Sample records for stereo image processing

  1. Constraint-based stereo matching

    NASA Technical Reports Server (NTRS)

    Kuan, D. T.

    1987-01-01

    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.

  2. Epipolar Rectification for CARTOSAT-1 Stereo Images Using SIFT and RANSAC

    NASA Astrophysics Data System (ADS)

    Akilan, A.; Sudheer Reddy, D.; Nagasubramanian, V.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Cartosat-1 provides stereo images of spatial resolution 2.5 m with high fidelity of geometry. Stereo camera on the spacecraft has look angles of +26 degree and -5 degree respectively that yields effective along track stereo. Any DSM generation algorithm can use the stereo images for accurate 3D reconstruction and measurement of ground. Dense match points and pixel-wise matching are prerequisite in DSM generation to capture discontinuities and occlusions for accurate 3D modelling application. Epipolar image matching reduces the computational effort from two dimensional area searches to one dimensional. Thus, epipolar rectification is preferred as a pre-processing step for accurate DSM generation. In this paper we explore a method based on SIFT and RANSAC for epipolar rectification of cartosat-1 stereo images.

  3. Stereo-Video Data Reduction of Wake Vortices and Trailing Aircrafts

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel

    1998-01-01

    This report presents stereo image theory and the corresponding image processing software developed to analyze stereo imaging data acquired for the wake-vortex hazard flight experiment conducted at NASA Langley Research Center. In this experiment, a leading Lockheed C-130 was equipped with wing-tip smokers to visualize its wing vortices, while a trailing Boeing 737 flew into the wake vortices of the leading airplane. A Rockwell OV-10A airplane, fitted with video cameras under its wings, flew at 400 to 1000 feet above and parallel to the wakes, and photographed the wake interception process for the purpose of determining the three-dimensional location of the trailing aircraft relative to the wake. The report establishes the image-processing tools developed to analyze the video flight-test data, identifies sources of potential inaccuracies, and assesses the quality of the resultant set of stereo data reduction.

  4. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  5. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  6. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  7. Research of flaw image collecting and processing technology based on multi-baseline stereo imaging

    NASA Astrophysics Data System (ADS)

    Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan

    2008-03-01

    Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.

  8. Parametric dense stereovision implementation on a system-on chip (SoC).

    PubMed

    Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L

    2012-01-01

    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  9. An embedded multi-core parallel model for real-time stereo imaging

    NASA Astrophysics Data System (ADS)

    He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu

    2018-04-01

    The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.

  10. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  11. Stereo matching image processing by synthesized color and the characteristic area by the synthesized color

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Mutoh, Eiichiro; Kumagai, Hideo

    2014-09-01

    We have developed the stereo matching image processing by synthesized color and the corresponding area by the synthesized color for ranging the object and image recognition. The typical images from a pair of the stereo imagers may have some image disagreement each other due to the size change, missed place, appearance change and deformation of characteristic area. We constructed the synthesized color and corresponding color area with the same synthesized color to make the distinct stereo matching. We constructed the synthesized color and corresponding color area with the same synthesized color by the 3 steps. The first step is making binary edge image by differentiating the focused image from each imager and verifying that differentiated image has normal density of frequency distribution to find the threshold level of binary procedure. We used Daubechies wavelet transformation for the procedures of differentiating in this study. The second step is deriving the synthesized color by averaging color brightness between binary edge points with respect to horizontal direction and vertical direction alternatively. The averaging color procedure was done many times until the fluctuation of averaged color become negligible with respect to 256 levels in brightness. The third step is extracting area with same synthesized color by collecting the pixel of same synthesized color and grouping these pixel points by 4 directional connectivity relations. The matching areas for the stereo matching are determined by using synthesized color areas. The matching point is the center of gravity of each synthesized color area. The parallax between a pair of images is derived by the center of gravity of synthesized color area easily. The experiment of this stereo matching was done for the object of the soccer ball toy. From this experiment we showed that stereo matching by the synthesized color technique are simple and effective.

  12. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  13. New Topographic Maps of Io Using Voyager and Galileo Stereo Imaging and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P. M.; Hoogenboom, T.

    2012-03-01

    Stereo and photoclinometry processing have been applied to Voyager and Galileo images of Io in order to derive regional- and local-scale topographic maps of 20% of the moon’s surface to date. We present initial mapping results.

  14. Congruence analysis of point clouds from unstable stereo image sequences

    NASA Astrophysics Data System (ADS)

    Jepping, C.; Bethmann, F.; Luhmann, T.

    2014-06-01

    This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.

  15. Local Surface Reconstruction from MER images using Stereo Workstation

    NASA Astrophysics Data System (ADS)

    Shin, Dongjoe; Muller, Jan-Peter

    2010-05-01

    The authors present a semi-automatic workflow that reconstructs the 3D shape of the martian surface from local stereo images delivered by PnCam or NavCam on systems such as the NASA Mars Exploration Rover (MER) Mission and in the future the ESA-NASA ExoMars rover PanCam. The process is initiated with manually selected tiepoints on a stereo workstation which is then followed by a tiepoint refinement, stereo-matching using region growing and Levenberg-Marquardt Algorithm (LMA)-based bundle adjustment processing. The stereo workstation, which is being developed by UCL in collaboration with colleagues at the Jet Propulsion Laboratory (JPL) within the EU FP7 ProVisG project, includes a set of practical GUI-based tools that enable an operator to define a visually correct tiepoint via a stereo display. To achieve platform and graphic hardware independence, the stereo application has been implemented using JPL's JADIS graphic library which is written in JAVA and the remaining processing blocks used in the reconstruction workflow have also been developed as a JAVA package to increase the code re-usability, portability and compatibility. Although initial tiepoints from the stereo workstation are reasonably acceptable as true correspondences, it is often required to employ an optional validity check and/or quality enhancing process. To meet this requirement, the workflow has been designed to include a tiepoint refinement process based on the Adaptive Least Square Correlation (ALSC) matching algorithm so that the initial tiepoints can be further enhanced to sub-pixel precision or rejected if they fail to pass the ALSC matching threshold. Apart from the accuracy of reconstruction, it is obvious that the other criterion to assess the quality of reconstruction is the density (or completeness) of reconstruction, which is not attained in the refinement process. Thus, we re-implemented a stereo region growing process, which is a core matching algorithm within the UCL-HRSC reconstruction workflow. This algorithm's performance is reasonable even for close-range imagery so long as the stereo -pair does not too large a baseline displacement. For post-processing, a Bundle Adjustment (BA) is used to optimise the initial calibration parameters, which bootstrap the reconstruction results. Amongst many options for the non-linear optimisation, the LMA has been adopted due to its stability so that the BA searches the best calibration parameters whilst iteratively minimising the re-projection errors of the initial reconstruction points. For the evaluation of the proposed method, the result of the method is compared with the reconstruction from a disparity map provided by JPL using their operational processing system. Visual and quantitative comparison will be presented as well as updated camera parameters. As part of future work, we will investigate a method expediting the processing speed of the stereo region growing process and look into the possibility of extending the use of the stereo workstation to orbital image processing. Such an interactive stereo workstation can also be used to digitize points and line features as well as assess the accuracy of stereo processed results produced from other stereo matching algorithms available from within the consortium and elsewhere. It can also provide "ground truth" when suitably refined for stereo matching algorithms as well as provide visual cues as to why these matching algorithms sometimes fail to mitigate this in the future. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 218814 "PRoVisG".

  16. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  17. Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images

    NASA Technical Reports Server (NTRS)

    Kim, Taemin; Husmann, Kyle; Moratto, Zachary; Nefian, Ara V.

    2011-01-01

    A stereo correlation method on the object domain is proposed to generate the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. Given camera parameters of an image pair from bundle adjustment in ASP, a correlation window is defined on the terrain with the predefined surface normal of a post rather than image domain. The squared error of back-projected images on the local terrain is minimized with respect to the post elevation. This single dimensional optimization is solved efficiently and improves the accuracy of the elevation estimate.

  18. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  19. Stereo Image Ranging For An Autonomous Robot Vision System

    NASA Astrophysics Data System (ADS)

    Holten, James R.; Rogers, Steven K.; Kabrisky, Matthew; Cross, Steven

    1985-12-01

    The principles of stereo vision for three-dimensional data acquisition are well-known and can be applied to the problem of an autonomous robot vehicle. Coincidental points in the two images are located and then the location of that point in a three-dimensional space can be calculated using the offset of the points and knowledge of the camera positions and geometry. This research investigates the application of artificial intelligence knowledge representation techniques as a means to apply heuristics to relieve the computational intensity of the low level image processing tasks. Specifically a new technique for image feature extraction is presented. This technique, the Queen Victoria Algorithm, uses formal language productions to process the image and characterize its features. These characterized features are then used for stereo image feature registration to obtain the required ranging information. The results can be used by an autonomous robot vision system for environmental modeling and path finding.

  20. MRO CTX-based Digital Terrain Models

    NASA Astrophysics Data System (ADS)

    Dumke, Alexander

    2016-04-01

    In planetary surface sciences, digital terrain models (DTM) are paramount when it comes to understanding and quantifying processes. In this contribution an approach for the derivation of digital terrain models from stereo images of the NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) are described. CTX consists of a 350 mm focal length telescope and 5000 CCD sensor elements and is operated as pushbroom camera. It acquires images with ~6 m/px over a swath width of ~30 km of the Mars surface [1]. Today, several approaches for the derivation of CTX DTMs exist [e. g. 2, 3, 4]. The discussed approach here is based on established software and combines them with proprietary software as described below. The main processing task for the derivation of CTX stereo DTMs is based on six steps: (1) First, CTX images are radiometrically corrected using the ISIS software package [5]. (2) For selected CTX stereo images, exterior orientation data from reconstructed NAIF SPICE data are extracted [6]. (3) In the next step High Resolution Stereo Camera (HRSC) DTMs [7, 8, 9] are used for the rectification of CTX stereo images to reduce the search area during the image matching. Here, HRSC DTMs are used due to their higher spatial resolution when compared to MOLA DTMs. (4) The determination of coordinates of homologous points between stereo images, i.e. the stereo image matching process, consists of two steps: first, a cross-correlation to obtain approximate values and secondly, their use in a least-square matching (LSM) process in order to obtain subpixel positions. (5) The stereo matching results are then used to generate object points from forward ray intersections. (6) As a last step, the DTM-raster generation is performed using software developed at the German Aerospace Center, Berlin. Whereby only object points are used that have a smaller error than a threshold value. References: [1] Malin, M. C. et al., 2007, JGR 112, doi:10.1029/2006JE002808 [2] Broxton, M. J. et al., 2008, LPSC XXXIX, Abstract#2419 [3] Yershov, V. et al., 2015 EPSC 10, EPSC2015-343 [4] Kim, J. R. et al., 2013 EPS 65, 799-809 [5] https://isis.astrogeology.usgs.gov/index.html [6] http://naif.jpl.nasa.gov/naif/index.html [7] Gwinner et al., 2010, EPS 294, 543-540 [8] Gwinner et al., 2015, PSS [9] Dumke, A. et al., 2008, ISPRS, 37, Part B4, 1037-1042

  1. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  2. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  3. Analysis and design of stereoscopic display in stereo television endoscope system

    NASA Astrophysics Data System (ADS)

    Feng, Dawei

    2008-12-01

    Many 3D displays have been proposed for medical use. When we design and evaluate new system, there are three demands from surgeons. Priority is the precision. Secondly, displayed images should be easy to understand, In addition, surgery lasts hours and hours, they do not like fatiguing display. The stereo television endoscope researched in this paper make celiac viscera image on the photosurface of the left and right CCD by imitating human binocular stereo vision effect by using the double-optical lines system. The left and right video signal will be processed by frequency multiplication and display on the monitor, people can observe the stereo image which has depth impression by using a polarized LCD screen and a pair of polarized glasses. Clinical experiments show that by using the stereo TV endoscope people can make minimally invasive surgery more safe and reliable, and can shorten the operation time, and can improve the operation accuracy.

  4. Parallel-Processing Software for Correlating Stereo Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; Mcauley, Michael; DeJong, Eric

    2007-01-01

    A computer program implements parallel- processing algorithms for cor relating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rove r). Such correlations are used to create three-dimensional computatio nal models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) opera ting simultaneously.

  5. Discriminability limits in spatio-temporal stereo block matching.

    PubMed

    Jain, Ankit K; Nguyen, Truong Q

    2014-05-01

    Disparity estimation is a fundamental task in stereo imaging and is a well-studied problem. Recently, methods have been adapted to the video domain where motion is used as a matching criterion to help disambiguate spatially similar candidates. In this paper, we analyze the validity of the underlying assumptions of spatio-temporal disparity estimation, and determine the extent to which motion aids the matching process. By analyzing the error signal for spatio-temporal block matching under the sum of squared differences criterion and treating motion as a stochastic process, we determine the probability of a false match as a function of image features, motion distribution, image noise, and number of frames in the spatio-temporal patch. This performance quantification provides insight into when spatio-temporal matching is most beneficial in terms of the scene and motion, and can be used as a guide to select parameters for stereo matching algorithms. We validate our results through simulation and experiments on stereo video.

  6. WASS: an open-source stereo processing pipeline for sea waves 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Bergamasco, Filippo; Benetazzo, Alvise; Torsello, Andrea; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community. In fact, recent advances of both computer vision algorithms and CPU processing power can now allow the study of the spatio-temporal wave fields with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner so that the implementation of a 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well-tested software package that automates the steps from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS, a completely Open-Source stereo processing pipeline for sea waves 3D reconstruction, available at http://www.dais.unive.it/wass/. Our tool completely automates the recovery of dense point clouds from stereo images by providing three main functionalities. First, WASS can automatically recover the extrinsic parameters of the stereo rig (up to scale) so that no delicate calibration has to be performed on the field. Second, WASS implements a fast 3D dense stereo reconstruction procedure so that an accurate 3D point cloud can be computed from each stereo pair. We rely on the well-consolidated OpenCV library both for the image stereo rectification and disparity map recovery. Lastly, a set of 2D and 3D filtering techniques both on the disparity map and the produced point cloud are implemented to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface (examples are sun-glares, large white-capped areas, fog and water areosol, etc). Developed to be as fast as possible, WASS can process roughly four 5 MPixel stereo frames per minute (on a consumer i7 CPU) to produce a sequence of outlier-free point clouds with more than 3 million points each. Finally, it comes with an easy to use user interface and designed to be scalable on multiple parallel CPUs.

  7. Utility of Digital Stereo Images for Optic Disc Evaluation

    PubMed Central

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P < 0.001), including improved stereo (P < 0.001), but the primary digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P < 0.0001); both the nerve fiber layer (P < 0.0001) and the paths of blood vessels on the optic disc (P < 0.0001) were best seen in grayscale. The preference for digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  8. A fuzzy structural matching scheme for space robotics vision

    NASA Technical Reports Server (NTRS)

    Naka, Masao; Yamamoto, Hiromichi; Homma, Khozo; Iwata, Yoshitaka

    1994-01-01

    In this paper, we propose a new fuzzy structural matching scheme for space stereo vision which is based on the fuzzy properties of regions of images and effectively reduces the computational burden in the following low level matching process. Three dimensional distance images of a space truss structural model are estimated using this scheme from stereo images sensed by Charge Coupled Device (CCD) TV cameras.

  9. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  10. High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging - the Southern Hemisphere Quadrangles

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.

    2018-04-01

    We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  11. Investigation of 1 : 1,000 Scale Map Generation by Stereo Plotting Using Uav Images

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2017-08-01

    Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs) generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after drawing a specific model. The results of analysis showed that the errors were within the specification of 1 : 1,000 map. Although the Y-parallax can be eliminated, it is still necessary to improve the accuracy of absolute ground position error in order to apply this technique to the actual work. There are a few models in which the difference in height between adjacent models is about 40 cm. We analysed the stability of UAV images by checking angle differences between adjacent images. We also analysed the average area covered by one stereo model and discussed the possible difficulty associated with this narrow coverage. In the future we consider how to reduce position errors and improve map drawing performances from UAVs.

  12. Calibration of stereo rigs based on the backward projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui; Zhao, Zixin

    2016-08-01

    High-accuracy 3D measurement based on binocular vision system is heavily dependent on the accurate calibration of two rigidly-fixed cameras. In most traditional calibration methods, stereo parameters are iteratively optimized through the forward imaging process (FIP). However, the results can only guarantee the minimal 2D pixel errors, but not the minimal 3D reconstruction errors. To address this problem, a simple method to calibrate a stereo rig based on the backward projection process (BPP) is proposed. The position of a spatial point can be determined separately from each camera by planar constraints provided by the planar pattern target. Then combined with pre-defined spatial points, intrinsic and extrinsic parameters of the stereo-rig can be optimized by minimizing the total 3D errors of both left and right cameras. An extensive performance study for the method in the presence of image noise and lens distortions is implemented. Experiments conducted on synthetic and real data demonstrate the accuracy and robustness of the proposed method.

  13. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  14. Design and Implementation of a Novel Portable 360° Stereo Camera System with Low-Cost Action Cameras

    NASA Astrophysics Data System (ADS)

    Holdener, D.; Nebiker, S.; Blaser, S.

    2017-11-01

    The demand for capturing indoor spaces is rising with the digitalization trend in the construction industry. An efficient solution for measuring challenging indoor environments is mobile mapping. Image-based systems with 360° panoramic coverage allow a rapid data acquisition and can be processed to georeferenced 3D images hosted in cloud-based 3D geoinformation services. For the multiview stereo camera system presented in this paper, a 360° coverage is achieved with a layout consisting of five horizontal stereo image pairs in a circular arrangement. The design is implemented as a low-cost solution based on a 3D printed camera rig and action cameras with fisheye lenses. The fisheye stereo system is successfully calibrated with accuracies sufficient for the applied measurement task. A comparison of 3D distances with reference data delivers maximal deviations of 3 cm on typical distances in indoor space of 2-8 m. Also the automatic computation of coloured point clouds from the stereo pairs is demonstrated.

  15. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  16. Syntactic Approach To Geometric Surface Shell Determination

    NASA Astrophysics Data System (ADS)

    DeGryse, Donald G.; Panton, Dale J.

    1980-12-01

    Autonomous terminal homing of a smart missile requires a stored reference scene of the target for which the missle is destined. The reference scene is produced from stereo source imagery by deriving a three-dimensional model containing cultural structures such as buildings, towers, bridges, and tanks. This model is obtained by the precise matching of cultural features from one image of the stereo pair to the other. In the past, this stereo matching process has relied heavily on local edge operators and a gray scale matching metric. The processing is performed line by line over the imagery and the amount of geometric control is minimal. As a result, the gross structure of the scene is determined but the derived three-dimensional data is noisy, oscillatory, and at times significantly inaccurate. This paper discusses new concepts that are currently being developed to stabilize this geometric reference preparation process. The new concepts involve the use of a structural syntax which will be used as a geometric constraint on automatic stereo matching. The syntax arises from the stereo configuration of the imaging platforms at the time of exposure and the knowledge of how various cultural structures are constructed. The syntax is used to parse a scene in terms of its cultural surfaces and to dictate to the matching process the allowable relative positions and orientations of surface edges in the image planes. Using the syntax, extensive searches using a gray scale matching metric are reduced.

  17. Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing

    NASA Astrophysics Data System (ADS)

    Reinartz, Peter; Müller, Rupert; Lehner, Manfred; Schroeder, Manfred

    During the HRS (High Resolution Stereo) Scientific Assessment Program the French space agency CNES delivered data sets from the HRS camera system with high precision ancillary data. Two test data sets from this program were evaluated: one is located in Germany, the other in Spain. The first goal was to derive orthoimages and digital surface models (DSM) from the along track stereo data by applying the rigorous model with direct georeferencing and without ground control points (GCPs). For the derivation of DSM, the stereo processing software, developed at DLR for the MOMS-2P three line stereo camera was used. As a first step, the interior and exterior orientation of the camera, delivered as ancillary data from positioning and attitude systems were extracted. A dense image matching, using nearly all pixels as kernel centers provided the parallaxes. The quality of the stereo tie points was controlled by forward and backward matching of the two stereo partners using the local least squares matching method. Forward intersection lead to points in object space which are subsequently interpolated to a DSM in a regular grid. DEM filtering methods were also applied and evaluations carried out differentiating between accuracies in forest and other areas. Additionally, orthoimages were generated from the images of the two stereo looking directions. The orthoimage and DSM accuracy was determined by using GCPs and available reference DEMs of superior accuracy (DEM derived from laser data and/or classical airborne photogrammetry). As expected the results obtained without using GCPs showed a bias in the order of 5-20 m to the reference data for all three coordinates. By image matching it could be shown that the two independently derived orthoimages exhibit a very constant shift behavior. In a second step few GCPs (3-4) were used to calculate boresight alignment angles, introduced into the direct georeferencing process of each image independently. This method improved the absolute accuracy of the resulting orthoimages and DSM significantly.

  18. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  19. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  20. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    NASA Astrophysics Data System (ADS)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  1. Support Routines for In Situ Image Processing

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Pariser, Oleg; Yeates, Matthew C.; Lee, Hyun H.; Lorre, Jean

    2013-01-01

    This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the pointing of in situ cameras, (8) marsinvrange: Inverse of marsrange . given a range file, re-computes an XYZ file that closely matches the original. . marsproj: Projects an XYZ coordinate through the camera model, and reports the line/sample coordinates of the point in the image, (9) marsprojfid: Given the output of marsfidfinder, projects the XYZ locations and compares them to the found locations, creating a report showing the fiducial errors in each image. marsrad: Radiometrically corrects an image, (10) marsrelabel: Updates coordinate system or camera model labels in an image, (11) marstiexyz: Given a stereo pair, allows the user to interactively pick a point in each image and reports the XYZ value corresponding to that pair of locations. marsunmosaic: Extracts a single frame from a mosaic, which will be created such that it could have been an input to the original mosaic. Useful for creating simulated input frames using different camera models than the original mosaic used, and (12) merinverter: Uses an inverse lookup table to convert 8-bit telemetered data to its 12-bit original form. Can be used in other missions despite the name.

  2. System for clinical photometric stereo endoscopy

    NASA Astrophysics Data System (ADS)

    Durr, Nicholas J.; González, Germán.; Lim, Daryl; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.; Parot, Vicente

    2014-02-01

    Photometric stereo endoscopy is a technique that captures information about the high-spatial-frequency topography of the field of view simultaneously with a conventional color image. Here we describe a system that will enable photometric stereo endoscopy to be clinically evaluated in the large intestine of human patients. The clinical photometric stereo endoscopy system consists of a commercial gastroscope, a commercial video processor, an image capturing and processing unit, custom synchronization electronics, white light LEDs, a set of four fibers with diffusing tips, and an alignment cap. The custom pieces that come into contact with the patient are composed of biocompatible materials that can be sterilized before use. The components can then be assembled in the endoscopy suite before use. The resulting endoscope has the same outer diameter as a conventional colonoscope (14 mm), plugs into a commercial video processor, captures topography and color images at 15 Hz, and displays the conventional color image to the gastroenterologist in real-time. We show that this system can capture a color and topographical video in a tubular colon phantom, demonstrating robustness to complex geometries and motion. The reported system is suitable for in vivo evaluation of photometric stereo endoscopy in the human large intestine.

  3. [Usefulness of volume rendering stereo-movie in neurosurgical craniotomies].

    PubMed

    Fukunaga, Tateya; Mokudai, Toshihiko; Fukuoka, Masaaki; Maeda, Tomonori; Yamamoto, Kouji; Yamanaka, Kozue; Minakuchi, Kiyomi; Miyake, Hirohisa; Moriki, Akihito; Uchida, Yasufumi

    2007-12-20

    In recent years, the advancements in MR technology combined with the development of the multi-channel coil have resulted in substantially shortened inspection times. In addition, rapid improvement in functional performance in the workstation has produced a more simplified imaging-making process. Consequently, graphical images of intra-cranial lesions can be easily created. For example, the use of three-dimensional spoiled gradient echo (3D-SPGR) volume rendering (VR) after injection of a contrast medium is applied clinically as a preoperative reference image. Recently, improvements in 3D-SPGR VR high-resolution have enabled accurate surface images of the brain to be obtained. We used stereo-imaging created by weighted maximum intensity projection (Weighted MIP) to determine the skin incision line. Furthermore, the stereo imaging technique utilizing 3D-SPGR VR was actually used in cases presented here. The techniques we report here seemed to be very useful in the pre-operative simulation of neurosurgical craniotomy.

  4. Left Limb of North Pole of the Sun, March 20, 2007 (Anaglyph)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Left eye view of a stereo pair Click on the image for full resolution TIFF Figure 2: Right eye view of a stereo pair Click on the image for full resolution TIFF Figure 1: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun. This location enables us to view the Sun from the position of a virtual left eye in space. Figure 2: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-A spacecraft. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    NASA's Solar TErrestrial RElations Observatory (STEREO) satellites have provided the first three-dimensional images of the Sun. For the first time, scientists will be able to see structures in the Sun's atmosphere in three dimensions. The new view will greatly aid scientists' ability to understand solar physics and thereby improve space weather forecasting.

    This image is a composite of left and right eye color image pairs taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B and STEREO-A spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual left eye in space. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    The EUVI imager is sensitive to wavelengths of light in the extreme ultraviolet portion of the spectrum. EUVI bands at wavelengths of 304, 171 and 195 Angstroms have been mapped to the red blue and green visible portion of the spectrum; and processed to emphasize the three-dimensional structure of the solar material.

    STEREO, a two-year mission, launched October 2006, will provide a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories -- one ahead of Earth in its orbit, the other trailing behind -- will trace the flow of energy and matter from the Sun to Earth. They will reveal the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO will become a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    STEREO is the third mission in NASA's Solar Terrestrial Probes program within NASA's Science Mission Directorate, Washington. The Goddard Science and Exploration Directorate manages the mission, instruments, and science center. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., designed and built the spacecraft and is responsible for mission operations. The imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands, and Switzerland. JPL is a division of the California Institute of Technology in Pasadena.

  5. a Photogrammetric Pipeline for the 3d Reconstruction of Cassis Images on Board Exomars Tgo

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Mudric, T.; Pommerol, A.; Thomas, N.; Cremonese, G.

    2017-07-01

    CaSSIS (Colour and Stereo Surface Imaging System) is the stereo imaging system onboard the European Space Agency and ROSCOSMOS ExoMars Trace Gas Orbiter (TGO) that has been launched on 14 March 2016 and entered a Mars elliptical orbit on 19 October 2016. During the first bounded orbits, CaSSIS returned its first multiband images taken on 22 and 26 November 2016. The telescope acquired 11 images, each composed by 30 framelets, of the Martian surface near Hebes Chasma and Noctis Labyrithus regions reaching at closest approach at a distance of 250 km from the surface. Despite of the eccentricity of this first orbit, CaSSIS has provided one stereo pair with a mean ground resolution of 6 m from a mean distance of 520 km. The team at the Astronomical Observatory of Padova (OAPD-INAF) is involved into different stereo oriented missions and it is realizing a software for the generation of Digital Terrain Models from the CaSSIS images. The SW will be then adapted also for other projects involving stereo camera systems. To compute accurate 3D models, several sequential methods and tools have been developed. The preliminary pipeline provides: the generation of rectified images from the CaSSIS framelets, a matching core and post-processing methods. The software includes in particular: an automatic tie points detection by the Speeded Up Robust Features (SURF) operator, an initial search for the correspondences through Normalize Cross Correlation (NCC) algorithm and the Adaptive Least Square Matching (LSM) algorithm in a hierarchical approach. This work will show a preliminary DTM generated by the first CaSSIS stereo images.

  6. Parallel Computer System for 3D Visualization Stereo on GPU

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  7. Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration

    PubMed Central

    Chen, Shoubin; Liu, Jingbin; Huang, Wenchao

    2018-01-01

    The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540

  8. The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.

    2014-04-01

    The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.

  9. Specialized Computer Systems for Environment Visualization

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  10. Visualization of the 3-D topography of the optic nerve head through a passive stereo vision model

    NASA Astrophysics Data System (ADS)

    Ramirez, Juan M.; Mitra, Sunanda; Morales, Jose

    1999-01-01

    This paper describes a system for surface recovery and visualization of the 3D topography of the optic nerve head, as support of early diagnosis and follow up to glaucoma. In stereo vision, depth information is obtained from triangulation of corresponding points in a pair of stereo images. In this paper, the use of the cepstrum transformation as a disparity measurement technique between corresponding windows of different block sizes is described. This measurement process is embedded within a coarse-to-fine depth-from-stereo algorithm, providing an initial range map with the depth information encoded as gray levels. These sparse depth data are processed through a cubic B-spline interpolation technique in order to obtain a smoother representation. This methodology is being especially refined to be used with medical images for clinical evaluation of some eye diseases such as open angle glaucoma, and is currently under testing for clinical evaluation and analysis of reproducibility and accuracy.

  11. An efficient photogrammetric stereo matching method for high-resolution images

    NASA Astrophysics Data System (ADS)

    Li, Yingsong; Zheng, Shunyi; Wang, Xiaonan; Ma, Hao

    2016-12-01

    Stereo matching of high-resolution images is a great challenge in photogrammetry. The main difficulty is the enormous processing workload that involves substantial computing time and memory consumption. In recent years, the semi-global matching (SGM) method has been a promising approach for solving stereo problems in different data sets. However, the time complexity and memory demand of SGM are proportional to the scale of the images involved, which leads to very high consumption when dealing with large images. To solve it, this paper presents an efficient hierarchical matching strategy based on the SGM algorithm using single instruction multiple data instructions and structured parallelism in the central processing unit. The proposed method can significantly reduce the computational time and memory required for large scale stereo matching. The three-dimensional (3D) surface is reconstructed by triangulating and fusing redundant reconstruction information from multi-view matching results. Finally, three high-resolution aerial date sets are used to evaluate our improvement. Furthermore, precise airborne laser scanner data of one data set is used to measure the accuracy of our reconstruction. Experimental results demonstrate that our method remarkably outperforms in terms of time and memory savings while maintaining the density and precision of the 3D cloud points derived.

  12. GPU-based real-time trinocular stereo vision

    NASA Astrophysics Data System (ADS)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  13. An Integrated Calibration Technique for Stereo Vision Systems (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    technique for stereo vision systems has been developed. To demonstrate and evaluate this calibration technique, multiple Wii Remotes (Wiimotes) from Nintendo ...from Nintendo were used to form stereo vision systems to perform 3D motion capture in real time. This integrated technique is a two-step process...Wiimotes) used in Nintendo Wii games. Many researchers have successfully dealt with the problem of camera calibration by taking images from a 2D

  14. Developing stereo image based robot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suprijadi,; Pambudi, I. R.; Woran, M.

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based onmore » stereovision captures.« less

  15. Four dimensional observations of clouds from geosynchronous orbit using stereo display and measurement techniques on an interactive information processing system

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Desjardins, M.; Shenk, W. E.

    1979-01-01

    Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.

  16. Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    NASA Technical Reports Server (NTRS)

    Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor

    2010-01-01

    Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.

  17. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    PubMed Central

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  18. Stereo imaging velocimetry for microgravity applications

    NASA Technical Reports Server (NTRS)

    Miller, Brian B.; Meyer, Maryjo B.; Bethea, Mark D.

    1994-01-01

    Stereo imaging velocimetry is the quantitative measurement of three-dimensional flow fields using two sensors recording data from different vantage points. The system described in this paper, under development at NASA Lewis Research Center in Cleveland, Ohio, uses two CCD cameras placed perpendicular to one another, laser disk recorders, an image processing substation, and a 586-based computer to record data at standard NTSC video rates (30 Hertz) and reduce it offline. The flow itself is marked with seed particles, hence the fluid must be transparent. The velocimeter tracks the motion of the particles, and from these we deduce a multipoint (500 or more), quantitative map of the flow. Conceptually, the software portion of the velocimeter can be divided into distinct modules. These modules are: camera calibration, particle finding (image segmentation) and centroid location, particle overlap decomposition, particle tracking, and stereo matching. We discuss our approach to each module, and give our currently achieved speed and accuracy for each where available.

  19. Ranging through Gabor logons-a consistent, hierarchical approach.

    PubMed

    Chang, C; Chatterjee, S

    1993-01-01

    In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.

  20. A search for Ganymede stereo images and 3D mapping opportunities

    NASA Astrophysics Data System (ADS)

    Zubarev, A.; Nadezhdina, I.; Brusnikin, E.; Giese, B.; Oberst, J.

    2017-10-01

    We used 126 Voyager-1 and -2 as well as 87 Galileo images of Ganymede and searched for stereo images suitable for digital 3D stereo analysis. Specifically, we consider image resolutions, stereo angles, as well as matching illumination conditions of respective stereo pairs. Lists of regions and local areas with stereo coverage are compiled. We present anaglyphs and we selected areas, not previously discussed, for which we constructed Digital Elevation Models and associated visualizations. The terrain characteristics in the models are in agreement with our previous notion of Ganymede morphology, represented by families of lineaments and craters of various sizes and degradation stages. The identified areas of stereo coverage may serve as important reference targets for the Ganymede Laser Altimeter (GALA) experiment on the future JUICE (Jupiter Icy Moons Explorer) mission.

  1. Restoration Of MEX SRC Images For Improved Topography: A New Image Product

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.

    2012-12-01

    Surface topography is an important constraint when investigating the evolution of solar system bodies. Topography is typically obtained from stereo photogrammetric or photometric (shape from shading) analyses of overlapping / stereo images and from laser / radar altimetry data. The ESA Mars Express Mission [1] carries a Super Resolution Channel (SRC) as part of the High Resolution Stereo Camera (HRSC) [2]. The SRC can build up overlapping / stereo coverage of Mars, Phobos and Deimos by viewing the surfaces from different orbits. The derivation of high precision topography data from the SRC raw images is degraded because the camera is out of focus. The point spread function (PSF) is multi-peaked, covering tens of pixels. After registering and co-adding hundreds of star images, an accurate SRC PSF was reconstructed and is being used to restore the SRC images to near blur free quality. The restored images offer a factor of about 3 in improved geometric accuracy as well as identifying the smallest of features to significantly improve the stereo photogrammetric accuracy in producing digital elevation models. The difference between blurred and restored images provides a new derived image product that can provide improved feature recognition to increase spatial resolution and topographic accuracy of derived elevation models. Acknowledgements: This research was funded by the NASA Mars Express Participating Scientist Program. [1] Chicarro, et al., ESA SP 1291(2009) [2] Neukum, et al., ESA SP 1291 (2009). A raw SRC image (h4235.003) of a Martian crater within Gale crater (the MSL landing site) is shown in the upper left and the restored image is shown in the lower left. A raw image (h0715.004) of Phobos is shown in the upper right and the difference between the raw and restored images, a new derived image data product, is shown in the lower right. The lower images, resulting from an image restoration process, significantly improve feature recognition for improved derived topographic accuracy.

  2. Rapid 2D-to-3D conversion

    NASA Astrophysics Data System (ADS)

    Harman, Philip V.; Flack, Julien; Fox, Simon; Dowley, Mark

    2002-05-01

    The conversion of existing 2D images to 3D is proving commercially viable and fulfills the growing need for high quality stereoscopic images. This approach is particularly effective when creating content for the new generation of autostereoscopic displays that require multiple stereo images. The dominant technique for such content conversion is to develop a depth map for each frame of 2D material. The use of a depth map as part of the 2D to 3D conversion process has a number of desirable characteristics: 1. The resolution of the depth may be lower than that of the associated 2D image. 2. It can be highly compressed. 3. 2D compatibility is maintained. 4. Real time generation of stereo, or multiple stereo pairs, is possible. The main disadvantage has been the laborious nature of the manual conversion techniques used to create depth maps from existing 2D images, which results in a slow and costly process. An alternative, highly productive technique has been developed based upon the use of Machine Leaning Algorithm (MLAs). This paper describes the application of MLAs to the generation of depth maps and presents the results of the commercial application of this approach.

  3. Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System

    DTIC Science & Technology

    2015-03-01

    PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS Kyle P. Werner, 2Lt, USAF AFIT-ENG-MS-15-M-048...REFUELING FROM A STEREO IMAGING SYSTEM THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS

  4. Real-time depth processing for embedded platforms

    NASA Astrophysics Data System (ADS)

    Rahnama, Oscar; Makarov, Aleksej; Torr, Philip

    2017-05-01

    Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.

  5. Massive stereo-based DTM production for Mars on cloud computers

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Xiong, Si-Ting; Putri, A. R. D.; Walter, S. H. G.; Veitch-Michaelis, J.; Yershov, V.

    2018-05-01

    Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system.

  6. SAD5 Stereo Correlation Line-Striping in an FPGA

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Morfopoulos, Arin C.

    2011-01-01

    High precision SAD5 stereo computations can be performed in an FPGA (field-programmable gate array) at much higher speeds than possible in a conventional CPU (central processing unit), but this uses large amounts of FPGA resources that scale with image size. Of the two key resources in an FPGA, Slices and BRAM (block RAM), Slices scale linearly in the new algorithm with image size, and BRAM scales quadratically with image size. An approach was developed to trade latency for BRAM by sub-windowing the image vertically into overlapping strips and stitching the outputs together to create a single continuous disparity output. In stereo, the general rule of thumb is that the disparity search range must be 1/10 the image size. In the new algorithm, BRAM usage scales linearly with disparity search range and scales again linearly with line width. So a doubling of image size, say from 640 to 1,280, would in the previous design be an effective 4 of BRAM usage: 2 for line width, 2 again for disparity search range. The minimum strip size is twice the search range, and will produce an output strip width equal to the disparity search range. So assuming a disparity search range of 1/10 image width, 10 sequential runs of the minimum strip size would produce a full output image. This approach allowed the innovators to fit 1280 960 wide SAD5 stereo disparity in less than 80 BRAM, 52k Slices on a Virtex 5LX330T, 25% and 24% of resources, respectively. Using a 100-MHz clock, this build would perform stereo at 39 Hz. Of particular interest to JPL is that there is a flight qualified version of the Virtex 5: this could produce stereo results even for very large image sizes at 3 orders of magnitude faster than could be computed on the PowerPC 750 flight computer. The work covered in the report allows the stereo algorithm to run on much larger images than before, and using much less BRAM. This opens up choices for a smaller flight FPGA (which saves power and space), or for other algorithms in addition to SAD5 to be run on the same FPGA.

  7. Development Of A Flash X-Ray Scanner For Stereoradiography And CT

    NASA Astrophysics Data System (ADS)

    Endorf, Robert J.; DiBianca, Frank A.; Fritsch, Daniel S.; Liu, Wen-Ching; Burns, Charles B.

    1989-05-01

    We are developing a flash x-ray scanner for stereoradiography and CT which will be able to produce a stereoradiograph in 30 to 70 ns and a complete CT scan in one microsecond. This type of imaging device will be valuable in studying high speed processes, high acceleration, and traumatic events. We have built a two channel flash x-ray system capable of producing stereo radiographs with stereo angles of from 15 to 165 degrees. The dynamic and static Miff 's for the flash x-ray system were measured and compared with similar MIT's measured for a conventional medical x-ray system. We have written and tested a stereo reconstruction algorithm to determine three dimensional space points from corresponding points in the two stereo images. To demonstrate the ability of the system to image traumatic events, a radiograph was obtained of a bone undergoing a fracture. The effects of accelerations of up to 600 g were examined on radiographs taken of human kidney tissue samples in a rapidly rotating centrifuge. Feasibility studies of CT reconstruction have been performed by making simulated Cr images of various phantoms for larger flash x-ray systems of from 8 to 29 flash x-ray tubes.

  8. Extracting accurate and precise topography from LROC narrow angle camera stereo observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Burns, K. N.; Seymour, P.; Speyerer, E. J.; Deran, A.; Boyd, A. K.; Howington-Kraus, E.; Rosiek, M. R.; Archinal, B. A.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that each provide 0.5 to 2.0 m scale images of the lunar surface. Although not designed as a stereo system, LROC can acquire NAC stereo observations over two or more orbits using at least one off-nadir slew. Digital terrain models (DTMs) are generated from sets of stereo images and registered to profiles from the Lunar Orbiter Laser Altimeter (LOLA) to improve absolute accuracy. With current processing methods, DTMs have absolute accuracies better than the uncertainties of the LOLA profiles and relative vertical and horizontal precisions less than the pixel scale of the DTMs (2-5 m). We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. For a baseline of 15 m the highland mean slope parameters are: median = 9.1°, mean = 11.0°, standard deviation = 7.0°. For the mare the mean slope parameters are: median = 3.5°, mean = 4.9°, standard deviation = 4.5°. The slope values for the highland terrain are steeper than previously reported, likely due to a bias in targeting of the NAC DTMs toward higher relief features in the highland terrain. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics that enable detailed characterization of large geomorphic features. From one DTM mosaic we mapped a large viscous flow related to the Orientale basin ejecta and estimated its thickness and volume to exceed 300 m and 500 km3, respectively. Despite its ∼3.8 billion year age the flow still exhibits unconfined margin slopes above 30°, in some cases exceeding the angle of repose, consistent with deposition of material rich in impact melt. We show that the NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. At this date about 2% of the lunar surface is imaged in high-resolution stereo, and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur across all of the terrestrial planets.

  9. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  10. Left Limb of North Pole of the Sun, March 20, 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Left eye view of a stereo pair Click on the image for full resolution TIFF Figure 2: Right eye view of a stereo pair Click on the image for full resolution TIFF Figure 1: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun. This location enables us to view the Sun from the position of a virtual left eye in space. Figure 2: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-A spacecraft. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    NASA's Solar TErrestrial RElations Observatory (STEREO) satellites have provided the first three-dimensional images of the Sun. For the first time, scientists will be able to see structures in the Sun's atmosphere in three dimensions. The new view will greatly aid scientists' ability to understand solar physics and thereby improve space weather forecasting.

    The EUVI imager is sensitive to wavelengths of light in the extreme ultraviolet portion of the spectrum. EUVI bands at wavelengths of 304, 171 and 195 Angstroms have been mapped to the red blue and green visible portion of the spectrum; and processed to emphasize the temperature difference of the solar material.

    STEREO, a two-year mission, launched October 2006, will provide a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories -- one ahead of Earth in its orbit, the other trailing behind -- will trace the flow of energy and matter from the Sun to Earth. They will reveal the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO will become a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    STEREO is the third mission in NASA's Solar Terrestrial Probes program within NASA's Science Mission Directorate, Washington. The Goddard Science and Exploration Directorate manages the mission, instruments, and science center. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., designed and built the spacecraft and is responsible for mission operations. The imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands, and Switzerland. JPL is a division of the California Institute of Technology in Pasadena.

  11. An Integrated Photogrammetric and Photoclinometric Approach for Pixel-Resolution 3d Modelling of Lunar Surface

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Wu, B.

    2018-04-01

    High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.

  12. Pulse X-ray device for stereo imaging and few-projection tomography of explosive and fast processes

    NASA Astrophysics Data System (ADS)

    Palchikov, E. I.; Dolgikh, A. V.; Klypin, V. V.; Krasnikov, I. Y.; Ryabchun, A. M.

    2017-10-01

    This paper describes the operation principles and design features of the device for single pulse X-raying of explosive and high-speed processes, developed on the basis of a Tesla transformer with lumped secondary capacitor bank. The circuit with the lumped capacitor bank allows transferring a greater amount of energy to the discharge circuit as compared with the Marks-surge generator for more effective operation with remote X-ray tubes connected by coaxial cables. The device equipped with multiple X-ray tubes provides simultaneous X-raying of extended or spaced objects, stereo imaging, or few-projection tomography.

  13. GLD100 - Lunar topography from LROC WAC stereo

    NASA Astrophysics Data System (ADS)

    Scholten, F.; Oberst, J.; Robinson, M. S.

    2011-10-01

    The LROC WAC instrument of the LRO mission comprises substantial stereo image data from adjacent orbits. Multiple coverage of the entire surface of the Moon at a mean ground scale of 75 m/pxl has already been achieved within the first two years of the mission. We applied photogrammetric stereo processing methods for the derivation of a 100 m raster DTM (digital terrain model), called GLD100, from several tens of thousands stereo models. The GLD100 covers the lunar surface between 80° northern and southern latitude. Polar regions are excluded because of poor illumination and stereo conditions. Vertical differences of the GLD100 to altimetry data from the LRO LOLA instrument are small, the mean deviation is typically about 20 m, without systematic lateral or vertical offsets.

  14. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  15. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF s orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  16. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  17. Mapping Io's Surface Topography Using Voyager and Galileo Stereo Images and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P.

    2011-12-01

    O.L. White and P.M. Schenk Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058 No instrumentation specifically designed to measure the topography of a planetary surface has ever been deployed to any of the Galilean satellites. Available methods that exist to perform such a task in the absence of the relevant instrumentation include photoclinometry, shadow length measurement, and stereo imaging. Stereo imaging is generally the most accurate of these methods, but is subject to limitations. Io is a challenging subject for stereo imaging given that much of its surface is comprised of volcanic plains, smooth at the resolution of many of the available global images. Radiation noise in Galileo images can also complicate mapping. Paterae, mountains and a few tall shield volcanoes, the only features of any considerable relief, exist as isolated features within these plains; previous research concerning topography measurement on Io using stereo imaging has focused on these features, and has been localized in its scope [Schenk et al., 2001; Schenk et al., 2004]. With customized ISIS software developed at LPI, it is the ultimate intention of our research to use stereo and photoclinometry processing of Voyager and Galileo images to create a global topographic map of Io that will constrain the shapes of local- and regional-scale features on this volcanic moon, and which will be tied to the global shape model of Thomas et al. [1998]. Applications of these data include investigation of how global heat flow varies across the moon and its relation to mantle convection and tidal heating [Tackley et al., 2001], as well as its correlation with local geology. Initial stereo mapping has focused on the Ra Patera/Euboea Montes/Acala Fluctus area, while initial photoclinometry mapping has focused on several paterae and calderas across Io. The results of both stereo and photoclinometry mapping have indicated that distinct topographic areas may correlate with surface geology. To date we have obtained diameter and depth measurements for ten calderas using these DEMs, and we look forward to studying regional and latitudinal variation in caldera depth. References Schenk, P.M., et al. (2001) J. Geophys. Res., 106, pp. 33,201-33,222. Schenk, P.M., et al. (2004) Icarus, 169, pp. 98-110. Tackley, P.J., et al. (2001) Icarus, 149, pp. 79-93. Thomas, P., et al. (1998) Icarus, 135, pp. 175-180. The authors acknowledge the support of the NASA Outer Planet Research and the Planetary Geology and Geophysics research programs.

  18. Monocular Stereo Measurement Using High-Speed Catadioptric Tracking

    PubMed Central

    Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku

    2017-01-01

    This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483

  19. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    NASA Astrophysics Data System (ADS)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  20. Comparison of the depth of an optic nerve head obtained using stereo retinal images and HRT

    NASA Astrophysics Data System (ADS)

    Nakagawa, Toshiaki; Hayashi, Yoshinori; Hatanaka, Yuji; Aoyama, Akira; Hara, Takeshi; Kakogawa, Masakatsu; Fujita, Hiroshi; Yamamoto, Tetsuya

    2007-03-01

    The analysis of the optic nerve head (ONH) in the retinal fundus is important for the early detection of glaucoma. In this study, we investigate an automatic reconstruction method for producing the 3-D structure of the ONH from a stereo retinal image pair; the depth value of the ONH measured by using this method was compared with the measurement results determined from the Heidelberg Retina Tomograph (HRT). We propose a technique to obtain the depth value from the stereo image pair, which mainly consists of four steps: (1) cutout of the ONH region from the retinal images, (2) registration of the stereo pair, (3) disparity detection, and (4) depth calculation. In order to evaluate the accuracy of this technique, the shape of the depression of an eyeball phantom that had a circular dent as generated from the stereo image pair and used to model the ONH was compared with a physically measured quantity. The measurement results obtained when the eyeball phantom was used were approximately consistent. The depth of the ONH obtained using the stereo retinal images was in accordance with the results obtained using the HRT. These results indicate that the stereo retinal images could be useful for assessing the depth of the ONH for the diagnosis of glaucoma.

  1. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  2. Sounds of space: listening to the Sun-Earth connection

    NASA Astrophysics Data System (ADS)

    Craig, N.; Mendez, B.; Luhmann, J.; Sircar, I.

    2003-04-01

    NASA's STEREO/IMPACT Mission includes an Education and Public Outreach component that seeks to offer national programs for broad audiences highlighting the mission's solar and geo-space research. In an effort to make observations of the Sun more accessible and exciting for a general audience, we look for alternative ways to represent the data. Scientists most often represent data visually in images, graphs, and movies. However, any data can also be represented as sound audible to the human ear, a process known as sonification. We will present our plans for an exciting prototype program that converts the science results of solar energetic particle data to sound. We plan to make sounds, imagery, and data available to the public through the World Wide Web where they may create their own sonifications, as well as integrate this effort to a science museum kiosk format. The kiosk station would include information on the STEREO mission and monitors showing images of the Sun from each of STEREO's two satellites. Our goal is to incorporate 3D goggles and a headset into the kiosk, allowing visitors to see the current or archived images in 3D and hear stereo sounds resulting from sonification of the corresponding data. Ultimately, we hope to collaborate with composers and create musical works inspired by these sounds and related solar images.

  3. 3D road marking reconstruction from street-level calibrated stereo pairs

    NASA Astrophysics Data System (ADS)

    Soheilian, Bahman; Paparoditis, Nicolas; Boldo, Didier

    This paper presents an automatic approach to road marking reconstruction using stereo pairs acquired by a mobile mapping system in a dense urban area. Two types of road markings were studied: zebra crossings (crosswalks) and dashed lines. These two types of road markings consist of strips having known shape and size. These geometric specifications are used to constrain the recognition of strips. In both cases (i.e. zebra crossings and dashed lines), the reconstruction method consists of three main steps. The first step extracts edge points from the left and right images of a stereo pair and computes 3D linked edges using a matching process. The second step comprises a filtering process that uses the known geometric specifications of road marking objects. The goal is to preserve linked edges that can plausibly belong to road markings and to filter others out. The final step uses the remaining linked edges to fit a theoretical model to the data. The method developed has been used for processing a large number of images. Road markings are successfully and precisely reconstructed in dense urban areas under real traffic conditions.

  4. Generation of High Resolution Global DSM from ALOS PRISM

    NASA Astrophysics Data System (ADS)

    Takaku, J.; Tadono, T.; Tsutsui, K.

    2014-04-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried on the Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. The sensor consists of three independent panchromatic radiometers for viewing forward, nadir, and backward in 2.5 m ground resolution producing a triplet stereoscopic image along its track. The sensor had observed huge amount of stereo images all over the world during the mission life of the satellite from 2006 through 2011. We have semi-automatically processed Digital Surface Model (DSM) data with the image archives in some limited areas. The height accuracy of the dataset was estimated at less than 5 m (rms) from the evaluation with ground control points (GCPs) or reference DSMs derived from the Light Detection and Ranging (LiDAR). Then, we decided to process the global DSM datasets from all available archives of PRISM stereo images by the end of March 2016. This paper briefly reports on the latest processing algorithms for the global DSM datasets as well as their preliminary results on some test sites. The accuracies and error characteristics of datasets are analyzed and discussed on various fields by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data and Shuttle Radar Topography Mission (SRTM) data, as well as the GCPs and the reference airborne LiDAR/DSM.

  5. Dense real-time stereo matching using memory efficient semi-global-matching variant based on FPGAs

    NASA Astrophysics Data System (ADS)

    Buder, Maximilian

    2012-06-01

    This paper presents a stereo image matching system that takes advantage of a global image matching method. The system is designed to provide depth information for mobile robotic applications. Typical tasks of the proposed system are to assist in obstacle avoidance, SLAM and path planning. Mobile robots pose strong requirements about size, energy consumption, reliability and output quality of the image matching subsystem. Current available systems either rely on active sensors or on local stereo image matching algorithms. The first are only suitable in controlled environments while the second suffer from low quality depth-maps. Top ranking quality results are only achieved by an iterative approach using global image matching and color segmentation techniques which are computationally demanding and therefore difficult to be executed in realtime. Attempts were made to still reach realtime performance with global methods by simplifying the routines. The depth maps are at the end almost comparable to local methods. An equally named semi-global algorithm was proposed earlier that shows both very good image matching results and relatively simple operations. A memory efficient variant of the Semi-Global-Matching algorithm is reviewed and adopted for an implementation based on reconfigurable hardware. The implementation is suitable for realtime execution in the field of robotics. It will be shown that the modified version of the efficient Semi-Global-Matching method is delivering equivalent result compared to the original algorithm based on the Middlebury dataset. The system has proven to be capable of processing VGA sized images with a disparity resolution of 64 pixel at 33 frames per second based on low cost to mid-range hardware. In case the focus is shifted to a higher image resolution, 1024×1024-sized stereo frames may be processed with the same hardware at 10 fps. The disparity resolution settings stay unchanged. A mobile system that covers preprocessing, matching and interfacing operations is also presented.

  6. A digital system for surface reconstruction

    USGS Publications Warehouse

    Zhou, Weiyang; Brock, Robert H.; Hopkins, Paul F.

    1996-01-01

    A digital photogrammetric system, STEREO, was developed to determine three dimensional coordinates of points of interest (POIs) defined with a grid on a textureless and smooth-surfaced specimen. Two CCD cameras were set up with unknown orientation and recorded digital images of a reference model and a specimen. Points on the model were selected as control or check points for calibrating or assessing the system. A new algorithm for edge-detection called local maximum convolution (LMC) helped extract the POIs from the stereo image pairs. The system then matched the extracted POIs and used a least squares “bundle” adjustment procedure to solve for the camera orientation parameters and the coordinates of the POIs. An experiment with STEREO found that the standard deviation of the residuals at the check points was approximately 24%, 49% and 56% of the pixel size in the X, Y and Z directions, respectively. The average of the absolute values of the residuals at the check points was approximately 19%, 36% and 49% of the pixel size in the X, Y and Z directions, respectively. With the graphical user interface, STEREO demonstrated a high degree of automation and its operation does not require special knowledge of photogrammetry, computers or image processing.

  7. Kinder, gentler stereo

    NASA Astrophysics Data System (ADS)

    Siegel, Mel; Tobinaga, Yoshikazu; Akiya, Takeo

    1999-05-01

    Not only binocular perspective disparity, but also many secondary binocular and monocular sensory phenomena, contribute to the human sensation of depth. Binocular perspective disparity is notable as the strongest depth perception factor. However means for creating if artificially from flat image pairs are notorious for inducing physical and mental stresses, e.g., 'virtual reality sickness'. Aiming to deliver a less stressful 'kinder gentler stereo (KGS)', we systematically examine the secondary phenomena and their synergistic combination with each other and with binocular perspective disparity. By KGS we mean a stereo capture, rendering, and display paradigm without cue conflicts, without eyewear, without viewing zones, with negligible 'lock-in' time to perceive the image in depth, and with a normal appearance for stereo-deficient viewers. To achieve KGS we employ optical and digital image processing steps that introduce distortions contrary to strict 'geometrical correctness' of binocular perspective but which nevertheless result in increased stereoscopic viewing comfort. We particularly exploit the lower limits of interoccular separation, showing that unexpectedly small disparities stimulate accurate and pleasant depth sensations. Under these circumstances crosstalk is perceived as depth-of-focus rather than as ghosting. This suggests the possibility of radically new approaches to stereoview multiplexing that enable zoneless autostereoscopic display.

  8. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity map for the stereo pair and each correspondence is transformed back to the owner and 3D points are derived through photogrammetric space intersection. Experimental results reveal that the proposed method is able to reduce gaps and inconsistencies caused by the inaccurate boresight offsets between the two NAC cameras and the irregular overlapping regions, and finally generate precise and consistent 3D surface models from the NAC stereo images automatically.

  9. The infection algorithm: an artificial epidemic approach for dense stereo correspondence.

    PubMed

    Olague, Gustavo; Fernández, Francisco; Pérez, Cynthia B; Lutton, Evelyne

    2006-01-01

    We present a new bio-inspired approach applied to a problem of stereo image matching. This approach is based on an artificial epidemic process, which we call the infection algorithm. The problem at hand is a basic one in computer vision for 3D scene reconstruction. It has many complex aspects and is known as an extremely difficult one. The aim is to match the contents of two images in order to obtain 3D information that allows the generation of simulated projections from a viewpoint that is different from the ones of the initial photographs. This process is known as view synthesis. The algorithm we propose exploits the image contents in order to produce only the necessary 3D depth information, while saving computational time. It is based on a set of distributed rules, which propagate like an artificial epidemic over the images. Experiments on a pair of real images are presented, and realistic reprojected images have been generated.

  10. Stereo and IMU-Assisted Visual Odometry for Small Robots

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This software performs two functions: (1) taking stereo image pairs as input, it computes stereo disparity maps from them by cross-correlation to achieve 3D (three-dimensional) perception; (2) taking a sequence of stereo image pairs as input, it tracks features in the image sequence to estimate the motion of the cameras between successive image pairs. A real-time stereo vision system with IMU (inertial measurement unit)-assisted visual odometry was implemented on a single 750 MHz/520 MHz OMAP3530 SoC (system on chip) from TI (Texas Instruments). Frame rates of 46 fps (frames per second) were achieved at QVGA (Quarter Video Graphics Array i.e. 320 240), or 8 fps at VGA (Video Graphics Array 640 480) resolutions, while simultaneously tracking up to 200 features, taking full advantage of the OMAP3530's integer DSP (digital signal processor) and floating point ARM processors. This is a substantial advancement over previous work as the stereo implementation produces 146 Mde/s (millions of disparities evaluated per second) in 2.5W, yielding a stereo energy efficiency of 58.8 Mde/J, which is 3.75 better than prior DSP stereo while providing more functionality.

  11. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vertrone, A. V.; Lewis, B. H.; Martin, M. D.

    1982-01-01

    The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set.

  12. An experimental comparison of standard stereo matching algorithms applied to cloud top height estimation from satellite IR images

    NASA Astrophysics Data System (ADS)

    Anzalone, Anna; Isgrò, Francesco

    2016-10-01

    The JEM-EUSO (Japanese Experiment Module-Extreme Universe Space Observatory) telescope will measure Ultra High Energy Cosmic Ray properties by detecting the UV fluorescent light generated in the interaction between cosmic rays and the atmosphere. Cloud information is crucial for a proper interpretation of these data. The problem of recovering the cloud-top height from satellite images in infrared has struck some attention over the last few decades, as a valuable tool for the atmospheric monitoring. A number of radiative methods do exist, like C02 slicing and Split Window algorithms, using one or more infrared bands. A different way to tackle the problem is, when possible, to exploit the availability of multiple views, and recover the cloud top height through stereo imaging and triangulation. A crucial step in the 3D reconstruction is the process that attempts to match a characteristic point or features selected in one image, with one of those detected in the second image. In this article the performance of a group matching algorithms that include both area-based and global techniques, has been tested. They are applied to stereo pairs of satellite IR images with the final aim of evaluating the cloud top height. Cloudy images from SEVIRI on the geostationary Meteosat Second Generation 9 and 10 (MSG-2, MSG-3) have been selected. After having applied to the cloudy scenes the algorithms for stereo matching, the outcoming maps of disparity are transformed in depth maps according to the geometry of the reference data system. As ground truth we have used the height maps provided by the database of MODIS (Moderate Resolution Imaging Spectroradiometer) on-board Terra/Aqua polar satellites, that contains images quasi-synchronous to the imaging provided by MSG.

  13. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm. PMID:22319408

  14. GF-7 Imaging Simulation and Dsm Accuracy Estimate

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Tang, X.; Gao, X.

    2017-05-01

    GF-7 satellite is a two-line-array stereo imaging satellite for surveying and mapping which will be launched in 2018. Its resolution is about 0.8 meter at subastral point corresponding to a 20 km width of cloth, and the viewing angle of its forward and backward cameras are 5 and 26 degrees. This paper proposed the imaging simulation method of GF-7 stereo images. WorldView-2 stereo images were used as basic data for simulation. That is, we didn't use DSM and DOM as basic data (we call it "ortho-to-stereo" method) but used a "stereo-to-stereo" method, which will be better to reflect the difference of geometry and radiation in different looking angle. The shortage is that geometric error will be caused by two factors, one is different looking angles between basic image and simulated image, another is not very accurate or no ground reference data. We generated DSM by WorldView-2 stereo images. The WorldView-2 DSM was not only used as reference DSM to estimate the accuracy of DSM generated by simulated GF-7 stereo images, but also used as "ground truth" to establish the relationship between WorldView-2 image point and simulated image point. Static MTF was simulated on the instantaneous focal plane "image" by filtering. SNR was simulated in the electronic sense, that is, digital value of WorldView-2 image point was converted to radiation brightness and used as radiation brightness of simulated GF-7 camera. This radiation brightness will be converted to electronic number n according to physical parameters of GF-7 camera. The noise electronic number n1 will be a random number between -√n and √n. The overall electronic number obtained by TDI CCD will add and converted to digital value of simulated GF-7 image. Sinusoidal curves with different amplitude, frequency and initial phase were used as attitude curves. Geometric installation errors of CCD tiles were also simulated considering the rotation and translation factors. An accuracy estimate was made for DSM generated from simulated images.

  15. Robust stereo matching with trinary cross color census and triple image-based refinements

    NASA Astrophysics Data System (ADS)

    Chang, Ting-An; Lu, Xiao; Yang, Jar-Ferr

    2017-12-01

    For future 3D TV broadcasting systems and navigation applications, it is necessary to have accurate stereo matching which could precisely estimate depth map from two distanced cameras. In this paper, we first suggest a trinary cross color (TCC) census transform, which can help to achieve accurate disparity raw matching cost with low computational cost. The two-pass cost aggregation (TPCA) is formed to compute the aggregation cost, then the disparity map can be obtained by a range winner-take-all (RWTA) process and a white hole filling procedure. To further enhance the accuracy performance, a range left-right checking (RLRC) method is proposed to classify the results as correct, mismatched, or occluded pixels. Then, the image-based refinements for the mismatched and occluded pixels are proposed to refine the classified errors. Finally, the image-based cross voting and a median filter are employed to complete the fine depth estimation. Experimental results show that the proposed semi-global stereo matching system achieves considerably accurate disparity maps with reasonable computation cost.

  16. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.

    PubMed

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-03-05

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.

  17. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter

    USGS Publications Warehouse

    Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; Gruber, M.; Gubler, P.; Mischler, H.; Jost, J.; Piazza, D.; Pommerol, A.; Rieder, M.; Roloff, V.; Servonet, A.; Trottmann, W.; Uthaicharoenpong, T.; Zimmermann, C.; Vernani, D.; Johnson, M.; Pelò, E.; Weigel, T.; Viertl, J.; De Roux, N.; Lochmatter, P.; Sutter, G.; Casciello, A.; Hausner, T.; Ficai Veltroni, I.; Da Deppo, V.; Orleanski, P.; Nowosielski, W.; Zawistowski, T.; Szalai, S.; Sodor, B.; Tulyakov, S.; Troznai, G.; Banaskiewicz, M.; Bridges, J.C.; Byrne, S.; Debei, S.; El-Maarry, M. R.; Hauber, E.; Hansen, C.J.; Ivanov, A.; Keszthelyil, L.; Kirk, Randolph L.; Kuzmin, R.; Mangold, N.; Marinangeli, L.; Markiewicz, W. J.; Massironi, M.; McEwen, A.S.; Okubo, Chris H.; Tornabene, L.L.; Wajer, P.; Wray, J.J.

    2017-01-01

    The Colour and Stereo Surface Imaging System (CaSSIS) is the main imaging system onboard the European Space Agency’s ExoMars Trace Gas Orbiter (TGO) which was launched on 14 March 2016. CaSSIS is intended to acquire moderately high resolution (4.6 m/pixel) targeted images of Mars at a rate of 10–20 images per day from a roughly circular orbit 400 km above the surface. Each image can be acquired in up to four colours and stereo capability is foreseen by the use of a novel rotation mechanism. A typical product from one image acquisition will be a 9.5 km×∼45 km">9.5 km×∼45 km9.5 km×∼45 km swath in full colour and stereo in one over-flight of the target thereby reducing atmospheric influences inherent in stereo and colour products from previous high resolution imagers. This paper describes the instrument including several novel technical solutions required to achieve the scientific requirements.

  18. Stereo imaging with spaceborne radars

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Kobrick, M.

    1983-01-01

    Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.

  19. Clinical applications of modern imaging technology: stereo image formation and location of brain cancer

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-05-01

    It is very important to locate the tumor for a patient, who has cancer in his brain. If he only gets X-CT or MRI pictures, the doctor does not know the size, shape location of the tumor and the relation between the tumor and other organs. This paper presents the formation of stereo images of cancer. On the basis of color code and color 3D reconstruction. The stereo images of tumor, brain and encephalic truncus are formed. The stereo image of cancer can be round on X, Y, Z-coordinates to show the shape from different directions. In order to show the location of tumor, stereo image of tumor and encephalic truncus are provided on different angles. The cross section pictures are also offered to indicate the relation of brain, tumor and encephalic truncus on cross sections. In this paper the calculating of areas, volume and the space between cancer and the side of the brain are also described.

  20. Novel Descattering Approach for Stereo Vision in Dense Suspended Scatterer Environments

    PubMed Central

    Nguyen, Chanh D. Tr.; Park, Jihyuk; Cho, Kyeong-Yong; Kim, Kyung-Soo; Kim, Soohyun

    2017-01-01

    In this paper, we propose a model-based scattering removal method for stereo vision for robot manipulation in indoor scattering media where the commonly used ranging sensors are unable to work. Stereo vision is an inherently ill-posed and challenging problem. It is even more difficult in the case of images of dense fog or dense steam scenes illuminated by active light sources. Images taken in such environments suffer attenuation of object radiance and scattering of the active light sources. To solve this problem, we first derive the imaging model for images taken in a dense scattering medium with a single active illumination close to the cameras. Based on this physical model, the non-uniform backscattering signal is efficiently removed. The descattered images are then utilized as the input images of stereo vision. The performance of the method is evaluated based on the quality of the depth map from stereo vision. We also demonstrate the effectiveness of the proposed method by carrying out the real robot manipulation task. PMID:28629139

  1. Photogrammetric Processing Using ZY-3 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are detected covering an area of 4691ha, corresponding to less than 2% of the imaged area. Most of the artifacts are caused by clouds (4614ha). A minor part (77ha) is affected by colour patch, stripping or blooming effects. For the final qualitative analysis on the usability of the ZY-3 imagery for stereo plotting purposes stereo combinations of the nadir and an oblique image are discarded, mainly due to the different pixel size, which produces difficulties in the stereoscopic vision and poor accuracy in positioning and measuring. With the two oblique images a level of detail equivalent to 1:25.000 scale is achieved for transport network, hydrography, vegetation and elements to model the terrain as break lines. For settlement, including buildings and other constructions a lower level of detail is achieved equivalent to 1:50.000 scale.

  2. Double biprism arrays design using for stereo-photography of mobile phone camera

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Shing; Chu, Pu-Yi; Chao, Yu-Hao; Pan, Jui-Wen; Tien, Chuen-Lin

    2016-11-01

    Generally, mobile phone use one camera to catch the image, and it is hard to get stereo image pair. Adding a biprism array can help that get the image pair easily. So users can use their mobile phone to catch the stereo image anywhere by adding a biprism array, and if they want to get a normal image just remove it. Using biprism arrays will induce chromatic aberration. Therefore, we design a double biprism arrays to reduce chromatic aberration.

  3. Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation

    NASA Astrophysics Data System (ADS)

    Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy

    2015-03-01

    Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera-to-object and baseline distance reduces errors in occluded areas and that realistic ground truths help to quantify those errors.

  4. Real-Time Visualization Tool Integrating STEREO, ACE, SOHO and the SDO

    NASA Astrophysics Data System (ADS)

    Schroeder, P. C.; Luhmann, J. G.; Marchant, W.

    2011-12-01

    The STEREO/IMPACT team has developed a new web-based visualization tool for near real-time data from the STEREO instruments, ACE and SOHO as well as relevant models of solar activity. This site integrates images, solar energetic particle, solar wind plasma and magnetic field measurements in an intuitive way using near real-time products from NOAA and other sources to give an overview of recent space weather events. This site enhances the browse tools already available at UC Berkeley, UCLA and Caltech which allow users to visualize similar data from the start of the STEREO mission. Our new near real-time tool utilizes publicly available real-time data products from a number of missions and instruments, including SOHO LASCO C2 images from the SOHO team's NASA site, SDO AIA images from the SDO team's NASA site, STEREO IMPACT SEP data plots and ACE EPAM data plots from the NOAA Space Weather Prediction Center and STEREO spacecraft positions from the STEREO Science Center.

  5. Stereoscopy and the Human Visual System

    PubMed Central

    Banks, Martin S.; Read, Jenny C. A.; Allison, Robert S.; Watt, Simon J.

    2012-01-01

    Stereoscopic displays have become important for many applications, including operation of remote devices, medical imaging, surgery, scientific visualization, and computer-assisted design. But the most significant and exciting development is the incorporation of stereo technology into entertainment: specifically, cinema, television, and video games. In these applications for stereo, three-dimensional (3D) imagery should create a faithful impression of the 3D structure of the scene being portrayed. In addition, the viewer should be comfortable and not leave the experience with eye fatigue or a headache. Finally, the presentation of the stereo images should not create temporal artifacts like flicker or motion judder. This paper reviews current research on stereo human vision and how it informs us about how best to create and present stereo 3D imagery. The paper is divided into four parts: (1) getting the geometry right, (2) depth cue interactions in stereo 3D media, (3) focusing and fixating on stereo images, and (4) how temporal presentation protocols affect flicker, motion artifacts, and depth distortion. PMID:23144596

  6. Stereo Cameras for Clouds (STEREOCAM) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romps, David; Oktem, Rusen

    2017-10-31

    The three pairs of stereo camera setups aim to provide synchronized and stereo calibrated time series of images that can be used for 3D cloud mask reconstruction. Each camera pair is positioned at approximately 120 degrees from the other pair, with a 17o-19o pitch angle from the ground, and at 5-6 km distance from the U.S. Department of Energy (DOE) Central Facility at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) observatory to cover the region from northeast, northwest, and southern views. Images from both cameras of the same stereo setup can be paired together tomore » obtain 3D reconstruction by triangulation. 3D reconstructions from the ring of three stereo pairs can be combined together to generate a 3D mask from surrounding views. This handbook delivers all stereo reconstruction parameters of the cameras necessary to make 3D reconstructions from the stereo camera images.« less

  7. Test Image of Earth Rocks by Mars Camera Stereo

    NASA Image and Video Library

    2010-11-16

    This stereo view of terrestrial rocks combines two images taken by a testing twin of the Mars Hand Lens Imager MAHLI camera on NASA Mars Science Laboratory. 3D glasses are necessary to view this image.

  8. Stereo sequence transmission via conventional transmission channel

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Keun; Kim, Chul-Hwan; Han, Kyu-Phil; Ha, Yeong-Ho

    2003-05-01

    This paper proposes a new stereo sequence transmission technique using digital watermarking for compatibility with conventional 2D digital TV. We, generally, compress and transmit image sequence using temporal-spatial redundancy between stereo images. It is difficult for users with conventional digital TV to watch the transmitted 3D image sequence because many 3D image compression methods are different. To solve such a problem, in this paper, we perceive the concealment of new information of digital watermarking and conceal information of the other stereo image into three channels of the reference image. The main target of the technique presented is to let the people who have conventional DTV watch stereo movies at the same time. This goal is reached by considering the response of human eyes to color information and by using digital watermarking. To hide right images into left images effectively, bit-change in 3 color channels and disparity estimation according to the value of estimated disparity are performed. The proposed method assigns the displacement information of right image to each channel of YCbCr on DCT domain. Each LSB bit on YCbCr channels is changed according to the bits of disparity information. The performance of the presented methods is confirmed by several computer experiments.

  9. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  10. Topomapping of Mars with HRSC images, ISIS, and a commercial stereo workstation

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Galuszka, D.; Redding, B.; Hare, T. M.

    HRSC on Mars Express [1] is the first camera designed specifically for stereo imaging to be used in mapping a planet other than the Earth. Nine detectors view the planet through a single lens to obtain four-band color coverage and stereo images at 3 to 5 distinct angles in a single pass over the target. The short interval between acquisition of the images ensures that changes that could interfere with stereo matching are minimized. The resolution of the nadir channel is 12.5 m at periapsis, poorer at higher points in the elliptical orbit. The stereo channels are typically operated at 2x coarser resolution and the color channels at 4x or 8x. Since the commencement of operations in January 2004, approximately 58% of Mars has been imaged at nadir resolutions better than 50 m/pixel. This coverage is expected to increase significantly during the recently approved extended mission of Mars Express, giving the HRSC dataset enormous potential for regional and even global mapping. Systematic processing of the HRSC images is carried out at the German Aerospace Center (DLR) in Berlin. Preliminary digital topographic models (DTMs) at 200 m/post resolution and orthorectified image products are produced in near-realtime for all orbits, by using the VICAR software system [2]. The tradeoff of universal coverage but limited DTM resolution makes these products optimal for many but not all research studies. Experiments on adaptive processing with the same software, for a limited number of orbits, have allowed DTMs of higher resolution (down to 50 m/post) to be produced [3]. In addition, numerous Co-Investigators on the HRSC team (including ourselves) are actively researching techniques to improve on the standard products, by such methods as bundle adjustment, alternate approaches to stereo DTM generation, and refinement of DTMs by photoclinometry (shape-from-shading) [4]. The HRSC team is conducting a systematic comparison of these alternative processing approaches by arranging for team members to produce DTMs in a consistent coordinate system from a carefully chosen suite of test images [5]. Here, we describe our own approach to HRSC processing and the results we obtained with the test images. We have developed an independent capability for processing of HRSC images at the USGS, based on the approach previously taken with Mars Global Surveyor Mars Orbiter Camera (MGS MOC) images [6]. The chosen approach uses both the USGS digital cartographic system ISIS and the commercial photogrammetric software SOCET SET ( R BAE Systems) and exploits the strengths of each. This capability provides 1 an independent point of comparison for the standard processing, as described here. It also prepares us for systematic mapping with HRSC data, if desired, and makes some useful processing tools (including relatively powerful photometric normalization and photoclinometry software) available to a wide community of ISIS users. ISIS [7] provides an end-to-end system for the analysis of digital images and production of maps from them that is readily extended to new missions. Its stereo capabilities are, however, limited. SOCET SET [8] is tailored to aerial and Earth-orbital imagery but provides a complete workflow with modules for bundle adjustment (MST), automatic stereomatching (ATE), and interactive quality control/editing of DTMs with stereo viewing (ITE). Our processing approach for MOC and other stereo datasets has been to use ISIS to ingest images in an archival format, decompress them as necessary, and perform instrument-specific radiometric calibration. Software written in ISIS is used to translate the image and, more importantly, orientation parameters and other metadata, to the formats understood by SOCET SET. The commercial system is then used for "three-dimensional" processing: bundle-adjustment (including measurement of needed control points), DTM generation, and DTM editing. Final steps such as orthrectification and mosaicking of images can be performed either in SOCET SET or in ISIS after exporting the DTM data back to it. This workflow was modified slightly for HRSC to take advantage of the standard processing performed at the DLR. As the first step in DTM production, we import VICAR Level 2 files (radiometrically calibrated but still in the raw camera geometry) into ISIS where they can immediately be used or exported to SOCET SET. HRSC Level 3 and 4 products (DTMs and orthorectified images) can also be imported and used as map-projected data (e.g., Level 4 DTMs from DLR can be compared with those produced in SOCET SET). Our results for images from orbit h1235 (covering western Candor Chasma) and the adjacent orbits h0894, h0905, h0927 (Nanedi Valles), are encouraging even though we were unable to take full advantage of the multiple-line design of HRSC in the analysis. The version of SOCET SET used (5.2) does not allow for the introduction of constraints in the bundle adjustment to ensure that the images from a single HRSC orbit share the same trajectory and pointing history. We therefore computed offsets to the trajectory and pointing angles for each image of the set as if they were fully independent Furthermore, a limitation of the existing SOCET (and ISIS) pushbroom scanner sensor models is that the exposure time per line is taken as constant for each image. HRSC is generally operated so that the line time changes multiple times per orbit, requiring us to split each VICAR image into multiple files for processing. Because the segments of each image could not be constrained to have consistent adjustments, the DTM of Nanedi Valles produced from these image segments contained small discontinuities at the segment boundaries. This problem did not arise for Candor Chasma 2 because the entire study area was covered without changes in the time per image line. The latest release of SOCET SET (5.3) incorporates the ability to do constrained bundle adjustment and should solve these problems. In addition, we are modifying the ISIS and SOCET sensor models to allow changes of line time within an image. This will greatly reduce the effort needed to work with HRSC image sets with frequent line time changes (i.e., the vast majority), because we will no longer have to split them into short segments that must be controlled and processed individually. In addition, a bug in recent and current versions of SOCET SET prevents the capability for multi-way image matching from being used with sets of scanner images. We therefore collected separate DTMs by pairwise matching of each combination of images (nadir-stereo1, nadir-stereo2, stereo1-stereo2) within an orbit and merged the results. The bug will be corrected in a future release of SOCET SET, making multi-way matching possible. This is expected to improve the robustness of DTM generation and reduce the need for interactive editing. The Candor Chasma bundle adjustment yielded RMS two-dimensional residuals of 0.5 to 0.7 pixels in most bands, 1.4 pixels in the blue. RMS residuals to the ground control provided by Mars Orbiter Laser Altimeter (MOLA) data were ˜180 m horizontally but only 15 m vertically. Adjustments to the spacecraft orientation were surprisingly large, and may be correlated: 0.1 to 2.4 km in position, ≤0.3° in omega, ≤0.8° in the other two angles. Placement of the (manually selected) control points was found to be critical; matching MOLA to the images to constrain horizontal coordinates is easiest at slope breaks such as the canyon edges, but vertical constraints are best obtained in areas of low slope. As a result, it is preferable to choose separate points for horizontal and vertical control. It is also useful to import the MOLA ground tracks into SOCET SET in order to be sure of picking control points on or near altimetry profiles rather than in gaps where the MOLA DTM has been filled by interpolation. We collected DTMs at 75 m/post in the interior of Candor Chasma and 300 m on the walls and surrounding plateau, and merged the results from both spacings and all 3 image combinations at 75 m/post. For Nanedi Valles, which lacks the extremely steep or flat areas encountered in Candor, DTMs at both spacings were collected over the full study area. A small amount of interactive editing was performed to remove areas of obvious matcher errors from the individual DTMs before they were merged. In most cases, this resulted in the combined DTM being based on the other, more successful matching results. Parts of the plateau around Candor Chasma, which has very little image texture, could not be matched successfully and were filled with MOLA data. As would be expected, the resulting DTM appears sharper than either MOLA at 463 m/post or the preliminary HRSC DTM at 200 m/post. The added detail is subjectively well correlated with the image but is not as sharp at the 75 m (˜3 pixel) grid spacing. 3 With the DTM and orthorectified images translated back into ISIS format, a variety of useful additional processing steps could be demonstrated, such as generation of pan-sharpened true and false color images, color-albedo maps, and band-ratio images with correction for surface and atmospheric photometric effects. Similar processing of the nadir and stereo panchromatic images, which have phase angles ranging from 17° to 48°, reveals a surprising diversity of surface photometric behavior. Maps of phase- dependence of scattering will not only be useful for empirical classification of surface units and quantitative modeling of microtexture and other photometric parameters, they are also likely to be essential for the rigorous comparison of the color images, which span a comparable range of phase angles. Finally, by dividing the nadir image by a smoothed version of the albedo map, we were able to obtain an image in which all but the most localized albedo variations had been removed. The albedo-corrected image was then analyzed by two-dimensional photoclinometry [9] to generate a DTM that contains real geomorphic detail at the limit of image resolution while retaining consistency with the stereo and MOLA data over longer distances. Because photoclinometry serves merely as a form of "smart interpolation" to fill in local details in the stereo DTM, the complications that can arise in the general case [10] do not occur, and this processing can be carried out unsupervised. We note in conclusion that orthorectification of the images, photometric normalization and modeling, and photoclinometry are all performed with the free software system ISIS. At the moment, the commercial software SOCET SET is required for both bundle adjustment and stereo DTM production. The USGS is currently developing its own bundle adjustment software for HRSC and other line scanners, which, when available, will make it possible for ISIS users to control HRSC images to MOLA and therefore to use the altimetric topography in subsequent processing and analysis steps similar to those described here. Acknowledgement: For this study, the HRSC Experiment Team of the German Aerospace Center (DLR) in Berlin has provided HRSC Preliminary 200m DTM(s). References: [1] Neukum, G., et al. (2004) Nature, 432, 971. [2] Scholten, F., et al. (2005) PE&RS, 71, 1143. [3] Gwinner, K., et al. (2005) PFG, 5, 387. [4] Albertz, J., et al. (2005) PE&RS, 71, 1153. [5] Heipke, C., et al. (2006) IAPRS, submitted. [6] Kirk, R.L., et al. (2003) JGR, 108, 8088. [7] Eliason, E. (1997) LPS XXVIII, 331; Gaddis et al. (1997) LPS XXVIII, 387; Torson, J., and K. Becker, (1997) LPS XXVIII, 1443. [8] Miller, S.B., and A.S. Walker (1993) ACSM/ASPRS Annual Conv., 3, 256; S.B., and A.S. Walker (1995) Z. Phot. Fern. 63, 4. [9] Kirk, R.L. (1987) Ph.D. Thesis, Caltech, Part III. [10] Kirk, R.L., et al. (2003) ISPRS-ET Workshop, http://astrogeology.usgs.gov/Projects/ISPRS/Meetings/Houston2003/abstracts/ Kirk_isprs_mar03.pdf. 4

  11. An invertebrate embryologist's guide to routine processing of confocal images.

    PubMed

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  12. Imaging Techniques for Dense 3D reconstruction of Swimming Aquatic Life using Multi-view Stereo

    NASA Astrophysics Data System (ADS)

    Daily, David; Kiser, Jillian; McQueen, Sarah

    2016-11-01

    Understanding the movement characteristics of how various species of fish swim is an important step to uncovering how they propel themselves through the water. Previous methods have focused on profile capture methods or sparse 3D manual feature point tracking. This research uses an array of 30 cameras to automatically track hundreds of points on a fish as they swim in 3D using multi-view stereo. Blacktip sharks, sting rays, puffer fish, turtles and more were imaged in collaboration with the National Aquarium in Baltimore, Maryland using the multi-view stereo technique. The processes for data collection, camera synchronization, feature point extraction, 3D reconstruction, 3D alignment, biological considerations, and lessons learned will be presented. Preliminary results of the 3D reconstructions will be shown and future research into mathematically characterizing various bio-locomotive maneuvers will be discussed.

  13. Topview stereo: combining vehicle-mounted wide-angle cameras to a distance sensor array

    NASA Astrophysics Data System (ADS)

    Houben, Sebastian

    2015-03-01

    The variety of vehicle-mounted sensors in order to fulfill a growing number of driver assistance tasks has become a substantial factor in automobile manufacturing cost. We present a stereo distance method exploiting the overlapping field of view of a multi-camera fisheye surround view system, as they are used for near-range vehicle surveillance tasks, e.g. in parking maneuvers. Hence, we aim at creating a new input signal from sensors that are already installed. Particular properties of wide-angle cameras (e.g. hanging resolution) demand an adaptation of the image processing pipeline to several problems that do not arise in classical stereo vision performed with cameras carefully designed for this purpose. We introduce the algorithms for rectification, correspondence analysis, and regularization of the disparity image, discuss reasons and avoidance of the shown caveats, and present first results on a prototype topview setup.

  14. Interactive stereo electron microscopy enhanced with virtual reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E.Wes; Bastacky, S.Jacob; Schwartz, Kenneth S.

    2001-12-17

    An analytical system is presented that is used to take measurements of objects perceived in stereo image pairs obtained from a scanning electron microscope (SEM). Our system operates by presenting a single stereo view that contains stereo image data obtained from the SEM, along with geometric representations of two types of virtual measurement instruments, a ''protractor'' and a ''caliper''. The measurements obtained from this system are an integral part of a medical study evaluating surfactant, a liquid coating the inner surface of the lung which makes possible the process of breathing. Measurements of the curvature and contact angle of submicronmore » diameter droplets of a fluorocarbon deposited on the surface of airways are performed in order to determine surface tension of the air/liquid interface. This approach has been extended to a microscopic level from the techniques of traditional surface science by measuring submicrometer rather than millimeter diameter droplets, as well as the lengths and curvature of cilia responsible for movement of the surfactant, the airway's protective liquid blanket. An earlier implementation of this approach for taking angle measurements from objects perceived in stereo image pairs using a virtual protractor is extended in this paper to include distance measurements and to use a unified view model. The system is built around a unified view model that is derived from microscope-specific parameters, such as focal length, visible area and magnification. The unified view model ensures that the underlying view models and resultant binocular parallax cues are consistent between synthetic and acquired imagery. When the view models are consistent, it is possible to take measurements of features that are not constrained to lie within the projection plane. The system is first calibrated using non-clinical data of known size and resolution. Using the SEM, stereo image pairs of grids and spheres of known resolution are created to calibrate the measurement system. After calibration, the system is used to take distance and angle measurements of clinical specimens.« less

  15. Television monitor field shifter and an opto-electronic method for obtaining a stereo image of optimal depth resolution and reduced depth distortion on a single screen

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1989-01-01

    A method and apparatus is developed for obtaining a stereo image with reduced depth distortion and optimum depth resolution. Static and dynamic depth distortion and depth resolution tradeoff is provided. Cameras obtaining the images for a stereo view are converged at a convergence point behind the object to be presented in the image, and the collection-surface-to-object distance, the camera separation distance, and the focal lengths of zoom lenses for the cameras are all increased. Doubling the distances cuts the static depth distortion in half while maintaining image size and depth resolution. Dynamic depth distortion is minimized by panning a stereo view-collecting camera system about a circle which passes through the convergence point and the camera's first nodal points. Horizontal field shifting of the television fields on a television monitor brings both the monitor and the stereo views within the viewer's limit of binocular fusion.

  16. Research on the feature set construction method for spherical stereo vision

    NASA Astrophysics Data System (ADS)

    Zhu, Junchao; Wan, Li; Röning, Juha; Feng, Weijia

    2015-01-01

    Spherical stereo vision is a kind of stereo vision system built by fish-eye lenses, which discussing the stereo algorithms conform to the spherical model. Epipolar geometry is the theory which describes the relationship of the two imaging plane in cameras for the stereo vision system based on perspective projection model. However, the epipolar in uncorrected fish-eye image will not be a line but an arc which intersects at the poles. It is polar curve. In this paper, the theory of nonlinear epipolar geometry will be explored and the method of nonlinear epipolar rectification will be proposed to eliminate the vertical parallax between two fish-eye images. Maximally Stable Extremal Region (MSER) utilizes grayscale as independent variables, and uses the local extremum of the area variation as the testing results. It is demonstrated in literatures that MSER is only depending on the gray variations of images, and not relating with local structural characteristics and resolution of image. Here, MSER will be combined with the nonlinear epipolar rectification method proposed in this paper. The intersection of the rectified epipolar and the corresponding MSER region is determined as the feature set of spherical stereo vision. Experiments show that this study achieved the expected results.

  17. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †

    PubMed Central

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599

  18. The Sun in STEREO

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Parallax gives depth to life. Simultaneous viewing from slightly different vantage points makes binocular humans superior to monocular cyclopes, and fixes us in the third dimension of the Universe. We've been stunned by 3-d images of Venus and Mars (along with more familiar views of earth). Now astronomers plan to give us the best view of all, 3-d images of the dynamic Sun. That's one of the prime goals of NASA's Solar Terrestrial Relations Observatories, also known as STEREO. STEREO is a pair of spacecraft observatories, one placed in orbit in front of earth, and one to be placed in an earth-trailing orbit. Simultaneous observations of the Sun with the two STEREO spacecraft will provide extraordinary 3-d views of all types of solar activity, especially the dramatic events called coronal mass ejections which send high energy particles from the outer solar atmosphere hurtling towards earth. The image above the first image of the sun by the two STEREO spacecraft, an extreme ultraviolet shot of the Sun's million-degree corona, taken by the Extreme Ultraviolet Imager on the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument package. STEREO's first 3-d solar images should be available in April if all goes well. Put on your red and blue glasses!

  19. Transparent volume imaging

    NASA Astrophysics Data System (ADS)

    Wixson, Steve E.

    1990-07-01

    Transparent Volume Imaging began with the stereo xray in 1895 and ended for most investigators when radiation safety concerns eliminated the second view. Today, similiar images can be generated by the computer without safety hazards providing improved perception and new means of image quantification. A volumetric workstation is under development based on an operational prototype. The workstation consists of multiple symbolic and numeric processors, binocular stereo color display generator with large image memory and liquid crystal shutter, voice input and output, a 3D pointer that uses projection lenses so that structures in 3 space can be touched directly, 3D hard copy using vectograph and lenticular printing, and presentation facilities using stereo 35mm slide and stereo video tape projection. Volumetric software includes a volume window manager, Mayo Clinic's Analyze program and our Digital Stereo Microscope (DSM) algorithms. The DSM uses stereo xray-like projections, rapidly oscillating motion and focal depth cues such that detail can be studied in the spatial context of the entire set of data. Focal depth cues are generated with a lens and apeture algorithm that generates a plane of sharp focus, and multiple stereo pairs each with a different plane of sharp focus are generated and stored in the large memory for interactive selection using a physical or symbolic depth selector. More recent work is studying non-linear focussing. Psychophysical studies are underway to understand how people perce ive images on a volumetric display and how accurately 3 dimensional structures can be quantitated from these displays.

  20. Acquisition of stereo panoramas for display in VR environments

    NASA Astrophysics Data System (ADS)

    Ainsworth, Richard A.; Sandin, Daniel J.; Schulze, Jurgen P.; Prudhomme, Andrew; DeFanti, Thomas A.; Srinivasan, Madhusudhanan

    2011-03-01

    Virtual reality systems are an excellent environment for stereo panorama displays. The acquisition and display methods described here combine high-resolution photography with surround vision and full stereo view in an immersive environment. This combination provides photographic stereo-panoramas for a variety of VR displays, including the StarCAVE, NexCAVE, and CORNEA. The zero parallax point used in conventional panorama photography is also the center of horizontal and vertical rotation when creating photographs for stereo panoramas. The two photographically created images are displayed on a cylinder or a sphere. The radius from the viewer to the image is set at approximately 20 feet, or at the object of major interest. A full stereo view is presented in all directions. The interocular distance, as seen from the viewer's perspective, displaces the two spherical images horizontally. This presents correct stereo separation in whatever direction the viewer is looking, even up and down. Objects at infinity will move with the viewer, contributing to an immersive experience. Stereo panoramas created with this acquisition and display technique can be applied without modification to a large array of VR devices having different screen arrangements and different VR libraries.

  1. JAVA Stereo Display Toolkit

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  2. Shape and rotational elements of comet 67P/ Churyumov-Gerasimenko derived by stereo-photogrammetric analysis of OSIRIS NAC image data

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Scholten, Frank; Matz, Klaus-Dieter; Roatsch, Thomas; Willner, Konrad; Hviid, Stubbe; Knollenberg, Jörg; Kührt, Ekkehard; Sierks, Holger

    2015-04-01

    The European Space Agency's Rosetta spacecraft is equipped with the OSIRIS imaging system which consists of a wide-angle and a narrow-angle camera (WAC and NAC). After the approach phase, Rosetta was inserted into a descent trajectory of comet 67P/Churyumov-Gerasimenko (C-G) in early August 2014. Until early September, OSIRIS acquired several hundred NAC images of C-G's surface at different scales (from ~5 m/pixel during approach to ~0.9 m/pixel during descent). In that one month observation period, the surface was imaged several times within different mapping sequences. With the comet's rotation period of ~12.4 h and the low spacecraft velocity (< 1 m/s), the entire NAC dataset provides multiple NAC stereo coverage, adequate for stereo-photogrammetric (SPG) analysis towards the derivation of 3D surface models. We constrained the OSIRIS NAC images with our stereo requirements (15° < stereo angles < 45°, incidence angles <85°, emission angles <45°, differences in illumination < 10°, scale better than 5 m/pixel) and extracted about 220 NAC images that provide at least triple stereo image coverage for the entire illuminated surface in about 250 independent multi-stereo image combinations. For each image combination we determined tie points by multi-image matching in order to set-up a 3D control network and a dense surface point cloud for the precise reconstruction of C-G's shape. The control point network defines the input for a stereo-photogrammetric least squares adjustment. Based on the statistical analysis of adjustments we first refined C-G's rotational state (pole orientation and rotational period) and its behavior over time. Based upon this description of the orientation of C-G's body-fixed reference frame, we derived corrections for the nominal navigation data (pointing and position) within a final stereo-photogrammetric block adjustment where the mean 3D point accuracy of more than 100 million surface points has been improved from ~10 m to the sub-meter range. We finally applied point filtering and interpolation techniques to these surface 3D points and show the resulting SPG-based 3D surface model with a lateral sampling rate of about 2 m.

  3. Coincident Extraction of Line Objects from Stereo Image Pairs.

    DTIC Science & Technology

    1983-09-01

    4.4.3 Reconstruction of intersections 4.5 Final result processing 5. Presentation of the results 5.1 FIM image processing system 5.2 Extraction results in...image. To achieve this goal, the existing software system had to be modified and extended considerably. The following sections of this report will give...8000 pixels of each image without explicit loading of subimages could not yet be performed due to computer system software problems. m m n m -4- The

  4. Validation of "AW3D" Global Dsm Generated from Alos Prism

    NASA Astrophysics Data System (ADS)

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi

    2016-06-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  5. Stereo optical guidance system for control of industrial robots

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W. (Inventor); Rodgers, Mike H. (Inventor)

    1992-01-01

    A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices.

  6. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    NASA Technical Reports Server (NTRS)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  7. Parallax scanning methods for stereoscopic three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2012-03-01

    Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.

  8. Stereographic observations from geosynchronous satellites - An important new tool for the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1981-01-01

    Observations of cloud geometry using scan-synchronized stereo geostationary satellites having images with horizontal spatial resolution of approximately 0.5 km, and temporal resolution of up to 3 min are presented. The stereo does not require a cloud with known emissivity to be in equilibrium with an atmosphere with a known vertical temperature profile. It is shown that absolute accuracies of about 0.5 km are possible. Qualitative and quantitative representations of atmospheric dynamics were shown by remapping, display, and stereo image analysis on an interactive computer/imaging system. Applications of stereo observations include: (1) cloud top height contours of severe thunderstorms and hurricanes, (2) cloud top and base height estimates for cloud-wind height assignment, (3) cloud growth measurements for severe thunderstorm over-shooting towers, (4) atmospheric temperature from stereo heights and infrared cloud top temperatures, and (5) cloud emissivity estimation. Recommendations are given for future improvements in stereo observations, including a third GOES satellite, operational scan synchronization of all GOES satellites and better resolution sensors.

  9. Image matching for digital close-range stereo photogrammetry based on constraints of Delaunay triangulated network and epipolar-line

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.

    2006-10-01

    In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.

  10. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  11. Stereoscopic observations from meteorological satellites

    NASA Astrophysics Data System (ADS)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the two satellites. A general solution for accurate height computation depends on precise navigation of the two satellites. Validation of the geosynchronous satellite stereo using high altitude mountain lakes and vertically pointing aircraft lidar leads to a height accuracy estimate of +/- 500 m for typical clouds which have been studied. Applications of the satellite stereo include: 1) cloud top and base height measurements, 2) cloud-wind height assignment, 3) vertical motion estimates for convective clouds (Mack et al. [13], [14]), 4) temperature vs. height measurements when stereo is used together with infrared observations and 5) cloud emissivity measurements when stereo, infrared and temperature sounding are used together (see Szejwach et al. [15]). When true satellite stereo image pairs are not available, synthetic stereo may be generated. The combination of multispectral satellite data using computer produced stereo image pairs is a dramatic example of synthetic stereoscopic display. The classic case uses the combination of infrared and visible data as first demonstrated by Pichel et al. [16]. Hasler et at. [17], Mosher and Young [18] and Lorenz [19], have expanded this concept to display many channels of data from various radiometers as well as real and simulated data fields. A future system of stereoscopic satellites would be comprised of both low orbiters (as suggested by Lorenz and Schmidt [20], [19]) and a global system of geosynchronous satellites. The low earth orbiters would provide stereo coverage day and night and include the poles. An optimum global system of stereoscopic geosynchronous satellites would require international standarization of scan rate and direction, and scan times (synchronization) and resolution of at least 1 km in all imaging channels. A stereoscopic satellite system as suggested here would make an extremely important contribution to the understanding and prediction of the atmosphere.

  12. Solar Eclipse, STEREO Style

    NASA Technical Reports Server (NTRS)

    2007-01-01

    There was a transit of the Moon across the face of the Sun - but it could not be seen from Earth. This sight was visible only from the STEREO-B spacecraft in its orbit about the sun, trailing behind the Earth. NASA's STEREO mission consists of two spacecraft launched in October, 2006 to study solar storms. The transit starts at 1:56 am EST and continued for 12 hours until 1:57 pm EST. STEREO-B is currently about 1 million miles from the Earth, 4.4 times farther away from the Moon than we are on Earth. As the result, the Moon will appear 4.4 times smaller than what we are used to. This is still, however, much larger than, say, the planet Venus appeared when it transited the Sun as seen from Earth in 2004. This alignment of STEREO-B and the Moon is not just due to luck. It was arranged with a small tweak to STEREO-B's orbit last December. The transit is quite useful to STEREO scientists for measuring the focus and the amount of scattered light in the STEREO imagers and for determining the pointing of the STEREO coronagraphs. The Sun as it appears in these the images and each frame of the movie is a composite of nearly simultaneous images in four different wavelengths of extreme ultraviolet light that were separated into color channels and then recombined with some level of transparency for each.

  13. Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data

    NASA Technical Reports Server (NTRS)

    Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.

    2013-01-01

    Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.

  14. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    NASA Astrophysics Data System (ADS)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  15. Curve and Polygon Evolution Techniques for Image Processing

    DTIC Science & Technology

    2002-01-01

    iterative image registration technique with an application to stereo vision. IJCAI, pages 674–679, 1981. 127 [93] R . Malladi , J.A. Sethian, and B.C...Notation A digital image to be processed is a 2-Dimensional (2-D) function denoted by I , I : ! R , where R2 is the domain of the function. Processing a...function Io(x; y), which depends on two spatial variables, x 2 R , and y 2 R , via a partial differential equation (PDE) takes the form; It = A(I; Ix

  16. An automated, open-source (NASA Ames Stereo Pipeline) workflow for mass production of high-resolution DEMs from commercial stereo satellite imagery: Application to mountain glacies in the contiguous US

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Arendt, A. A.; Whorton, E.; Riedel, J. L.; O'Neel, S.; Fountain, A. G.; Joughin, I. R.

    2016-12-01

    We adapted the open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline an automated processing workflow for 0.5 m GSD DigitalGlobe WorldView-1/2/3 and GeoEye-1 along-track and cross-track stereo image data. Output DEM products are posted at 2, 8, and 32 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5­ m where appropriate ground-control data are available, with observed standard deviation of 0.1-0.5 m for overlapping, co-registered DEMs (n=14,17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We have leveraged these resources to produce dense time series and regional mosaics for the Earth's ice sheets. We are now processing and analyzing all available 2008-2016 commercial stereo DEMs over glaciers and perennial snowfields in the contiguous US. We are using these records to study long-term, interannual, and seasonal volume change and glacier mass balance. This analysis will provide a new assessment of regional climate change, and will offer basin-scale analyses of snowpack evolution and snow/ice melt runoff for water resource applications.

  17. Point Cloud and Digital Surface Model Generation from High Resolution Multiple View Stereo Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Gong, K.; Fritsch, D.

    2018-05-01

    Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs' generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.

  18. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  19. Forest abovegroundbiomass mapping using spaceborne stereo imagery acquired by Chinese ZY-3

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ni, W.; Zhang, Z.; Xiong, C.

    2015-12-01

    Besides LiDAR data, another valuable type of data which is also directly sensitive to forest vertical structures and more suitable for regional mapping of forest biomass is the stereo imagery or photogrammetry. Photogrammetry is the traditional technique for deriving terrain elevation. The elevation of the top of a tree canopy can be directly measured from stereo imagery but winter images are required to get the elevation of ground surface because stereo images are acquired by optical sensors which cannot penetrate dense forest canopies with leaf-on condition. Several spaceborne stereoscopic systems with higher spatial resolutions have been launched in the past several years. For example the Chinese satellite Zi Yuan 3 (ZY-3) specifically designed for the collection of stereo imagery with a resolution of 3.6 m for forward and backward views and 2.1 m for the nadir view was launched on January 9, 2012. Our previous studies have demonstrated that the spaceborne stereo imagery acquired in summer has good performance on the description of forest structures. The ground surface elevation could be extracted from spaceborne stereo imagery acquired in winter. This study mainly focused on assessing the mapping of forest biomass through the combination of spaceborne stereo imagery acquired in summer and those in winter. The test sites of this study located at Daxing AnlingMountains areas as shown in Fig.1. The Daxing Anling site is on the south border of boreal forest belonging to frigid-temperate zone coniferous forest vegetation The dominant tree species is Dhurian larch (Larix gmelinii). 10 scenes of ZY-3 stereo images are used in this study. 5 scenes were acquired on March 14,2012 while the other 5 scenes were acquired on September 7, 2012. Their spatial coverage is shown in Fig.2-a. Fig.2-b is the mosaic of nadir images acquired on 09/07/2012 while Fig.2-c is thecorresponding digital surface model (DSM) derived from stereo images acquired on 09/07/2012. Fig.2-d is the difference between the DSM derived from stereo imagery acquired on 09/07/2012 and the digital elevation model (DEM) from stereo imagery acquired on 03/14/2012.The detailed analysis will be given in the final report.

  20. Eros in Stereo

    NASA Image and Video Library

    2000-05-07

    Stereo imaging, an important tool on NASA NEAR Shoemaker for geologic analysis of Eros, provides three-dimensional information on the asteroid landforms and structures. 3D glasses are necessary to view this image.

  1. 3D shape recovery of smooth surfaces: dropping the fixed-viewpoint assumption.

    PubMed

    Moses, Yael; Shimshoni, Ilan

    2009-07-01

    We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images.

  2. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  3. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    USDA-ARS?s Scientific Manuscript database

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  4. Rapid Identification of Salmonella Serotypes with Stereo and Hyperspectral Microscope Imaging Methods

    USDA-ARS?s Scientific Manuscript database

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  5. Depth map generation using a single image sensor with phase masks.

    PubMed

    Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki

    2016-06-13

    Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.

  6. Video stereo-laparoscopy system

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Hu, Jiasheng; Jiang, Huilin

    2006-01-01

    Minimally invasive surgery (MIS) has contributed significantly to patient care by reducing the morbidity associated with more invasive procedures. MIS procedures have become standard treatment for gallbladder disease and some abdominal malignancies. The imaging system has played a major role in the evolving field of minimally invasive surgery (MIS). The image need to have good resolution, large magnification, especially, the image need to have depth cue at the same time the image have no flicker and suit brightness. The video stereo-laparoscopy system can meet the demand of the doctors. This paper introduces the 3d video laparoscopy has those characteristic, field frequency: 100Hz, the depth space: 150mm, resolution: 10pl/mm. The work principle of the system is introduced in detail, and the optical system and time-division stereo-display system are described briefly in this paper. The system has focusing image lens, it can image on the CCD chip, the optical signal can change the video signal, and through A/D switch of the image processing system become the digital signal, then display the polarized image on the screen of the monitor through the liquid crystal shutters. The doctors with the polarized glasses can watch the 3D image without flicker of the tissue or organ. The 3D video laparoscope system has apply in the MIS field and praised by doctors. Contrast to the traditional 2D video laparoscopy system, it has some merit such as reducing the time of surgery, reducing the problem of surgery and the trained time.

  7. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model

    NASA Astrophysics Data System (ADS)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2018-03-01

    This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.

  8. On-screen-display (OSD) menu detection for proper stereo content reproduction for 3D TV

    NASA Astrophysics Data System (ADS)

    Tolstaya, Ekaterina V.; Bucha, Victor V.; Rychagov, Michael N.

    2011-03-01

    Modern consumer 3D TV sets are able to show video content in two different modes: 2D and 3D. In 3D mode, stereo pair comes from external device such as Blue-ray player, satellite receivers etc. The stereo pair is split into left and right images that are shown one after another. The viewer sees different image for left and right eyes using shutter-glasses properly synchronized with a 3DTV. Besides, some devices that provide TV with a stereo content are able to display some additional information by imposing an overlay picture on video content, an On-Screen-Display (OSD) menu. Some OSDs are not always 3D compatible and lead to incorrect 3D reproduction. In this case, TV set must recognize the type of OSD, whether it is 3D compatible, and visualize it correctly by either switching off stereo mode, or continue demonstration of stereo content. We propose a new stable method for detection of 3D incompatible OSD menus on stereo content. Conventional OSD is a rectangular area with letters and pictograms. OSD menu can be of different transparency levels and colors. To be 3D compatible, an OSD is overlaid separately on both images of a stereo pair. The main problem in detecting OSD is to distinguish whether the color difference is due to OSD presence, or due to stereo parallax. We applied special techniques to find reliable image difference and additionally used a cue that usually OSD has very implicit geometrical features: straight parallel lines. The developed algorithm was tested on our video sequences database, with several types of OSD with different colors and transparency levels overlaid upon video content. Detection quality exceeded 99% of true answers.

  9. Deblocking of mobile stereo video

    NASA Astrophysics Data System (ADS)

    Azzari, Lucio; Gotchev, Atanas; Egiazarian, Karen

    2012-02-01

    Most of candidate methods for compression of mobile stereo video apply block-transform based compression based on the H-264 standard with quantization of transform coefficients driven by quantization parameter (QP). The compression ratio and the resulting bit rate are directly determined by the QP level and high compression is achieved for the price of visually noticeable blocking artifacts. Previous studies on perceived quality of mobile stereo video have revealed that blocking artifacts are the most annoying and most influential in the acceptance/rejection of mobile stereo video and can even completely cancel the 3D effect and the corresponding quality added value. In this work, we address the problem of deblocking of mobile stereo video. We modify a powerful non-local transform-domain collaborative filtering method originally developed for denoising of images and video. The method employs grouping of similar block patches residing in spatial and temporal vicinity of a reference block in filtering them collaboratively in a suitable transform domain. We study the most suitable way of finding similar patches in both channels of stereo video and suggest a hybrid four-dimensional transform to process the collected synchronized (stereo) volumes of grouped blocks. The results benefit from the additional correlation available between the left and right channel of the stereo video. Furthermore, addition sharpening is applied through an embedded alpha-rooting in transform domain, which improve the visual appearance of the deblocked frames.

  10. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    NASA Astrophysics Data System (ADS)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  11. Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.

    2006-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.

  12. Semi-Global Matching with Self-Adjusting Penalties

    NASA Astrophysics Data System (ADS)

    Karkalou, E.; Stentoumis, C.; Karras, G.

    2017-02-01

    The demand for 3D models of various scales and precisions is strong for a wide range of applications, among which cultural heritage recording is particularly important and challenging. In this context, dense image matching is a fundamental task for processes which involve image-based reconstruction of 3D models. Despite the existence of commercial software, the need for complete and accurate results under different conditions, as well as for computational efficiency under a variety of hardware, has kept image-matching algorithms as one of the most active research topics. Semi-global matching (SGM) is among the most popular optimization algorithms due to its accuracy, computational efficiency, and simplicity. A challenging aspect in SGM implementation is the determination of smoothness constraints, i.e. penalties P1, P2 for disparity changes and discontinuities. In fact, penalty adjustment is needed for every particular stereo-pair and cost computation. In this work, a novel formulation of self-adjusting penalties is proposed: SGM penalties can be estimated solely from the statistical properties of the initial disparity space image. The proposed method of self-adjusting penalties (SGM-SAP) is evaluated using typical cost functions on stereo-pairs from the recent Middlebury dataset of interior scenes, as well as from the EPFL Herz-Jesu architectural scenes. Results are competitive against the original SGM estimates. The significant aspects of self-adjusting penalties are: (i) the time-consuming tuning process is avoided; (ii) SGM can be used in image collections with limited number of stereo-pairs; and (iii) no heuristic user intervention is needed.

  13. Mastcam Stereo Analysis and Mosaics (MSAM)

    NASA Astrophysics Data System (ADS)

    Deen, R. G.; Maki, J. N.; Algermissen, S. S.; Abarca, H. E.; Ruoff, N. A.

    2017-06-01

    Describes a new PDART task that will generate stereo analysis products (XYZ, slope, etc.), terrain meshes, and mosaics (stereo, ortho, and Mast/Nav combos) for all MSL Mastcam images and deliver the results to PDS.

  14. Incremental Multi-view 3D Reconstruction Starting from Two Images Taken by a Stereo Pair of Cameras

    NASA Astrophysics Data System (ADS)

    El hazzat, Soulaiman; Saaidi, Abderrahim; Karam, Antoine; Satori, Khalid

    2015-03-01

    In this paper, we present a new method for multi-view 3D reconstruction based on the use of a binocular stereo vision system constituted of two unattached cameras to initialize the reconstruction process. Afterwards , the second camera of stereo vision system (characterized by varying parameters) moves to capture more images at different times which are used to obtain an almost complete 3D reconstruction. The first two projection matrices are estimated by using a 3D pattern with known properties. After that, 3D scene points are recovered by triangulation of the matched interest points between these two images. The proposed approach is incremental. At each insertion of a new image, the camera projection matrix is estimated using the 3D information already calculated and new 3D points are recovered by triangulation from the result of the matching of interest points between the inserted image and the previous image. For the refinement of the new projection matrix and the new 3D points, a local bundle adjustment is performed. At first, all projection matrices are estimated, the matches between consecutive images are detected and Euclidean sparse 3D reconstruction is obtained. So, to increase the number of matches and have a more dense reconstruction, the Match propagation algorithm, more suitable for interesting movement of the camera, was applied on the pairs of consecutive images. The experimental results show the power and robustness of the proposed approach.

  15. Robust feature estimation by non-rigid hierarchical image registration and its application in disparity measurement

    NASA Astrophysics Data System (ADS)

    Badshah, Amir; Choudhry, Aadil Jaleel; Ullah, Shan

    2017-03-01

    Industries are moving towards automation in order to increase productivity and ensure quality. Variety of electronic and electromagnetic systems are being employed to assist human operator in fast and accurate quality inspection of products. Majority of these systems are equipped with cameras and rely on diverse image processing algorithms. Information is lost in 2D image, therefore acquiring accurate 3D data from 2D images is an open issue. FAST, SURF and SIFT are well-known spatial domain techniques for features extraction and henceforth image registration to find correspondence between images. The efficiency of these methods is measured in terms of the number of perfect matches found. A novel fast and robust technique for stereo-image processing is proposed. It is based on non-rigid registration using modified normalized phase correlation. The proposed method registers two images in hierarchical fashion using quad-tree structure. The registration process works through global to local level resulting in robust matches even in presence of blur and noise. The computed matches can further be utilized to determine disparity and depth for industrial product inspection. The same can be used in driver assistance systems. The preliminary tests on Middlebury dataset produced satisfactory results. The execution time for a 413 x 370 stereo-pair is 500ms approximately on a low cost DSP.

  16. The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.

    The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.

  17. 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Navard, Andrew; Spruce, Joseph

    2010-01-01

    An analytical, advanced imaging method has been developed for the initial monitoring and identification of foam debris and similar anomalies that occur post-launch in reference to the space shuttle s external tank (ET). Remote sensing technologies have been used to perform image enhancement and analysis on high-resolution, true-color images collected with the DCS 760 Kodak digital camera located in the right umbilical well of the space shuttle. Improvements to the camera, using filters, have added sharpness/definition to the image sets; however, image review/analysis of the ET has been limited by the fact that the images acquired by umbilical cameras during launch are two-dimensional, and are usually nonreferenceable between frames due to rotation translation of the ET as it falls away from the space shuttle. Use of stereo pairs of these images can enable strong visual indicators that can immediately portray depth perception of damaged areas or movement of fragments between frames is not perceivable in two-dimensional images. A stereoscopic image visualization system has been developed to allow 3D depth perception of stereo-aligned image pairs taken from in-flight umbilical and handheld digital shuttle cameras. This new system has been developed to augment and optimize existing 2D monitoring capabilities. Using this system, candidate sequential image pairs are identified for transformation into stereo viewing pairs. Image orientation is corrected using control points (similar points) between frames to place the two images in proper X-Y viewing perspective. The images are then imported into the WallView stereo viewing software package. The collected control points are used to generate a transformation equation that is used to re-project one image and effectively co-register it to the other image. The co-registered, oriented image pairs are imported into a WallView image set and are used as a 3D stereo analysis slide show. Multiple sequential image pairs can be used to allow forensic review of temporal phenomena between pairs. The observer, while wearing linear polarized glasses, is able to review image pairs in passive 3D stereo.

  18. Variational stereo imaging of oceanic waves with statistical constraints.

    PubMed

    Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise

    2013-11-01

    An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

  19. Low Cost Embedded Stereo System for Underwater Surveys

    NASA Astrophysics Data System (ADS)

    Nawaf, M. M.; Boï, J.-M.; Merad, D.; Royer, J.-P.; Drap, P.

    2017-11-01

    This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.

  20. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  1. Simultaneous glacier surface elevation and flow velocity mapping from cross-track pushbroom satellite Imagery

    NASA Astrophysics Data System (ADS)

    Noh, M. J.; Howat, I. M.

    2017-12-01

    Glaciers and ice sheets are changing rapidly. Digital Elevation Models (DEMs) and Velocity Maps (VMs) obtained from repeat satellite imagery provide critical measurements of changes in glacier dynamics and mass balance over large, remote areas. DEMs created from stereopairs obtained during the same satellite pass through sensor re-pointing (i.e. "in-track stereo") have been most commonly used. In-track stereo has the advantage of minimizing the time separation and, thus, surface motion between image acquisitions, so that the ice surface can be assumed motionless in when collocating pixels between image pairs. Since the DEM extraction process assumes that all motion between collocated pixels is due to parallax or sensor model error, significant ice motion results in DEM quality loss or failure. In-track stereo, however, puts a greater demand on satellite tasking resources and, therefore, is much less abundant than single-scan imagery. Thus, if ice surface motion can be mitigated, the ability to extract surface elevation measurements from pairs of repeat single-scan "cross-track" imagery would greatly increase the extent and temporal resolution of ice surface change. Additionally, the ice motion measured by the DEM extraction process would itself provide a useful velocity measurement. We develop a novel algorithm for generating high-quality DEMs and VMs from cross-track image pairs without any prior information using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm and its sensor model bias correction capabilities. Using a test suite of repeat, single-scan imagery from WorldView and QuickBird sensors collected over fast-moving outlet glaciers, we develop a method by which RPC biases between images are first calculated and removed over ice-free surfaces. Subpixel displacements over the ice are then constrained and used to correct the parallax estimate. Initial tests yield DEM results with the same quality as in-track stereo for cases where snowfall has not occurred between the two images and when the images have similar ground sample distances. The resulting velocity map also closely matches independent measurements.

  2. The high resolution stereo camera (HRSC): acquisition of multi-spectral 3D-data and photogrammetric processing

    NASA Astrophysics Data System (ADS)

    Neukum, Gerhard; Jaumann, Ralf; Scholten, Frank; Gwinner, Klaus

    2017-11-01

    At the Institute of Space Sensor Technology and Planetary Exploration of the German Aerospace Center (DLR) the High Resolution Stereo Camera (HRSC) has been designed for international missions to planet Mars. For more than three years an airborne version of this camera, the HRSC-A, has been successfully applied in many flight campaigns and in a variety of different applications. It combines 3D-capabilities and high resolution with multispectral data acquisition. Variable resolutions depending on the camera control settings can be generated. A high-end GPS/INS system in combination with the multi-angle image information yields precise and high-frequent orientation data for the acquired image lines. In order to handle these data a completely automated photogrammetric processing system has been developed, and allows to generate multispectral 3D-image products for large areas and with accuracies for planimetry and height in the decimeter range. This accuracy has been confirmed by detailed investigations.

  3. STEREO Education and Public Outreach Efforts

    NASA Technical Reports Server (NTRS)

    Kucera, Therese

    2007-01-01

    STEREO has had a big year this year with its launch and the start of data collection. STEREO has mostly focused on informal educational venues, most notably with STEREO 3D images made available to museums through the NASA Museum Alliance. Other activities have involved making STEREO imagery available though the AMNH network and Viewspace, continued partnership with the Christa McAuliffe Planetarium, data sonification projects, preservice teacher training, and learning activity development.

  4. Performance Evaluation of Dsm Extraction from ZY-3 Three-Line Arrays Imagery

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Xie, W.; Du, Q.; Sang, H.

    2015-08-01

    ZiYuan-3 (ZY-3), launched in January 09, 2012, is China's first civilian high-resolution stereo mapping satellite. ZY-3 is equipped with three-line scanners (nadir, backward and forward) for stereo mapping, the resolutions of the panchromatic (PAN) stereo mapping images are 2.1-m at nadir looking and 3.6-m at tilt angles of ±22° forward and backward looking, respectively. The stereo base-height ratio is 0.85-0.95. Compared with stereo mapping from two views images, three-line arrays images of ZY-3 can be used for DSM generation taking advantage of one more view than conventional photogrammetric methods. It would enrich the information for image matching and enhance the accuracy of DSM generated. The primary result of positioning accuracy of ZY-3 images has been reported, while before the massive mapping applications of utilizing ZY-3 images for DSM generation, the performance evaluation of DSM extraction from three-line arrays imagery of ZY-3 has significant meaning for the routine mapping applications. The goal of this research is to clarify the mapping performance of ZY-3 three-line arrays scanners on china's first civilian high-resolution stereo mapping satellite of ZY-3 through the accuracy evaluation of DSM generation. The comparison of DSM product in different topographic areas generated with three views images with different two views combination images of ZY-3 would be presented. Besides the comparison within different topographic study area, the accuracy deviation of the DSM products with different grid size including 25-m, 10-m and 5-m is delineated in order to clarify the impact of grid size on accuracy evaluation.

  5. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  6. Evaluation of Deep Learning Based Stereo Matching Methods: from Ground to Aerial Images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Ji, S.; Zhang, C.; Qin, Z.

    2018-05-01

    Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the deep learning based methods performed similarly, and the latter had greater potential to be explored.

  7. 3D reconstruction of the optic nerve head using stereo fundus images for computer-aided diagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.

    2010-03-01

    The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.

  8. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vetrone, A. V.; Martin, M. D.

    1980-01-01

    The extremely long missions of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of which can be used to form stereo images allowing the earth-bound student of Mars to examine the subject in 3-D. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set. Since that data set is still growing (January, 1980, about 3 1/2 years after the mission began), a second edition of this catalog is planned with completion expected about November, 1980.

  9. Indoor calibration for stereoscopic camera STC: a new method

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Da Deppo, V.; Naletto, G.; Borrelli, D.; Dami, M.; Ficai Veltroni, I.; Cremonese, G.

    2017-11-01

    In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.

  10. Indoor Calibration for Stereoscopic Camera STC, A New Method

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Da Deppo, V.; Naletto, G.; Borrelli, D.; Dami, M.; Ficai Veltroni, I.; Cremonese, G.

    2014-10-01

    In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.

  11. FPGA Implementation of Stereo Disparity with High Throughput for Mobility Applications

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Morfopolous, Arin; Matthies, Larry; Goldberg, Steven

    2011-01-01

    High speed stereo vision can allow unmanned robotic systems to navigate safely in unstructured terrain, but the computational cost can exceed the capacity of typical embedded CPUs. In this paper, we describe an end-to-end stereo computation co-processing system optimized for fast throughput that has been implemented on a single Virtex 4 LX160 FPGA. This system is capable of operating on images from a 1024 x 768 3CCD (true RGB) camera pair at 15 Hz. Data enters the FPGA directly from the cameras via Camera Link and is rectified, pre-filtered and converted into a disparity image all within the FPGA, incurring no CPU load. Once complete, a rectified image and the final disparity image are read out over the PCI bus, for a bandwidth cost of 68 MB/sec. Within the FPGA there are 4 distinct algorithms: Camera Link capture, Bilinear rectification, Bilateral subtraction pre-filtering and the Sum of Absolute Difference (SAD) disparity. Each module will be described in brief along with the data flow and control logic for the system. The system has been successfully fielded upon the Carnegie Mellon University's National Robotics Engineering Center (NREC) Crusher system during extensive field trials in 2007 and 2008 and is being implemented for other surface mobility systems at JPL.

  12. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    NASA Astrophysics Data System (ADS)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  13. Mapping and localization for extraterrestrial robotic explorations

    NASA Astrophysics Data System (ADS)

    Xu, Fengliang

    In the exploration of an extraterrestrial environment such as Mars, orbital data, such as high-resolution imagery Mars Orbital Camera-Narrow Angle (MOC-NA), laser ranging data Mars Orbital Laser Altimeter (MOLA), and multi-spectral imagery Thermal Emission Imaging System (THEMIS), play more and more important roles. However, these remote sensing techniques can never replace the role of landers and rovers, which can provide a close up and inside view. Similarly, orbital mapping can not compete with ground-level close-range mapping in resolution, precision, and speed. This dissertation addresses two tasks related to robotic extraterrestrial exploration: mapping and rover localization. Image registration is also discussed as an important aspect for both of them. Techniques from computer vision and photogrammetry are applied for automation and precision. Image registration is classified into three sub-categories: intra-stereo, inter-stereo, and cross-site, according to the relationship between stereo images. In the intra-stereo registration, which is the most fundamental sub-category, interest point-based registration and verification by parallax continuity in the principal direction are proposed. Two other techniques, inter-scanline search with constrained dynamic programming for far range matching and Markov Random Field (MRF) based registration for big terrain variation, are explored as possible improvements. Creating using rover ground images mainly involves the generation of Digital Terrain Model (DTM) and ortho-rectified map (orthomap). The first task is to derive the spatial distribution statistics from the first panorama and model the DTM with a dual polynomial model. This model is used for interpolation of the DTM, using Kriging in the close range and Triangular Irregular Network (TIN) in the far range. To generate a uniformly illuminated orthomap from the DTM, a least-squares-based automatic intensity balancing method is proposed. Finally a seamless orthomap is constructed by a split-and-merge technique: the mapped area is split or subdivided into small regions of image overlap, and then each small map piece was processed and all of the pieces are merged together to form a seamless map. Rover localization has three stages, all of which use a least-squares adjustment procedure: (1) an initial localization which is accomplished by adjustment over features common to rover images and orbital images, (2) an adjustment of image pointing angles at a single site through inter and intra-stereo tie points, and (3) an adjustment of the rover traverse through manual cross-site tie points. The first stage is based on adjustment of observation angles of features. The second stage and third stage are based on bundle-adjustment. In the third-stage an incremental adjustment method was proposed. Automation in rover localization includes automatic intra/inter-stereo tie point selection, computer-assisted cross-site tie point selection, and automatic verification of accuracy. (Abstract shortened by UMI.)

  14. Three-dimensional image display system using stereogram and holographic optical memory techniques

    NASA Astrophysics Data System (ADS)

    Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong

    2001-09-01

    In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.

  15. Left Panorama of Spirit's Landing Site

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Left Panorama of Spirit's Landing Site

    This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.

  16. Stereo View of Phoenix Test Sample Site

    NASA Image and Video Library

    2008-06-02

    This anaglyph image, acquired by NASA’s Phoenix Lander’s Surface Stereo Imager on June 1, 2008, shows a stereoscopic 3D view of the so-called Knave of Hearts first-dig test area to the north of the lander. 3D glasses are necessary to view this image.

  17. Opportunity Surroundings on Sol 1687 Stereo

    NASA Image and Video Library

    2009-01-05

    NASA Mars Exploration Rover Opportunity combined images into this stereo, 360-degree view of the rover surroundings on Oct. 22, 2008. Opportunity position was about 300 meters southwest of Victoria. 3D glasses are necessary to view this image.

  18. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    PubMed

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  19. Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken

    2005-01-01

    This slide presentation details the Mars Exploration Rover (MER) imaging system. Over 144,000 images have been gathered from all Mars Missions, with 83.5% of them being gathered by MER. Each Rover has 9 cameras (Navcam, front and rear Hazcam, Pancam, Microscopic Image, Descent Camera, Engineering Camera, Science Camera) and produces 1024 x 1024 (1 Megapixel) images in the same format. All onboard image processing code is implemented in flight software and includes extensive processing capabilities such as autoexposure, flat field correction, image orientation, thumbnail generation, subframing, and image compression. Ground image processing is done at the Jet Propulsion Laboratory's Multimission Image Processing Laboratory using Video Image Communication and Retrieval (VICAR) while stereo processing (left/right pairs) is provided for raw image, radiometric correction; solar energy maps,triangulation (Cartesian 3-spaces) and slope maps.

  20. Railway clearance intrusion detection method with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  1. Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren

    2012-01-01

    The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.

  2. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    NASA Astrophysics Data System (ADS)

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  3. 3D digital image correlation using single color camera pseudo-stereo system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang

    2017-10-01

    Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.

  4. Burns Cliff in Color Stereo

    NASA Image and Video Library

    2006-07-10

    NASA Mars Exploration Rover Opportunity captured a sweeping stereo image of Burns Cliff after driving right to the base of this southeastern portion of the inner wall of Endurance Crater in November 2004. 3D glasses are necessary to view this image.

  5. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  6. Airborne camera and spectrometer experiments and data evaluation

    NASA Astrophysics Data System (ADS)

    Lehmann, F. F.; Bucher, T.; Pless, S.; Wohlfeil, J.; Hirschmüller, H.

    2009-09-01

    New stereo push broom camera systems have been developed at German Aerospace Centre (DLR). The new small multispectral systems (Multi Functional Camerahead - MFC, Advanced Multispectral Scanner - AMS) are light weight, compact and display three or five RGB stereo lines of 8000, 10 000 or 14 000 pixels, which are used for stereo processing and the generation of Digital Surface Models (DSM) and near True Orthoimage Mosaics (TOM). Simultaneous acquisition of different types of MFC-cameras for infrared and RGB data has been successfully tested. All spectral channels record the image data in full resolution, pan-sharpening is not necessary. Analogue to the line scanner data an automatic processing chain for UltraCamD and UltraCamX exists. The different systems have been flown for different types of applications; main fields of interest among others are environmental applications (flooding simulations, monitoring tasks, classification) and 3D-modelling (e.g. city mapping). From the DSM and TOM data Digital Terrain Models (DTM) and 3D city models are derived. Textures for the facades are taken from oblique orthoimages, which are created from the same input data as the TOM and the DOM. The resulting models are characterised by high geometric accuracy and the perfect fit of image data and DSM. The DLR is permanently developing and testing a wide range of sensor types and imaging platforms for terrestrial and space applications. The MFC-sensors have been flown in combination with laser systems and imaging spectrometers and special data fusion products have been developed. These products include hyperspectral orthoimages and 3D hyperspectral data.

  7. An application of the MPP to the interactive manipulation of stereo images of digital terrain models

    NASA Technical Reports Server (NTRS)

    Pol, Sanjay; Mcallister, David; Davis, Edward

    1987-01-01

    Massively Parallel Processor algorithms were developed for the interactive manipulation of flat shaded digital terrain models defined over grids. The emphasis is on real time manipulation of stereo images. Standard graphics transformations are applied to a 128 x 128 grid of elevations followed by shading and a perspective projection to produce the right eye image. The surface is then rendered using a simple painter's algorithm for hidden surface removal. The left eye image is produced by rotating the surface 6 degs about the viewer's y axis followed by a perspective projection and rendering of the image as described above. The left and right eye images are then presented on a graphics device using standard stereo technology. Performance evaluations and comparisons are presented.

  8. Forest Biomass Mapping from Prism Triplet, Palsar and Landsat Data

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Sun, G.; Ni, W.

    2014-12-01

    The loss of sensitivity at higher biomass levels is a common problem in biomass mapping using optical multi-spectral data or radar backscattering data due to the lack of information on canopy vertical structure. Studies have shown that adding implicit information of forest vertical structure improves the performance of forest biomass mapping from optical reflectance and radar backscattering data. LiDAR, InSAR and stereo imager are the data sources for obtaining forest structural information. The potential of providing information on forest vertical structure by stereoscopic imagery data has drawn attention recently due to the availability of high-resolution digital stereo imaging from space and the advances of digital stereo image processing software. The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observation Satellite (ALOS) has acquired multiple global coverage from June 2006 to April 2011 providing a good data source for regional/global forest studies. In this study, five PRISM triplets acquired on June 14, 2008, August 19 and September 5, 2009; PALSAR dual-pol images acquired on July 12, 2008 and August 30, 2009; and LANDSAT 5 TM images acquired on September 5, 2009 and the field plot data collected in 2009 and 2010 were used to map forest biomass at 50m pixel in an area of about 4000 km2in Maine, USA ( 45.2 deg N 68.6 deg W). PRISM triplets were used to generate point cloud data at 2m pixel first and then the average height of points above NED (National Elevation Dataset) within a 50m by 50m pixel was calculated. Five images were mosaicked and used as canopy height information in the biomass estimation along with the PALSAR HH, HV radar backscattering and optical reflectance vegetation indices from L-5 TM data. A small portion of this region was covered by the Land Vegetation and Ice Sensor (LVIS) in 2009. The biomass maps from the LVIS data was used to evaluate the results from combined use of PRISM, PALSAR and LANDSAT data. The results show that the canopy height index from PRISM stereo images significantly improves the biomass mapping accuracy and extends the saturation level of biomass, and results in a biomass map comparable with those generated from LVIS data.

  9. An overview of the stereo correlation and triangulation formulations used in DICe.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Daniel Z.

    This document provides a detailed overview of the stereo correlation algorithm and triangulation formulation used in the Digital Image Correlation Engine (DICe) to triangulate three dimensional motion in space given the image coordinates and camera calibration parameters.

  10. Optical stereo video signal processor

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    An otpical video signal processor is described which produces a two-dimensional cross-correlation in real time of images received by a stereo camera system. The optical image of each camera is projected on respective liquid crystal light valves. The images on the liquid crystal valves modulate light produced by an extended light source. This modulated light output becomes the two-dimensional cross-correlation when focused onto a video detector and is a function of the range of a target with respect to the stereo camera. Alternate embodiments utilize the two-dimensional cross-correlation to determine target movement and target identification.

  11. Pine Island Glacier, Antarctica, MISR Multi-angle Composite

    Atmospheric Science Data Center

    2013-12-17

    ...     View Larger Image (JPEG) A large iceberg has finally separated from the calving front ... next due to stereo parallax. This parallax is used in MISR processing to retrieve cloud heights over snow and ice. Additionally, a plume ...

  12. Forest Biomass Mapping from Stereo Imagery and Radar Data

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ni, W.; Zhang, Z.

    2013-12-01

    Both InSAR and lidar data provide critical information on forest vertical structure, which are critical for regional mapping of biomass. However, the regional application of these data is limited by the availability and acquisition costs. Some researchers have demonstrated potentials of stereo imagery in the estimation of forest height. Most of these researches were conducted on aerial images or spaceborne images with very high resolutions (~0.5m). Space-born stereo imagers with global coverage such as ALOS/PRISM have coarser spatial resolutions (2-3m) to achieve wider swath. The features of stereo images are directly affected by resolutions and the approaches use by most of researchers need to be adjusted for stereo imagery with lower resolutions. This study concentrated on analyzing the features of point clouds synthesized from multi-view stereo imagery over forested areas. The small footprint lidar and lidar waveform data were used as references. The triplets of ALOS/PRISM data form three pairs (forward/nadir, backward/nadir and forward/backward) of stereo images. Each pair of the stereo images can be used to generate points (pixels) with 3D coordinates. By carefully co-register these points from three pairs of stereo images, a point cloud data was generated. The height of each point above ground surface was then calculated using DEM from National Elevation Dataset, USGS as the ground surface elevation. The height data were gridded into pixel of different sizes and the histograms of the points within a pixel were analyzed. The average height of the points within a pixel was used as the height of the pixel to generate a canopy height map. The results showed that the synergy of point clouds from different views were necessary, which increased the point density so the point cloud could detect the vertical structure of sparse and unclosed forests. The top layer of multi-layered forest could be captured but the dense forest prevented the stereo imagery to see through. The canopy height map exhibited spatial patterns of roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlation with RH50 of LVIS data at 30m pixel size with a gain of 1.04, bias of 4.3m and R2 of 0.74 (Fig. 1). The canopy height map from PRISM and dual-pol PALSAR data were used together to map biomass in our study area near Howland, Maine, and the results were evaluated using biomass map generated from LVIS waveform data independently. The results showed that adding CHM from PRISM significantly improved biomass accuracy and raised the biomass saturation level of L-band SAR data in forest biomass mapping.

  13. Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury

    NASA Astrophysics Data System (ADS)

    Simioni, Emanuele; Da Deppo, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, Gabriele

    2016-07-01

    The ESA-JAXA mission BepiColombo that will be launched in 2018 is devoted to the observation of Mercury, the innermost planet of the Solar System. SIMBIOSYS is its remote sensing suite, which consists of three instruments: the High Resolution Imaging Channel (HRIC), the Visible and Infrared Hyperspectral Imager (VIHI), and the Stereo Imaging Channel (STC). The latter will provide the global three dimensional reconstruction of the Mercury surface, and it represents the first push-frame stereo camera on board of a space satellite. Based on a new telescope design, STC combines the advantages of a compact single detector camera to the convenience of a double direction acquisition system; this solution allows to minimize mass and volume performing a push-frame imaging acquisition. The shared camera sensor is divided in six portions: four are covered with suitable filters; the others, one looking forward and one backwards with respect to nadir direction, are covered with a panchromatic filter supplying stereo image pairs of the planet surface. The main STC scientific requirements are to reconstruct in 3D the Mercury surface with a vertical accuracy better than 80 m and performing a global imaging with a grid size of 65 m along-track at the periherm. Scope of this work is to present the on-ground geometric calibration pipeline for this original instrument. The selected STC off-axis configuration forced to develop a new distortion map model. Additional considerations are connected to the detector, a Si-Pin hybrid CMOS, which is characterized by a high fixed pattern noise. This had a great impact in pre-calibration phases compelling to use a not common approach to the definition of the spot centroids in the distortion calibration process. This work presents the results obtained during the calibration of STC concerning the distortion analysis for three different temperatures. These results are then used to define the corresponding distortion model of the camera.

  14. Automatic Geo-location Correction of Satellite Imagery

    DTIC Science & Technology

    2014-09-25

    orientation of large stereo satellite image blocks.," Int. Arch. Photogrammetry and Remote Sensing Spatial Inf. Sci, vol. 39, pp. 209-214, 2012. [6...Coefficient (RPC) model to represent both the internal and external orientation of a satellite image in one Automatic Geo-location Correction of Satellite...Applications of Digital Image Processing VI, vol. 432, 1983. [9] Edward M Mikhail, James S Bethel, and J C McGlone, Introduction to Modern Photogrammetry

  15. Photogrammetric Modeling and Image-Based Rendering for Rapid Virtual Environment Creation

    DTIC Science & Technology

    2004-12-01

    area and different methods have been proposed. Pertinent methods include: Camera Calibration , Structure from Motion, Stereo Correspondence, and Image...Based Rendering 1.1.1 Camera Calibration Determining the 3D structure of a model from multiple views becomes simpler if the intrinsic (or internal...can introduce significant nonlinearities into the image. We have found that camera calibration is a straightforward process which can simplify the

  16. Towards a unified estimate of arctic glaciers contribution to sea level rise since 1972.

    NASA Astrophysics Data System (ADS)

    Dehecq, A.; Gardner, A. S.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Glaciers retreat contributed to about 1/3 of the observed sea level rise since 1971 (IPCC). However, long term estimates of glaciers volume changes rely on sparse field observations and region-wide satellite observations are available mostly after 2000. The recently declassified images from the reconnaissance satellite series Hexagon (KH9), that acquired 6 m resolution stereoscopic images from 1971 to 1986, open new possibilities for glaciers observation. But the film-printed images represent a processing challenge. Here we present an automatic workflow developed to generate Digital Elevation Models (DEMs) at 24 m resolution from the raw scanned KH9 images. It includes a preprocessing step to detect fiducial marks and to correct distortions of the film caused by the 40-year storage. An estimate of the unknown satellite position is obtained from a crude geolocation of the images. Each stereo image pair/triplet is then processed using the NASA Ames Stereo Pipeline to derive an unscaled DEM using standard photogrammetric techniques. This DEM is finally aligned to a reference topography, to account for errors in translation, rotation and scaling. In a second part, we present DEMs generated over glaciers in the Canadian Arctic and analyze glaciers volume changes from 1970 to the more recent WorldView ArcticDEM.

  17. Automatic Generation of High Quality DSM Based on IRS-P5 Cartosat-1 Stereo Data

    NASA Astrophysics Data System (ADS)

    d'Angelo, Pablo; Uttenthaler, Andreas; Carl, Sebastian; Barner, Frithjof; Reinartz, Peter

    2010-12-01

    IRS-P5 Cartosat-1 high resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on IRS-P5 Cartosat-1 imagery is presented, with an emphasis on automated processing and product quality. The proposed system processes IRS-P5 level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The described method uses an RPC correction based on DSM alignment instead of using reference images with a lower lateral accuracy, this results in improved geolocation of the DSMs and orthoimages. Following RPC correction, highly detailed DSMs with 5 m grid spacing are derived using Semiglobal Matching. The proposed method is part of an operational Cartosat-1 processor for the generation of a high resolution DSM. Evaluation of 18 scenes against independent ground truth measurements indicates a mean lateral error (CE90) of 6.7 meters and a mean vertical accuracy (LE90) of 5.1 meters.

  18. Bias Reduction and Filter Convergence for Long Range Stereo

    NASA Technical Reports Server (NTRS)

    Sibley, Gabe; Matthies, Larry; Sukhatme, Gaurav

    2005-01-01

    We are concerned here with improving long range stereo by filtering image sequences. Traditionally, measurement errors from stereo camera systems have been approximated as 3-D Gaussians, where the mean is derived by triangulation and the covariance by linearized error propagation. However, there are two problems that arise when filtering such 3-D measurements. First, stereo triangulation suffers from a range dependent statistical bias; when filtering this leads to over-estimating the true range. Second, filtering 3-D measurements derived via linearized error propagation leads to apparent filter divergence; the estimator is biased to under-estimate range. To address the first issue, we examine the statistical behavior of stereo triangulation and show how to remove the bias by series expansion. The solution to the second problem is to filter with image coordinates as measurements instead of triangulated 3-D coordinates.

  19. Color-encoded distance for interactive focus positioning in laser microsurgery

    NASA Astrophysics Data System (ADS)

    Schoob, Andreas; Kundrat, Dennis; Lekon, Stefan; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-08-01

    This paper presents a real-time method for interactive focus positioning in laser microsurgery. Registration of stereo vision and a surgical laser is performed in order to combine surgical scene and laser workspace information. In particular, stereo image data is processed to three-dimensionally reconstruct observed tissue surface as well as to compute and to highlight its intersection with the laser focal range. Regarding the surgical live view, three augmented reality concepts are presented providing visual feedback during manual focus positioning. A user study is performed and results are discussed with respect to accuracy and task completion time. Especially when using color-encoded distance superimposed to the live view, target positioning with sub-millimeter accuracy can be achieved in a few seconds. Finally, transfer to an intraoperative scenario with endoscopic human in vivo and cadaver images is discussed demonstrating the applicability of the image overlay in laser microsurgery.

  20. Extracting Semantic Building Models from Aerial Stereo Images and Conversion to Citygml

    NASA Astrophysics Data System (ADS)

    Sengul, A.

    2012-07-01

    The collection of geographic data is of primary importance for the creation and maintenance of a GIS. Traditionally the acquisition of 3D information has been the task of photogrammetry using aerial stereo images. Digital photogrammetric systems employ sophisticated software to extract digital terrain models or to plot 3D objects. The demand for 3D city models leads to new applications and new standards. City Geography Mark-up Language (CityGML), a concept for modelling and exchange of 3D city and landscape models, defines the classes and relations for the most relevant topographic objects in cities and regional models with respect to their geometrical, topological, semantically and topological properties. It now is increasingly accepted, since it fulfils the prerequisites required e.g. for risk analysis, urban planning, and simulations. There is a need to include existing 3D information derived from photogrammetric processes in CityGML databases. In order to filling the gap, this paper reports on a framework transferring data plotted by Erdas LPS and Stereo Analyst for ArcGIS software to CityGML using Safe Software's Feature Manupulate Engine (FME)

  1. Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns

    NASA Astrophysics Data System (ADS)

    Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.

    2012-07-01

    Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.

  2. Viewing The Entire Sun With STEREO And SDO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.

    2011-05-01

    On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.

  3. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  4. Stereoscopic image production: live, CGI, and integration

    NASA Astrophysics Data System (ADS)

    Criado, Enrique

    2006-02-01

    This paper shortly describes part of the experience gathered in more than 10 years of stereoscopic movie production, some of the most common problems found and the solutions, with more or less fortune, we applied to solve those problems. Our work is mainly focused in the entertainment market, theme parks, museums, and other cultural related locations and events. In our movies, we have been forced to develop our own devices to permit correct stereo shooting (stereoscopic rigs) or stereo monitoring (real-time), and to solve problems found with conventional film editing, compositing and postproduction software. Here, we discuss stereo lighting, monitoring, special effects, image integration (using dummies and more), stereo-camera parameters, and other general 3-D movie production aspects.

  5. 3D optic disc reconstruction via a global fundus stereo algorithm.

    PubMed

    Bansal, M; Sizintsev, M; Eledath, J; Sawhney, H; Pearson, D J; Stone, R A

    2013-01-01

    This paper presents a novel method to recover 3D structure of the optic disc in the retina from two uncalibrated fundus images. Retinal images are commonly uncalibrated when acquired clinically, creating rectification challenges as well as significant radiometric and blur differences within the stereo pair. By exploiting structural peculiarities of the retina, we modified the Graph Cuts computational stereo method (one of current state-of-the-art methods) to yield a high quality algorithm for fundus stereo reconstruction. Extensive qualitative and quantitative experimental evaluation (where OCT scans are used as 3D ground truth) on our and publicly available datasets shows the superiority of the proposed method in comparison to other alternatives.

  6. Stereo matching and view interpolation based on image domain triangulation.

    PubMed

    Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce

    2013-09-01

    This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.

  7. Solar Eclipse Video Captured by STEREO-B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    No human has ever witnessed a solar eclipse quite like the one captured on this video. The NASA STEREO-B spacecraft, managed by the Goddard Space Center, was about a million miles from Earth , February 25, 2007, when it photographed the Moon passing in front of the sun. The resulting movie looks like it came from an alien solar system. The fantastically-colored star is our own sun as STEREO sees it in four wavelengths of extreme ultraviolet light. The black disk is the Moon. When we observe a lunar transit from Earth, the Moon appears to be the same size as the sun, a coincidence that produces intoxicatingly beautiful solar eclipses. The silhouette STEREO-B saw, on the other hand, was only a fraction of the Sun. The Moon seems small because of the STEREO-B location. The spacecraft circles the sun in an Earth-like orbit, but it lags behind Earth by one million miles. This means STEREO-B is 4.4 times further from the Moon than we are, and so the Moon looks 4.4 times smaller. This version of the STEREO-B eclipse movie is a composite of data from the coronagraph and extreme ultraviolet imager of the spacecraft. STEREO-B has a sister ship named STEREO-A. Both are on a mission to study the sun. While STEREO-B lags behind Earth, STEREO-A orbits one million miles ahead ('B' for behind, 'A' for ahead). The gap is deliberate as it allows the two spacecraft to capture offset views of the sun. Researchers can then combine the images to produce 3D stereo movies of solar storms. The two spacecraft were launched in Oct. 2006 and reached their stations on either side of Earth in January 2007.

  8. Robotic Vehicle Communications Interoperability

    DTIC Science & Technology

    1988-08-01

    starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor

  9. The Cubesat Heliospheric Imaging Experiment for Space Weather Prediction

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Howard, T.; Dickinson, J.; Epperly, M.; Kief, C.

    2010-05-01

    Heliospheric imaging data have been shown to improve space weather prediction by an order of magnitude, and heliospheric monitoring by the SMEI and STEREO-HI instruments have proven to be extremely useful for understanding heliospheric conditions near Earth. However, SMEI is approaching end-of-life and the STEREOs are drifting away from favorable Earth-viewing geometry just as the new solar cycle begins. CHIME is an innovative, miniaturized, fully functional space weather heliospheric monitor that fits within the 3U CubeSat envelope and can be flown individually (as a scientific or demonstrator mission) or in a swarm (to attain operational-class reliability) at a small fraction of the cost of a conventional mission. Here we describe the CHIME concept and its use with the automated processing pipeline AICMED to improve space weather prediction.

  10. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5 m where appropriate ground-control data are available, with observed standard deviation of ˜0.1-0.5 m for overlapping, co-registered DEMs (n = 14, 17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  11. Quasi-Epipolar Resampling of High Resolution Satellite Stereo Imagery for Semi Global Matching

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.

    2015-12-01

    Semi-global matching is a well-known stereo matching algorithm in photogrammetric and computer vision society. Epipolar images are supposed as input of this algorithm. Epipolar geometry of linear array scanners is not a straight line as in case of frame camera. Traditional epipolar resampling algorithms demands for rational polynomial coefficients (RPCs), physical sensor model or ground control points. In this paper we propose a new solution for epipolar resampling method which works without the need for these information. In proposed method, automatic feature extraction algorithms are employed to generate corresponding features for registering stereo pairs. Also original images are divided into small tiles. In this way by omitting the need for extra information, the speed of matching algorithm increased and the need for high temporal memory decreased. Our experiments on GeoEye-1 stereo pair captured over Qom city in Iran demonstrates that the epipolar images are generated with sub-pixel accuracy.

  12. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo.

    PubMed

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-03-02

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  13. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    PubMed Central

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  14. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  15. Matching methods evaluation framework for stereoscopic breast x-ray images.

    PubMed

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  16. Research on three-dimensional reconstruction method based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Jinlin; Wang, Zhihui; Wang, Minjun

    2018-03-01

    As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.

  17. Role of stereoscopic imaging in the astronomical study of nearby stars and planetary systems

    NASA Astrophysics Data System (ADS)

    Mark, David S.; Waste, Corby

    1997-05-01

    The development of stereoscopic imaging as a 3D spatial mapping tool for planetary science is now beginning to find greater usefulness in the study of stellar atmospheres and planetary systems in general. For the first time, telescopes and accompanying spectrometers have demonstrated the capacity to depict the gyrating motion of nearby stars so precisely as to derive the existence of closely orbiting Jovian-type planets, which are gravitationally influencing the motion of the parent star. Also for the first time, remote space borne telescopes, unhindered by atmospheric effects, are recording and tracking the rotational characteristics of our nearby star, the sun, so accurately as to reveal and identify in great detail the heightened turbulence of the sun's corona. In order to perform new forms of stereo imaging and 3D reconstruction with such large scale objects as stars and planets, within solar systems, a set of geometrical parameters must be observed, and are illustrated here. The behavior of nearby stars can be studied over time using an astrometric approach, making use of the earth's orbital path as a semi- yearly stereo base for the viewing telescope. As is often the case in this method, the resulting stereo angle becomes too narrow to afford a beneficial stereo view, given the star's distance and the general level of detected noise in the signal. With the advent, though, of new earth based and space borne interferometers, operating within various wavelengths including IR, the capability of detecting and assembling the full 3-dimensional axes of motion of nearby gyrating stars can be achieved. In addition, the coupling of large interferometers with combined data sets can provide large stereo bases and low signal noise to produce converging 3- dimensional stereo views of nearby planetary systems. Several groups of new astronomical stereo imaging data sets are presented, including 3D views of the sun taken by the Solar and Heliospheric Observatory, coincident stereo views of the planet Jupiter during impact of comet Shoemaker-Levy 9, taken by the Galileo spacecraft and the Hubble Space Telescope, as well as views of nearby stars. Spatial ambiguities arising in singular 2-dimensional viewpoints are shown to be resolvable in twin perspective, 3-dimensional stereo views. Stereo imaging of this nature, therefore, occupies a complementary role in astronomical observing, provided the proper fields of view correspond with the path of the orbital geometry of the observing telescope.

  18. Offshore remote sensing of the ocean by stereo vision systems

    NASA Astrophysics Data System (ADS)

    Gallego, Guillermo; Shih, Ping-Chang; Benetazzo, Alvise; Yezzi, Anthony; Fedele, Francesco

    2014-05-01

    In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting oberved waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss furure lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.

  19. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  20. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    NASA Astrophysics Data System (ADS)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera. In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution. We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and HIRISE image processing in the existing data processing pipeline and improve it at the same time. Currently the workflow is not finished: DEM units are relative and are not in elevation. We have been able to derive successful DEMs from CTX data Becquerel [14] and Crommelin craters as well as for some areas in the North Polar Layered Terrain. Due to its tremendous resolution HIRISE data showing great surface detail, hence allowing better correlation than other sensors considered in this work. In all cases DEM were showing considerable potential for exploration of terrain characteristics. Next steps include cross validation results with DEM produced by other teams and sensors (HRSC [6], HIRISE [7]) and providing elevation in terms of absolute height over a MOLA areoid. MRO imaging data allows us an unprecedented look at Martian terrain. This work provides a step forward derivation of DEM from HIRISE and CTX datasets and currently undergoing validation vs. other existing datasets. We will present our latest results for layering structures in both North and South Polar Layered deposits as well as layered structures inside Becquerel and Crommelin craters. Digital Elevation models derived from the CTX sensor can also be utilized effectively as a input for clutter reduction models, which are in turn used for the ground penetrating SHARAD instrument [13]. References. [1] R. Arvidson, et al. Mars exploration program 2007 phoenix landing site selection and characteristics. Journal of Geophysical Research-Planets, 113, JUN 19 2008. [2] M. Golombek, et al. Assessment of mars exploration rover landing site predictions. Nature, 436(7047):44-48, JUL 7 2005. [3] K. E. Herkenhoff, et al. Meter-scale morphology of the north polar region of mars. Science, 317(5845):1711-1715, SEP 21 2007. [4] A. B. Ivanov. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions. volume 34 of Lunar and Planetary Inst. Technical Report, pages 2084-+, Mar. 2003. [5] A. B. Ivanov and J. J. Lorre. Analysis of Mars Orbiter Camera Stereo Pairs. In Lunar and Planetary Institute Conference Abstracts, volume 33 of Lunar and Planetary Inst. Technical Report, pages 1845-+, Mar. 2002. [6] R. Jaumann, et al. The high-resolution stereo camera (HRSC) experiment on mars express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary and Space Science, 55(7-8):928-952, MAY 2007. [7] R. L. Kirk, et al. Ultrahigh resolution topographic mapping of mars with MRO HIRISE stereo images: Meter-scale slopes of candidate phoenix landing sites. Journal of Geophysical Research-Planets, 113, NOV 15 2008. [8] S. Lavoie, et al. Processing and analysis of mars pathfinder science data at the jet propulsion laboratory's science data processing systems section. Journal of Geophysical Research-Planets, 104(E4):8831-8852, APR 25 1999. [9] J. J. Lorre, et al. Recent developments at JPL in the application of image processing to astronomy. In D. L. Crawford, editor, Instrumentation in Astronomy III, volume 172 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 394-402, 1979. [10] M. Malin, et al. Early views of the martian surface from the mars orbiter camera of mars global surveyor. Science, 279(5357):1681-1685, MAR 13 1998. [11] M. C. Malin,et al. Context camera investigation on board the mars reconnaissance orbiter. Journal of Geophysical Research-Planets, 112(E5), MAY 18 2007. [12] A. S. McEwen, et al.. Mars reconnaissance orbiter's high resolution imaging science experiment (HIRISE). Journal of Geophysical Research-Planets, 112(E5), MAY 17 2007. [13] A. Rossi, et al. Multi-spacecraft synergy with MEX HRSC and MRO SHARAD: Light-Toned Deposits in crater bulges. AGU Fall Meeting Abstracts, pages B1371+, Dec. 2008. [14] A. P. Rossi, et al. Stratigraphic architecture and structural control on sediment emplacement in Becquerel crater (Mars). volume 40. Lunar and Planetary Science Institute, 2009. [15] K. L. Tanaka,et al. North polar region of mars: Advances in stratigraphy, structure, and erosional modification, AUG 2008. Icarus. [16] USGS. Planetary image processing software: ISIS3. http://isis.astrogeology.usgs.gov/

  1. Enhanced visualization of inner ear structures

    NASA Astrophysics Data System (ADS)

    Niemczyk, Kazimierz; Kucharski, Tomasz; Kujawinska, Malgorzata; Bruzgielewicz, Antoni

    2004-07-01

    Recently surgery requires extensive support from imaging technologies in order to increase effectiveness and safety of operations. One of important tasks is to enhance visualisation of quasi-phase (transparent) 3d structures. Those structures are characterized by very low contrast. It makes differentiation of tissues in field of view very difficult. For that reason the surgeon may be extremly uncertain during operation. This problem is connected with supporting operations of inner ear during which physician has to perform cuts at specific places of quasi-transparent velums. Conventionally during such operations medical doctor views the operating field through stereoscopic microscope. In the paper we propose a 3D visualisation system based on Helmet Mounted Display. Two CCD cameras placed at the output of microscope perform acquisition of stereo pairs of images. The images are processed in real-time with the goal of enhancement of quasi-phased structures. The main task is to create algorithm that is not sensitive to changes in intensity distribution. The disadvantages of existing algorithms is their lack of adaptation to occuring reflexes and shadows in field of view. The processed images from both left and right channels are overlaid on the actual images exported and displayed at LCD's of Helmet Mounted Display. A physician observes by HMD (Helmet Mounted Display) a stereoscopic operating scene with indication of the places of special interest. The authors present the hardware ,procedures applied and initial results of inner ear structure visualisation. Several problems connected with processing of stereo-pair images are discussed.

  2. Using Combination of Planar and Height Features for Detecting Built-Up Areas from High-Resolution Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Peng, F.; Cai, X.; Tan, W.

    2017-09-01

    Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slope and building height are often used to optimize the results, but extracted from auxiliary data (e.g. LIDAR data, DSM). Moreover, the auxiliary data must be acquired around the same time as image acquisition. Otherwise, built-up area detection accuracy is affected. Stereo imagery incorporates both planar and height information unlike single remotely sensed images. Stereo imagery acquired by many satellites (e.g. Worldview-4, Pleiades-HR, ALOS-PRISM, and ZY-3) can be used as data source of identifying built-up areas. A new method of identifying high-accuracy built-up areas from stereo imagery is achieved by using a combination of planar and height features. The digital surface model (DSM) and digital orthophoto map (DOM) are first generated from stereo images. Then, height values of above-ground objects (e.g. buildings) are calculated from the DSM, and used to obtain raw built-up areas. Other raw built-up areas are obtained from the DOM using Pantex and Gabor, respectively. Final high-accuracy built-up area results are achieved from these raw built-up areas using the decision level fusion. Experimental results show that accurate built-up areas can be achieved from stereo imagery. The height information used in the proposed method is derived from stereo imagery itself, with no need to require auxiliary height data (e.g. LIDAR data). The proposed method is suitable for spaceborne and airborne stereo pairs and triplets.

  3. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  4. Implicit multiplane 3D camera calibration matrices for stereo image processing

    NASA Astrophysics Data System (ADS)

    McKee, James W.; Burgett, Sherrie J.

    1997-12-01

    By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173

  5. A multi-modal stereo microscope based on a spatial light modulator.

    PubMed

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  6. Relationship Between the Expansion Speed and Radial Speed of CMEs Confirmed Using Quadrature Observations from SOHO and STEREO

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Makela, Pertti; Yashiro, Seiji

    2011-01-01

    It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009, CEAB, 33, 115,2009). The STEREO spacecraft were in quadrature with SOHO (STEREO-A ahead of Earth by 87 and STEREO-B 94 behind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp ) and radial speed (Vrad ) derived previously from geometrical considerations (Gopalswamy et al. 2009): Vrad = 1/2 (1 + cot w) Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 75 degrees, so w = 37.5 degrees. This gives the relation as Vrad = 1.15 Vexp. From LASCO observations, we measured Vexp = 897 km/s, so we get the radial speed as 1033 km/s. Direct measurement of radial speed from STEREO gives 945 km/s (STEREO-A) and 1057 km/s (STEREO-B). These numbers are different only by 2.3% and 8.5% (for STEREO-A and STEREO-B, respectively) from the computed value.

  7. Ames Stereo Pipeline for Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Alexandrov, O.; McMichael, S.; Fong, T.

    2017-12-01

    We are using the NASA Ames Stereo Pipeline to process Operation IceBridge Digital Mapping System (DMS) images into terrain models and to align them with the simultaneously acquired LIDAR data (ATM and LVIS). The expected outcome is to create a contiguous, high resolution terrain model for each flight that Operation IceBridge has flown during its eight year history of Arctic and Antarctic flights. There are some existing terrain models in the NSIDC repository that cover 2011 and 2012 (out of the total period of 2009 to 2017), which were made with the Agisoft Photoscan commercial software. Our open-source stereo suite has been verified to create terrains of similar quality. The total number of images we expect to process is around 5 million. There are numerous challenges with these data: accurate determination and refinement of camera pose when the images were acquired based on data logged during the flights and/or using information from existing orthoimages, aligning terrains with little or no features, images containing clouds, JPEG artifacts in input imagery, inconsistencies in how data was acquired/archived over the entire period, not fully reliable camera calibration files, and the sheer amount of data. We will create the majority of terrain models at 40 cm/pixel with a vertical precision of 10 to 20 cm. In some circumstances when the aircraft was flying higher than usual, those values will get coarser. We will create orthoimages at 10 cm/pixel (with the same caveat that some flights are at higher altitudes). These will differ from existing orthoimages by using the underlying terrain we generate rather than some pre-existing very low-resolution terrain model that may differ significantly from what is on the ground at the time of IceBridge acquisition.The results of this massive processing will be submitted to the NSIDC so that cryosphere researchers will be able to use these data for their investigations.

  8. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    NASA Astrophysics Data System (ADS)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  9. 76 FR 22386 - Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of an Invention...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... Partially-Exclusive Licensing of an Invention Concerning the Method and Apparatus for Stereo Imaging AGENCY... ``Method and Apparatus for Stereo Imaging,'' filed on March 11, 2011. The United States Government, as...: The invention relates to a method and apparatus for the generation of macro scale extremely high...

  10. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays.

    PubMed

    Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao

    2015-03-09

    Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.

  11. Early detection of glaucoma using fully automated disparity analysis of the optic nerve head (ONH) from stereo fundus images

    NASA Astrophysics Data System (ADS)

    Sharma, Archie; Corona, Enrique; Mitra, Sunanda; Nutter, Brian S.

    2006-03-01

    Early detection of structural damage to the optic nerve head (ONH) is critical in diagnosis of glaucoma, because such glaucomatous damage precedes clinically identifiable visual loss. Early detection of glaucoma can prevent progression of the disease and consequent loss of vision. Traditional early detection techniques involve observing changes in the ONH through an ophthalmoscope. Stereo fundus photography is also routinely used to detect subtle changes in the ONH. However, clinical evaluation of stereo fundus photographs suffers from inter- and intra-subject variability. Even the Heidelberg Retina Tomograph (HRT) has not been found to be sufficiently sensitive for early detection. A semi-automated algorithm for quantitative representation of the optic disc and cup contours by computing accumulated disparities in the disc and cup regions from stereo fundus image pairs has already been developed using advanced digital image analysis methodologies. A 3-D visualization of the disc and cup is achieved assuming camera geometry. High correlation among computer-generated and manually segmented cup to disc ratios in a longitudinal study involving 159 stereo fundus image pairs has already been demonstrated. However, clinical usefulness of the proposed technique can only be tested by a fully automated algorithm. In this paper, we present a fully automated algorithm for segmentation of optic cup and disc contours from corresponding stereo disparity information. Because this technique does not involve human intervention, it eliminates subjective variability encountered in currently used clinical methods and provides ophthalmologists with a cost-effective and quantitative method for detection of ONH structural damage for early detection of glaucoma.

  12. Geometric correction and digital elevation extraction using multiple MTI datasets

    USGS Publications Warehouse

    Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.

    2007-01-01

    Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.

  13. Improved disparity map analysis through the fusion of monocular image segmentations

    NASA Technical Reports Server (NTRS)

    Perlant, Frederic P.; Mckeown, David M.

    1991-01-01

    The focus is to examine how estimates of three dimensional scene structure, as encoded in a scene disparity map, can be improved by the analysis of the original monocular imagery. The utilization of surface illumination information is provided by the segmentation of the monocular image into fine surface patches of nearly homogeneous intensity to remove mismatches generated during stereo matching. These patches are used to guide a statistical analysis of the disparity map based on the assumption that such patches correspond closely with physical surfaces in the scene. Such a technique is quite independent of whether the initial disparity map was generated by automated area-based or feature-based stereo matching. Stereo analysis results are presented on a complex urban scene containing various man-made and natural features. This scene contains a variety of problems including low building height with respect to the stereo baseline, buildings and roads in complex terrain, and highly textured buildings and terrain. The improvements are demonstrated due to monocular fusion with a set of different region-based image segmentations. The generality of this approach to stereo analysis and its utility in the development of general three dimensional scene interpretation systems are also discussed.

  14. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  15. Automatic detection and recognition of traffic signs in stereo images based on features and probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian

    2008-04-01

    Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.

  16. Combined Hinode, STEREO, and TRACE Observations of a Solar Filament Eruption: Evidence for Destabilization by Flux-Cancelation Tether Cutting

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, R. L.

    2007-01-01

    We present observations from Hinode, STEREO, and TRACE of a solar filament eruption and flare that occurred on 2007 March 2. Data from the two new satellites, combined with the TRACE observations, give us fresh insights into the eruption onset process. HINODE/XRT shows soft X-ray (SXR) activity beginning approximately 30 minutes prior to ignition of bright flare loops. STEREO andTRACE images show that the filament underwent relatively slow motions coinciding with the pre-eruption SXR brightenings, and it underwent rapid eruptive motions beginning near the time of flare onset. Concurrent HINODE/SOT magnetograms showed substantial flux cancelation under the filament at the site of the pre-eruption SXR activity. From these observations we infer that progressive tether-cutting reconnection driven by photospheric convection caused the slow rise of the filament and led to its eruption. NASA supported this work through a NASA Heliosphysics GI grant.

  17. Pavement Distress Evaluation Using 3D Depth Information from Stereo Vision

    DOT National Transportation Integrated Search

    2012-07-01

    The focus of the current project funded by MIOH-UTC for the period 9/1/2010-8/31/2011 is to : enhance our earlier effort in providing a more robust image processing based pavement distress : detection and classification system. During the last few de...

  18. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy

    PubMed Central

    Bouet, Romain; Delpuech, Claude; Ryvlin, Philippe; Isnard, Jean; Guenot, Marc; Bertrand, Olivier; Hammers, Alexander; Mauguière, François

    2013-01-01

    Surgical treatment of epilepsy is a challenge for patients with non-contributive brain magnetic resonance imaging. However, surgery is feasible if the seizure-onset zone is precisely delineated through intracranial electroencephalography recording. We recently described a method, volumetric imaging of epileptic spikes, to delineate the spiking volume of patients with focal epilepsy using magnetoencephalography. We postulated that the extent of the spiking volume delineated with volumetric imaging of epileptic spikes could predict the localizability of the seizure-onset zone by intracranial electroencephalography investigation and outcome of surgical treatment. Twenty-one patients with non-contributive magnetic resonance imaging findings were included. All patients underwent intracerebral electroencephalography investigation through stereotactically implanted depth electrodes (stereo-electroencephalography) and magnetoencephalography with delineation of the spiking volume using volumetric imaging of epileptic spikes. We evaluated the spatial congruence between the spiking volume determined by magnetoencephalography and the localization of the seizure-onset zone determined by stereo-electroencephalography. We also evaluated the outcome of stereo-electroencephalography and surgical treatment according to the extent of the spiking volume (focal, lateralized but non-focal or non-lateralized). For all patients, we found a spatial overlap between the seizure-onset zone and the spiking volume. For patients with a focal spiking volume, the seizure-onset zone defined by stereo-electroencephalography was clearly localized in all cases and most patients (6/7, 86%) had a good surgical outcome. Conversely, stereo-electroencephalography failed to delineate a seizure-onset zone in 57% of patients with a lateralized spiking volume, and in the two patients with bilateral spiking volume. Four of the 12 patients with non-focal spiking volumes were operated upon, none became seizure-free. As a whole, patients having focal magnetoencephalography results with volumetric imaging of epileptic spikes are good surgical candidates and the implantation strategy should incorporate volumetric imaging of epileptic spikes results. On the contrary, patients with non-focal magnetoencephalography results are less likely to have a localized seizure-onset zone and stereo electroencephalography is not advised unless clear localizing information is provided by other presurgical investigation methods. PMID:24014520

  19. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy.

    PubMed

    Jung, Julien; Bouet, Romain; Delpuech, Claude; Ryvlin, Philippe; Isnard, Jean; Guenot, Marc; Bertrand, Olivier; Hammers, Alexander; Mauguière, François

    2013-10-01

    Surgical treatment of epilepsy is a challenge for patients with non-contributive brain magnetic resonance imaging. However, surgery is feasible if the seizure-onset zone is precisely delineated through intracranial electroencephalography recording. We recently described a method, volumetric imaging of epileptic spikes, to delineate the spiking volume of patients with focal epilepsy using magnetoencephalography. We postulated that the extent of the spiking volume delineated with volumetric imaging of epileptic spikes could predict the localizability of the seizure-onset zone by intracranial electroencephalography investigation and outcome of surgical treatment. Twenty-one patients with non-contributive magnetic resonance imaging findings were included. All patients underwent intracerebral electroencephalography investigation through stereotactically implanted depth electrodes (stereo-electroencephalography) and magnetoencephalography with delineation of the spiking volume using volumetric imaging of epileptic spikes. We evaluated the spatial congruence between the spiking volume determined by magnetoencephalography and the localization of the seizure-onset zone determined by stereo-electroencephalography. We also evaluated the outcome of stereo-electroencephalography and surgical treatment according to the extent of the spiking volume (focal, lateralized but non-focal or non-lateralized). For all patients, we found a spatial overlap between the seizure-onset zone and the spiking volume. For patients with a focal spiking volume, the seizure-onset zone defined by stereo-electroencephalography was clearly localized in all cases and most patients (6/7, 86%) had a good surgical outcome. Conversely, stereo-electroencephalography failed to delineate a seizure-onset zone in 57% of patients with a lateralized spiking volume, and in the two patients with bilateral spiking volume. Four of the 12 patients with non-focal spiking volumes were operated upon, none became seizure-free. As a whole, patients having focal magnetoencephalography results with volumetric imaging of epileptic spikes are good surgical candidates and the implantation strategy should incorporate volumetric imaging of epileptic spikes results. On the contrary, patients with non-focal magnetoencephalography results are less likely to have a localized seizure-onset zone and stereo electroencephalography is not advised unless clear localizing information is provided by other presurgical investigation methods.

  20. The research on calibration methods of dual-CCD laser three-dimensional human face scanning system

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong

    2013-09-01

    In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.

  1. Generalized parallel-perspective stereo mosaics from airborne video.

    PubMed

    Zhu, Zhigang; Hanson, Allen R; Riseman, Edward M

    2004-02-01

    In this paper, we present a new method for automatically and efficiently generating stereoscopic mosaics by seamless registration of images collected by a video camera mounted on an airborne platform. Using a parallel-perspective representation, a pair of geometrically registered stereo mosaics can be precisely constructed under quite general motion. A novel parallel ray interpolation for stereo mosaicing (PRISM) approach is proposed to make stereo mosaics seamless in the presence of obvious motion parallax and for rather arbitrary scenes. Parallel-perspective stereo mosaics generated with the PRISM method have better depth resolution than perspective stereo due to the adaptive baseline geometry. Moreover, unlike previous results showing that parallel-perspective stereo has a constant depth error, we conclude that the depth estimation error of stereo mosaics is in fact a linear function of the absolute depths of a scene. Experimental results on long video sequences are given.

  2. A multimodal 3D framework for fire characteristics estimation

    NASA Astrophysics Data System (ADS)

    Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.

    2018-02-01

    In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.

  3. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    NASA Astrophysics Data System (ADS)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  4. Innovative Camera and Image Processing System to Characterize Cryospheric Changes

    NASA Astrophysics Data System (ADS)

    Schenk, A.; Csatho, B. M.; Nagarajan, S.

    2010-12-01

    The polar regions play an important role in Earth’s climatic and geodynamic systems. Digital photogrammetric mapping provides a means for monitoring the dramatic changes observed in the polar regions during the past decades. High-resolution, photogrammetrically processed digital aerial imagery provides complementary information to surface measurements obtained by laser altimetry systems. While laser points accurately sample the ice surface, stereo images allow for the mapping of features, such as crevasses, flow bands, shear margins, moraines, leads, and different types of sea ice. Tracking features in repeat images produces a dense velocity vector field that can either serve as validation for interferometrically derived surface velocities or it constitutes a stand-alone product. A multi-modal, photogrammetric platform consists of one or more high-resolution, commercial color cameras, GPS and inertial navigation system as well as optional laser scanner. Such a system, using a Canon EOS-1DS Mark II camera, was first flown on the Icebridge missions Fall 2009 and Spring 2010, capturing hundreds of thousands of images at a frame rate of about one second. While digital images and videos have been used for quite some time for visual inspection, precise 3D measurements with low cost, commercial cameras require special photogrammetric treatment that only became available recently. Calibrating the multi-camera imaging system and geo-referencing the images are absolute prerequisites for all subsequent applications. Commercial cameras are inherently non-metric, that is, their sensor model is only approximately known. Since these cameras are not as rugged as photogrammetric cameras, the interior orientation also changes, due to temperature and pressure changes and aircraft vibration, resulting in large errors in 3D measurements. It is therefore necessary to calibrate the cameras frequently, at least whenever the system is newly installed. Geo-referencing the images is performed by the Applanix navigation system. Our new method enables a 3D reconstruction of ice sheet surface with high accuracy and unprecedented details, as it is demonstrated by examples from the Antarctic Peninsula, acquired by the IceBridge mission. Repeat digital imaging also provides data for determining surface elevation changes and velocities that are critical parameters for ice sheet models. Although these methods work well, there are known problems with satellite images and the traditional area-based matching, especially over rapidly changing outlet glaciers. To take full advantage of the high resolution, repeat stereo imaging we have developed a new method. The processing starts with the generation of a DEM from geo-referenced stereo images of the first time epoch. The next step is concerned with extracting and matching interest points in object space. Since an interest point moves its spatial position between two time epochs, such points are only radiometrically conjugate but not geometrically. In fact, the geometric displacement of two identical points, together with the time difference, renders velocities. We computed the evolution of the velocity field and surface topography on the floating tongue of the Jakobshavn glacier from historical stereo aerial photographs to illustrate the approach.

  5. Deep convolutional neural network processing of aerial stereo imagery to monitor vulnerable zones near power lines

    NASA Astrophysics Data System (ADS)

    Qayyum, Abdul; Saad, Naufal M.; Kamel, Nidal; Malik, Aamir Saeed

    2018-01-01

    The monitoring of vegetation near high-voltage transmission power lines and poles is tedious. Blackouts present a huge challenge to power distribution companies and often occur due to tree growth in hilly and rural areas. There are numerous methods of monitoring hazardous overgrowth that are expensive and time-consuming. Accurate estimation of tree and vegetation heights near power poles can prevent the disruption of power transmission in vulnerable zones. This paper presents a cost-effective approach based on a convolutional neural network (CNN) algorithm to compute the height (depth maps) of objects proximal to power poles and transmission lines. The proposed CNN extracts and classifies features by employing convolutional pooling inputs to fully connected data layers that capture prominent features from stereo image patches. Unmanned aerial vehicle or satellite stereo image datasets can thus provide a feasible and cost-effective approach that identifies threat levels based on height and distance estimations of hazardous vegetation and other objects. Results were compared with extant disparity map estimation techniques, such as graph cut, dynamic programming, belief propagation, and area-based methods. The proposed method achieved an accuracy rate of 90%.

  6. Simulating multi-spacecraft Heliospheric Imager observations for tomographic reconstruction of interplanetary CMEs

    NASA Astrophysics Data System (ADS)

    Barnes, D.

    2017-12-01

    The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.

  7. Prism-based single-camera system for stereo display

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  8. Augmented-reality visualization of brain structures with stereo and kinetic depth cues: system description and initial evaluation with head phantom

    NASA Astrophysics Data System (ADS)

    Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.

    2001-05-01

    We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.

  9. A three-dimensional geological reconstruction of Noctis Labyrinthus slope tectonics from CaSSIS data

    NASA Astrophysics Data System (ADS)

    Massironi, M. M.; Pozzobon, R. P.; Lucchetti, A. L.; Simioni, E. S.; Re, C. R.; Mudrič, T. M.; Pajola, M. P.; Cremonese, G. C.; Pommerol, A. P.; Salese, F. S.; Thomas, N. T.; Mege, D. M.

    2017-09-01

    In November 2016 the CaSSIS (Colour and Stereo Surface Imaging System) imaging system onboard the European Space Agency's ExoMars Trace Gas Orbiter (TGO) acquired 18 images (each composed by 30 framelets for each of the 4 colour channels) of the Martian surface. The first stereo- pairs were taken during the closest approach, at a distance of 520 km from the surface, over the Hebes Chasma and Noctis Labyrithus regions. In the latter case a DTM was prepared over a north facing slope bounding to the north a 2000 m deep depression and to the south a plateau complicated by extensional fault networks. Such slope is characterised by a downthrown block that can be interpreted as a Deep Seated Gravitational Slope Deformation (DSGSD) sensu. In this work we will present a 3D geological reconstruction of the phenomenon that allowed us to constrain the possible main sliding surface, the volumes involved in the gravitational process and the kinematics of the mass movement.

  10. A stereoscopic lens for digital cinema cameras

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  11. Passive perception system for day/night autonomous off-road navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Bergh, Charles F.; Goldberg, Steven B.; Bellutta, Paolo; Huertas, Andres; Matthies, Larry H.

    2005-05-01

    Passive perception of terrain features is a vital requirement for military related unmanned autonomous vehicle operations, especially under electromagnetic signature management conditions. As a member of Team Raptor, the Jet Propulsion Laboratory developed a self-contained passive perception system under the DARPA funded PerceptOR program. An environmentally protected forward-looking sensor head was designed and fabricated in-house to straddle an off-the-shelf pan-tilt unit. The sensor head contained three color cameras for multi-baseline daytime stereo ranging, a pair of cooled mid-wave infrared cameras for nighttime stereo ranging, and supporting electronics to synchronize captured imagery. Narrow-baseline stereo provided improved range data density in cluttered terrain, while wide-baseline stereo provided more accurate ranging for operation at higher speeds in relatively open areas. The passive perception system processed stereo images and outputted over a local area network terrain maps containing elevation, terrain type, and detected hazards. A novel software architecture was designed and implemented to distribute the data processing on a 533MHz quad 7410 PowerPC single board computer under the VxWorks real-time operating system. This architecture, which is general enough to operate on N processors, has been subsequently tested on Pentium-based processors under Windows and Linux, and a Sparc based-processor under Unix. The passive perception system was operated during FY04 PerceptOR program evaluations at Fort A. P. Hill, Virginia, and Yuma Proving Ground, Arizona. This paper discusses the Team Raptor passive perception system hardware and software design, implementation, and performance, and describes a road map to faster and improved passive perception.

  12. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  13. Stereo matching algorithm based on double components model

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Ou, Kejun; Zhao, Jianxin; Mou, Xingang

    2018-03-01

    The tiny wires are the great threat to the safety of the UAV flight. Because they have only several pixels isolated far from the background, while most of the existing stereo matching methods require a certain area of the support region to improve the robustness, or assume the depth dependence of the neighboring pixels to meet requirement of global or semi global optimization method. So there will be some false alarms even failures when images contains tiny wires. A new stereo matching algorithm is approved in the paper based on double components model. According to different texture types the input image is decomposed into two independent component images. One contains only sparse wire texture image and another contains all remaining parts. Different matching schemes are adopted for each component image pairs. Experiment proved that the algorithm can effectively calculate the depth image of complex scene of patrol UAV, which can detect tiny wires besides the large size objects. Compared with the current mainstream method it has obvious advantages.

  14. Restoration of distorted depth maps calculated from stereo sequences

    NASA Technical Reports Server (NTRS)

    Damour, Kevin; Kaufman, Howard

    1991-01-01

    A model-based Kalman estimator is developed for spatial-temporal filtering of noise and other degradations in velocity and depth maps derived from image sequences or cinema. As an illustration of the proposed procedures, edge information from image sequences of rigid objects is used in the processing of the velocity maps by selecting from a series of models for directional adaptive filtering. Adaptive filtering then allows for noise reduction while preserving sharpness in the velocity maps. Results from several synthetic and real image sequences are given.

  15. HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.

    PubMed

    Lin, Huei-Yung; Wang, Min-Liang

    2014-09-04

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach.

  16. HOPIS: Hybrid Omnidirectional and Perspective Imaging System for Mobile Robots

    PubMed Central

    Lin, Huei-Yung.; Wang, Min-Liang.

    2014-01-01

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317

  17. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  18. Stereo Imaging Miniature Endoscope

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; Manohara, Harish; White, Victor; Shcheglov, Kirill V.; Shahinian, Hrayr

    2011-01-01

    Stereo imaging requires two different perspectives of the same object and, traditionally, a pair of side-by-side cameras would be used but are not feasible for something as tiny as a less than 4-mm-diameter endoscope that could be used for minimally invasive surgeries or geoexploration through tiny fissures or bores. The proposed solution here is to employ a single lens, and a pair of conjugated, multiple-bandpass filters (CMBFs) to separate stereo images. When a CMBF is placed in front of each of the stereo channels, only one wavelength of the visible spectrum that falls within the passbands of the CMBF is transmitted through at a time when illuminated. Because the passbands are conjugated, only one of the two channels will see a particular wavelength. These time-multiplexed images are then mixed and reconstructed to display as stereo images. The basic principle of stereo imaging involves an object that is illuminated at specific wavelengths, and a range of illumination wavelengths is time multiplexed. The light reflected from the object selectively passes through one of the two CMBFs integrated with two pupils separated by a baseline distance, and is focused onto the imaging plane through an objective lens. The passband range of CMBFs and the illumination wavelengths are synchronized such that each of the CMBFs allows transmission of only the alternate illumination wavelength bands. And the transmission bandwidths of CMBFs are complementary to each other, so that when one transmits, the other one blocks. This can be clearly understood if the wavelength bands are divided broadly into red, green, and blue, then the illumination wavelengths contain two bands in red (R1, R2), two bands in green (G1, G2), and two bands in blue (B1, B2). Therefore, when the objective is illuminated by R1, the reflected light enters through only the left-CMBF as the R1 band corresponds to the transmission window of the left CMBF at the left pupil. This is blocked by the right CMBF. The transmitted band is focused on the focal plane array (FPA).

  19. Dig Hazard Assessment Using a Stereo Pair of Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Trebi-Ollennu, Ashitey

    2012-01-01

    This software evaluates the terrain within reach of a lander s robotic arm for dig hazards using a stereo pair of cameras that are part of the lander s sensor system. A relative level of risk is calculated for a set of dig sectors. There are two versions of this software; one is designed to run onboard a lander as part of the flight software, and the other runs on a PC under Linux as a ground tool that produces the same results generated on the lander, given stereo images acquired by the lander and downlinked to Earth. Onboard dig hazard assessment is accomplished by executing a workspace panorama command sequence. This sequence acquires a set of stereo pairs of images of the terrain the arm can reach, generates a set of candidate dig sectors, and assesses the dig hazard of each candidate dig sector. The 3D perimeter points of candidate dig sectors are generated using configurable parameters. A 3D reconstruction of the terrain in front of the lander is generated using a set of stereo images acquired from the mast cameras. The 3D reconstruction is used to evaluate the dig goodness of each candidate dig sector based on a set of eight metrics. The eight metrics are: 1. The maximum change in elevation in each sector, 2. The elevation standard deviation in each sector, 3. The forward tilt of each sector with respect to the payload frame, 4. The side tilt of each sector with respect to the payload frame, 5. The maximum size of missing data regions in each sector, 6. The percentage of a sector that has missing data, 7. The roughness of each sector, and 8. Monochrome intensity standard deviation of each sector. Each of the eight metrics forms a goodness image layer where the goodness value of each sector ranges from 0 to 1. Goodness values of 0 and 1 correspond to high and low risk, respectively. For each dig sector, the eight goodness values are merged by selecting the lowest one. Including the merged goodness image layer, there are nine goodness image layers for each stereo pair of mast images.

  20. Tracking Topographic Changes from Multitemporal Stereo Images, Application to the Nili Patera Dune Field

    NASA Astrophysics Data System (ADS)

    Avouac, J.; Ayoub, F.; Bridges, N. T.; Leprince, S.; Lucas, A.

    2012-12-01

    The High Resolution Imaging Science Experiment (HiRISE) in orbit around Mars provides images with a nominal ground resolution of 25cm. Its agility allows imaging a same scene with stereo view angles thus allowing for for Digital elevation Model (DEM) extraction through stereo-photogrammetry. This dataset thus offers an exceptional opportunity to measure the topography with high precision and track its eventual evolution with time. In this presentation, we will discuss how multi-temporal acquisitions of HiRISE images of the Nili Patera dune field allow tracking ripples migration, assess sand fluxes and dunes activity. We investigated in particular the use of multi-temporal DEMs to monitor the migration and morphologic evolution of the dune field. We present here the methodology used and the various challenges that must be overcome to best exploit the multi-temporal images. Two DEMs were extracted from two stereo images pairs acquired 390 earth days apart in 2010-2011 using SOCET SET photogrammetry software, with a 1m post-spacing and a vertical accuracy of few tens of centimeters. Prior to comparison the DEMs registration, which was not precise enough out of SOCET-SET, was improved by wrapping the second DEM onto the first one using the bedrock only as a support for registration. The vertical registration residual was estimated at around 40cm RMSE and is mostly due to CCD misalignment and uncorrected spacecraft attitudes. Changes of elevation over time are usually determined from DEMs differentiation: provided that DEMs are perfectly registered and sampled on the same grid, this approach readily quantifies erosion and deposition processes. As the dunes have moved horizontally, they are not physically aligned anymore in the DEMs, and their morphologic evolution cannot be recovered easily from differentiating the DEMs. In this particular setting the topographic evolution is best recovered from correlation of the DEMs. We measure that the fastest dunes have migrated by up to 1meter per Earth year as a result of lee front deposition and stoss slope erosion. DEMs differentiation, after correction for horizontal migration, provides and additional information on dune morphology evolution. Some dunes show a vertical growth over the 390 days spanning the 2 DEMs, but we cannot exclude a bias due to the acquisition parameters. Indeed, the images of the two stereo pairs were acquired 22 and 5 days apart, respectively. During that time, the ripples laying on the dune surface have probably migrated. As the DEMs extraction is based on feature tracking and parallax, this difference in DEMs elevation may be only, or in part, due to the ripple migration between the acquisition times that biased the actual dune elevations.

  1. Visual homing with a pan-tilt based stereo camera

    NASA Astrophysics Data System (ADS)

    Nirmal, Paramesh; Lyons, Damian M.

    2013-01-01

    Visual homing is a navigation method based on comparing a stored image of the goal location and the current image (current view) to determine how to navigate to the goal location. It is theorized that insects, such as ants and bees, employ visual homing methods to return to their nest. Visual homing has been applied to autonomous robot platforms using two main approaches: holistic and feature-based. Both methods aim at determining distance and direction to the goal location. Navigational algorithms using Scale Invariant Feature Transforms (SIFT) have gained great popularity in the recent years due to the robustness of the feature operator. Churchill and Vardy have developed a visual homing method using scale change information (Homing in Scale Space, HiSS) from SIFT. HiSS uses SIFT feature scale change information to determine distance between the robot and the goal location. Since the scale component is discrete with a small range of values, the result is a rough measurement with limited accuracy. We have developed a method that uses stereo data, resulting in better homing performance. Our approach utilizes a pan-tilt based stereo camera, which is used to build composite wide-field images. We use the wide-field images combined with stereo-data obtained from the stereo camera to extend the keypoint vector described in to include a new parameter, depth (z). Using this info, our algorithm determines the distance and orientation from the robot to the goal location. We compare our method with HiSS in a set of indoor trials using a Pioneer 3-AT robot equipped with a BumbleBee2 stereo camera. We evaluate the performance of both methods using a set of performance measures described in this paper.

  2. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous data volumes.

  3. A long baseline global stereo matching based upon short baseline estimation

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhao, Hong; Li, Zigang; Gu, Feifei; Zhao, Zixin; Ma, Yueyang; Fang, Meiqi

    2018-05-01

    In global stereo vision, balancing the matching efficiency and computing accuracy seems to be impossible because they contradict each other. In the case of a long baseline, this contradiction becomes more prominent. In order to solve this difficult problem, this paper proposes a novel idea to improve both the efficiency and accuracy in global stereo matching for a long baseline. In this way, the reference images located between the long baseline image pairs are firstly chosen to form the new image pairs with short baselines. The relationship between the disparities of pixels in the image pairs with different baselines is revealed by considering the quantized error so that the disparity search range under the long baseline can be reduced by guidance of the short baseline to gain matching efficiency. Then, the novel idea is integrated into the graph cuts (GCs) to form a multi-step GC algorithm based on the short baseline estimation, by which the disparity map under the long baseline can be calculated iteratively on the basis of the previous matching. Furthermore, the image information from the pixels that are non-occluded under the short baseline but are occluded for the long baseline can be employed to improve the matching accuracy. Although the time complexity of the proposed method depends on the locations of the chosen reference images, it is usually much lower for a long baseline stereo matching than when using the traditional GC algorithm. Finally, the validity of the proposed method is examined by experiments based on benchmark datasets. The results show that the proposed method is superior to the traditional GC method in terms of efficiency and accuracy, and thus it is suitable for long baseline stereo matching.

  4. The Relationship Between the Expansion Speed and Radial Speed of CMEs Confirmed Using Quadrature Observations of the 2011 February 15 CME

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Davila, J. M.

    2012-08-01

    It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009a). The STEREO spacecraft were in qudrature with SOHO (STEREO-A ahead of Earth by 87oand STEREO-B 94obehind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp) and radial speed (Vrad) derived previously from geometrical considerations (Gopalswamy et al. 2009a): Vrad=1/2 (1 + cot w)Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 7 6o, so w=3 8o. This gives the relation as Vrad=1.1 4 Vexp. From LASCO observations, we measured Vexp=897 km/s, so we get the radial speed as 10 2 3 km/s. Direct measurement of radial speed yields 945 km/s (STEREO-A) and 105 8 km/s (STEREO-B). These numbers are different only by 7.6 % and 3.4 % (for STEREO-A and STEREO-B, respectively) from the computed value.

  5. X-ray and optical stereo-based 3D sensor fusion system for image-guided neurosurgery.

    PubMed

    Kim, Duk Nyeon; Chae, You Seong; Kim, Min Young

    2016-04-01

    In neurosurgery, an image-guided operation is performed to confirm that the surgical instruments reach the exact lesion position. Among the multiple imaging modalities, an X-ray fluoroscope mounted on C- or O-arm is widely used for monitoring the position of surgical instruments and the target position of the patient. However, frequently used fluoroscopy can result in relatively high radiation doses, particularly for complex interventional procedures. The proposed system can reduce radiation exposure and provide the accurate three-dimensional (3D) position information of surgical instruments and the target position. X-ray and optical stereo vision systems have been proposed for the C- or O-arm. Two subsystems have same optical axis and are calibrated simultaneously. This provides easy augmentation of the camera image and the X-ray image. Further, the 3D measurement of both systems can be defined in a common coordinate space. The proposed dual stereoscopic imaging system is designed and implemented for mounting on an O-arm. The calibration error of the 3D coordinates of the optical stereo and X-ray stereo is within 0.1 mm in terms of the mean and the standard deviation. Further, image augmentation with the camera image and the X-ray image using an artificial skull phantom is achieved. As the developed dual stereoscopic imaging system provides 3D coordinates of the point of interest in both optical images and fluoroscopic images, it can be used by surgeons to confirm the position of surgical instruments in a 3D space with minimum radiation exposure and to verify whether the instruments reach the surgical target observed in fluoroscopic images.

  6. MISR Stereo-heights of Grassland Fire Smoke Plumes in Australia

    NASA Astrophysics Data System (ADS)

    Mims, S. R.; Kahn, R. A.; Moroney, C. M.; Gaitley, B. J.; Nelson, D. L.; Garay, M. J.

    2008-12-01

    Plume heights from wildfires are used in climate modeling to predict and understand trends in aerosol transport. This study examines whether smoke from grassland fires in the desert region of Western and central Australia ever rises above the relatively stable atmospheric boundary layer and accumulates in higher layers of relative atmospheric stability. Several methods for deriving plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) instrument are examined for fire events during the summer 2000 and 2002 burning seasons. Using MISR's multi-angle stereo-imagery from its three near-nadir-viewing cameras, an automatic algorithm routinely derives the stereo-heights above the geoid of the level-of-maximum-contrast for the entire global data set, which often correspond to the heights of clouds and aerosol plumes. Most of the fires that occur in the cases studied here are small, diffuse, and difficult to detect. To increase the signal from these thin hazes, the MISR enhanced stereo product that computes stereo heights from the most steeply viewing MISR cameras is used. For some cases, a third approach to retrieving plume heights from MISR stereo imaging observations, the MISR Interactive Explorer (MINX) tool, is employed to help differentiate between smoke and cloud. To provide context and to search for correlative factors, stereo-heights are combined with data providing fire strength from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, atmospheric structure from the NCEP/NCAR Reanalysis Project, surface cover from the Australia National Vegetation Information System, and forward and backward trajectories from the NOAA HYSPLIT model. Although most smoke plumes concentrate in the near-surface boundary layer, as expected, some appear to rise higher. These findings suggest that a closer examination of grassland fire energetics may be warranted.

  7. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  8. Quantitative evaluation of three advanced laparoscopic viewing technologies: a stereo endoscope, an image projection display, and a TFT display.

    PubMed

    Wentink, M; Jakimowicz, J J; Vos, L M; Meijer, D W; Wieringa, P A

    2002-08-01

    Compared to open surgery, minimally invasive surgery (MIS) relies heavily on advanced technology, such as endoscopic viewing systems and innovative instruments. The aim of the study was to objectively compare three technologically advanced laparoscopic viewing systems with the standard viewing system currently used in most Dutch hospitals. We evaluated the following advanced laparoscopic viewing systems: a Thin Film Transistor (TFT) display, a stereo endoscope, and an image projection display. The standard viewing system was comprised of a monocular endoscope and a high-resolution monitor. Task completion time served as the measure of performance. Eight surgeons with laparoscopic experience participated in the experiment. The average task time was significantly greater (p <0.05) with the stereo viewing system than with the standard viewing system. The average task times with the TFT display and the image projection display did not differ significantly from the standard viewing system. Although the stereo viewing system promises improved depth perception and the TFT and image projection displays are supposed to improve hand-eye coordination, none of these systems provided better task performance than the standard viewing system in this pelvi-trainer experiment.

  9. Intelligent person identification system using stereo camera-based height and stride estimation

    NASA Astrophysics Data System (ADS)

    Ko, Jung-Hwan; Jang, Jae-Hun; Kim, Eun-Soo

    2005-05-01

    In this paper, a stereo camera-based intelligent person identification system is suggested. In the proposed method, face area of the moving target person is extracted from the left image of the input steros image pair by using a threshold value of YCbCr color model and by carrying out correlation between the face area segmented from this threshold value of YCbCr color model and the right input image, the location coordinates of the target face can be acquired, and then these values are used to control the pan/tilt system through the modified PID-based recursive controller. Also, by using the geometric parameters between the target face and the stereo camera system, the vertical distance between the target and stereo camera system can be calculated through a triangulation method. Using this calculated vertical distance and the angles of the pan and tilt, the target's real position data in the world space can be acquired and from them its height and stride values can be finally extracted. Some experiments with video images for 16 moving persons show that a person could be identified with these extracted height and stride parameters.

  10. Phoenix Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair

    This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008).

    In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair.

    For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1

    NASA Astrophysics Data System (ADS)

    Harrison, R. A.; Davies, J. A.; Barnes, D.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrčil, D.

    2018-05-01

    We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA's twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate outwards.

  12. Investigation of Terrain Analysis and Classification Methods for Ground Vehicles

    DTIC Science & Technology

    2012-08-27

    exteroceptive terrain classifier takes exteroceptive sensor data (here, color stereo images of the terrain) as its input and returns terrain class...Mishkin & Laubach, 2006), the rover cannot safely travel beyond the distance it can image with its cameras, which has been as little as 15 meters or...field of view roughly 44°×30°, capturing pairs of color images at 640×480 pixels each (Videre Design, 2001). Range data were extracted from the stereo

  13. The HRSC Experiment on Mars Express: First Imaging Results from the Commissioning Phase

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Neukum, G.; Hoffmann, H.; Jaumann, R.; Hauber, E.; Albertz, J.; McCord, T. B.; Markiewicz, W. J.

    2004-12-01

    The ESA Mars Express spacecraft was launched from Baikonur on June 2, 2003, entered Mars orbit on December 25, 2003, and reached the nominal mapping orbit on January 28, 2004. Observing conditions were favorable early on for the HRSC (High Resolution Stereo Camera), designed for the mapping of the Martian surface in 3-D. The HRSC is a pushbroom scanner with 9 CCD line detectors mounted in parallel and perpendicular to the direction of flight on the focal plane. The camera can obtain images at high resolution (10 m/pix), in triple stereo (20 m/pix), in four colors, and at five different phase angles near-simultaneously. An additional Super-Resolution Channel (SRC) yields nested-in images at 2.3 m/pix for detailed photogeologic studies. Even for nominal spacecraft trajectory and camera pointing data from the commissioning phase, solid stereo image reconstructions are feasible. More yet, the three-line stereo data allow us to identify and correct errors in navigation data. We find that > 99% of the stereo rays intersect within a sphere of radius < 20m after orbit and pointing data correction. From the HRSC images we have produced Digital Terrain Models (DTMs) with pixel sizes of 200 m, some of them better. HRSC stereo models and data obtained by the MOLA (Mars Orbiting Laser Altimeter) show good qualitative agreement. Differences in absolute elevations are within 50 m, but may reach several 100 m in lateral positioning (mostly in the spacecraft along-track direction). After correction of these offsets, the HRSC topographic data conveniently fill the gaps between the MOLA tracks and reveal hitherto unrecognized morphologic detail. At the time of writing, the HRSC has covered approx. 22.5 million square kilometers of the Martian surface. In addition, data from 5 Phobos flybys from May through August 2004 were obtained. The HRSC is beginning to make major contributions to geoscience, atmospheric science, photogrammetry, and cartography of Mars (papers submitted to Nature).

  14. Stereo Viewing Modulates Three-Dimensional Shape Processing During Object Recognition: A High-Density ERP Study

    PubMed Central

    2017-01-01

    The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape. PMID:29022728

  15. Large Prominence Eruption [video

    NASA Image and Video Library

    2014-10-07

    The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs. Credit: NASA/Goddard/STEREO The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs.

  16. Large Prominence Eruption (October 3, 2014)

    NASA Image and Video Library

    2017-12-08

    The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs. Credit: NASA/Goddard/STEREO The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs.

  17. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.

    1991-01-01

    Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.

  18. Topography from shading and stereo

    NASA Technical Reports Server (NTRS)

    Horn, Berthold K. P.

    1994-01-01

    Methods exploiting photometric information in images that have been developed in machine vision can be applied to planetary imagery. Integrating shape from shading, binocular stereo, and photometric stereo yields a robust system for recovering detailed surface shape and surface reflectance information. Such a system is useful in producing quantitative information from the vast volume of imagery being received, as well as in helping visualize the underlying surface.

  19. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites

    NASA Astrophysics Data System (ADS)

    Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; Elgner, S.; Erkeling, G.; Fueten, F.; Hiesinger, H.; Hoekzema, N. M.; Kersten, E.; Loizeau, D.; Matz, K.-D.; McGuire, P. C.; Mertens, V.; Michael, G.; Pasewaldt, A.; Pinet, P.; Preusker, F.; Reiss, D.; Roatsch, T.; Schmidt, R.; Scholten, F.; Spiegel, M.; Stesky, R.; Tirsch, D.; van Gasselt, S.; Walter, S.; Wählisch, M.; Willner, K.

    2016-07-01

    The High Resolution Stereo Camera (HRSC) of ESA's Mars Express is designed to map and investigate the topography of Mars. The camera, in particular its Super Resolution Channel (SRC), also obtains images of Phobos and Deimos on a regular basis. As HRSC is a push broom scanning instrument with nine CCD line detectors mounted in parallel, its unique feature is the ability to obtain along-track stereo images and four colors during a single orbital pass. The sub-pixel accuracy of 3D points derived from stereo analysis allows producing DTMs with grid size of up to 50 m and height accuracy on the order of one image ground pixel and better, as well as corresponding orthoimages. Such data products have been produced systematically for approximately 40% of the surface of Mars so far, while global shape models and a near-global orthoimage mosaic could be produced for Phobos. HRSC is also unique because it bridges between laser altimetry and topography data derived from other stereo imaging instruments, and provides geodetic reference data and geological context to a variety of non-stereo datasets. This paper, in addition to an overview of the status and evolution of the experiment, provides a review of relevant methods applied for 3D reconstruction and mapping, and respective achievements. We will also review the methodology of specific approaches to science analysis based on joint analysis of DTM and orthoimage information, or benefitting from high accuracy of co-registration between multiple datasets, such as studies using multi-temporal or multi-angular observations, from the fields of geomorphology, structural geology, compositional mapping, and atmospheric science. Related exemplary results from analysis of HRSC data will be discussed. After 10 years of operation, HRSC covered about 70% of the surface by panchromatic images at 10-20 m/pixel, and about 97% at better than 100 m/pixel. As the areas with contiguous coverage by stereo data are increasingly abundant, we also present original data related to the analysis of image blocks and address methodology aspects of newly established procedures for the generation of multi-orbit DTMs and image mosaics. The current results suggest that multi-orbit DTMs with grid spacing of 50 m can be feasible for large parts of the surface, as well as brightness-adjusted image mosaics with co-registration accuracy of adjacent strips on the order of one pixel, and at the highest image resolution available. These characteristics are demonstrated by regional multi-orbit data products covering the MC-11 (East) quadrangle of Mars, representing the first prototype of a new HRSC data product level.

  20. Considerations for the Use of STEREO -HI Data for Astronomical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappin, S. J., E-mail: james.tappin@stfc.ac.uk

    Recent refinements to the photometric calibrations of the Heliospheric Imagers (HI) on board the Solar TErrestrial RElations Observatory ( STEREO ) have revealed a number of subtle effects in the measurement of stellar signals with those instruments. These effects need to be considered in the interpretation of STEREO -HI data for astronomy. In this paper we present an analysis of these effects and how to compensate for them when using STEREO -HI data for astronomical studies. We determine how saturation of the HI CCD detectors affects the apparent count rates of stars after the on-board summing of pixels and exposures.more » Single-exposure calibration images are analyzed and compared with binned and summed science images to determine the influence of saturation on the science images. We also analyze how the on-board cosmic-ray scrubbing algorithm affects stellar images. We determine how this interacts with the variations of instrument pointing to affect measurements of stars. We find that saturation is a significant effect only for the brightest stars, and that its onset is gradual. We also find that degraded pointing stability, whether of the entire spacecraft or of the imagers, leads to reduced stellar count rates and also increased variation thereof through interaction with the on-board cosmic-ray scrubbing algorithm. We suggest ways in which these effects can be mitigated for astronomical studies and also suggest how the situation can be improved for future imagers.« less

  1. Stereo View of Martian Rock Target 'Funzie'

    NASA Image and Video Library

    2018-02-08

    The surface of the Martian rock target in this stereo image includes small hollows with a "swallowtail" shape characteristic of some gypsum crystals, most evident in the lower left quadrant. These hollows may have resulted from the original crystallizing mineral subsequently dissolving away. The view appears three-dimensional when seen through blue-red glasses with the red lens on the left. The scene spans about 2.5 inches (6.5 centimeters). This rock target, called "Funzie," is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. The stereo view combines two images taken from slightly different angles by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, with the camera about 4 inches (10 centimeters) above the target. Fig. 1 and Fig. 2 are the separate "right-eye" and "left-eye" images, taken on Jan. 11, 2018, during the 1,932nd Martian day, or sol, of the rover's work on Mars. Right-eye and left-eye images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22212

  2. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  3. Anthropometric body measurements based on multi-view stereo image reconstruction.

    PubMed

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.

  4. Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*

    PubMed Central

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700

  5. Determination of Cloud Base Height, Wind Velocity, and Short-Range Cloud Structure Using Multiple Sky Imagers Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Schwartz, Stephen E.; Yu, Dantong

    Clouds are a central focus of the U.S. Department of Energy (DOE)’s Atmospheric System Research (ASR) program and Atmospheric Radiation Measurement (ARM) Climate Research Facility, and more broadly are the subject of much investigation because of their important effects on atmospheric radiation and, through feedbacks, on climate sensitivity. Significant progress has been made by moving from a vertically pointing (“soda-straw”) to a three-dimensional (3D) view of clouds by investing in scanning cloud radars through the American Recovery and Reinvestment Act of 2009. Yet, because of the physical nature of radars, there are key gaps in ARM's cloud observational capabilities. Formore » example, cloud radars often fail to detect small shallow cumulus and thin cirrus clouds that are nonetheless radiatively important. Furthermore, it takes five to twenty minutes for a cloud radar to complete a 3D volume scan and clouds can evolve substantially during this period. Ground-based stereo-imaging is a promising technique to complement existing ARM cloud observation capabilities. It enables the estimation of cloud coverage, height, horizontal motion, morphology, and spatial arrangement over an extended area of up to 30 by 30 km at refresh rates greater than 1 Hz (Peng et al. 2015). With fine spatial and temporal resolution of modern sky cameras, the stereo-imaging technique allows for the tracking of a small cumulus cloud or a thin cirrus cloud that cannot be detected by a cloud radar. With support from the DOE SunShot Initiative, the Principal Investigator (PI)’s team at Brookhaven National Laboratory (BNL) has developed some initial capability for cloud tracking using multiple distinctly located hemispheric cameras (Peng et al. 2015). To validate the ground-based cloud stereo-imaging technique, the cloud stereo-imaging field campaign was conducted at the ARM Facility’s Southern Great Plains (SGP) site in Oklahoma from July 15 to December 24. As shown in Figure 1, the cloud stereo-imaging system consisted of two inexpensive high-definition (HD) hemispheric cameras (each cost less than $1,500) and ARM’s Total Sky Imager (TSI). Together with other co-located ARM instrumentation, the campaign provides a promising opportunity to validate stereo-imaging-based cloud base height and, more importantly, to examine the feasibility of cloud thickness retrieval for low-view-angle clouds.« less

  6. Computer-Generated, Three-Dimensional Spine Model From Biplanar Radiographs: A Validity Study in Idiopathic Scoliosis Curves Greater Than 50 Degrees.

    PubMed

    Carreau, Joseph H; Bastrom, Tracey; Petcharaporn, Maty; Schulte, Caitlin; Marks, Michelle; Illés, Tamás; Somoskeöy, Szabolcs; Newton, Peter O

    2014-03-01

    Reproducibility study of SterEOS 3-dimensional (3D) software in large, idiopathic scoliosis (IS) spinal curves. To determine the accuracy and reproducibility of various 3D, software-generated radiographic measurements acquired from a 2-dimensional (2D) imaging system. SterEOS software allows a user to reconstruct a 3D spinal model from an upright, biplanar, low-dose, X-ray system. The validity and internal consistency of this system have not been tested in large IS curves. EOS images from 30 IS patients with curves greater than 50° were collected for analysis. Three observers blinded to the study protocol conducted repeated, randomized, manual 2D measurements, and 3D software generated measurements from biplanar images acquired from an EOS Imaging system. Three-dimensional measurements were repeated using both the Full 3D and Fast 3D guided processes. A total of 180 (120 3D and 60 2D) sets of measurements were obtained of coronal (Cobb angle) and sagittal (T1-T12 and T4-T12 kyphosis; L1-S1 and L1-L5; and pelvic tilt, pelvic incidence, and sacral slope) parameters. Intra-class correlation coefficients were compared, as were the calculated differences in values generated by SterEOS 3D software and manual 2D measurements. The 95% confidence intervals of the mean differences in measures were calculated as an estimate of reproducibility. Average intra-class correlation coefficients were excellent: 0.97, 0.97, and 0.93 for Full 3D, Fast 3D, and 2D measures, respectively (p = .11). Measurement errors for some sagittal measures were significantly lower with the 3D techniques. Both the Full 3D and Fast 3D techniques provided consistent measurements of axial plane vertebral rotation. SterEOS 3D reconstruction spine software creates reproducible measurements in all 3 planes of deformity in curves greater than 50°. Advancements in 3D scoliosis imaging are expected to improve our understanding and treatment of idiopathic scoliosis. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  7. Spirit Beside 'Home Plate,' Sol 1809 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11803 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11803

    NASA Mars Exploration Rover Spirit used its navigation camera to take the images assembled into this stereo, 120-degree view southward after a short drive during the 1,809th Martian day, or sol, of Spirit's mission on the surface of Mars (February 3, 2009).

    By combining images from the left-eye and right-eye sides of the navigation camera, the view appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    Spirit had driven about 2.6 meters (8.5 feet) that sol, continuing a clockwise route around a low plateau called 'Home Plate.' In this image, the rocks visible above the rovers' solar panels are on the slope at the northern edge of Home Plate.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  8. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11820 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11820

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends.

    This view is the right-eye member of a stereo pair presented as a cylindrical-perspective projection with geometric seam correction.

    Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  9. Learning about the Dynamic Sun through Sounds

    NASA Astrophysics Data System (ADS)

    Quinn, M.; Peticolas, L. M.; Luhmann, J.; MacCallum, J.

    2008-06-01

    Can we hear the Sun or its solar wind? Not in the sense that they make sound. But we can take the particle, magnetic field, electric field, and image data and turn it into sound to demonstrate what the data tells us. We present work on turning data from the two-satellite NASA mission called STEREO (Solar TErrestrial RElations Observatory) into sounds and music (sonification). STEREO has two satellites orbiting the Sun near Earth's orbit to study the coronal mass ejections (CMEs) from the Corona. One sonification project aims to inspire musicians, museum patrons, and the public to learn more about CMEs by downloading STEREO data and using it to make music. We demonstrate the software and discuss the way in which it was developed. A second project aims to produce a museum exhibit using STEREO imagery and sounds from STEREO data. We demonstrate a "walk across the Sun" created for this exhibit so people can hear the features on solar images. We show how pixel intensity translates into pitches from selectable scales with selectable musical scale size and octave locations. We also share our successes and lessons learned.

  10. Community tools for cartographic and photogrammetric processing of Mars Express HRSC images

    USGS Publications Warehouse

    Kirk, Randolph L.; Howington-Kraus, Elpitha; Edmundson, Kenneth L.; Redding, Bonnie L.; Galuszka, Donna M.; Hare, Trent M.; Gwinner, K.; Wu, B.; Di, K.; Oberst, J.; Karachevtseva, I.

    2017-01-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged ~ 77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result, it was necessary to split observations into blocks of constant exposure time, greatly increasing the effort needed to control the images and collect DTMs. Here, we describe a substantially improved HRSC processing capability that incorporates sensor models with varying line timing in the current ISIS3 system (Sides 2017) and SOCET SET. This enormously reduces the work effort for processing most images and eliminates the artifacts that arose from segmenting them. In addition, the software takes advantage of the continuously evolving capabilities of ISIS3 and the improved image matching module NGATE (Next Generation Automatic Terrain Extraction, incorporating area and feature based algorithms, multi-image and multi-direction matching) of SOCET SET, thus greatly reducing the need for manual editing of DTM errors. We have also developed a procedure for geodetically controlling the images to Mars Orbiter Laser Altimeter (MOLA) data by registering a preliminary stereo topographic model to MOLA by using the point cloud alignment (pc_align) function of the NASA Ames Stereo Pipeline (ASP; Moratto et al. 2010). This effectively converts inter-image tiepoints into ground control points in the MOLA coordinate system. The result is improved absolute accuracy and a significant reduction in work effort relative to manual measurement of ground control. The ISIS and ASP software used are freely available; SOCET SET, is a commercial product. By the end of 2017 we expect to have ported our SOCET SET HRSC sensor model to the Community Sensor Model (CSM; Community Sensor Model Working Group 2010; Hare and Kirk 2017) standard utilized by the successor photogrammetric system SOCET GXP that is currently offered by BAE. In early 2018, we are also working with BAE to release the CSM source code under a BSD or MIT open source license. 

  11. Stereo-Optic High Definition Imaging: A New Technology to Understand Bird and Bat Avoidance of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Evan; Goodale, Wing; Burns, Steve

    There is a critical need to develop monitoring tools to track aerofauna (birds and bats) in three dimensions around wind turbines. New monitoring systems will reduce permitting uncertainty by increasing the understanding of how birds and bats are interacting with wind turbines, which will improve the accuracy of impact predictions. Biodiversity Research Institute (BRI), The University of Maine Orono School of Computing and Information Science (UMaine SCIS), HiDef Aerial Surveying Limited (HiDef), and SunEdison, Inc. (formerly First Wind) responded to this need by using stereo-optic cameras with near-infrared (nIR) technology to investigate new methods for documenting aerofauna behavior around windmore » turbines. The stereo-optic camera system used two synchronized high-definition video cameras with fisheye lenses and processing software that detected moving objects, which could be identified in post-processing. The stereo- optic imaging system offered the ability to extract 3-D position information from pairs of images captured from different viewpoints. Fisheye lenses allowed for a greater field of view, but required more complex image rectification to contend with fisheye distortion. The ability to obtain 3-D positions provided crucial data on the trajectory (speed and direction) of a target, which, when the technology is fully developed, will provide data on how animals are responding to and interacting with wind turbines. This project was focused on testing the performance of the camera system, improving video review processing time, advancing the 3-D tracking technology, and moving the system from Technology Readiness Level 4 to 5. To achieve these objectives, we determined the size and distance at which aerofauna (particularly eagles) could be detected and identified, created efficient data management systems, improved the video post-processing viewer, and attempted refinement of 3-D modeling with respect to fisheye lenses. The 29-megapixel camera system successfully captured 16,173 five-minute video segments in the field. During nighttime field trials using nIR, we found that bat-sized objects could not be detected more than 60 m from the camera system. This led to a decision to focus research efforts exclusively on daytime monitoring and to redirect resources towards improving the video post- processing viewer. We redesigned the bird event post-processing viewer, which substantially decreased the review time necessary to detect and identify flying objects. During daytime field trials, we determine that eagles could be detected up to 500 m away using the fisheye wide-angle lenses, and eagle-sized targets could be identified to species within 350 m of the camera system. We used distance sampling survey methods to describe the probability of detecting and identifying eagles and other aerofauna as a function of distance from the system. The previously developed 3-D algorithm for object isolation and tracking was tested, but the image rectification (flattening) required to obtain accurate distance measurements with fish-eye lenses was determined to be insufficient for distant eagles. We used MATLAB and OpenCV to improve fisheye lens rectification towards the center of the image, but accurate measurements towards the image corners could not be achieved. We believe that changing the fisheye lens to rectilinear lens would greatly improve position estimation, but doing so would result in a decrease in viewing angle and depth of field. Finally, we generated simplified shape profiles of birds to look for similarities between unknown animals and known species. With further development, this method could provide a mechanism for filtering large numbers of shapes to reduce data storage and processing. These advancements further refined the camera system and brought this new technology closer to market. Once commercialized, the stereo-optic camera system technology could be used to: a) research how different species interact with wind turbines in order to refine collision risk models and inform mitigation solutions; and b) monitor aerofauna interactions with terrestrial and offshore wind farms replacing costly human observers and allowing for long-term monitoring in the offshore environment. The camera system will provide developers and regulators with data on the risk that wind turbines present to aerofauna, which will reduce uncertainty in the environmental permitting process.« less

  12. Consequences of Incorrect Focus Cues in Stereo Displays

    PubMed Central

    Banks, Martin S.; Akeley, Kurt; Hoffman, David M.; Girshick, Ahna R.

    2010-01-01

    Conventional stereo displays produce images in which focus cues – blur and accommodation – are inconsistent with the simulated depth. We have developed new display techniques that allow the presentation of nearly correct focus. Using these techniques, we find that stereo vision is faster and more accurate when focus cues are mostly consistent with simulated depth; furthermore, viewers experience less fatigue when focus cues are correct or nearly correct. PMID:20523910

  13. Digital fundus image grading with the non-mydriatic Visucam(PRO NM) versus the FF450(plus) camera in diabetic retinopathy.

    PubMed

    Neubauer, Aljoscha S; Rothschuh, Antje; Ulbig, Michael W; Blum, Marcus

    2008-03-01

    Grading diabetic retinopathy in clinical trials is frequently based on 7-field stereo photography of the fundus in diagnostic mydriasis. In terms of image quality, the FF450(plus) camera (Carl Zeiss Meditec AG, Jena, Germany) defines a high-quality reference. The aim of the study was to investigate if the fully digital fundus camera Visucam(PRO NM) could serve as an alternative in clinical trials requiring 7-field stereo photography. A total of 128 eyes of diabetes patients were enrolled in the randomized, controlled, prospective trial. Seven-field stereo photography was performed with the Visucam(PRO NM) and the FF450(plus) camera, in random order, both in diagnostic mydriasis. The resulting 256 image sets from the two camera systems were graded for retinopathy levels and image quality (on a scale of 1-5); both were anonymized and blinded to the image source. On FF450(plus) stereoscopic imaging, 20% of the patients had no or mild diabetic retinopathy (ETDRS level < or = 20) and 29% had no macular oedema. No patient had to be excluded as a result of image quality. Retinopathy level did not influence the quality of grading or of images. Excellent overall correspondence was obtained between the two fundus cameras regarding retinopathy levels (kappa 0.87) and macular oedema (kappa 0.80). In diagnostic mydriasis the image quality of the Visucam was graded slightly as better than that of the FF450(plus) (2.20 versus 2.41; p < 0.001), especially for pupils < 7 mm in mydriasis. The non-mydriatic Visucam(PRO NM) offers good image quality and is suitable as a more cost-efficient and easy-to-operate camera for applications and clinical trials requiring 7-field stereo photography.

  14. Image-size differences worsen stereopsis independent of eye position

    PubMed Central

    Vlaskamp, Björn N. S.; Filippini, Heather R.; Banks, Martin S.

    2010-01-01

    With the eyes in forward gaze, stereo performance worsens when one eye’s image is larger than the other’s. Near, eccentric objects naturally create retinal images of different sizes. Does this mean that stereopsis exhibits deficits for such stimuli? Or does the visual system compensate for the predictable image-size differences? To answer this, we measured discrimination of a disparity-defined shape for different relative image sizes. We did so for different gaze directions, some compatible with the image-size difference and some not. Magnifications of 10–15% caused a clear worsening of stereo performance. The worsening was determined only by relative image size and not by eye position. This shows that no neural compensation for image-size differences accompanies eye-position changes, at least prior to disparity estimation. We also found that a local cross-correlation model for disparity estimation performs like humans in the same task, suggesting that the decrease in stereo performance due to image-size differences is a byproduct of the disparity-estimation method. Finally, we looked for compensation in an observer who has constantly different image sizes due to differing eye lengths. She performed best when the presented images were roughly the same size, indicating that she has compensated for the persistent image-size difference. PMID:19271927

  15. Three-dimensional displays and stereo vision

    PubMed Central

    Westheimer, Gerald

    2011-01-01

    Procedures for three-dimensional image reconstruction that are based on the optical and neural apparatus of human stereoscopic vision have to be designed to work in conjunction with it. The principal methods of implementing stereo displays are described. Properties of the human visual system are outlined as they relate to depth discrimination capabilities and achieving optimal performance in stereo tasks. The concept of depth rendition is introduced to define the change in the parameters of three-dimensional configurations for cases in which the physical disposition of the stereo camera with respect to the viewed object differs from that of the observer's eyes. PMID:21490023

  16. Stereo-based Collision Avoidance System for Urban Traffic

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi; Ishikawa, Naoto; Sasaki, Kazuyuki; Nakajima, Masato

    2002-11-01

    Numerous car accidents occur on urban road. However, researches done so far on driving assistance are subjecting highways whose environment is relatively simple and easy to handle, and new approach for urban settings is required. Our purpose is to extend its support to the following conditions in city traffic: the presence of obstacles such as pedestrians and telephone poles; the lane mark is not always drawn on a road; drivers may lack the sense of awareness of the lane mark. We propose a collision avoidance system, which can be applied to both highways and urban traffic environment. In our system, stereo cameras are set in front of a vehicle and the captured images are processed through a computer. We create a Projected Disparity Map (PDM) from stereo image pair, which is a disparity histogram taken along ordinate direction of obtained disparity image. When there is an obstacle in front, we can detect it by finding a peak appeared in the PDM. With a speed meter and a steering sensor, the stop distance and the radius of curvature of the self-vehicle are calculated, in order to set the observation-required area, which does not depend on lane marks, within a PDM. A danger level will be computed from the distance and the relative speed to the closest approaching object detected within the observation-required area. The method has been tested in urban traffic scenes and has shown to be effective for judging dangerous situation, and gives proper alarm to a driver.

  17. Image-based 3D reconstruction and virtual environmental walk-through

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Fang, Lixiong; Luo, Ying

    2001-09-01

    We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.

  18. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  19. Modern Processing Capabilities of Analog Data from Documentation of the Great Omayyad Mosque in Aleppo, Syria, Damaged in Civil War

    NASA Astrophysics Data System (ADS)

    Pavelka, K.; Šedina, J.; Raeva, P.; Hůlková, M.

    2017-08-01

    In 1999, a big project for the documentation of the Great Omayyad mosque in Aleppo / Syria under UNESCO was conducted. By end of the last century, still analogue cameras were still being used, like the UMK Zeiss, RolleiMetric System. Digital cameras and digital automatic data processing were just starting to be on the rise and laser scanning was not relevant. In this situation, photogrammetrical measurement used stereo technology for complicated situations, and object and single-image technology for creating photoplans. Hundreds of photogrammetric images were taken. However, data processing was carried out on digital stereo plotters or workstations; it was necessary that all analogue photos were converted to digital form using a photogrammetric scanner. The outputs were adequate to the end of the last century. Nowadays, after 19 years, the photogrammetric materials still exist, but the technology and processing is completely different. Our original measurement is historical and nowadays quite obsolete. So we was it decided to explore the possibilities of the new processing of historical materials. Why? The reason is that in the last few years there has been civil war in Syria and the above mentioned monument was severely damaged. The existing historical materials therefore provide a unique opportunity for possible future reconstruction. This paper refers to the completion of existing materials, their evaluation and possibilities of new processing with today's technologies.

  20. New opportunities in planetary geomorphology: an assessment of the capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on The Exomars Trace Gas Orbiter through Image Simulation.

    NASA Astrophysics Data System (ADS)

    Tornabene, Livio Leonardo; Seelos, Frank; Pommerol, Antoine; Thomas, Nick; Caudill, Christy; Conway, Susan J.

    2017-04-01

    The Colour and Stereo Surface Imaging System (CaSSIS) is a full-colour visible to near-infrared (VNIR) bi-directional pushframe stereo camera onboard the ExoMars 2016 Trace Gas Orbiter (TGO). For more details on ExoMars TGO and its payload, please see [4], and for the CaSSIS instrument see [1]. For details on the first Mars Capture Orbit (MCO)-acquired CaSSIS stereo images and preliminary 3D reconstructions from them [5]. CaSSIS will provide full-colour, stereo and repeat imaging spanning different times of day and covering all seasons. Such images will be used to address the following objectives: 1) characterizing possible [surface/subsurface] sources for methane and other trace gases; 2) investigating dynamic surface processes that may contribute to atmospheric gases; and 3) certifying and characterizing candidate landing site safety and hazards (e.g., rocks, slopes, etc.). Here we present a summary, and some highlights, based on the creation and analysis of simulated CaSSIS image cubes [see 2, 3]. We generated simulated images that are spatially (4.6 m/px) and spectrally (4-bands) consistent with CaSSIS from existing Mars Reconnaissance Orbiter (MRO) datasets. Simulated CaSSIS colours were generated from hyperspectral VNIR (S-detector) data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) after the methods of [6], which were then combined with spatially oversampled and resampled 32-bit calibrated I/F images from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) [2, 3]. For more of the details on the simulation process and the various products produced please see [2, 3]. Our simulations show that such colour coverage will be particularly valuable towards facilitating and enhancing seasonal process and change detection studies. For example, a simulation image of Gasa crater demonstrates exactly how additional colour context would facilitate gully change detections that can be subtle and difficult to detect in single-band images, or when missed by the HiRISE colour swath. Another result based on our colour analysis includes, excellent separation of ferrous- and ferric-bearing surface materials provided by band ratio colour composite images utilizing the two NIR bands of CaSSIS (3RED, 4NIR). These images will be particularly useful for associating CaSSIS colour units with spectral units defined by orbiting spectrometers (e.g., CRISM), and thereby extend spectral mapping to CaSSIS spatial scales. This will particularly be beneficial for landing sites where it is difficult to achieve continuous colour coverage with HiRISE. Our analysis shows that dune movement can be detected at the scale of CaSSIS, given a long enough baseline. Other results include resolving: 1) larger individual or sets of Recurring Slope Lineae (RSL), 2) small impacts (including ice excavators), and 3) surface changes associated with landers/rovers (NOTE: lander/rovers and their tracks are not resolvable). References: [1] Thomas N. et al. (2016), submitted to SSR. [2] Tornabene L. et al. (2017), submitted to SSR. [3] Tornabene L. et al. (2016) LPSC 47, Abstract #2695. [4] Vago J. et al. (2015) SSR, 49 518-528. [5] Cremonese G. et al. (2017) LPSC 48. [6] Seelos F. et al. (2011) AGU Fall, vol. 23, Abstract #1714. [7] Delamere A. et al. (2010), Icarus, 205, 38-52. Acknowledgements: The authors wish to thank the spacecraft and instrument engineering teams for the successful completion of the instrument. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA's PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no.I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona Lunar and Planetary Laboratory, and NASA are also gratefully acknowledged. The lead author also acknowledges personal Canadian-based support from the Canadian Space Agency (CSA), and the NSERC DG programme.

  1. Automated determination of cup-to-disc ratio for classification of glaucomatous and normal eyes on stereo retinal fundus images

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Nakagawa, Toshiaki; Sawada, Akira; Hatanaka, Yuji; Yamamoto, Tetsuya; Fujita, Hiroshi

    2011-09-01

    Early diagnosis of glaucoma, which is the second leading cause of blindness in the world, can halt or slow the progression of the disease. We propose an automated method for analyzing the optic disc and measuring the cup-to-disc ratio (CDR) on stereo retinal fundus images to improve ophthalmologists' diagnostic efficiency and potentially reduce the variation on the CDR measurement. The method was developed using 80 retinal fundus image pairs, including 25 glaucomatous, and 55 nonglaucomatous eyes, obtained at our institution. A disc region was segmented using the active contour method with the brightness and edge information. The segmentation of a cup region was performed using a depth map of the optic disc, which was reconstructed on the basis of the stereo disparity. The CDRs were measured and compared with those determined using the manual segmentation results by an expert ophthalmologist. The method was applied to a new database which consisted of 98 stereo image pairs including 60 and 30 pairs with and without signs of glaucoma, respectively. Using the CDRs, an area under the receiver operating characteristic curve of 0.90 was obtained for classification of the glaucomatous and nonglaucomatous eyes. The result indicates potential usefulness of the automated determination of CDRs for the diagnosis of glaucoma.

  2. A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenborg, Guillermo; Howard, Russell A.

    White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory ( SOHO ) and the white-light imagers of themore » SECCHI suite aboard the Solar Terrestrial Relationships Observatory ( STEREO ), a time-dependent model of the background corona is generated from about a month of similar images. The creation of such models is possible because the missions carrying these instruments are orbiting the Sun at about 1 au. However, the orbit profiles for the upcoming Solar Orbiter and Solar Probe Plus missions are very different. These missions will have elliptic orbits with a rapidly changing radial distance, hence invalidating the techniques in use for the SOHO /LASCO and STEREO /SECCHI instruments. We have been investigating techniques to generate background models out of just single images that could be used for the Solar Orbiter Heliospheric Imager and the Wide-field Imager for the Solar Probe Plus packages on board the respective spacecraft. In this paper, we introduce a state-of-the-art, heuristic technique to create the background intensity models of STEREO /HI-1 data based solely on individual images, report on new results derived from its application, and discuss its relevance to instrumental and operational issues.« less

  3. Surface Stereo Imager on Mars, Side View

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. An improved three-dimension reconstruction method based on guided filter and Delaunay

    NASA Astrophysics Data System (ADS)

    Liu, Yilin; Su, Xiu; Liang, Haitao; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    Binocular stereo vision is becoming a research hotspot in the area of image processing. Based on traditional adaptive-weight stereo matching algorithm, we improve the cost volume by averaging the AD (Absolute Difference) of RGB color channels and adding x-derivative of the grayscale image to get the cost volume. Then we use guided filter in the cost aggregation step and weighted median filter for post-processing to address the edge problem. In order to get the location in real space, we combine the deep information with the camera calibration to project each pixel in 2D image to 3D coordinate matrix. We add the concept of projection to region-growing algorithm for surface reconstruction, its specific operation is to project all the points to a 2D plane through the normals of clouds and return the results back to 3D space according to these connection relationship among the points in 2D plane. During the triangulation in 2D plane, we use Delaunay algorithm because it has optimal quality of mesh. We configure OpenCV and pcl on Visual Studio for testing, and the experimental results show that the proposed algorithm have higher computational accuracy of disparity and can realize the details of the real mesh model.

  5. Development of a stereo 3-D pictorial primary flight display

    NASA Technical Reports Server (NTRS)

    Nataupsky, Mark; Turner, Timothy L.; Lane, Harold; Crittenden, Lucille

    1989-01-01

    Computer-generated displays are becoming increasingly popular in aerospace applications. The use of stereo 3-D technology provides an opportunity to present depth perceptions which otherwise might be lacking. In addition, the third dimension could also be used as an additional dimension along which information can be encoded. Historically, the stereo 3-D displays have been used in entertainment, in experimental facilities, and in the handling of hazardous waste. In the last example, the source of the stereo images generally has been remotely controlled television camera pairs. The development of a stereo 3-D pictorial primary flight display used in a flight simulation environment is described. The applicability of stereo 3-D displays for aerospace crew stations to meet the anticipated needs for 2000 to 2020 time frame is investigated. Although, the actual equipment that could be used in an aerospace vehicle is not currently available, the lab research is necessary to determine where stereo 3-D enhances the display of information and how the displays should be formatted.

  6. On the Performance Evaluation of 3D Reconstruction Techniques from a Sequence of Images

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed; Farag, Aly

    2005-12-01

    The performance evaluation of 3D reconstruction techniques is not a simple problem to solve. This is not only due to the increased dimensionality of the problem but also due to the lack of standardized and widely accepted testing methodologies. This paper presents a unified framework for the performance evaluation of different 3D reconstruction techniques. This framework includes a general problem formalization, different measuring criteria, and a classification method as a first step in standardizing the evaluation process. Performance characterization of two standard 3D reconstruction techniques, stereo and space carving, is also presented. The evaluation is performed on the same data set using an image reprojection testing methodology to reduce the dimensionality of the evaluation domain. Also, different measuring strategies are presented and applied to the stereo and space carving techniques. These measuring strategies have shown consistent results in quantifying the performance of these techniques. Additional experiments are performed on the space carving technique to study the effect of the number of input images and the camera pose on its performance.

  7. Image-Guided Intraoperative Cortical Deformation Recovery Using Game Theory: Application to Neocortical Epilepsy Surgery

    PubMed Central

    DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H.; Vives, Kenneth P.; Spencer, Dennis D.; Duncan, James S.

    2010-01-01

    During neurosurgery, nonrigid brain deformation prevents preoperatively-acquired images from accurately depicting the intraoperative brain. Stereo vision systems can be used to track intraoperative cortical surface deformation and update preoperative brain images in conjunction with a biomechanical model. However, these stereo systems are often plagued with calibration error, which can corrupt the deformation estimation. In order to decouple the effects of camera calibration from the surface deformation estimation, a framework that can solve for disparate and often competing variables is needed. Game theory, which was developed to handle decision making in this type of competitive environment, has been applied to various fields from economics to biology. In this paper, game theory is applied to cortical surface tracking during neocortical epilepsy surgery and used to infer information about the physical processes of brain surface deformation and image acquisition. The method is successfully applied to eight in vivo cases, resulting in an 81% decrease in mean surface displacement error. This includes a case in which some of the initial camera calibration parameters had errors of 70%. Additionally, the advantages of using a game theoretic approach in neocortical epilepsy surgery are clearly demonstrated in its robustness to initial conditions. PMID:20129844

  8. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  9. Extraction of Airport Features from High Resolution Satellite Imagery for Design and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Robinson, Chris; Qiu, You-Liang; Jensen, John R.; Schill, Steven R.; Floyd, Mike

    2001-01-01

    The LPA Group, consisting of 17 offices located throughout the eastern and central United States is an architectural, engineering and planning firm specializing in the development of Airports, Roads and Bridges. The primary focus of this ARC project is concerned with assisting their aviation specialists who work in the areas of Airport Planning, Airfield Design, Landside Design, Terminal Building Planning and design, and various other construction services. The LPA Group wanted to test the utility of high-resolution commercial satellite imagery for the purpose of extracting airport elevation features in the glide path areas surrounding the Columbia Metropolitan Airport. By incorporating remote sensing techniques into their airport planning process, LPA wanted to investigate whether or not it is possible to save time and money while achieving the equivalent accuracy as traditional planning methods. The Affiliate Research Center (ARC) at the University of South Carolina investigated the use of remotely sensed imagery for the extraction of feature elevations in the glide path zone. A stereo pair of IKONOS panchromatic satellite images, which has a spatial resolution of 1 x 1 m, was used to determine elevations of aviation obstructions such as buildings, trees, towers and fence-lines. A validation dataset was provided by the LPA Group to assess the accuracy of the measurements derived from the IKONOS imagery. The initial goal of this project was to test the utility of IKONOS imagery in feature extraction using ERDAS Stereo Analyst. This goal was never achieved due to problems with ERDAS software support of the IKONOS sensor model and the unavailability of imperative sensor model information from Space Imaging. The obstacles encountered in this project pertaining to ERDAS Stereo Analyst and IKONOS imagery will be reviewed in more detail later in this report. As a result of the technical difficulties with Stereo Analyst, ERDAS OrthoBASE was used to derive aviation obstruction measurements for this project. After collecting ancillary data such as GPS locations, South Carolina Geodetic Survey and Aero Dynamics ground survey points to set up the OrthoBASE Block File, measurements were taken of the various glide path obstructions and compared to the validation dataset. This process yielded the following conclusions: The IKONOS stereo model in conjunction with Imagine OrthoBASE can provide The LPA Group with a fast and cost efficient method for assessing aviation obstructions. Also, by creating our own stereo model we achieved any accuracy better currently available commercial products.

  10. Curved CCD detector devices and arrays for multispectral astrophysical applications and terrestrial stereo panoramic cameras

    NASA Astrophysics Data System (ADS)

    Swain, Pradyumna; Mark, David

    2004-09-01

    The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.

  11. Comparison of different "along the track" high resolution satellite stereo-pair for DSM extraction

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.

    2013-10-01

    The possibility to create DEM from stereo pairs is based on the Pythagoras theorem and on the principles of photogrammetry that are applied to aerial photographs stereo pairs for the last seventy years. The application of these principles to digital satellite stereo data was inherent in the first satellite missions. During the last decades the satellite stereo-pairs were acquired across the track in different days (SPOT, ERS etc.). More recently the same-date along the track stereo-data acquisition seems to prevail (Terra ASTER, SPOT5 HRS, Cartosat, ALOS Prism) as it reduces the radiometric image variations (refractive effects, sun illumination, temporal changes) and thus increases the correlation success rate in any image matching.Two of the newest satellite sensors with stereo collection capability is Cartosat and ALOS Prism. Both of them acquire stereopairs along the track with a 2,5m spatial resolution covering areas of 30X30km. In this study we compare two different satellite stereo-pair collected along the track for DSM creation. The first one is created from a Cartosat stereopair and the second one from an ALOS PRISM triplet. The area of study is situated in Chalkidiki Peninsula, Greece. Both DEMs were created using the same ground control points collected with a Differential GPS. After a first control for random or systematic errors a statistical analysis was done. Points of certified elevation have been used to estimate the accuracy of these two DSMs. The elevation difference between the different DEMs was calculated. 2D RMSE, correlation and the percentile value were also computed and the results are presented.

  12. Cloud photogrammetry with dense stereo for fisheye cameras

    NASA Astrophysics Data System (ADS)

    Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens

    2016-11-01

    We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

  13. Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2014-04-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is important to detect the surface changes that occurred between two or more images.

  14. Collaborative learning using Internet2 and remote collections of stereo dissection images.

    PubMed

    Dev, Parvati; Srivastava, Sakti; Senger, Steven

    2006-04-01

    We have investigated collaborative learning of anatomy over Internet2, using an application called remote stereo viewer (RSV). This application offers a unique method of teaching anatomy, using high-resolution stereoscopic images, in a client-server architecture. Rotated sequences of stereo image pairs were produced by volumetric rendering of the Visible female and by dissecting and photographing a cadaveric hand. A client-server application (RSV) was created to provide access to these image sets, using a highly interactive interface. The RSV system was used to provide a "virtual anatomy" session for students in the Stanford Medical School Gross Anatomy course. The RSV application allows both independent and collaborative modes of viewing. The most appealing aspects of the RSV application were the capacity for stereoscopic viewing and the potential to access the content remotely within a flexible temporal framework. The RSV technology, used over Internet2, thus serves as an effective complement to traditional methods of teaching gross anatomy. (c) 2006 Wiley-Liss, Inc.

  15. Low-cost telepresence for collaborative virtual environments.

    PubMed

    Rhee, Seon-Min; Ziegler, Remo; Park, Jiyoung; Naef, Martin; Gross, Markus; Kim, Myoung-Hee

    2007-01-01

    We present a novel low-cost method for visual communication and telepresence in a CAVE -like environment, relying on 2D stereo-based video avatars. The system combines a selection of proven efficient algorithms and approximations in a unique way, resulting in a convincing stereoscopic real-time representation of a remote user acquired in a spatially immersive display. The system was designed to extend existing projection systems with acquisition capabilities requiring minimal hardware modifications and cost. The system uses infrared-based image segmentation to enable concurrent acquisition and projection in an immersive environment without a static background. The system consists of two color cameras and two additional b/w cameras used for segmentation in the near-IR spectrum. There is no need for special optics as the mask and color image are merged using image-warping based on a depth estimation. The resulting stereo image stream is compressed, streamed across a network, and displayed as a frame-sequential stereo texture on a billboard in the remote virtual environment.

  16. Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Gai, Qiyang

    2018-01-01

    Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.

  17. The Role of Amodal Surface Completion in Stereoscopic Transparency

    PubMed Central

    Anderson, Barton L.; Schmid, Alexandra C.

    2012-01-01

    Previous work has shown that the visual system can decompose stereoscopic textures into percepts of inhomogeneous transparency. We investigate whether this form of layered image decomposition is shaped by constraints on amodal surface completion. We report a series of experiments that demonstrate that stereoscopic depth differences are easier to discriminate when the stereo images generate a coherent percept of surface color, than when images require amodally integrating a series of color changes into a coherent surface. Our results provide further evidence for the intimate link between the segmentation processes that occur in conditions of transparency and occlusion, and the interpolation processes involved in the formation of amodally completed surfaces. PMID:23060829

  18. An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.

    2016-06-01

    Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.

  19. A holistic calibration method with iterative distortion compensation for stereo deflectometry

    NASA Astrophysics Data System (ADS)

    Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian

    2018-07-01

    This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.

  20. Multiview photometric stereo.

    PubMed

    Hernández Esteban, Carlos; Vogiatzis, George; Cipolla, Roberto

    2008-03-01

    This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialise a multi-view photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: Firstly we describe a robust technique to estimate light directions and intensities and secondly, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and hence allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how even in the case of highly textured objects, this technique can greatly improve on correspondence-based multi-view stereo results.

  1. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  2. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  3. 3D visualization techniques for the STEREO-mission

    NASA Astrophysics Data System (ADS)

    Wiegelmann, T.; Podlipnik, B.; Inhester, B.; Feng, L.; Ruan, P.

    The forthcoming STEREO-mission will observe the Sun from two different viewpoints We expect about 2GB data per day which ask for suitable data presentation techniques A key feature of STEREO is that it will provide for the first time a 3D-view of the Sun and the solar corona In our normal environment we see objects three dimensional because the light from real 3D objects needs different travel times to our left and right eye As a consequence we see slightly different images with our eyes which gives us information about the depth of objects and a corresponding 3D impression Techniques for the 3D-visualization of scientific and other data on paper TV computer screen cinema etc are well known e g two colour anaglyph technique shutter glasses polarization filters and head-mounted displays We discuss advantages and disadvantages of these techniques and how they can be applied to STEREO-data The 3D-visualization techniques are not limited to visual images but can be also used to show the reconstructed coronal magnetic field and energy and helicity distribution In the advent of STEREO we test the method with data from SOHO which provides us different viewpoints by the solar rotation This restricts the analysis to structures which remain stationary for several days Real STEREO-data will not be affected by these limitations however

  4. Automated generation of image products for Mars Exploration Rover Mission tactical operations

    NASA Technical Reports Server (NTRS)

    Alexander, Doug; Zamani, Payam; Deen, Robert; Andres, Paul; Mortensen, Helen

    2005-01-01

    This paper will discuss, from design to implementation, the methodologies applied to MIPL's automated pipeline processing as a 'system of systems' integrated with the MER GDS. Overviews of the interconnected product generating systems will also be provided with emphasis on interdependencies, including those for a) geometric rectificationn of camera lens distortions, b) generation of stereo disparity, c) derivation of 3-dimensional coordinates in XYZ space, d) generation of unified terrain meshes, e) camera-to-target ranging (distance) and f) multi-image mosaicking.

  5. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    PubMed

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the appropriate image processing tools is capable of retrieving the geometric leaf surface properties of plants and canopies. Our software package provides whole-leaf statistics but also a local estimation of leaf angles, which may have great potential to better understand and quantify structural canopy traits for guided breeding and optimized crop management.

  6. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  7. Eruptive Trio Seen by STEREO

    NASA Image and Video Library

    2017-12-08

    NASA image acquired May 1, 2010. As an active region rotated into view, it blew out three relatively small eruptions over about two days (Apr. 30 - May 2) as STEREO (Ahead) observed in extreme UV light. The first one was the largest and exhibited a pronounced twisting motion (shown in the still from May 1, 2010). The plasma, not far above the Sun's surface in these images, is ionized Helium heated to about 60,000 degrees. Note, too, the movement of plasma flowing along magnetic field lines that extend out beyond and loop back into the Sun's surface. Such activity occurs every day and is part of the dynamism of the changing Sun. Credit: NASA/GSFC/STEREO To learn more about STEREO go to: soho.nascom.nasa.gov/home.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  8. Stereo images from space

    NASA Astrophysics Data System (ADS)

    Sabbatini, Massimo; Collon, Maximilien J.; Visentin, Gianfranco

    2008-02-01

    The Erasmus Recording Binocular (ERB1) was the first fully digital stereo camera used on the International Space Station. One year after its first utilisation, the results and feedback collected with various audiences have convinced us to continue exploiting the outreach potential of such media, with its unique capability to bring space down to earth, to share the feeling of weightlessness and confinement with the viewers on earth. The production of stereo is progressing quickly but it still poses problems for the distribution of the media. The Erasmus Centre of the European Space Agency has experienced how difficult it is to master the full production and distribution chain of a stereo system. Efforts are also on the way to standardize the satellite broadcasting part of the distribution. A new stereo camera is being built, ERB2, to be launched to the International Space Station (ISS) in September 2008: it shall have 720p resolution, it shall be able to transmit its images to the ground in real-time allowing the production of live programs and it could possibly be used also outside the ISS, in support of Extra Vehicular Activities of the astronauts. These new features are quite challenging to achieve in the reduced power and mass budget available to space projects and we hope to inspire more designers to come up with ingenious ideas to built cameras capable to operate in the hash Low Earth Orbit environment: radiations, temperature, power consumption and thermal design are the challenges to be met. The intent of this paper is to share with the readers the experience collected so far in all aspects of the 3D video production chain and to increase awareness on the unique content that we are collecting: nice stereo images from space can be used by all actors in the stereo arena to gain consensus on this powerful media. With respect to last year we shall present the progress made in the following areas: a) the satellite broadcasting live of stereo content to D-Cinema's in Europe; b) the design challenges to fly the camera outside the ISS as opposed to ERB1 that was only meant to be used in the pressurized environment of the ISS; c) on-board stereo viewing on a stereo camera has been tackled in ERB1: trade offs between OLED and LCOS display technologies shall be presented; d) HD_SDI cameras versus USB2 or Firewire; e) the hardware compression ASIC solutions used to tackle the high data rate on-board; f) 3D geometry reconstruction: first attempts in reconstructing a computer model of the interior of the ISS starting form the stereo video available.

  9. The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E.

    We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fastmore » halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.« less

  10. Association of 3He-rich solar energetic particles with large-scale coronal waves

    NASA Astrophysics Data System (ADS)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  11. Prototype tactile feedback system for examination by skin touch.

    PubMed

    Lee, O; Lee, K; Oh, C; Kim, K; Kim, M

    2014-08-01

    Diagnosis of conditions such as psoriasis and atopic dermatitis, in the case of induration, involves palpating the infected area via hands and then selecting a ratings score. However, the score is determined based on the tester's experience and standards, making it subjective. To provide tactile feedback on the skin, we developed a prototype tactile feedback system to simulate skin wrinkles with PHANToM OMNI. To provide the user with tactile feedback on skin wrinkles, a visual and haptic Augmented Reality system was developed. First, a pair of stereo skin images obtained by a stereo camera generates a disparity map of skin wrinkles. Second, the generated disparity map is sent to an implemented tactile rendering algorithm that computes a reaction force according to the user's interaction with the skin image. We first obtained a stereo image of skin wrinkles from the in vivo stereo imaging system, which has a baseline of 50.8 μm, and obtained the disparity map with a graph cuts algorithm. The left image is displayed on the monitor to enable the user to recognize the location visually. The disparity map of the skin wrinkle image sends skin wrinkle information as a tactile response to the user through a haptic device. We successfully developed a tactile feedback system for virtual skin wrinkle simulation by means of a commercialized haptic device that provides the user with a single point of contact to feel the surface roughness of a virtual skin sample. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    NASA Astrophysics Data System (ADS)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  13. Stereo Navi 2.0: software for stereotaxic surgery of the common marmoset (Callithrix jacchus).

    PubMed

    Tokuno, Hironobu; Tanaka, Ikuko; Umitsu, Yoshitomo; Nakamura, Yasuhisa

    2009-11-01

    Recently, we reported our web-accessible digital brain atlas of the common marmoset (Callithrix jacchus) at http://marmoset-brain.org:2008. Using digital images obtained during construction of this website, we developed stand-alone software for navigation of electrodes or injection needles for stereotaxic electrophysiological or anatomical experiments in vivo. This software enables us to draw lines on exchangeable section images, measure the length and angle of lines, superimpose a stereotaxic reference grid on the image, and send the image to the system clipboard. The software, Stereo Navi 2.0, is freely available at our brain atlas website.

  14. The MVACS Robotic Arm Camera

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.

    2001-08-01

    The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.

  15. Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR

    NASA Astrophysics Data System (ADS)

    Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin

    2016-06-01

    Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  16. When Dijkstra Meets Vanishing Point: A Stereo Vision Approach for Road Detection.

    PubMed

    Zhang, Yigong; Su, Yingna; Yang, Jian; Ponce, Jean; Kong, Hui

    2018-05-01

    In this paper, we propose a vanishing-point constrained Dijkstra road model for road detection in a stereo-vision paradigm. First, the stereo-camera is used to generate the u- and v-disparity maps of road image, from which the horizon can be extracted. With the horizon and ground region constraints, we can robustly locate the vanishing point of road region. Second, a weighted graph is constructed using all pixels of the image, and the detected vanishing point is treated as the source node of the graph. By computing a vanishing-point constrained Dijkstra minimum-cost map, where both disparity and gradient of gray image are used to calculate cost between two neighbor pixels, the problem of detecting road borders in image is transformed into that of finding two shortest paths that originate from the vanishing point to two pixels in the last row of image. The proposed approach has been implemented and tested over 2600 grayscale images of different road scenes in the KITTI data set. The experimental results demonstrate that this training-free approach can detect horizon, vanishing point, and road regions very accurately and robustly. It can achieve promising performance.

  17. Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor

    PubMed Central

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016

  18. Slant Perception Under Stereomicroscopy.

    PubMed

    Horvath, Samantha; Macdonald, Kori; Galeotti, John; Klatzky, Roberta L

    2017-11-01

    Objective These studies used threshold and slant-matching tasks to assess and quantitatively measure human perception of 3-D planar images viewed through a stereomicroscope. The results are intended for use in developing augmented-reality surgical aids. Background Substantial research demonstrates that slant perception is performed with high accuracy from monocular and binocular cues, but less research concerns the effects of magnification. Viewing through a microscope affects the utility of monocular and stereo slant cues, but its impact is as yet unknown. Method Participants performed in a threshold slant-detection task and matched the slant of a tool to a surface. Different stimuli and monocular versus binocular viewing conditions were implemented to isolate stereo cues alone, stereo with perspective cues, accommodation cue only, and cues intrinsic to optical-coherence-tomography images. Results At magnification of 5x, slant thresholds with stimuli providing stereo cues approximated those reported for direct viewing, about 12°. Most participants (75%) who passed a stereoacuity pretest could match a tool to the slant of a surface viewed with stereo at 5x magnification, with mean compressive error of about 20% for optimized surfaces. Slant matching to optical coherence tomography images of the cornea viewed under the microscope was also demonstrated. Conclusion Despite the distortions and cue loss introduced by viewing under the stereomicroscope, most participants were able to detect and interact with slanted surfaces. Application The experiments demonstrated sensitivity to surface slant that supports the development of augmented-reality systems to aid microscope-aided surgery.

  19. Flowfield Characteristics on a Retreating Rotor Blade

    DTIC Science & Technology

    2015-12-03

    dimensional airfoil aerodynamics. This project used stereo particle image velocimetry on a 2-bladed rotor at advance ratios of 0.7, 0.85 and 1.0...ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM...attempted to make yaw corrections to 2- dimensional airfoil aerodynamics. This project used stereo particle image velocimetry on a 2-bladed rotor at advance

  20. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  1. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  2. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    NASA Technical Reports Server (NTRS)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  3. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  4. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  5. Redundancy of stereoscopic images: Experimental evaluation

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, L. P.; Campos, J.; Espínola, M.; Ideses, I.

    2005-12-01

    With the recent advancement in visualization devices over the last years, we are seeing a growing market for stereoscopic content. In order to convey 3D content by means of stereoscopic displays, one needs to transmit and display at least 2 points of view of the video content. This has profound implications on the resources required to transmit the content, as well as demands on the complexity of the visualization system. It is known that stereoscopic images are redundant which may prove useful for compression and may have positive effect on the construction of the visualization device. In this paper we describe an experimental evaluation of data redundancy in color stereoscopic images. In the experiments with computer generated and real life test stereo images, several observers visually tested the stereopsis threshold and accuracy of parallax measurement in anaglyphs and stereograms as functions of the blur degree of one of two stereo images. In addition, we tested the color saturation threshold in one of two stereo images for which full color 3D perception with no visible color degradations was maintained. The experiments support a theoretical estimate that one has to add, to data required to reproduce one of two stereoscopic images, only several percents of that amount of data in order to achieve stereoscopic perception.

  6. Community Tools for Cartographic and Photogrammetric Processing of Mars Express HRSC Images

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Edmundson, K.; Redding, B.; Galuszka, D.; Hare, T.; Gwinner, K.

    2017-07-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged  77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result, it was necessary to split observations into blocks of constant exposure time, greatly increasing the effort needed to control the images and collect DTMs. Here, we describe a substantially improved HRSC processing capability that incorporates sensor models with varying line timing in the current ISIS3 system (Sides 2017) and SOCET SET. This enormously reduces the work effort for processing most images and eliminates the artifacts that arose from segmenting them. In addition, the software takes advantage of the continuously evolving capabilities of ISIS3 and the improved image matching module NGATE (Next Generation Automatic Terrain Extraction, incorporating area and feature based algorithms, multi-image and multi-direction matching) of SOCET SET, thus greatly reducing the need for manual editing of DTM errors. We have also developed a procedure for geodetically controlling the images to Mars Orbiter Laser Altimeter (MOLA) data by registering a preliminary stereo topographic model to MOLA by using the point cloud alignment (pc_align) function of the NASA Ames Stereo Pipeline (ASP; Moratto et al. 2010). This effectively converts inter-image tiepoints into ground control points in the MOLA coordinate system. The result is improved absolute accuracy and a significant reduction in work effort relative to manual measurement of ground control. The ISIS and ASP software used are freely available; SOCET SET, is a commercial product. By the end of 2017 we expect to have ported our SOCET SET HRSC sensor model to the Community Sensor Model (CSM; Community Sensor Model Working Group 2010; Hare and Kirk 2017) standard utilized by the successor photogrammetric system SOCET GXP that is currently offered by BAE. In early 2018, we are also working with BAE to release the CSM source code under a BSD or MIT open source license. We illustrate current HRSC processing capabilities with three examples, of which the first two come from the DTM comparison of 2007. Candor Chasma (h1235_0001) was a near-periapse observation with constant exposure time that could be processed relatively easily at that time. We show qualitative and quantitative improvements in DTM resolution and precision as well as greatly reduced need for manual editing, and illustrate some of the photometric applications possible in ISIS. At the Nanedi Valles site we are now able to process all 3 long-arc orbits (h0894_0000, h0905_0000 and h0927_0000) without segmenting the images. Finally, processing image set h4235_0001, which covers the landing site of the Mars Science Laboratory (MSL) rover and its rugged science target of Aeolus Mons in Gale crater, provides a rare opportunity to evaluate DTM resolution and precision because extensive High Resolution Imaging Science Experiment (HiRISE) DTMs are available (Golombek et al. 2012). The HiRISE products have  50x smaller pixel scale so that discrepancies can mostly be attributed to HRSC. We use the HiRISE DTMs to compare the resolution and precision of our HRSC DTMs with the (evolving) standard products. We find that the vertical precision of HRSC DTMs is comparable to the pixel scale but the horizontal resolution may be 15-30 image pixels, depending on processing. This is significantly coarser than the lower limit of 3-5 pixels based on the minimum size for image patches to be matched. Stereo DTMs registered to MOLA altimetry by surface fitting typically deviate by 10thinsp;m or less in mean elevation. Estimates of the RMS deviation are strongly influenced by the sparse sampling of the altimetry, but range from

  7. CHAMP (Camera, Handlens, and Microscope Probe)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  8. Stereo study as an aid to visual analysis of ERTS and Skylab images

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The parallax on ERTS and Skylab images is sufficiently large for exploitation by human photointerpreters. The ability to view the imagery stereoscopically reduces the signal-to-noise ratio. Stereoscopic examination of orbital data can contribute to studies of spatial, spectral, and temporal variations on the imagery. The combination of true stereo parallax, plus shadow parallax offer many possibilities to human interpreters for making meaningful analyses of orbital imagery.

  9. Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility.

    PubMed

    Faria, Carlos; Sadowsky, Ofri; Bicho, Estela; Ferrigno, Giancarlo; Joskowicz, Leo; Shoham, Moshe; Vivanti, Refael; De Momi, Elena

    2014-11-01

    A new stereo vision system is presented to quantify brain shift and pulsatility in open-skull neurosurgeries. The system is endowed with hardware and software synchronous image acquisition with timestamp embedding in the captured images, a brain surface oriented feature detection, and a tracking subroutine robust to occlusions and outliers. A validation experiment for the stereo vision system was conducted against a gold-standard optical tracking system, Optotrak CERTUS. A static and dynamic analysis of the stereo camera tracking error was performed tracking a customized object in different positions, orientations, linear, and angular speeds. The system is able to detect an immobile object position and orientation with a maximum error of 0.5 mm and 1.6° in all depth of field, and tracking a moving object until 3 mm/s with a median error of 0.5 mm. Three stereo video acquisitions were recorded from a patient, immediately after the craniotomy. The cortical pulsatile motion was captured and is represented in the time and frequency domain. The amplitude of motion of the cloud of features' center of mass was inferior to 0.8 mm. Three distinct peaks are identified in the fast Fourier transform analysis related to the sympathovagal balance, breathing, and blood pressure with 0.03-0.05, 0.2, and 1 Hz, respectively. The stereo vision system presented is a precise and robust system to measure brain shift and pulsatility with an accuracy superior to other reported systems.

  10. Learning about the dynamic Sun through sounds

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Quinn, M.; MacCallum, J.; Luhmann, J.

    2007-12-01

    Can we hear the Sun or its solar wind? Not in the sense that they make sound. But we can take the particle, magnetic field, electric field, and image data and turn it into sound to demonstrate what the data tells us. We will present work on turning data from the two-satellite NASA mission called STEREO (Solar TErrestrial RElations Observatory) into sounds and music (sonification). STEREO has two satellites orbiting the Sun near Earth's orbit to study the dynamic eruptions of mass from the outermost atmosphere of the Sun, the Corona. These eruptions are called coronal mass ejections (CMEs). One sonification project aims to inspire musicians, museum patrons, and the public to learn more about CMEs by downloading STEREO data and using it in the software to make music. We will demonstrate the software and discuss the way in which it was developed. A second project aims to produce a museum exhibit using STEREO imagery and sounds from STEREO data. We will discuss a "walk across the Sun" created for this exhibit so people can hear the features on solar images. For example, we will show how pixel intensity translates into pitches from selectable scales with selectable musical scale size and octave locations. We will also share our successes and lessons learned. These two projects stem from the STEREO-IMPACT (In-situ Measurements of Particles and CME Transients) E/PO program and a grant from the IDEAS (The Initiative to Develop Education through Astronomy and Space Science (IDEAS) Grant Program.

  11. A verification and errors analysis of the model for object positioning based on binocular stereo vision for airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Wang, Huan-huan; Wang, Jian; Liu, Feng; Cao, Hai-juan; Wang, Xiang-jun

    2014-12-01

    A test environment is established to obtain experimental data for verifying the positioning model which was derived previously based on the pinhole imaging model and the theory of binocular stereo vision measurement. The model requires that the optical axes of the two cameras meet at one point which is defined as the origin of the world coordinate system, thus simplifying and optimizing the positioning model. The experimental data are processed and tables and charts are given for comparing the positions of objects measured with DGPS with a measurement accuracy of 10 centimeters as the reference and those measured with the positioning model. Sources of visual measurement model are analyzed, and the effects of the errors of camera and system parameters on the accuracy of positioning model were probed, based on the error transfer and synthesis rules. A conclusion is made that measurement accuracy of surface surveillances based on binocular stereo vision measurement is better than surface movement radars, ADS-B (Automatic Dependent Surveillance-Broadcast) and MLAT (Multilateration).

  12. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    NASA Astrophysics Data System (ADS)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  13. System Design, Calibration and Performance Analysis of a Novel 360° Stereo Panoramic Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Blaser, S.; Nebiker, S.; Cavegn, S.

    2017-05-01

    Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.

  14. Full-parallax 3D display from stereo-hybrid 3D camera system

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Ansari, Amir; Saavedra, Genaro; Martinez-Corral, Manuel

    2018-04-01

    In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing angle.

  15. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  17. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    NASA Technical Reports Server (NTRS)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  18. A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Brian E.; Wu, Chin-Chun; Howard, Russell A.

    We identify coronal mass ejections (CMEs) associated with magnetic clouds (MCs) observed near Earth by the Wind spacecraft from 2008 to mid-2012, a time period when the two STEREO spacecraft were well positioned to study Earth-directed CMEs. We find 31 out of 48 Wind MCs during this period can be clearly connected with a CME that is trackable in STEREO imagery all the way from the Sun to near 1 au. For these events, we perform full 3D reconstructions of the CME structure and kinematics, assuming a flux rope (FR) morphology for the CME shape, considering the full complement ofmore » STEREO and SOHO imaging constraints. We find that the FR orientations and sizes inferred from imaging are not well correlated with MC orientations and sizes inferred from the Wind data. However, velocities within the MC region are reproduced reasonably well by the image-based reconstruction. Our kinematic measurements are used to provide simple prescriptions for predicting CME arrival times at Earth, provided for a range of distances from the Sun where CME velocity measurements might be made. Finally, we discuss the differences in the morphology and kinematics of CME FRs associated with different surface phenomena (flares, filament eruptions, or no surface activity).« less

  19. Block Adjustment and Image Matching of WORLDVIEW-3 Stereo Pairs and Accuracy Evaluation

    NASA Astrophysics Data System (ADS)

    Zuo, C.; Xiao, X.; Hou, Q.; Li, B.

    2018-05-01

    WorldView-3, as a high-resolution commercial earth observation satellite, which is launched by Digital Global, provides panchromatic imagery of 0.31 m resolution. The positioning accuracy is less than 3.5 meter CE90 without ground control, which can use for large scale topographic mapping. This paper presented the block adjustment for WorldView-3 based on RPC model and achieved the accuracy of 1 : 2000 scale topographic mapping with few control points. On the base of stereo orientation result, this paper applied two kinds of image matching algorithm for DSM extraction: LQM and SGM. Finally, this paper compared the accuracy of the point cloud generated by the two image matching methods with the reference data which was acquired by an airborne laser scanner. The results showed that the RPC adjustment model of WorldView-3 image with small number of GCPs could satisfy the requirement of Chinese Surveying and Mapping regulations for 1 : 2000 scale topographic maps. And the point cloud result obtained through WorldView-3 stereo image matching had higher elevation accuracy, the RMS error of elevation for bare ground area is 0.45 m, while for buildings the accuracy can almost reach 1 meter.

  20. Optoelectronic stereoscopic device for diagnostics, treatment, and developing of binocular vision

    NASA Astrophysics Data System (ADS)

    Pautova, Larisa; Elkhov, Victor A.; Ovechkis, Yuri N.

    2003-08-01

    Operation of the device is based on alternative generation of pictures for left and right eyes on the monitor screen. Controller gives pulses on LCG so that shutter for left or right eye opens synchronously with pictures. The device provides frequency of switching more than 100 Hz, and that is why the flickering is absent. Thus, a separate demonstration of images to the left eye or to the right one in turn is obtained for patients being unaware and creates the conditions of binocular perception clsoe to natural ones without any additional separation of vision fields. LC-cell transfer characteristic coodination with time parameters of monitor screen has enabled to improve stereo image quality. Complicated problem of computer stereo images with LC-glasses is so called 'ghosts' - noise images that come to blocked eye. We reduced its influence by adapting stereo images to phosphor and LC-cells characteristics. The device is intended for diagnostics and treatment of stabismus, amblyopia and other binocular and stereoscopic vision impairments, for cultivating, training and developing of stereoscopic vision, for measurements of horizontal and vertical phoria, phusion reserves, the stereovision acuity and some else, for fixing central scotoma borders, as well as suppression scotoma in strabismus too.

  1. Surface Stereo Imager on Mars, Face-On

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long. The two 'eyes' of the SSI seen in this image can take photos to create three-dimensional views of the landing site.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Tracking Prominence Eruptions to 1 AU with STEREO Heliospheric Imaging

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Howard, R.; Linton, M.

    2015-12-01

    It is rare for prominence eruptions to be observable far from the Sun in the inner heliosphere, either in imaging or with in situ plasma instruments. Nevertheless, we here discuss two examples of particularly bright eruptions that are continuously trackable all the way to 1 AU by imagers on the Solar TErrestrial RElations Observatory (STEREO) spacecraft. The two events are from 2011 June 7 and 2012 August 31. Only these two examples of clear prominence eruptions observable this far from the Sun could be found in the STEREO 2007-2014 image database, consistent with the rarity of unambiguous cold prominence material being observed in situ at 1 AU. Full 3-D reconstructions are made of the coronal mass ejections (CMEs) that accompany the prominence eruptions. For the 2011 June event, a time-dependent 3-D reconstruction of the prominence structure is made using point-by-point triangulation, which unfortunately is not possible for the August event due to a poor viewing geometry. However, for the 2012 August event, shock normals computed from plasma measurements at STEREO-B and Wind using the shock jump conditions agree well with expectations from the image-based CME reconstruction. Unlike its accompanying CME, the 2011 June prominence exhibits little deceleration from the Sun to 1 AU, as a consequence moving upwards within the CME. Detailed analysis of the prominence's expansion reveals that deviation from self-similar expansion is never large, but close to the Sun the prominence expands somewhat more rapidly than self-similarity, with this effect decreasing with time.

  3. Report on New Mission Concept Study: Stereo X-Ray Corona Imager Mission

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Davis, John M.; DeJong, E. M.; Gary, G. Allen; Klimchuk, James A.; Reinert, R. P.

    1998-01-01

    Studies of the three-dimensional structure and dynamics of the solar corona have been severely limited by the constraint of single viewpoint observations. The Stereo X-Ray Coronal Imager (SXCI) mission will send a single instrument, an X-ray telescope, into deep space expressly to record stereoscopic images of the solar corona. The SXCI spacecraft will be inserted into a approximately 1 AU heliocentric orbit leading Earth by approximately 25 deg at the end of nine months. The SXCI X-ray telescope forms one element of a stereo pair, the second element being an identical X-ray telescope in Earth orbit placed there as part of the NOAA GOES program. X-ray emission is a powerful diagnostic of the corona and its magnetic fields, and three dimensional information on the coronal magnetic structure would be obtained by combining the data from the two X-ray telescopes. This information can be used to address the major solar physics questions of (1) what causes explosive coronal events such as coronal mass ejections (CMEs), eruptive flares and prominence eruptions and (2) what causes the transient heating of coronal loops. Stereoscopic views of the optically thin corona will resolve some ambiguities inherent in single line-of-sight observations. Triangulation gives 3D solar coordinates of features which can be seen in the simultaneous images from both telescopes. As part of this study, tools were developed for determining the 3D geometry of coronal features using triangulation. Advanced technologies for visualization and analysis of stereo images were tested. Results of mission and spacecraft studies are also reported.

  4. Original and creative stereoscopic film making

    NASA Astrophysics Data System (ADS)

    Criado, Enrique

    2008-02-01

    The stereoscopic cinema has become, once again, a hot topic in the film production. For filmmakers to be successful in this field, a technical background in the principles of binocular perception and how our brain interprets the incoming data from our eyes, are fundamental. It is also paramount for a stereoscopic production to adhere certain rules for comfort and safety. There is an immense variety of options in the art of standard "flat" photography, and the possibilities only can be multiply with the stereo. The stereoscopic imaging has its own unique areas for subjective, original and creative control that allow an incredible range of possible combinations by working inside the standards, and in some cases on the boundaries of the basic stereo rules. The stereoscopic imaging can be approached in a "flat" manner, like channeling sound through an audio equalizer with all the bands at the same level. It can provide a realistic perception, which in many cases can be sufficient, thanks to the rock-solid viewing inherent to the stereoscopic image, but there are many more possibilities. This document describes some of the basic operating parameters and concepts for stereoscopic imaging, but it also offers ideas for a creative process based on the variation and combination of these basic parameters, which can lead into a truly innovative and original viewing experience.

  5. STEREO In-situ Data Analysis

    NASA Astrophysics Data System (ADS)

    Schroeder, P. C.; Luhmann, J. G.; Davis, A. J.; Russell, C. T.

    2006-12-01

    STEREO's IMPACT (In-situ Measurements of Particles and CME Transients) investigation provides the first opportunity for long duration, detailed observations of 1 AU magnetic field structures, plasma and suprathermal electrons, and energetic particles at points bracketing Earth's heliospheric location. The PLASTIC instrument takes plasma ion composition measurements completing STEREO's comprehensive in-situ perspective. Stereoscopic/3D information from the STEREO SECCHI imagers and SWAVES radio experiment make it possible to use both multipoint and quadrature studies to connect interplanetary Coronal Mass Ejections (ICME) and solar wind structures to CMEs and coronal holes observed at the Sun. The uniqueness of the STEREO mission requires novel data analysis tools and techniques to take advantage of the mission's full scientific potential. An interactive browser with the ability to create publication-quality plots has been developed which integrates STEREO's in-situ data with data from a variety of other missions including WIND and ACE. Also, an application program interface (API) is provided allowing users to create custom software that ties directly into STEREO's data set. The API allows for more advanced forms of data mining than currently available through most web-based data services. A variety of data access techniques and the development of cross-spacecraft data analysis tools allow the larger scientific community to combine STEREO's unique in-situ data with those of other missions, particularly the L1 missions, and, therefore, to maximize STEREO's scientific potential in gaining a greater understanding of the heliosphere.

  6. Improving Visibility of Stereo-Radiographic Spine Reconstruction with Geometric Inferences.

    PubMed

    Kumar, Sampath; Nayak, K Prabhakar; Hareesha, K S

    2016-04-01

    Complex deformities of the spine, like scoliosis, are evaluated more precisely using stereo-radiographic 3D reconstruction techniques. Primarily, it uses six stereo-corresponding points available on the vertebral body for the 3D reconstruction of each vertebra. The wireframe structure obtained in this process has poor visualization, hence difficult to diagnose. In this paper, a novel method is proposed to improve the visibility of this wireframe structure using a deformation of a generic spine model in accordance with the 3D-reconstructed corresponding points. Then, the geometric inferences like vertebral orientations are automatically extracted from the radiographs to improve the visibility of the 3D model. Biplanar radiographs are acquired from five scoliotic subjects on a specifically designed calibration bench. The stereo-corresponding point reconstruction method is used to build six-point wireframe vertebral structures and thus the entire spine model. Using the 3D spine midline and automatically extracted vertebral orientation features, a more realistic 3D spine model is generated. To validate the method, the 3D spine model is back-projected on biplanar radiographs and the error difference is computed. Though, this difference is within the error limits available in the literature, the proposed work is simple and economical. The proposed method does not require more corresponding points and image features to improve the visibility of the model. Hence, it reduces the computational complexity. Expensive 3D digitizer and vertebral CT scan models are also excluded from this study. Thus, the visibility of stereo-corresponding point reconstruction is improved to obtain a low-cost spine model for a better diagnosis of spinal deformities.

  7. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need near complete stereo images for their autonomous navigation, manipulation, and depth approximation. The imaging system can provide visual feedback

  8. Effects of blurring and vertical misalignment on visual fatigue of stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Baek, Sangwook; Lee, Chulhee

    2015-03-01

    In this paper, we investigate two error issues in stereo images, which may produce visual fatigue. When two cameras are used to produce 3D video sequences, vertical misalignment can be a problem. Although this problem may not occur in professionally produced 3D programs, it is still a major issue in many low-cost 3D programs. Recently, efforts have been made to produce 3D video programs using smart phones or tablets, which may present the vertical alignment problem. Also, in 2D-3D conversion techniques, the simulated frame may have blur effects, which can also introduce visual fatigue in 3D programs. In this paper, to investigate the relationship between these two errors (vertical misalignment and blurring in one image), we performed a subjective test using simulated 3D video sequences that include stereo video sequences with various vertical misalignments and blurring in a stereo image. We present some analyses along with objective models to predict the degree of visual fatigue from vertical misalignment and blurring.

  9. Automatic Rooftop Extraction in Stereo Imagery Using Distance and Building Shape Regularized Level Set Evolution

    NASA Astrophysics Data System (ADS)

    Tian, J.; Krauß, T.; d'Angelo, P.

    2017-05-01

    Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.

  10. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  11. How Phoenix Creates Color Images (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This simple animation shows how a color image is made from images taken by Phoenix.

    The Surface Stereo Imager captures the same scene with three different filters. The images are sent to Earth in black and white and the color is added by mission scientists.

    By contrast, consumer digital cameras and cell phones have filters built in and do all of the color processing within the camera itself.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. A comparison of static near stereo acuity in youth baseball/softball players and non-ball players.

    PubMed

    Boden, Lauren M; Rosengren, Kenneth J; Martin, Daniel F; Boden, Scott D

    2009-03-01

    Although many aspects of vision have been investigated in professional baseball players, few studies have been performed in developing athletes. The issue of whether youth baseball players have superior stereopsis to nonplayers has not been addressed specifically. The purpose of this study was to determine if youth baseball/softball players have better stereo acuity than non-ball players. Informed consent was obtained from 51 baseball/softball players and 52 non-ball players (ages 10 to 18 years). Subjects completed a questionnaire, and their static near stereo acuity was measured using the Randot Stereotest (Stereo Optical Company, Chicago, Illinois). Stereo acuity was measured as the seconds of arc between the last pair of images correctly distinguished by the subject. The mean stereo acuity score was 25.5 +/- 1.7 seconds of arc in the baseball/softball players and 56.2 +/- 8.4 seconds of arc in the non-ball players. This difference was statistically significant (P < 0.00001). In addition, a perfect stereo acuity score of 20 seconds of arc was seen in 61% of the ball players and only 23% of the non-ball players (P = 0.0001). Youth baseball/softball players had significantly better static stereo acuity than non-ball players, comparable to professional ball players.

  13. Rapid matching of stereo vision based on fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihua; Xiao, Yi; Cao, Jian; Guo, Hongwei

    2016-09-01

    As the most important core part of stereo vision, there are still many problems to solve in stereo matching technology. For smooth surfaces on which feature points are not easy to extract, this paper adds a projector into stereo vision measurement system based on fringe projection techniques, according to the corresponding point phases which extracted from the left and right camera images are the same, to realize rapid matching of stereo vision. And the mathematical model of measurement system is established and the three-dimensional (3D) surface of the measured object is reconstructed. This measurement method can not only broaden application fields of optical 3D measurement technology, and enrich knowledge achievements in the field of optical 3D measurement, but also provide potential possibility for the commercialized measurement system in practical projects, which has very important scientific research significance and economic value.

  14. Application of Stereo Vision to the Reconnection Scaling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klarenbeek, Johnny; Sears, Jason A.; Gao, Kevin W.

    The measurement and simulation of the three-dimensional structure of magnetic reconnection in astrophysical and lab plasmas is a challenging problem. At Los Alamos National Laboratory we use the Reconnection Scaling Experiment (RSX) to model 3D magnetohydrodynamic (MHD) relaxation of plasma filled tubes. These magnetic flux tubes are called flux ropes. In RSX, the 3D structure of the flux ropes is explored with insertable probes. Stereo triangulation can be used to compute the 3D position of a probe from point correspondences in images from two calibrated cameras. While common applications of stereo triangulation include 3D scene reconstruction and robotics navigation, wemore » will investigate the novel application of stereo triangulation in plasma physics to aid reconstruction of 3D data for RSX plasmas. Several challenges will be explored and addressed, such as minimizing 3D reconstruction errors in stereo camera systems and dealing with point correspondence problems.« less

  15. Opportunity's Surroundings on Sol 1798 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11850 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11850

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top.

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  16. Stereo reconstruction from multiperspective panoramas.

    PubMed

    Li, Yin; Shum, Heung-Yeung; Tang, Chi-Keung; Szeliski, Richard

    2004-01-01

    A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.

  17. Image Processing

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new spinoff product was derived from Geospectra Corporation's expertise in processing LANDSAT data in a software package. Called ATOM (for Automatic Topographic Mapping), it's capable of digitally extracting elevation information from stereo photos taken by spaceborne cameras. ATOM offers a new dimension of realism in applications involving terrain simulations, producing extremely precise maps of an area's elevations at a lower cost than traditional methods. ATOM has a number of applications involving defense training simulations and offers utility in architecture, urban planning, forestry, petroleum and mineral exploration.

  18. Generation of Digital Surface Models from satellite photogrammetry: the DSM-OPT service of the ESA Geohazards Exploitation Platform (GEP)

    NASA Astrophysics Data System (ADS)

    Stumpf, André; Michéa, David; Malet, Jean-Philippe

    2017-04-01

    The continuously increasing fleet of agile stereo-capable very-high resolution (VHR) optical satellites has facilitated the acquisition of multi-view images of the earth surface. Theoretical revisit times have been reduced to less than one day and the highest spatial resolution which is commercially available amounts now to 30 cm/pixel. Digital Surface Models (DSM) and point clouds computed from such satellite stereo-acquisitions can provide valuable input for studies in geomorphology, tectonics, glaciology, hydrology and urban remote sensing The photogrammetric processing, however, still requires significant expertise, computational resources and costly commercial software. To enable a large Earth Science community (researcher and end-users) to process easily and rapidly VHR multi-view images, the work targets the implementation of a fully automatic satellite-photogrammetry pipeline (i.e DSM-OPT) on the ESA Geohazards Exploitation Platform (GEP). The implemented pipeline is based on the open-source photogrammetry library MicMac [1] and is designed for distributed processing on a cloud-based infrastructure. The service can be employed in pre-defined processing modes (i.e. urban, plain, hilly, and mountainous environments) or in an advanced processing mode (i.e. in which expert-users have the possibility to adapt the processing parameters to their specific applications). Four representative use cases are presented to illustrate the accuracy of the resulting surface models and ortho-images as well as the overall processing time. These use cases consisted of the construction of surface models from series of Pléiades images for four applications: urban analysis (Strasbourg, France), landslide detection in mountainous environments (South French Alps), co-seismic deformation in mountain environments (Central Italy earthquake sequence of 2016) and fault recognition for paleo-tectonic analysis (North-East India). Comparisons of the satellite-derived topography to airborne LiDAR topography are discussed. [1] Rupnik, E., Pierrot Deseilligny, M., Delorme, A., and Klinger, Y.: Refined satellite image orientation in the free open-source photogrammetric tools APERO/MICMAC, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-1, 83-90, doi:10.5194/isprs-annals-III-1-83-2016, 2016.

  19. IKONOS geometric characterization

    USGS Publications Warehouse

    Helder, Dennis; Coan, Michael; Patrick, Kevin; Gaska, Peter

    2003-01-01

    The IKONOS spacecraft acquired images on July 3, 17, and 25, and August 13, 2001 of Brookings SD, a small city in east central South Dakota, and on May 22, June 30, and July 30, 2000, of the rural area around the EROS Data Center. South Dakota State University (SDSU) evaluated the Brookings scenes and the USGS EROS Data Center (EDC) evaluated the other scenes. The images evaluated by SDSU utilized various natural objects and man-made features as identifiable targets randomly distribution throughout the scenes, while the images evaluated by EDC utilized pre-marked artificial points (panel points) to provide the best possible targets distributed in a grid pattern. Space Imaging provided products at different processing levels to each institution. For each scene, the pixel (line, sample) locations of the various targets were compared to field observed, survey-grade Global Positioning System locations. Patterns of error distribution for each product were plotted, and a variety of statistical statements of accuracy are made. The IKONOS sensor also acquired 12 pairs of stereo images of globally distributed scenes between April 2000 and April 2001. For each scene, analysts at the National Imagery and Mapping Agency (NIMA) compared derived photogrammetric coordinates to their corresponding NIMA field-surveyed ground control point (GCPs). NIMA analysts determined horizontal and vertical accuracies by averaging the differences between the derived photogrammetric points and the field-surveyed GCPs for all 12 stereo pairs. Patterns of error distribution for each scene are presented.

  20. Connectionist model-based stereo vision for telerobotics

    NASA Technical Reports Server (NTRS)

    Hoff, William; Mathis, Donald

    1989-01-01

    Autonomous stereo vision for range measurement could greatly enhance the performance of telerobotic systems. Stereo vision could be a key component for autonomous object recognition and localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in the scene, as is often the case in telerobotics, a model-based approach can be taken. Researchers describe how matching ambiguities can be resolved by ensuring that the resulting three-dimensional points are consistent with surface models of the expected objects. A four-layer neural network hierarchy is used in which surface models of increasing complexity are represented in successive layers. These models are represented using a connectionist scheme called parameter networks, in which a parametrized object (for example, a planar patch p=f(h,m sub x, m sub y) is represented by a collection of processing units, each of which corresponds to a distinct combination of parameter values. The activity level of each unit in the parameter network can be thought of as representing the confidence with which the hypothesis represented by that unit is believed. Weights in the network are set so as to implement gradient descent in an energy function.

  1. ROS-based ground stereo vision detection: implementation and experiments.

    PubMed

    Hu, Tianjiang; Zhao, Boxin; Tang, Dengqing; Zhang, Daibing; Kong, Weiwei; Shen, Lincheng

    This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of the published ROS-based detection algorithm.

  2. Performance evaluation of stereo endoscopic imaging system incorporating TFT-LCD.

    PubMed

    Song, C-G; Park, S-K

    2005-01-01

    This paper presents a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for knot-tying and for the loop pass test. The results of our experiments show that the proposed 3D endoscopic system has a sufficiently wide viewing angle and zone for multi-viewing, and that it provides better image quality and more stable optical performance compared with the electric shutter-type.

  3. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun

    2014-10-01

    Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with "change", "non-change" and "uncertain change" status labeled through a voting strategy. The "uncertain changes" are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are extracted combining the multispectral images and the DSM by morphological operators, and the new buildings are determined by excluding the verified unchanged buildings from the second step. Both the synthetic experiment with Worldview-2 stereo imagery and the real experiment with IKONOS stereo imagery are carried out to demonstrate the effectiveness of the proposed method. It is shown that the proposed method can be applied as an effective way to monitoring the building changes, as well as updating 3D models from one epoch to the other.

  4. Experimental investigation of strain errors in stereo-digital image correlation due to camera calibration

    NASA Astrophysics Data System (ADS)

    Shao, Xinxing; Zhu, Feipeng; Su, Zhilong; Dai, Xiangjun; Chen, Zhenning; He, Xiaoyuan

    2018-03-01

    The strain errors in stereo-digital image correlation (DIC) due to camera calibration were investigated using precisely controlled numerical experiments and real experiments. Three-dimensional rigid body motion tests were conducted to examine the effects of camera calibration on the measured results. For a fully accurate calibration, rigid body motion causes negligible strain errors. However, for inaccurately calibrated camera parameters and a short working distance, rigid body motion will lead to more than 50-μɛ strain errors, which significantly affects the measurement. In practical measurements, it is impossible to obtain a fully accurate calibration; therefore, considerable attention should be focused on attempting to avoid these types of errors, especially for high-accuracy strain measurements. It is necessary to avoid large rigid body motions in both two-dimensional DIC and stereo-DIC.

  5. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching

    PubMed Central

    Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Zhang, Peng

    2017-01-01

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images. PMID:28885547

  6. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    PubMed

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  7. Protocols for Image Processing based Underwater Inspection of Infrastructure Elements

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; Pakrashi, Vikram

    2015-07-01

    Image processing can be an important tool for inspecting underwater infrastructure elements like bridge piers and pile wharves. Underwater inspection often relies on visual descriptions of divers who are not necessarily trained in specifics of structural degradation and the information may often be vague, prone to error or open to significant variation of interpretation. Underwater vehicles, on the other hand can be quite expensive to deal with for such inspections. Additionally, there is now significant encouragement globally towards the deployment of more offshore renewable wind turbines and wave devices and the requirement for underwater inspection can be expected to increase significantly in the coming years. While the merit of image processing based assessment of the condition of underwater structures is understood to a certain degree, there is no existing protocol on such image based methods. This paper discusses and describes an image processing protocol for underwater inspection of structures. A stereo imaging image processing method is considered in this regard and protocols are suggested for image storage, imaging, diving, and inspection. A combined underwater imaging protocol is finally presented which can be used for a variety of situations within a range of image scenes and environmental conditions affecting the imaging conditions. An example of detecting marine growth is presented of a structure in Cork Harbour, Ireland.

  8. A system for extracting 3-dimensional measurements from a stereo pair of TV cameras

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Cunningham, R.

    1976-01-01

    Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system which models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented. This system is operating and provides three-dimensional measurements resolution of + or - mm at distances of about 2 m.

  9. Viking Lander Atlas of Mars

    NASA Technical Reports Server (NTRS)

    Liebes, S., Jr.

    1982-01-01

    Half size reproductions are presented of the extensive set of systematic map products generated for the two Mars Viking landing sites from stereo pairs of images radioed back to Earth. The maps span from the immediate foreground to the remote limits of ranging capability, several hundred meters from the spacecraft. The maps are of two kinds - elevation contour and vertical profile. Background and explanatory material important for understanding and utilizing the map collection included covers the Viking Mission, lander locations, lander cameras, the stereo mapping system and input images to this system.

  10. STEREO's Extreme UltraViolet Imager (EUVI)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    At a pixel resolution of 2048x2048, the STEREO EUVI instrument provides views of the Sun in ultraviolet light that rivals the full-disk views of SOHO/EIT. This image is through the 171 Angstrom (ultraviolet) filter which is characteristic of iron ions (missing eight and nine electrons) at 1 million degrees. There is a short data gap in the latter half of the movie that creates a freeze and then jump in the data view. This is a movie of the Sun in 171 Angstrom ultraviolet light. The time frame is late January, 2007

  11. Ranging Apparatus and Method Implementing Stereo Vision System

    NASA Technical Reports Server (NTRS)

    Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.

  12. Computer-generated imagery for 4-D meteorological data

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.

    1986-01-01

    The University of Wisconsin-Madison Space Science and Engineering Center is developing animated stereo display terminals for use with McIDAS (Man-computer Interactive Data Access System). This paper describes image-generation techniques which have been developed to take maximum advantage of these terminals, integrating large quantities of four-dimensional meteorological data from balloon and satellite soundings, satellite images, Doppler and volumetric radar, and conventional surface observations. The images have been designed to use perspective, shading, hidden-surface removal, and transparency to augment the animation and stereo-display geometry. They create an illusion of a moving three-dimensional model of the atmosphere. This paper describes the design of these images and a number of rules of thumb for generating four-dimensional meteorological displays.

  13. CME Research and Space Weather Support for the SECCHI Experiments on the STEREO Mission

    DTIC Science & Technology

    2014-01-14

    Corbett, ed., Cambridge Univ. Press (2010) Kahler, S.W. and D. F. Webb, "Tracking Nonradial Motions and Azimuthal Expansions of Interplanetary CME...Imaging and In-situ Data from LASCO, STEREO and SMEI", Bull. AAS, 41(2), p. 855, 2009. Kahler S. and D. Webb, "Tracking Nonradial Motions and

  14. LiDAR Point Cloud and Stereo Image Point Cloud Fusion

    DTIC Science & Technology

    2013-09-01

    LiDAR point cloud (right) highlighting linear edge features ideal for automatic registration...point cloud (right) highlighting linear edge features ideal for automatic registration. Areas where topography is being derived, unfortunately, do...with the least amount of automatic correlation errors was used. The following graphic (Figure 12) shows the coverage of the WV1 stereo triplet as

  15. Full Disk Image of the Sun, March 26, 2007 Anaglyph

    NASA Image and Video Library

    2007-04-27

    NASA Solar TErrestrial RElations Observatory STEREO satellites have provided the first three-dimensional images of the Sun. The structure of the corona shows well in this image. 3D glasses are necessary to view this image.

  16. Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; SaintCyr, O. C.

    2003-01-01

    The solar magnetic field is constantly generated beneath the surface of the Sun by the solar dynamo. To balance this flux generation, there is constant dissipation of magnetic flux at and above the solar surface. The largest phenomenon associated with this dissipation is the Coronal Mass Ejection (CME). The Solar and Heliospheric Observatory (SOHO) has provided remarkable views of the corona and CMEs, and served to highlight how these large interplanetary disturbances can have terrestrial consequences. STEREO is the next logical step to study the physics of CME origin, propagation, and terrestrial effects. Two spacecraft with identical instrument complements will be launched on a single launch vehicle in November 2007. One spacecraft will drift ahead and the second behind the Earth at a separation rate of 22 degrees per year. Observation from these two vantage points will for the first time allow the observation of the three-dimensional structure of CMEs and the coronal structures where they originate. Each STEREO spacecraft carries a complement of 10 instruments, which include (for the first time) an extensive set of both remote sensing and in-situ instruments. The remote sensing suite is capable of imaging CMEs from the solar surface out to beyond Earth's orbit (1 AU), and in-situ instruments are able to measure distribution functions for electrons, protons, and ions over a broad energy range, from the normal thermal solar wind plasma to the most energetic solar particles. It is anticipated that these studies will ultimately lead to an increased understanding of the CME process and provide unique observations of the flow of energy from the corona to the near-Earth environment. An international research program, the International Heliophysical Year (IHY) will provide a framework for interpreting STEREO data in the context of global processes in the Sun-Earth system.

  17. Connecting white light to in situ observations of 22 coronal mass ejections from the Sun to 1 AU

    NASA Astrophysics Data System (ADS)

    Moestl, C.; Amla, K.; Farrugia, C. J.; Hall, J. R.; Liewer, P. C.; De Jong, E.; Colaninno, R. C.; Vourlidas, A.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V.; Davies, J.; Lugaz, N.; Liu, Y. D.; McEnulty, T.; Luhmann, J. G.; Galvin, A. B.

    2013-12-01

    We study the feasibility of using a Heliospheric Imager (HI) instrument, such as STEREO/HI, for unambiguously connecting remote images to in situ observations of coronal mass ejection (CMEs). Our goal is to develop and test methods to predict CME parameters from heliospheric images, but our dataset can actually be used to benchmark any ICME propagation model. The results are of interest concerning future missions such as Solar Orbiter, or a dedicated space weather mission at the Sun-Earth L5 point (e.g. EASCO mission concept). We compare the predictions for speed and arrival time for 22 CME events (between 2008-2012), each observed remotely by one STEREO spacecraft, to the interplanetary coronal mass ejection (ICME) speed and arrival time observed at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). We use forward modeling for STEREO-COR2, and geometrical models for STEREO-HII, assuming different CME front shapes (Fixed-Phi, Harmonic Mean, Self-similar expansion), and fit them to the CME time-elongation functions with the SolarSoft SATPLOT tool, assuming constant CME speed and direction. The arrival times derived from imaging match the in situ ones +/- 8 hours, and speeds are consistent within +/-300 km/s, including CME apex/flank effects. We find no preference in the predictive capability for any of the 3 geometries used on the full dataset, consisting of front- and backsided, slow and fast CMEs (up to 2700 km/s). We search for new empirical relations between the predicted and observed speeds and arrival times, enhancing the HI predictive capabilities. Additionally, for very fast and back-sided CMEs, strong differences between the results of the HI models arise, consistent with theoretical expectations by Lugaz and Kintner (2013, Solar Physics). This work has received funding from the European Commission FP7 Project COMESEP (263252).

  18. Uncalibrated stereo rectification and disparity range stabilization: a comparison of different feature detectors

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; Jayarathne, Uditha L.; McLeod, A. Jonathan; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.

    2016-03-01

    This paper studies uncalibrated stereo rectification and stable disparity range determination for surgical scene three-dimensional (3-D) reconstruction. Stereoscopic endoscope calibration sometimes is not available and also increases the complexity of the operating-room environment. Stereo from uncalibrated endoscopic cameras is an alternative to reconstruct the surgical field visualized by binocular endoscopes within the body. Uncalibrated rectification is usually performed on the basis of a number of matched feature points (semi-dense correspondence) between the left and the right images of stereo pairs. After uncalibrated rectification, the corresponding feature points can be used to determine the proper disparity range that helps to improve the reconstruction accuracy and reduce the computational time of disparity map estimation. Therefore, the corresponding or matching accuracy and robustness of feature point descriptors is important to surgical field 3-D reconstruction. This work compares four feature detectors: (1) scale invariant feature transform (SIFT), (2) speeded up robust features (SURF), (3) affine scale invariant feature transform (ASIFT), and (4) gauge speeded up robust features (GSURF) with applications to uncalibrated rectification and stable disparity range determination. We performed our experiments on surgical endoscopic video images that were collected during robotic prostatectomy. The experimental results demonstrate that ASIFT outperforms other feature detectors in the uncalibrated stereo rectification and also provides a stable stable disparity range for surgical scene reconstruction.

  19. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  20. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Liu, Wai Chung; Grumpe, Arne; Wöhler, Christian

    2018-06-01

    Lunar Digital Elevation Model (DEM) is important for lunar successful landing and exploration missions. Lunar DEMs are typically generated by photogrammetry or laser altimetry approaches. Photogrammetric methods require multiple stereo images of the region of interest and it may not be applicable in cases where stereo coverage is not available. In contrast, reflectance based shape reconstruction techniques, such as shape from shading (SfS) and shape and albedo from shading (SAfS), apply monocular images to generate DEMs with pixel-level resolution. We present a novel hierarchical SAfS method that refines a lower-resolution DEM to pixel-level resolution given a monocular image with known light source. We also estimate the corresponding pixel-wise albedo map in the process and based on that to regularize the shape reconstruction with pixel-level resolution based on the low-resolution DEM. In this study, a Lunar-Lambertian reflectance model is applied to estimate the albedo map. Experiments were carried out using monocular images from the Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC), with spatial resolution of 0.5-1.5 m per pixel, constrained by the Selenological and Engineering Explorer and LRO Elevation Model (SLDEM), with spatial resolution of 60 m. The results indicate that local details are well recovered by the proposed algorithm with plausible albedo estimation. The low-frequency topographic consistency depends on the quality of low-resolution DEM and the resolution difference between the image and the low-resolution DEM.

  1. Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique

    NASA Astrophysics Data System (ADS)

    Sou, I.; Calantoni, J.; Reed, A. H.; Furukawa, Y.

    2012-12-01

    A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The PIV system uses four cameras and a dual cavity Nd:YAG laser. The system allows for a pair of stereo PIV windows of about 10 cm by 10 cm each to be arbitrarily located within a single light sheet. Image pairs were acquired with all four cameras at 50 Hz for 50 consecutive seconds for each flow condition. The stereo PIV windows were positioned on either side of sediment cores inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The oscillatory flows are generated by two types of driving mechanism (scotch yoke and crank lever) for converting the rotational motion of the flywheel into the linear motion of a piston. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. Two kinds of inorganic sediment samples were examined. One was a mixture of 50% kaolinite and 50% 500-micron sand under flows driven by the crank lever mechanism. Another sediment core was a mixture of 50% mud collected in Galveston Bay, TX, and 50% 250-micron sand under flows driven by the scotch-yoke mechanism. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. An example of the instantaneous velocity field superimposed on the raw image is shown in Figure 1. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the mud core, the residual light intensity was assumed to be scattered from suspended sediments eroded from the core. Relative comparisons were only made using the same sample mixture since it is difficult, if not impossible, to calibrate the light scattering from different sediments.; Figure 1. An example of the instantaneous time-resolved velocity field superimposed on the raw image.

  2. Modeling of coronal mass ejections with the STEREO heliospheric imagers verified with in situ observations by the Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Möstl, Christian; Isavnin, Alexey; Kilpua, Emilia; Bothmer, Volker; Mrotzek, Nicolas; Boakes, Peter; Rodriguez, Luciano; Krupar, Vratislav; Eastwood, Jonathan; Davies, Jackie; Harrison, Richard; Barnes, David; Winslow, Reka; Helcats Team

    2017-04-01

    We present the first study to verify modeling of CMEs as observed by the heliospheric imagers on the two STEREO spacecraft with a large scale dataset of in situ plasma and magnetic field observations from the Heliophysics System Observatory, including MESSENGER, VEX, Wind, and the in situ measurements on the two STEREO spacecraft. To this end, we have established a new interplanetary CME catalog (ICMECAT) for these spacecraft by gathering and updating individual ICME lists. In addition, we have re-calculated the in situ parameters in a consistent way, resulting in 668 events observed between 2007-2015. We then calculated the efficacy of the STEREO/HI instruments for predicting (in hindsight) with the SSEF30 model the arrival time and speed of CMEs as well as hit/miss ratios. We also show how ICMECAT gives decent statistics concerning CME impacts on all of the terrestrial planets, including Mars. The results show some major implications for future heliospheric imagers which may be used for space weather forecasting. Our effort should also serve as a baseline for the upcoming new era in heliospheric science with Solar Orbiter, Solar Probe Plus, BepiColombo returning partly comparable observations in the next decade. The presented work has received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement No. 606692 [HELCATS].

  3. Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.

    PubMed

    Raposo, Carolina; Antunes, Michel; P Barreto, Joao

    2017-08-09

    The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.

  4. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  5. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets along with some simple analyses of their scaling properties. Global 1km, 8-daily terrestrial land surface BRDF/albedo maps exist for US sensors from MODIS and by orbit from MISR. More recently, the ESA GlobAlbedo project [4] has produced land surface datasets on the same spatio-temporal sampling using optimal estimation with full uncertainty matrices associated with each and every 1km pixel. By exploiting these uncertainty estimates I show how upscaling can be performed as well as analysing their scaling properties. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [5]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ≈400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n˚312377 and the ESA GlobAlbedo project. Partial support is also provided from the STFC "MSSL Consolidated Grant" ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., Muller, J-P., et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Muller, J.-P., et al. (2011), The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 Years from European Sensors., Geophysical Research Abstracts, Vol. 13, EGU2011-10969; [5] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925

  6. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  7. Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique

    NASA Astrophysics Data System (ADS)

    Sou, In Mei; Calantoni, Joseph; Reed, Allen; Furukawa, Yoko

    2012-11-01

    A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The dual stereo PIV windows were positioned on either side of a sediment core inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the core, the residual light intensity was assumed to be scattered from suspended sediments eroded from the core. Results from two different sediment core samples of mud and sand mixtures will be presented.

  8. Graph-based surface reconstruction from stereo pairs using image segmentation

    NASA Astrophysics Data System (ADS)

    Bleyer, Michael; Gelautz, Margrit

    2005-01-01

    This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.

  9. Stereo Image of Mt. Usu Volcano

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. This anaglyph stereo image is of Mt Usu volcano. On Friday, March 31, more than 15,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. A 3-D view can be obtained by looking through stereo glasses, with the blue film through your left eye and red film with your right eye at the same time. North is on your right hand side. For more information, see When Rivers of Rock Flow ASTER web page Image courtesy of MITI, ERSDAC, JAROS, and the U.S./Japan ASTER Science Team

  10. Development of blood vessel searching system for HMS

    NASA Astrophysics Data System (ADS)

    Kandani, Hirofumi; Uenoya, Toshiyuki; Uetsuji, Yasutomo; Nakamachi, Eiji

    2008-08-01

    In this study, we develop a new 3D miniature blood vessel searching system by using near-infrared LED light, a CMOS camera module with an image processing unit for a health monitoring system (HMS), a drug delivery system (DDS) which requires very high performance for automatic micro blood volume extraction and automatic blood examination. Our objective is to fabricate a highly reliable micro detection system by utilizing image capturing, image processing, and micro blood extraction devices. For the searching system to determine 3D blood vessel location, we employ the stereo method. The stereo method is a common photogrammetric method. It employs the optical path principle to detect 3D location of the disparity between two cameras. The principle for blood vessel visualization is derived from the ratio of hemoglobin's absorption of the near-infrared LED light. To get a high quality blood vessel image, we adopted an LED, with peak a wavelength of 940nm. The LED is set on the dorsal side of the finger and it irradiates the human finger. A blood vessel image is captured by a CMOS camera module, which is set below the palmer side of the finger. 2D blood vessel location can be detected by the luminance distribution of a one pixel line. To examine the accuracy of our detecting system, we carried out experiments using finger phantoms with blood vessel diameters of 0.5, 0.75, 1.0mm, at the depths of 0.5 ~ 2.0 mm from the phantom's surface. The experimental results of the estimated depth obtained by our detecting system shows good agreements with the given depths, and the viability of this system is confirmed.

  11. Automatic Large-Scalae 3d Building Shape Refinement Using Conditional Generative Adversarial Networks

    NASA Astrophysics Data System (ADS)

    Bittner, K.; d'Angelo, P.; Körner, M.; Reinartz, P.

    2018-05-01

    Three-dimensional building reconstruction from remote sensing imagery is one of the most difficult and important 3D modeling problems for complex urban environments. The main data sources provided the digital representation of the Earths surface and related natural, cultural, and man-made objects of the urban areas in remote sensing are the digital surface models (DSMs). The DSMs can be obtained either by light detection and ranging (LIDAR), SAR interferometry or from stereo images. Our approach relies on automatic global 3D building shape refinement from stereo DSMs using deep learning techniques. This refinement is necessary as the DSMs, which are extracted from image matching point clouds, suffer from occlusions, outliers, and noise. Though most previous works have shown promising results for building modeling, this topic remains an open research area. We present a new methodology which not only generates images with continuous values representing the elevation models but, at the same time, enhances the 3D object shapes, buildings in our case. Mainly, we train a conditional generative adversarial network (cGAN) to generate accurate LIDAR-like DSM height images from the noisy stereo DSM input. The obtained results demonstrate the strong potential of creating large areas remote sensing depth images where the buildings exhibit better-quality shapes and roof forms.

  12. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.

  13. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques

    NASA Astrophysics Data System (ADS)

    Ivanov, Anton; Oberst, Jürgen; Yershov, Vladimir; Muller, Jan-Peter; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as the recent discovery of boulder movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004, the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25 m nadir images) with 87% coverage with more than 65% useful for stereo mapping. NASA began imaging the surface of Mars, initially from flybys in the 1960s and then from the first orbiter with image resolution less than 100 m in the late 1970s from Viking Orbiter. The most recent orbiter, NASA MRO, has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≈20 cm) and ≈5% from CTX (≈6 m) in stereo. Within the iMars project (http://i-Mars.eu), a fully automated large-scale processing (“Big Data”) solution is being developed to generate the best possible multi-resolution DTM of Mars. In addition, HRSC OrthoRectified Images (ORI) will be used as a georeference basis so that all higher resolution ORIs will be co-registered to the HRSC DTMs (50-100m grid) products generated at DLR and, from CTX (6-20 m grid) and HiRISE (1-3 m grids) on a large-scale Linux cluster based at MSSL. The HRSC products will be employed to provide a geographic reference for all current, future and historical NASA products using automated co-registration based on feature points and initial results will be shown here. In 2015, many of the entire NASA and ESA orbital images will be co-registered and the updated georeferencing information employed to generate a time series of terrain relief with corrected ORIs back to 1977. Web-GIS using OGC protocols will be employed to allow visual exploration of changes to the surface. Data mining processing chains are being developed to search for changes in the Martian surface from 1971-2015 and the output of this data mining will be compared against the results from citizen scientists’ measurements in a specialized Zooniverse implementation. The final co-registered data sets will be distributed through both European and US channels in a manner to be decided towards the end of the project. Acknowledgements: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement no. 607379.

  14. Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards.

    PubMed

    Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il

    2009-07-20

    Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

  15. Cross-modal face recognition using multi-matcher face scores

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2015-05-01

    The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.

  16. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.

  17. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  18. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    NASA Astrophysics Data System (ADS)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  19. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  20. Initial application of stereoscopic particle image velocimetry to transport and boundary phenomena in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Williams, Jeremiah; Silver, Jennifer

    2004-11-01

    Over the past five years, the Auburn Plasma Sciences Laboratory (PSL) has applied two-dimensional particle image velocimetry (2D-PIV) techniques [E. Thomas, Phys. Plasmas, 6, 2672 (1999)] to make measurements of particle transport in dusty plasmas. Although important information was obtained from these earlier studies, the complex behavior of the charged microparticles clearly indicated that three-dimensional velocity information is needed. The PSL has recently acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [E. Thomas. et al, Phys. Plasmas, L37 (2004)]. It employs a synchronized dual-laser, dual-camera system for measuring particle transport in three dimensions. Results will be presented on the initial application of stereo-PIV to dusty plasma studies. Additional results will be presented on the use of stereo-PIV for measuring the controlled interaction of two dust clouds.

  1. Phoenix Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice

    2013-01-01

    Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.

  2. The STEREO Mission: A New Approach to Space Weather Research

    NASA Technical Reports Server (NTRS)

    Kaiser, michael L.

    2006-01-01

    With the launch of the twin STEREO spacecraft in July 2006, a new capability will exist for both real-time space weather predictions and for advances in space weather research. Whereas previous spacecraft monitors of the sun such as ACE and SOH0 have been essentially on the sun-Earth line, the STEREO spacecraft will be in 1 AU orbits around the sun on either side of Earth and will be viewing the solar activity from distinctly different vantage points. As seen from the sun, the two spacecraft will separate at a rate of 45 degrees per year, with Earth bisecting the angle. The instrument complement on the two spacecraft will consist of a package of optical instruments capable of imaging the sun in the visible and ultraviolet from essentially the surface to 1 AU and beyond, a radio burst receiver capable of tracking solar eruptive events from an altitude of 2-3 Rs to 1 AU, and a comprehensive set of fields and particles instruments capable of measuring in situ solar events such as interplanetary magnetic clouds. In addition to normal daily recorded data transmissions, each spacecraft is equipped with a real-time beacon that will provide 1 to 5 minute snapshots or averages of the data from the various instruments. This beacon data will be received by NOAA and NASA tracking stations and then relayed to the STEREO Science Center located at Goddard Space Flight Center in Maryland where the data will be processed and made available within a goal of 5 minutes of receipt on the ground. With STEREO's instrumentation and unique view geometry, we believe considerable improvement can be made in space weather prediction capability as well as improved understanding of the three dimensional structure of solar transient events.

  3. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    NASA Astrophysics Data System (ADS)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  4. The ExoMars PanCam Instrument

    NASA Astrophysics Data System (ADS)

    Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David

    2010-05-01

    The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource impacts of these enhancements. References: 1. Griffiths, A.D., Coates, A.J., Josset, J.-L., Paar, G., Hofmann, B., Pullan, D., Ruffer, P., Sims, M.R., Pillinger, C.T., The Beagle 2 stereo camera system, Planet. Space Sci. 53, 1466-1488, 2005. 2. Paar, G., Oberst, J., Barnes, D.P., Griffiths, A.D., Jaumann, R., Coates, A.J., Muller, J.P., Gao, Y., Li, R., 2007, Requirements and Solutions for ExoMars Rover Panoramic Camera 3d Vision Processing, abstract submitted to EGU meeting, Vienna, 2007. 3. Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., and Nealson, K.H. 2001. Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Ins., 72 (12), 4452-4459. 4. Nealson, K.H., Tsapin, A., and Storrie-Lombardi, M. 2002. Searching for life in the universe: unconventional methods for an unconventional problem. International Microbiology, 5, 223-230. 5. Mormile, M.R. and Storrie-Lombardi, M.C. 2005. The use of ultraviolet excitation of native fluorescence for identifying biomarkers in halite crystals. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 246-253. 6. Storrie-Lombardi, M.C. 2005. Post-Bayesian strategies to optimize astrobiology instrument suites: lessons from Antarctica and the Pilbara. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 288-301.

  5. Evaluation of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kayo; Watabe, Kenji; Fujinaga, Tetsuji; Iijima, Hideki; Tsujii, Masahiko; Takahashi, Hideya; Takehara, Tetsuo; Yamada, Kenji

    2017-02-01

    Because the view angle of the endoscope is narrow, it is difficult to get the whole image of the digestive tract at once. If there are more than two lesions in the digestive tract, it is hard to understand the 3D positional relationship among the lesions. Virtual endoscopy using CT is a present standard method to get the whole view of the digestive tract. Because the virtual endoscopy is designed to detect the irregularity of the surface, it cannot detect lesions that lack irregularity including early cancer. In this study, we propose a method of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope. The method is as follows: 1) capture sequential images of the digestive tract by moving the endoscope, 2) reconstruct 3D surface pattern for each frame by stereo images, 3) estimate the position of the endoscope by image analysis, 4) reconstitute the entire image of the digestive tract by combining the 3D surface pattern. To confirm the validity of this method, we experimented with a straight tube inside of which circles were allocated at equal distance of 20 mm. We captured sequential images and the reconstituted image of the tube revealed that the distance between each circle was 20.2 +/- 0.3 mm (n=7). The results suggest that this method of endoscopic entire 3D image acquisition may help us understand 3D positional relationship among the lesions such as early esophageal cancer that cannot be detected by virtual endoscopy using CT.

  6. Determination of cup-to-disc ratio of optical nerve head for diagnosis of glaucoma on stereo retinal fundus image pairs

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Nakagawa, Toshiaki; Sawada, Akira; Hatanaka, Yuji; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi

    2009-02-01

    A large cup-to-disc (C/D) ratio, which is the ratio of the diameter of the depression (cup) to that of the optical nerve head (ONH, disc), can be one of the important signs for diagnosis of glaucoma. Eighty eyes, including 25 eyes with the signs of glaucoma, were imaged by a stereo retinal fundus camera. An ophthalmologist provided the outlines of cup and disc on a regular monitor and on the stereo display. The depth image of the ONH was created by determining the corresponding pixels in a pair of images based on the correlation coefficient in localized regions. The areas of the disc and cup were determined by use of the red component in one of the color images and by use of the depth image, respectively. The C/D ratio was determined based on the largest vertical lengths in the cup and disc areas, which was then compared with that by the ophthalmologist. The disc areas determined by the computerized method agreed relatively well with those determined by the ophthalmologist, whereas the agreement for the cup areas was somewhat lower. When C/D ratios were employed for distinction between the glaucomatous and non-glaucomatous eyes, the area under the receiver operating characteristic curve (AUC) was 0.83. The computerized analysis of ONH can be useful for diagnosis of glaucoma.

  7. A Three-Dimensional View of Titan's Surface Features from Cassini RADAR Stereogrammetry

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Hayes, A.; Lopes, R. M.; Lorenz, R. D.; Mitchell, K. L.; Radebaugh, J.; Paganelli, F.; Soderblom, L. A.; Stofan, E. R.; Wood, C. A.; Wall, S. D.; Cassini RADAR Team

    2008-12-01

    As of the end of its four-year Prime Mission, Cassini has obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys. The elongated image swaths overlap extensively, and ~2% of the surface has now been imaged two or more times. The majority of image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. As we have previously reported, the first step toward extracting quantitative topographic information was the development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically <1 km, can be removed by a least-squares adjustment of the spacecraft trajectories before mapping, which also ensures that the stereo digital topographic models (DTMs) are made consistent with altimetry and SAR topography profiles. The useful stereo coverage now available includes a much larger portion of Titan's north polar lake country than we previously presented, a continuous traverse of high resolution data from the lakes to mid-southern latitudes, and widely distributed smaller areas. A remaining challenge is that many pairs of images are illuminated from opposite sides or from near-perpendicular directions, which can make image matching more difficult. We find that the high-contrast polarizing display of the stereo workstation at USGS provides a much clearer view of these unfavorably illuminated pairs than (for example) anaglyphs, and lets us supplement automatic image matching with interactive measurements where the former fails. We are collecting DTMs of all usable image pairs and will present the most interesting results. Examples of geologic questions that may be addressed are: What is the relation between Ganesa and surrounding features? Is it a dome or shield? Can the height of Titan's dunes be measured, and what is the relief of the bright "islands" that appear to divert the dunes? How high are the mountains of Xanadu and what gradients drive the channels between them? What are the relative and absolute height relations between seas and lakes of different types, and what does this tell us about the "hydro(carbono)logic" cycle of precipitation, evaporation, and surface and subsurface fluid flow?

  8. Partially-Exhumed Crater in Northern Terra Meridiani: Stereo Anaglyph of overlapping coverage in

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-316, 8 August 2002 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have shown time and again that the geology and history of Mars is complex. These two pictures show different views of a circular feature in northern Terra Meridiani at 2.3oN, 356.6oW. The first is a mosaic of 3 MOC narrow angle images acquired in August 1999, November 2000, and June 2002. The black area is a gap in coverage resulting from data lost after transmission from Mars to Earth. The second picture is a stereo ('3-D') anaglyph of a portion of the same circular feature. It has been rotated 90o clockwise to show the stereo effect that results from combining the August 1999 image, which was taken while the spacecraft was pointed nadir (straight down) and the June 2002 image, taken with the spacecraft pointing backwards about 16o (i.e., MGS Relay-16 orientation). The anaglyph should be viewed with '3-D' glasses (red in left eye, blue in the right). The circular feature was once an impact crater. The crater was 2.6 km (1.6 mi) across, about 2.6 times larger than the famous Meteor Crater in northern Arizona. Terra Meridiani, like northern Arizona, is a region of vast exposures of layered sedimentary rock. Like the crater in Arizona, this one was formed by a meteor that impacted a layered rock substrate. Later, this crater was filled and completely buried under more than 100 m (more than 327 ft) of additional layered sediment. The sediment hardened to become rock. Later still, the rock was eroded away--by processes unknown (perhaps wind)--to re-expose the buried crater. The crater today remains mostly filled with sediment, its present rim standing only about 40 m (130 ft) above its surroundings.

  9. Relation Between the 3D-Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

    NASA Technical Reports Server (NTRS)

    Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.

    2011-01-01

    We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of approx 240 km/s. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of approx 750 +/- 50 km/s, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.

  10. Anaglyph Image Technology As a Visualization Tool for Teaching Geology of National Parks

    NASA Astrophysics Data System (ADS)

    Stoffer, P. W.; Phillips, E.; Messina, P.

    2003-12-01

    Anaglyphic stereo viewing technology emerged in the mid 1800's. Anaglyphs use offset images in contrasting colors (typically red and cyan) that when viewed through color filters produce a three-dimensional (3-D) image. Modern anaglyph image technology has become increasingly easy to use and relatively inexpensive using digital cameras, scanners, color printing, and common image manipulation software. Perhaps the primary drawbacks of anaglyph images include visualization problems with primary colors (such as flowers, bright clothing, or blue sky) and distortion factors in large depth-of-field images. However, anaglyphs are more versatile than polarization techniques since they can be printed, displayed on computer screens (such as on websites), or projected with a single projector (as slides or digital images), and red and cyan viewing glasses cost less than polarization glasses and other 3-D viewing alternatives. Anaglyph images are especially well suited for most natural landscapes, such as views dominated by natural earth tones (grays, browns, greens), and they work well for sepia and black and white images (making the conversion of historic stereo photography into anaglyphs easy). We used a simple stereo camera setup incorporating two digital cameras with a rigid base to photograph landscape features in national parks (including arches, caverns, cactus, forests, and coastlines). We also scanned historic stereographic images. Using common digital image manipulation software we created websites featuring anaglyphs of geologic features from national parks. We used the same images for popular 3-D poster displays at the U.S. Geological Survey Open House 2003 in Menlo Park, CA. Anaglyph photography could easily be used in combined educational outdoor activities and laboratory exercises.

  11. Panoramic 3d Vision on the ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Paar, G.; Griffiths, A. D.; Barnes, D. P.; Coates, A. J.; Jaumann, R.; Oberst, J.; Gao, Y.; Ellery, A.; Li, R.

    The Pasteur payload on the ESA ExoMars Rover 2011/2013 is designed to search for evidence of extant or extinct life either on or up to ˜2 m below the surface of Mars. The rover will be equipped by a panoramic imaging system to be developed by a UK, German, Austrian, Swiss, Italian and French team for visual characterization of the rover's surroundings and (in conjunction with an infrared imaging spectrometer) remote detection of potential sample sites. The Panoramic Camera system consists of a wide angle multispectral stereo pair with 65° field-of-view (WAC; 1.1 mrad/pixel) and a high resolution monoscopic camera (HRC; current design having 59.7 µrad/pixel with 3.5° field-of-view) . Its scientific goals and operational requirements can be summarized as follows: • Determination of objects to be investigated in situ by other instruments for operations planning • Backup and Support for the rover visual navigation system (path planning, determination of subsequent rover positions and orientation/tilt within the 3d environment), and localization of the landing site (by stellar navigation or by combination of orbiter and ground panoramic images) • Geological characterization (using narrow band geology filters) and cartography of the local environments (local Digital Terrain Model or DTM). • Study of atmospheric properties and variable phenomena near the Martian surface (e.g. aerosol opacity, water vapour column density, clouds, dust devils, meteors, surface frosts,) 1 • Geodetic studies (observations of Sun, bright stars, Phobos/Deimos). The performance of 3d data processing is a key element of mission planning and scientific data analysis. The 3d Vision Team within the Panoramic Camera development Consortium reports on the current status of development, consisting of the following items: • Hardware Layout & Engineering: The geometric setup of the system (location on the mast & viewing angles, mutual mounting between WAC and HRC) needs to be optimized w.r.t. fields of view, ranging capability (distance measurement capability), data rate, necessity of calibration targets, hardware & data interfaces to other subsystems (e.g. navigation) as well as accuracy impacts of sensor design and compression ratio. • Geometric Calibration: The geometric properties of the individual cameras including various spectral filters, their mutual relations and the dynamic geometrical relation between rover frame and cameras - with the mast in between - are precisely described by a calibration process. During surface operations these relations will be continuously checked and updated by photogrammetric means, environmental influences such as temperature, pressure and the Mars gravity will be taken into account. • Surface Mapping: Stereo imaging using the WAC stereo pair is used for the 3d reconstruction of the rover vicinity to identify, locate and characterize potentially interesting spots (3-10 for an experimental cycle to be performed within approx. 10-30 sols). The HRC is used for high resolution imagery of these regions of interest to be overlaid on the 3d reconstruction and potentially refined by shape-from-shading techniques. A quick processing result is crucial for time critical operations planning, therefore emphasis is laid on the automatic behaviour and intrinsic error detection mechanisms. The mapping results will be continuously fused, updated and synchronized with the map used by the navigation system. The surface representation needs to take into account the different resolutions of HRC and WAC as well as uncommon or even unexpected image acquisition modes such as long range, wide baseline stereo from different rover positions or escape strategies in the case of loss of one of the stereo camera heads. • Panorama Mosaicking: The production of a high resolution stereoscopic panorama nowadays is state-of-art in computer vision. However, certain 2 challenges such as the need for access to accurate spherical coordinates, maintenance of radiometric & spectral response in various spectral bands, fusion between HRC and WAC, super resolution, and again the requirement of quick yet robust processing will add some complexity to the ground processing system. • Visualization for Operations Planning: Efficient operations planning is directly related to an ergonomic and well performing visualization. It is intended to adapt existing tools to an integrated visualization solution for the purpose of scientific site characterization, view planning and reachability mapping/instrument placement of pointing sensors (including the panoramic imaging system itself), and selection of regions of interest. The main interfaces between the individual components as well as the first version of a user requirement document are currently under definition. Beside the support for sensor layout and calibration the 3d vision system will consist of 2-3 main modules to be used during ground processing & utilization of the ExoMars Rover panoramic imaging system. 3

  12. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  13. Analysis of Performance of Stereoscopic-Vision Software

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Steele, Robert; Steinke, Robert

    2007-01-01

    A team of JPL researchers has analyzed stereoscopic vision software and produced a document describing its performance. This software is of the type used in maneuvering exploratory robotic vehicles on Martian terrain. The software in question utilizes correlations between portions of the images recorded by two electronic cameras to compute stereoscopic disparities, which, in conjunction with camera models, are used in computing distances to terrain points to be included in constructing a three-dimensional model of the terrain. The analysis included effects of correlation- window size, a pyramidal image down-sampling scheme, vertical misalignment, focus, maximum disparity, stereo baseline, and range ripples. Contributions of sub-pixel interpolation, vertical misalignment, and foreshortening to stereo correlation error were examined theoretically and experimentally. It was found that camera-calibration inaccuracy contributes to both down-range and cross-range error but stereo correlation error affects only the down-range error. Experimental data for quantifying the stereo disparity error were obtained by use of reflective metrological targets taped to corners of bricks placed at known positions relative to the cameras. For the particular 1,024-by-768-pixel cameras of the system analyzed, the standard deviation of the down-range disparity error was found to be 0.32 pixel.

  14. Dust Devil in Spirit's View Ahead on Sol 1854 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11960 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11960

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009).

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854.

    West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.'

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  15. Real-time photorealistic stereoscopic rendering of fire

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  16. Detecting personnel around UGVs using stereo vision

    NASA Astrophysics Data System (ADS)

    Bajracharya, Max; Moghaddam, Baback; Howard, Andrew; Matthies, Larry H.

    2008-04-01

    Detecting people around unmanned ground vehicles (UGVs) to facilitate safe operation of UGVs is one of the highest priority issues in the development of perception technology for autonomous navigation. Research to date has not achieved the detection ranges or reliability needed in deployed systems to detect upright pedestrians in flat, relatively uncluttered terrain, let alone in more complex environments and with people in postures that are more difficult to detect. Range data is essential to solve this problem. Combining range data with high resolution imagery may enable higher performance than range data alone because image appearance can complement shape information in range data and because cameras may offer higher angular resolution than typical range sensors. This makes stereo vision a promising approach for several reasons: image resolution is high and will continue to increase, the physical size and power dissipation of the cameras and computers will continue to decrease, and stereo cameras provide range data and imagery that are automatically spatially and temporally registered. We describe a stereo vision-based pedestrian detection system, focusing on recent improvements to a shape-based classifier applied to the range data, and present frame-level performance results that show great promise for the overall approach.

  17. 4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL).

    PubMed

    Bae, Sam Y; Korniski, Ronald J; Shearn, Michael; Manohara, Harish M; Shahinian, Hrayr

    2017-01-01

    High-resolution three-dimensional (3-D) imaging (stereo imaging) by endoscopes in minimally invasive surgery, especially in space-constrained applications such as brain surgery, is one of the most desired capabilities. Such capability exists at larger than 4-mm overall diameters. We report the development of a stereo imaging endoscope of 4-mm maximum diameter, called Multiangle, Rear-Viewing Endoscopic Tool (MARVEL) that uses a single-lens system with complementary multibandpass filter (CMBF) technology to achieve 3-D imaging. In addition, the system is endowed with the capability to pan from side-to-side over an angle of [Formula: see text], which is another unique aspect of MARVEL for such a class of endoscopes. The design and construction of a single-lens, CMBF aperture camera with integrated illumination to generate 3-D images, and the actuation mechanism built into it is summarized.

  18. 3D structure and kinematics characteristics of EUV wave front

    NASA Astrophysics Data System (ADS)

    Podladchikova, T.; Veronig, A.; Dissauer, K.

    2017-12-01

    We present 3D reconstructions of EUV wave fronts using multi-point observations from the STEREO-A and STEREO-B spacecraft. EUV waves are large-scale disturbances in the solar corona that are initiated by coronal mass ejections, and are thought to be large-amplitude fast-mode MHD waves or shocks. The aim of our study is to investigate the dynamic evolution of the 3D structure and wave kinematics of EUV wave fronts. We study the events on December 7, 2007 and February 13, 2009 using data from the STEREO/EUVI-A and EUVI-B instruments in the 195 Å filter. The proposed approach is based on a complementary combination of epipolar geometry of stereo vision and perturbation profiles. We propose two different solutions to the matching problem of the wave crest on images from the two spacecraft. One solution is suitable for the early and maximum stage of event development when STEREO-A and STEREO-B see the different facets of the wave, and the wave crest is clearly outlined. The second one is applicable also at the later stage of event development when the wave front becomes diffuse and is faintly visible. This approach allows us to identify automatically the segments of the diffuse front on pairs of STEREO-A and STEREO-B images and to solve the problem of identification and matching of the objects. We find that the EUV wave observed on December 7, 2007 starts with a height of 30-50 Mm, sharply increases to a height of 100-120 Mm about 10 min later, and decreases to 10-20 Mm in the decay phase. Including the 3D evolution of the EUV wave front allowed us to correct the wave kinematics for projection and changing height effects. The velocity of the wave crest (V=215-266 km/s) is larger than the trailing part of the wave pulse (V=103-163 km/s). For the February 9, 2009 event, the upward movement of the wave crest shows an increase from 20 to 100 Mm over a period of 30 min. The velocity of wave crest reaches values of 208-211 km/s.

  19. A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Socolofsky, Scott A.

    2015-10-01

    Development, testing, and application of a deep-sea, high-speed, stereoscopic imaging system are presented. The new system is designed for field-ready deployment, focusing on measurement of the characteristics of natural seep bubbles and droplets with high-speed and high-resolution image capture. The stereo view configuration allows precise evaluation of the physical scale of the moving particles in image pairs. Two laboratory validation experiments (a continuous bubble chain and an airstone bubble plume) were carried out to test the calibration procedure, performance of image processing and bubble matching algorithms, three-dimensional viewing, and estimation of bubble size distribution and volumetric flow rate. The results showed that the stereo view was able to improve the individual bubble size measurement over the single-camera view by up to 90% in the two validation cases, with the single-camera being biased toward overestimation of the flow rate. We also present the first application of this imaging system in a study of natural gas seeps in the Gulf of Mexico. The high-speed images reveal the rigidity of the transparent bubble interface, indicating the presence of clathrate hydrate skins on the natural gas bubbles near the source (lowest measurement 1.3 m above the vent). We estimated the dominant bubble size at the seep site Sleeping Dragon in Mississippi Canyon block 118 to be in the range of 2-4 mm and the volumetric flow rate to be 0.2-0.3 L/min during our measurements from 17 to 21 July 2014.

  20. An image engineering system for the inspection of transparent construction materials

    NASA Astrophysics Data System (ADS)

    Hinz, S.; Stephani, M.; Schiemann, L.; Zeller, K.

    This article presents a modular photogrammetric recording and image analysis system for inspecting the material characteristics of transparent foils, in particular Ethylen-TetraFluorEthylen-Copolymer (ETFE) foils. The foils are put under increasing air pressure and are observed by a stereo camera system. Determining the time-variable 3D shape of transparent material imposes a number of challenges: especially the automatic point transfer between stereo images and, in temporal domain, from one image pair to the next. We developed an automatic approach that accommodates for these particular circumstances and allows reconstruction of the 3D shape for each epoch as well as determining 3D translation vectors between epochs by feature tracking. Examples including numerical results and accuracy measures prove the applicability of the system.

  1. STEREO In-situ Data Analysis

    NASA Astrophysics Data System (ADS)

    Schroeder, P. C.; Luhmann, J. G.; Davis, A. J.; Russell, C. T.

    2007-05-01

    STEREO's IMPACT (In-situ Measurements of Particles and CME Transients) investigation provides the first opportunity for long duration, detailed observations of 1 AU magnetic field structures, plasma and suprathermal electrons, and energetic particles at points bracketing Earth's heliospheric location. The PLASTIC instrument takes plasma ion composition measurements completing STEREO's comprehensive in-situ perspective. Stereoscopic/3D information from the STEREO SECCHI imagers and SWAVES radio experiment make it possible to use both multipoint and quadrature studies to connect interplanetary Coronal Mass Ejections (ICME) and solar wind structures to CMEs and coronal holes observed at the Sun. The uniqueness of the STEREO mission requires novel data analysis tools and techniques to take advantage of the mission's full scientific potential. An interactive browser with the ability to create publication-quality plots has been developed which integrates STEREO's in-situ data with data from a variety of other missions including WIND and ACE. Static summary plots and a key-parameter type data set with a related online browser provide alternative data access. Finally, an application program interface (API) is provided allowing users to create custom software that ties directly into STEREO's data set. The API allows for more advanced forms of data mining than currently available through most web-based data services. A variety of data access techniques and the development of cross- spacecraft data analysis tools allow the larger scientific community to combine STEREO's unique in-situ data with those of other missions, particularly the L1 missions, and, therefore, to maximize STEREO's scientific potential in gaining a greater understanding of the heliosphere.

  2. Venus surface roughness and Magellan stereo data

    NASA Technical Reports Server (NTRS)

    Maurice, Kelly E.; Leberl, Franz W.; Norikane, L.; Hensley, Scott

    1994-01-01

    Presented are results of some studies to develop tools useful for the analysis of Venus surface shape and its roughness. Actual work was focused on Maxwell Montes. The analyses employ data acquired by means of NASA's Magellan satellite. The work is primarily concerned with deriving measurements of the Venusian surface using Magellan stereo SAR. Roughness was considered by means of a theoretical analyses based on digital elevation models (DEM's), on single Magellan radar images combined with radiometer data, and on the use of multiple overlapping Magellan radar images from cycles 1, 2, and 3, again combined with collateral radiometer data.

  3. STEREO's View

    NASA Image and Video Library

    2017-12-08

    STEREO witnessed the March 5, 2013, CME from the side of the sun – Earth is far to the left of this picture. While the SOHO images show a halo CME, STEREO shows the CME clearly moving away from Earth. Credit: NASA/STEREO --- CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery

    PubMed Central

    Murakami, Hiroatsu; Wang, Zhong I.; Marashly, Ahmad; Krishnan, Balu; Prayson, Richard A.; Kakisaka, Yosuke; Mosher, John C.; Bulacio, Juan; Gonzalez-Martinez, Jorge A.; Bingaman, William E.; Najm, Imad M.; Burgess, Richard C.; Alexopoulos, Andreas V.

    2016-01-01

    See Bear and Kirsch (doi:10.1093/aww248) for a scientific commentary on this article. Magnetoencephalography and stereo-electroencephalography are often necessary in the course of the non-invasive and invasive presurgical evaluation of challenging patients with medically intractable focal epilepsies. In this study, we aim to examine the significance of magnetoencephalography dipole clusters and their relationship to stereo-electroencephalography findings, area of surgical resection, and seizure outcome. We also aim to define the positive and negative predictors based on magnetoencephalography dipole cluster characteristics pertaining to seizure-freedom. Included in this retrospective study were a consecutive series of 50 patients who underwent magnetoencephalography and stereo-electroencephalography at the Cleveland Clinic Epilepsy Center. Interictal magnetoencephalography localization was performed using a single equivalent current dipole model. Magnetoencephalography dipole clusters were classified based on tightness and orientation criteria. Magnetoencephalography dipole clusters, stereo-electroencephalography findings and area of resection were reconstructed and examined in the same space using the patient’s own magnetic resonance imaging scan. Seizure outcomes at 1 year postoperative were dichotomized into seizure-free or not seizure-free. We found that patients in whom the magnetoencephalography clusters were completely resected had a much higher chance of seizure-freedom compared to the partial and no resection groups (P = 0.007). Furthermore, patients had a significantly higher chance of being seizure-free when stereo-electroencephalography completely sampled the area identified by magnetoencephalography as compared to those with incomplete or no sampling of magnetoencephalography results (P = 0.012). Partial concordance between magnetoencephalography and interictal or ictal stereo-electroencephalography was associated with a much lower chance of seizure freedom as compared to the concordant group (P = 0.0075). Patients with one single tight cluster on magnetoencephalography were more likely to become seizure-free compared to patients with a tight cluster plus scatter (P = 0.0049) or patients with loose clusters (P = 0.018). Patients whose magnetoencephalography clusters had a stable orientation perpendicular to the nearest major sulcus had a better chance of seizure-freedom as compared to other orientations (P = 0.042). Our data demonstrate that stereo-electroencephalography exploration and subsequent resection are more likely to succeed, when guided by positive magnetoencephalography findings. As a corollary, magnetoencephalography clusters should not be ignored when planning the stereo-electroencephalography strategy. Magnetoencephalography tight cluster and stable orientation are positive predictors for a good seizure outcome after resective surgery, whereas the presence of scattered sources diminishes the probability of favourable outcomes. The concordance pattern between magnetoencephalography and stereo-electroencephalography is a strong argument in favour of incorporating localization with non-invasive tools into the process of presurgical evaluation before actual placement of electrodes. PMID:27567464

  5. Andes

    Atmospheric Science Data Center

    2013-04-18

    ... Arequipa, provide a striking demonstration of the power of water erosion. This image pair was acquired by the Multi-angle Imaging ... stereo image in 3-D requires red/blue glasses with the red filter placed over your left eye. Two main erosion formations can be seen. ...

  6. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  7. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  8. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  9. a Robust Method for Stereo Visual Odometry Based on Multiple Euclidean Distance Constraint and Ransac Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Tong, X.; Liu, S.; Lu, X.; Liu, S.; Chen, P.; Jin, Y.; Xie, H.

    2017-07-01

    Visual Odometry (VO) is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB) features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC) and Random Sample Consensus (RANSAC) algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF) matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation). The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.

  10. Compiling Mercury relief map using several data sources

    NASA Astrophysics Data System (ADS)

    Zakharova, Maria; Lazarev, Evgeniy

    2015-04-01

    There are several data of Mercury topography obtained as the result of processing materials collected by two spacecrafts - the Mariner-10 and the MESSENGER during their Mercury flybys. The history of the visual mapping of the Mercury begins at the recent times as the first significant observations were made during the latter half of the 20th century, whereas today we have no data with 100% coverage for the entire surface of the Mercury except the global mosaic composed of the images acquired by MESSENGER. The Mercury relief map has been created with the help of four different types of data: - global mosaic with 100% coverage of Mercury's surface created by using MESSENGER orbital images (30% of the final map); - Digital Terrain Models obtained by the treating stereo images made during the Mariner 10's flybys (10% of the map) (Cook and Robinson, 2000); - Digital Terrain Models obtained from images acquired during the Messenger flybys (20% of the map) (F. Preusker et al., 2011); - the data sets produced by the MESSENGER Mercury Laser Altimeter (MLA) (40 % of the map). The main objective of this work is to collect, combine and process the existing data and then to merge them correctly for one single map compiling. The final map is created in the Lambert azimuthal Equal area projection and mainly shows the hypsometric features of the planet. It represents two hemispheres - western and eastern. In order not to divide data sources the eastern hemisphere takes an interval from 50 degrees east longitude to 130 degrees west longitude and the western one takes respectively the interval from 130 degrees west longitude to 50 degrees east longitude. References: Global mosaics of Mercury's surface. Available mosaics include one created prior to MESSENGER's orbital operations, high resolution versions that use MESSENGER's orbital images that are available in NASA's Planetary Data System (PDS) (http://messenger.jhuapl.edu/the_mission/mosaics.html). Cook, A.C., Robinson, M.S., 2000. Mariner 10 stereo image coverage of Mercury. J. Geophys. Res. 105, 9429-9443. Preusker, F., Oberst, J., Head, J.W., Watters, T.R., Robinson, M.S., Zuber, M.T., Solomon, S.C., 2010. Stereo topographic models of Mercury after three MESSENGER flybys. Planetary and Space Science 59 (2011), 1910-1917. The MLA is a time-of-flight laser rangefinder that uses direct detection and pulse-edge timing to determine precisely the range from the MESSENGER spacecraft to Mercury's surface (http://pds-geosciences.wustl.edu/missions/messenger/mla.htm).

  11. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  12. An assembly system based on industrial robot with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Xiao, Nanfeng

    2017-01-01

    This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.

  13. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  14. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  15. Key characteristics of specular stereo

    PubMed Central

    Muryy, Alexander A.; Fleming, Roland W.; Welchman, Andrew E.

    2014-01-01

    Because specular reflection is view-dependent, shiny surfaces behave radically differently from matte, textured surfaces when viewed with two eyes. As a result, specular reflections pose substantial problems for binocular stereopsis. Here we use a combination of computer graphics and geometrical analysis to characterize the key respects in which specular stereo differs from standard stereo, to identify how and why the human visual system fails to reconstruct depths correctly from specular reflections. We describe rendering of stereoscopic images of specular surfaces in which the disparity information can be varied parametrically and independently of monocular appearance. Using the generated surfaces and images, we explain how stereo correspondence can be established with known and unknown surface geometry. We show that even with known geometry, stereo matching for specular surfaces is nontrivial because points in one eye may have zero, one, or multiple matches in the other eye. Matching features typically yield skew (nonintersecting) rays, leading to substantial ortho-epipolar components to the disparities, which makes deriving depth values from matches nontrivial. We suggest that the human visual system may base its depth estimates solely on the epipolar components of disparities while treating the ortho-epipolar components as a measure of the underlying reliability of the disparity signals. Reconstructing virtual surfaces according to these principles reveals that they are piece-wise smooth with very large discontinuities close to inflection points on the physical surface. Together, these distinctive characteristics lead to cues that the visual system could use to diagnose specular reflections from binocular information. PMID:25540263

  16. STEREO in-situ data analysis

    NASA Astrophysics Data System (ADS)

    Schroeder, P.; Luhmann, J.; Davis, A.; Russell, C.

    STEREO s IMPACT In-situ Measurements of Particles and CME Transients investigation provides the first opportunity for long duration detailed observations of 1 AU magnetic field structures plasma and suprathermal electrons and energetic particles at points bracketing Earth s heliospheric location The PLASTIC instrument will make plasma ion composition measurements completing STEREO s comprehensive in-situ perspective Stereoscopic 3D information from the STEREO SECCHI imagers and SWAVES radio experiment will make it possible to use both multipoint and quadrature studies to connect interplanetary Coronal Mass Ejections ICME and solar wind structures to CMEs and coronal holes observed at the Sun The uniqueness of the STEREO mission requires novel data analysis tools and techniques to take advantage of the mission s full scientific potential An interactive browser with the ability to create publication-quality plots is being developed which will integrate STEREO s in-situ data with data from a variety of other missions including WIND and ACE Also an application program interface API will be provided allowing users to create custom software that ties directly into STEREO s data set The API will allow for more advanced forms of data mining than currently available through most data web services A variety of data access techniques and the development of cross-spacecraft data analysis tools will allow the larger scientific community to combine STEREO s unique in-situ data with those of other missions particularly the L1 missions and therefore to maximize

  17. CHAMP - Camera, Handlens, and Microscope Probe

    NASA Technical Reports Server (NTRS)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  18. Stereo-hologram in discrete depth of field (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kwanghoon; Park, Min-Chul

    2017-05-01

    In holographic space, continuous object space can be divided as several discrete spaces satisfied each of same depth of field (DoF). In the environment of wearable device using holography, specially, this concept can be applied to macroscopy filed in contrast of the field of microscopy. Since the former has not need to high depth resolution because perceiving power of eye in human visual system, it can distinguish clearly among the objects in depth space, has lower than optical power of microscopic field. Therefore continuous but discrete depth of field (DDoF) for whole object space can present the number of planes included sampled space considered its DoF. Each DoF plane has to consider the occlusion among the object's areas in its region to show the occluded phenomenon inducing by the visual axis around the eye field of view. It makes natural scene in recognition process even though the combined discontinuous DoF regions are altered to the continuous object space. Thus DDoF pull out the advantages such as saving consuming time of the calculation process making the hologram and the reconstruction. This approach deals mainly the properties of several factors required in stereo hologram HMD such as stereoscopic DoF according to the convergence, least number of DDoFs planes in normal visual circumstance (within to 10,000mm), the efficiency of saving time for taking whole holographic process under the our method compared to the existing. Consequently this approach would be applied directly to the stereo-hologram HMD field to embody a real-time holographic imaging.

  19. CMOS detectors: lessons learned during the STC stereo channel preflight calibration

    NASA Astrophysics Data System (ADS)

    Simioni, E.; De Sio, A.; Da Deppo, V.; Naletto, G.; Cremonese, G.

    2017-09-01

    The Stereo Camera (STC), mounted on-board the BepiColombo spacecraft, will acquire in push frame stereo mode the entire surface of Mercury. STC will provide the images for the global three-dimensional reconstruction of the surface of the innermost planet of the Solar System. The launch of BepiColombo is foreseen in 2018. STC has an innovative optical system configuration, which allows good optical performances with a mass and volume reduction of a factor two with respect to classical stereo camera approach. In such a telescope, two different optical paths inclined of +/-20°, with respect to the nadir direction, are merged together in a unique off axis path and focused on a single detector. The focal plane is equipped with a 2k x 2k hybrid Si-PIN detector, based on CMOS technology, combining low read-out noise, high radiation hardness, compactness, lack of parasitic light, capability of snapshot image acquisition and short exposure times (less than 1 ms) and small pixel size (10 μm). During the preflight calibration campaign of STC, some detector spurious effects have been noticed. Analyzing the images taken during the calibration phase, two different signals affecting the background level have been measured. These signals can reduce the detector dynamics down to a factor of 1/4th and they are not due to dark current, stray light or similar effects. In this work we will describe all the features of these unwilled effects, and the calibration procedures we developed to analyze them.

  20. Time-to-impact sensors in robot vision applications based on the near-sensor image processing concept

    NASA Astrophysics Data System (ADS)

    Åström, Anders; Forchheimer, Robert

    2012-03-01

    Based on the Near-Sensor Image Processing (NSIP) concept and recent results concerning optical flow and Time-to- Impact (TTI) computation with this architecture, we show how these results can be used and extended for robot vision applications. The first case involves estimation of the tilt of an approaching planar surface. The second case concerns the use of two NSIP cameras to estimate absolute distance and speed similar to a stereo-matching system but without the need to do image correlations. Going back to a one-camera system, the third case deals with the problem to estimate the shape of the approaching surface. It is shown that the previously developed TTI method not only gives a very compact solution with respect to hardware complexity, but also surprisingly high performance.

  1. Modeling Floods in Athabasca Valles, Mars, Using CTX Stereo Topography

    NASA Astrophysics Data System (ADS)

    Dundas, C. M.; Keszthelyi, L. P.; Denlinger, R. P.; Thomas, O. H.; Galuszka, D.; Hare, T. M.; Kirk, R. L.; Howington-Kraus, E.; Rosiek, M.

    2012-12-01

    Among the most remarkable landforms on Mars are the outflow channels, which suggest the occurrence of catastrophic water floods in the past. Athabasca Valles has long been thought to be the youngest of these channels [1-2], although it has recently become clear that the young crater age applies to a coating lava flow [3]. Simulations with a 2.5-dimensional flood model have provided insight into the details of flood dynamics but have also demonstrated that the Digital Elevation Model (DEM) from the Mars Orbiter Laser Altimeter (MOLA) Mission Experiment Gridded Data Records includes significant artifacts at this latitude at the scales relevant for flood modeling [4]. In order to obtain improved topography, we processed stereo images from the Context Camera (CTX) of the Mars Reconnaissance Orbiter (MRO) using methods developed for producing topographic models of the Moon with images from the Lunar Reconnaissance Orbiter Camera, a derivative of the CTX camera. Some work on flood modeling with CTX stereo has been published by [5], but we will present several advances, including corrections to the published CTX optical distortion model and improved methods to combine the stereo and MOLA data. The limitations of current methods are the accuracy of control to MOLA and the level of error introduced when the MRO spacecraft is not in a high-stability mode during stereo imaging, leading to jitter impacting the derived topography. Construction of a mosaic of multiple stereo pairs, controlled to MOLA, allows us to consider flow through the cluster of streamlined islands in the upper part of the channel [6], including what is suggested to be the best example of flood-formed subaqueous dunes on Mars [7]. We will present results from running a flood model [4, 8] through the high-resolution (100 m/post) DEM covering the streamlined islands and subaqueous dunes, using results from a lower-resolution model as a guide to the inflow. By considering a range of flow levels below estimated peak flow, we can examine the flow behavior at the site of the apparent subaqueous dunes and, in particular, assess whether the flow in this area is uniquely conducive to the formation of such bedforms [e.g., 9]. [1] Berman D. C. and Hartmann W. K. (2002) Icarus 159, 1-17. [2] Burr D. M. et al. (2002) Icarus 159, 53-73. [3] Jaeger W. L. et al. (2010) Icarus 205, 230-243. [4] Keszthelyi L. P. et al. (2007) GRL 34, L21206. [5] McIntyre et al. (2012) JGR 117, E03009. [6] Burr D. (2005) Geomorphology 69, 242-252. [7] Burr D. M. et al. (2004) Icarus 171, 68-83. [8] Denlinger R. P. and O'Connell D. R. H. (2008) J. Hyd. Eng. 134, 1590-1602. [9] Kleinhans M. G. (2005) JGR 110, E12003.

  2. Bubble behavior characteristics based on virtual binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen

    2018-01-01

    The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.

  3. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    NASA Astrophysics Data System (ADS)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.

  4. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.

  5. Three-dimensional surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  6. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  7. Optic probe for multiple angle image capture and optional stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2016-11-29

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  8. Article Screening System

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2004-01-01

    During the last ten years patents directed to luggage scanning apparatus began to appear in the patent art. Absent from the variety of approaches in the art is stereoscopic imaging that entails exposing two or more images of the same object, each taken from a slightly different perspective. If the perspectives are too different, that is. if there is too much separation of the X-ray exposures, the image will look flat. Yet with a slight separation, a stereo separation, interference occurs. Herein a system is provided for the production of stereo pairs. One perspective, a left or a right perspective angle, is first established. Next, the other perspective angle is computed. Using these left and right perspectives the X-ray sources can then be spaced away from each other.

  9. Comparison of a digital retinal imaging system and seven-field stereo color fundus photography to detect diabetic retinopathy in the primary care environment.

    PubMed

    Schiffman, Rhett M; Jacobsen, Gordon; Nussbaum, Julian J; Desai, Uday R; Carey, J David; Glasser, David; Zimmer-Galler, Ingrid E; Zeimer, Ran; Goldberg, Morton F

    2005-01-01

    Because patients with diabetes mellitus may visit their primary care physician regularly but not their ophthalmologist, a retinal risk assessment in the primary care setting could improve the screening rate for diabetic retinopathy. An imaging system for use in the primary care setting to identify diabetic retinopathy requiring referral to an ophthalmologist was evaluated. In a masked prospective study, images were obtained from 11 patients with diabetes mellitus using both the digital retinal imaging system and seven-field stereo color fundus photography. The ability to obtain gradable images and to identify diabetic retinal lesions was compared. Of all images, 85% of digital retinal imaging system images and 88% of seven-field images were gradable. Agreement based on "no retinopathy" versus "any retinopathy" was excellent (Kappa = 0.96). Agreement based on "microaneurysms or less retinopathy" versus "retinal hemorrhages or worse retinopathy" was very good (Kappa = 0.83). The agreement between the digital retinal imaging system and seven-field photography indicates that the digital retinal imaging system may be useful to screen for diabetic retinopathy.

  10. Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11787 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11787

    NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top.

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim.

    Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  11. HRSCview: a web-based data exploration system for the Mars Express HRSC instrument

    NASA Astrophysics Data System (ADS)

    Michael, G.; Walter, S.; Neukum, G.

    2007-08-01

    The High Resolution Stereo Camera (HRSC) on the ESA Mars Express spacecraft has been orbiting Mars since January 2004. By spring 2007 it had returned around 2 terabytes of image data, covering around 35% of the Martian surface in stereo and colour at a resolu-tion of 10-20 m/pixel. HRSCview provides a rapid means to explore these images up to their full resolu-tion with the data-subsetting, sub-sampling, stretching and compositing being carried out on-the-fly by the image server. It is a joint website of the Free University of Berlin and the German Aerospace Center (DLR). The system operates by on-the-fly processing of the six HRSC level-4 image products: the map-projected ortho-rectified nadir pan-chromatic and four colour channels, and the stereo-derived DTM (digital terrain model). The user generates a request via the web-page for an image with several parameters: the centre of the view in surface coordinates, the image resolution in metres/pixel, the image dimensions, and one of several colour modes. If there is HRSC coverage at the given location, the necessary segments are extracted from the full orbit images, resampled to the required resolution, and composited according to the user's choice. In all modes the nadir channel, which has the highest resolu-tion, is included in the composite so that the maximum detail is always retained. The images are stretched ac-cording to the current view: this applies to the eleva-tion colour scale, as well as the nadir brightness and the colour channels. There are modes for raw colour, stretched colour, enhanced colour (exaggerated colour differences), and a synthetic 'Mars-like' colour stretch. A colour ratio mode is given as an alternative way to examine colour differences (R=IR/R, G=R/G and B=G/B). The final image is packaged as a JPEG file and returned to the user over the web. Each request requires approximately 1 second to process. A link is provided from each view to a data product page, where header items describing the full map-projected science data product are displayed, and a direct link to the archived data products on the ESA Planetary Science Archive (PSA) is provided. At pre-sent the majority of the elevation composites are de-rived from the HRSC Preliminary 200m DTMs gener-ated at the German Aerospace Center (DLR), which will not be available as separately downloadable data products. These DTMs are being progressively super-seded by systematically generated higher resolution archival DTMs, also from DLR, which will become available for download through the PSA, and be simi-larly accessible via HRSCview. At the time of writing this abstract (May 2007), four such high resolution DTMs are available for download via the HRSCview data product pages (for images from orbits 0572, 0905, 1004, and 2039).

  12. Stereo-Based Region-Growing using String Matching

    NASA Technical Reports Server (NTRS)

    Mandelbaum, Robert; Mintz, Max

    1995-01-01

    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

  13. Smoke and Clouds over Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Several mountain ranges and a portion of the Amur River are visible in this set of MISR images of Russia's far east Khabarovsk region. The images were acquired on May 13, 2001 during Terra orbit 7452. The view from MISR's 70-degree forward-looking camera is at the top left; the 26-degree forward-looking view is at the top right. The larger image at the bottom is a stereo 'anaglyph' created using the cameras at two intermediate angles. To view the stereo image in 3-D you need red/blue glasses with the red filter placed over your left eye. All of the images are oriented with north to the left to facilitate stereo viewing. Each image covers an area about 345 kilometers x 278 kilometers.

    The Amur River, in the upper right, and Lake Bolon, at the top center, are most prominent in the 26-degree view due to sunglint (mirror-like reflection of the Sun's rays by the water). The Amur River valley is a primary breeding ground for storks and cranes and a stopover for large numbers of migratory birds. About 20% of the Amur wetlands are protected by official conservation measures, but human development has converted large portions to agricultural uses. Other notable features in these images are several mountain chains, including the Badzhal'skiy to the left of center and the Bureiskiy in the lower left.

    Smoke plumes from several forest fires can be seen. They are especially apparent in the 70-degree view where the smoke's visibility is accentuated, in part, by the long slant path through the atmosphere. The largest plumes are in the lower left and upper right, with some smaller plumes above and to the right of the image centers. In the upper images the hazy region in the vicinity of these smaller plumes has the appearance of low-altitude smoke, but depth perception provided by the stereo anaglyph shows that it is actually a distinct layer of high-altitude cirrus clouds. Whether the cirrus is related to the fires is uncertain. It is possible, however, for the fires have to have heated the lower atmosphere enough to create bubbles of hot air. As such bubbles rise, they can force stable, nearly saturated air above to move even higher, triggering the formation of ice clouds. Visualization of other three-dimensional characteristics of the scene, such as the intermediate-altitude layer of cumulus clouds along the left side, is made possible by the stereo imagery.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Humanoid monocular stereo measuring system with two degrees of freedom using bionic optical imaging system

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang

    2017-10-01

    Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.

  15. Two Holes from Using Rasp in 'Snow White' (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows a portion of the trench informally named 'Snow White,' with two holes near the top of the image that were produced by the first test use of Phoenix's rasp to collect a sample of icy soil.

    The test was conducted on July 15, 2008, during the 50th Martian day, or sol, since Phoenix landed, and the image was taken later the same day. The two holes are about one centimeter (0.4 inch) apart. The image appears three-dimensional when viewed through blue-red glasses.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Preparing WIND for the STEREO Mission

    NASA Astrophysics Data System (ADS)

    Schroeder, P.; Ogilve, K.; Szabo, A.; Lin, R.; Luhmann, J.

    2006-05-01

    The upcoming STEREO mission's IMPACT and PLASTIC investigations will provide the first opportunity for long duration, detailed observations of 1 AU magnetic field structures, plasma ions and electrons, suprathermal electrons, and energetic particles at points bracketing Earth's heliospheric location. Stereoscopic/3D information from the STEREO SECCHI imagers and SWAVES radio experiment will make it possible to use both multipoint and quadrature studies to connect interplanetary Coronal Mass Ejections (ICME) and solar wind structures to CMEs and coronal holes observed at the Sun. To fully exploit these unique data sets, tight integration with similarly equipped missions at L1 will be essential, particularly WIND and ACE. The STEREO mission is building novel data analysis tools to take advantage of the mission's scientific potential. These tools will require reliable access and a well-documented interface to the L1 data sets. Such an interface already exists for ACE through the ACE Science Center. We plan to provide a similar service for the WIND mission that will supplement existing CDAWeb services. Building on tools also being developed for STEREO, we will create a SOAP application program interface (API) which will allow both our STEREO/WIND/ACE interactive browser and third-party software to access WIND data as a seamless and integral part of the STEREO mission. The API will also allow for more advanced forms of data mining than currently available through other data web services. Access will be provided to WIND-specific data analysis software as well. The development of cross-spacecraft data analysis tools will allow a larger scientific community to combine STEREO's unique in-situ data with those of other missions, particularly the L1 missions, and, therefore, to maximize STEREO's scientific potential in gaining a greater understanding of the heliosphere.

  17. The Effect of Incidence Angle on Stereo DTM Quality: Simulations in Support of Europa Clipper

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.

    2014-12-01

    Many quality factors for digital topographic models (DTMs) from stereo imaging can be predicted geometrically. For example, pixel scale is related to instantaneous field of view and to range. DTM resolution can be no better than a few times this pixel scale. Even vertical precision is a known function of the pixel scale and convergence angle, providedthe image quality is high enough that automated image matching reaches its optimal precision (~0.2 pixel). The influence of incidence angle is harder to predict. Reduced quality is expected both at low incidence (where topographic shading disappears) and high incidence (where signal/noise ratio is low and shadows occur). This problem is of general interest, but especially critical for the Europa Clipper mission profile. Clipper would obtain a radar sounding profile on each Europa flyby. Stereo images collected simultaneously would be used to produce a DTM needed to distinguish off-nadir surface echos (clutter) from subsurface features. The question is, how much of this DTM strip will be useful, given that incidence angle will vary substantially? We are using simulations to answer this question. We produced a 210 m/post DTM of the Castalia Macula region of Europa from 6 Galileo images by photoclinometry. A low-incidence image was used to correct for albedo variations before photoclinometry. We are using the image simulation software OASIS to generate synthetic stereopairs of the region at a full range of incidence angles. These images will be realistic in terms of image resolution, noise, photometry including albedo variations (based on the low incidence image), and cast shadows. The pairs will then be analyzed with the commercial stereomapping software SOCET SET (® BAE Systems), which we have used for a wide variety of planetary mapping projects. Comparing the stereo-derived DTMs to the input ("truth") DTM will allow us to quantify the dependence of true DTM resolution and vertical precision on illumination, and to document the qualitative ways that DTMs degrade at high and low incidence angles. This methodology is immediately applicable to other planetary targets, and in particular can be used to address how much difference in illumination can be tolerated in stereopairs that are not (as for Clipper) acquired simultaneously.

  18. Stereo and Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Kaise,r Michael L.

    2008-01-01

    The twin STEREO spacecrafi, launched in October 2006, are in heliocentric orbits near 4 AU with one spacecraft (Ahead) leading Earth in its orbit around the Sun and the other (Behind) trailing Earth. As viewed from the Sun, the STEREO spacecraft are continually separating from one another at about 45 degrees per year with Earth biseding the angle. At present, th@spaser=raft are a bit more than 45 degrees apart, thus they are able to each 'vie@ ground the limb's of the Sun by about 23 degrees, corresponding to about 1.75 days of solar rotation. Both spameraft contain an identical set of instruments including an extreme ultraviolet imager, two white light coronagraphs, tws all-sky imagers, a wide selection of energetic particle detectors, a magnetometer and a radio burst tracker. A snapshot of the real time data is continually broadcast to NOW-managed ground stations and this small stream of data is immediately sent to the STEREO Science Center and converted into useful space weather data within 5 minutes of ground receipt. The resulting images, particle, magnetometer and radio astronomy plots are available at j g i t , : gAs timqe conting ues ijnto . g solar cycle 24, the separation angle becomes 90 degrees in early 2009 and 180 degrees in early 201 1 as the activity heads toward maximum. By the time of solar maximum, STEREO will provide for the first time a view of the entire Sun with the mronagraphs and e*reme ultraviolet instruments. This view wilt allow us to follow the evolution of active regions continuously and also detect new active regions long before they pose a space weather threat to Earth. The in situ instruments will be able to provide about 7 days advanced notice of co-rotating structures in the solar wind. During this same intewal near solar maximum, the wide-angle imagers on STEREB will both be ;able to view EarlCP-dirsted CMEs in their plane-oPsky. When combined with Eat-lhorbiting assets available at that time, it seems solar cycle 24 will mark a great increase in our ability to understand and predict space weather.

  19. Unsupervised learning of contextual constraints in neural networks for simultaneous visual processing of multiple objects

    NASA Astrophysics Data System (ADS)

    Marshall, Jonathan A.

    1992-12-01

    A simple self-organizing neural network model, called an EXIN network, that learns to process sensory information in a context-sensitive manner, is described. EXIN networks develop efficient representation structures for higher-level visual tasks such as segmentation, grouping, transparency, depth perception, and size perception. Exposure to a perceptual environment during a developmental period serves to configure the network to perform appropriate organization of sensory data. A new anti-Hebbian inhibitory learning rule permits superposition of multiple simultaneous neural activations (multiple winners), while maintaining contextual consistency constraints, instead of forcing winner-take-all pattern classifications. The activations can represent multiple patterns simultaneously and can represent uncertainty. The network performs parallel parsing, credit attribution, and simultaneous constraint satisfaction. EXIN networks can learn to represent multiple oriented edges even where they intersect and can learn to represent multiple transparently overlaid surfaces defined by stereo or motion cues. In the case of stereo transparency, the inhibitory learning implements both a uniqueness constraint and permits coactivation of cells representing multiple disparities at the same image location. Thus two or more disparities can be active simultaneously without interference. This behavior is analogous to that of Prazdny's stereo vision algorithm, with the bonus that each binocular point is assigned a unique disparity. In a large implementation, such a NN would also be able to represent effectively the disparities of a cloud of points at random depths, like human observers, and unlike Prazdny's method

  20. Modeling the convergence accommodation of stereo vision for binocular endoscopy.

    PubMed

    Gao, Yuanqian; Li, Jinhua; Li, Jianmin; Wang, Shuxin

    2018-02-01

    The stereo laparoscope is an important tool for achieving depth perception in robot-assisted minimally invasive surgery (MIS). A dynamic convergence accommodation algorithm is proposed to improve the viewing experience and achieve accurate depth perception. Based on the principle of the human vision system, a positional kinematic model of the binocular view system is established. The imaging plane pair is rectified to ensure that the two rectified virtual optical axes intersect at the fixation target to provide immersive depth perception. Stereo disparity was simulated with the roll and pitch movements of the binocular system. The chessboard test and the endoscopic peg transfer task were performed, and the results demonstrated the improved disparity distribution and robustness of the proposed convergence accommodation method with respect to the position of the fixation target. This method offers a new solution for effective depth perception with the stereo laparoscopes used in robot-assisted MIS. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Joint histogram-based cost aggregation for stereo matching.

    PubMed

    Min, Dongbo; Lu, Jiangbo; Do, Minh N

    2013-10-01

    This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.

  2. A dual-adaptive support-based stereo matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Zhang, Yun

    2017-07-01

    Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.

  3. 3D Observations techniques for the solar corona

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Papadopoulo, T.; Fermin, I.; Bijaoui, A.; Stereo/Secchi 3D Team; et al.

    In this talk, we will present a review of the different 3D techniques concerning observations of the solar corona made by EUV imageur (such as SOHO/EIT and STEREO/SECCHI) and by coronagraphs (SOHO/LASCO and STEREO/SECCHI). Tomographic reconstructions need magnetic extrapolation to constraint the model (classical triangle mash reconstruction, or more evoluated pixon method). For 3D reconstruction the other approach is stereovision. Stereoscopic techniques are built in a specific way to take into account the optical thin medium of the solar corona, which makes most of the classical stereo method not directly applicable. To improve such method we need to take into account how to describe an image by computer vision : an image is not only a set of intensities but its descriptions/representations in term of sub-objects is needed for the structures extractions and matching. We will describe optical flow methods to follow the structures, and decomposition in sub-areas depending of the solar cycle. After recalling results obtained with geometric loops reconstructions and their consequences for twist measurement and helicity evaluation, we will describe how we can mix pixel and conceptual recontruction for stereovision. We could then include epipolar geometry and Multiscale Vision Model (MVM) to enhance the reconstruction. These concepts are under development for STEREO/SECCHI.

  4. a Uav-Based Low-Cost Stereo Camera System for Archaeological Surveys - Experiences from Doliche (turkey)

    NASA Astrophysics Data System (ADS)

    Haubeck, K.; Prinz, T.

    2013-08-01

    The use of Unmanned Aerial Vehicles (UAVs) for surveying archaeological sites is becoming more and more common due to their advantages in rapidity of data acquisition, cost-efficiency and flexibility. One possible usage is the documentation and visualization of historic geo-structures and -objects using UAV-attached digital small frame cameras. These monoscopic cameras offer the possibility to obtain close-range aerial photographs, but - under the condition that an accurate nadir-waypoint flight is not possible due to choppy or windy weather conditions - at the same time implicate the problem that two single aerial images not always meet the required overlap to use them for 3D photogrammetric purposes. In this paper, we present an attempt to replace the monoscopic camera with a calibrated low-cost stereo camera that takes two pictures from a slightly different angle at the same time. Our results show that such a geometrically predefined stereo image pair can be used for photogrammetric purposes e.g. the creation of digital terrain models (DTMs) and orthophotos or the 3D extraction of single geo-objects. Because of the limited geometric photobase of the applied stereo camera and the resulting base-height ratio the accuracy of the DTM however directly depends on the UAV flight altitude.

  5. Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources

    NASA Astrophysics Data System (ADS)

    Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.

    2015-04-01

    Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better performance in forest attribute (i.e. mean tree height, basal area, mean stem diameter, stem volume, and biomass) prediction than stereo-radargrammetry. The results were 20.1% and 28.6% in relative root mean square error (RMSE) for biomass prediction, for TDX and TSX respectively.

  6. MISR Stereo Imaging Distinguishes Smoke from Cloud

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These views of western Alaska were acquired by MISR on June 25, 2000 during Terra orbit 2775. The images cover an area of about 150 kilometers x 225 kilometers, and have been oriented with north to the left. The left image is from the vertical-viewing (nadir) camera, whereas the right image is a stereo 'anaglyph' that combines data from the forward-viewing 45-degree and 60-degree cameras. This image appears three-dimensional when viewed through red/blue glasses with the red filter over the left eye. It may help to darken the room lights when viewing the image on a computer screen.

    The Yukon River is seen wending its way from upper left to lower right. A forest fire in the Kaiyuh Mountains produced the long smoke plume that originates below and to the right of image center. In the nadir view, the high cirrus clouds at the top of the image and the smoke plume are similar in appearance, and the lack of vertical information makes them hard to differentiate. Viewing the righthand image with stereo glasses, on the other hand, demonstrates that the scene consists of several vertically-stratified layers, including the surface terrain, the smoke, some scattered cumulus clouds, and streaks of high, thin cirrus. This added dimensionality is one of the ways MISR data helps scientists identify and classify various components of terrestrial scenes.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. Design of interpolation functions for subpixel-accuracy stereo-vision systems.

    PubMed

    Haller, Istvan; Nedevschi, Sergiu

    2012-02-01

    Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE

  8. Determining shape of a seasonally shadowed asteroid using stellar occultation imaging

    NASA Astrophysics Data System (ADS)

    Murchie, Scott L.; Nair, Hari; Stephens, Grant K.

    2016-10-01

    A key objective in exploration of small, asteroidal bodies is to determine global shape and volume. The accuracy to which volume can be determined limits determination of bulk density, an important measurement for understanding internal structure. A special case for a rendezvous mission that uses stereo imaging to determine shape is a body with high obliquity encountered near solstice: half of the body is in shadow, and imaging of illuminated terrain alone under-constrains global shape. In this paper we demonstrate the use of stellar occultation imaging to place an upper bound on volume of such a shadowed hemisphere. Thirty-three sets of images of the night side limb of Mercury, acquired by the Mercury Dual Imaging System (MDIS) wide-angle camera (WAC) on MESSENGER, were used to bound the radius of that planet's night side. The maximum radius determined from this limited image set agrees with the actual radius to within 0.1%. We show, by simulation, expected performance of a campaign of such night side limb images to bound the shape of an irregular, high-obliquity asteroid encountered at solstice. We assumed a body the size and shape of Deimos imaged from a 40-km radius orbit by an imager having specifications of the MDIS/WAC but an updated detector sensitive to mv 10 stars, and a day-side stereo imaging campaign by a well-calibrated camera system. From an equatorial orbit, with one hemisphere in shadow, a campaign of ≥150 night side limb images determines volume of the shadowed hemisphere to 4 to 6% accuracy. Increasing orbital inclination to improve sampling of high latitudes decreases residuals for the dark hemisphere by 2 to 3%, for the same number of images. A 2 to 3% uncertainty in global volume - from stereo imaging of illuminated terrain and stellar occultation imaging of shadowed terrain - compares favorably to uncertainty of up to ±25% in the absence of direct measurements of the radius of the shadowed hemisphere.

  9. Stereo Images of Wind Tails Near Chimp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This stereo image pair of the rock 'Chimp' was taken by the Sojourner rover's front cameras on Sol 72 (September 15). Fine-scale texture on Chimp and other rocks is clearly visible. Wind tails, oriented from lower right to upper left, are seen next to small pebbles in the foreground. These were most likely produced by wind action.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. Application of left- and right-looking SAR stereo to depth measurements of the Ammavaru outflow channel, Lada Terra, Venus

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    1992-01-01

    Venusian channels are too narrow to be resolved by Magellan's radar altimeter, so they are not visible in the standard topographic data products. Stereo image data, in addition to their benefit to geologic mapping of Venus structures as a whole, are indispensible in measuring the topography across the channels. These measurements can then be used in conjunction with the regional topographic maps based on the altimeter data to produce cross-sectional areas for the channels and estimate the fluid discharge through them. As an example of the application of the stereo image data to venusian channels, a number of test depth and profile measurements were made of the large outflow channel system in Lada Terra, centered at 50 deg S latitude, 21 deg E longitude (F-MIDR 50S021). These measurements were made by viewing the cycle 1 and 2 digital FMIDRs in stereo on a display monitor, so as to minimize the errors in measuring parallax displacement as much as possible. The MIDRs are produced at a scale of 75 m/pixel. This corresponds to a vertical scale of about 17 m/pixel, when calculating the height of a feature from its parallax displacement. An error in placement determination of 1 pixel was assumed to characterize the vertical accuracy as plus or minus 17 m. When this technique was applied to the outflow channel, it was noted that the walls of the collapsed terrain source and 'trough reach' of the channel are laid over in both the cycle 1 and 2 images. This is evident when examining the distance between features on the plateau and the cliff walls in the two images. The layover 'shifts' the features closer to the apparent edge of the wall relative to the oppositely illuminated image.

  11. Ripples in The Soil

    NASA Image and Video Library

    2004-02-10

    This is a three-dimensional stereo anaglyph of an image taken by the front navigation camera onboard NASA Mars Exploration Rover Spirit, showing an interesting patch of rippled soil. 3D glasses are necessary to view this image.

  12. Composite View from Phoenix Lander

    NASA Image and Video Library

    2009-07-02

    This mosaic of images from the Surface Stereo Imager camera on NASA Phoenix Mars Lander shows several trenches dug by Phoenix, plus a corner of the spacecraft deck and the Martian arctic plain stretching to the horizon.

  13. Stereo Pair, Honolulu, Oahu

    NASA Image and Video Library

    2000-03-10

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by NASA Shuttle Radar Topography Mission SRTM, shows how topography controls the urban pattern.

  14. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    PubMed

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  16. Space-time measurements of oceanic sea states

    NASA Astrophysics Data System (ADS)

    Fedele, Francesco; Benetazzo, Alvise; Gallego, Guillermo; Shih, Ping-Chang; Yezzi, Anthony; Barbariol, Francesco; Ardhuin, Fabrice

    2013-10-01

    Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space-time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space-time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space-time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.

  17. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.

  18. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  19. A Summary of Image Understanding Research at the University of Massachusetts.

    DTIC Science & Technology

    1983-10-01

    hierarchical parallel algorithm for efficient feature matching has also been developed for applications in motion, stereo , and image registration. In addition...10 11,I- I I L~ tih r t in garage . (d) liv d iidin tie ir, hit 1*.,i sc r. md ap \\-n, the process in each tLo r oc Ii even i ’I M lI;vC bot in the...SM HOUSE SM11.°. GARAG WALL MW WALL Figure 13. Th EWheAY Rpeetto fLn em eovZ 2 SID WALL° Schema~ SCRI noeNnoeAM eatciettyo cns becs nl,". simpl r

  20. Optimizing digital elevation models (DEMs) accuracy for planning and design of mobile communication networks

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud A.

    2004-02-01

    Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.

Top