nix type system. The package further includes manuals and sample images and scripts to demonstrate use of the software for new users. The results of the code are in close alignment with theoretical expectations and published results of experimental data. The methodology and the software package offered in AAPM TG162 can be used as baseline for characterization of inherent image quality attributes of planar imaging systems. © 2017 American Association of Physicists in Medicine.

  15. Improvements and modifications to the NASA microwave signature acquisition system

    NASA Technical Reports Server (NTRS)

    Jean, B. R.; Newton, R. W.; Warren, G. L.; Clark, B. V.; Zajicek, J. L.

    1978-01-01

    A user oriented description of the modified and upgraded Microwave Signature Acquisition System is provided. The present configuration of the sensor system and its operating characteristics are documented and a step-by-step operating procedure provides instruction for mounting the antenna truss assembly, readying the system for data acquisition, and for controlling the system during the data collection sequence. The resulting data products are also identified.

  16. Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).

  17. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Biometric analysis of the palm vein distribution by means two different techniques of feature extraction

    NASA Astrophysics Data System (ADS)

    Castro-Ortega, R.; Toxqui-Quitl, C.; Solís-Villarreal, J.; Padilla-Vivanco, A.; Castro-Ramos, J.

    2014-09-01

    Vein patterns can be used for accessing, identifying, and authenticating purposes; which are more reliable than classical identification way. Furthermore, these patterns can be used for venipuncture in health fields to get on to veins of patients when they cannot be seen with the naked eye. In this paper, an image acquisition system is implemented in order to acquire digital images of people hands in the near infrared. The image acquisition system consists of a CCD camera and a light source with peak emission in the 880 nm. This radiation can penetrate and can be strongly absorbed by the desoxyhemoglobin that is presented in the blood of the veins. Our method of analysis is composed by several steps and the first one of all is the enhancement of acquired images which is implemented by spatial filters. After that, adaptive thresholding and mathematical morphology operations are used in order to obtain the distribution of vein patterns. The above process is focused on the people recognition through of images of their palm-dorsal distributions obtained from the near infrared light. This work has been directed for doing a comparison of two different techniques of feature extraction as moments and veincode. The classification task is achieved using Artificial Neural Networks. Two databases are used for the analysis of the performance of the algorithms. The first database used here is owned of the Hong Kong Polytechnic University and the second one is our own database.

  19. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition

    PubMed Central

    Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.

    2017-01-01

    Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132

  20. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis

    PubMed Central

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L.; van de Laar, Mart A.; Kuper, Ina H. H.; Slump, Kees C. H.; Lafeber, Floris P. J. G.; Bernelot Moens, Hein J.

    2016-01-01

    Abstract. Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp–van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was 1.7±0.2 and 1.6±0.3  mm in the two series of radiographs, and of PIP joints 1.0±0.2 and 0.9±0.2  mm. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was 0.0±0.1  mm, indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than incorrect delineation by the software (25%). Various steps in the validation of an automated measurement system for JSW of MCP and PIP joints are described. The use of serial radiographs from different sources, with a short interval and limited damage, is helpful to detect sources of error. Image acquisition, in particular repositioning, is a dominant source of error. PMID:27921071

  1. Learning the manifold of quality ultrasound acquisition.

    PubMed

    El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo

    2013-01-01

    Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.

  2. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical consistency between point clouds and stereo images. Finally, an over-segmentation based graph cut optimization is carried out, taking into account the color, depth and class information to compute the changed area in the image space. The proposed method is invariant to light changes, robust to small co-registration errors between images and point clouds, and can be applied straightforwardly to 3D polyhedral models. This method can be used for 3D street data updating, city infrastructure management and damage monitoring in complex urban scenes.

  3. A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors

    PubMed Central

    Young, Laurence J.; Ströhl, Florian; Kaminski, Clemens F.

    2016-01-01

    Optical super-resolution imaging with structured illumination microscopy (SIM) is a key technology for the visualization of processes at the molecular level in the chemical and biomedical sciences. Although commercial SIM systems are available, systems that are custom designed in the laboratory can outperform commercial systems, the latter typically designed for ease of use and general purpose applications, both in terms of imaging fidelity and speed. This article presents an in-depth guide to building a SIM system that uses total internal reflection (TIR) illumination and is capable of imaging at up to 10 Hz in three colors at a resolution reaching 100 nm. Due to the combination of SIM and TIRF, the system provides better image contrast than rival technologies. To achieve these specifications, several optical elements are used to enable automated control over the polarization state and spatial structure of the illumination light for all available excitation wavelengths. Full details on hardware implementation and control are given to achieve synchronization between excitation light pattern generation, wavelength, polarization state, and camera control with an emphasis on achieving maximum acquisition frame rate. A step-by-step protocol for system alignment and calibration is presented and the achievable resolution improvement is validated on ideal test samples. The capability for video-rate super-resolution imaging is demonstrated with living cells. PMID:27285848

  4. Visualization of endosome dynamics in living nerve terminals with four-dimensional fluorescence imaging.

    PubMed

    Stewart, Richard S; Kiss, Ilona M; Wilkinson, Robert S

    2014-04-16

    Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.

  5. Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept

    NASA Astrophysics Data System (ADS)

    Vallières, Martin; Laberge, Sébastien; Diamant, André; El Naqa, Issam

    2017-11-01

    Texture-based radiomic models constructed from medical images have the potential to support cancer treatment management via personalized assessment of tumour aggressiveness. While the identification of stable texture features under varying imaging settings is crucial for the translation of radiomics analysis into routine clinical practice, we hypothesize in this work that a complementary optimization of image acquisition parameters prior to texture feature extraction could enhance the predictive performance of texture-based radiomic models. As a proof of concept, we evaluated the possibility of enhancing a model constructed for the early prediction of lung metastases in soft-tissue sarcomas by optimizing PET and MR image acquisition protocols via computerized simulations of image acquisitions with varying parameters. Simulated PET images from 30 STS patients were acquired by varying the extent of axial data combined per slice (‘span’). Simulated T 1-weighted and T 2-weighted MR images were acquired by varying the repetition time and echo time in a spin-echo pulse sequence, respectively. We analyzed the impact of the variations of PET and MR image acquisition parameters on individual textures, and we investigated how these variations could enhance the global response and the predictive properties of a texture-based model. Our results suggest that it is feasible to identify an optimal set of image acquisition parameters to improve prediction performance. The model constructed with textures extracted from simulated images acquired with a standard clinical set of acquisition parameters reached an average AUC of 0.84 +/- 0.01 in bootstrap testing experiments. In comparison, the model performance significantly increased using an optimal set of image acquisition parameters (p = 0.04 ), with an average AUC of 0.89 +/- 0.01 . Ultimately, specific acquisition protocols optimized to generate superior radiomics measurements for a given clinical problem could be developed and standardized via dedicated computer simulations and thereafter validated using clinical scanners.

  6. A cable-driven parallel manipulator with force sensing capabilities for high-accuracy tissue endomicroscopy.

    PubMed

    Miyashita, Kiyoteru; Oude Vrielink, Timo; Mylonas, George

    2018-05-01

    Endomicroscopy (EM) provides high resolution, non-invasive histological tissue information and can be used for scanning of large areas of tissue to assess cancerous and pre-cancerous lesions and their margins. However, current robotic solutions do not provide the accuracy and force sensitivity required to perform safe and accurate tissue scanning. A new surgical instrument has been developed that uses a cable-driven parallel mechanism (CPDM) to manipulate an EM probe. End-effector forces are determined by measuring the tensions in each cable. As a result, the instrument allows to accurately apply a contact force on a tissue, while at the same time offering high resolution and highly repeatable probe movement. 0.2 and 0.6 N force sensitivities were found for 1 and 2 DoF image acquisition methods, respectively. A back-stepping technique can be used when a higher force sensitivity is required for the acquisition of high quality tissue images. This method was successful in acquiring images on ex vivo liver tissue. The proposed approach offers high force sensitivity and precise control, which is essential for robotic EM. The technical benefits of the current system can also be used for other surgical robotic applications, including safe autonomous control, haptic feedback and palpation.

  7. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    PubMed Central

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  8. NASA's Myriad Uses of Digital Video

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt; George, Sandy

    1999-01-01

    Since it's inception, NASA has created many of the most memorable images seen this Century. From the fuzzy video of Neil Armstrong taking that first step on the moon, to images of the Mars surface available to all on the internet, NASA has provided images to inspire a generation, all because a scientist or researcher had a requirement to see something unusual. Digital Television technology will give NASA unprecedented new tools for acquiring, analyzing, and distributing video. This paper will explore NASA's DTV future. The agency has a requirement to move video from one NASA Center to another, in real time. Specifics will be provided relating to the NASA video infrastructure, including video from the Space Shuttle and from the various Centers. A comparison of the pros and cons of interlace and progressive scanned images will be presented. Film is a major component of NASA's image acquisition for analysis usage. The future of film within the context of DTV will be explored.

  9. An x-ray fluorescence imaging system for gold nanoparticle detection.

    PubMed

    Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J

    2013-11-07

    Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.

  10. Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data [Regularized maximum likelihood estimation of ground reflectivity from stripmap SAR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R. Derek; Gunther, Jacob H.; Moon, Todd K.

    In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less

  11. Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data [Regularized maximum likelihood estimation of ground reflectivity from stripmap SAR data

    DOE PAGES

    West, R. Derek; Gunther, Jacob H.; Moon, Todd K.

    2016-12-01

    In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less

  12. High-Content Screening for Quantitative Cell Biology.

    PubMed

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  14. Pleiades image quality: from users' needs to products definition

    NASA Astrophysics Data System (ADS)

    Kubik, Philippe; Pascal, Véronique; Latry, Christophe; Baillarin, Simon

    2005-10-01

    Pleiades is the highest resolution civilian earth observing system ever developed in Europe. This imagery programme is conducted by the French National Space Agency, CNES. It will operate in 2008-2009 two agile satellites designed to provide optical images to civilian and defence users. Images will be simultaneously acquired in Panchromatic (PA) and multispectral (XS) mode, which allows, in Nadir acquisition condition, to deliver 20 km wide, false or natural colored scenes with a 70 cm ground sampling distance after PA+XS fusion. Imaging capabilities have been highly optimized in order to acquire along-track mosaics, stereo pairs and triplets, and multi-targets. To fulfill the operational requirements and ensure quick access to information, ground processing has to automatically perform the radiometrical and geometrical corrections. Since ground processing capabilities have been taken into account very early in the programme development, it has been possible to relax some costly on-board components requirements, in order to achieve a cost effective on-board/ground compromise. Starting from an overview of the system characteristics, this paper deals with the image products definition (raw level, perfect sensor, orthoimage and along-track orthomosaics), and the main processing steps. It shows how each system performance is a result of the satellite performance followed by an appropriate ground processing. Finally, it focuses on the radiometrical performances of final products which are intimately linked to the following processing steps : radiometrical corrections, PA restoration, image resampling and PAN-sharpening.

  15. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data.

    PubMed

    Mashari, Azad; Montealegre-Gallegos, Mario; Knio, Ziyad; Yeh, Lu; Jeganathan, Jelliffe; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2016-12-01

    Three-dimensional (3D) printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping) derived from 3D transesophageal echocardiography (TEE) has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology. © 2016 The authors.

  16. SED16 autonomous star tracker night sky testing

    NASA Astrophysics Data System (ADS)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  17. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    PubMed Central

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  18. 3D image acquisition by fiber-based fringe projection

    NASA Astrophysics Data System (ADS)

    Pfeifer, Tilo; Driessen, Sascha

    2005-02-01

    In macroscopic production processes several measuring methods are used to assure the quality of 3D parts. Definitely, one of the most widespread techniques is the fringe projection. It"s a fast and accurate method to receive the topography of a part as a computer file which can be processed in further steps, e.g. to compare the measured part to a given CAD file. In this article it will be shown how the fringe projection method is applied to a fiber-optic system. The fringes generated by a miniaturized fringe projector (MiniRot) are first projected onto the front-end of an image guide using special optics. The image guide serves as a transmitter for the fringes in order to get them onto the surface of a micro part. A second image guide is used to observe the micro part. It"s mounted under an angle relating to the illuminating image guide so that the triangulation condition is fulfilled. With a CCD camera connected to the second image guide the projected fringes are recorded and those data is analyzed by an image processing system.

  19. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Huichao; Shi, Jianhong; Liu, Xialin; Niu, Zhouzhou; Zeng, Guihua

    2018-04-01

    Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object recognition by using fewer measurements. Our result might open a new path for realizing object recognition with non-imaging.

  20. Characterization of an Isolated Kidney's Vasculature for Use in Bio-Thermal Modeling

    NASA Astrophysics Data System (ADS)

    Payne, Allison H.; Parker, Dennis L.; Moellmer, Jeff; Roemer, Robert B.; Clifford, Sarah

    2007-05-01

    Accurate bio-thermal modeling requires site-specific modeling of discrete vascular anatomy. Presented herewith are several steps that have been developed to describe the vessel network of isolated canine and bovine kidneys. These perfused, isolated kidneys provide an environment to repeatedly test and improve acquisition methods to visualize the vascular anatomy, as well as providing a method to experimentally validate discrete vasculature thermal models. The organs are preserved using a previously developed methodology that keeps the vasculature intact, allowing for the organ to be perfused. It also allows for the repeated fixation and re-hydration of the same organ, permitting the comparison of various methods and models. The organ extraction, alcohol preservation, and perfusion of the organ are described. The vessel locations were obtained through a high-resolution time-of-flight (TOF) magnetic resonance angiography (MRA) technique. Sequential improvements of both the experimental setup used for this acquisition, as well as MR sequence development are presented. The improvements in MR acquisition and experimental setup improved the number of vessels seen in both the raw data and segmented images by 50%. An automatic vessel centerline extraction algorithm describes both vessel location and genealogy. Centerline descriptions also allows for vessel diameter and flow rate determination, providing valuable input parameters for the discrete vascular thermal model. Characterized vessels networks of both canine and bovine kidneys are presented. While these tools have been developed in an ex vivo environment, all steps can be applied to in vivo applications.

  1. Validation of snow depth reconstruction from lapse-rate webcam images against terrestrial laser scanner measurements in centrel Pyrenees

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio

    2015-04-01

    Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS acquisitions) to that melted on each grid cell, a coefficient is obtained for spatially distributing the SD loses. For 2012 and 2013, three TLS acquisition campaigns were available during each melting period. This way the first acquisitions of both melting periods were reserved for validation while the other two were considered for adjusting the reconstruction. Validation has revealed a very good performance of the reconstructed SD distribution when compared with the TLS data (r2 values between 0.74 and 0.8 respectively). When no calibration with TLS data was applied for distributing melt rates; this is, using the distribution coefficients for reconstructing SD of precedent years, rather similar accuracy was reached. With the spatial calibration of 2012 and 2013, the reconstructions for the two TLS acquisition dates in 2014, obtained r2 values that ranged between 0.73 and 0.76. This shows the usefulness of lapse-rate images to estimate not only SCA but also the spatial distribution of the SD when combined with TLS acquisition and punctual information on temperature and SD. In such a way it is shown the effectiveness of combining two remote sensing techniques for obtaining distributed information on snow depth.

  2. [Evaluation of Slavic continuity for electrocardiograph (ECG)-gated non-helical scan using multi detector-row computed tomography with 64 data acquisition system].

    PubMed

    Shiotani, Masataka; Ogawa, Masato; Watanabe, Ryo; Shinohara, Tamotsu

    2012-01-01

    Multi detector-row computed tomography with 64 data acquisition systems are widely used for coronary CT angiography with an electrocardiograph (ECG) gated helical scan (HS). Step and shoot with ECG gated non-helical scan (snap shot pulse: SSP) could reduce exposure dose but banding artifact-like discontinuity was observed between adjacent slabs on volume rendering (VR) and curved planner reconstruction (CPR). Therefore, we investigated the factors that influence continuity of VR and CPR images by calculating image properties of Z-axis direction of slab. The observer performance studies were performed for evaluating continuity of simulated blood vessels of VR and CPR images at simulated heart rates: 50, 55, 57 and 60 beat per minute (bpm). As a result, the value of SD at both slab edges in SSP were 20.5% lower than middle part of slab and differences of value of SD were up to 4.4 between adjacent slab edges. Slice thickness of both slab edges were 20.3% thinner than that of the peripheral part of slab. At the border of the adjacent slab, the position of the simulated blood vessel was shifted. VR images of SSP at 57 bpm was indicated as the highest score and HS was significantly superior to SSP at 55 and 60 bpm (p<0.05). In CPR images, there were no significant differences at all simulated heart rates. In conclusion, we considered that VR images of SSP were influenced heart rates except 57 bpm (resonance case) and there was little difference of visibility for discontinuity of both CPR images obtained by SSP and HS.

  3. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    NASA Astrophysics Data System (ADS)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).

  4. Hybrid cardiac imaging with MR-CAT scan: a feasibility study.

    PubMed

    Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M

    2000-06-01

    We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.

  5. Fully Burdened Cost of Fuel Using Input-Output Analysis

    DTIC Science & Technology

    2011-12-01

    Distribution Model could be used to replace the current seven-step Fully Burdened Cost of Fuel process with a single step, allowing for less complex and...wide extension of the Bulk Fuels Distribution Model could be used to replace the current seven-step Fully Burdened Cost of Fuel process with a single...ABBREVIATIONS AEM Atlantic, Europe, and the Mediterranean AOAs Analysis of Alternatives DAG Defense Acquisition Guidebook DAU Defense Acquisition University

  6. Percutaneous Vertebroplasty: Preliminary Experiences with Rotational Acquisitions and 3D Reconstructions for Therapy Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodek-Wuerz, Roman; Martin, Jean-Baptiste; Wilhelm, Kai

    Percutaneous vertebroplasty (PVP) is carried out under fluoroscopic control in most centers. The exclusion of implant leakage and the assessment of implant distribution might be difficult to assess based on two-dimensional radiographic projection images only. We evaluated the feasibility of performing a follow-up examination after PVP with rotational acquisitions and volumetric reconstructions in the angio suite. Twenty consecutive patients underwent standard PVP procedures under fluoroscopic control. Immediate postprocedure evaluation of the implant distribution in the angio suite (BV 3000; Philips, The Netherlands) was performed using rotational acquisitions (typical parameters for the image acquisition included a 17-cm field-of-view, 200 acquired imagesmore » for a total angular range of 180{sup o}). Postprocessing of acquired volumetric datasets included multiplanar reconstruction (MPR), maximum intensity projection (MIP), and volume rendering technique (VRT) images that were displayed as two-dimensional slabs or as entire three-dimensional volumes. Image evaluation included lesion and implant assessment with special attention given to implant leakage. Findings from rotational acquisitions were compared to findings from postinterventional CT. The time to perform and to postprocess the rotational acquisitions was in all cases less then 10 min. Assessment of implant distribution after PVP using rotational image acquisition methods and volumetric reconstructions was possible in all patients. Cement distribution and potential leakage sites were visualized best on MIP images presented as slabs. From a total of 33 detected leakages with CT, 30 could be correctly detected by rotational image acquisition. Rotational image acquisitions and volumetric reconstruction methods provided a fast method to control radiographically the result of PVP in our cases.« less

  7. Retinal image restoration by means of blind deconvolution

    NASA Astrophysics Data System (ADS)

    Marrugo, Andrés G.; Šorel, Michal; Šroubek, Filip; Millán, María S.

    2011-11-01

    Retinal imaging plays a key role in the diagnosis and management of ophthalmologic disorders, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. Because of the acquisition process, retinal images often suffer from blurring and uneven illumination. This problem may seriously affect disease diagnosis and progression assessment. Here we present a method for color retinal image restoration by means of multichannel blind deconvolution. The method is applied to a pair of retinal images acquired within a lapse of time, ranging from several minutes to months. It consists of a series of preprocessing steps to adjust the images so they comply with the considered degradation model, followed by the estimation of the point-spread function and, ultimately, image deconvolution. The preprocessing is mainly composed of image registration, uneven illumination compensation, and segmentation of areas with structural changes. In addition, we have developed a procedure for the detection and visualization of structural changes. This enables the identification of subtle developments in the retina not caused by variation in illumination or blur. The method was tested on synthetic and real images. Encouraging experimental results show that the method is capable of significant restoration of degraded retinal images.

  8. Protocol for Biomarker Ratio Imaging Microscopy with Specific Application to Ductal Carcinoma In situ of the Breast

    PubMed Central

    Clark, Andrea J.; Petty, Howard R.

    2016-01-01

    This protocol describes the methods and steps involved in performing biomarker ratio imaging microscopy (BRIM) using formalin fixed paraffin-embedded (FFPE) samples of human breast tissue. The technique is based on the acquisition of two fluorescence images of the same microscopic field using two biomarkers and immunohistochemical tools. The biomarkers are selected such that one biomarker correlates with breast cancer aggressiveness while the second biomarker anti-correlates with aggressiveness. When the former image is divided by the latter image, a computed ratio image is formed that reflects the aggressiveness of tumor cells while increasing contrast and eliminating path-length and other artifacts from the image. For example, the aggressiveness of epithelial cells may be assessed by computing ratio images of N-cadherin and E-cadherin images or CD44 and CD24 images, which specifically reflect the mesenchymal or stem cell nature of the constituent cells, respectively. This methodology is illustrated for tissue samples of ductal carcinoma in situ (DCIS) and invasive breast cancer. This tool should be useful in tissue studies of experimental cancer as well as the management of cancer patients. PMID:27857940

  9. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature.

    PubMed

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-06

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  10. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  11. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    PubMed Central

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272

  12. 78 FR 27966 - Joint Working Group on Improving Cybersecurity and Resilience Through Acquisition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Working Group on Improving Cybersecurity and Resilience Through Acquisition AGENCY: Office of Emergency... the Department of Homeland Security and the Federal Acquisition Regulation Council, are required to... security standards into acquisition planning and contract administration and address what steps [[Page...

  13. Comparison of a multimedia simulator to a human model for teaching FAST exam image interpretation and image acquisition.

    PubMed

    Damewood, Sara; Jeanmonod, Donald; Cadigan, Beth

    2011-04-01

    This study compared the effectiveness of a multimedia ultrasound (US) simulator to normal human models during the practical portion of a course designed to teach the skills of both image acquisition and image interpretation for the Focused Assessment with Sonography for Trauma (FAST) exam. This was a prospective, blinded, controlled education study using medical students as an US-naïve population. After a standardized didactic lecture on the FAST exam, trainees were separated into two groups to practice image acquisition on either a multimedia simulator or a normal human model. Four outcome measures were then assessed: image interpretation of prerecorded FAST exams, adequacy of image acquisition on a standardized normal patient, perceived confidence of image adequacy, and time to image acquisition. Ninety-two students were enrolled and separated into two groups, a multimedia simulator group (n = 44), and a human model group (n = 48). Bonferroni adjustment factor determined the level of significance to be p = 0.0125. There was no difference between those trained on the multimedia simulator and those trained on a human model in image interpretation (median 80 of 100 points, interquartile range [IQR] 71-87, vs. median 78, IQR 62-86; p = 0.16), image acquisition (median 18 of 24 points, IQR 12-18 points, vs. median 16, IQR 14-20; p = 0.95), trainee's confidence in obtaining images on a 1-10 visual analog scale (median 5, IQR 4.1-6.5, vs. median 5, IQR 3.7-6.0; p = 0.36), or time to acquire images (median 3.8 minutes, IQR 2.7-5.4 minutes, vs. median = 4.5 minutes, IQR = 3.4-5.9 minutes; p = 0.044). There was no difference in teaching the skills of image acquisition and interpretation to novice FAST examiners using the multimedia simulator or normal human models. These data suggest that practical image acquisition skills learned during simulated training can be directly applied to human models. © 2011 by the Society for Academic Emergency Medicine.

  14. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  15. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  16. Automating Mapping Production for the Enterprise: from Contract to Delivery

    NASA Astrophysics Data System (ADS)

    Uebbing, R.; Xie, C.; Beshah, B.; Welter, J.

    2012-07-01

    The ever increasing volume and quality of geospatial data has created new challenges for mapping companies. Due to increased image resolution, fusion of different data sources and more frequent data update requirements, mapping production is forced to streamline the work flow to meet client deadlines. But the data volume alone is not the only barrier for an efficient production work flow. Processing geospatial information traditionally uses domain and vendor specific applications that do not interface with each other, often leading to data duplication and therefore creating sources for error. Also, it creates isolation between different departments within a mapping company resulting in additional communication barriers. North West Geomatics has designed and implemented a data centric enterprise solution for the flight acquisition and production work flow to combat the above challenges. A central data repository containing not only geospatial data in the strictest sense such as images, vector layers and 3D point clouds, but also other information such as product specifications, client requirements, flight acquisition data, production resource usage and much more has been deployed at the company. As there is only one instance of the database shared throughout the whole organization it allows all employees, given they have been granted the appropriate permission, to view the current status of any project with a graphical and table based interface through its life cycle from sales, through flight acquisition, production and product delivery. Not only can users track progress and status of various work flow steps, but the system also allows users and applications to actively schedule or start specific production steps such as data ingestion and triangulation with many other steps (orthorectification, mosaicing, accounting, etc.) in the planning stages. While the complete system is exposed to the users through a web interface and therefore allowing outside customers to also view their data, much of the design and development was focused on work flow automation, scalability and security. Ideally, users will interact with the system to retrieve a specific project status and summaries while the work flow processes are triggered automatically by modeling their dependencies. The enterprise system is built using open source technologies (PostGIS, Hibernate, OpenLayers, GWT and others) and adheres to OGC web services for data delivery (WMS/WFS/WCS) to third party applications.

  17. Fault tolerance techniques to assure data integrity in high-volume PACS image archives

    NASA Astrophysics Data System (ADS)

    He, Yutao; Huang, Lu J.; Valentino, Daniel J.; Wingate, W. Keith; Avizienis, Algirdas

    1995-05-01

    Picture archiving and communication systems (PACS) perform the systematic acquisition, archiving, and presentation of large quantities of radiological image and text data. In the UCLA Radiology PACS, for example, the volume of image data archived currently exceeds 2500 gigabytes. Furthermore, the distributed heterogeneous PACS is expected to have near real-time response, be continuously available, and assure the integrity and privacy of patient data. The off-the-shelf subsystems that compose the current PACS cannot meet these expectations; therefore fault tolerance techniques had to be incorporated into the system. This paper is to report our first-step efforts towards the goal and is organized as follows: First we discuss data integrity and identify fault classes under the PACS operational environment, then we describe auditing and accounting schemes developed for error-detection and analyze operational data collected. Finally, we outline plans for future research.

  18. How to Perform a Systematic Review and Meta-analysis of Diagnostic Imaging Studies.

    PubMed

    Cronin, Paul; Kelly, Aine Marie; Altaee, Duaa; Foerster, Bradley; Petrou, Myria; Dwamena, Ben A

    2018-05-01

    A systematic review is a comprehensive search, critical evaluation, and synthesis of all the relevant studies on a specific (clinical) topic that can be applied to the evaluation of diagnostic and screening imaging studies. It can be a qualitative or a quantitative (meta-analysis) review of available literature. A meta-analysis uses statistical methods to combine and summarize the results of several studies. In this review, a 12-step approach to performing a systematic review (and meta-analysis) is outlined under the four domains: (1) Problem Formulation and Data Acquisition, (2) Quality Appraisal of Eligible Studies, (3) Statistical Analysis of Quantitative Data, and (4) Clinical Interpretation of the Evidence. This review is specifically geared toward the performance of a systematic review and meta-analysis of diagnostic test accuracy (imaging) studies. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  19. How do plants see the world? - UV imaging with a TiO2 nanowire array by artificial photosynthesis.

    PubMed

    Kang, Ji-Hoon; Leportier, Thibault; Park, Min-Chul; Han, Sung Gyu; Song, Jin-Dong; Ju, Hyunsu; Hwang, Yun Jeong; Ju, Byeong-Kwon; Poon, Ting-Chung

    2018-05-10

    The concept of plant vision refers to the fact that plants are receptive to their visual environment, although the mechanism involved is quite distinct from the human visual system. The mechanism in plants is not well understood and has yet to be fully investigated. In this work, we have exploited the properties of TiO2 nanowires as a UV sensor to simulate the phenomenon of photosynthesis in order to come one step closer to understanding how plants see the world. To the best of our knowledge, this study is the first approach to emulate and depict plant vision. We have emulated the visual map perceived by plants with a single-pixel imaging system combined with a mechanical scanner. The image acquisition has been demonstrated for several electrolyte environments, in both transmissive and reflective configurations, in order to explore the different conditions in which plants perceive light.

  20. A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object

    NASA Astrophysics Data System (ADS)

    Winkler, A. W.; Zagar, B. G.

    2013-08-01

    An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.

  1. Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces

    NASA Astrophysics Data System (ADS)

    Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf

    2016-06-01

    The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

  2. Integration of SAR and AIS for ship detection and identification

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho

    2012-06-01

    This abstract describes the preliminary design concept for an integration system of SAR and AIS data. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Once both data reports are obtained, one need to match the timings of AIS data acquisition over the SAR image acquisition time with consideration of local time & boundary to extract the closest time signal from AIS report in order to know the AIS based ship positions, but still one cannot be able to distinguish which ships have the AIS transponder after projection of AIS based position onto the SAR image acquisition boundary. As far as integration is concerned, the ship dead-reckoning concept is most important forecasted position which provides the AIS based ship position at the time of SAR image acquisition and also provides the hints for azimuth shift which occurred in SAR image for the case of moving ships which moves in the direction perpendicular to the direction of flight path. Unknown ship's DR estimation is to be carried out based on the initial positions, speed and course over ground, which has already been shorted out from AIS reports, during the step of time matching. This DR based ship's position will be the candidate element for searching the SAR based ship targets for the purpose of identification & matching within the certain boundary around DR. The searching method is performed by means of estimation of minimum distance from ship's DR to SAR based ship position, and once it determines, so the candidate element will look for matching like ship size match of DR based ship's dimension wrt SAR based ship's edge, there may be some error during the matching with SAR based ship edges with actual ship's hull design as per the longitudinal and transverse axis size information obtained from the AIS reports due to blurring effect in SAR based ship signatures, once the conditions are satisfied, candidate element will move & shift over the SAR based ship signature target with the minimum displacement and it is known to be the azimuth shift compensation and this overall methodology are known to be integration of AIS report data over the SAR image acquisition boundary with assessment of time matching. The expected result may provide the good accuracy of the SAR and AIS contact position along with dimension and classification of ships over SAR image. There may be possibilities of matching speed and course from candidate element with SAR based ship signature, but still the challenges are presents in front of us that to estimation of speed and course by means of SAR data, if it may be possible so the expected final result may be more accurate as due to extra matching effects and the results may be used for the near real time performance for ship identification with help of integrated system design based on SAR and AIS data reports.

  3. Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching.

    PubMed

    Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki

    2015-03-10

    This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.

  4. Sensor-Based Auto-Focusing System Using Multi-Scale Feature Extraction and Phase Correlation Matching

    PubMed Central

    Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki

    2015-01-01

    This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645

  5. Pictorial Review of Digital Radiography Artifacts.

    PubMed

    Walz-Flannigan, Alisa I; Brossoit, Kimberly J; Magnuson, Dayne J; Schueler, Beth A

    2018-01-01

    Visual familiarity with the variety of digital radiographic artifacts is needed to identify, resolve, or prevent image artifacts from creating issues with patient imaging. Because the mechanism for image creation is different between flat-panel detectors and computed radiography, the causes and appearances of some artifacts can be unique to these different modalities. Examples are provided of artifacts that were found on clinical images or during quality control testing with flat-panel detectors. The examples are meant to serve as learning tools for future identification and troubleshooting of artifacts and as a reminder for steps that can be taken for prevention. The examples of artifacts provided are classified according to their causal connection in the imaging chain, including an equipment defect as a result of an accident or mishandling, debris or gain calibration flaws, a problematic acquisition technique, signal transmission failures, and image processing issues. Specific artifacts include those that are due to flat-panel detector drops, backscatter, debris in the x-ray field during calibration, detector saturation or underexposure, or collimation detection errors, as well as a variety of artifacts that are processing induced. © RSNA, 2018.

  6. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  7. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  8. Research on the principle and experimentation of optical compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2013-12-01

    The optical compressive spectral imaging method is a novel spectral imaging technique that draws in the inspiration of compressed sensing, which takes on the advantages such as reducing acquisition data amount, realizing snapshot imaging, increasing signal to noise ratio and so on. Considering the influence of the sampling quality on the ultimate imaging quality, researchers match the sampling interval with the modulation interval in former reported imaging system, while the depressed sampling rate leads to the loss on the original spectral resolution. To overcome that technical defect, the demand for the matching between the sampling interval and the modulation interval is disposed of and the spectral channel number of the designed experimental device increases more than threefold comparing to that of the previous method. Imaging experiment is carried out by use of the experiment installation and the spectral data cube of the shooting target is reconstructed with the acquired compressed image by use of the two-step iterative shrinkage/thresholding algorithms. The experimental result indicates that the spectral channel number increases effectively and the reconstructed data stays high-fidelity. The images and spectral curves are able to accurately reflect the spatial and spectral character of the target.

  9. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  10. Interferometric redatuming by sparse inversion

    NASA Astrophysics Data System (ADS)

    van der Neut, Joost; Herrmann, Felix J.

    2013-02-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional deconvolution of the upgoing constituents with the downgoing constituents. While this method works in theory, sensitivity to noise and artefacts due to incomplete acquisition require a different formulation. In this letter, we demonstrate the benefits of formulating the two steps that undergird interferometric redatuming in terms of a transform-domain sparsity-promoting program. By exploiting compressibility of seismic wavefields in the curvelet domain, the method not only becomes robust with respect to noise but we are also able to remove certain artefacts while preserving the frequency content. Although we observe improvements when we promote sparsity in the redatumed data space, we expect better results when interferometric redatuming would be combined or integrated with least-squares migration with sparsity promotion in the image space.

  11. SU-G-JeP3-06: Lower KV Image Dose Are Expected From a Limited-Angle Intra-Fractional Verification (LIVE) System for SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, G; Yin, F; Ren, L

    Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code,more » BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the treatment.« less

  12. First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery

    NASA Astrophysics Data System (ADS)

    Obrock, L. S.; Gülch, E.

    2018-05-01

    The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.

  13. Geocoding uncertainty analysis for the automated processing of Sentinel-1 data using Sentinel-1 Toolbox software

    NASA Astrophysics Data System (ADS)

    Dostálová, Alena; Naeimi, Vahid; Wagner, Wolfgang; Elefante, Stefano; Cao, Senmao; Persson, Henrik

    2016-10-01

    One of the major advantages of the Sentinel-1 data is its capability to provide very high spatio-temporal coverage allowing the mapping of large areas as well as creation of dense time-series of the Sentinel-1 acquisitions. The SGRT software developed at TU Wien aims at automated processing of Sentinel-1 data for global and regional products. The first step of the processing consists of the Sentinel-1 data geocoding with the help of S1TBX software and their resampling to a common grid. These resampled images serve as an input for the product derivation. Thus, it is very important to select the most reliable processing settings and assess the geocoding uncertainty for both backscatter and projected local incidence angle images. Within this study, selection of Sentinel-1 acquisitions over 3 test areas in Europe were processed manually in the S1TBX software, testing multiple software versions, processing settings and digital elevation models (DEM) and the accuracy of the resulting geocoded images were assessed. Secondly, all available Sentinel-1 data over the areas were processed using selected settings and detailed quality check was performed. Overall, strong influence of the used DEM on the geocoding quality was confirmed with differences up to 80 meters in areas with higher terrain variations. In flat areas, the geocoding accuracy of backscatter images was overall good, with observed shifts between 0 and 30m. Larger systematic shifts were identified in case of projected local incidence angle images. These results encourage the automated processing of large volumes of Sentinel-1 data.

  14. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection

    PubMed Central

    Lloyd, David F.A.; Price, Anthony N.; Kuklisova Murgasova, Maria; Aljabar, Paul; Malik, Shaihan J.; Lohezic, Maelene; Rutherford, Mary A.; Pushparajah, Kuberan; Razavi, Reza; Hajnal, Joseph V.

    2017-01-01

    Purpose Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. Methods The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image‐based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user‐defined region of interest delineating the fetal heart. The method was evaluated in 30 mid‐ to late gestational age singleton pregnancies scanned without maternal breath‐hold. Results The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact‐free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. Conclusions The proposed method shows promise as a motion‐tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image‐space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med 79:327–338, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28370252

  15. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI

    PubMed Central

    Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.

    2009-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810

  16. Optimization of a shorter variable-acquisition time for legs to achieve true whole-body PET/CT images.

    PubMed

    Umeda, Takuro; Miwa, Kenta; Murata, Taisuke; Miyaji, Noriaki; Wagatsuma, Kei; Motegi, Kazuki; Terauchi, Takashi; Koizumi, Mitsuru

    2017-12-01

    The present study aimed to qualitatively and quantitatively evaluate PET images as a function of acquisition time for various leg sizes, and to optimize a shorter variable-acquisition time protocol for legs to achieve better qualitative and quantitative accuracy of true whole-body PET/CT images. The diameters of legs to be modeled as phantoms were defined based on data derived from 53 patients. This study analyzed PET images of a NEMA phantom and three plastic bottle phantoms (diameter, 5.68, 8.54 and 10.7 cm) that simulated the human body and legs, respectively. The phantoms comprised two spheres (diameters, 10 and 17 mm) containing fluorine-18 fluorodeoxyglucose solution with sphere-to-background ratios of 4 at a background radioactivity level of 2.65 kBq/mL. All PET data were reconstructed with acquisition times ranging from 10 to 180, and 1200 s. We visually evaluated image quality and determined the coefficient of variance (CV) of the background, contrast and the quantitative %error of the hot spheres, and then determined two shorter variable-acquisition protocols for legs. Lesion detectability and quantitative accuracy determined based on maximum standardized uptake values (SUV max ) in PET images of a patient using the proposed protocols were also evaluated. A larger phantom and a shorter acquisition time resulted in increased background noise on images and decreased the contrast in hot spheres. A visual score of ≥ 1.5 was obtained when the acquisition time was ≥ 30 s for three leg phantoms, and ≥ 120 s for the NEMA phantom. The quantitative %errors of the 10- and 17-mm spheres in the leg phantoms were ± 15 and ± 10%, respectively, in PET images with a high CV (scan < 30 s). The mean SUV max of three lesions using the current fixed-acquisition and two proposed variable-acquisition time protocols in the clinical study were 3.1, 3.1 and 3.2, respectively, which did not significantly differ. Leg acquisition time per bed position of even 30-90 s allows axial equalization, uniform image noise and a maximum ± 15% quantitative accuracy for the smallest lesion. The overall acquisition time was reduced by 23-42% using the proposed shorter variable than the current fixed-acquisition time for imaging legs, indicating that this is a useful and practical protocol for routine qualitative and quantitative PET/CT assessment in the clinical setting.

  17. An image‐based method to synchronize cone‐beam CT and optical surface tracking

    PubMed Central

    Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guido

    2015-01-01

    The integration of in‐room X‐ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X‐ray projections and surface data. We present an image‐based method for the synchronization of cone‐beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X‐ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between ‐3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient‐specific breathing models, based on the correlation between internal tumor motion and external surface surrogates. PACS number: 87

  18. Evaluation of noise and blur effects with SIRT-FISTA-TV reconstruction algorithm: Application to fast environmental transmission electron tomography.

    PubMed

    Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita

    2018-06-01

    Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Simulating reading acquisition: The link between reading outcome and multimodal brain signatures of letter-speech sound learning in prereaders.

    PubMed

    Karipidis, Iliana I; Pleisch, Georgette; Brandeis, Daniel; Roth, Alexander; Röthlisberger, Martina; Schneebeli, Maya; Walitza, Susanne; Brem, Silvia

    2018-05-08

    During reading acquisition, neural reorganization of the human brain facilitates the integration of letters and speech sounds, which enables successful reading. Neuroimaging and behavioural studies have established that impaired audiovisual integration of letters and speech sounds is a core deficit in individuals with developmental dyslexia. This longitudinal study aimed to identify neural and behavioural markers of audiovisual integration that are related to future reading fluency. We simulated the first step of reading acquisition by performing artificial-letter training with prereading children at risk for dyslexia. Multiple logistic regressions revealed that our training provides new precursors of reading fluency at the beginning of reading acquisition. In addition, an event-related potential around 400 ms and functional magnetic resonance imaging activation patterns in the left planum temporale to audiovisual correspondences improved cross-validated prediction of future poor readers. Finally, an exploratory analysis combining simultaneously acquired electroencephalography and hemodynamic data suggested that modulation of temporoparietal brain regions depended on future reading skills. The multimodal approach demonstrates neural adaptations to audiovisual integration in the developing brain that are related to reading outcome. Despite potential limitations arising from the restricted sample size, our results may have promising implications both for identifying poor-reading children and for monitoring early interventions.

  20. Influence of ultrasound speckle tracking strategies for motion and strain estimation.

    PubMed

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago

    2016-08-01

    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An acquisition system for CMOS imagers with a genuine 10 Gbit/s bandwidth

    NASA Astrophysics Data System (ADS)

    Guérin, C.; Mahroug, J.; Tromeur, W.; Houles, J.; Calabria, P.; Barbier, R.

    2012-12-01

    This paper presents a high data throughput acquisition system for pixel detector readout such as CMOS imagers. This CMOS acquisition board offers a genuine 10 Gbit/s bandwidth to the workstation and can provide an on-line and continuous high frame rate imaging capability. On-line processing can be implemented either on the Data Acquisition Board or on the multi-cores workstation depending on the complexity of the algorithms. The different parts composing the acquisition board have been designed to be used first with a single-photon detector called LUSIPHER (800×800 pixels), developed in our laboratory for scientific applications ranging from nano-photonics to adaptive optics. The architecture of the acquisition board is presented and the performances achieved by the produced boards are described. The future developments (hardware and software) concerning the on-line implementation of algorithms dedicated to single-photon imaging are tackled.

  2. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acquisition of Stereoscopic Particle Image Velocimetry System for Investigation of Unsteady Flows

    DTIC Science & Technology

    2016-04-30

    SECURITY CLASSIFICATION OF: The objective of the project titled “Acquisition of Stereoscopic Particle Image Velocimetry (S-PIV) System for...Distribution Unlimited UU UU UU UU 30-04-2016 1-Feb-2015 31-Jan-2016 Final Report: Acquisition of Stereoscopic Particle Image Velocimetry System For...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Particle Image Velocimetry REPORT DOCUMENTATION PAGE 11

  4. Image acquisition in the Pi-of-the-Sky project

    NASA Astrophysics Data System (ADS)

    Jegier, M.; Nawrocki, K.; Poźniak, K.; Sokołowski, M.

    2006-10-01

    Modern astronomical image acquisition systems dedicated for sky surveys provide large amount of data in a single measurement session. During one session that lasts a few hours it is possible to get as much as 100 GB of data. This large amount of data needs to be transferred from camera and processed. This paper presents some aspects of image acquisition in a sky survey image acquisition system. It describes a dedicated USB linux driver for the first version of the "Pi of The Sky" CCD camera (later versions have also Ethernet interface) and the test program for the camera together with a driver-wrapper providing core device functionality. Finally, the paper contains description of an algorithm for matching several images based on image features, i.e. star positions and their brightness.

  5. Image Quality and Radiation Exposure Comparison of a Double High-Pitch Acquisition for Coronary Computed Tomography Angiography Versus Standard Retrospective Spiral Acquisition in Patients With Atrial Fibrillation.

    PubMed

    Prazeres, Carlos Eduardo Elias Dos; Magalhães, Tiago Augusto; de Castro Carneiro, Adriano Camargo; Cury, Roberto Caldeira; de Melo Moreira, Valéria; Bello, Juliana Hiromi Silva Matsumoto; Rochitte, Carlos Eduardo

    The aim of this study was to compare image quality and radiation dose of coronary computed tomography (CT) angiography performed with dual-source CT scanner using 2 different protocols in patients with atrial fibrillation. Forty-seven patients with AF underwent 2 different acquisition protocols: double high-pitch (DHP) spiral acquisition and retrospective spiral acquisition. The image quality was ranked according to a qualitative score by 2 experts: 1, no evident motion; 2, minimal motion not influencing coronary artery luminal evaluation; and 3, motion with impaired luminal evaluation. A third expert solved any disagreement. A total of 732 segments were evaluated. The DHP group (24 patients, 374 segments) showed more segments classified as score 1 than the retrospective spiral acquisition group (71.3% vs 37.4%). Image quality evaluation agreement was high between observers (κ = 0.8). There was significantly lower radiation exposure for the DHP group (3.65 [1.29] vs 23.57 [10.32] mSv). In this original direct comparison, a DHP spiral protocol for coronary CT angiography acquisition in patients with atrial fibrillation resulted in lower radiation exposure and superior image quality compared with conventional spiral retrospective acquisition.

  6. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography.

    PubMed

    Ozaki, Yuichi; Kitabata, Hironori; Tsujioka, Hiroto; Hosokawa, Seiki; Kashiwagi, Manabu; Ishibashi, Kohei; Komukai, Kenichi; Tanimoto, Takashi; Ino, Yasushi; Takarada, Shigeho; Kubo, Takashi; Kimura, Keizo; Tanaka, Atsushi; Hirata, Kumiko; Mizukoshi, Masato; Imanishi, Toshio; Akasaka, Takashi

    2012-01-01

    Although an intracoronary frequency-domain optical coherence tomography (FD-OCT) system overcomes several limitations of the time-domain OCT (TD-OCT) system, the former requires injection of contrast media for image acquisition. The increased total amount of contrast media for FD-OCT image acquisition may lead to the impairment of renal function. The safety and usefulness of the non-occlusion method with low-molecular-weight dextran L (LMD-L) via a guiding catheter for TD-OCT image acquisition have been reported previously. The aim of the present study was to compare the image quality and quantitative measurements between contrast media and LMD-L for FD-OCT image acquisition in coronary stented lesions. Twenty-two patients with 25 coronary stented lesions were enrolled in this study. FD-OCT was performed with the continuous-flushing method via a guiding catheter. Both contrast media and LMD-L were infused at a rate of 4 ml/s by an autoinjector. With regard to image quality, the prevalence of clear image segments was comparable between contrast media and LMD-L (97.9% vs. 96.5%, P=0.90). Furthermore, excellent correlations were observed between both flushing solutions in terms of minimum lumen area, mean lumen area, and mean stent area. The total volumes of contrast media and of LMD-L needed for OCT image acquisition were similar. FD-OCT image acquisition with LMD-L has the potential to reduce the total amount of contrast media without loss of image quality.

  7. Quick acquisition and recognition method for the beacon in deep space optical communications.

    PubMed

    Wang, Qiang; Liu, Yuefei; Ma, Jing; Tan, Liying; Yu, Siyuan; Li, Changjiang

    2016-12-01

    In deep space optical communications, it is very difficult to acquire the beacon given the long communication distance. Acquisition efficiency is essential for establishing and holding the optical communication link. Here we proposed a quick acquisition and recognition method for the beacon in deep optical communications based on the characteristics of the deep optical link. To identify the beacon from the background light efficiently, we utilized the maximum similarity between the collecting image and the reference image for accurate recognition and acquisition of the beacon in the area of uncertainty. First, the collecting image and the reference image were processed by Fourier-Mellin. Second, image sampling and image matching were applied for the accurate positioning of the beacon. Finally, the field programmable gate array (FPGA)-based system was used to verify and realize this method. The experimental results showed that the acquisition time for the beacon was as fast as 8.1s. Future application of this method in the system design of deep optical communication will be beneficial.

  8. Blueprint for Acquisition Reform, Version 3.0

    DTIC Science & Technology

    2008-07-01

    represents a substantial and immediate step forward in establishing the Coast Guard as a model mid-sized federal agency for acquisition processes...Blueprint for Acquisition Reform in the U. S. Coast Guard “The Coast Guard must become the model for mid-sized Federal agency acquisition in process...acquisition (DoD 5000 model >CG Major Systems Acquisition Manual) • Deepwater Program Executive Officer (PEO): System of Systems performance-based

  9. 4D very high-resolution topography monitoring of surface deformation using UAV-SfM framework.

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof

    2016-04-01

    During the last years, exploratory research has shown that UAV-based image acquisition is suitable for environmental remote sensing and monitoring. Image acquisition with cameras mounted on an UAV can be performed at very-high spatial resolution and high temporal frequency in the most dynamic environments. Combined with Structure-from-Motion algorithm, the UAV-SfM framework is capable of providing digital surface models (DSM) which are highly accurate when compared to other very-high resolution topographic datasets and highly reproducible for repeated measurements over the same study area. In this study, we aim at assessing (1) differential movement of the Earth's surface and (2) the sediment budget of a complex earthflow located in the Central Swiss Alps based on three topographic datasets acquired over a period of 2 years. For three time steps, we acquired aerial photographs with a standard reflex camera mounted on a low-cost and lightweight UAV. Image datasets were then processed with the Structure-from-Motion algorithm in order to reconstruct a 3D dense point cloud representing the topography. Georeferencing of outputs has been achieved based on the ground control point (GCP) extraction method, previously surveyed on the field with a RTK GPS. Finally, digital elevation model of differences (DOD) has been computed to assess the topographic changes between the three acquisition dates while surface displacements have been quantified by using image correlation techniques. Our results show that the digital elevation model of topographic differences is able to capture surface deformation at cm-scale resolution. The mean annual displacement of the earthflow is about 3.6 m while the forefront of the landslide has advanced by ca. 30 meters over a period of 18 months. The 4D analysis permits to identify the direction and velocity of Earth movement. Stable topographic ridges condition the direction of the flow with highest downslope movement on steep slopes, and diffuse movement due to lateral sediment flux in the central part of the earthflow.

  10. Needle position estimation from sub-sampled k-space data for MRI-guided interventions

    NASA Astrophysics Data System (ADS)

    Schmitt, Sebastian; Choli, Morwan; Overhoff, Heinrich M.

    2015-03-01

    MRI-guided interventions have gained much interest. They profit from intervention synchronous data acquisition and image visualization. Due to long data acquisition durations, ergonomic limitations may occur. For a trueFISP MRI-data acquisition sequence, a time sparing sub-sampling strategy has been developed that is adapted to amagnetic needle detection. A symmetrical and contrast rich susceptibility needle artifact, i.e. an approximately rectangular gray scale profile is assumed. The 1-D-Fourier transformed of a rectangular function is a sinc-function. Its periodicity is exploited by sampling only along a few orthogonal trajectories in k-space. Because a needle moves during intervention, its tip region resembles a rectangle in a time-difference image that is reconstructed from such sub-sampled k-spaces acquired at different time stamps. In different phantom experiments, a needle was pushed forward along a reference trajectory, which was determined from a needle holders geometric parameters. In addition, the trajectory of the needle tip was estimated by the method described above. Only ca. 4 to 5% of the entire k-space data was used for needle tip estimation. The misalignment of needle orientation and needle tip position, i.e. the differences between reference and estimated values, is small and even in its worst case less than 2 mm. The results show that the method is applicable under nearly real conditions. Next steps are addressed to the validation of the method for clinical data.

  11. Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization.

    PubMed

    Bladin, Karl; Axelsson, Emil; Broberg, Erik; Emmart, Carter; Ljung, Patric; Bock, Alexander; Ynnerman, Anders

    2017-08-29

    Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets.

  12. Balanced Steady-State Free Precession (bSSFP) from an effective field perspective: Application to the detection of chemical exchange (bSSFPX).

    PubMed

    Zhang, Shu; Liu, Zheng; Grant, Aaron; Keupp, Jochen; Lenkinski, Robert E; Vinogradov, Elena

    2017-02-01

    Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Full-field speckle interferometry for non-contact photoacoustic tomography.

    PubMed

    Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf

    2015-05-21

    A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.

  14. Using deep learning for detecting gender in adult chest radiographs

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2018-03-01

    In this paper, we present a method for automatically identifying the gender of an imaged person using their frontal chest x-ray images. Our work is motivated by the need to determine missing gender information in some datasets. The proposed method employs the technique of convolutional neural network (CNN) based deep learning and transfer learning to overcome the challenge of developing handcrafted features in limited data. Specifically, the method consists of four main steps: pre-processing, CNN feature extractor, feature selection, and classifier. The method is tested on a combined dataset obtained from several sources with varying acquisition quality resulting in different pre-processing steps that are applied for each. For feature extraction, we tested and compared four CNN architectures, viz., AlexNet, VggNet, GoogLeNet, and ResNet. We applied a feature selection technique, since the feature length is larger than the number of images. Two popular classifiers: SVM and Random Forest, are used and compared. We evaluated the classification performance by cross-validation and used seven performance measures. The best performer is the VggNet-16 feature extractor with the SVM classifier, with accuracy of 86.6% and ROC Area being 0.932 for 5-fold cross validation. We also discuss several misclassified cases and describe future work for performance improvement.

  15. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems.

    PubMed

    Woods, Elena; Courtney, Jane; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2014-12-01

    Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching-Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step-by-step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2-fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins. © 2014 The Authors. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of Royal Microscopical Society.

  16. Assessment of Photogrammetry Structure-from-Motion Compared to Terrestrial LiDAR Scanning for Generating Digital Elevation Models. Application to the Austre Lovéenbreen Polar Glacier Basin, Spitsbergen 79°N

    NASA Astrophysics Data System (ADS)

    Tolle, F.; Friedt, J. M.; Bernard, É.; Prokop, A.; Griselin, M.

    2014-12-01

    Digital Elevation Model (DEM) is a key tool for analyzing spatially dependent processes including snow accumulation on slopes or glacier mass balance. Acquiring DEM within short time intervals provides new opportunities to evaluate such phenomena at the daily to seasonal rates.DEMs are usually generated from satellite imagery, aerial photography, airborne and ground-based LiDAR, and GPS surveys. In addition to these classical methods, we consider another alternative for periodic DEM acquisition with lower logistics requirements: digital processing of ground based, oblique view digital photography. Such a dataset, acquired using commercial off the shelf cameras, provides the source for generating elevation models using Structure from Motion (SfM) algorithms. Sets of pictures of a same structure but taken from various points of view are acquired. Selected features are identified on the images and allow for the reconstruction of the three-dimensional (3D) point cloud after computing the camera positions and optical properties. This cloud point, generated in an arbitrary coordinate system, is converted to an absolute coordinate system either by adding constraints of Ground Control Points (GCP), or including the (GPS) position of the cameras in the processing chain. We selected the opensource digital signal processing library provided by the French Geographic Institute (IGN) called Micmac for its fine processing granularity and the ability to assess the quality of each processing step.Although operating in snow covered environments appears challenging due to the lack of relevant features, we observed that enough reference points could be identified for 3D reconstruction. Despite poor climatic environment of the Arctic region considered (Ny Alesund area, 79oN) is not a problem for SfM, the low lying spring sun and the cast shadows appear as a limitation because of the lack of color dynamics in the digital cameras we used. A detailed understanding of the processing steps is mandatory during the image acquisition phase: compliance with acquisition rules reducing digital processing errors helps minimizing the uncertainty on the point cloud absolute position in its coordinate system. 3D models from SfM are compared with terrestrial LiDAR acquisitions for resolution assesment.

  17. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  18. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  19. Air Traffic Control: Immature Software Acquisition Processes Increase FAA System Acquisition Risks

    DOT National Transportation Integrated Search

    1997-03-01

    The General Accounting Office (GAO) at the request of Congress reviewed (1) : the maturity of Federal Aviation Administration's (FAA's) Air Traffic Control : (ATC) modernization software acquisition processes, and (2) the steps/actions : FAA has unde...

  20. 76 FR 51993 - Draft Guidance for Industry on Standards for Clinical Trial Imaging Endpoints; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... assist the office in processing your requests. See the SUPPLEMENTARY INFORMATION section for electronic... considerations for standardization of image acquisition, image interpretation methods, and other procedures to help ensure imaging data quality. The draft guidance describes two categories of image acquisition and...

  1. Age of Acquisition and Imageability: A Cross-Task Comparison

    ERIC Educational Resources Information Center

    Ploetz, Danielle M.; Yates, Mark

    2016-01-01

    Previous research has reported an imageability effect on visual word recognition. Words that are high in imageability are recognised more rapidly than are those lower in imageability. However, later researchers argued that imageability was confounded with age of acquisition. In the current research, these two factors were manipulated in a…

  2. Self-calibrated multiple-echo acquisition with radial trajectories using the conjugate gradient method (SMART-CG).

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F

    2011-04-01

    To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.

  3. Self-calibrated Multiple-echo Acquisition with Radial Trajectories using the Conjugate Gradient Method (SMART-CG)

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.

    2011-01-01

    Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967

  4. Ship Speed Retrieval From Single Channel TerraSAR-X Data

    NASA Astrophysics Data System (ADS)

    Soccorsi, Matteo; Lehner, Susanne

    2010-04-01

    A method to estimate the speed of a moving ship is presented. The technique, introduced in Kirscht (1998), is extended to marine application and validated on TerraSAR-X High-Resolution (HR) data. The generation of a sequence of single-look SAR images from a single- channel image corresponds to an image time series with reduced resolution. This allows applying change detection techniques on the time series to evaluate the velocity components in range and azimuth of the ship. The evaluation of the displacement vector of a moving target in consecutive images of the sequence allows the estimation of the azimuth velocity component. The range velocity component is estimated by evaluating the variation of the signal amplitude during the sequence. In order to apply the technique on TerraSAR-X Spot Light (SL) data a further processing step is needed. The phase has to be corrected as presented in Eineder et al. (2009) due to the SL acquisition mode; otherwise the image sequence cannot be generated. The analysis, when possible validated by the Automatic Identification System (AIS), was performed in the framework of the ESA project MARISS.

  5. Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Permala, R.; Jayani, A. P. S.

    2018-05-01

    LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.

  6. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study.

    PubMed

    Pandit, Prachi; Rivoire, Julien; King, Kevin; Li, Xiaojuan

    2016-03-01

    Quantitative T1ρ imaging is beneficial for early detection for osteoarthritis but has seen limited clinical use due to long scan times. In this study, we evaluated the feasibility of accelerated T1ρ mapping for knee cartilage quantification using a combination of compressed sensing (CS) and data-driven parallel imaging (ARC-Autocalibrating Reconstruction for Cartesian sampling). A sequential combination of ARC and CS, both during data acquisition and reconstruction, was used to accelerate the acquisition of T1ρ maps. Phantom, ex vivo (porcine knee), and in vivo (human knee) imaging was performed on a GE 3T MR750 scanner. T1ρ quantification after CS-accelerated acquisition was compared with non CS-accelerated acquisition for various cartilage compartments. Accelerating image acquisition using CS did not introduce major deviations in quantification. The coefficient of variation for the root mean squared error increased with increasing acceleration, but for in vivo measurements, it stayed under 5% for a net acceleration factor up to 2, where the acquisition was 25% faster than the reference (only ARC). To the best of our knowledge, this is the first implementation of CS for in vivo T1ρ quantification. These early results show that this technique holds great promise in making quantitative imaging techniques more accessible for clinical applications. © 2015 Wiley Periodicals, Inc.

  7. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    PubMed Central

    Benameur, S.; Mignotte, M.; Meunier, J.; Soucy, J. -P.

    2009-01-01

    Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter. PMID:19812704

  8. a Fast Approach for Stitching of Aerial Images

    NASA Astrophysics Data System (ADS)

    Moussa, A.; El-Sheimy, N.

    2016-06-01

    The last few years have witnessed an increasing volume of aerial image data because of the extensive improvements of the Unmanned Aerial Vehicles (UAVs). These newly developed UAVs have led to a wide variety of applications. A fast assessment of the achieved coverage and overlap of the acquired images of a UAV flight mission is of great help to save the time and cost of the further steps. A fast automatic stitching of the acquired images can help to visually assess the achieved coverage and overlap during the flight mission. This paper proposes an automatic image stitching approach that creates a single overview stitched image using the acquired images during a UAV flight mission along with a coverage image that represents the count of overlaps between the acquired images. The main challenge of such task is the huge number of images that are typically involved in such scenarios. A short flight mission with image acquisition frequency of one second can capture hundreds to thousands of images. The main focus of the proposed approach is to reduce the processing time of the image stitching procedure by exploiting the initial knowledge about the images positions provided by the navigation sensors. The proposed approach also avoids solving for all the transformation parameters of all the photos together to save the expected long computation time if all the parameters were considered simultaneously. After extracting the points of interest of all the involved images using Scale-Invariant Feature Transform (SIFT) algorithm, the proposed approach uses the initial image's coordinates to build an incremental constrained Delaunay triangulation that represents the neighborhood of each image. This triangulation helps to match only the neighbor images and therefore reduces the time-consuming features matching step. The estimated relative orientation between the matched images is used to find a candidate seed image for the stitching process. The pre-estimated transformation parameters of the images are employed successively in a growing fashion to create the stitched image and the coverage image. The proposed approach is implemented and tested using the images acquired through a UAV flight mission and the achieved results are presented and discussed.

  9. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew

    2010-11-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  10. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    PubMed

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (P<0.05). The RR algorithm improved image quality compared with local processing protocols and has been introduced into routine clinical use. SPECT acquisitions are now acquired at half of the time previously required. The method of binning the data can be applied to any other camera system to evaluate the reduction in acquisition time for similar processes. The potential for dose reduction is also inherent with this approach.

  11. High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions

    PubMed Central

    Holtrop, Joseph L.; Sutton, Bradley P.

    2016-01-01

    Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107

  12. Software for Acquiring Image Data for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Cheung, H. M.; Kressler, Brian

    2003-01-01

    PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.

  13. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  14. 48 CFR 2509.407-3 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  15. 48 CFR 2509.406-3 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  16. 48 CFR 2509.406-3 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  17. 48 CFR 2509.406-3 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  18. 48 CFR 2509.407-3 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  19. 48 CFR 2509.406-3 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  20. 48 CFR 2509.407-3 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  1. 48 CFR 2509.407-3 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  2. 48 CFR 2509.406-3 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  3. 48 CFR 2509.407-3 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...

  4. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms

    PubMed Central

    Perez-Sanz, Fernando; Navarro, Pedro J

    2017-01-01

    Abstract The study of phenomes or phenomics has been a central part of biology. The field of automatic phenotype acquisition technologies based on images has seen an important advance in the last years. As with other high-throughput technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion. PMID:29048559

  5. An image is worth a thousand words: why nouns tend to dominate verbs in early word learning.

    PubMed

    McDonough, Colleen; Song, Lulu; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick; Lannon, Robert

    2011-03-01

    Nouns are generally easier to learn than verbs (e.g., Bornstein, 2005; Bornstein et al., 2004; Gentner, 1982; Maguire, Hirsh-Pasek, & Golinkoff, 2006). Yet, verbs appear in children's earliest vocabularies, creating a seeming paradox. This paper examines one hypothesis about the difference between noun and verb acquisition. Perhaps the advantage nouns have is not a function of grammatical form class but rather related to a word's imageability. Here, word imageability ratings and form class (nouns and verbs) were correlated with age of acquisition according to the MacArthur-Bates Communicative Development Inventory (CDI) (Fenson et al., 1994). CDI age of acquisition was negatively correlated with words' imageability ratings. Further, a word's imageability contributes to the variance of the word's age of acquisition above and beyond form class, suggesting that at the beginning of word learning, imageability might be a driving factor.

  6. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    PubMed Central

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  7. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.

    PubMed

    Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H

    2007-01-01

    Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.

  8. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment.

    PubMed

    Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S

    2016-11-01

    The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.

  9. Design of a high definition imaging (HDI) analysis technique adapted to challenging environments

    NASA Astrophysics Data System (ADS)

    Laurent, Sophie Nathalie

    2005-11-01

    This dissertation describes a new comprehensive, flexible, highly-automated and computationally-robust approach for high definition imaging (HDI), a data acquisition technique for video-rate imaging through a turbulent atmosphere with telescopes not equipped with adaptive optics (AO). The HDI process, when applied to astronomical objects, involves the recording of a large number of images (10 3 -10 5 ) from the Earth and, in post-processing mode, selection of the very best ones to create a "perfect-seeing" diffraction-limited image via a three-step process. First, image registration is performed to find the exact position of the object in each field, using a template similar in size and shape to the target. The next task is to select only higher-quality fields using a criterion based on a measure of the blur in a region of interest around that object. The images are then shifted and added together to create an effective time exposure under ideal observing conditions. The last step's objective is to remove residual distortions in the image caused by the atmosphere and the optical equipment, using a point spread function (PSF), and a technique called "l 1 regularization" that has been adapted to this type of environment. In order to study the tenuous sodium atmospheres around solar system bodies, the three-step HDI procedure is done first in the white light domain (695-950 nm), where the Signal-to-Noise Ratio (SNR) of the images is high, resulting in an image with a sharp limb. Then the known selection and registration results are mapped to the simultaneously recorded spectral data (sodium lines: 589 and 589.6 nm), where the lower-SNR images cannot support independent registration and selection. Science results can then be derived from this spectral study to understand the structure of the atmospheres of moons and planets. This dissertation's contribution to space physics deals with locating the source of escaping sodium from Jupiter's moon lo. The results show, for the first time, that the source region is not homogeneously distributed around the small moon, but concentrated on its side of orbital motion. This identifies for modelers the physical mechanisms taking place around the most volcanic moon in the solar system.

  10. Representation of Biomedical Expertise in Ontologies: a Case Study about Knowledge Acquisition on HTLV viruses and their clinical manifestations.

    PubMed

    Cardoso Coelho, Kátia; Barcellos Almeida, Maurício

    2015-01-01

    In this paper, we introduce a set of methodological steps for knowledge acquisition applied to the organization of biomedical information through ontologies. Those steps are tested in a real case involving Human T Cell Lymphotropic Virus (HTLV), which causes myriad infectious diseases. We hope to contribute to providing suitable knowledge representation of scientific domains.

  11. 42 CFR 37.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiography (CR) is the term for digital X-ray image acquisition systems that detect X-ray signals using a... stimulating laser beam to convert the latent radiographic image to electronic signals which are then processed... image acquisition systems in which the X-ray signals received by the image detector are converted nearly...

  12. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  13. Using Fourier transform IR spectroscopy to analyze biological materials

    PubMed Central

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  14. Nondestructive multispectral reflectoscopy between 800 and 1900 nm: An instrument for the investigation of the stratigraphy in paintings.

    PubMed

    Karagiannis, G; Salpistis, Chr; Sergiadis, G; Chryssoulakis, Y

    2007-06-01

    In the present work, a powerful tool for the investigation of paintings is presented. This permits the tuneable multispectral real time imaging between 200 and 5000 nm and the simultaneous multispectral acquisition of spectroscopic data from the same region. We propose the term infrared reflectoscopy for tuneable infrared imaging in paintings (Chryssonlakis and Chassery, The Application of Physicochemical Methods of Analysis and Image Processing Techniques to Painted Works of Art, Erasmus Project ICP-88-006-6, Athens, June, 1989) for a technique that is effective especially when the spectroscopic data acquisition is performed between 800 and 1900 nm. Elements such as underdrawings, old damage that is not visible to the naked eye, later interventions or overpaintings, hidden signatures, nonvisible inscriptions, and authenticity features can thus be detected with the overlying paint layers becoming successively "transparent" due to the deep infrared penetration. The spectroscopic data are collected from each point of the studied area with a 5 nm step through grey level measurement, after adequate infrared reflectance (%R) and curve calibration. The detection limits of the infrared detector as well as the power distribution of the radiation coming out through the micrometer slit assembly of the monochromator in use are also taken into account. Inorganic pigments can thus be identified and their physicochemical properties directly compared to the corresponding infrared images at each wavelength within the optimum region. In order to check its effectiveness, this method was applied on an experimental portable icon of a known stratigraphy.

  15. Real-Time Field Data Acquisition and Remote Sensor Reconfiguration Using Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Silva, F.; Mehta, G.; Vahi, K.; Deelman, E.

    2010-12-01

    Despite many technological advances, field data acquisition still consists of several manual and laborious steps. Once sensors and data loggers are deployed in the field, scientists often have to periodically return to their study sites in order to collect their data. Even when field deployments have a way to communicate and transmit data back to the laboratory (e.g. by using a satellite or a cellular modem), data analysis still requires several repetitive steps. Because data often needs to be processed and inspected manually, there is usually a significant time delay between data collection and analysis. As a result, sensor failures that could be detected almost in real-time are not noted for weeks or months. Finally, sensor reconfiguration as a result of interesting events in the field is still done manually, making rapid response nearly impossible and causing important data to be missed. By working closely with scientists from different application domains, we identified several tasks that, if automated, could greatly improve the way field data is collected, processed, and distributed. Our goals are to enable real-time data collection and validation, automate sensor reconfiguration in response to interest events in the field, and allow scientists to easily automate their data processing. We began our design by employing the Sensor Processing and Acquisition Network (SPAN) architecture. SPAN uses an embedded processor in the field to coordinate sensor data acquisition from analog and digital sensors by interfacing with different types of devices and data loggers. SPAN is also able to interact with various types of communication devices in order to provide real-time communication to and from field sites. We use the Pegasus Workflow Management System (Pegasus WMS) to coordinate data collection and control sensors and deployments in the field. Because scientific workflows can be used to automate multi-step, repetitive tasks, scientists can create simple workflows to download sensor data, perform basic QA/QC, and identify events of interest as well as sensor and data logger failures almost in real-time. As a result of this automation, scientists can quickly be notified (e.g. via e-mail or SMS) so that important events are not missed. In addition, Pegasus WMS has the ability to abstract the execution environment of where programs run. By placing a Pegasus WMS agent inside an embedded processor in the field, we allow scientists to ship simple computational models to the field, enabling remote data processing at the field site. As an example, scientists can send an image processing algorithm to the field so that the embedded processor can analyze images, thus reducing the bandwidth necessary for communication. In addition, when real-time communication to the laboratory is not possible, scientists can create simple computational models that can be run on sensor nodes autonomously, monitoring sensor data and making adjustments without any human intervention. We believe our system lowers the bar for the adoption of reconfigurable sensor networks by field scientists. In this poster, we will show how this technology can be used to provide not only data acquisition, but also real-time data validation and sensor reconfiguration.

  16. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu; Visvikis, Dimitris; Fernandez, Philippe

    2015-02-15

    Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimationmore » of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a wavelet-based denoising in the reconstruction process to better correct for PVE. Future work includes further evaluations of the proposed method on clinical datasets and the use of improved PSF models.« less

  17. 48 CFR 52.214-25 - Step Two of Two-Step Sealed Bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Step Two of Two-Step... Clauses 52.214-25 Step Two of Two-Step Sealed Bidding. As prescribed in 14.201-6(t), insert the following provision: Step Two of Two-Step Sealed Bidding (APR 1985) (a) This invitation for bids is issued to initiate...

  18. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    PubMed

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  19. SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns

    NASA Astrophysics Data System (ADS)

    Koestel, John

    2016-04-01

    3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected plugins.

  20. Fast multiview three-dimensional reconstruction method using cost volume filtering

    NASA Astrophysics Data System (ADS)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  1. 48 CFR 14.503-1 - Step one.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Step one. 14.503-1 Section... AND CONTRACT TYPES SEALED BIDDING Two-Step Sealed Bidding 14.503-1 Step one. (a) Requests for... use the two step method. (3) The requirements of the technical proposal. (4) The evaluation criteria...

  2. The Power of Imageability: How the Acquisition of Inflected Forms Is Facilitated in Highly Imageable Verbs and Nouns in Czech Children

    ERIC Educational Resources Information Center

    Smolík, Filip; Kríž, Adam

    2015-01-01

    Imageability is the ability of words to elicit mental sensory images of their referents. Recent research has suggested that imageability facilitates the processing and acquisition of inflected word forms. The present study examined whether inflected word forms are acquired earlier in highly imageable words in Czech children. Parents of 317…

  3. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles

    PubMed Central

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models. PMID:26393926

  4. Live imaging of mitosis in the developing mouse embryonic cortex.

    PubMed

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  5. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    PubMed

    Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  6. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Fully Phase-Encoded MRI Near Metallic Implants Using Ultrashort Echo Times and Broadband Excitation

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Koch, Kevin M.; Reeder, Scott B.

    2017-01-01

    Purpose To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. Theory and Methods An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Results Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T1-weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Conclusions Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 000:000–000, 2017. PMID:28833407

  8. Quantitative DLA-based compressed sensing for T1-weighted acquisitions

    NASA Astrophysics Data System (ADS)

    Svehla, Pavel; Nguyen, Khieu-Van; Li, Jing-Rebecca; Ciobanu, Luisa

    2017-08-01

    High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high resolution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling, DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% differences when compared to the fully encoded data, with minimal impact on image spatial resolution. In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional studies of living tissues.

  9. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  10. Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms.

    PubMed

    Perez-Sanz, Fernando; Navarro, Pedro J; Egea-Cortines, Marcos

    2017-11-01

    The study of phenomes or phenomics has been a central part of biology. The field of automatic phenotype acquisition technologies based on images has seen an important advance in the last years. As with other high-throughput technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion. © The Author 2017. Published by Oxford University Press.

  11. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  12. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  13. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  14. 21 CFR 892.1715 - Full-field digital mammography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...

  15. Effects of Orientation and Anisometry of Magnetic Resonance Imaging Acquisitions on Diffusion Tensor Imaging and Structural Connectomes.

    PubMed

    Tudela, Raúl; Muñoz-Moreno, Emma; López-Gil, Xavier; Soria, Guadalupe

    2017-01-01

    Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.

  16. Whole-body Magnetic Resonance Imaging in Inflammatory Arthritis: Systematic Literature Review and First Steps Toward Standardization and an OMERACT Scoring System.

    PubMed

    Østergaard, Mikkel; Eshed, Iris; Althoff, Christian E; Poggenborg, Rene P; Diekhoff, Torsten; Krabbe, Simon; Weckbach, Sabine; Lambert, Robert G W; Pedersen, Susanne J; Maksymowych, Walter P; Peterfy, Charles G; Freeston, Jane; Bird, Paul; Conaghan, Philip G; Hermann, Kay-Geert A

    2017-11-01

    Whole-body magnetic resonance imaging (WB-MRI) is a relatively new technique that can enable assessment of the overall inflammatory status of people with arthritis, but standards for image acquisition, definitions of key pathologies, and a quantification system are required. Our aim was to perform a systematic literature review (SLR) and to develop consensus definitions of key pathologies, anatomical locations for assessment, a set of MRI sequences and imaging planes for the different body regions, and a preliminary scoring system for WB-MRI in inflammatory arthritis. An SLR was initially performed, searching for WB-MRI studies in arthritis, osteoarthritis, spondyloarthritis, or enthesitis. These results were presented to a meeting of the MRI in Arthritis Working Group together with an MR image review. Following this, preliminary standards for WB-MRI in inflammatory arthritides were developed with further iteration at the Working Group meetings at the Outcome Measures in Rheumatology (OMERACT) 2016. The SLR identified 10 relevant original articles (7 cross-sectional and 3 longitudinal, mostly focusing on synovitis and/or enthesitis in spondyloarthritis, 4 with reproducibility data). The Working Group decided on inflammation in peripheral joints and entheses as primary focus areas, and then developed consensus MRI definitions for these pathologies, selected anatomical locations for assessment, agreed on a core set of MRI sequences and imaging planes for the different regions, and proposed a preliminary scoring system. It was decided to test and further develop the system by iterative multireader exercises. These first steps in developing an OMERACT WB-MRI scoring system for use in inflammatory arthritides offer a framework for further testing and refinement.

  17. An evaluation on CT image acquisition method for medical VR applications

    NASA Astrophysics Data System (ADS)

    Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang

    2017-02-01

    Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.

  18. Three-dimensional digital mapping of the optic nerve head cupping in glaucoma

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Ramirez, Manuel; Morales, Jose

    1992-08-01

    Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.

  19. Automation of Technology for Cancer Research.

    PubMed

    van der Ent, Wietske; Veneman, Wouter J; Groenewoud, Arwin; Chen, Lanpeng; Tulotta, Claudia; Hogendoorn, Pancras C W; Spaink, Herman P; Snaar-Jagalska, B Ewa

    2016-01-01

    Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.

  20. Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2018-04-01

    In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.

  1. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  2. Ship Detection in SAR Image Based on the Alpha-stable Distribution

    PubMed Central

    Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng

    2008-01-01

    This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794

  3. Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips

    NASA Astrophysics Data System (ADS)

    Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.

    2018-04-01

    Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.

  4. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  5. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing

    NASA Astrophysics Data System (ADS)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2014-02-01

    Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient’s respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s2, a velocity up to 100°/s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 s. We have made considerable progress towards realizing a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient.

  6. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.

    PubMed

    Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping

    2017-03-01

    Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.

  7. Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy.

    PubMed

    Hirata, Eishu; Kiyokawa, Etsuko

    2016-09-20

    Förster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    PubMed

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  9. A preliminary investigation of ROI-image reconstruction with the rebinned BPF algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Xia, Dan; Yu, Lifeng; Sidky, Emil Y.; Pan, Xiaochuan

    2008-03-01

    The back-projection filtration (BPF)algorithm is capable of reconstructing ROI images from truncated data acquired with a wide class of general trajectories. However, it has been observed that, similar to other algorithms for convergent beam geometries, the BPF algorithm involves a spatially varying weighting factor in the backprojection step. This weighting factor can not only increase the computation load, but also amplify the noise in reconstructed images The weighting factor can be eliminated by appropriately rebinning the measured cone-beam data into fan-parallel-beam data. Such an appropriate data rebinning not only removes the weighting factor, but also retain other favorable properties of the BPF algorithm. In this work, we conduct a preliminary study of the rebinned BPF algorithm and its noise property. Specifically, we consider an application in which the detector and source can move in several directions for achieving ROI data acquisition. The combined motion of the detector and source generally forms a complex trajectory. We investigate in this work image reconstruction within an ROI from data acquired in this kind of applications.

  10. Research into a Single-aperture Light Field Camera System to Obtain Passive Ground-based 3D Imagery of LEO Objects

    NASA Astrophysics Data System (ADS)

    Bechis, K.; Pitruzzello, A.

    2014-09-01

    This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera operation is that the target must be within the near-field (Fraunhofer distance) of the collecting optics. For example, in visible light the near-field of a 1-m telescope extends out to about 3,500 km, while the near-field of the AEOS telescope extends out over 46,000 km. For our initial proof of concept, we have integrated our light field camera with a 14-inch Meade LX600 advanced coma-free telescope, to image various surrogate ground targets at up to tens of kilometers range. Our experiments with the 14-inch telescope have assessed factors and requirements that are traceable and scalable to a larger-aperture system that would have the near-field distance needed to obtain 3D images of LEO objects. The next step would be to integrate a light field camera with a 1-m or larger telescope and evaluate its 3D imaging capability against LEO objects. 3D imaging of LEO space objects with light field camera technology can potentially provide a valuable new tool for space situational awareness, especially for those situations where laser or radar illumination of the target objects is not feasible.

  11. 48 CFR 14.503-2 - Step two.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Step two. 14.503-2 Section... AND CONTRACT TYPES SEALED BIDDING Two-Step Sealed Bidding 14.503-2 Step two. (a) Sealed bidding... submitting acceptable technical proposals in step one; (2) Include the provision prescribed in 14.201-6(t...

  12. Lightweight UAV with on-board photogrammetry and single-frequency GPS positioning for metrology applications

    NASA Astrophysics Data System (ADS)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.; Martin, O.

    2017-05-01

    This article presents a coupled system consisting of a single-frequency GPS receiver and a light photogrammetric quality camera embedded in an Unmanned Aerial Vehicle (UAV). The aim is to produce high quality data that can be used in metrology applications. The issue of Integrated Sensor Orientation (ISO) of camera poses using only GPS measurements is presented and discussed. The accuracy reached by our system based on sensors developed at the French Mapping Agency (IGN) Opto-Electronics, Instrumentation and Metrology Laboratory (LOEMI) is qualified. These sensors are specially designed for close-range aerial image acquisition with a UAV. Lever-arm calibration and time synchronization are explained and performed to reach maximum accuracy. All processing steps are detailed from data acquisition to quality control of final products. We show that an accuracy of a few centimeters can be reached with this system which uses low-cost UAV and GPS module coupled with the IGN-LOEMI home-made camera.

  13. Positron Emission Mammography with Multiple Angle Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less

  14. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.

    PubMed

    Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A

    2000-05-01

    The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.

  15. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  16. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  17. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  18. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  19. Image reconstruction by domain-transform manifold learning.

    PubMed

    Zhu, Bo; Liu, Jeremiah Z; Cauley, Stephen F; Rosen, Bruce R; Rosen, Matthew S

    2018-03-21

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction-automated transform by manifold approximation (AUTOMAP)-which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.

  20. Image reconstruction by domain-transform manifold learning

    NASA Astrophysics Data System (ADS)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.

  1. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770

  2. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  3. Image acquisition unit for the Mayo/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Reardon, Frank J.; Salutz, James R.

    1991-07-01

    The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.

  4. Toward a Global Bundle Adjustment of SPOT 5 - HRS Images

    NASA Astrophysics Data System (ADS)

    Massera, S.; Favé, P.; Gachet, R.; Orsoni, A.

    2012-07-01

    The HRS (High Resolution Stereoscopic) instrument carried on SPOT 5 enables quasi-simultaneous acquisition of stereoscopic images on wide segments - 120 km wide - with two forward and backward-looking telescopes observing the Earth with an angle of 20° ahead and behind the vertical. For 8 years IGN (Institut Géographique National) has been developing techniques to achieve spatiotriangulation of these images. During this time the capacities of bundle adjustment of SPOT 5 - HRS spatial images have largely improved. Today a global single block composed of about 20,000 images can be computed in reasonable calculation time. The progression was achieved step by step: first computed blocks were only composed of 40 images, then bigger blocks were computed. Finally only one global block is now computed. In the same time calculation tools have improved: for example the adjustment of 2,000 images of North Africa takes about 2 minutes whereas 8 hours were needed two years ago. To reach such a result a new independent software was developed to compute fast and efficient bundle adjustments. In the same time equipment - GCPs (Ground Control Points) and tie points - and techniques have also evolved over the last 10 years. Studies were made to get recommendations about the equipment in order to make an accurate single block. Tie points can now be quickly and automatically computed with SURF (Speeded Up Robust Features) techniques. Today the updated equipment is composed of about 500 GCPs and studies show that the ideal configuration is around 100 tie points by square degree. With such an equipment, the location of the global HRS block becomes a few meters accurate whereas non adjusted images are only 15 m accurate. This paper will describe the methods used in IGN Espace to compute a global single block composed of almost 20,000 HRS images, 500 GCPs and several million of tie points in reasonable calculation time. Many advantages can be found to use such a block. Because the global block is unique it becomes easier to manage the historic and the different evolutions of the computations (new images, new GCPs or tie points). The location is now unique and consequently coherent all around the world, avoiding steps and artifacts on the borders of DSMs (Digital Surface Models) and OrthoImages historically calculated from different blocks. No extrapolation far from GCPs in the limits of images is done anymore. Using the global block as a reference will allow new images from other sources to be easily located on this reference.

  5. A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian J.; Allinson, Nigel M.

    1989-03-01

    A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.

  6. Role of "the frame cycle time" in portal dose imaging using an aS500-II EPID.

    PubMed

    Al Kattar Elbalaa, Zeina; Foulquier, Jean Noel; Orthuon, Alexandre; Elbalaa, Hanna; Touboul, Emmanuel

    2009-09-01

    This paper evaluates the role of an acquisition parameter, the frame cycle time "FCT", in the performance of an aS500-II EPID. The work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the "frame cycle time" on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15MV X-ray beams and dose rates of 1-6Gy/min on 2100 C/D Linacs. In the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time "FCT" influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55ms (speed of acquisition V(f/s)>18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode. The choice of the acquisition parameter is essential for the accurate portal dose imaging.

  7. Phase imaging in brain using SWIFT

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri Juhani; Garwood, Michael; Gröhn, Olli; Corum, Curtis Andrew

    2015-03-01

    The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.

  8. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  9. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU

    PubMed Central

    2013-01-01

    Background The availability of open and versatile software tools is a key feature to facilitate pre-clinical research for magnetic resonance imaging (MRI) and magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) and expedite clinical translation of diagnostic and therapeutic medical applications. In the present study, two customizable software tools that were developed at the Thunder Bay Regional Research Institute are presented for use with both MRI and MR-HIFU. Both tools operate in a MATLAB®; environment. The first tool is named MatMRI and enables real-time, dynamic acquisition of MR images with a Philips MRI scanner. The second tool is named MatHIFU and enables the execution and dynamic modification of user-defined treatment protocols with the Philips Sonalleve MR-HIFU therapy system to perform ultrasound exposures in MR-HIFU therapy applications. Methods MatMRI requires four basic steps: initiate communication, subscribe to MRI data, query for new images, and unsubscribe. MatMRI can also pause/resume the imaging and perform real-time updates of the location and orientation of images. MatHIFU requires four basic steps: initiate communication, prepare treatment protocol, and execute treatment protocol. MatHIFU can monitor the state of execution and, if required, modify the protocol in real time. Results Four applications were developed to showcase the capabilities of MatMRI and MatHIFU to perform pre-clinical research. Firstly, MatMRI was integrated with an existing small animal MR-HIFU system (FUS Instruments, Toronto, Ontario, Canada) to provide real-time temperature measurements. Secondly, MatMRI was used to perform T2-based MR thermometry in the bone marrow. Thirdly, MatHIFU was used to automate acoustic hydrophone measurements on a per-element basis of the 256-element transducer of the Sonalleve system. Finally, MatMRI and MatHIFU were combined to produce and image a heating pattern that recreates the word ‘HIFU’ in a tissue-mimicking heating phantom. Conclusions MatMRI and MatHIFU leverage existing MRI and MR-HIFU clinical platforms to facilitate pre-clinical research. MatMRI substantially simplifies the real-time acquisition and processing of MR data. MatHIFU facilitates the testing and characterization of new therapy applications using the Philips Sonalleve clinical MR-HIFU system. Under coordination with Philips Healthcare, both MatMRI and MatHIFU are intended to be freely available as open-source software packages to other research groups. PMID:25512856

  10. Technical Note: Interleaved Bipolar Acquisition and Low-rank Reconstruction for Water-Fat Separation in MRI.

    PubMed

    Cho, JaeJin; Park, HyunWook

    2018-05-17

    To acquire interleaved bipolar data and reconstruct the full data using low-rank property for water fat separation. Bipolar acquisition suffers from issues related to gradient switching, the opposite gradient polarities, and other system imperfections, which prevent accurate water-fat separation. In this study, an interleaved bipolar acquisition scheme and a low-rank reconstruction method were proposed to reduce issues from the bipolar gradients while achieving a short imaging time. The proposed interleaved bipolar acquisition scheme collects echo-time signals from both gradient polarities; however, the sequence increases the imaging time. To reduce the imaging time, the signals were subsampled at every dimension of k-space. The low-rank property of the bipolar acquisition was defined and exploited to estimate the full data from the acquired subsampled data. To eliminate the bipolar issues, in the proposed method, the water-fat separation was performed separately for each gradient polarity, and the results for the positive and negative gradient polarities were combined after the water-fat separation. A phantom study and in-vivo experiments were conducted on a 3T Siemens Verio system. The results for the proposed method were compared with the results of the fully sampled interleaved bipolar acquisition and Soliman's method, which was the previous water-fat separation approach for reducing the issues of bipolar gradients and accelerating the interleaved bipolar acquisition. The proposed method provided accurate water and fat images without the issues of bipolar gradients and demonstrated a better performance compared with the results of the previous methods. The water-fat separation using the bipolar acquisition has several benefits including a short echo-spacing time. However, it suffers from bipolar-gradient issues such as strong gradient switching, system imperfection, and eddy current effects. This study demonstrated that accurate water-fat separated images can be obtained using the proposed interleaved bipolar acquisition and low-rank reconstruction by using the benefits of the bipolar acquisition while reducing the bipolar-gradient issues with a short imaging time. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Acoustic window planning for ultrasound acquisition.

    PubMed

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  13. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  14. Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy.

    PubMed

    Astolfo, Alberto; Endrizzi, Marco; Vittoria, Fabio A; Diemoz, Paul C; Price, Benjamin; Haig, Ian; Olivo, Alessandro

    2017-05-19

    X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.

  15. Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit

    PubMed Central

    Lu, Lee-Jane W.; Nishino, Thomas K.; Khamapirad, Tuenchit; Grady, James J; Leonard, Morton H.; Brunder, Donald G.

    2009-01-01

    Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R2=0.93) and %density (R2=0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies. PMID:17671343

  16. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soliman, A; Elzibak, A; Fatemi, A

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) ofmore » calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient-specific implant dosimetry can be achieved with MRI-only. Conclusion: The proposed framework showed that model-based dose calculation is feasible using MRI-only state-of-the-art techniques.« less

  17. Competency Assessment in Senior Emergency Medicine Residents for Core Ultrasound Skills.

    PubMed

    Schmidt, Jessica N; Kendall, John; Smalley, Courtney

    2015-11-01

    Quality resident education in point-of-care ultrasound (POC US) is becoming increasingly important in emergency medicine (EM); however, the best methods to evaluate competency in graduating residents has not been established. We sought to design and implement a rigorous assessment of image acquisition and interpretation in POC US in a cohort of graduating residents at our institution. We evaluated nine senior residents in both image acquisition and image interpretation for five core US skills (focused assessment with sonography for trauma (FAST), aorta, echocardiogram (ECHO), pelvic, central line placement). Image acquisition, using an observed clinical skills exam (OSCE) directed assessment with a standardized patient model. Image interpretation was measured with a multiple-choice exam including normal and pathologic images. Residents performed well on image acquisition for core skills with an average score of 85.7% for core skills and 74% including advanced skills (ovaries, advanced ECHO, advanced aorta). Residents scored well but slightly lower on image interpretation with an average score of 76%. Senior residents performed well on core POC US skills as evaluated with a rigorous assessment tool. This tool may be developed further for other EM programs to use for graduating resident evaluation.

  18. Feature extraction for change analysis in SAR time series

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan

    2015-10-01

    In remote sensing, the change detection topic represents a broad field of research. If time series data is available, change detection can be used for monitoring applications. These applications require regular image acquisitions at identical time of day along a defined period. Focusing on remote sensing sensors, radar is especially well-capable for applications requiring regularity, since it is independent from most weather and atmospheric influences. Furthermore, regarding the image acquisitions, the time of day plays no role due to the independence from daylight. Since 2007, the German SAR (Synthetic Aperture Radar) satellite TerraSAR-X (TSX) permits the acquisition of high resolution radar images capable for the analysis of dense built-up areas. In a former study, we presented the change analysis of the Stuttgart (Germany) airport. The aim of this study is the categorization of detected changes in the time series. This categorization is motivated by the fact that it is a poor statement only to describe where and when a specific area has changed. At least as important is the statement about what has caused the change. The focus is set on the analysis of so-called high activity areas (HAA) representing areas changing at least four times along the investigated period. As first step for categorizing these HAAs, the matching HAA changes (blobs) have to be identified. Afterwards, operating in this object-based blob level, several features are extracted which comprise shape-based, radiometric, statistic, morphological values and one context feature basing on a segmentation of the HAAs. This segmentation builds on the morphological differential attribute profiles (DAPs). Seven context classes are established: Urban, infrastructure, rural stable, rural unstable, natural, water and unclassified. A specific HA blob is assigned to one of these classes analyzing the CovAmCoh time series signature of the surrounding segments. In combination, also surrounding GIS information is included to verify the CovAmCoh based context assignment. In this paper, the focus is set on the features extracted for a later change categorization procedure.

  19. SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J; Gao, H

    2015-06-15

    Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of opticalmore » coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the acoustic data. Jing Feng and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  20. Fast CT-PRESS-based spiral chemical shift imaging at 3 Tesla.

    PubMed

    Mayer, Dirk; Kim, Dong-Hyun; Adalsteinsson, Elfar; Spielman, Daniel M

    2006-05-01

    A new sequence is presented that combines constant-time point-resolved spectroscopy (CT-PRESS) with fast spiral chemical shift imaging. It allows the acquisition of multivoxel spectra without line splitting with a minimum total measurement time of less than 5 min for a field of view of 24 cm and a nominal 1.5x1.5-cm2 in-plane resolution. Measurements were performed with 17 CS encoding steps in t1 (Deltat1=12.8 ms) and an average echo time of 151 ms, which was determined by simulating the CT-PRESS experiment for the spin systems of glutamate (Glu) and myo-inositol (mI). Signals from N-acetyl-aspartate, total creatine, choline-containing compounds (Cho), Glu, and mI were detected in a healthy volunteer with no or only minor baseline distortions within 14 min on a 3 T MR scanner. Copyright (c) 2006 Wiley-Liss, Inc.

  1. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S.; Harris, L. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The assembling of photomosaics from color prints of ERTS images has made possible the recognition and description of san patterns, and these are to be the basis of a worldwide classification of sand bodies. Progress has been as rapid as the acquisition of the bulk composite images will permit and for some areas the mosaics are now nearly complete. A second step, which consists of the accumulation and analysis of regional wind data, to be plotted as overlays for the dune patterns, is now underway and should soon give tangible results. Other aspects of the project include the gathering of ground truth in the form of air photographs, needed to interpret geomorphic forms and the sampling of sand deposits for analyzing the texture and composition of sand bodies. A start has been made on these studies in several selected areas.

  2. A gallery approach for off-angle iris recognition

    NASA Astrophysics Data System (ADS)

    Karakaya, Mahmut; Yoldash, Rashiduddin; Boehnen, Christopher

    2015-05-01

    It has been proven that hamming distance score between frontal and off-angle iris images of same eye differs in iris recognition system. The distinction of hamming distance score is caused by many factors such as image acquisition angle, occlusion, pupil dilation, and limbus effect. In this paper, we first study the effect of the angle variations between iris plane and the image acquisition systems. We present how hamming distance changes for different off-angle iris images even if they are coming from the same iris. We observe that increment in acquisition angle of compared iris images causes the increment in hamming distance. Second, we propose a new technique in off-angle iris recognition system that includes creating a gallery of different off-angle iris images (such as, 0, 10, 20, 30, 40, and 50 degrees) and comparing each probe image with these gallery images. We will show the accuracy of the gallery approach for off-angle iris recognition.

  3. Interventional C-arm tomosynthesis for vascular imaging: initial results

    NASA Astrophysics Data System (ADS)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, C; Beddar, S; Wen, Z

    Purpose: The purpose of this study is to develop a technique to obtain four-dimensional (4D) magnetic resonance (MR) images that are more representative of a patient’s typical breathing cycle by utilizing an extended acquisition time while minimizing the image artifacts. Methods: The 4D MR data were acquired with the balanced steady state free precession in two-dimensional sagittal plane of view. Each slice was acquired repeatedly for about 15 s, thereby obtaining multiple images at each of the 10 phases in the respiratory cycle. This improves the probability that at least one of the images were acquired at the desired phasemore » during a regular breathing cycle. To create optimal 4D MR images, an iterative approach was used to identify the set of images that yielded the highest slice-to-slice similarity. To assess the effectiveness of the approach, the data set was truncated into periods of 7 s (50 time points), 11 s (75 time points) and the full 15 s (100 time points). The 4D MR images were then sorted with data of the three different acquisition periods for comparison. Results: In general, the 4D MR images sorted using data from longer acquisition periods showed less mismatched artifacts. In addition, the normalized cross correlation (NCC) between slices of a 4D volume increases with increased acquisition period. The average NCC was 0.791 from the 7 s period, 0.794 from the 11 s period and 0.796 from the 15 s period. Conclusion: Our preliminary study showed that extending the acquisition time with the proposed sorting technique can improve image quality and reduce artifact presence in the 4D MR images. Data acquisition over two breathing cycles is a good trade-off between artifact reduction and scan time. This research was partially funded by the the Center for Radiation Oncology Research from UT MD Anderson Cancer Center.« less

  5. SU-E-J-237: Real-Time 3D Anatomy Estimation From Undersampled MR Acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzner, M; Lagendijk, J; Raaymakers, B

    Recent developments made MRI guided radiotherapy feasible. Performing simultaneous imaging during fractions can provide information about changing anatomy by means of deformable image registration for either immediate plan adaptations or accurate dose accumulation on the changing anatomy. In 3D MRI, however, acquisition time is considerable and scales with resolution. Furthermore, intra-scan motion degrades image quality.In this work, we investigate the sensitivity of registration quality on imageresolution: potentially, by employing spatial undersampling, the acquisition timeof MR images for the purpose of deformable image registration can be reducedsignificantly.On a volunteer, 3D-MR imaging data was sampled in a navigator-gated manner, acquiring one axialmore » volume (360×260×100mm{sup 3}) per 3s during exhale phase. A T1-weighted FFE sequence was used with an acquired voxel size of (2.5mm{sup 3}) for a duration of 17min. Deformation vector fields were evaluated for 100 imaging cycles with respect to the initial anatomy using deformable image registration based on optical flow. Subsequently, the imaging data was downsampled by a factor of 2, simulating a fourfold acquisition speed. Displacements of the downsampled volumes were then calculated by the same process.In kidneyliver boundaries and the region around stomach/duodenum, prominent organ drifts could be observed in both the original and the downsampled imaging data. An increasing displacement of approximately 2mm was observed for the kidney, while an area around the stomach showed sudden displacements of 4mm. Comparison of the motile points over time showed high reproducibility between the displacements of high-resolution and downsampled volumes: over a 17min acquisition, the componentwise RMS error was not more than 0.38mm.Based on the synthetic experiments, 3D nonrigid image registration shows little sensitivity to image resolution and the displacement information is preserved even when halving the resolution. This can be employed to greatly reduce image acquisition times for interventional applications in real-time. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less

  6. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    NASA Astrophysics Data System (ADS)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  7. Secure fingerprint identification based on structural and microangiographic optical coherence tomography.

    PubMed

    Liu, Xuan; Zaki, Farzana; Wang, Yahui; Huang, Qiongdan; Mei, Xin; Wang, Jiangjun

    2017-03-10

    Optical coherence tomography (OCT) allows noncontact acquisition of fingerprints and hence is a highly promising technology in the field of biometrics. OCT can be used to acquire both structural and microangiographic images of fingerprints. Microangiographic OCT derives its contrast from the blood flow in the vasculature of viable skin tissue, and microangiographic fingerprint imaging is inherently immune to fake fingerprint attack. Therefore, dual-modality (structural and microangiographic) OCT imaging of fingerprints will enable more secure acquisition of biometric data, which has not been investigated before. Our study on fingerprint identification based on structural and microangiographic OCT imaging is, we believe, highly innovative. In this study, we performed OCT imaging study for fingerprint acquisition, and demonstrated the capability of dual-modality OCT imaging for the identification of fake fingerprints.

  8. Demons versus Level-Set motion registration for coronary 18F-sodium fluoride PET.

    PubMed

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R; Fletcher, Alison; Motwani, Manish; Thomson, Louise E; Germano, Guido; Dey, Damini; Berman, Daniel S; Newby, David E; Slomka, Piotr J

    2016-02-27

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18 F-sodium fluoride ( 18 F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18 F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18 F-NaF PET. To this end, fifteen patients underwent 18 F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18 F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.

  9. Demons versus level-set motion registration for coronary 18F-sodium fluoride PET

    NASA Astrophysics Data System (ADS)

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.

    2016-03-01

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.

  10. Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase.

    PubMed

    Rodriguez-Luna, David; Dowlatshahi, Dar; Aviv, Richard I; Molina, Carlos A; Silva, Yolanda; Dzialowski, Imanuel; Lum, Cheemun; Czlonkowska, Anna; Boulanger, Jean-Martin; Kase, Carlos S; Gubitz, Gord; Bhatia, Rohit; Padma, Vasantha; Roy, Jayanta; Stewart, Teri; Huynh, Thien J; Hill, Michael D; Demchuk, Andrew M

    2014-03-01

    Variability in computed tomography angiography (CTA) acquisitions may be one explanation for the modest accuracy of the spot sign for predicting intracerebral hemorrhage expansion detected in the multicenter Predicting Hematoma Growth and Outcome in Intracerebral Hemorrhage Using Contrast Bolus CT (PREDICT) study. This study aimed to determine the frequency of the spot sign in intracerebral hemorrhage and its relationship with hematoma expansion depending on the phase of image acquisition. PREDICT study was a prospective observational cohort study of patients with intracerebral hemorrhage presenting within 6 hours from onset. A post hoc analysis of the Hounsfield units of an artery and venous structure were measured on CTA source images of the entire PREDICT cohort in a core laboratory. Each CTA study was classified into arterial or venous phase and into 1 of 5 specific image acquisition phases. Significant hematoma expansion and total hematoma enlargement were recorded at 24 hours. Overall (n=371), 77.9% of CTA were acquired in arterial phase. The spot sign, present in 29.9% of patients, was more frequently seen in venous phase as compared with arterial phase (39% versus 27.3%; P=0.041) and the later the phase of image acquisition (P=0.095). Significant hematoma expansion (P=0.253) and higher total hematoma enlargement (P=0.019) were observed more frequently among spot sign-positive patients with earlier phases of image acquisition. Later image acquisition of CTA improves the frequency of spot sign detection. However, spot signs identified in earlier phases may be associated with greater absolute enlargement. A multiphase CTA including arterial and venous acquisitions could be optimal in patients with intracerebral hemorrhage.

  11. Spatial arrangement of color filter array for multispectral image acquisition

    NASA Astrophysics Data System (ADS)

    Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat

    2011-03-01

    In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.

  12. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  13. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish

    PubMed Central

    Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  14. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter; Liney, Gary

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developedmore » for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through-plane direction and an increased blurring of capsule images, resulting in an apparent capsule volume increase by up to 170% in extreme axial FOV regions. Blurring increased with table speed and in the central regions of the phantom, geometric distortion was less for static table acquisitions compared to a table speed of 2 mm/s over the same volume. Overall, the best geometric accuracy was achieved with a table speed of 1.1 mm/s. Conclusions: The phantom designed enables full FOV imaging for distortion assessment for the purposes of RTP. MRI acquisition with a moving table extends the imaging volume in the z direction with reduced distortions which could be useful particularly if considering MR-only planning. If utilizing MR images to provide additional soft tissue information to the planning CT, standard acquisition sequences over a smaller volume would avoid introducing additional blurring or distortions from the through-plane table movement.« less

  15. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    PubMed

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  16. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  17. Patient-specific optimisation of administered activity and acquisition times for 18F-FDG PET imaging.

    PubMed

    Wickham, Fred; McMeekin, Helena; Burniston, Maria; McCool, Daniel; Pencharz, Deborah; Skillen, Annah; Wagner, Thomas

    2017-12-01

    The purpose of this study is to identify a method for optimising the administered activity and acquisition time for 18 F-FDG PET imaging, yielding images of consistent quality for patients with varying body sizes and compositions, while limiting radiation doses to patients and staff. Patients referred for FDG scans had bioimpedance measurements. They were injected with 3 MBq/kg of 18 F up to 370 MBq and scanned on a Siemens Biograph mCT at 3 or 4 min per bed position. Data were rebinned to simulate 2- and 1-min acquisitions. Subjective assessments of image quality made by an experienced physician were compared with objective measurements based on signal-to-noise ratio and noise equivalent counts (NEC). A target objective measure of image quality was identified. The activity and acquisition time required to achieve this were calculated for each subject. Multiple regression analysis was used to identify expressions for the activity and acquisition time required in terms of easily measurable patient characteristics. One hundred and eleven patients were recruited, and subjective and objective assessments of image quality were compared for 321 full and reduced time scans. NEC-per-metre was identified as the objective measure which best correlated with the subjective assessment (Spearman rank correlation coefficient 0.77) and the best discriminator for images with a subjective assessment of "definitely adequate" (area under the ROC curve 0.94). A target of 37 Mcount/m was identified. Expressions were identified in terms of patient sex, height and weight for the activity and acquisition time required to achieve this target. Including measurements of body composition in these expressions was not useful. Using these expressions would reduce the mean activity administered to this patient group by 66 MBq compared to the current protocol. Expressions have been identified for the activity and acquisition times required to achieve consistent image quality in FDG imaging with reduced patient and staff doses. These expressions might need to be adapted for other systems and reconstruction protocols.

  18. Composition of a dewarped and enhanced document image from two view images.

    PubMed

    Koo, Hyung Il; Kim, Jinho; Cho, Nam Ik

    2009-07-01

    In this paper, we propose an algorithm to compose a geometrically dewarped and visually enhanced image from two document images taken by a digital camera at different angles. Unlike the conventional works that require special equipment or assumptions on the contents of books or complicated image acquisition steps, we estimate the unfolded book or document surface from the corresponding points between two images. For this purpose, the surface and camera matrices are estimated using structure reconstruction, 3-D projection analysis, and random sample consensus-based curve fitting with the cylindrical surface model. Because we do not need any assumption on the contents of books, the proposed method can be applied not only to optical character recognition (OCR), but also to the high-quality digitization of pictures in documents. In addition to the dewarping for a structurally better image, image mosaic is also performed for further improving the visual quality. By finding better parts of images (with less out of focus blur and/or without specular reflections) from either of views, we compose a better image by stitching and blending them. These processes are formulated as energy minimization problems that can be solved using a graph cut method. Experiments on many kinds of book or document images show that the proposed algorithm robustly works and yields visually pleasing results. Also, the OCR rate of the resulting image is comparable to that of document images from a flatbed scanner.

  19. AFFINE-CORRECTED PARADISE: FREE-BREATHING PATIENT-ADAPTIVE CARDIAC MRI WITH SENSITIVITY ENCODING

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    We propose a real-time cardiac imaging method with parallel MRI that allows for free breathing during imaging and does not require cardiac or respiratory gating. The method is based on the recently proposed PARADISE (Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding) scheme. The new acquisition method adapts the PARADISE k-t space sampling pattern according to an affine model of the respiratory motion. The reconstruction scheme involves multi-channel time-sequential imaging with time-varying channels. All model parameters are adapted to the imaged patient as part of the experiment and drive both data acquisition and cine reconstruction. Simulated cardiac MRI experiments using the realistic NCAT phantom show high quality cine reconstructions and robustness to modeling inaccuracies. PMID:24390159

  20. D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-Based Server

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Poiesi, F.; Locher, A.; Tefera, Y. T.; Remondino, F.; Chippendale, P.; Van Gool, L.

    2017-11-01

    The paper presents a collaborative image-based 3D reconstruction pipeline to perform image acquisition with a smartphone and geometric 3D reconstruction on a server during concurrent or disjoint acquisition sessions. Images are selected from the video feed of the smartphone's camera based on their quality and novelty. The smartphone's app provides on-the-fly reconstruction feedback to users co-involved in the acquisitions. The server is composed of an incremental SfM algorithm that processes the received images by seamlessly merging them into a single sparse point cloud using bundle adjustment. Dense image matching algorithm can be lunched to derive denser point clouds. The reconstruction details, experiments and performance evaluation are presented and discussed.

  1. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  2. Bifocal liquid lens zoom objective for mobile phone applications

    NASA Astrophysics Data System (ADS)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.

    2007-02-01

    Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.

  3. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  4. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  5. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    PubMed Central

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  6. Developing capital investment guidelines for acquisitions.

    PubMed

    Bergman, J T; Gordon, D C

    1988-05-01

    Financial managers are now being asked to evaluate new investment opportunities, such as acquisitions. To do a thorough evaluation, however, it is important to have a plan of action to follow. Strategies such as establishing a framework for evaluating acquisitions based on strategic compatibility with the existing organization, establishing suitable risk-adjusted discount rates for assessing investments, and selecting the proper type of capital allocation method are all necessary steps to ensure a successful acquisition.

  7. Sagittal fresh blood imaging with interleaved acquisition of systolic and diastolic data for improved robustness to motion.

    PubMed

    Atanasova, Iliyana P; Kim, Daniel; Storey, Pippa; Rosenkrantz, Andrew B; Lim, Ruth P; Lee, Vivian S

    2013-02-01

    To improve robustness to patient motion of "fresh blood imaging" (FBI) for lower extremity noncontrast MR angiography. In FBI, two sets of three-dimensional fast spin echo images are acquired at different cardiac phases and subtracted to generate bright-blood angiograms. Routinely performed with a single coronal slab and sequential acquisition of systolic and diastolic data, FBI is prone to subtraction errors due to patient motion. In this preliminary feasibility study, FBI was implemented with two sagittal imaging slabs, and the systolic and diastolic acquisitions were interleaved to minimize sensitivity to motion. The proposed technique was evaluated in volunteers and patients. In 10 volunteers, imaged while performing controlled movements, interleaved FBI demonstrated better tolerance to subject motion than sequential FBI. In one patient with peripheral arterial disease, interleaved FBI offered better depiction of collateral flow by reducing sensitivity to inadvertent motion. FBI with interleaved acquisition of diastolic and systolic data in two sagittal imaging slabs offers improved tolerance to patient motion. Copyright © 2013 Wiley Periodicals, Inc.

  8. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Northern Illinois University

    2015-07-15

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less

  9. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  10. Single and double acquisition strategies for compensation of artifacts from eddy current and transient oscillation in balanced steady-state free precession.

    PubMed

    Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong

    2017-07-01

    To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Multi-stained whole slide image alignment in digital pathology

    NASA Astrophysics Data System (ADS)

    Déniz, Oscar; Toomey, David; Conway, Catherine; Bueno, Gloria

    2015-03-01

    In Digital Pathology, one of the most simple and yet most useful feature is the ability to view serial sections of tissue simultaneously on a computer monitor. This enables the pathologist to evaluate the histology and expression of multiple markers for a patient in a single review. However, the rate limiting step in this process is the time taken for the pathologist to open each individual image, align the sections within the viewer, with a maximum of four slides at a time, and then manually move around the section. In addition, due to tissue processing and pre-analytical steps, sections with different stains have non-linear variations between the two acquisitions, that is, they will stretch and change shape from section to section. To date, no solution has come close to a workable solution to automatically align the serial sections into one composite image. This research work address this problem to obtain an automated serial section alignment tool enabling the pathologists to simply scroll through the various sections in a single viewer. To this aim a multi-resolution intensity-based registration method using mutual information as a similarity metric, an optimizer based on an evolutionary process and a bilinear transformation has been used. To characterize the performance of the algorithm 40 cases x 5 different serial sections stained with hematoxiline-eosine (HE), estrogen receptor (ER), progesterone receptor (PR), Ki67 and human epidermal growth factor receptor 2 (Her2), have been considered. The qualitative results obtained are promising, with average computation time of 26.4s for up to 14660x5799 images running interpreted code.

  12. Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Efstathopoulos, E. P.; Kelekis, N. L.; Pantos, I.; Brountzos, E.; Argentos, S.; Grebáč, J.; Ziaka, D.; Katritsis, D. G.; Seimenis, I.

    2009-09-01

    Computed tomography (CT) coronary angiography has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but high radiation doses have been reported. Prospective ECG-gating using a 'step-and-shoot' axial scanning protocol has been shown to reduce radiation exposure effectively while maintaining diagnostic accuracy. 256-slice scanners with 80 mm detector coverage have been currently introduced into practice, but their impact on radiation exposure has not been adequately studied. The aim of this study was to assess radiation doses associated with CT coronary angiography using a 256-slice CT scanner. Radiation doses were estimated for 25 patients scanned with either prospective or retrospective ECG-gating. Image quality was assessed objectively in terms of mean CT attenuation at selected regions of interest on axial coronary images and subjectively by coronary segment quality scoring. It was found that radiation doses associated with prospective ECG-gating were significantly lower than retrospective ECG-gating (3.2 ± 0.6 mSv versus 13.4 ± 2.7 mSv). Consequently, the radiogenic fatal cancer risk for the patient is much lower with prospective gating (0.0176% versus 0.0737%). No statistically significant differences in image quality were observed between the two scanning protocols for both objective and subjective quality assessments. Therefore, prospective ECG-gating using a 'step-and-shoot' protocol that covers the cardiac anatomy in two axial acquisitions effectively reduces radiation doses in 256-slice CT coronary angiography without compromising image quality.

  13. Acquisition of shape information in working memory, as a function of viewing time and number of consecutive images: evidence for a succession of discrete storage classes.

    PubMed

    Ninio, J

    1998-07-01

    The capacity of visual working memory was investigated using abstract images that were slightly distorted NxN (with generally N=8) square lattices of black or white randomly selected elements. After viewing an image, or a sequence of images, the subjects viewed couples of images containing the test image and a distractor image derived from the first one by changing the black or white value of q randomly selected elements. The number q was adjusted in each experiment to the difficulty of the task and the abilities of the subject. The fraction of recognition errors, given q and N was used to evaluate the number M of bits memorized by the subject. For untrained subjects, this number M varied in a biphasic manner as a function of the time t of presentation of the test image: it was on average 13 bits for 1 s, 16 bits for 2 to 5 s, and 20 bits for 8 s. The slow pace of acquisition, from 1 to 8 s, seems due to encoding difficulties, and not to channel capacity limitations. Beyond 8 s, M(t), accurately determined for one subject, followed a square root law, in agreement with 19th century observations on the memorization of lists of digits. When two consecutive 8x8 images were viewed and tested in the same order, the number of memorized bits was downshifted by a nearly constant amount, independent of t, and equal on average to 6-7 bits. Across the subjects, the shift was independent of M. When two consecutive test images were related, the recognition errors decreased for both images, whether the testing was performed in the presentation or the reverse order. Studies involving three subjects, indicate that, when viewing m consecutive images, the average amount of information captured per image varies with m in a stepwise fashion. The first two step boundaries were around m=3 and m=9-12. The data are compatible with a model of organization of working memory in several successive layers containing increasing numbers of units, the more remote a unit, the lower the rate at which it may acquire encoded information. Copyright 1998 Elsevier Science B.V.

  14. AKAPS Act in a Two-Step Mechanism of Memory Acquisition

    PubMed Central

    Scheunemann, Lisa; Skroblin, Philipp; Hundsrucker, Christian; Klussmann, Enno; Efetova, Marina

    2013-01-01

    Defining the molecular and neuronal basis of associative memories is based upon behavioral preparations that yield high performance due to selection of salient stimuli, strong reinforcement, and repeated conditioning trials. One of those preparations is the Drosophila aversive olfactory conditioning procedure where animals initiate multiple memory components after experience of a single cycle training procedure. Here, we explored the analysis of acquisition dynamics as a means to define memory components and revealed strong correlations between particular chronologies of shock impact and number experienced during the associative training situation and subsequent performance of conditioned avoidance. Analyzing acquisition dynamics in Drosophila memory mutants revealed that rutabaga (rut)-dependent cAMP signals couple in a divergent fashion for support of different memory components. In case of anesthesia-sensitive memory (ASM) we identified a characteristic two-step mechanism that links rut-AC1 to A-kinase anchoring proteins (AKAP)-sequestered protein kinase A at the level of Kenyon cells, a recognized center of olfactory learning within the fly brain. We propose that integration of rut-derived cAMP signals at level of AKAPs might serve as counting register that accounts for the two-step mechanism of ASM acquisition. PMID:24174675

  15. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less

  16. Spectral CT data acquisition with Medipix3.1

    NASA Astrophysics Data System (ADS)

    Walsh, M. F.; Nik, S. J.; Procz, S.; Pichotka, M.; Bell, S. T.; Bateman, C. J.; Doesburg, R. M. N.; De Ruiter, N.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.

    2013-10-01

    This paper describes the acquisition of spectral CT images using the Medipix3.1 in spectroscopic mode, in which the chip combines 2 × 2 pixel clusters to increase the number of energy thresholds and counters from 2 to 8. During preliminary measurements, it was observed that the temperature, DAC and equalisation stability of the Medipix3.1 outperformed the Medipix3.0, while maintaining similar imaging quality. In this paper, the Medipix3.1 chips were assembled in a quad (2 × 2) layout, with the four ASICs bump-bonded to a silicon semiconductor doped as an np-junction diode. To demonstrate the biological imaging quality that is possible with the Medipix3.1, an image of a mouse injected with gold nano-particle contrast agent was obtained. CT acquisition in spectroscopic mode was enabled and examined by imaging a customised phantom containing multiple contrast agents and biological materials. These acquisitions showed a limitation of imaging performance depending on the counter used. Despite this, identification of multiple materials in the phantom was demonstrated using an in-house material decomposition algorithm. Furthermore, gold nano-particles were separated from biological tissues and bones within the mouse by means of image rendering.

  17. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    PubMed

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  18. Slant-hole collimator, dual mode sterotactic localization method

    DOEpatents

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  19. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    PubMed

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparative study of different approaches for multivariate image analysis in HPTLC fingerprinting of natural products such as plant resin.

    PubMed

    Ristivojević, Petar; Trifković, Jelena; Vovk, Irena; Milojković-Opsenica, Dušanka

    2017-01-01

    Considering the introduction of phytochemical fingerprint analysis, as a method of screening the complex natural products for the presence of most bioactive compounds, use of chemometric classification methods, application of powerful scanning and image capturing and processing devices and algorithms, advancement in development of novel stationary phases as well as various separation modalities, high-performance thin-layer chromatography (HPTLC) fingerprinting is becoming attractive and fruitful field of separation science. Multivariate image analysis is crucial in the light of proper data acquisition. In a current study, different image processing procedures were studied and compared in detail on the example of HPTLC chromatograms of plant resins. In that sense, obtained variables such as gray intensities of pixels along the solvent front, peak area and mean values of peak were used as input data and compared to obtained best classification models. Important steps in image analysis, baseline removal, denoising, target peak alignment and normalization were pointed out. Numerical data set based on mean value of selected bands and intensities of pixels along the solvent front proved to be the most convenient for planar-chromatographic profiling, although required at least the basic knowledge on image processing methodology, and could be proposed for further investigation in HPLTC fingerprinting. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  2. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  3. Possibility of Cloudless Optical Remote Sensing Images Acquisition Study by Using Meteorological Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Lei, B.; Hu, Y.; Liu, K.; Gan, Y.

    2018-04-01

    Optical remote sensing images have been widely used in feature interpretation and geo-information extraction. All the fundamental applications of optical remote sensing, are greatly influenced by cloud coverage. Generally, the availability of cloudless images depends on the meteorological conditions for a given area. In this study, the cloud total amount (CTA) products of the Fengyun (FY) satellite were introduced to explore the meteorological changes in a year over China. The cloud information of CTA products were tested by using ZY-3 satellite images firstly. CTA products from 2006 to 2017 were used to get relatively reliable results. The window period of cloudless images acquisition for different areas in China was then determined. This research provides a feasible way to get the cloudless images acquisition window by using meteorological observations.

  4. Development of image and information management system for Korean standard brain

    NASA Astrophysics Data System (ADS)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  5. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard.

    PubMed

    Rausch, Ivo; Cal-González, Jacobo; Dapra, David; Gallowitsch, Hans Jürgen; Lind, Peter; Beyer, Thomas; Minear, Gregory

    2015-12-01

    The purpose of the study is to evaluate the physical performance of a Biograph mCT Flow 64-4R PET/CT system (Siemens Healthcare, Germany) and to compare clinical image quality in step-and-shoot (SS) and continuous table motion (CTM) acquisitions. The spatial resolution, sensitivity, count rate curves, and Image Quality (IQ) parameters following the National Electrical Manufactures Association (NEMA) NU2-2012 standard were evaluated. For resolution measurements, an (18)F point source inside a glass capillary tube was used. Sensitivity measurements were based on a 70-cm-long polyethylene tube, filled with 4.5 MBq of FDG. Scatter fraction and count rates were measured using a 70-cm-long polyethylene cylinder with a diameter of 20 cm and a line source (1.04 GBq of FDG) inserted axially into the cylinder 4.5 cm off-centered. A NEMA IQ phantom containing six spheres (10- to 37-mm diameter) was used for the evaluation of the image quality. First, a single-bed scan was acquired (NEMA standard), followed by a two-bed scan (4 min each) of the IQ phantom with the image plane containing the spheres centered in the overlap region of the two bed positions. In addition, a scan of the same region in CTM mode was performed with a table speed of 0.6 mm/s. Furthermore, two patient scans were performed in CTM and SS mode. Image contrasts and patient images were compared between SS and CTM acquisitions. Full Width Half Maximum (FWHM) of the spatial resolution ranged from 4.3 to 7.8 mm (radial distance 1 to 20 cm). The measured sensitivity was 9.6 kcps/MBq, both at the center of the FOV and 10 cm off-center. The measured noise equivalent count rate (NECR) peak was 185 kcps at 29.0 kBq/ml. The scatter fraction was 33.5 %. Image contrast recovery values (sphere-to-background of 8:1) were between 42 % (10-mm sphere) to 79 % (37-mm sphere). The background variability was between 2.1 and 5.3 % (SS) and between 2.4 and 6.9 % (CTM). No significant difference in image quality was observed between SS and CTM mode. The spatial resolution, sensitivity, scatter fraction, and count rates were in concordance with the published values for the predecessor system, the Biograph mCT. Contrast recovery values as well as image quality obtained in SS and CTM acquisition modes were similar.

  6. Rapid brain MRI acquisition techniques at ultra-high fields

    PubMed Central

    Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.

    2017-01-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884

  7. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    PubMed Central

    Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015

  8. Cardiovascular magnetic resonance physics for clinicians: part II

    PubMed Central

    2012-01-01

    This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques which create images that represent the phase of the MR signal rather than the magnitude. It is shown how this principle can be used to generate velocity maps by designing gradient waveforms that give rise to a relative phase change that is proportional to velocity. Choice of velocity encoding range and key pitfalls in the use of this technique are discussed. PMID:22995744

  9. Towards the use of computationally inserted lesions for mammographic CAD assessment

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2018-03-01

    Computer-aided detection (CADe) devices used for breast cancer detection on mammograms are typically first developed and assessed for a specific "original" acquisition system, e.g., a specific image detector. When CADe developers are ready to apply their CADe device to a new mammographic acquisition system, they typically assess the CADe device with images acquired using the new system. Collecting large repositories of clinical images containing verified cancer locations and acquired by the new image acquisition system is costly and time consuming. Our goal is to develop a methodology to reduce the clinical data burden in the assessment of a CADe device for use with a different image acquisition system. We are developing an image blending technique that allows users to seamlessly insert lesions imaged using an original acquisition system into normal images or regions acquired with a new system. In this study, we investigated the insertion of microcalcification clusters imaged using an original acquisition system into normal images acquired with that same system utilizing our previously-developed image blending technique. We first performed a reader study to assess whether experienced observers could distinguish between computationally inserted and native clusters. For this purpose, we applied our insertion technique to clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM) and the Breast Cancer Digital Repository (BCDR). Regions of interest containing microcalcification clusters from one breast of a patient were inserted into the contralateral breast of the same patient. The reader study included 55 native clusters and their 55 inserted counterparts. Analysis of the reader ratings using receiver operating characteristic (ROC) methodology indicated that inserted clusters cannot be reliably distinguished from native clusters (area under the ROC curve, AUC=0.58±0.04). Furthermore, CADe sensitivity was evaluated on mammograms with native and inserted microcalcification clusters using a commercial CADe system. For this purpose, we used full field digital mammograms (FFDMs) from 68 clinical cases, acquired at the University of Michigan Health System. The average sensitivities for native and inserted clusters were equal, 85.3% (58/68). These results demonstrate the feasibility of using the inserted microcalcification clusters for assessing mammographic CAD devices.

  10. Combined Acquisition/Processing For Data Reduction

    NASA Astrophysics Data System (ADS)

    Kruger, Robert A.

    1982-01-01

    Digital image processing systems necessarily consist of three components: acquisition, storage/retrieval and processing. The acquisition component requires the greatest data handling rates. By coupling together the acquisition witn some online hardwired processing, data rates and capacities for short term storage can be reduced. Furthermore, long term storage requirements can be reduced further by appropriate processing and editing of image data contained in short term memory. The net result could be reduced performance requirements for mass storage, processing and communication systems. Reduced amounts of data also snouid speed later data analysis and diagnostic decision making.

  11. Adaptive hyperspectral imager: design, modeling, and control

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine

    2015-08-01

    An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration

  12. Fusion of multi-tracer PET images for dose painting.

    PubMed

    Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle

    2014-10-01

    PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  14. Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition Performance.

    DTIC Science & Technology

    1997-06-01

    AFRL-HE-WP-TR-1998-0012 UNITED STATES AIR FORCE RESEARCH LABORATORY EFFECTS OF SCENE MODULATION IMAGE BLUR AND NOISE UPON HUMAN TARGET...COVERED INTERIM (July 1996 - August 1996) TITLE AND SUBTITLE Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition...dilemma in image transmission and display is that we must compromise between die conflicting constraints of dynamic range and noise . Three target

  15. Investigation of Image Reconstruction Parameters of the Mediso nanoScan PC Small-Animal PET/CT Scanner for Two Different Positron Emitters Under NEMA NU 4-2008 Standards.

    PubMed

    Gaitanis, Anastasios; Kastis, George A; Vlastou, Elena; Bouziotis, Penelope; Verginis, Panayotis; Anagnostopoulos, Constantinos D

    2017-08-01

    The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and Ga-68, under the NEMA NU 4-2008 standards. Various image quality metrics were calculated for different realizations of [ 18 F]FDG and Ga-68 filled image quality (IQ) phantoms. [ 18 F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level. A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.

  16. Particle Shape Characterization of Lunar Regolith using Reflected Light Microscopy

    NASA Astrophysics Data System (ADS)

    McCarty, C. B.; Garcia, G. C.; Rickman, D.

    2014-12-01

    Automated identification of particles in lunar thin sections is necessary for practical measurement of particle shape, void characterization, and quantitative characterization of sediment fabric. This may be done using image analysis, but several aspects of the lunar regolith make such automations difficult. For example, many of the particles are shattered; others are aggregates of smaller particles. Sieve sizes of the particles span 5 orders of magnitude. The physical thickness of a thin section, at a nominal 30 microns, is large compared to the size of many of the particles. Image acquisition modes, such as SEM and reflected light, while superior to transmitted light, still have significant ambiguity as to the volume being sampled. It is also desirable to have a technique that is inexpensive, not resource intensive, and analytically robust. To this end, we have developed an image acquisition and processing protocol that identifies and delineates resolvable particles on the front surface of a lunar thin section using a petrographic microscope in reflected light. For a polished thin section, a grid is defined covering the entire thin section. The grid defines discrete images taken with 20% overlap, minimizing the number of particles that intersect image boundaries. In reflected light mode, two images are acquired at each grid location, with a closed aperture diaphragm. One image, A, is focused precisely on the front surface of the thin section. The second image, B, is made after the stage is brought toward the objective lens just slightly. A bright fringe line, analogous to a Becke line, appears inside all transparent particles at the front surface of the section in the second image. The added light in the bright line corresponds to a deficit around the particles. Particle identification is done using ImageJ and uses multiple steps. A hybrid 5x5 median filter is used to make images Af and Bf. This primarily removes very small particles just below the front surface of the section. Bf - (Bf/Af) is then computed. The division strongly enhances the fringe and the deficit, while minimizing the correlated information in A and B. The subtraction emphasizes the particle-epoxy boundaries. The resulting image is converted to binary, and then holes are filled. Cracks are removed using a median-based operator.

  17. ADAPTIVE REAL-TIME CARDIAC MRI USING PARADISE: VALIDATION BY THE PHYSIOLOGICALLY IMPROVED NCAT PHANTOM

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475

  18. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolbitsch, Christoph, E-mail: christoph.1.kolbitsch@kcl.ac.uk; Prieto, Claudia; Schaeffter, Tobias

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracermore » uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than 10% with the proposed motion compensation approach. Conclusions: A MR acquisition scheme which yields both high resolution 3D anatomical data and highly accurate nonrigid motion information without an increase in scan time is presented. The proposed method leads to a strong improvement in both MR and PET image quality and ensures an accurate assessment of tracer uptake.« less

  19. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing.

    PubMed

    Koprowski, Robert

    2014-07-04

    Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%. The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design.

  20. How to minimize perceptual error and maximize expertise in medical imaging

    NASA Astrophysics Data System (ADS)

    Kundel, Harold L.

    2007-03-01

    Visual perception is such an intimate part of human experience that we assume that it is entirely accurate. Yet, perception accounts for about half of the errors made by radiologists using adequate imaging technology. The true incidence of errors that directly affect patient well being is not known but it is probably at the lower end of the reported values of 3 to 25%. Errors in screening for lung and breast cancer are somewhat better characterized than errors in routine diagnosis. About 25% of cancers actually recorded on the images are missed and cancer is falsely reported in about 5% of normal people. Radiologists must strive to decrease error not only because of the potential impact on patient care but also because substantial variation among observers undermines confidence in the reliability of imaging diagnosis. Observer variation also has a major impact on technology evaluation because the variation between observers is frequently greater than the difference in the technologies being evaluated. This has become particularly important in the evaluation of computer aided diagnosis (CAD). Understanding the basic principles that govern the perception of medical images can provide a rational basis for making recommendations for minimizing perceptual error. It is convenient to organize thinking about perceptual error into five steps. 1) The initial acquisition of the image by the eye-brain (contrast and detail perception). 2) The organization of the retinal image into logical components to produce a literal perception (bottom-up, global, holistic). 3) Conversion of the literal perception into a preferred perception by resolving ambiguities in the literal perception (top-down, simulation, synthesis). 4) Selective visual scanning to acquire details that update the preferred perception. 5) Apply decision criteria to the preferred perception. The five steps are illustrated with examples from radiology with suggestions for minimizing error. The role of perceptual learning in the development of expertise is also considered.

  1. [Comparison of the image quality of conventional and digital radiography in lizards. Mammography technique versus digital detector system].

    PubMed

    Bochmann, Monika; Ludewig, E; Pees, M

    2011-01-01

    A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems in lizards.

  2. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.

    PubMed

    Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng

    2017-12-01

    To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Effect of respiratory and cardiac gating on the major diffusion-imaging metrics

    PubMed Central

    Hamaguchi, Hiroyuki; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki

    2016-01-01

    The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics—MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain—varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115

  4. Performance optimization of the Varian aS500 EPID system.

    PubMed

    Berger, Lucie; François, Pascal; Gaboriaud, Geneviève; Rosenwald, Jean-Claude

    2006-01-01

    Today, electronic portal imaging devices (EPIDs) are widely used as a replacement to portal films for patient position verification, but the image quality is not always optimal. The general aim of this study was to optimize the acquisition parameters of an amorphous silicon EPID commercially available for clinical use in radiation therapy with the view to avoid saturation of the system. Special attention was paid to selection of the parameter corresponding to the number of rows acquired between accelerator pulses (NRP) for various beam energies and dose rates. The image acquisition system (IAS2) has been studied, and portal image acquisition was found to be strongly dependent on the accelerator pulse frequency. This frequency is set for each "energy - dose rate" combination of the linear accelerator. For all combinations, the image acquisition parameters were systematically changed to determine their influence on the performances of the Varian aS500 EPID system. New parameters such as the maximum number of rows (MNR) and the number of pulses per frame (NPF) were introduced to explain portal image acquisition theory. Theoretical and experimental values of MNR and NPF were compared, and they were in good agreement. Other results showed that NRP had a major influence on detector saturation and dose per image. A rule of thumb was established to determine the optimum NRP value to be used. This practical application was illustrated by a clinical example in which the saturation of the aSi EPID was avoided by NRP optimization. Moreover, an additional study showed that image quality was relatively insensitive to this parameter.

  5. 48 CFR 3009.570-2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITION REGULATION (HSAR) ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational and Consultant... took appropriate steps to prevent any organizational conflict of interest in the selection process; or... process over which the entity exercised no control. (c) CONSTRUCTION—Nothing in this section 3009.570...

  6. Mergers and acquisitions: a most strategic decision.

    PubMed

    Laine, Mike; Tyler, David

    2007-11-01

    Five steps are basic to successfully concluding (or deciding not to conclude) a merger or acquisition: Identify targets. Begin with the end in mind. Choose a transaction team. Perform due diligence. Commit to the deal--or to no deal.

  7. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    NASA Astrophysics Data System (ADS)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  8. Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies.

    PubMed

    Knox, K; Kerber, Charles W; Singel, S A; Bailey, M J; Imbesi, S G

    2005-05-01

    Our goal was to develop and prove the accuracy of a system that would allow us to re-create live patient arterial pathology. Anatomically accurate replicas of blood vessels could allow physicians to teach and practice dangerous interventional techniques and might also be used to gather basic physiologic information. The preparation of replicas has, until now, depended on acquisition of fresh cadaver material. Using rapid prototyping, it should be able to replicate vascular pathology in a live patient. We obtained CT angiographic scan data from two patients with known arterial abnormalities. We took such data and, using proprietary software, created a 3D replica using a commercially available rapid prototyping machine. From the prototypes, using a lost wax technique, we created vessel replicas, placed those replicas in the CT scanner, then compared those images with the original scans. Comparison of the images made directly from the patient and from the replica showed that with each step, the relationships were maintained, remaining within 3% of the original, but some smoothing occurred in the final computer manipulation. From routinely obtainable CT angiographic data, it is possible to create accurate replicas of human vascular pathology with the aid of commercially available stereolithography equipment. Visual analysis of the images appeared to be as important as the measurements. With 64 and 128 slice detector scanners becoming available, acquisition times fall enough that we should be able to model rapidly moving structures such as the aortic root. (c) 2005 Wiley-Liss, Inc.

  9. An approach to defect inspection for packing presswork with virtual orientation points and threshold template image

    NASA Astrophysics Data System (ADS)

    Hao, Xiangyang; Liu, Songlin; Zhao, Fulai; Jiang, Lixing

    2015-05-01

    The packing presswork is an important factor of industrial product, especially for the luxury commodities such as cigarettes. In order to ensure the packing presswork to be qualified, the products should be inspected and unqualified one be picked out piece by piece with the vision-based inspection method, which has such advantages as no-touch inspection, high efficiency and automation. Vision-based inspection of packing presswork mainly consists of steps as image acquisition, image registration and defect inspection. The registration between inspected image and reference image is the foundation and premise of visual inspection. In order to realize rapid, reliable and accurate image registration, a registration method based on virtual orientation points is put forward. The precision of registration between inspected image and reference image can reach to sub pixels. Since defect is without fixed position, shape, size and color, three measures are taken to improve the inspection effect. Firstly, the concept of threshold template image is put forward to resolve the problem of variable threshold of intensity difference. Secondly, the color difference is calculated by comparing each pixel with the adjacent pixels of its correspondence on reference image to avoid false defect resulted from color registration error. Thirdly, the strategy of image pyramid is applied in the inspection algorithm to enhance the inspection efficiency. Experiments show that the related algorithm is effective to defect inspection and it takes 27.4 ms on average to inspect a piece of cigarette packing presswork.

  10. Validation of a digital mammographic unit model for an objective and highly automated clinical image quality assessment.

    PubMed

    Perez-Ponce, Hector; Daul, Christian; Wolf, Didier; Noel, Alain

    2013-08-01

    In mammography, image quality assessment has to be directly related to breast cancer indicator (e.g. microcalcifications) detectability. Recently, we proposed an X-ray source/digital detector (XRS/DD) model leading to such an assessment. This model simulates very realistic contrast-detail phantom (CDMAM) images leading to gold disc (representing microcalcifications) detectability thresholds that are very close to those of real images taken under the simulated acquisition conditions. The detection step was performed with a mathematical observer. The aim of this contribution is to include human observers into the disc detection process in real and virtual images to validate the simulation framework based on the XRS/DD model. Mathematical criteria (contrast-detail curves, image quality factor, etc.) are used to assess and to compare, from the statistical point of view, the cancer indicator detectability in real and virtual images. The quantitative results given in this paper show that the images simulated by the XRS/DD model are useful for image quality assessment in the case of all studied exposure conditions using either human or automated scoring. Also, this paper confirms that with the XRS/DD model the image quality assessment can be automated and the whole time of the procedure can be drastically reduced. Compared to standard quality assessment methods, the number of images to be acquired is divided by a factor of eight. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  12. A Novel Computer-Assisted Approach to evaluate Multicellular Tumor Spheroid Invasion Assay

    PubMed Central

    Cisneros Castillo, Liliana R.; Oancea, Andrei-Dumitru; Stüllein, Christian; Régnier-Vigouroux, Anne

    2016-01-01

    Multicellular tumor spheroids (MCTSs) embedded in a matrix are re-emerging as a powerful alternative to monolayer-based cultures. The primary information gained from a three-dimensional model is the invasiveness of treatment-exposed MCTSs through the acquisition of light microscopy images. The amount and complexity of the acquired data and the bias arisen by their manual analysis are disadvantages calling for an automated, high-throughput analysis. We present a universal algorithm we developed with the scope of being robust enough to handle images of various qualities and various invasion profiles. The novelty and strength of our algorithm lie in: the introduction of a multi-step segmentation flow, where each step is optimized for each specific MCTS area (core, halo, and periphery); the quantification through the density of the two-dimensional representation of a three-dimensional object. This latter offers a fine-granular differentiation of invasive profiles, facilitating a quantification independent of cell lines and experimental setups. Progression of density from the core towards the edges influences the resulting density map thus providing a measure no longer dependent on the sole area size of MCTS, but also on its invasiveness. In sum, we propose a new method in which the concept of quantification of MCTS invasion is completely re-thought. PMID:27731418

  13. Walkaway-VSP survey using distributed optical fiber in China oilfield

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Yu, Gang; Zhang, Qinghong; Li, Yanpeng; Cai, Zhidong; Chen, Yuanzhong; Liu, Congwei; Zhao, Haiying; Li, Fei

    2017-10-01

    Distributed acoustic sensing (DAS) is a new type of replacement technology for geophysical geophone. DAS system is similar to high-density surface seismic geophone array. In the stage of acquisition, DAS can obtain the full well data with one shot. And it can provide enhanced vertical seismic profile (VSP) imaging and monitor fluids and pressures changes in the hydrocarbon production reservoir. Walkaway VSP data acquired over a former producing well in north eastern China provided a rich set of very high quality data. A standard VSP data pre-processing workflow was applied, followed by pre-stack Kirchhoff time migration. In the DAS pre-processing step we were faced with additional and special challenges: strong coherent noise due to cable slapping and ringing along the borehole casing. The single well DAS Walkaway VSP images provide a good result with higher vertical and lateral resolution than the surface seismic in the objective area. This paper reports on lessons learned in the handling of the wireline cable and subsequent special DAS data processing steps developed to remediate some of the practical wireline deployment issues. Optical wireline cable as a conveyance of fiber optic cables for VSP in vertical wells will open the use of the DAS system to much wider applications.

  14. The influence of respiratory motion on CT image volume definition.

    PubMed

    Rodríguez-Romero, Ruth; Castro-Tejero, Pablo

    2014-04-01

    Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. 4DCT acquisitions provided volume and position accuracies within ± 3% and ± 2 mm for structure dimensions >2 cm, breath amplitude ≤ 15 mm, and breath period ≥ 3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known. © 2014 American Association of Physicists in Medicine.

  15. The influence of respiratory motion on CT image volume definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move knownmore » geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Conclusions: Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known.« less

  16. A 32-Channel Phased-Array Receive with Asymmetric Birdcage Transmit RF Coil for Hyperpolarized Xenon-129 Lung Imaging

    PubMed Central

    Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William

    2012-01-01

    Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336

  17. Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard

    NASA Astrophysics Data System (ADS)

    Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.

    2016-02-01

    Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.

  18. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.

    PubMed

    Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian

    2009-09-01

    Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field strengths. At 1.5 T the peak signal-to-noise ratio of the ERS was significantly lower in comparison to the IRS and the VS technique (14.6 vs. 26.7 and 39.6 respectively, P < 0.004). Using the IRS sampling algorithm comparable image quality and SNR can be achieved at 1.5 and 3 T. At 1.5 T VS offers the best possible solution for the conflicting requirements between a further increased temporal resolution and image quality. In consequence the gain of increased scanning efficiency from advanced k[r]-space sampling acquisition techniques can be exploited for a further improvement of image quality of pulmonary perfusion MRI.

  19. Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step.

    PubMed

    Cengiz, Ibrahim Fatih; Oliveira, Joaquim Miguel; Reis, Rui L

    2017-08-01

    Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.

  20. Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging.

    PubMed

    Fuchs, Katharina; Hezel, Fabian; Klix, Sabrina; Mekle, Ralf; Wuerfel, Jens; Niendorf, Thoralf

    2014-12-01

    This work proposes a dual contrast rapid acquisition with relaxation enhancement (RARE) variant (2in1-RARE), which provides simultaneous proton density (PD) and T2 * contrast in a single acquisition. The underlying concept of 2in1-RARE is the strict separation of spin echoes and stimulated echoes. This approach offers independent weighting of spin echoes and stimulated echoes. 2in1-RARE was evaluated in phantoms including signal-to-noise ratio (SNR) and point spread function assessment. 2in1-RARE was benchmarked versus coherent RARE and a split-echo RARE variant. The applicability of 2in1-RARE for brain imaging was demonstrated in a small cohort of healthy subjects (n = 10) and, exemplary, a multiple sclerosis patient at 3 Tesla as a precursor to a broader clinical study. 2in1-RARE enables the simultaneous acquisition of dual contrast weighted images without any significant image degradation and without sacrificing SNR versus split-echo RARE. This translates into a factor of two speed gain over multi-contrast, sequential split-echo RARE. A 15% broadening of the point spread function was observed in 2in1-RARE. T1 relaxation effects during the mixing time can be neglected for brain tissue. 2in1-RARE offers simultaneous acquisition of images of anatomical (PD) and functional (T2 *) contrast. It presents an alternative to address scan time constraints frequently encountered during sequential acquisition of T2 * or PD-weighted RARE. © 2013 Wiley Periodicals, Inc.

  1. Are United States Medical Licensing Exam Step 1 and 2 scores valid measures for postgraduate medical residency selection decisions?

    PubMed

    McGaghie, William C; Cohen, Elaine R; Wayne, Diane B

    2011-01-01

    United States Medical Licensing Examination (USMLE) scores are frequently used by residency program directors when evaluating applicants. The objectives of this report are to study the chain of reasoning and evidence that underlies the use of USMLE Step 1 and 2 scores for postgraduate medical resident selection decisions and to evaluate the validity argument about the utility of USMLE scores for this purpose. This is a research synthesis using the critical review approach. The study first describes the chain of reasoning that underlies a validity argument about using test scores for a specific purpose. It continues by summarizing correlations of USMLE Step 1 and 2 scores and reliable measures of clinical skill acquisition drawn from nine studies involving 393 medical learners from 2005 to 2010. The integrity of the validity argument about using USMLE Step 1 and 2 scores for postgraduate residency selection decisions is tested. The research synthesis shows that USMLE Step 1 and 2 scores are not correlated with reliable measures of medical students', residents', and fellows' clinical skill acquisition. The validity argument about using USMLE Step 1 and 2 scores for postgraduate residency selection decisions is neither structured, coherent, nor evidence based. The USMLE score validity argument breaks down on grounds of extrapolation and decision/interpretation because the scores are not associated with measures of clinical skill acquisition among advanced medical students, residents, and subspecialty fellows. Continued use of USMLE Step 1 and 2 scores for postgraduate medical residency selection decisions is discouraged.

  2. Evidence-based dentistry skill acquisition by second-year dental students.

    PubMed

    Marshall, T A; McKernan, S C; Straub-Morarend, C L; Guzman-Armstrong, S; Marchini, L; Handoo, N Q; Cunningham, M A

    2018-05-22

    Identification and assessment of Evidence-based dentistry (EBD) outcomes have been elusive. Our objective was to describe EBD skill acquisition during the second (D2) year of pre-doctoral dental education and student competency at the end of the year. The first and fourth (final) curricular-required EBD Exercises (ie, application of the first 4 steps of the 5-Step evidence-based practice process applied to a real or hypothetical situation) completed by D2 students (n = 151) during 2014-2015 and 2015-2016 were evaluated to measure skill acquisition through use of a novel rubric with measures of performance from novice to expert. Exercises were evaluated on the performance for each step, identification of manuscript details and reflective commentary on manuscript components. Changes in performance were evaluated using the chi-square test for trend and the Wilcoxon signed-rank test. Seventy-eight per cent of students scored competent or higher on the Ask step at the beginning of the D2 year; scores improved with 58% scoring proficient or expert on the fourth Exercise (P < .001). Most students were advanced beginners or higher in the Acquire, Appraise and Apply steps at the beginning of the D2 year, with minimal growth observed during the year. Identification of manuscript details improved between the first and fourth Exercises (P = .015); however, depth of commentary skills did not change. Unlike previous investigations evaluating EBD knowledge or behaviour in a testing situation, we evaluated skill acquisition using applied Exercises. Consistent with their clinical and scientific maturity, D2 students minimally performed as advanced beginners at the end of their D2 year. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).

    PubMed

    McGarry, C K; Grattan, M W D; Cosgrove, V P

    2007-12-07

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.

  4. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  5. INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Larkman, David J.; Nunes, Rita G.

    2007-04-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.

  6. 40 CFR 93.104 - Frequency of conformity determinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the project's design concept and scope; three years elapse since the most recent major step to.... Major steps include NEPA process completion; start of final design; acquisition of a significant portion...

  7. Recent advances in quantitative analysis of fluid interfaces in multiphase fluid flow measured by synchrotron-based x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Schlueter, S.; Sheppard, A.; Wildenschild, D.

    2013-12-01

    Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods like Bayesian Markov random field, converging active contours and watershed segmentation reduced the error in Anw associated with apparent water films from 21% to 6-11%. (iii) The generation of isosurfaces from the segmented data usually requires a lot of postprocessing in order to smooth the surface and check for consistency errors. This can be avoided by calculating specific interfacial areas directly on the segmented voxel image by means of Minkowski functionals which is highly efficient and less error prone.

  8. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  9. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  10. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  11. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  12. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  13. 48 CFR 237.172 - Service Contracts Surveillance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Surveillance. 237.172 Section 237.172 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS...-General 237.172 Service Contracts Surveillance. Ensure that quality assurance surveillance plans are....) Retain quality assurance surveillance plans in the official contract file. See https://sam.dau.mil, Step...

  14. 48 CFR 237.172 - Service Contracts Surveillance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Surveillance. 237.172 Section 237.172 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS...-General 237.172 Service Contracts Surveillance. Ensure that quality assurance surveillance plans are....) Retain quality assurance surveillance plans in the official contract file. See https://sam.dau.mil, Step...

  15. 48 CFR 237.172 - Service Contracts Surveillance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Surveillance. 237.172 Section 237.172 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS...-General 237.172 Service Contracts Surveillance. Ensure that quality assurance surveillance plans are....) Retain quality assurance surveillance plans in the official contract file. See https://sam.dau.mil, Step...

  16. 48 CFR 237.172 - Service Contracts Surveillance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Surveillance. 237.172 Section 237.172 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS...-General 237.172 Service Contracts Surveillance. Ensure that quality assurance surveillance plans are....) Retain quality assurance surveillance plans in the official contract file. See https://sam.dau.mil, Step...

  17. 48 CFR 237.172 - Service Contracts Surveillance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Surveillance. 237.172 Section 237.172 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS...-General 237.172 Service Contracts Surveillance. Ensure that quality assurance surveillance plans are....) Retain quality assurance surveillance plans in the official contract file. See https://sam.dau.mil, Step...

  18. Comparison of diffusion-weighted MRI acquisition techniques for normal pancreas at 3.0 Tesla.

    PubMed

    Yao, Xiu-Zhong; Kuang, Tiantao; Wu, Li; Feng, Hao; Liu, Hao; Cheng, Wei-Zhong; Rao, Sheng-Xiang; Wang, He; Zeng, Meng-Su

    2014-01-01

    We aimed to optimize diffusion-weighted imaging (DWI) acquisitions for normal pancreas at 3.0 Tesla. Thirty healthy volunteers were examined using four DWI acquisition techniques with b values of 0 and 600 s/mm2 at 3.0 Tesla, including breath-hold DWI, respiratory-triggered DWI, respiratory-triggered DWI with inversion recovery (IR), and free-breathing DWI with IR. Artifacts, signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) of normal pancreas were statistically evaluated among different DWI acquisitions. Statistical differences were noticed in artifacts, SNR, and ADC values of normal pancreas among different DWI acquisitions by ANOVA (P <0.001). Normal pancreas imaging had the lowest artifact in respiratory-triggered DWI with IR, the highest SNR in respiratory-triggered DWI, and the highest ADC value in free-breathing DWI with IR. The head, body, and tail of normal pancreas had statistically different ADC values on each DWI acquisition by ANOVA (P < 0.05). The highest image quality for normal pancreas was obtained using respiratory-triggered DWI with IR. Normal pancreas displayed inhomogeneous ADC values along the head, body, and tail structures.

  19. Coil Compression for Accelerated Imaging with Cartesian Sampling

    PubMed Central

    Zhang, Tao; Pauly, John M.; Vasanawala, Shreyas S.; Lustig, Michael

    2012-01-01

    MRI using receiver arrays with many coil elements can provide high signal-to-noise ratio and increase parallel imaging acceleration. At the same time, the growing number of elements results in larger datasets and more computation in the reconstruction. This is of particular concern in 3D acquisitions and in iterative reconstructions. Coil compression algorithms are effective in mitigating this problem by compressing data from many channels into fewer virtual coils. In Cartesian sampling there often are fully sampled k-space dimensions. In this work, a new coil compression technique for Cartesian sampling is presented that exploits the spatially varying coil sensitivities in these non-subsampled dimensions for better compression and computation reduction. Instead of directly compressing in k-space, coil compression is performed separately for each spatial location along the fully-sampled directions, followed by an additional alignment process that guarantees the smoothness of the virtual coil sensitivities. This important step provides compatibility with autocalibrating parallel imaging techniques. Its performance is not susceptible to artifacts caused by a tight imaging fieldof-view. High quality compression of in-vivo 3D data from a 32 channel pediatric coil into 6 virtual coils is demonstrated. PMID:22488589

  20. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundantmore » images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study to investigate the feasibility of this technique. Results: 4D data acquisition completeness (C{sub p}) increases as NR increases in an inverse-exponential fashion (C{sub p} = 100 − 99 × exp(−0.18 × N{sub R}), when N{sub B} = 6, fitted using 29 patients’ data). The N{sub R} required for 4D-MRI reconstruction (defined as achieving 95% completeness, C{sub p} = 95%, N{sub R} = N{sub R,95}) is proportional to N{sub B} (N{sub R,95} ∼ 2.86 × N{sub B}, r = 1.0), but independent of N{sub S} and P{sub 0}. Simulated XCAT 4D-MRI showed a clear pattern of respiratory motion. Tumor motion trajectories measured on 4D-MRI were comparable to the average input signal, with a mean relative amplitude error of 2.7% ± 2.9%. Reconstructed 4D-MRI for healthy volunteers illustrated clear respiratory motion on three orthogonal planes, with minimal image artifacts. The artifacts were presumably caused by breathing irregularity and incompleteness of data acquisition (95% acquired only). The mean relative amplitude error between critical structure trajectory and average breathing curve for 12 healthy volunteers is 2.5 ± 0.3 mm in superior–inferior direction. Conclusions: A novel T2-weighted retrospective phase sorting 4D-MRI technique has been developed and successfully applied on digital phantom and healthy volunteers.« less

  1. Anatomic modeling using 3D printing: quality assurance and optimization.

    PubMed

    Leng, Shuai; McGee, Kiaran; Morris, Jonathan; Alexander, Amy; Kuhlmann, Joel; Vrieze, Thomas; McCollough, Cynthia H; Matsumoto, Jane

    2017-01-01

    The purpose of this study is to provide a framework for the development of a quality assurance (QA) program for use in medical 3D printing applications. An interdisciplinary QA team was built with expertise from all aspects of 3D printing. A systematic QA approach was established to assess the accuracy and precision of each step during the 3D printing process, including: image data acquisition, segmentation and processing, and 3D printing and cleaning. Validation of printed models was performed by qualitative inspection and quantitative measurement. The latter was achieved by scanning the printed model with a high resolution CT scanner to obtain images of the printed model, which were registered to the original patient images and the distance between them was calculated on a point-by-point basis. A phantom-based QA process, with two QA phantoms, was also developed. The phantoms went through the same 3D printing process as that of the patient models to generate printed QA models. Physical measurement, fit tests, and image based measurements were performed to compare the printed 3D model to the original QA phantom, with its known size and shape, providing an end-to-end assessment of errors involved in the complete 3D printing process. Measured differences between the printed model and the original QA phantom ranged from -0.32 mm to 0.13 mm for the line pair pattern. For a radial-ulna patient model, the mean distance between the original data set and the scanned printed model was -0.12 mm (ranging from -0.57 to 0.34 mm), with a standard deviation of 0.17 mm. A comprehensive QA process from image acquisition to completed model has been developed. Such a program is essential to ensure the required accuracy of 3D printed models for medical applications.

  2. Steps in the open space planning process

    Treesearch

    Stephanie B. Kelly; Melissa M. Ryan

    1995-01-01

    This paper presents the steps involved in developing an open space plan. The steps are generic in that the methods may be applied various size communities. The intent is to provide a framework to develop an open space plan that meets Massachusetts requirements for funding of open space acquisition.

  3. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  4. Physically motivated global alignment method for electron tomography

    DOE PAGES

    Sanders, Toby; Prange, Micah; Akatay, Cem; ...

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less

  5. Imaging malaria sporozoites in the dermis of the mammalian host.

    PubMed

    Amino, Rogerio; Thiberge, Sabine; Blazquez, Samantha; Baldacci, Patricia; Renaud, Olivier; Shorte, Spencer; Ménard, Robert

    2007-01-01

    The initial phase of malaria infection is the pre-erythrocytic phase, which begins when parasites are injected by the mosquito into the dermis and ends when parasites are released from hepatocytes into the blood. We present here a protocol for the in vivo imaging of GFP-expressing sporozoites in the dermis of rodents, using the combination of a high-speed spinning-disk confocal microscope and a high-speed charge-coupled device (CCD) camera permitting rapid in vivo acquisitions. The steps of this protocol indicate how to infect mice through the bite of infected Anopheles stephensi mosquitoes, record the sporozoites' fate in the mouse ear and to present the data as maximum-fluorescence-intensity projections, time-lapse representations and movie clips. This protocol permits investigating the various aspects of sporozoite behavior in a quantitative manner, such as motility in the matrix, cell traversal, crossing the endothelial barrier of both blood and lymphatic vessels and intravascular gliding. Applied to genetically modified parasites and/or mice, these imaging techniques should be useful for studying the cellular and molecular bases of Plasmodium sporozoite infection in vivo.

  6. Sagittal Fresh Blood Imaging with Interleaved Acquisition of Systolic and Diastolic Data for Improved Robustness to Motion

    PubMed Central

    Atanasova, Iliyana P.; Kim, Daniel; Storey, Pippa; Rosenkrantz, Andrew B; Lim, Ruth P.; Lee, Vivian S.

    2012-01-01

    Purpose To improve robustness to patient motion of ‘fresh blood imaging’ (FBI) for lower extremity non-contrast MRA. Methods In FBI, two sets of 3D fast spin echo images are acquired at different cardiac phases and subtracted to generate bright-blood angiograms. Routinely performed with a single coronal slab and sequential acquisition of systolic and diastolic data, FBI is prone to subtraction errors due to patient motion. In this preliminary feasibility study, FBI was implemented with two sagittal imaging slabs, and the systolic and diastolic acquisitions were interleaved to minimize sensitivity to motion. The proposed technique was evaluated in volunteers and patients. Results In ten volunteers, imaged while performing controlled movements, interleaved FBI demonstrated better tolerance to subject motion than sequential FBI. In one patient with peripheral arterial disease, interleaved FBI offered better depiction of collateral flow by reducing sensitivity to inadvertent motion. Conclusions FBI with interleaved acquisition of diastolic and systolic data in two sagittal imaging slabs offers improved tolerance to patient motion. PMID:23300129

  7. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.

    PubMed

    2015-04-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.

  8. Investigation of sagittal image acquisition for 4D-MRI with body area as respiratory surrogate.

    PubMed

    Liu, Yilin; Yin, Fang-Fang; Chang, Zheng; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Qin, Yujiao; Cai, Jing

    2014-10-01

    The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface motion measurement from axial and sagittal MR cines also showed δSPS (SI) was significantly greater than δSPS (LAT). The median δSPS (SI) and δSPS (LAT) was 11.0% and 9.2% (p-value = 0.008), respectively. Tumor motion trajectories from 4D-MRI matched with those from single-slice cine MRI: the mean (±SD) absolute differences in tumor motion amplitude between the two were 1.5 ± 1.6 mm, 2.1 ± 1.9 mm, and 1.1 ± 1.0 mm in the SI, ML, and AP directions from this patient study. Space-dependent phase shift is less problematic for sagittal acquisition than for axial acquisition. 4D-MRI using sagittal acquisition was successfully carried out in patients with hepatic tumors.

  9. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain.

    PubMed

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-04-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes.

  10. Hospital acquisition or management contract: a theory of strategic choice.

    PubMed

    Morrisey, M A; Alexander, J A

    1987-01-01

    Differences in the mission of the hospital and the multihospital system are key elements underlying the development of a management contract. Preliminary analysis suggests that the number of potential new acquisitions is severely limited, that contract management is not a stepping stone to acquisition, and that many recent management contracts appear to be attempts to overcome problems beyond the hospital's and the contractor's direct control.

  11. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.

    PubMed

    Chawla, Amarpreet S; Lo, Joseph Y; Baker, Jay A; Samei, Ehsan

    2009-11-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular are of approximately 45 degrees--the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.

  12. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT.

    PubMed

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-07-07

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose.

  13. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  14. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  15. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  16. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, K; Rice University, Houston, TX; Sun, X

    Purpose: To study the feasibility of clinical on-line proton beam range verification with PET imaging Methods: We simulated a 179.2-MeV proton beam with 5-mm diameter irradiating a PMMA phantom of human brain size, which was then imaged by a brain PET with 300*300*100-mm{sup 3} FOV and different system sensitivities and spatial resolutions. We calculated the mean and standard deviation of positron activity range (AR) from reconstructed PET images, with respect to different data acquisition times (from 5 sec to 300 sec with 5-sec step). We also developed a technique, “Smoothed Maximum Value (SMV)”, to improve AR measurement under a givenmore » dose. Furthermore, we simulated a human brain irradiated by a 110-MeV proton beam of 50-mm diameter with 0.3-Gy dose at Bragg peak and imaged by the above PET system with 40% system sensitivity at the center of FOV and 1.7-mm spatial resolution. Results: MC Simulations on the PMMA phantom showed that, regardless of PET system sensitivities and spatial resolutions, the accuracy and precision of AR were proportional to the reciprocal of the square root of image count if image smoothing was not applied. With image smoothing or SMV method, the accuracy and precision could be substantially improved. For a cylindrical PMMA phantom (200 mm diameter and 290 mm long), the accuracy and precision of AR measurement could reach 1.0 and 1.7 mm, with 100-sec data acquired by the brain PET. The study with a human brain showed it was feasible to achieve sub-millimeter accuracy and precision of AR measurement with acquisition time within 60 sec. Conclusion: This study established the relationship between count statistics and the accuracy and precision of activity-range verification. It showed the feasibility of clinical on-line BR verification with high-performance PET systems and improved AR measurement techniques. Cancer Prevention and Research Institute of Texas grant RP120326, NIH grant R21CA187717, The Cancer Center Support (Core) Grant CA016672 to MD Anderson Cancer Center.« less

  18. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less

  19. Parallel MR imaging: a user's guide.

    PubMed

    Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin

    2005-01-01

    Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.

  20. 24 CFR 582.335 - Displacement, relocation, and real property acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Displacement, relocation, and real....335 Displacement, relocation, and real property acquisition. (a) Minimizing displacement. Consistent... reasonable steps to minimize the displacement of persons (families, individuals, businesses, nonprofit...

Top