Sample records for stereo mapping sensor

  1. Depth map generation using a single image sensor with phase masks.

    PubMed

    Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki

    2016-06-13

    Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.

  2. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    NASA Astrophysics Data System (ADS)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  3. High resolution hybrid optical and acoustic sea floor maps (Invited)

    NASA Astrophysics Data System (ADS)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final hybrid map retains the strengths of both sensors and shows improvement over the single modality maps and a naively assembled multi-modal map where all the data points are included and averaged. Results will be presented from marine geological and archaeological applications using a 1350 kHz BlueView multibeam sonar and 1.3 megapixel digital still cameras.

  4. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  5. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  6. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  7. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    PubMed Central

    Przemyslaw, Baranski; Pawel, Strumillo

    2012-01-01

    The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321

  8. The relationship of acquisition systems to automated stereo correlation.

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1983-01-01

    Today a concerted effort is being made to expedite the mapping process through automated correlation of stereo data. Stereo correlation involves the comparison of radiance (brightness) signals or patterns recorded by sensors. Conventionally, two-dimensional area correlation is utilized but this is a rather slow and cumbersome procedure. Digital correlation can be performed in only one dimension where suitable signal patterns exist, and the one-dimensional mode is much faster. Electro-optical (EO) systems, suitable for space use, also have much greater flexibility than film systems. Thus, an EO space system can be designed which will optimize one-dimensional stereo correlation and lead toward the automation of topographic mapping.-from Author

  9. Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps

    PubMed Central

    Liu, Jing; Li, Chunpeng; Fan, Xuefeng; Wang, Zhaoqi

    2015-01-01

    Depth estimation is a classical problem in computer vision, which typically relies on either a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive and textureless regions where stereo matching is not effective. However, stereo matching can obtain more accurate results in rich texture regions and object boundaries where the depth sensor often fails. We fuse stereo matching and the depth sensor using their complementary characteristics to improve the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a novel pseudo-two-layer model is used to represent the relationship between disparities in different pixels and segments. It is more robust to luminance variation by treating information obtained from a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury datasets, which shows that our method performs almost 20% better than other “fused” algorithms in the aspect of precision. PMID:26308003

  10. TOPSAT: Global space topographic mission

    NASA Technical Reports Server (NTRS)

    Vetrella, Sergio

    1993-01-01

    Viewgraphs on TOPSAT Global Space Topographic Mission are presented. Topics covered include: polar region applications; terrestrial ecosystem applications; stereo electro-optical sensors; space-based stereoscopic missions; optical stereo approach; radar interferometry; along track interferometry; TOPSAT-VISTA system approach; ISARA system approach; topographic mapping laser altimeter; and role of multi-beam laser altimeter.

  11. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  12. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.

    PubMed

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-03-05

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.

  13. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †

    PubMed Central

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599

  14. System Design, Calibration and Performance Analysis of a Novel 360° Stereo Panoramic Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Blaser, S.; Nebiker, S.; Cavegn, S.

    2017-05-01

    Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.

  15. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    DTIC Science & Technology

    2014-09-01

    inertial measurement sensors such as Achtelik et al .’s implemention of PTAM (parallel tracking and mapping) [15] with a barometric altimeter, stable flights...in indoor and outdoor environments are possible [1]. With a full vison- aided inertial navigation system (VINS), Li et al . have shown remarkable...avoidance on small UAVs. Stereo systems suffer from a similar speed issue, with most modern systems running at or below 30 Hz [8], [27]. Honegger et

  16. Correction techniques for depth errors with stereo three-dimensional graphic displays

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Holden, Anthony; Williams, Steven P.

    1992-01-01

    Three-dimensional (3-D), 'real-world' pictorial displays that incorporate 'true' depth cues via stereopsis techniques have proved effective for displaying complex information in a natural way to enhance situational awareness and to improve pilot/vehicle performance. In such displays, the display designer must map the depths in the real world to the depths available with the stereo display system. However, empirical data have shown that the human subject does not perceive the information at exactly the depth at which it is mathematically placed. Head movements can also seriously distort the depth information that is embedded in stereo 3-D displays because the transformations used in mapping the visual scene to the depth-viewing volume (DVV) depend intrinsically on the viewer location. The goal of this research was to provide two correction techniques; the first technique corrects the original visual scene to the DVV mapping based on human perception errors, and the second (which is based on head-positioning sensor input data) corrects for errors induced by head movements. Empirical data are presented to validate both correction techniques. A combination of the two correction techniques effectively eliminates the distortions of depth information embedded in stereo 3-D displays.

  17. Simultaneous glacier surface elevation and flow velocity mapping from cross-track pushbroom satellite Imagery

    NASA Astrophysics Data System (ADS)

    Noh, M. J.; Howat, I. M.

    2017-12-01

    Glaciers and ice sheets are changing rapidly. Digital Elevation Models (DEMs) and Velocity Maps (VMs) obtained from repeat satellite imagery provide critical measurements of changes in glacier dynamics and mass balance over large, remote areas. DEMs created from stereopairs obtained during the same satellite pass through sensor re-pointing (i.e. "in-track stereo") have been most commonly used. In-track stereo has the advantage of minimizing the time separation and, thus, surface motion between image acquisitions, so that the ice surface can be assumed motionless in when collocating pixels between image pairs. Since the DEM extraction process assumes that all motion between collocated pixels is due to parallax or sensor model error, significant ice motion results in DEM quality loss or failure. In-track stereo, however, puts a greater demand on satellite tasking resources and, therefore, is much less abundant than single-scan imagery. Thus, if ice surface motion can be mitigated, the ability to extract surface elevation measurements from pairs of repeat single-scan "cross-track" imagery would greatly increase the extent and temporal resolution of ice surface change. Additionally, the ice motion measured by the DEM extraction process would itself provide a useful velocity measurement. We develop a novel algorithm for generating high-quality DEMs and VMs from cross-track image pairs without any prior information using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm and its sensor model bias correction capabilities. Using a test suite of repeat, single-scan imagery from WorldView and QuickBird sensors collected over fast-moving outlet glaciers, we develop a method by which RPC biases between images are first calculated and removed over ice-free surfaces. Subpixel displacements over the ice are then constrained and used to correct the parallax estimate. Initial tests yield DEM results with the same quality as in-track stereo for cases where snowfall has not occurred between the two images and when the images have similar ground sample distances. The resulting velocity map also closely matches independent measurements.

  18. Passive perception system for day/night autonomous off-road navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Bergh, Charles F.; Goldberg, Steven B.; Bellutta, Paolo; Huertas, Andres; Matthies, Larry H.

    2005-05-01

    Passive perception of terrain features is a vital requirement for military related unmanned autonomous vehicle operations, especially under electromagnetic signature management conditions. As a member of Team Raptor, the Jet Propulsion Laboratory developed a self-contained passive perception system under the DARPA funded PerceptOR program. An environmentally protected forward-looking sensor head was designed and fabricated in-house to straddle an off-the-shelf pan-tilt unit. The sensor head contained three color cameras for multi-baseline daytime stereo ranging, a pair of cooled mid-wave infrared cameras for nighttime stereo ranging, and supporting electronics to synchronize captured imagery. Narrow-baseline stereo provided improved range data density in cluttered terrain, while wide-baseline stereo provided more accurate ranging for operation at higher speeds in relatively open areas. The passive perception system processed stereo images and outputted over a local area network terrain maps containing elevation, terrain type, and detected hazards. A novel software architecture was designed and implemented to distribute the data processing on a 533MHz quad 7410 PowerPC single board computer under the VxWorks real-time operating system. This architecture, which is general enough to operate on N processors, has been subsequently tested on Pentium-based processors under Windows and Linux, and a Sparc based-processor under Unix. The passive perception system was operated during FY04 PerceptOR program evaluations at Fort A. P. Hill, Virginia, and Yuma Proving Ground, Arizona. This paper discusses the Team Raptor passive perception system hardware and software design, implementation, and performance, and describes a road map to faster and improved passive perception.

  19. Stereo-vision-based terrain mapping for off-road autonomous navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-05-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  20. Stereo Vision Based Terrain Mapping for Off-Road Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-01-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as no-go regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  1. Investigation of 1 : 1,000 Scale Map Generation by Stereo Plotting Using Uav Images

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2017-08-01

    Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs) generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after drawing a specific model. The results of analysis showed that the errors were within the specification of 1 : 1,000 map. Although the Y-parallax can be eliminated, it is still necessary to improve the accuracy of absolute ground position error in order to apply this technique to the actual work. There are a few models in which the difference in height between adjacent models is about 40 cm. We analysed the stability of UAV images by checking angle differences between adjacent images. We also analysed the average area covered by one stereo model and discussed the possible difficulty associated with this narrow coverage. In the future we consider how to reduce position errors and improve map drawing performances from UAVs.

  2. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.

    PubMed

    Song, Yu; Nuske, Stephen; Scherer, Sebastian

    2016-12-22

    State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.

  3. Spaceborne imaging radar research in the 90's

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1986-01-01

    The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.

  4. A stereo-vision hazard-detection algorithm to increase planetary lander autonomy

    NASA Astrophysics Data System (ADS)

    Woicke, Svenja; Mooij, Erwin

    2016-05-01

    For future landings on any celestial body, increasing the lander autonomy as well as decreasing risk are primary objectives. Both risk reduction and an increase in autonomy can be achieved by including hazard detection and avoidance in the guidance, navigation, and control loop. One of the main challenges in hazard detection and avoidance is the reconstruction of accurate elevation models, as well as slope and roughness maps. Multiple methods for acquiring the inputs for hazard maps are available. The main distinction can be made between active and passive methods. Passive methods (cameras) have budgetary advantages compared to active sensors (radar, light detection and ranging). However, it is necessary to proof that these methods deliver sufficiently good maps. Therefore, this paper discusses hazard detection using stereo vision. To facilitate a successful landing not more than 1% wrong detections (hazards that are not identified) are allowed. Based on a sensitivity analysis it was found that using a stereo set-up at a baseline of ≤ 2 m is feasible at altitudes of ≤ 200 m defining false positives of less than 1%. It was thus shown that stereo-based hazard detection is an effective means to decrease the landing risk and increase the lander autonomy. In conclusion, the proposed algorithm is a promising candidate for future landers.

  5. Advances in detection of diffuse seafloor venting using structured light imaging.

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Carey, S.

    2016-12-01

    Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be presented. Smart, C. J. and Roman, C. and Carey, S. N. (2013) Detection of diffuse seafloor venting using structured light imaging, Geochemistry, Geophysics, Geosystems, 14, 4743-4757

  6. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.

    PubMed

    Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe

    2017-10-16

    Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.

  7. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application

    PubMed Central

    Vassallo, Raquel

    2017-01-01

    Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation. PMID:29035334

  8. Mapping snow depth in open alpine terrain from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  9. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors

    PubMed Central

    Song, Yu; Nuske, Stephen; Scherer, Sebastian

    2016-01-01

    State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524

  10. Forest abovegroundbiomass mapping using spaceborne stereo imagery acquired by Chinese ZY-3

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ni, W.; Zhang, Z.; Xiong, C.

    2015-12-01

    Besides LiDAR data, another valuable type of data which is also directly sensitive to forest vertical structures and more suitable for regional mapping of forest biomass is the stereo imagery or photogrammetry. Photogrammetry is the traditional technique for deriving terrain elevation. The elevation of the top of a tree canopy can be directly measured from stereo imagery but winter images are required to get the elevation of ground surface because stereo images are acquired by optical sensors which cannot penetrate dense forest canopies with leaf-on condition. Several spaceborne stereoscopic systems with higher spatial resolutions have been launched in the past several years. For example the Chinese satellite Zi Yuan 3 (ZY-3) specifically designed for the collection of stereo imagery with a resolution of 3.6 m for forward and backward views and 2.1 m for the nadir view was launched on January 9, 2012. Our previous studies have demonstrated that the spaceborne stereo imagery acquired in summer has good performance on the description of forest structures. The ground surface elevation could be extracted from spaceborne stereo imagery acquired in winter. This study mainly focused on assessing the mapping of forest biomass through the combination of spaceborne stereo imagery acquired in summer and those in winter. The test sites of this study located at Daxing AnlingMountains areas as shown in Fig.1. The Daxing Anling site is on the south border of boreal forest belonging to frigid-temperate zone coniferous forest vegetation The dominant tree species is Dhurian larch (Larix gmelinii). 10 scenes of ZY-3 stereo images are used in this study. 5 scenes were acquired on March 14,2012 while the other 5 scenes were acquired on September 7, 2012. Their spatial coverage is shown in Fig.2-a. Fig.2-b is the mosaic of nadir images acquired on 09/07/2012 while Fig.2-c is thecorresponding digital surface model (DSM) derived from stereo images acquired on 09/07/2012. Fig.2-d is the difference between the DSM derived from stereo imagery acquired on 09/07/2012 and the digital elevation model (DEM) from stereo imagery acquired on 03/14/2012.The detailed analysis will be given in the final report.

  11. Novel Descattering Approach for Stereo Vision in Dense Suspended Scatterer Environments

    PubMed Central

    Nguyen, Chanh D. Tr.; Park, Jihyuk; Cho, Kyeong-Yong; Kim, Kyung-Soo; Kim, Soohyun

    2017-01-01

    In this paper, we propose a model-based scattering removal method for stereo vision for robot manipulation in indoor scattering media where the commonly used ranging sensors are unable to work. Stereo vision is an inherently ill-posed and challenging problem. It is even more difficult in the case of images of dense fog or dense steam scenes illuminated by active light sources. Images taken in such environments suffer attenuation of object radiance and scattering of the active light sources. To solve this problem, we first derive the imaging model for images taken in a dense scattering medium with a single active illumination close to the cameras. Based on this physical model, the non-uniform backscattering signal is efficiently removed. The descattered images are then utilized as the input images of stereo vision. The performance of the method is evaluated based on the quality of the depth map from stereo vision. We also demonstrate the effectiveness of the proposed method by carrying out the real robot manipulation task. PMID:28629139

  12. Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery. [Arkansas Arkoma Basin

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.

    1980-01-01

    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.

  13. Registering Ground and Satellite Imagery for Visual Localization

    DTIC Science & Technology

    2012-08-01

    reckoning, inertial, stereo, light detection and ranging ( LIDAR ), cellular radio, and visual. As no sensor or algorithm provides perfect localization in...by metric localization approaches to confine the region of a map that needs to be searched. Simultaneous Localization and Mapping ( SLAM ) (5, 6), using...estimate the metric location of the camera. Se et al. (7) use SIFT features for both appearance-based global localization and incremental 3D SLAM . Johns and

  14. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  15. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  16. Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration

    PubMed Central

    Chen, Shoubin; Liu, Jingbin; Huang, Wenchao

    2018-01-01

    The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540

  17. Mapping snow depth from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.

    2016-12-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.

  18. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  19. Forest Biomass Mapping from Prism Triplet, Palsar and Landsat Data

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Sun, G.; Ni, W.

    2014-12-01

    The loss of sensitivity at higher biomass levels is a common problem in biomass mapping using optical multi-spectral data or radar backscattering data due to the lack of information on canopy vertical structure. Studies have shown that adding implicit information of forest vertical structure improves the performance of forest biomass mapping from optical reflectance and radar backscattering data. LiDAR, InSAR and stereo imager are the data sources for obtaining forest structural information. The potential of providing information on forest vertical structure by stereoscopic imagery data has drawn attention recently due to the availability of high-resolution digital stereo imaging from space and the advances of digital stereo image processing software. The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observation Satellite (ALOS) has acquired multiple global coverage from June 2006 to April 2011 providing a good data source for regional/global forest studies. In this study, five PRISM triplets acquired on June 14, 2008, August 19 and September 5, 2009; PALSAR dual-pol images acquired on July 12, 2008 and August 30, 2009; and LANDSAT 5 TM images acquired on September 5, 2009 and the field plot data collected in 2009 and 2010 were used to map forest biomass at 50m pixel in an area of about 4000 km2in Maine, USA ( 45.2 deg N 68.6 deg W). PRISM triplets were used to generate point cloud data at 2m pixel first and then the average height of points above NED (National Elevation Dataset) within a 50m by 50m pixel was calculated. Five images were mosaicked and used as canopy height information in the biomass estimation along with the PALSAR HH, HV radar backscattering and optical reflectance vegetation indices from L-5 TM data. A small portion of this region was covered by the Land Vegetation and Ice Sensor (LVIS) in 2009. The biomass maps from the LVIS data was used to evaluate the results from combined use of PRISM, PALSAR and LANDSAT data. The results show that the canopy height index from PRISM stereo images significantly improves the biomass mapping accuracy and extends the saturation level of biomass, and results in a biomass map comparable with those generated from LVIS data.

  20. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  1. Generation of High Resolution Global DSM from ALOS PRISM

    NASA Astrophysics Data System (ADS)

    Takaku, J.; Tadono, T.; Tsutsui, K.

    2014-04-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried on the Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. The sensor consists of three independent panchromatic radiometers for viewing forward, nadir, and backward in 2.5 m ground resolution producing a triplet stereoscopic image along its track. The sensor had observed huge amount of stereo images all over the world during the mission life of the satellite from 2006 through 2011. We have semi-automatically processed Digital Surface Model (DSM) data with the image archives in some limited areas. The height accuracy of the dataset was estimated at less than 5 m (rms) from the evaluation with ground control points (GCPs) or reference DSMs derived from the Light Detection and Ranging (LiDAR). Then, we decided to process the global DSM datasets from all available archives of PRISM stereo images by the end of March 2016. This paper briefly reports on the latest processing algorithms for the global DSM datasets as well as their preliminary results on some test sites. The accuracies and error characteristics of datasets are analyzed and discussed on various fields by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data and Shuttle Radar Topography Mission (SRTM) data, as well as the GCPs and the reference airborne LiDAR/DSM.

  2. Autonomous navigation and control of a Mars rover

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.

    1990-01-01

    A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.

  3. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  4. Stereo imaging velocimetry for microgravity applications

    NASA Technical Reports Server (NTRS)

    Miller, Brian B.; Meyer, Maryjo B.; Bethea, Mark D.

    1994-01-01

    Stereo imaging velocimetry is the quantitative measurement of three-dimensional flow fields using two sensors recording data from different vantage points. The system described in this paper, under development at NASA Lewis Research Center in Cleveland, Ohio, uses two CCD cameras placed perpendicular to one another, laser disk recorders, an image processing substation, and a 586-based computer to record data at standard NTSC video rates (30 Hertz) and reduce it offline. The flow itself is marked with seed particles, hence the fluid must be transparent. The velocimeter tracks the motion of the particles, and from these we deduce a multipoint (500 or more), quantitative map of the flow. Conceptually, the software portion of the velocimeter can be divided into distinct modules. These modules are: camera calibration, particle finding (image segmentation) and centroid location, particle overlap decomposition, particle tracking, and stereo matching. We discuss our approach to each module, and give our currently achieved speed and accuracy for each where available.

  5. Hardware platform for multiple mobile robots

    NASA Astrophysics Data System (ADS)

    Parzhuber, Otto; Dolinsky, D.

    2004-12-01

    This work is concerned with software and communications architectures that might facilitate the operation of several mobile robots. The vehicles should be remotely piloted or tele-operated via a wireless link between the operator and the vehicles. The wireless link will carry control commands from the operator to the vehicle, telemetry data from the vehicle back to the operator and frequently also a real-time video stream from an on board camera. For autonomous driving the link will carry commands and data between the vehicles. For this purpose we have developed a hardware platform which consists of a powerful microprocessor, different sensors, stereo- camera and Wireless Local Area Network (WLAN) for communication. The adoption of IEEE802.11 standard for the physical and access layer protocols allow a straightforward integration with the internet protocols TCP/IP. For the inspection of the environment the robots are equipped with a wide variety of sensors like ultrasonic, infrared proximity sensors and a small inertial measurement unit. Stereo cameras give the feasibility of the detection of obstacles, measurement of distance and creation of a map of the room.

  6. Estimation of Visual Maps with a Robot Network Equipped with Vision Sensors

    PubMed Central

    Gil, Arturo; Reinoso, Óscar; Ballesta, Mónica; Juliá, Miguel; Payá, Luis

    2010-01-01

    In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM) problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment. PMID:22399930

  7. Estimation of visual maps with a robot network equipped with vision sensors.

    PubMed

    Gil, Arturo; Reinoso, Óscar; Ballesta, Mónica; Juliá, Miguel; Payá, Luis

    2010-01-01

    In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM) problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment.

  8. Overview of the Shuttle Imaging Radar-B preliminary scientific results

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Cimino, J.; Settle, M.

    1986-01-01

    Data collected with the Shuttle Imaging Radar-B (SIR-B) on the October 5, 1985 Shuttle mission are discussed. The design and capabilities of the sensor which operates in a fixed illumination geometry and has incidence angles between 15 and 60 deg with 1 deg increments are described. Problems encountered with the SIR-B during the mission are examined. the The radar stereo imaging capability of the sensor was verified and three-dimensional images of the earth surface were obtained. The oceanography experiments provided significant data on ocean wave and internal wave patterns, oil spills, and ice zones. The geological images revealed that the sensor can evaluate penetration effect in dry soil from buried receivers and the existence of subsurface dry channels in the Egyptian desert was validated. The use of multiincidence angle imaging to classify terrain units and derive vegetation maps and the development of terrain maps are confirmed.

  9. Robotic Vehicle Communications Interoperability

    DTIC Science & Technology

    1988-08-01

    starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor

  10. Terrain Model Registration for Single Cycle Instrument Placement

    NASA Technical Reports Server (NTRS)

    Deans, Matthew; Kunz, Clay; Sargent, Randy; Pedersen, Liam

    2003-01-01

    This paper presents an efficient and robust method for registration of terrain models created using stereo vision on a planetary rover. Our approach projects two surface models into a virtual depth map, rendering the models as they would be seen from a single range sensor. Correspondence is established based on which points project to the same location in the virtual range sensor. A robust norm of the deviations in observed depth is used as the objective function, and the algorithm searches for the rigid transformation which minimizes the norm. An initial coarse search is done using rover pose information from odometry and orientation sensing. A fine search is done using Levenberg-Marquardt. Our method enables a planetary rover to keep track of designated science targets as it moves, and to hand off targets from one set of stereo cameras to another. These capabilities are essential for the rover to autonomously approach a science target and place an instrument in contact in a single command cycle.

  11. Method for Stereo Mapping Based on Objectarx and Pipeline Technology

    NASA Astrophysics Data System (ADS)

    Liu, F.; Chen, T.; Lin, Z.; Yang, Y.

    2012-07-01

    Stereo mapping is an important way to acquire 4D production. Based on the development of the stereo mapping and the characteristics of ObjectARX and pipeline technology, a new stereo mapping scheme which can realize the interaction between the AutoCAD and digital photogrammetry system is offered by ObjectARX and pipeline technology. An experiment is made in order to make sure the feasibility with the example of the software MAP-AT (Modern Aerial Photogrammetry Automatic Triangulation), the experimental results show that this scheme is feasible and it has very important meaning for the realization of the acquisition and edit integration.

  12. Current state of the art of vision based SLAM

    NASA Astrophysics Data System (ADS)

    Muhammad, Naveed; Fofi, David; Ainouz, Samia

    2009-02-01

    The ability of a robot to localise itself and simultaneously build a map of its environment (Simultaneous Localisation and Mapping or SLAM) is a fundamental characteristic required for autonomous operation of the robot. Vision Sensors are very attractive for application in SLAM because of their rich sensory output and cost effectiveness. Different issues are involved in the problem of vision based SLAM and many different approaches exist in order to solve these issues. This paper gives a classification of state-of-the-art vision based SLAM techniques in terms of (i) imaging systems used for performing SLAM which include single cameras, stereo pairs, multiple camera rigs and catadioptric sensors, (ii) features extracted from the environment in order to perform SLAM which include point features and line/edge features, (iii) initialisation of landmarks which can either be delayed or undelayed, (iv) SLAM techniques used which include Extended Kalman Filtering, Particle Filtering, biologically inspired techniques like RatSLAM, and other techniques like Local Bundle Adjustment, and (v) use of wheel odometry information. The paper also presents the implementation and analysis of stereo pair based EKF SLAM for synthetic data. Results prove the technique to work successfully in the presence of considerable amounts of sensor noise. We believe that state of the art presented in the paper can serve as a basis for future research in the area of vision based SLAM. It will permit further research in the area to be carried out in an efficient and application specific way.

  13. Unstructured Facility Navigation by Applying the NIST 4D/RCS Architecture

    DTIC Science & Technology

    2006-07-01

    control, and the planner); wire- less data and emergency stop radios; GPS receiver; inertial navigation unit; dual stereo cameras; infrared sensors...current Actuators Wheel motors, camera controls Scale & filter signals status commands commands commands GPS Antenna Dual stereo cameras...used in the sensory processing module include the two pairs of stereo color cameras, the physical bumper and infrared bumper sensors, the motor

  14. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  15. A comparative interregional analysis of selected data from LANDSAT-1 and EREP for the inventory and monitoring of natural ecosystems

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.

    1975-01-01

    Comparative statistics were presented on the capability of LANDSAT-1 and three of the Skylab remote sensing systems (S-190A, S-190B, S-192) for the recognition and inventory of analogous natural vegetations and landscape features important in resource allocation and management. Two analogous regions presenting vegetational zonation from salt desert to alpine conditions above the timberline were observed, emphasizing the visual interpretation mode in the investigation. An hierarchical legend system was used as the basic classification of all land surface features. Comparative tests were run on image identifiability with the different sensor systems, and mapping and interpretation tests were made both in monocular and stereo interpretation with all systems except the S-192. Significant advantage was found in the use of stereo from space when image analysis is by visual or visual-machine-aided interactive systems. Some cost factors in mapping from space are identified. The various image types are compared and an operational system is postulated.

  16. REPORT ON AN ORBITAL MAPPING SYSTEM.

    USGS Publications Warehouse

    Colvocoresses, Alden P.; ,

    1984-01-01

    During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.

  17. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity map for the stereo pair and each correspondence is transformed back to the owner and 3D points are derived through photogrammetric space intersection. Experimental results reveal that the proposed method is able to reduce gaps and inconsistencies caused by the inaccurate boresight offsets between the two NAC cameras and the irregular overlapping regions, and finally generate precise and consistent 3D surface models from the NAC stereo images automatically.

  18. An automated mapping satellite system ( Mapsat).

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1982-01-01

    The favorable environment of space permits a satellite to orbit the Earth with very high stability as long as no local perturbing forces are involved. Solid-state linear-array sensors have no moving parts and create no perturbing force on the satellite. Digital data from highly stabilized stereo linear arrays are amenable to simplified processing to produce both planimetric imagery and elevation data. A satellite imaging system, called Mapsat, including this concept has been proposed to produce data from which automated mapping in near real time can be accomplished. Image maps as large as 1:50 000 scale with contours as close as a 20-m interval may be produced from Mapsat data. -from Author

  19. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    PubMed

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Evaluation of parallel reduction strategies for fusion of sensory information from a robot team

    NASA Astrophysics Data System (ADS)

    Lyons, Damian M.; Leroy, Joseph

    2015-05-01

    The advantage of using a team of robots to search or to map an area is that by navigating the robots to different parts of the area, searching or mapping can be completed more quickly. A crucial aspect of the problem is the combination, or fusion, of data from team members to generate an integrated model of the search/mapping area. In prior work we looked at the issue of removing mutual robots views from an integrated point cloud model built from laser and stereo sensors, leading to a cleaner and more accurate model. This paper addresses a further challenge: Even with mutual views removed, the stereo data from a team of robots can quickly swamp a WiFi connection. This paper proposes and evaluates a communication and fusion approach based on the parallel reduction operation, where data is combined in a series of steps of increasing subsets of the team. Eight different strategies for selecting the subsets are evaluated for bandwidth requirements using three robot missions, each carried out with teams of four Pioneer 3-AT robots. Our results indicate that selecting groups to combine based on similar pose but distant location yields the best results.

  1. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  2. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  3. Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications.

    PubMed

    Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.

  4. Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    PubMed Central

    Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M.

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance. PMID:22319323

  5. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  6. Cartographic potential of SPOT image data

    NASA Technical Reports Server (NTRS)

    Welch, R.

    1985-01-01

    In late 1985, the SPOT (Systeme Probatoire d'Observation de la Terre) satellite is to be launched by the Ariane rocket from French Guiana. This satellite will have two High Resolution Visible (HRV) line array sensor systems which are capable of providing monoscopic and stereoscopic coverage of the earth. Cartographic applications are related to the recording of stereo image data and the acquisition of 20-m data in a multispectral mode. One of the objectives of this study involves a comparison of the suitability of SPOT and TM image data for mapping urban land use/cover. Another objective is concerned with a preliminary assessment of the potential of SPOT image data for map revision when merged with conventional map sheets converted to raster formats.

  7. A Self-Assessment Stereo Capture Model Applicable to the Internet of Things

    PubMed Central

    Lin, Yancong; Yang, Jiachen; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    The realization of the Internet of Things greatly depends on the information communication among physical terminal devices and informationalized platforms, such as smart sensors, embedded systems and intelligent networks. Playing an important role in information acquisition, sensors for stereo capture have gained extensive attention in various fields. In this paper, we concentrate on promoting such sensors in an intelligent system with self-assessment capability to deal with the distortion and impairment in long-distance shooting applications. The core design is the establishment of the objective evaluation criteria that can reliably predict shooting quality with different camera configurations. Two types of stereo capture systems—toed-in camera configuration and parallel camera configuration—are taken into consideration respectively. The experimental results show that the proposed evaluation criteria can effectively predict the visual perception of stereo capture quality for long-distance shooting. PMID:26308004

  8. Features of Point Clouds Synthesized from Multi-View ALOS/PRISM Data and Comparisons with LiDAR Data in Forested Areas

    NASA Technical Reports Server (NTRS)

    Ni, Wenjian; Ranson, Kenneth Jon; Zhang, Zhiyu; Sun, Guoqing

    2014-01-01

    LiDAR waveform data from airborne LiDAR scanners (ALS) e.g. the Land Vegetation and Ice Sensor (LVIS) havebeen successfully used for estimation of forest height and biomass at local scales and have become the preferredremote sensing dataset. However, regional and global applications are limited by the cost of the airborne LiDARdata acquisition and there are no available spaceborne LiDAR systems. Some researchers have demonstrated thepotential for mapping forest height using aerial or spaceborne stereo imagery with very high spatial resolutions.For stereo imageswith global coverage but coarse resolution newanalysis methods need to be used. Unlike mostresearch based on digital surface models, this study concentrated on analyzing the features of point cloud datagenerated from stereo imagery. The synthesizing of point cloud data from multi-view stereo imagery increasedthe point density of the data. The point cloud data over forested areas were analyzed and compared to small footprintLiDAR data and large-footprint LiDAR waveform data. The results showed that the synthesized point clouddata from ALOSPRISM triplets produce vertical distributions similar to LiDAR data and detected the verticalstructure of sparse and non-closed forests at 30mresolution. For dense forest canopies, the canopy could be capturedbut the ground surface could not be seen, so surface elevations from other sourceswould be needed to calculatethe height of the canopy. A canopy height map with 30 m pixels was produced by subtracting nationalelevation dataset (NED) fromthe averaged elevation of synthesized point clouds,which exhibited spatial featuresof roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlationwith RH50 of LVIS data with a slope of 1.04 and R2 of 0.74 indicating that the canopy height derived fromPRISM triplets can be used to estimate forest biomass at 30 m resolution.

  9. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    PubMed

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  10. New Topographic Maps of Io Using Voyager and Galileo Stereo Imaging and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P. M.; Hoogenboom, T.

    2012-03-01

    Stereo and photoclinometry processing have been applied to Voyager and Galileo images of Io in order to derive regional- and local-scale topographic maps of 20% of the moon’s surface to date. We present initial mapping results.

  11. Vision-based mapping with cooperative robots

    NASA Astrophysics Data System (ADS)

    Little, James J.; Jennings, Cullen; Murray, Don

    1998-10-01

    Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.

  12. Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.

    2006-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.

  13. Inertial sensor self-calibration in a visually-aided navigation approach for a micro-AUV.

    PubMed

    Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P

    2015-01-16

    This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.

  14. Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV

    PubMed Central

    Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P.

    2015-01-01

    This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time. PMID:25602263

  15. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  16. Performance Evaluation of Dsm Extraction from ZY-3 Three-Line Arrays Imagery

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Xie, W.; Du, Q.; Sang, H.

    2015-08-01

    ZiYuan-3 (ZY-3), launched in January 09, 2012, is China's first civilian high-resolution stereo mapping satellite. ZY-3 is equipped with three-line scanners (nadir, backward and forward) for stereo mapping, the resolutions of the panchromatic (PAN) stereo mapping images are 2.1-m at nadir looking and 3.6-m at tilt angles of ±22° forward and backward looking, respectively. The stereo base-height ratio is 0.85-0.95. Compared with stereo mapping from two views images, three-line arrays images of ZY-3 can be used for DSM generation taking advantage of one more view than conventional photogrammetric methods. It would enrich the information for image matching and enhance the accuracy of DSM generated. The primary result of positioning accuracy of ZY-3 images has been reported, while before the massive mapping applications of utilizing ZY-3 images for DSM generation, the performance evaluation of DSM extraction from three-line arrays imagery of ZY-3 has significant meaning for the routine mapping applications. The goal of this research is to clarify the mapping performance of ZY-3 three-line arrays scanners on china's first civilian high-resolution stereo mapping satellite of ZY-3 through the accuracy evaluation of DSM generation. The comparison of DSM product in different topographic areas generated with three views images with different two views combination images of ZY-3 would be presented. Besides the comparison within different topographic study area, the accuracy deviation of the DSM products with different grid size including 25-m, 10-m and 5-m is delineated in order to clarify the impact of grid size on accuracy evaluation.

  17. Forest Biomass Mapping from Stereo Imagery and Radar Data

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ni, W.; Zhang, Z.

    2013-12-01

    Both InSAR and lidar data provide critical information on forest vertical structure, which are critical for regional mapping of biomass. However, the regional application of these data is limited by the availability and acquisition costs. Some researchers have demonstrated potentials of stereo imagery in the estimation of forest height. Most of these researches were conducted on aerial images or spaceborne images with very high resolutions (~0.5m). Space-born stereo imagers with global coverage such as ALOS/PRISM have coarser spatial resolutions (2-3m) to achieve wider swath. The features of stereo images are directly affected by resolutions and the approaches use by most of researchers need to be adjusted for stereo imagery with lower resolutions. This study concentrated on analyzing the features of point clouds synthesized from multi-view stereo imagery over forested areas. The small footprint lidar and lidar waveform data were used as references. The triplets of ALOS/PRISM data form three pairs (forward/nadir, backward/nadir and forward/backward) of stereo images. Each pair of the stereo images can be used to generate points (pixels) with 3D coordinates. By carefully co-register these points from three pairs of stereo images, a point cloud data was generated. The height of each point above ground surface was then calculated using DEM from National Elevation Dataset, USGS as the ground surface elevation. The height data were gridded into pixel of different sizes and the histograms of the points within a pixel were analyzed. The average height of the points within a pixel was used as the height of the pixel to generate a canopy height map. The results showed that the synergy of point clouds from different views were necessary, which increased the point density so the point cloud could detect the vertical structure of sparse and unclosed forests. The top layer of multi-layered forest could be captured but the dense forest prevented the stereo imagery to see through. The canopy height map exhibited spatial patterns of roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlation with RH50 of LVIS data at 30m pixel size with a gain of 1.04, bias of 4.3m and R2 of 0.74 (Fig. 1). The canopy height map from PRISM and dual-pol PALSAR data were used together to map biomass in our study area near Howland, Maine, and the results were evaluated using biomass map generated from LVIS waveform data independently. The results showed that adding CHM from PRISM significantly improved biomass accuracy and raised the biomass saturation level of L-band SAR data in forest biomass mapping.

  18. Wide-Baseline Stereo-Based Obstacle Mapping for Unmanned Surface Vehicles

    PubMed Central

    Mou, Xiaozheng; Wang, Han

    2018-01-01

    This paper proposes a wide-baseline stereo-based static obstacle mapping approach for unmanned surface vehicles (USVs). The proposed approach eliminates the complicated calibration work and the bulky rig in our previous binocular stereo system, and raises the ranging ability from 500 to 1000 m with a even larger baseline obtained from the motion of USVs. Integrating a monocular camera with GPS and compass information in this proposed system, the world locations of the detected static obstacles are reconstructed while the USV is traveling, and an obstacle map is then built. To achieve more accurate and robust performance, multiple pairs of frames are leveraged to synthesize the final reconstruction results in a weighting model. Experimental results based on our own dataset demonstrate the high efficiency of our system. To the best of our knowledge, we are the first to address the task of wide-baseline stereo-based obstacle mapping in a maritime environment. PMID:29617293

  19. Sensor fusion and augmented reality with the SAFIRE system

    NASA Astrophysics Data System (ADS)

    Saponaro, Philip; Treible, Wayne; Phelan, Brian; Sherbondy, Kelly; Kambhamettu, Chandra

    2018-04-01

    The Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) mobile radar system was developed and exercised at an arid U.S. test site. The system can detect hidden target using radar, a global positioning system (GPS), dual stereo color cameras, and dual stereo thermal cameras. An Augmented Reality (AR) software interface allows the user to see a single fused video stream containing the SAR, color, and thermal imagery. The stereo sensors allow the AR system to display both fused 2D imagery and 3D metric reconstructions, where the user can "fly" around the 3D model and switch between the modalities.

  20. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    NASA Astrophysics Data System (ADS)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  1. Establishment of Stereo Multi-sensor Network for Giant Landslide Monitoring and its Deploy in Xishan landslide, Sichuan, China.

    NASA Astrophysics Data System (ADS)

    Liu, C.; Lu, P.; WU, H.

    2015-12-01

    Landslide is one of the most destructive natural disasters, which severely affects human lives as well as the safety of personal properties and public infrastructures. Monitoring and predicting landslide movements can keep an adequate safety level for human beings in those situations. This paper indicated a newly developed Stereo Multi-sensor Landslide Monitoring Network (SMSLMN) based on a uniform temporal geo-reference. Actually, early in 2003, SAMOA (Surveillance et Auscultation des Mouvements de Terrain Alpins, French) project was put forwarded as a plan for landslide movements monitoring. However, SAMOA project did not establish a stereo observation network to fully cover the surface and internal part of landslide. SMSLMN integrated various sensors, including space-borne, airborne, in-situ and underground sensors, which can quantitatively monitor the slide-body and obtain portent information of movement in high frequency with high resolution. The whole network has been deployed at the Xishan landslide, Sichuan, P.R.China. According to various characteristic of stereo monitoring sensors, observation capabilities indicators for different sensors were proposed in order to obtain the optimal sensors combination groups and observation strategy. Meanwhile, adaptive networking and reliable data communication methods were developed to apply intelligent observation and sensor data transmission. Some key technologies, such as signal amplification and intelligence extraction technology, data access frequency adaptive adjustment technology, different sensor synchronization control technology were developed to overcome the problems in complex observation environment. The collaboratively observation data have been transferred to the remote data center where is thousands miles away from the giant landslide spot. These data were introduced into the landslide stability analysis model, and some primary conclusion will be achieved at the end of paper.

  2. Toward a generic UGV autopilot

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.; Whitehorn, Mark; Weinstein, Alejandro J.; Xia, Junjun

    2009-05-01

    Much of the success of small unmanned air vehicles (UAVs) has arguably been due to the widespread availability of low-cost, portable autopilots. While the development of unmanned ground vehicles (UGVs) has led to significant achievements, as typified by recent grand challenge events, to date the UGV equivalent of the UAV autopilot is not available. In this paper we describe our recent research aimed at the development of a generic UGV autopilot. Assuming we are given a drive-by-wire vehicle that accepts as inputs steering, brake, and throttle commands, we present a system that adds sonar ranging sensors, GPS/IMU/odometry, stereo camera, and scanning laser sensors, together with a variety of interfacing and communication hardware. The system also includes a finite state machine-based software architecture as well as a graphical user interface for the operator control unit (OCU). Algorithms are presented that enable an end-to-end scenario whereby an operator can view stereo images as seen by the vehicle and can input GPS waypoints either from a map or in the vehicle's scene-view image, at which point the system uses the environmental sensors as inputs to a Kalman filter for pose estimation and then computes control actions to move through the waypoint list, while avoiding obstacles. The long-term goal of the research is a system that is generically applicable to any drive-by-wire unmanned ground vehicle.

  3. Automatic and robust extrinsic camera calibration for high-accuracy mobile mapping

    NASA Astrophysics Data System (ADS)

    Goeman, Werner; Douterloigne, Koen; Bogaert, Peter; Pires, Rui; Gautama, Sidharta

    2012-10-01

    A mobile mapping system (MMS) is the answer of the geoinformation community to the exponentially growing demand for various geospatial data with increasingly higher accuracies and captured by multiple sensors. As the mobile mapping technology is pushed to explore its use for various applications on water, rail, or road, the need emerges to have an external sensor calibration procedure which is portable, fast and easy to perform. This way, sensors can be mounted and demounted depending on the application requirements without the need for time consuming calibration procedures. A new methodology is presented to provide a high quality external calibration of cameras which is automatic, robust and fool proof.The MMS uses an Applanix POSLV420, which is a tightly coupled GPS/INS positioning system. The cameras used are Point Grey color video cameras synchronized with the GPS/INS system. The method uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration a well studied absolute orientation problem needs to be solved. Here, a mutual information based image registration technique is studied for automatic alignment of the ranging pole. Finally, a few benchmarking tests are done under various lighting conditions which proves the methodology's robustness, by showing high absolute stereo measurement accuracies of a few centimeters.

  4. Hybrid optical acoustic seafloor mapping

    NASA Astrophysics Data System (ADS)

    Inglis, Gabrielle

    The oceanographic research and industrial communities have a persistent demand for detailed three dimensional sea floor maps which convey both shape and texture. Such data products are used for archeology, geology, ship inspection, biology, and habitat classification. There are a variety of sensing modalities and processing techniques available to produce these maps and each have their own potential benefits and related challenges. Multibeam sonar and stereo vision are such two sensors with complementary strengths making them ideally suited for data fusion. Data fusion approaches however, have seen only limited application to underwater mapping and there are no established methods for creating hybrid, 3D reconstructions from two underwater sensing modalities. This thesis develops a processing pipeline to synthesize hybrid maps from multi-modal survey data. It is helpful to think of this processing pipeline as having two distinct phases: Navigation Refinement and Map Construction. This thesis extends existing work in underwater navigation refinement by incorporating methods which increase measurement consistency between both multibeam and camera. The result is a self consistent 3D point cloud comprised of camera and multibeam measurements. In map construction phase, a subset of the multi-modal point cloud retaining the best characteristics of each sensor is selected to be part of the final map. To quantify the desired traits of a map several characteristics of a useful map are distilled into specific criteria. The different ways that hybrid maps can address these criteria provides justification for producing them as an alternative to current methodologies. The processing pipeline implements multi-modal data fusion and outlier rejection with emphasis on different aspects of map fidelity. The resulting point cloud is evaluated in terms of how well it addresses the map criteria. The final hybrid maps retain the strengths of both sensors and show significant improvement over the single modality maps and naively assembled multi-modal maps.

  5. Event-Based Stereo Depth Estimation Using Belief Propagation.

    PubMed

    Xie, Zhen; Chen, Shengyong; Orchard, Garrick

    2017-01-01

    Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.

  6. Improved disparity map analysis through the fusion of monocular image segmentations

    NASA Technical Reports Server (NTRS)

    Perlant, Frederic P.; Mckeown, David M.

    1991-01-01

    The focus is to examine how estimates of three dimensional scene structure, as encoded in a scene disparity map, can be improved by the analysis of the original monocular imagery. The utilization of surface illumination information is provided by the segmentation of the monocular image into fine surface patches of nearly homogeneous intensity to remove mismatches generated during stereo matching. These patches are used to guide a statistical analysis of the disparity map based on the assumption that such patches correspond closely with physical surfaces in the scene. Such a technique is quite independent of whether the initial disparity map was generated by automated area-based or feature-based stereo matching. Stereo analysis results are presented on a complex urban scene containing various man-made and natural features. This scene contains a variety of problems including low building height with respect to the stereo baseline, buildings and roads in complex terrain, and highly textured buildings and terrain. The improvements are demonstrated due to monocular fusion with a set of different region-based image segmentations. The generality of this approach to stereo analysis and its utility in the development of general three dimensional scene interpretation systems are also discussed.

  7. Airborne camera and spectrometer experiments and data evaluation

    NASA Astrophysics Data System (ADS)

    Lehmann, F. F.; Bucher, T.; Pless, S.; Wohlfeil, J.; Hirschmüller, H.

    2009-09-01

    New stereo push broom camera systems have been developed at German Aerospace Centre (DLR). The new small multispectral systems (Multi Functional Camerahead - MFC, Advanced Multispectral Scanner - AMS) are light weight, compact and display three or five RGB stereo lines of 8000, 10 000 or 14 000 pixels, which are used for stereo processing and the generation of Digital Surface Models (DSM) and near True Orthoimage Mosaics (TOM). Simultaneous acquisition of different types of MFC-cameras for infrared and RGB data has been successfully tested. All spectral channels record the image data in full resolution, pan-sharpening is not necessary. Analogue to the line scanner data an automatic processing chain for UltraCamD and UltraCamX exists. The different systems have been flown for different types of applications; main fields of interest among others are environmental applications (flooding simulations, monitoring tasks, classification) and 3D-modelling (e.g. city mapping). From the DSM and TOM data Digital Terrain Models (DTM) and 3D city models are derived. Textures for the facades are taken from oblique orthoimages, which are created from the same input data as the TOM and the DOM. The resulting models are characterised by high geometric accuracy and the perfect fit of image data and DSM. The DLR is permanently developing and testing a wide range of sensor types and imaging platforms for terrestrial and space applications. The MFC-sensors have been flown in combination with laser systems and imaging spectrometers and special data fusion products have been developed. These products include hyperspectral orthoimages and 3D hyperspectral data.

  8. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  9. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  10. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    PubMed Central

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Mª; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle. PMID:22163639

  11. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    PubMed

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  12. A manual for inexpensive methods of analyzing and utilizing remote sensor data

    NASA Technical Reports Server (NTRS)

    Elifrits, C. D.; Barr, D. J.

    1978-01-01

    Instructions are provided for inexpensive methods of using remote sensor data to assist in the completion of the need to observe the earth's surface. When possible, relative costs were included. Equipment need for analysis of remote sensor data is described, and methods of use of these equipment items are included, as well as advantages and disadvantages of the use of individual items. Interpretation and analysis of stereo photos and the interpretation of typical patterns such as tone and texture, landcover, drainage, and erosional form are described. Similar treatment is given to monoscopic image interpretation, including LANDSAT MSS data. Enhancement techniques are detailed with respect to their application and simple techniques of creating an enhanced data item. Techniques described include additive and subtractive (Diazo processes) color techniques and enlargement of photos or images. Applications of these processes, including mappings of land resources, engineering soils, geology, water resources, environmental conditions, and crops and/or vegetation, are outlined.

  13. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  14. Digital elevation data as an aid to land use and land cover classification

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1981-01-01

    In relatively well mapped areas such as the United States and Europe, digital data can be developed from topographic maps or from the stereo aerial photographic movie. For poorer mapped areas (which involved most of the world's land areas), a satellite designed to obtain stereo data offers the best hope for a digital elevation database. Such a satellite, known as Mapsat, has been defined by the U.S. Geological Survey. Utilizing modern solid state technology, there is no reason why such stereo data cannot be acquired simultaneously with the multispectral response, thus simplifying the overall problem of land use and land cover classification.

  15. A theory of photometric stereo for a class of diffuse non-Lambertian surfaces

    NASA Technical Reports Server (NTRS)

    Tagare, Hemant D.; Defigueiredo, Rui J. P.

    1991-01-01

    A theory of photometric stereo is proposed for a large class of non-Lambertian reflectance maps. The authors review the different reflectance maps proposed in the literature for modeling reflection from real-world surfaces. From this, they obtain a mathematical class of reflectance maps to which the maps belong. They show that three lights can be sufficient for a unique inversion of the photometric stereo equation for the entire class of reflectance maps. They also obtain a constraint on the positions of light sources for obtaining this solution. They investigate the sufficiency of three light sources to estimate the surface normal and the illuminant strength. The issue of completeness of reconstruction is addressed. They shown that if k lights are sufficient for a unique inversion, 2k lights are necessary for a complete inversion.

  16. An embedded multi-core parallel model for real-time stereo imaging

    NASA Astrophysics Data System (ADS)

    He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu

    2018-04-01

    The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.

  17. Motorcycles that See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    PubMed Central

    2018-01-01

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267

  18. Ranging through Gabor logons-a consistent, hierarchical approach.

    PubMed

    Chang, C; Chatterjee, S

    1993-01-01

    In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.

  19. Stable Research Platform Workshop

    DTIC Science & Technology

    1988-04-01

    autonomous or manned submersibles, by providing them with a deep underwater garage for launch and recovery. A track system for bringing the vehicle...s;. 10- f(H2) Figure 5 SIO Reference 87-2.0 69 STEREO - PHOTOGRAPHY Figure 6 70 Appendix E -15 0 31 62 93 124 155 DISTANCE, x...WAVE FOLLOWER WITH MULTI-BEAM LASER OPTICAL SENSOR • STEREO -PHOTOQRAPHY • MULTI-FREQUENCY RADAR: 10-100 GHz • SURFACE TENSION SENSORS • LONG WAVE

  20. Topview stereo: combining vehicle-mounted wide-angle cameras to a distance sensor array

    NASA Astrophysics Data System (ADS)

    Houben, Sebastian

    2015-03-01

    The variety of vehicle-mounted sensors in order to fulfill a growing number of driver assistance tasks has become a substantial factor in automobile manufacturing cost. We present a stereo distance method exploiting the overlapping field of view of a multi-camera fisheye surround view system, as they are used for near-range vehicle surveillance tasks, e.g. in parking maneuvers. Hence, we aim at creating a new input signal from sensors that are already installed. Particular properties of wide-angle cameras (e.g. hanging resolution) demand an adaptation of the image processing pipeline to several problems that do not arise in classical stereo vision performed with cameras carefully designed for this purpose. We introduce the algorithms for rectification, correspondence analysis, and regularization of the disparity image, discuss reasons and avoidance of the shown caveats, and present first results on a prototype topview setup.

  1. Dense real-time stereo matching using memory efficient semi-global-matching variant based on FPGAs

    NASA Astrophysics Data System (ADS)

    Buder, Maximilian

    2012-06-01

    This paper presents a stereo image matching system that takes advantage of a global image matching method. The system is designed to provide depth information for mobile robotic applications. Typical tasks of the proposed system are to assist in obstacle avoidance, SLAM and path planning. Mobile robots pose strong requirements about size, energy consumption, reliability and output quality of the image matching subsystem. Current available systems either rely on active sensors or on local stereo image matching algorithms. The first are only suitable in controlled environments while the second suffer from low quality depth-maps. Top ranking quality results are only achieved by an iterative approach using global image matching and color segmentation techniques which are computationally demanding and therefore difficult to be executed in realtime. Attempts were made to still reach realtime performance with global methods by simplifying the routines. The depth maps are at the end almost comparable to local methods. An equally named semi-global algorithm was proposed earlier that shows both very good image matching results and relatively simple operations. A memory efficient variant of the Semi-Global-Matching algorithm is reviewed and adopted for an implementation based on reconfigurable hardware. The implementation is suitable for realtime execution in the field of robotics. It will be shown that the modified version of the efficient Semi-Global-Matching method is delivering equivalent result compared to the original algorithm based on the Middlebury dataset. The system has proven to be capable of processing VGA sized images with a disparity resolution of 64 pixel at 33 frames per second based on low cost to mid-range hardware. In case the focus is shifted to a higher image resolution, 1024×1024-sized stereo frames may be processed with the same hardware at 10 fps. The disparity resolution settings stay unchanged. A mobile system that covers preprocessing, matching and interfacing operations is also presented.

  2. A Three-Dimensional View of Titan's Surface Features from Cassini RADAR Stereogrammetry

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Hayes, A.; Lopes, R. M.; Lorenz, R. D.; Mitchell, K. L.; Radebaugh, J.; Paganelli, F.; Soderblom, L. A.; Stofan, E. R.; Wood, C. A.; Wall, S. D.; Cassini RADAR Team

    2008-12-01

    As of the end of its four-year Prime Mission, Cassini has obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys. The elongated image swaths overlap extensively, and ~2% of the surface has now been imaged two or more times. The majority of image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. As we have previously reported, the first step toward extracting quantitative topographic information was the development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically <1 km, can be removed by a least-squares adjustment of the spacecraft trajectories before mapping, which also ensures that the stereo digital topographic models (DTMs) are made consistent with altimetry and SAR topography profiles. The useful stereo coverage now available includes a much larger portion of Titan's north polar lake country than we previously presented, a continuous traverse of high resolution data from the lakes to mid-southern latitudes, and widely distributed smaller areas. A remaining challenge is that many pairs of images are illuminated from opposite sides or from near-perpendicular directions, which can make image matching more difficult. We find that the high-contrast polarizing display of the stereo workstation at USGS provides a much clearer view of these unfavorably illuminated pairs than (for example) anaglyphs, and lets us supplement automatic image matching with interactive measurements where the former fails. We are collecting DTMs of all usable image pairs and will present the most interesting results. Examples of geologic questions that may be addressed are: What is the relation between Ganesa and surrounding features? Is it a dome or shield? Can the height of Titan's dunes be measured, and what is the relief of the bright "islands" that appear to divert the dunes? How high are the mountains of Xanadu and what gradients drive the channels between them? What are the relative and absolute height relations between seas and lakes of different types, and what does this tell us about the "hydro(carbono)logic" cycle of precipitation, evaporation, and surface and subsurface fluid flow?

  3. Bayes filter modification for drivability map estimation with observations from stereo vision

    NASA Astrophysics Data System (ADS)

    Panchenko, Aleksei; Prun, Viktor; Turchenkov, Dmitri

    2017-02-01

    Reconstruction of a drivability map for a moving vehicle is a well-known research topic in applied robotics. Here creating such a map for an autonomous truck on a generally planar surface containing separate obstacles is considered. The source of measurements for the truck is a calibrated pair of cameras. The stereo system detects and reconstructs several types of objects, such as road borders, other vehicles, pedestrians and general tall objects or highly saturated objects (e.g. road cone). For creating a robust mapping module we use a modification of Bayes filtering, which introduces some novel techniques for occupancy map update step. Specifically, our modified version becomes applicable to the presence of false positive measurement errors, stereo shading and obstacle occlusion. We implemented the technique and achieved real-time 15 FPS computations on an industrial shake proof PC. Our real world experiments show the positive effect of the filtering step.

  4. Viking Lander Atlas of Mars

    NASA Technical Reports Server (NTRS)

    Liebes, S., Jr.

    1982-01-01

    Half size reproductions are presented of the extensive set of systematic map products generated for the two Mars Viking landing sites from stereo pairs of images radioed back to Earth. The maps span from the immediate foreground to the remote limits of ranging capability, several hundred meters from the spacecraft. The maps are of two kinds - elevation contour and vertical profile. Background and explanatory material important for understanding and utilizing the map collection included covers the Viking Mission, lander locations, lander cameras, the stereo mapping system and input images to this system.

  5. Stereo-Based Region-Growing using String Matching

    NASA Technical Reports Server (NTRS)

    Mandelbaum, Robert; Mintz, Max

    1995-01-01

    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

  6. Validation of "AW3D" Global Dsm Generated from Alos Prism

    NASA Astrophysics Data System (ADS)

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi

    2016-06-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  7. SVM based colon polyps classifier in a wireless active stereo endoscope.

    PubMed

    Ayoub, J; Granado, B; Mhanna, Y; Romain, O

    2010-01-01

    This work focuses on the recognition of three-dimensional colon polyps captured by an active stereo vision sensor. The detection algorithm consists of SVM classifier trained on robust feature descriptors. The study is related to Cyclope, this prototype sensor allows real time 3D object reconstruction and continues to be optimized technically to improve its classification task by differentiation between hyperplastic and adenomatous polyps. Experimental results were encouraging and show correct classification rate of approximately 97%. The work contains detailed statistics about the detection rate and the computing complexity. Inspired by intensity histogram, the work shows a new approach that extracts a set of features based on depth histogram and combines stereo measurement with SVM classifiers to correctly classify benign and malignant polyps.

  8. CINEMA (Cubesat for Ion, Neutral, Electron, MAgnetic fields)

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Wang, L.; Sample, J. G.; Horbury, T. S.; Roelof, E. C.; Lee, D.; Seon, J.; Hines, J.; Vo, H.; Tindall, C.; Ho, J.; Lee, J.; Kim, K.

    2009-12-01

    The NSF-funded CINEMA mission will provide cutting-edge magnetospheric science and critical space weather measurements, including high sensitivity mapping and high cadence movies of ring current, >4 keV Energetic Neutral Atom (ENA), as well as in situ measurements of suprathermal electrons (>~2 keV) and ions (>~ 4 keV) in the auroral and ring current precipitation regions, all with ~1 keV FWHM resolution and uniform response up to ~100 keV. A Suprathermal Electron, Ion, Neutral (STEIN) instrument adds an electrostatic deflection system to the STEREO STE (SupraThermal Electron) 4-pixel silicon semiconductor sensor to separate ions from electrons and from ENAs up to ~20 keV. In addition, inboard and outboard (on an extendable 1m boom) magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. A new attitude control system (ACS) uses torque coils, a solar aspect sensor and the magnetometers to de-tumble the 3u CINEMA spacecraft, then spin it up to ~1 rpm with the spin axis perpendicular to the ecliptic, so STEIN can sweep across most of the sky every minute. Ideally, CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. An S-band transmitter will be used to provide > ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station. Two more identical CINEMA spacecraft will be built by Kyung Hee University (KHU) in Korea under their World Class University (WCU) program, to provide stereo ENA imaging and multi-point in situ measurements. Furthermore, CINEMA’s development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft will be important for future nanosatellite space missions.

  9. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  10. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  11. Mapping Io's Surface Topography Using Voyager and Galileo Stereo Images and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P.

    2011-12-01

    O.L. White and P.M. Schenk Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058 No instrumentation specifically designed to measure the topography of a planetary surface has ever been deployed to any of the Galilean satellites. Available methods that exist to perform such a task in the absence of the relevant instrumentation include photoclinometry, shadow length measurement, and stereo imaging. Stereo imaging is generally the most accurate of these methods, but is subject to limitations. Io is a challenging subject for stereo imaging given that much of its surface is comprised of volcanic plains, smooth at the resolution of many of the available global images. Radiation noise in Galileo images can also complicate mapping. Paterae, mountains and a few tall shield volcanoes, the only features of any considerable relief, exist as isolated features within these plains; previous research concerning topography measurement on Io using stereo imaging has focused on these features, and has been localized in its scope [Schenk et al., 2001; Schenk et al., 2004]. With customized ISIS software developed at LPI, it is the ultimate intention of our research to use stereo and photoclinometry processing of Voyager and Galileo images to create a global topographic map of Io that will constrain the shapes of local- and regional-scale features on this volcanic moon, and which will be tied to the global shape model of Thomas et al. [1998]. Applications of these data include investigation of how global heat flow varies across the moon and its relation to mantle convection and tidal heating [Tackley et al., 2001], as well as its correlation with local geology. Initial stereo mapping has focused on the Ra Patera/Euboea Montes/Acala Fluctus area, while initial photoclinometry mapping has focused on several paterae and calderas across Io. The results of both stereo and photoclinometry mapping have indicated that distinct topographic areas may correlate with surface geology. To date we have obtained diameter and depth measurements for ten calderas using these DEMs, and we look forward to studying regional and latitudinal variation in caldera depth. References Schenk, P.M., et al. (2001) J. Geophys. Res., 106, pp. 33,201-33,222. Schenk, P.M., et al. (2004) Icarus, 169, pp. 98-110. Tackley, P.J., et al. (2001) Icarus, 149, pp. 79-93. Thomas, P., et al. (1998) Icarus, 135, pp. 175-180. The authors acknowledge the support of the NASA Outer Planet Research and the Planetary Geology and Geophysics research programs.

  12. Stereo vision with distance and gradient recognition

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  13. The CAFADIS camera: a new tomographic wavefront sensor for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Femenía, B.; Montilla, I.; Rodríguez-Ramos, L. F.; Marichal-Hernández, J. G.; Lüke, J. P.; López, R.; Díaz, J. J.; Martín, Y.

    The CAFADIS camera is a new wavefront sensor (WFS) patented by the Universidad de La Laguna. CAFADIS is a system based on the concept of plenoptic camera originally proposed by Adelson and Wang [Single lens stereo with a plenoptic camera, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992)] and its most salient feature is its ability to simultaneously measuring wavefront maps and distances to objects [Wavefront and distance measurements using the CAFADIS camera, in Astronomical telescopes, Marseille (2008)]. This makes of CAFADIS an interesting alternative for LGS-based AO systems as it is capable of measuring from an LGS-beacon the atmospheric turbulence wavefront and simultaneously the distance to the LGS beacon thus removing the need of a NGS defocus sensor to probe changes in distance to the LGS beacon due to drifts of the mesospheric Na layer. In principle, the concept can also be employed to recover 3D profiles of the Na Layer allowing for optimizations of the measurement of the distance to the LGS-beacon. Currently we are investigating the possibility of extending the plenoptic WFS into a tomographic wavefront sensor. Simulations will be shown of a plenoptic WFS when operated within an LGS-based AO system for the recovery of wavefront maps at different heights. The preliminary results presented here show the tomographic ability of CAFADIS.

  14. NASA Tech Briefs, April 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Gas Sensors Based on Coated and Doped Carbon Nanotubes; Tactile Robotic Topographical Mapping Without Force or Contact Sensors; Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids; Progress in Development of Improved Ion-Channel Biosensors; Simulating Operation of a Complex Sensor Network; Using Transponders on the Moon to Increase Accuracy of GPS; Controller for Driving a Piezoelectric Actuator at Resonance; Coaxial Electric Heaters; Dual-Input AND Gate From Single-Channel Thin-Film FET; High-Density, High-Bandwidth, Multilevel Holographic Memory; Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters; Hydroxide-Assisted Bonding of Ultra-Low-Expansion Glass; Photochemically Synthesized Polyimides; Optimized Carbonate and Ester-Based Li-Ion Electrolytes; Compact 6-DOF Stage for Optical Adjustments; Ultrasonic/Sonic Impacting Penetrators; Miniature, Lightweight, One-Time-Opening Valve; Supplier Management System; Improved CLARAty Functional-Layer/Decision-Layer Interface; JAVA Stereo Display Toolkit; Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool; PyPele Rewritten To Use MPI; Data Assimilation Cycling for Weather Analysis; Hydrocyclone/Filter for Concentrating Biomarkers from Soil; Activating STAT3 Alpha for Promoting Healing of Neurons; and Probing a Spray Using Frequency-Analyzed Light Scattering.

  15. Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments - ATLAS12 design and initial results

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Lynn, D.; Carter, J. R.; Hommels, L. B. A.; Robinson, D.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Betancourt, C.; Jakobs, K.; Kuehn, S.; Mori, R.; Parzefall, U.; Wiik-Fucks, L.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Nishimura, R.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Allport, P. P.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Arai, Y.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Grillo, A. A.; Martinez-McKinney, F.; Ngo, J.; Parker, C.; Sadrozinski, H. F.-W.; Schumacher, D.; Seiden, A.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Paganis, S.; Jinnouchi, O.; Motohashi, K.; Todome, K.; Yamaguchi, D.; Hara, K.; Hagihara, M.; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti i Garcia, S.; Soldevila, U.

    2014-11-01

    We have been developing a novel radiation-tolerant n+-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 μm and slim edge space of 450 μm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.

  16. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    NASA Astrophysics Data System (ADS)

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  17. Global localization of 3D point clouds in building outline maps of urban outdoor environments.

    PubMed

    Landsiedel, Christian; Wollherr, Dirk

    2017-01-01

    This paper presents a method to localize a robot in a global coordinate frame based on a sparse 2D map containing outlines of building and road network information and no location prior information. Its input is a single 3D laser scan of the surroundings of the robot. The approach extends the generic chamfer matching template matching technique from image processing by including visibility analysis in the cost function. Thus, the observed building planes are matched to the expected view of the corresponding map section instead of to the entire map, which makes a more accurate matching possible. Since this formulation operates on generic edge maps from visual sensors, the matching formulation can be expected to generalize to other input data, e.g., from monocular or stereo cameras. The method is evaluated on two large datasets collected in different real-world urban settings and compared to a baseline method from literature and to the standard chamfer matching approach, where it shows considerable performance benefits, as well as the feasibility of global localization based on sparse building outline data.

  18. Human machine interface by using stereo-based depth extraction

    NASA Astrophysics Data System (ADS)

    Liao, Chao-Kang; Wu, Chi-Hao; Lin, Hsueh-Yi; Chang, Ting-Ting; Lin, Tung-Yang; Huang, Po-Kuan

    2014-03-01

    The ongoing success of three-dimensional (3D) cinema fuels increasing efforts to spread the commercial success of 3D to new markets. The possibilities of a convincing 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Acquiring scene depth information is a fundamental task in computer vision, yet complex and error-prone. Dedicated range sensors, such as the Time­ of-Flight camera (ToF), can simplify the scene depth capture process and overcome shortcomings of traditional solutions, such as active or passive stereo analysis. Admittedly, currently available ToF sensors deliver only a limited spatial resolution. However, sophisticated depth upscaling approaches use texture information to match depth and video resolution. At Electronic Imaging 2012 we proposed an upscaling routine based on error energy minimization, weighted with edge information from an accompanying video source. In this article we develop our algorithm further. By adding temporal consistency constraints to the upscaling process, we reduce disturbing depth jumps and flickering artifacts in the final 3DTV content. Temporal consistency in depth maps enhances the 3D experience, leading to a wider acceptance of 3D media content. More content in better quality can boost the commercial success of 3DTV.

  19. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  20. A search for Ganymede stereo images and 3D mapping opportunities

    NASA Astrophysics Data System (ADS)

    Zubarev, A.; Nadezhdina, I.; Brusnikin, E.; Giese, B.; Oberst, J.

    2017-10-01

    We used 126 Voyager-1 and -2 as well as 87 Galileo images of Ganymede and searched for stereo images suitable for digital 3D stereo analysis. Specifically, we consider image resolutions, stereo angles, as well as matching illumination conditions of respective stereo pairs. Lists of regions and local areas with stereo coverage are compiled. We present anaglyphs and we selected areas, not previously discussed, for which we constructed Digital Elevation Models and associated visualizations. The terrain characteristics in the models are in agreement with our previous notion of Ganymede morphology, represented by families of lineaments and craters of various sizes and degradation stages. The identified areas of stereo coverage may serve as important reference targets for the Ganymede Laser Altimeter (GALA) experiment on the future JUICE (Jupiter Icy Moons Explorer) mission.

  1. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets along with some simple analyses of their scaling properties. Global 1km, 8-daily terrestrial land surface BRDF/albedo maps exist for US sensors from MODIS and by orbit from MISR. More recently, the ESA GlobAlbedo project [4] has produced land surface datasets on the same spatio-temporal sampling using optimal estimation with full uncertainty matrices associated with each and every 1km pixel. By exploiting these uncertainty estimates I show how upscaling can be performed as well as analysing their scaling properties. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [5]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ≈400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n˚312377 and the ESA GlobAlbedo project. Partial support is also provided from the STFC "MSSL Consolidated Grant" ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., Muller, J-P., et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Muller, J.-P., et al. (2011), The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 Years from European Sensors., Geophysical Research Abstracts, Vol. 13, EGU2011-10969; [5] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925

  2. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  3. Gamma/x-ray linear pushbroom stereo for 3D cargo inspection

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Hu, Yu-Chi

    2006-05-01

    For evaluating the contents of trucks, containers, cargo, and passenger vehicles by a non-intrusive gamma-ray or X-ray imaging system to determine the possible presence of contraband, three-dimensional (3D) measurements could provide more information than 2D measurements. In this paper, a linear pushbroom scanning model is built for such a commonly used gamma-ray or x-ray cargo inspection system. Accurate 3D measurements of the objects inside a cargo can be obtained by using two such scanning systems with different scanning angles to construct a pushbroom stereo system. A simple but robust calibration method is proposed to find the important parameters of the linear pushbroom sensors. Then, a fast and automated stereo matching algorithm based on free-form deformable registration is developed to obtain 3D measurements of the objects under inspection. A user interface is designed for 3D visualization of the objects in interests. Experimental results of sensor calibration, stereo matching, 3D measurements and visualization of a 3D cargo container and the objects inside, are presented.

  4. Infrared stereo calibration for unmanned ground vehicle navigation

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  5. Matching methods evaluation framework for stereoscopic breast x-ray images.

    PubMed

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  6. Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.

    1986-01-01

    In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.

  7. Discussion on Height Systems in Stereoscopic Mapping Using the ZY-3 Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Fu, X.; Zhu, G.; Zhang, J.; Han, C.; Cheng, L.

    2018-04-01

    The ZY-3 is the civil high-resolution optical stereoscopic mapping satellite independently developed by China. It is mainly used for 1 : 50,000 scale topographic mapping. One of the distinguishing features of the ZY-3 is that the panchromatic triplet camera can obtain thousands of kilometers of continuous strip stereo data. The working mode is suitable for wide-range stereoscopic mapping, in particular global DEM extraction. The ZY-3 constellation is operated in a sun-synchronous at an altitude 505 km, with a 10:30 AM equator crossing time and a 29-day revisiting period. The panchromatic triplet sensors have excellent base-to-height ratio, which is advantageous for obtaining good mapping accuracy. In this paper the China quasi-geoid, EGM2008 and the height conversion method are discussed. It is pointed out that according to the current surveying and mapping specifications, almost all maps and charts use mean sea level for elevation. Experiments on bundle adjustment and DEM extraction with different height systems have been carried out in Liaoning Province of China. The results show that the similar accuracy can be obtained using different elevation system. According to the principle of geodesy and photogrammetry, it is recommended to use ellipsoidal height for satellite photogrammetric calculation and use the orthometric height in mapping production.

  8. Application of EREP imagery to fracture-related mine safety hazards in coal mining and mining-environmental problems in Indiana. [Indiana and Illinois

    NASA Technical Reports Server (NTRS)

    Wier, C. E. (Principal Investigator); Powell, R. L.; Amato, R. V.; Russell, O. R.; Martin, K. R.

    1975-01-01

    The author has identified the following significant results. This investigation evaluated the applicability of a variety of sensor types, formats, and resolution capabilities to the study of both fuel and nonfuel mined lands. The image reinforcement provided by stereo viewing of the EREP images proved useful for identifying lineaments and for mined lands mapping. Skylab S190B color and color infrared transparencies were the most useful EREP imagery. New information on lineament and fracture patterns in the bedrock of Indiana and Illinois extracted from analysis of the Skylab imagery has contributed to furthering the geological understanding of this portion of the Illinois basin.

  9. Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L.; Howard, Andrew B.; Aghazarian, Hrand; Rankin, Arturo L.

    2012-01-01

    PSSEARCH provides predictive sea state estimation, coupled with closed-loop feedback control for automated ride control. It enables a manned or unmanned watercraft to determine the 3D map and sea state conditions in its vicinity in real time. Adaptive path-planning/ replanning software and a control surface management system will then use this information to choose the best settings and heading relative to the seas for the watercraft. PSSEARCH looks ahead and anticipates potential impact of waves on the boat and is used in a tight control loop to adjust trim tabs, course, and throttle settings. The software uses sensory inputs including IMU (Inertial Measurement Unit), stereo, radar, etc. to determine the sea state and wave conditions (wave height, frequency, wave direction) in the vicinity of a rapidly moving boat. This information can then be used to plot a safe path through the oncoming waves. The main issues in determining a safe path for sea surface navigation are: (1) deriving a 3D map of the surrounding environment, (2) extracting hazards and sea state surface state from the imaging sensors/map, and (3) planning a path and control surface settings that avoid the hazards, accomplish the mission navigation goals, and mitigate crew injuries from excessive heave, pitch, and roll accelerations while taking into account the dynamics of the sea surface state. The first part is solved using a wide baseline stereo system, where 3D structure is determined from two calibrated pairs of visual imagers. Once the 3D map is derived, anything above the sea surface is classified as a potential hazard and a surface analysis gives a static snapshot of the waves. Dynamics of the wave features are obtained from a frequency analysis of motion vectors derived from the orientation of the waves during a sequence of inputs. Fusion of the dynamic wave patterns with the 3D maps and the IMU outputs is used for efficient safe path planning.

  10. Driving in traffic: short-range sensing for urban collision avoidance

    NASA Astrophysics Data System (ADS)

    Thorpe, Chuck E.; Duggins, David F.; Gowdy, Jay W.; MacLaughlin, Rob; Mertz, Christoph; Siegel, Mel; Suppe, Arne; Wang, Chieh-Chih; Yata, Teruko

    2002-07-01

    Intelligent vehicles are beginning to appear on the market, but so far their sensing and warning functions only work on the open road. Functions such as runoff-road warning or adaptive cruise control are designed for the uncluttered environments of open highways. We are working on the much more difficult problem of sensing and driver interfaces for driving in urban areas. We need to sense cars and pedestrians and curbs and fire plugs and bicycles and lamp posts; we need to predict the paths of our own vehicle and of other moving objects; and we need to decide when to issue alerts or warnings to both the driver of our own vehicle and (potentially) to nearby pedestrians. No single sensor is currently able to detect and track all relevant objects. We are working with radar, ladar, stereo vision, and a novel light-stripe range sensor. We have installed a subset of these sensors on a city bus, driving through the streets of Pittsburgh on its normal runs. We are using different kinds of data fusion for different subsets of sensors, plus a coordinating framework for mapping objects at an abstract level.

  11. Localization Using Visual Odometry and a Single Downward-Pointing Camera

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.

    2012-01-01

    Stereo imaging is a technique commonly employed for vision-based navigation. For such applications, two images are acquired from different vantage points and then compared using transformations to extract depth information. The technique is commonly used in robotics for obstacle avoidance or for Simultaneous Localization And Mapping, (SLAM). Yet, the process requires a number of image processing steps and therefore tends to be CPU-intensive, which limits the real-time data rate and use in power-limited applications. Evaluated here is a technique where a monocular camera is used for vision-based odometry. In this work, an optical flow technique with feature recognition is performed to generate odometry measurements. The visual odometry sensor measurements are intended to be used as control inputs or measurements in a sensor fusion algorithm using low-cost MEMS based inertial sensors to provide improved localization information. Presented here are visual odometry results which demonstrate the challenges associated with using ground-pointing cameras for visual odometry. The focus is for rover-based robotic applications for localization within GPS-denied environments.

  12. Stereographic observations from geosynchronous satellites - An important new tool for the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1981-01-01

    Observations of cloud geometry using scan-synchronized stereo geostationary satellites having images with horizontal spatial resolution of approximately 0.5 km, and temporal resolution of up to 3 min are presented. The stereo does not require a cloud with known emissivity to be in equilibrium with an atmosphere with a known vertical temperature profile. It is shown that absolute accuracies of about 0.5 km are possible. Qualitative and quantitative representations of atmospheric dynamics were shown by remapping, display, and stereo image analysis on an interactive computer/imaging system. Applications of stereo observations include: (1) cloud top height contours of severe thunderstorms and hurricanes, (2) cloud top and base height estimates for cloud-wind height assignment, (3) cloud growth measurements for severe thunderstorm over-shooting towers, (4) atmospheric temperature from stereo heights and infrared cloud top temperatures, and (5) cloud emissivity estimation. Recommendations are given for future improvements in stereo observations, including a third GOES satellite, operational scan synchronization of all GOES satellites and better resolution sensors.

  13. Three-dimensional sensing methodology combining stereo vision and phase-measuring profilometry based on dynamic programming

    NASA Astrophysics Data System (ADS)

    Lee, Hyunki; Kim, Min Young; Moon, Jeon Il

    2017-12-01

    Phase measuring profilometry and moiré methodology have been widely applied to the three-dimensional shape measurement of target objects, because of their high measuring speed and accuracy. However, these methods suffer from inherent limitations called a correspondence problem, or 2π-ambiguity problem. Although a kind of sensing method to combine well-known stereo vision and phase measuring profilometry (PMP) technique simultaneously has been developed to overcome this problem, it still requires definite improvement for sensing speed and measurement accuracy. We propose a dynamic programming-based stereo PMP method to acquire more reliable depth information and in a relatively small time period. The proposed method efficiently fuses information from two stereo sensors in terms of phase and intensity simultaneously based on a newly defined cost function of dynamic programming. In addition, the important parameters are analyzed at the view point of the 2π-ambiguity problem and measurement accuracy. To analyze the influence of important hardware and software parameters related to the measurement performance and to verify its efficiency, accuracy, and sensing speed, a series of experimental tests were performed with various objects and sensor configurations.

  14. ROS-based ground stereo vision detection: implementation and experiments.

    PubMed

    Hu, Tianjiang; Zhao, Boxin; Tang, Dengqing; Zhang, Daibing; Kong, Weiwei; Shen, Lincheng

    This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of the published ROS-based detection algorithm.

  15. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  16. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    PubMed Central

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  17. Stereo-based Collision Avoidance System for Urban Traffic

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi; Ishikawa, Naoto; Sasaki, Kazuyuki; Nakajima, Masato

    2002-11-01

    Numerous car accidents occur on urban road. However, researches done so far on driving assistance are subjecting highways whose environment is relatively simple and easy to handle, and new approach for urban settings is required. Our purpose is to extend its support to the following conditions in city traffic: the presence of obstacles such as pedestrians and telephone poles; the lane mark is not always drawn on a road; drivers may lack the sense of awareness of the lane mark. We propose a collision avoidance system, which can be applied to both highways and urban traffic environment. In our system, stereo cameras are set in front of a vehicle and the captured images are processed through a computer. We create a Projected Disparity Map (PDM) from stereo image pair, which is a disparity histogram taken along ordinate direction of obtained disparity image. When there is an obstacle in front, we can detect it by finding a peak appeared in the PDM. With a speed meter and a steering sensor, the stop distance and the radius of curvature of the self-vehicle are calculated, in order to set the observation-required area, which does not depend on lane marks, within a PDM. A danger level will be computed from the distance and the relative speed to the closest approaching object detected within the observation-required area. The method has been tested in urban traffic scenes and has shown to be effective for judging dangerous situation, and gives proper alarm to a driver.

  18. Mapping and localization for extraterrestrial robotic explorations

    NASA Astrophysics Data System (ADS)

    Xu, Fengliang

    In the exploration of an extraterrestrial environment such as Mars, orbital data, such as high-resolution imagery Mars Orbital Camera-Narrow Angle (MOC-NA), laser ranging data Mars Orbital Laser Altimeter (MOLA), and multi-spectral imagery Thermal Emission Imaging System (THEMIS), play more and more important roles. However, these remote sensing techniques can never replace the role of landers and rovers, which can provide a close up and inside view. Similarly, orbital mapping can not compete with ground-level close-range mapping in resolution, precision, and speed. This dissertation addresses two tasks related to robotic extraterrestrial exploration: mapping and rover localization. Image registration is also discussed as an important aspect for both of them. Techniques from computer vision and photogrammetry are applied for automation and precision. Image registration is classified into three sub-categories: intra-stereo, inter-stereo, and cross-site, according to the relationship between stereo images. In the intra-stereo registration, which is the most fundamental sub-category, interest point-based registration and verification by parallax continuity in the principal direction are proposed. Two other techniques, inter-scanline search with constrained dynamic programming for far range matching and Markov Random Field (MRF) based registration for big terrain variation, are explored as possible improvements. Creating using rover ground images mainly involves the generation of Digital Terrain Model (DTM) and ortho-rectified map (orthomap). The first task is to derive the spatial distribution statistics from the first panorama and model the DTM with a dual polynomial model. This model is used for interpolation of the DTM, using Kriging in the close range and Triangular Irregular Network (TIN) in the far range. To generate a uniformly illuminated orthomap from the DTM, a least-squares-based automatic intensity balancing method is proposed. Finally a seamless orthomap is constructed by a split-and-merge technique: the mapped area is split or subdivided into small regions of image overlap, and then each small map piece was processed and all of the pieces are merged together to form a seamless map. Rover localization has three stages, all of which use a least-squares adjustment procedure: (1) an initial localization which is accomplished by adjustment over features common to rover images and orbital images, (2) an adjustment of image pointing angles at a single site through inter and intra-stereo tie points, and (3) an adjustment of the rover traverse through manual cross-site tie points. The first stage is based on adjustment of observation angles of features. The second stage and third stage are based on bundle-adjustment. In the third-stage an incremental adjustment method was proposed. Automation in rover localization includes automatic intra/inter-stereo tie point selection, computer-assisted cross-site tie point selection, and automatic verification of accuracy. (Abstract shortened by UMI.)

  19. Robust stereo matching with trinary cross color census and triple image-based refinements

    NASA Astrophysics Data System (ADS)

    Chang, Ting-An; Lu, Xiao; Yang, Jar-Ferr

    2017-12-01

    For future 3D TV broadcasting systems and navigation applications, it is necessary to have accurate stereo matching which could precisely estimate depth map from two distanced cameras. In this paper, we first suggest a trinary cross color (TCC) census transform, which can help to achieve accurate disparity raw matching cost with low computational cost. The two-pass cost aggregation (TPCA) is formed to compute the aggregation cost, then the disparity map can be obtained by a range winner-take-all (RWTA) process and a white hole filling procedure. To further enhance the accuracy performance, a range left-right checking (RLRC) method is proposed to classify the results as correct, mismatched, or occluded pixels. Then, the image-based refinements for the mismatched and occluded pixels are proposed to refine the classified errors. Finally, the image-based cross voting and a median filter are employed to complete the fine depth estimation. Experimental results show that the proposed semi-global stereo matching system achieves considerably accurate disparity maps with reasonable computation cost.

  20. Development and Long-Term Verification of Stereo Vision Sensor System for Controlling Safety at Railroad Crossing

    NASA Astrophysics Data System (ADS)

    Hosotani, Daisuke; Yoda, Ikushi; Hishiyama, Yoshiyuki; Sakaue, Katsuhiko

    Many people are involved in accidents every year at railroad crossings, but there is no suitable sensor for detecting pedestrians. We are therefore developing a ubiquitous stereo vision based system for ensuring safety at railroad crossings. In this system, stereo cameras are installed at the corners and are pointed toward the center of the railroad crossing to monitor the passage of people. The system determines automatically and in real-time whether anyone or anything is inside the railroad crossing, and whether anyone remains in the crossing. The system can be configured to automatically switch over to a surveillance monitor or automatically connect to an emergency brake system in the event of trouble. We have developed an original stereovision device and installed the remote controlled experimental system applied human detection algorithm in the commercial railroad crossing. Then we store and analyze image data and tracking data throughout two years for standardization of system requirement specification.

  1. An automated, open-source (NASA Ames Stereo Pipeline) workflow for mass production of high-resolution DEMs from commercial stereo satellite imagery: Application to mountain glacies in the contiguous US

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Arendt, A. A.; Whorton, E.; Riedel, J. L.; O'Neel, S.; Fountain, A. G.; Joughin, I. R.

    2016-12-01

    We adapted the open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline an automated processing workflow for 0.5 m GSD DigitalGlobe WorldView-1/2/3 and GeoEye-1 along-track and cross-track stereo image data. Output DEM products are posted at 2, 8, and 32 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5­ m where appropriate ground-control data are available, with observed standard deviation of 0.1-0.5 m for overlapping, co-registered DEMs (n=14,17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We have leveraged these resources to produce dense time series and regional mosaics for the Earth's ice sheets. We are now processing and analyzing all available 2008-2016 commercial stereo DEMs over glaciers and perennial snowfields in the contiguous US. We are using these records to study long-term, interannual, and seasonal volume change and glacier mass balance. This analysis will provide a new assessment of regional climate change, and will offer basin-scale analyses of snowpack evolution and snow/ice melt runoff for water resource applications.

  2. Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor

    PubMed Central

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016

  3. Stochastic performance modeling and evaluation of obstacle detectability with imaging range sensors

    NASA Technical Reports Server (NTRS)

    Matthies, Larry; Grandjean, Pierrick

    1993-01-01

    Statistical modeling and evaluation of the performance of obstacle detection systems for Unmanned Ground Vehicles (UGVs) is essential for the design, evaluation, and comparison of sensor systems. In this report, we address this issue for imaging range sensors by dividing the evaluation problem into two levels: quality of the range data itself and quality of the obstacle detection algorithms applied to the range data. We review existing models of the quality of range data from stereo vision and AM-CW LADAR, then use these to derive a new model for the quality of a simple obstacle detection algorithm. This model predicts the probability of detecting obstacles and the probability of false alarms, as a function of the size and distance of the obstacle, the resolution of the sensor, and the level of noise in the range data. We evaluate these models experimentally using range data from stereo image pairs of a gravel road with known obstacles at several distances. The results show that the approach is a promising tool for predicting and evaluating the performance of obstacle detection with imaging range sensors.

  4. The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.

    On 2013 April 11 active region 11719 was centered just west of the central meridian; at 06:55 UT, it erupted with an M6.5 X-ray flare and a moderately fast (∼800 km s{sup –1}) coronal mass ejection. This solar activity resulted in the acceleration of energetic ions to produce a solar energetic particle (SEP) event that was subsequently observed in energetic protons by both ACE and the two STEREO spacecraft. Heavy ions at energies ≥10 MeV nucleon{sup –1} were well measured by SEP sensors on ACE and STEREO-B, allowing the longitudinal dependence of the event composition to be studied. Both spacecraftmore » observed significant enhancements in the Fe/O ratio at 12-33 MeV nucleon{sup –1}, with the STEREO-B abundance ratio (Fe/O = 0.69) being similar to that of the large, Fe-rich SEP events observed in solar cycle 23. The footpoint of the magnetic field line connected to the ACE spacecraft was longitudinally farther from the flare site (77° versus 58°), and the measured Fe/O ratio at ACE was 0.48, 44% lower than at STEREO-B but still enhanced by more than a factor of 3.5 over average SEP abundances. Only upper limits were obtained for the {sup 3}He/{sup 4}He abundance ratio at both spacecraft. Low upper limits of 0.07% and 1% were obtained from the ACE sensors at 0.5-2 and 6.5-11.3 MeV nucleon{sup –1}, respectively, whereas the STEREO-B sensor provided an upper limit of 4%. These characteristics of high, but longitudinally variable, Fe/O ratios and low {sup 3}He/{sup 4}He ratios are not expected from either the direct flare contribution scenario or the remnant flare suprathermal material theory put forth to explain the Fe-rich SEP events of cycle 23.« less

  5. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  6. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  7. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  8. Object Detection using the Kinect

    DTIC Science & Technology

    2012-03-01

    Kinect camera and point cloud data from the Kinect’s structured light stereo system (figure 1). We obtain reasonable results using a single prototype...same manner we present in this report. For example, at Willow Garage , Steder uses a 3-D feature he developed to classify objects directly from point...detecting backpacks using the data available from the Kinect sensor. 4 3.1 Point Cloud Filtering Dense point clouds derived from stereo are notoriously

  9. Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision.

    PubMed

    Rumei Zhang; Hao Liu; Jianda Han

    2017-07-01

    Robust and efficient tracking of continuum robots is important for improving patient safety during space-confined minimally invasive surgery, however, it has been a particularly challenging task for researchers. In this paper, we present a novel tracking scheme by fusing fiber Bragg grating (FBG) shape sensing and stereo vision to estimate the position of continuum robots. Previous visual tracking easily suffers from the lack of robustness and leads to failure, while the FBG shape sensor can only reconstruct the local shape with integral cumulative error. The proposed fusion is anticipated to compensate for their shortcomings and improve the tracking accuracy. To verify its effectiveness, the robots' centerline is recognized by morphology operation and reconstructed by stereo matching algorithm. The shape obtained by FBG sensor is transformed into distal tip position with respect to the camera coordinate system through previously calibrated registration matrices. An experimental platform was set up and repeated tracking experiments were carried out. The accuracy estimated by averaging the absolute positioning errors between shape sensing and stereo vision is 0.67±0.65 mm, 0.41±0.25 mm, 0.72±0.43 mm for x, y and z, respectively. Results indicate that the proposed fusion is feasible and can be used for closed-loop control of continuum robots.

  10. Indoor calibration for stereoscopic camera STC: a new method

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Da Deppo, V.; Naletto, G.; Borrelli, D.; Dami, M.; Ficai Veltroni, I.; Cremonese, G.

    2017-11-01

    In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.

  11. Indoor Calibration for Stereoscopic Camera STC, A New Method

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Re, C.; Da Deppo, V.; Naletto, G.; Borrelli, D.; Dami, M.; Ficai Veltroni, I.; Cremonese, G.

    2014-10-01

    In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.

  12. Panoramic 3d Vision on the ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Paar, G.; Griffiths, A. D.; Barnes, D. P.; Coates, A. J.; Jaumann, R.; Oberst, J.; Gao, Y.; Ellery, A.; Li, R.

    The Pasteur payload on the ESA ExoMars Rover 2011/2013 is designed to search for evidence of extant or extinct life either on or up to ˜2 m below the surface of Mars. The rover will be equipped by a panoramic imaging system to be developed by a UK, German, Austrian, Swiss, Italian and French team for visual characterization of the rover's surroundings and (in conjunction with an infrared imaging spectrometer) remote detection of potential sample sites. The Panoramic Camera system consists of a wide angle multispectral stereo pair with 65° field-of-view (WAC; 1.1 mrad/pixel) and a high resolution monoscopic camera (HRC; current design having 59.7 µrad/pixel with 3.5° field-of-view) . Its scientific goals and operational requirements can be summarized as follows: • Determination of objects to be investigated in situ by other instruments for operations planning • Backup and Support for the rover visual navigation system (path planning, determination of subsequent rover positions and orientation/tilt within the 3d environment), and localization of the landing site (by stellar navigation or by combination of orbiter and ground panoramic images) • Geological characterization (using narrow band geology filters) and cartography of the local environments (local Digital Terrain Model or DTM). • Study of atmospheric properties and variable phenomena near the Martian surface (e.g. aerosol opacity, water vapour column density, clouds, dust devils, meteors, surface frosts,) 1 • Geodetic studies (observations of Sun, bright stars, Phobos/Deimos). The performance of 3d data processing is a key element of mission planning and scientific data analysis. The 3d Vision Team within the Panoramic Camera development Consortium reports on the current status of development, consisting of the following items: • Hardware Layout & Engineering: The geometric setup of the system (location on the mast & viewing angles, mutual mounting between WAC and HRC) needs to be optimized w.r.t. fields of view, ranging capability (distance measurement capability), data rate, necessity of calibration targets, hardware & data interfaces to other subsystems (e.g. navigation) as well as accuracy impacts of sensor design and compression ratio. • Geometric Calibration: The geometric properties of the individual cameras including various spectral filters, their mutual relations and the dynamic geometrical relation between rover frame and cameras - with the mast in between - are precisely described by a calibration process. During surface operations these relations will be continuously checked and updated by photogrammetric means, environmental influences such as temperature, pressure and the Mars gravity will be taken into account. • Surface Mapping: Stereo imaging using the WAC stereo pair is used for the 3d reconstruction of the rover vicinity to identify, locate and characterize potentially interesting spots (3-10 for an experimental cycle to be performed within approx. 10-30 sols). The HRC is used for high resolution imagery of these regions of interest to be overlaid on the 3d reconstruction and potentially refined by shape-from-shading techniques. A quick processing result is crucial for time critical operations planning, therefore emphasis is laid on the automatic behaviour and intrinsic error detection mechanisms. The mapping results will be continuously fused, updated and synchronized with the map used by the navigation system. The surface representation needs to take into account the different resolutions of HRC and WAC as well as uncommon or even unexpected image acquisition modes such as long range, wide baseline stereo from different rover positions or escape strategies in the case of loss of one of the stereo camera heads. • Panorama Mosaicking: The production of a high resolution stereoscopic panorama nowadays is state-of-art in computer vision. However, certain 2 challenges such as the need for access to accurate spherical coordinates, maintenance of radiometric & spectral response in various spectral bands, fusion between HRC and WAC, super resolution, and again the requirement of quick yet robust processing will add some complexity to the ground processing system. • Visualization for Operations Planning: Efficient operations planning is directly related to an ergonomic and well performing visualization. It is intended to adapt existing tools to an integrated visualization solution for the purpose of scientific site characterization, view planning and reachability mapping/instrument placement of pointing sensors (including the panoramic imaging system itself), and selection of regions of interest. The main interfaces between the individual components as well as the first version of a user requirement document are currently under definition. Beside the support for sensor layout and calibration the 3d vision system will consist of 2-3 main modules to be used during ground processing & utilization of the ExoMars Rover panoramic imaging system. 3

  13. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude at three sites in the deep Monterey Canyon axis. The surveys lines were spaced 1.5-m and were flown at speeds of 0.1-0.2-m/s while the sonars pinged at 3 Hz and the cameras operated at 0.5 Hz. All three low-altitude surveys are at ~2850 m depth and lie within the 1-m lateral resolution bathymetry of a 2009, 50-m altitude MBARI Mapping AUV survey. Site 1 has the greatest topography, being centered on a 15 m diameter, 7 m high flat boulder surrounded by an 80 m diameter, 6 m deep scour pit. Site 2 is located within a field of ~3-m high apparent sediment waves with ~80-m wavelengths. Site 0 is flat and includes chemosynthetic clam communities. At a 2 m altitude, the multibeam bathymetry swath is more than 7 m wide and the camera images are 4 m wide. Following navigation adjustment to match features in overlapping bathymetry swaths, we achieve 5-cm lateral resolution topography overlain with ~1-mm scale photographic imagery.

  14. Block Adjustment and Image Matching of WORLDVIEW-3 Stereo Pairs and Accuracy Evaluation

    NASA Astrophysics Data System (ADS)

    Zuo, C.; Xiao, X.; Hou, Q.; Li, B.

    2018-05-01

    WorldView-3, as a high-resolution commercial earth observation satellite, which is launched by Digital Global, provides panchromatic imagery of 0.31 m resolution. The positioning accuracy is less than 3.5 meter CE90 without ground control, which can use for large scale topographic mapping. This paper presented the block adjustment for WorldView-3 based on RPC model and achieved the accuracy of 1 : 2000 scale topographic mapping with few control points. On the base of stereo orientation result, this paper applied two kinds of image matching algorithm for DSM extraction: LQM and SGM. Finally, this paper compared the accuracy of the point cloud generated by the two image matching methods with the reference data which was acquired by an airborne laser scanner. The results showed that the RPC adjustment model of WorldView-3 image with small number of GCPs could satisfy the requirement of Chinese Surveying and Mapping regulations for 1 : 2000 scale topographic maps. And the point cloud result obtained through WorldView-3 stereo image matching had higher elevation accuracy, the RMS error of elevation for bare ground area is 0.45 m, while for buildings the accuracy can almost reach 1 meter.

  15. Rapid 2D-to-3D conversion

    NASA Astrophysics Data System (ADS)

    Harman, Philip V.; Flack, Julien; Fox, Simon; Dowley, Mark

    2002-05-01

    The conversion of existing 2D images to 3D is proving commercially viable and fulfills the growing need for high quality stereoscopic images. This approach is particularly effective when creating content for the new generation of autostereoscopic displays that require multiple stereo images. The dominant technique for such content conversion is to develop a depth map for each frame of 2D material. The use of a depth map as part of the 2D to 3D conversion process has a number of desirable characteristics: 1. The resolution of the depth may be lower than that of the associated 2D image. 2. It can be highly compressed. 3. 2D compatibility is maintained. 4. Real time generation of stereo, or multiple stereo pairs, is possible. The main disadvantage has been the laborious nature of the manual conversion techniques used to create depth maps from existing 2D images, which results in a slow and costly process. An alternative, highly productive technique has been developed based upon the use of Machine Leaning Algorithm (MLAs). This paper describes the application of MLAs to the generation of depth maps and presents the results of the commercial application of this approach.

  16. Virtual integral holography

    NASA Astrophysics Data System (ADS)

    Venolia, Dan S.; Williams, Lance

    1990-08-01

    A range of stereoscopic display technologies exist which are no more intrusive, to the user, than a pair of spectacles. Combining such a display system with sensors for the position and orientation of the user's point-of-view results in a greatly enhanced depiction of three-dimensional data. As the point of view changes, the stereo display channels are updated in real time. The face of a monitor or display screen becomes a window on a three-dimensional scene. Motion parallax naturally conveys the placement and relative depth of objects in the field of view. Most of the advantages of "head-mounted display" technology are achieved with a less cumbersome system. To derive the full benefits of stereo combined with motion parallax, both stereo channels must be updated in real time. This may limit the size and complexity of data bases which can be viewed on processors of modest resources, and restrict the use of additional three-dimensional cues, such as texture mapping, depth cueing, and hidden surface elimination. Effective use of "full 3D" may still be undertaken in a non-interactive mode. Integral composite holograms have often been advanced as a powerful 3D visualization tool. Such a hologram is typically produced from a film recording of an object on a turntable, or a computer animation of an object rotating about one axis. The individual frames of film are multiplexed, in a composite hologram, in such a way as to be indexed by viewing angle. The composite may be produced as a cylinder transparency, which provides a stereo view of the object as if enclosed within the cylinder, which can be viewed from any angle. No vertical parallax is usually provided (this would require increasing the dimensionality of the multiplexing scheme), but the three dimensional image is highly resolved and easy to view and interpret. Even a modest processor can duplicate the effect of such a precomputed display, provided sufficient memory and bus bandwidth. This paper describes the components of a stereo display system with user point-of-view tracking for interactive 3D, and a digital realization of integral composite display which we term virtual integral holography. The primary drawbacks of holographic display - film processing turnaround time, and the difficulties of displaying scenes in full color -are obviated, and motion parallax cues provide easy 3D interpretation even for users who cannot see in stereo.

  17. Mobile Robot Self-Localization by Matching Range Maps Using a Hausdorff Measure

    NASA Technical Reports Server (NTRS)

    Olson, C. F.

    1997-01-01

    This paper examines techniques for a mobile robot to perform self-localization in natural terrain by comparing a dense range map computed from stereo imagery to a range map in a known frame of reference.

  18. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  19. 3D digital image correlation using single color camera pseudo-stereo system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang

    2017-10-01

    Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.

  20. Developments in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead of the data being used mostly in the digital mapping systems operated in-house by mapping organisations. These various new hardware and software developments are reported upon and analysed in this Invited Paper presented to ISPRS Commission II at the 1988 Kyoto Congress.

  1. A Comparative Study of Radar Stereo and Interferometry for DEM Generation

    NASA Astrophysics Data System (ADS)

    Gelautz, M.; Paillou, P.; Chen, C. W.; Zebker, H. A.

    2004-06-01

    In this experiment, we derive and compare radar stereo and interferometric elevation models (DEMs) of a study site in Djibouti, East Africa. As test data, we use a Radarsat stereo pair and ERS-2 and Radarsat interferometric data. Comparison of the reconstructed DEMs with a SPOT reference DEM shows that in regions of high coherence the DEMs produced by interferometry are of much better quality than the stereo result. However, the interferometric error histograms also show some pronounced outliers due to decorrelation and phase unwrapping problems on forested mountain slopes. The more robust stereo result is able to capture the general terrain shape, but finer surface details are lost. A fusion experiment demonstrates that merging the stereoscopic and interferometric DEMs by utilizing coherence- derived weights can significantly improve the accuracy of the computed elevation maps.

  2. Prototype tactile feedback system for examination by skin touch.

    PubMed

    Lee, O; Lee, K; Oh, C; Kim, K; Kim, M

    2014-08-01

    Diagnosis of conditions such as psoriasis and atopic dermatitis, in the case of induration, involves palpating the infected area via hands and then selecting a ratings score. However, the score is determined based on the tester's experience and standards, making it subjective. To provide tactile feedback on the skin, we developed a prototype tactile feedback system to simulate skin wrinkles with PHANToM OMNI. To provide the user with tactile feedback on skin wrinkles, a visual and haptic Augmented Reality system was developed. First, a pair of stereo skin images obtained by a stereo camera generates a disparity map of skin wrinkles. Second, the generated disparity map is sent to an implemented tactile rendering algorithm that computes a reaction force according to the user's interaction with the skin image. We first obtained a stereo image of skin wrinkles from the in vivo stereo imaging system, which has a baseline of 50.8 μm, and obtained the disparity map with a graph cuts algorithm. The left image is displayed on the monitor to enable the user to recognize the location visually. The disparity map of the skin wrinkle image sends skin wrinkle information as a tactile response to the user through a haptic device. We successfully developed a tactile feedback system for virtual skin wrinkle simulation by means of a commercialized haptic device that provides the user with a single point of contact to feel the surface roughness of a virtual skin sample. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. PRoViScout: a planetary scouting rover demonstrator

    NASA Astrophysics Data System (ADS)

    Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos

    2012-01-01

    Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.

  4. Stereo and IMU-Assisted Visual Odometry for Small Robots

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This software performs two functions: (1) taking stereo image pairs as input, it computes stereo disparity maps from them by cross-correlation to achieve 3D (three-dimensional) perception; (2) taking a sequence of stereo image pairs as input, it tracks features in the image sequence to estimate the motion of the cameras between successive image pairs. A real-time stereo vision system with IMU (inertial measurement unit)-assisted visual odometry was implemented on a single 750 MHz/520 MHz OMAP3530 SoC (system on chip) from TI (Texas Instruments). Frame rates of 46 fps (frames per second) were achieved at QVGA (Quarter Video Graphics Array i.e. 320 240), or 8 fps at VGA (Video Graphics Array 640 480) resolutions, while simultaneously tracking up to 200 features, taking full advantage of the OMAP3530's integer DSP (digital signal processor) and floating point ARM processors. This is a substantial advancement over previous work as the stereo implementation produces 146 Mde/s (millions of disparities evaluated per second) in 2.5W, yielding a stereo energy efficiency of 58.8 Mde/J, which is 3.75 better than prior DSP stereo while providing more functionality.

  5. WASS: an open-source stereo processing pipeline for sea waves 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Bergamasco, Filippo; Benetazzo, Alvise; Torsello, Andrea; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community. In fact, recent advances of both computer vision algorithms and CPU processing power can now allow the study of the spatio-temporal wave fields with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner so that the implementation of a 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well-tested software package that automates the steps from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS, a completely Open-Source stereo processing pipeline for sea waves 3D reconstruction, available at http://www.dais.unive.it/wass/. Our tool completely automates the recovery of dense point clouds from stereo images by providing three main functionalities. First, WASS can automatically recover the extrinsic parameters of the stereo rig (up to scale) so that no delicate calibration has to be performed on the field. Second, WASS implements a fast 3D dense stereo reconstruction procedure so that an accurate 3D point cloud can be computed from each stereo pair. We rely on the well-consolidated OpenCV library both for the image stereo rectification and disparity map recovery. Lastly, a set of 2D and 3D filtering techniques both on the disparity map and the produced point cloud are implemented to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface (examples are sun-glares, large white-capped areas, fog and water areosol, etc). Developed to be as fast as possible, WASS can process roughly four 5 MPixel stereo frames per minute (on a consumer i7 CPU) to produce a sequence of outlier-free point clouds with more than 3 million points each. Finally, it comes with an easy to use user interface and designed to be scalable on multiple parallel CPUs.

  6. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  7. Estimation of Tree Position and STEM Diameter Using Simultaneous Localization and Mapping with Data from a Backpack-Mounted Laser Scanner

    NASA Astrophysics Data System (ADS)

    Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.

    2017-10-01

    A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.

  8. NASA Tech Briefs, July 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics: Optoelectronic Sensor System for Guidance in Docking; Hybrid Piezoelectric/Fiber-Optic Sensor Sheets; Multisensor Arrays for Greater Reliability and Accuracy; Integrated-Optic Oxygen Sensors; Ka-Band Autonomous Formation Flying Sensor; CMOS VLSI Active-Pixel Sensor for Tracking; Lightweight, Self-Deploying Foam Antenna Structures; Electrically Small Microstrip Quarter-Wave Monopole Antennas; A 2-to-28-MHz Phase-Locked Loop; Portable Electromyograph; Open-Source Software for Modeling of Nanoelectronic Devices; Software for Generating Strip Maps from SAR Data; Calibration Software for use with Jurassicprok; Software for Probabilistic Risk Reduction; Software Processes SAR Motion-Measurement Data; Improved Method of Purifying Carbon Nanotubes; Patterned Growth of Carbon Nanotubes or Nanofibers; Lightweight, Rack-Mountable Composite Cold Plate/Shelves; SiC-Based Miniature High-Temperature Cantilever Anemometer; Inlet Housing for a Partial-Admission Turbine; Lightweight Thermoformed Structural Components and Optics; Growing High-Quality InAs Quantum Dots for Infrared Lasers; Selected Papers on Protoplanetary Disks; Module for Oxygenating Water without Generating Bubbles; Coastal Research Imaging Spectrometer; Rapid Switching and Modulation by use of Coupled VCSELs; Laser-Induced-Fluorescence Photogrammetry and Videogrammetry; Laboratory Apparatus Generates Dual-Species Cold Atomic Beam; Laser Ablation of Materials for Propulsion of Spacecraft; Small Active Radiation Monitor; Hybrid Image-Plane/Stereo Manipulation; Partitioning a Gridded Rectangle into Smaller Rectangles; Digital Radar-Signal Processors Implemented in FPGAs; Part 1 of a Computational Study of a Drop-Laden Mixing Layer; and Some Improvements in Signal-Conditioning Circuits.

  9. The design and implementation of postprocessing for depth map on real-time extraction system.

    PubMed

    Tang, Zhiwei; Li, Bin; Li, Huosheng; Xu, Zheng

    2014-01-01

    Depth estimation becomes the key technology to resolve the communications of the stereo vision. We can get the real-time depth map based on hardware, which cannot implement complicated algorithm as software, because there are some restrictions in the hardware structure. Eventually, some wrong stereo matching will inevitably exist in the process of depth estimation by hardware, such as FPGA. In order to solve the problem a postprocessing function is designed in this paper. After matching cost unique test, the both left-right and right-left consistency check solutions are implemented, respectively; then, the cavities in depth maps can be filled by right depth values on the basis of right-left consistency check solution. The results in the experiments have shown that the depth map extraction and postprocessing function can be implemented in real time in the same system; what is more, the quality of the depth maps is satisfactory.

  10. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    NASA Technical Reports Server (NTRS)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  11. Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury

    NASA Astrophysics Data System (ADS)

    Simioni, Emanuele; Da Deppo, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, Gabriele

    2016-07-01

    The ESA-JAXA mission BepiColombo that will be launched in 2018 is devoted to the observation of Mercury, the innermost planet of the Solar System. SIMBIOSYS is its remote sensing suite, which consists of three instruments: the High Resolution Imaging Channel (HRIC), the Visible and Infrared Hyperspectral Imager (VIHI), and the Stereo Imaging Channel (STC). The latter will provide the global three dimensional reconstruction of the Mercury surface, and it represents the first push-frame stereo camera on board of a space satellite. Based on a new telescope design, STC combines the advantages of a compact single detector camera to the convenience of a double direction acquisition system; this solution allows to minimize mass and volume performing a push-frame imaging acquisition. The shared camera sensor is divided in six portions: four are covered with suitable filters; the others, one looking forward and one backwards with respect to nadir direction, are covered with a panchromatic filter supplying stereo image pairs of the planet surface. The main STC scientific requirements are to reconstruct in 3D the Mercury surface with a vertical accuracy better than 80 m and performing a global imaging with a grid size of 65 m along-track at the periherm. Scope of this work is to present the on-ground geometric calibration pipeline for this original instrument. The selected STC off-axis configuration forced to develop a new distortion map model. Additional considerations are connected to the detector, a Si-Pin hybrid CMOS, which is characterized by a high fixed pattern noise. This had a great impact in pre-calibration phases compelling to use a not common approach to the definition of the spot centroids in the distortion calibration process. This work presents the results obtained during the calibration of STC concerning the distortion analysis for three different temperatures. These results are then used to define the corresponding distortion model of the camera.

  12. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  13. SAD-Based Stereo Matching Using FPGAs

    NASA Astrophysics Data System (ADS)

    Ambrosch, Kristian; Humenberger, Martin; Kubinger, Wilfried; Steininger, Andreas

    In this chapter we present a field-programmable gate array (FPGA) based stereo matching architecture. This architecture uses the sum of absolute differences (SAD) algorithm and is targeted at automotive and robotics applications. The disparity maps are calculated using 450×375 input images and a disparity range of up to 150 pixels. We discuss two different implementation approaches for the SAD and analyze their resource usage. Furthermore, block sizes ranging from 3×3 up to 11×11 and their impact on the consumed logic elements as well as on the disparity map quality are discussed. The stereo matching architecture enables a frame rate of up to 600 fps by calculating the data in a highly parallel and pipelined fashion. This way, a software solution optimized by using Intel's Open Source Computer Vision Library running on an Intel Pentium 4 with 3 GHz clock frequency is outperformed by a factor of 400.

  14. Lineaments on Skylab photographs: Detection, mapping, and hydrologic significance in central Tennessee

    NASA Technical Reports Server (NTRS)

    Moore, G. K.

    1976-01-01

    An investigation was carried out to determine the feasibility of mapping lineaments on SKYLAB photographs of central Tennessee and to determine the hydrologic significance of these lineaments, particularly as concerns the occurrence and productivity of ground water. Sixty-nine percent more lineaments were found on SKYLAB photographs by stereo viewing than by projection viewing, but longer lineaments were detected by projection viewing. Most SKYLAB lineaments consisted of topographic depressions and they followed or paralleled the streams. The remainder were found by vegetation alinements and the straight sides of ridges. Test drilling showed that the median yield of wells located on SKYLAB lineaments were about six times the median yield of wells located by random drilling. The best single detection method, in terms of potential savings, was stereo viewing. Larger savings might be achieved by locating wells on lineaments detected by both stereo viewing and projection.

  15. Real-time stereo matching using orthogonal reliability-based dynamic programming.

    PubMed

    Gong, Minglun; Yang, Yee-Hong

    2007-03-01

    A novel algorithm is presented in this paper for estimating reliable stereo matches in real time. Based on the dynamic programming-based technique we previously proposed, the new algorithm can generate semi-dense disparity maps using as few as two dynamic programming passes. The iterative best path tracing process used in traditional dynamic programming is replaced by a local minimum searching process, making the algorithm suitable for parallel execution. Most computations are implemented on programmable graphics hardware, which improves the processing speed and makes real-time estimation possible. The experiments on the four new Middlebury stereo datasets show that, on an ATI Radeon X800 card, the presented algorithm can produce reliable matches for 60% approximately 80% of pixels at the rate of 10 approximately 20 frames per second. If needed, the algorithm can be configured for generating full density disparity maps.

  16. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  17. Optical designs for the Mars '03 rover cameras

    NASA Astrophysics Data System (ADS)

    Smith, Gregory H.; Hagerott, Edward C.; Scherr, Lawrence M.; Herkenhoff, Kenneth E.; Bell, James F.

    2001-12-01

    In 2003, NASA is planning to send two robotic rover vehicles to explore the surface of Mars. The spacecraft will land on airbags in different, carefully chosen locations. The search for evidence indicating conditions favorable for past or present life will be a high priority. Each rover will carry a total of ten cameras of five various types. There will be a stereo pair of color panoramic cameras, a stereo pair of wide- field navigation cameras, one close-up camera on a movable arm, two stereo pairs of fisheye cameras for hazard avoidance, and one Sun sensor camera. This paper discusses the lenses for these cameras. Included are the specifications, design approaches, expected optical performances, prescriptions, and tolerances.

  18. Geologic Investigations in the Basin and Range of Nevada Using Skylab/EREP Data

    NASA Technical Reports Server (NTRS)

    Quade, J. G. (Principal Investigator); Trexler, D. T.

    1975-01-01

    The author has identified the following significant results. Working from the S190A photography at a scale of 1:702,000 and comparing the results with existing geologic maps has suggested that the larger scale structural features can be mapped and related to regional trends which provide an overall view not available at lower altitudes. All S190B in-house coverage was in stereo. The stereo capability was helpful in resolving problems relating to elevations and attitude of bedding, etc., but the greatest single contribution was the resolution capability.

  19. Stratigraphic Mapping of Intra-Crater Layered Deposits in Arabia Terra from High-Resolution Imaging and Stereo Topography

    NASA Astrophysics Data System (ADS)

    Annex, A. M.; Lewis, K. W.; Edwards, C. S.

    2017-12-01

    The Arabia Terra region of Mars, located in the mid-latitudes, hosts a number of crater basins with exposed sedimentary layers and buttes. Our work builds upon previous studies of these sites that suggest that the layers are formed of weakly lithified aeolian material with quasi-periodic expressions explained by changes in planetary orbital elements during formation (Lewis and Aharonson, 2014; Cadieux and Kah, 2015; Stack et al., 2013). In an effort to better understand differences in lateral continuity of these layers, both between and within basins, an extensive mapping effort was conducted on several sites in Arabia Terra with HiRISE stereo targets. Digital terrain models produced using the Ames Stereo Pipeline were mapped to derive bedding plane positions and orientations for each stratum using linear regression. Bed thicknesses were derived from differences in dip-corrected elevation between successive strata. Our study includes additional independent mapping within craters analyzed in previous studies, and expands mapping of these deposits to several new craters in the region unique to this effort. Our sample size in this study is large, including over 700 individually measured strata from multiple sections within each crater. Although bed thicknesses are generally tightly distributed around 12 meters, any changes within a sequence could represent variations in either the dominant forcing factors controlling deposition and/or changes in sedimentation rate. If craters contain correlative sequences, these types of changes could serve as marker horizons across the region with further mapping.

  20. Multi-Sensor Mud Detection

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  1. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  2. Attenuating Stereo Pixel-Locking via Affine Window Adaptation

    NASA Technical Reports Server (NTRS)

    Stein, Andrew N.; Huertas, Andres; Matthies, Larry H.

    2006-01-01

    For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as 'pixel-locking,' which produces artificially-peaked histograms of sub-pixel disparity. These peaks correspond to the introduction of erroneous ripples or waves in the 3D reconstruction of truly Rat surfaces. Since stereo vision is a common input modality for autonomous vehicles, these inaccuracies can pose a problem for safe, reliable navigation. This paper proposes a new method for sub-pixel stereo disparity estimation, based on ideas from Lucas-Kanade tracking and optical flow, which substantially reduces the pixel-locking effect. In addition, it has the ability to correct much larger initial disparity errors than previous approaches and is more general as it applies not only to the ground plane.

  3. Research on three-dimensional reconstruction method based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Jinlin; Wang, Zhihui; Wang, Minjun

    2018-03-01

    As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.

  4. Quasi-Epipolar Resampling of High Resolution Satellite Stereo Imagery for Semi Global Matching

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.

    2015-12-01

    Semi-global matching is a well-known stereo matching algorithm in photogrammetric and computer vision society. Epipolar images are supposed as input of this algorithm. Epipolar geometry of linear array scanners is not a straight line as in case of frame camera. Traditional epipolar resampling algorithms demands for rational polynomial coefficients (RPCs), physical sensor model or ground control points. In this paper we propose a new solution for epipolar resampling method which works without the need for these information. In proposed method, automatic feature extraction algorithms are employed to generate corresponding features for registering stereo pairs. Also original images are divided into small tiles. In this way by omitting the need for extra information, the speed of matching algorithm increased and the need for high temporal memory decreased. Our experiments on GeoEye-1 stereo pair captured over Qom city in Iran demonstrates that the epipolar images are generated with sub-pixel accuracy.

  5. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo.

    PubMed

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-03-02

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  6. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    PubMed Central

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  7. Investigation of Terrain Analysis and Classification Methods for Ground Vehicles

    DTIC Science & Technology

    2012-08-27

    exteroceptive terrain classifier takes exteroceptive sensor data (here, color stereo images of the terrain) as its input and returns terrain class...Mishkin & Laubach, 2006), the rover cannot safely travel beyond the distance it can image with its cameras, which has been as little as 15 meters or...field of view roughly 44°×30°, capturing pairs of color images at 640×480 pixels each (Videre Design, 2001). Range data were extracted from the stereo

  8. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5 m where appropriate ground-control data are available, with observed standard deviation of ˜0.1-0.5 m for overlapping, co-registered DEMs (n = 14, 17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  9. Geocoding and stereo display of tropical forest multisensor datasets

    NASA Technical Reports Server (NTRS)

    Welch, R.; Jordan, T. R.; Luvall, J. C.

    1990-01-01

    Concern about the future of tropical forests has led to a demand for geocoded multisensor databases that can be used to assess forest structure, deforestation, thermal response, evapotranspiration, and other parameters linked to climate change. In response to studies being conducted at the Braulino Carrillo National Park, Costa Rica, digital satellite and aircraft images recorded by Landsat TM, SPOT HRV, Thermal Infrared Multispectral Scanner, and Calibrated Airborne Multispectral Scanner sensors were placed in register using the Landsat TM image as the reference map. Despite problems caused by relief, multitemporal datasets, and geometric distortions in the aircraft images, registration was accomplished to within + or - 20 m (+ or - 1 data pixel). A digital elevation model constructed from a multisensor Landsat TM/SPOT stereopair proved useful for generating perspective views of the rugged, forested terrain.

  10. Software defined multi-spectral imaging for Arctic sensor networks

    NASA Astrophysics Data System (ADS)

    Siewert, Sam; Angoth, Vivek; Krishnamurthy, Ramnarayan; Mani, Karthikeyan; Mock, Kenrick; Singh, Surjith B.; Srivistava, Saurav; Wagner, Chris; Claus, Ryan; Vis, Matthew Demi

    2016-05-01

    Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop-in-place installations in the Arctic. The prototype selected will be field tested in Alaska in the summer of 2016.

  11. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  12. Real-time photorealistic stereoscopic rendering of fire

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  13. Using digital photogrammetry to constrain the segmentation of Paleocene volcanic marker horizons within the Nuussuaq basin

    NASA Astrophysics Data System (ADS)

    Vest Sørensen, Erik; Pedersen, Asger Ken

    2017-04-01

    Digital photogrammetry is used to map important volcanic marker horizons within the Nuussuaq Basin, West Greenland. We use a combination of oblique stereo images acquired from helicopter using handheld cameras and traditional aerial photographs. The oblique imagery consists of scanned stereo photographs acquired with analogue cameras in the 90´ties and newer digital images acquired with high resolution digital consumer cameras. Photogrammetric software packages SOCET SET and 3D Stereo Blend are used for controlling the seamless movement between stereo-models at different scales and viewing angles and the mapping is done stereoscopically using 3d monitors and the human stereopsis. The approach allows us to map in three dimensions three characteristic marker horizons (Tunoqqu, Kûgánguaq and Qordlortorssuaq Members) within the picritic Vaigat Formation. They formed toward the end of the same volcanic episode and are believed to be closely related in time. They formed an approximately coherent sub-horizontal surface, the Tunoqqu Surface that at the time of formation covered more than 3100 km2 on Disko and Nuussuaq. Our mapping shows that the Tunoqqu Surface is now segmented into areas of different elevation and structural trend as a result of later tectonic deformation. This is most notable on Nuussuaq where the western part is elevated and in parts highly faulted. In western Nuussuaq the surface has been uplifted and faulted so that it now forms an asymmetric anticline. The flanks of the anticline are coincident with two N-S oriented pre-Tunoqqu extensional faults. The deformation of the Tunoqqu surface could be explained by inversion of older extensional faults due to an overall E-W directed compressive regime in the late Paleocene.

  14. Stereo reconstruction from multiperspective panoramas.

    PubMed

    Li, Yin; Shum, Heung-Yeung; Tang, Chi-Keung; Szeliski, Richard

    2004-01-01

    A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.

  15. Radargrammetric DSM generation in mountainous areas through adaptive-window least squares matching constrained by enhanced epipolar geometry

    NASA Astrophysics Data System (ADS)

    Dong, Yuting; Zhang, Lu; Balz, Timo; Luo, Heng; Liao, Mingsheng

    2018-03-01

    Radargrammetry is a powerful tool to construct digital surface models (DSMs) especially in heavily vegetated and mountainous areas where SAR interferometry (InSAR) technology suffers from decorrelation problems. In radargrammetry, the most challenging step is to produce an accurate disparity map through massive image matching, from which terrain height information can be derived using a rigorous sensor orientation model. However, precise stereoscopic SAR (StereoSAR) image matching is a very difficult task in mountainous areas due to the presence of speckle noise and dissimilar geometric/radiometric distortions. In this article, an adaptive-window least squares matching (AW-LSM) approach with an enhanced epipolar geometric constraint is proposed to robustly identify homologous points after compensation for radiometric discrepancies and geometric distortions. The matching procedure consists of two stages. In the first stage, the right image is re-projected into the left image space to generate epipolar images using rigorous imaging geometries enhanced with elevation information extracted from the prior DEM data e.g. SRTM DEM instead of the mean height of the mapped area. Consequently, the dissimilarities in geometric distortions between the left and right images are largely reduced, and the residual disparity corresponds to the height difference between true ground surface and the prior DEM. In the second stage, massive per-pixel matching between StereoSAR epipolar images identifies the residual disparity. To ensure the reliability and accuracy of the matching results, we develop an iterative matching scheme in which the classic cross correlation matching is used to obtain initial results, followed by the least squares matching (LSM) to refine the matching results. An adaptively resizing search window strategy is adopted during the dense matching step to help find right matching points. The feasibility and effectiveness of the proposed approach is demonstrated using Stripmap and Spotlight mode TerraSAR-X stereo data pairs covering Mount Song in central China. Experimental results show that the proposed method can provide a robust and effective matching tool for radargrammetry in mountainous areas.

  16. The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.

    2014-04-01

    The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.

  17. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites

    NASA Astrophysics Data System (ADS)

    Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; Elgner, S.; Erkeling, G.; Fueten, F.; Hiesinger, H.; Hoekzema, N. M.; Kersten, E.; Loizeau, D.; Matz, K.-D.; McGuire, P. C.; Mertens, V.; Michael, G.; Pasewaldt, A.; Pinet, P.; Preusker, F.; Reiss, D.; Roatsch, T.; Schmidt, R.; Scholten, F.; Spiegel, M.; Stesky, R.; Tirsch, D.; van Gasselt, S.; Walter, S.; Wählisch, M.; Willner, K.

    2016-07-01

    The High Resolution Stereo Camera (HRSC) of ESA's Mars Express is designed to map and investigate the topography of Mars. The camera, in particular its Super Resolution Channel (SRC), also obtains images of Phobos and Deimos on a regular basis. As HRSC is a push broom scanning instrument with nine CCD line detectors mounted in parallel, its unique feature is the ability to obtain along-track stereo images and four colors during a single orbital pass. The sub-pixel accuracy of 3D points derived from stereo analysis allows producing DTMs with grid size of up to 50 m and height accuracy on the order of one image ground pixel and better, as well as corresponding orthoimages. Such data products have been produced systematically for approximately 40% of the surface of Mars so far, while global shape models and a near-global orthoimage mosaic could be produced for Phobos. HRSC is also unique because it bridges between laser altimetry and topography data derived from other stereo imaging instruments, and provides geodetic reference data and geological context to a variety of non-stereo datasets. This paper, in addition to an overview of the status and evolution of the experiment, provides a review of relevant methods applied for 3D reconstruction and mapping, and respective achievements. We will also review the methodology of specific approaches to science analysis based on joint analysis of DTM and orthoimage information, or benefitting from high accuracy of co-registration between multiple datasets, such as studies using multi-temporal or multi-angular observations, from the fields of geomorphology, structural geology, compositional mapping, and atmospheric science. Related exemplary results from analysis of HRSC data will be discussed. After 10 years of operation, HRSC covered about 70% of the surface by panchromatic images at 10-20 m/pixel, and about 97% at better than 100 m/pixel. As the areas with contiguous coverage by stereo data are increasingly abundant, we also present original data related to the analysis of image blocks and address methodology aspects of newly established procedures for the generation of multi-orbit DTMs and image mosaics. The current results suggest that multi-orbit DTMs with grid spacing of 50 m can be feasible for large parts of the surface, as well as brightness-adjusted image mosaics with co-registration accuracy of adjacent strips on the order of one pixel, and at the highest image resolution available. These characteristics are demonstrated by regional multi-orbit data products covering the MC-11 (East) quadrangle of Mars, representing the first prototype of a new HRSC data product level.

  18. Temporal consistent depth map upscaling for 3DTV

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Sjöström, Mârten; Olsson, Roger

    2014-03-01

    The ongoing success of three-dimensional (3D) cinema fuels increasing efforts to spread the commercial success of 3D to new markets. The possibilities of a convincing 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Acquiring scene depth information is a fundamental task in computer vision, yet complex and error-prone. Dedicated range sensors, such as the Time­ of-Flight camera (ToF), can simplify the scene depth capture process and overcome shortcomings of traditional solutions, such as active or passive stereo analysis. Admittedly, currently available ToF sensors deliver only a limited spatial resolution. However, sophisticated depth upscaling approaches use texture information to match depth and video resolution. At Electronic Imaging 2012 we proposed an upscaling routine based on error energy minimization, weighted with edge information from an accompanying video source. In this article we develop our algorithm further. By adding temporal consistency constraints to the upscaling process, we reduce disturbing depth jumps and flickering artifacts in the final 3DTV content. Temporal consistency in depth maps enhances the 3D experience, leading to a wider acceptance of 3D media content. More content in better quality can boost the commercial success of 3DTV.

  19. Design and Implementation of a Novel Portable 360° Stereo Camera System with Low-Cost Action Cameras

    NASA Astrophysics Data System (ADS)

    Holdener, D.; Nebiker, S.; Blaser, S.

    2017-11-01

    The demand for capturing indoor spaces is rising with the digitalization trend in the construction industry. An efficient solution for measuring challenging indoor environments is mobile mapping. Image-based systems with 360° panoramic coverage allow a rapid data acquisition and can be processed to georeferenced 3D images hosted in cloud-based 3D geoinformation services. For the multiview stereo camera system presented in this paper, a 360° coverage is achieved with a layout consisting of five horizontal stereo image pairs in a circular arrangement. The design is implemented as a low-cost solution based on a 3D printed camera rig and action cameras with fisheye lenses. The fisheye stereo system is successfully calibrated with accuracies sufficient for the applied measurement task. A comparison of 3D distances with reference data delivers maximal deviations of 3 cm on typical distances in indoor space of 2-8 m. Also the automatic computation of coloured point clouds from the stereo pairs is demonstrated.

  20. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  1. Improving depth maps of plants by using a set of five cameras

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Adam L.

    2015-03-01

    Obtaining high-quality depth maps and disparity maps with the use of a stereo camera is a challenging task for some kinds of objects. The quality of these maps can be improved by taking advantage of a larger number of cameras. The research on the usage of a set of five cameras to obtain disparity maps is presented. The set consists of a central camera and four side cameras. An algorithm for making disparity maps called multiple similar areas (MSA) is introduced. The algorithm was specially designed for the set of five cameras. Experiments were performed with the MSA algorithm and the stereo matching algorithm based on the sum of sum of squared differences (sum of SSD, SSSD) measure. Moreover, the following measures were included in the experiments: sum of absolute differences (SAD), zero-mean SAD (ZSAD), zero-mean SSD (ZSSD), locally scaled SAD (LSAD), locally scaled SSD (LSSD), normalized cross correlation (NCC), and zero-mean NCC (ZNCC). Algorithms presented were applied to images of plants. Making depth maps of plants is difficult because parts of leaves are similar to each other. The potential usability of the described algorithms is especially high in agricultural applications such as robotic fruit harvesting.

  2. Three-dimensional digital mapping of the optic nerve head cupping in glaucoma

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Ramirez, Manuel; Morales, Jose

    1992-08-01

    Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.

  3. Joint histogram-based cost aggregation for stereo matching.

    PubMed

    Min, Dongbo; Lu, Jiangbo; Do, Minh N

    2013-10-01

    This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.

  4. Comparison of different "along the track" high resolution satellite stereo-pair for DSM extraction

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.

    2013-10-01

    The possibility to create DEM from stereo pairs is based on the Pythagoras theorem and on the principles of photogrammetry that are applied to aerial photographs stereo pairs for the last seventy years. The application of these principles to digital satellite stereo data was inherent in the first satellite missions. During the last decades the satellite stereo-pairs were acquired across the track in different days (SPOT, ERS etc.). More recently the same-date along the track stereo-data acquisition seems to prevail (Terra ASTER, SPOT5 HRS, Cartosat, ALOS Prism) as it reduces the radiometric image variations (refractive effects, sun illumination, temporal changes) and thus increases the correlation success rate in any image matching.Two of the newest satellite sensors with stereo collection capability is Cartosat and ALOS Prism. Both of them acquire stereopairs along the track with a 2,5m spatial resolution covering areas of 30X30km. In this study we compare two different satellite stereo-pair collected along the track for DSM creation. The first one is created from a Cartosat stereopair and the second one from an ALOS PRISM triplet. The area of study is situated in Chalkidiki Peninsula, Greece. Both DEMs were created using the same ground control points collected with a Differential GPS. After a first control for random or systematic errors a statistical analysis was done. Points of certified elevation have been used to estimate the accuracy of these two DSMs. The elevation difference between the different DEMs was calculated. 2D RMSE, correlation and the percentile value were also computed and the results are presented.

  5. Mapping the Topography of Europa: The Galileo-Clipper Story

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    2014-11-01

    The renewed effort to return to Europa for global mapping and landing site selection raises the question: What do we know about Europa topography and how do we know it? The question relates to geologic questions of feature formation, to the issue of ice shell thickness, mechanical strength, and internal activity, and to landing hazards. Our topographic data base for Europa is sparse indeed (no global map is possible), but we are not without hope. Two prime methods have been employed in our mapping program are stereo image and shape-from-shading (PC) slope analyses. On Europa, we are fortunate that many PC-DEM areas are also controlled by stereo-DEMs, mitigating the long-wavelength uncertainties in the PC data. Due to the Galileo antenna malfunction, mapping is limited to no more than 20% of the surface, far less than for any of the inner planets. Thirty-seven individual mapping sites have been identified, scattered across the globe, and all have now been mapped. Excellent stereo mapping is possible at all Sun angles, if resolution is below ~350 m. PC mapping is possible at Sun angles greater than ~60 degrees, if emission angles are less than ~40 degrees. The only extended contiguous areas of topographic mapping larger than 150 km across are the two narrow REGMAP mapping mosaics extending pole-to-pole along longitudes 85 and 240 W. These are PC-only and subject to long-wavelength uncertainties and errors, especially in the north/south where oblique imaging produces layover. Key findings include the mean slopes of individual terrain types (Schenk, 2009), topography across chaos (Schenk and Pappalardo, 2004), topography of craters and inferences for ice shell thickness (Schenk, 2002; Schenk and Turtle, 2009), among others. A key discovery, despite the limited data, is that Europan terrains rarely have topographic amplitude greater than 250 meters, but that regionally Europa has imprinted on it topographic amplitudes of +/- 1 km, in the form of raised plateaus and bowed-down arcuate troughs. Such amplitudes imply that the ice shell is capable of supporting relief and is not extremely thin.

  6. Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica

    NASA Astrophysics Data System (ADS)

    Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi

    2017-12-01

    A digital elevation model (DEM) is used to estimate ice-flow velocities for an ice sheet and glaciers via Differential Interferometric Synthetic Aperture Radar (DInSAR) processing. The accuracy of DInSAR-derived displacement estimates depends upon the accuracy of the DEM. Therefore, we used stereo optical images, obtained with a panchromatic remote-sensing instrument for stereo mapping (PRISM) sensor mounted onboard the Advanced Land Observing Satellite (ALOS), to produce a new DEM ("PRISM-DEM") of part of the coastal region of Lützow-Holm Bay in Dronning Maud Land, East Antarctica. We verified the accuracy of the PRISM-DEM by comparing ellipsoidal heights with those of existing DEMs and values obtained by satellite laser altimetry (ICESat/GLAS) and Global Navigation Satellite System surveying. The accuracy of the PRISM-DEM is estimated to be 2.80 m over ice sheet, 4.86 m over individual glaciers, and 6.63 m over rock outcrops. By comparison, the estimated accuracy of the ASTER-GDEM, widely used in polar regions, is 33.45 m over ice sheet, 14.61 m over glaciers, and 19.95 m over rock outcrops. For displacement measurements made along the radar line-of-sight by DInSAR, in conjunction with ALOS/PALSAR data, the accuracy of the PRISM-DEM and ASTER-GDEM correspond to estimation errors of <6.3 mm and <31.8 mm, respectively.

  7. IKONOS geometric characterization

    USGS Publications Warehouse

    Helder, Dennis; Coan, Michael; Patrick, Kevin; Gaska, Peter

    2003-01-01

    The IKONOS spacecraft acquired images on July 3, 17, and 25, and August 13, 2001 of Brookings SD, a small city in east central South Dakota, and on May 22, June 30, and July 30, 2000, of the rural area around the EROS Data Center. South Dakota State University (SDSU) evaluated the Brookings scenes and the USGS EROS Data Center (EDC) evaluated the other scenes. The images evaluated by SDSU utilized various natural objects and man-made features as identifiable targets randomly distribution throughout the scenes, while the images evaluated by EDC utilized pre-marked artificial points (panel points) to provide the best possible targets distributed in a grid pattern. Space Imaging provided products at different processing levels to each institution. For each scene, the pixel (line, sample) locations of the various targets were compared to field observed, survey-grade Global Positioning System locations. Patterns of error distribution for each product were plotted, and a variety of statistical statements of accuracy are made. The IKONOS sensor also acquired 12 pairs of stereo images of globally distributed scenes between April 2000 and April 2001. For each scene, analysts at the National Imagery and Mapping Agency (NIMA) compared derived photogrammetric coordinates to their corresponding NIMA field-surveyed ground control point (GCPs). NIMA analysts determined horizontal and vertical accuracies by averaging the differences between the derived photogrammetric points and the field-surveyed GCPs for all 12 stereo pairs. Patterns of error distribution for each scene are presented.

  8. Reconstructing time series water volumes of drying lakes in Central Asia with ZY-3 stereo remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Bao, A.

    2017-12-01

    Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.

  9. A new stereo topographic map of Io: Implications for geology from global to local scales

    NASA Astrophysics Data System (ADS)

    White, Oliver L.; Schenk, Paul M.; Nimmo, Francis; Hoogenboom, Trudi

    2014-06-01

    We use Voyager and Galileo stereo pairs to construct the most complete stereo digital elevation model (DEM) of Io assembled to date, controlled using Galileo limb profiles. Given the difficulty of applying these two techniques to Io due to its anomalous surface albedo properties, we have experimented extensively with the relevant procedures in order to generate what we consider to be the most reliable DEMs. Our final stereo DEM covers ~75% of the globe, and we have identified a partial system of longitudinally arranged alternating basins and swells that correlates well to the distribution of mountain and volcano concentrations. We consider the correlation of swells to volcano concentrations and basins to mountain concentrations, to imply a heat flow distribution across Io that is consistent with the asthenospheric tidal heating model of Tackley et al. (2001). The stereo DEM reveals topographic signatures of regional-scale features including Loki Patera, Ra Patera, and the Tvashtar Paterae complex, in addition to previously unrecognized features including an ~1000 km diameter depression and a >2000 km long topographic arc comprising mountainous and layered plains material.

  10. Auto-converging stereo cameras for 3D robotic tele-operation

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  11. An experimental comparison of standard stereo matching algorithms applied to cloud top height estimation from satellite IR images

    NASA Astrophysics Data System (ADS)

    Anzalone, Anna; Isgrò, Francesco

    2016-10-01

    The JEM-EUSO (Japanese Experiment Module-Extreme Universe Space Observatory) telescope will measure Ultra High Energy Cosmic Ray properties by detecting the UV fluorescent light generated in the interaction between cosmic rays and the atmosphere. Cloud information is crucial for a proper interpretation of these data. The problem of recovering the cloud-top height from satellite images in infrared has struck some attention over the last few decades, as a valuable tool for the atmospheric monitoring. A number of radiative methods do exist, like C02 slicing and Split Window algorithms, using one or more infrared bands. A different way to tackle the problem is, when possible, to exploit the availability of multiple views, and recover the cloud top height through stereo imaging and triangulation. A crucial step in the 3D reconstruction is the process that attempts to match a characteristic point or features selected in one image, with one of those detected in the second image. In this article the performance of a group matching algorithms that include both area-based and global techniques, has been tested. They are applied to stereo pairs of satellite IR images with the final aim of evaluating the cloud top height. Cloudy images from SEVIRI on the geostationary Meteosat Second Generation 9 and 10 (MSG-2, MSG-3) have been selected. After having applied to the cloudy scenes the algorithms for stereo matching, the outcoming maps of disparity are transformed in depth maps according to the geometry of the reference data system. As ground truth we have used the height maps provided by the database of MODIS (Moderate Resolution Imaging Spectroradiometer) on-board Terra/Aqua polar satellites, that contains images quasi-synchronous to the imaging provided by MSG.

  12. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  13. High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging - the Southern Hemisphere Quadrangles

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.

    2018-04-01

    We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  14. The HRSC Experiment on Mars Express: First Imaging Results from the Commissioning Phase

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Neukum, G.; Hoffmann, H.; Jaumann, R.; Hauber, E.; Albertz, J.; McCord, T. B.; Markiewicz, W. J.

    2004-12-01

    The ESA Mars Express spacecraft was launched from Baikonur on June 2, 2003, entered Mars orbit on December 25, 2003, and reached the nominal mapping orbit on January 28, 2004. Observing conditions were favorable early on for the HRSC (High Resolution Stereo Camera), designed for the mapping of the Martian surface in 3-D. The HRSC is a pushbroom scanner with 9 CCD line detectors mounted in parallel and perpendicular to the direction of flight on the focal plane. The camera can obtain images at high resolution (10 m/pix), in triple stereo (20 m/pix), in four colors, and at five different phase angles near-simultaneously. An additional Super-Resolution Channel (SRC) yields nested-in images at 2.3 m/pix for detailed photogeologic studies. Even for nominal spacecraft trajectory and camera pointing data from the commissioning phase, solid stereo image reconstructions are feasible. More yet, the three-line stereo data allow us to identify and correct errors in navigation data. We find that > 99% of the stereo rays intersect within a sphere of radius < 20m after orbit and pointing data correction. From the HRSC images we have produced Digital Terrain Models (DTMs) with pixel sizes of 200 m, some of them better. HRSC stereo models and data obtained by the MOLA (Mars Orbiting Laser Altimeter) show good qualitative agreement. Differences in absolute elevations are within 50 m, but may reach several 100 m in lateral positioning (mostly in the spacecraft along-track direction). After correction of these offsets, the HRSC topographic data conveniently fill the gaps between the MOLA tracks and reveal hitherto unrecognized morphologic detail. At the time of writing, the HRSC has covered approx. 22.5 million square kilometers of the Martian surface. In addition, data from 5 Phobos flybys from May through August 2004 were obtained. The HRSC is beginning to make major contributions to geoscience, atmospheric science, photogrammetry, and cartography of Mars (papers submitted to Nature).

  15. Eglin virtual range database for hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Talele, Sunjay E.; Pickard, J. W., Jr.; Owens, Monte A.; Foster, Joseph; Watson, John S.; Amick, Mary Amenda; Anthony, Kenneth

    1998-07-01

    Realistic backgrounds are necessary to support high fidelity hardware-in-the-loop testing. Advanced avionics and weapon system sensors are driving the requirement for higher resolution imagery. The model-test-model philosophy being promoted by the T&E community is resulting in the need for backgrounds that are realistic or virtual representations of actual test areas. Combined, these requirements led to a major upgrade of the terrain database used for hardware-in-the-loop testing at the Guided Weapons Evaluation Facility (GWEF) at Eglin Air Force Base, Florida. This paper will describe the process used to generate the high-resolution (1-foot) database of ten sites totaling over 20 square kilometers of the Eglin range. this process involved generating digital elevation maps from stereo aerial imagery and classifying ground cover material using the spectral content. These databases were then optimized for real-time operation at 90 Hz.

  16. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  17. Vehicle-based vision sensors for intelligent highway systems

    NASA Astrophysics Data System (ADS)

    Masaki, Ichiro

    1989-09-01

    This paper describes a vision system, based on ASIC (Application Specific Integrated Circuit) approach, for vehicle guidance on highways. After reviewing related work in the fields of intelligent vehicles, stereo vision, and ASIC-based approaches, the paper focuses on a stereo vision system for intelligent cruise control. The system measures the distance to the vehicle in front using trinocular triangulation. An application specific processor architecture was developed to offer low mass-production cost, real-time operation, low power consumption, and small physical size. The system was installed in the trunk of a car and evaluated successfully on highways.

  18. Predicting Long-Range Traversability from Short-Range Stereo-Derived Geometry

    NASA Technical Reports Server (NTRS)

    Turmon, Michael; Tang, Benyang; Howard, Andrew; Brjaracharya, Max

    2010-01-01

    Based only on its appearance in imagery, this program uses close-range 3D terrain analysis to produce training data sufficient to estimate the traversability of terrain beyond 3D sensing range. This approach is called learning from stereo (LFS). In effect, the software transfers knowledge from middle distances, where 3D geometry provides training cues, into the far field where only appearance is available. This is a viable approach because the same obstacle classes, and sometimes the same obstacles, are typically present in the mid-field and the farfield. Learning thus extends the effective look-ahead distance of the sensors.

  19. Evaluation of Deep Learning Based Stereo Matching Methods: from Ground to Aerial Images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Ji, S.; Zhang, C.; Qin, Z.

    2018-05-01

    Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the deep learning based methods performed similarly, and the latter had greater potential to be explored.

  20. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  1. Real-time depth processing for embedded platforms

    NASA Astrophysics Data System (ADS)

    Rahnama, Oscar; Makarov, Aleksej; Torr, Philip

    2017-05-01

    Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.

  2. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  3. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  4. Visualization of the 3-D topography of the optic nerve head through a passive stereo vision model

    NASA Astrophysics Data System (ADS)

    Ramirez, Juan M.; Mitra, Sunanda; Morales, Jose

    1999-01-01

    This paper describes a system for surface recovery and visualization of the 3D topography of the optic nerve head, as support of early diagnosis and follow up to glaucoma. In stereo vision, depth information is obtained from triangulation of corresponding points in a pair of stereo images. In this paper, the use of the cepstrum transformation as a disparity measurement technique between corresponding windows of different block sizes is described. This measurement process is embedded within a coarse-to-fine depth-from-stereo algorithm, providing an initial range map with the depth information encoded as gray levels. These sparse depth data are processed through a cubic B-spline interpolation technique in order to obtain a smoother representation. This methodology is being especially refined to be used with medical images for clinical evaluation of some eye diseases such as open angle glaucoma, and is currently under testing for clinical evaluation and analysis of reproducibility and accuracy.

  5. The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.

    The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.

  6. Viewing The Entire Sun With STEREO And SDO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.

    2011-05-01

    On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.

  7. Two-terminal video coding.

    PubMed

    Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei

    2009-03-01

    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.

  8. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  9. Integrated calibration between digital camera and laser scanner from mobile mapping system for land vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang

    The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.

  10. Scale Estimation and Correction of the Monocular Simultaneous Localization and Mapping (SLAM) Based on Fusion of 1D Laser Range Finder and Vision Data.

    PubMed

    Zhang, Zhuang; Zhao, Rujin; Liu, Enhai; Yan, Kun; Ma, Yuebo

    2018-06-15

    This article presents a new sensor fusion method for visual simultaneous localization and mapping (SLAM) through integration of a monocular camera and a 1D-laser range finder. Such as a fusion method provides the scale estimation and drift correction and it is not limited by volume, e.g., the stereo camera is constrained by the baseline and overcomes the limited depth range problem associated with SLAM for RGBD cameras. We first present the analytical feasibility for estimating the absolute scale through the fusion of 1D distance information and image information. Next, the analytical derivation of the laser-vision fusion is described in detail based on the local dense reconstruction of the image sequences. We also correct the scale drift of the monocular SLAM using the laser distance information which is independent of the drift error. Finally, application of this approach to both indoor and outdoor scenes is verified by the Technical University of Munich dataset of RGBD and self-collected data. We compare the effects of the scale estimation and drift correction of the proposed method with the SLAM for a monocular camera and a RGBD camera.

  11. Topographic map of the Coronae Montes region of Mars - MTM 500k -35/087E OMKTT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszca, Donna M.

    2005-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetrically using Viking Orbiter stereo image pairs. The contour interval is 250 m. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  12. Topographic Map of the Northeast Ascraeus Mons Region of Mars - MTM 500k 15/257E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  13. Topographic Map of the Northwest Ascraeus Mons Region of Mars - MTM 500k 15/252E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  14. Topographic Map of the Southeast Ascraeus Mons Region of Mars - MTM 500k 10/257E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  15. Topographic Map of the Southwest Ascraeus Mons Region of Mars - MTM 500k 10/252E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  16. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  17. Using Combination of Planar and Height Features for Detecting Built-Up Areas from High-Resolution Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Peng, F.; Cai, X.; Tan, W.

    2017-09-01

    Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slope and building height are often used to optimize the results, but extracted from auxiliary data (e.g. LIDAR data, DSM). Moreover, the auxiliary data must be acquired around the same time as image acquisition. Otherwise, built-up area detection accuracy is affected. Stereo imagery incorporates both planar and height information unlike single remotely sensed images. Stereo imagery acquired by many satellites (e.g. Worldview-4, Pleiades-HR, ALOS-PRISM, and ZY-3) can be used as data source of identifying built-up areas. A new method of identifying high-accuracy built-up areas from stereo imagery is achieved by using a combination of planar and height features. The digital surface model (DSM) and digital orthophoto map (DOM) are first generated from stereo images. Then, height values of above-ground objects (e.g. buildings) are calculated from the DSM, and used to obtain raw built-up areas. Other raw built-up areas are obtained from the DOM using Pantex and Gabor, respectively. Final high-accuracy built-up area results are achieved from these raw built-up areas using the decision level fusion. Experimental results show that accurate built-up areas can be achieved from stereo imagery. The height information used in the proposed method is derived from stereo imagery itself, with no need to require auxiliary height data (e.g. LIDAR data). The proposed method is suitable for spaceborne and airborne stereo pairs and triplets.

  18. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    NASA Astrophysics Data System (ADS)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  19. Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards.

    PubMed

    Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il

    2009-07-20

    Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

  20. Deep convolutional neural network processing of aerial stereo imagery to monitor vulnerable zones near power lines

    NASA Astrophysics Data System (ADS)

    Qayyum, Abdul; Saad, Naufal M.; Kamel, Nidal; Malik, Aamir Saeed

    2018-01-01

    The monitoring of vegetation near high-voltage transmission power lines and poles is tedious. Blackouts present a huge challenge to power distribution companies and often occur due to tree growth in hilly and rural areas. There are numerous methods of monitoring hazardous overgrowth that are expensive and time-consuming. Accurate estimation of tree and vegetation heights near power poles can prevent the disruption of power transmission in vulnerable zones. This paper presents a cost-effective approach based on a convolutional neural network (CNN) algorithm to compute the height (depth maps) of objects proximal to power poles and transmission lines. The proposed CNN extracts and classifies features by employing convolutional pooling inputs to fully connected data layers that capture prominent features from stereo image patches. Unmanned aerial vehicle or satellite stereo image datasets can thus provide a feasible and cost-effective approach that identifies threat levels based on height and distance estimations of hazardous vegetation and other objects. Results were compared with extant disparity map estimation techniques, such as graph cut, dynamic programming, belief propagation, and area-based methods. The proposed method achieved an accuracy rate of 90%.

  1. When Dijkstra Meets Vanishing Point: A Stereo Vision Approach for Road Detection.

    PubMed

    Zhang, Yigong; Su, Yingna; Yang, Jian; Ponce, Jean; Kong, Hui

    2018-05-01

    In this paper, we propose a vanishing-point constrained Dijkstra road model for road detection in a stereo-vision paradigm. First, the stereo-camera is used to generate the u- and v-disparity maps of road image, from which the horizon can be extracted. With the horizon and ground region constraints, we can robustly locate the vanishing point of road region. Second, a weighted graph is constructed using all pixels of the image, and the detected vanishing point is treated as the source node of the graph. By computing a vanishing-point constrained Dijkstra minimum-cost map, where both disparity and gradient of gray image are used to calculate cost between two neighbor pixels, the problem of detecting road borders in image is transformed into that of finding two shortest paths that originate from the vanishing point to two pixels in the last row of image. The proposed approach has been implemented and tested over 2600 grayscale images of different road scenes in the KITTI data set. The experimental results demonstrate that this training-free approach can detect horizon, vanishing point, and road regions very accurately and robustly. It can achieve promising performance.

  2. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  3. Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources

    NASA Astrophysics Data System (ADS)

    Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.

    2015-04-01

    Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better performance in forest attribute (i.e. mean tree height, basal area, mean stem diameter, stem volume, and biomass) prediction than stereo-radargrammetry. The results were 20.1% and 28.6% in relative root mean square error (RMSE) for biomass prediction, for TDX and TSX respectively.

  4. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    NASA Astrophysics Data System (ADS)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.

  5. Analysis of Camera Arrays Applicable to the Internet of Things.

    PubMed

    Yang, Jiachen; Xu, Ru; Lv, Zhihan; Song, Houbing

    2016-03-22

    The Internet of Things is built based on various sensors and networks. Sensors for stereo capture are essential for acquiring information and have been applied in different fields. In this paper, we focus on the camera modeling and analysis, which is very important for stereo display and helps with viewing. We model two kinds of cameras, a parallel and a converged one, and analyze the difference between them in vertical and horizontal parallax. Even though different kinds of camera arrays are used in various applications and analyzed in the research work, there are few discussions on the comparison of them. Therefore, we make a detailed analysis about their performance over different shooting distances. From our analysis, we find that the threshold of shooting distance for converged cameras is 7 m. In addition, we design a camera array in our work that can be used as a parallel camera array, as well as a converged camera array and take some images and videos with it to identify the threshold.

  6. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    USGS Publications Warehouse

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.

  7. Restoration of distorted depth maps calculated from stereo sequences

    NASA Technical Reports Server (NTRS)

    Damour, Kevin; Kaufman, Howard

    1991-01-01

    A model-based Kalman estimator is developed for spatial-temporal filtering of noise and other degradations in velocity and depth maps derived from image sequences or cinema. As an illustration of the proposed procedures, edge information from image sequences of rigid objects is used in the processing of the velocity maps by selecting from a series of models for directional adaptive filtering. Adaptive filtering then allows for noise reduction while preserving sharpness in the velocity maps. Results from several synthetic and real image sequences are given.

  8. Spatial and Global Sensory Suppression Mapping Encompassing the Central 10° Field in Anisometropic Amblyopia.

    PubMed

    Li, Jingjing; Li, Jinrong; Chen, Zidong; Liu, Jing; Yuan, Junpeng; Cai, Xiaoxiao; Deng, Daming; Yu, Minbin

    2017-01-01

    We investigate the efficacy of a novel dichoptic mapping paradigm in evaluating visual function of anisometropic amblyopes. Using standard clinical measures of visual function (visual acuity, stereo acuity, Bagolini lenses, and neutral density filters) and a novel quantitative mapping technique, 26 patients with anisometropic amblyopia (mean age = 19.15 ± 4.42 years) were assessed. Two additional psychophysical interocular suppression measurements were tested with dichoptic global motion coherence and binocular phase combination tasks. Luminance reduction was achieved by placing neutral density filters in front of the normal eye. Our study revealed that suppression changes across the central 10° visual field by mean luminance modulation in amblyopes as well as normal controls. Using simulation and an elimination of interocular suppression, we identified a novel method to effectively reflect the distribution of suppression in anisometropic amblyopia. Additionally, the new quantitative mapping technique was in good agreement with conventional clinical measures, such as interocular acuity difference (P < 0.001) and stereo acuity (P = 0.005). There was a good consistency between the results of interocular suppression with dichoptic mapping paradigm and the results of the other two psychophysical methods (suppression mapping versus binocular phase combination, P < 0.001; suppression mapping versus global motion coherence, P = 0.005). The dichoptic suppression mapping technique is an effective method to represent impaired visual function in patients with anisometropic amblyopia. It offers a potential in "micro-"antisuppression mapping tests and therapies for amblyopia.

  9. Detecting personnel around UGVs using stereo vision

    NASA Astrophysics Data System (ADS)

    Bajracharya, Max; Moghaddam, Baback; Howard, Andrew; Matthies, Larry H.

    2008-04-01

    Detecting people around unmanned ground vehicles (UGVs) to facilitate safe operation of UGVs is one of the highest priority issues in the development of perception technology for autonomous navigation. Research to date has not achieved the detection ranges or reliability needed in deployed systems to detect upright pedestrians in flat, relatively uncluttered terrain, let alone in more complex environments and with people in postures that are more difficult to detect. Range data is essential to solve this problem. Combining range data with high resolution imagery may enable higher performance than range data alone because image appearance can complement shape information in range data and because cameras may offer higher angular resolution than typical range sensors. This makes stereo vision a promising approach for several reasons: image resolution is high and will continue to increase, the physical size and power dissipation of the cameras and computers will continue to decrease, and stereo cameras provide range data and imagery that are automatically spatially and temporally registered. We describe a stereo vision-based pedestrian detection system, focusing on recent improvements to a shape-based classifier applied to the range data, and present frame-level performance results that show great promise for the overall approach.

  10. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  11. An Integrated Photogrammetric and Photoclinometric Approach for Pixel-Resolution 3d Modelling of Lunar Surface

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Wu, B.

    2018-04-01

    High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.

  12. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  13. Implicit multiplane 3D camera calibration matrices for stereo image processing

    NASA Astrophysics Data System (ADS)

    McKee, James W.; Burgett, Sherrie J.

    1997-12-01

    By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173

  14. V-GRAM: Magellan bulletin about Venus and the radar mapping mission

    NASA Technical Reports Server (NTRS)

    Jasnow, Mona (Editor)

    1993-01-01

    Papers on the following topics are presented: Magellan project update; summary of Magellan science findings; excerpt from 'Acquisition and Analysis of Magellan Gravity Data'; Magellan gravity; and Magellan stereo image data.

  15. Activities in planetary geology for the physical and earth sciences

    NASA Technical Reports Server (NTRS)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  16. Stereo matching using census cost over cross window and segmentation-based disparity refinement

    NASA Astrophysics Data System (ADS)

    Li, Qingwu; Ni, Jinyan; Ma, Yunpeng; Xu, Jinxin

    2018-03-01

    Stereo matching is a vital requirement for many applications, such as three-dimensional (3-D) reconstruction, robot navigation, object detection, and industrial measurement. To improve the practicability of stereo matching, a method using census cost over cross window and segmentation-based disparity refinement is proposed. First, a cross window is obtained using distance difference and intensity similarity in binocular images. Census cost over the cross window and color cost are combined as the matching cost, which is aggregated by the guided filter. Then, winner-takes-all strategy is used to calculate the initial disparities. Second, a graph-based segmentation method is combined with color and edge information to achieve moderate under-segmentation. The segmented regions are classified into reliable regions and unreliable regions by consistency checking. Finally, the two regions are optimized by plane fitting and propagation, respectively, to match the ambiguous pixels. The experimental results are on Middlebury Stereo Datasets, which show that the proposed method has good performance in occluded and discontinuous regions, and it obtains smoother disparity maps with a lower average matching error rate compared with other algorithms.

  17. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  18. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  19. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  20. Mapping fault-controlled volatile migration in equatorial layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2006-12-01

    Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.

  1. Automatic Generation of High Quality DSM Based on IRS-P5 Cartosat-1 Stereo Data

    NASA Astrophysics Data System (ADS)

    d'Angelo, Pablo; Uttenthaler, Andreas; Carl, Sebastian; Barner, Frithjof; Reinartz, Peter

    2010-12-01

    IRS-P5 Cartosat-1 high resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on IRS-P5 Cartosat-1 imagery is presented, with an emphasis on automated processing and product quality. The proposed system processes IRS-P5 level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The described method uses an RPC correction based on DSM alignment instead of using reference images with a lower lateral accuracy, this results in improved geolocation of the DSMs and orthoimages. Following RPC correction, highly detailed DSMs with 5 m grid spacing are derived using Semiglobal Matching. The proposed method is part of an operational Cartosat-1 processor for the generation of a high resolution DSM. Evaluation of 18 scenes against independent ground truth measurements indicates a mean lateral error (CE90) of 6.7 meters and a mean vertical accuracy (LE90) of 5.1 meters.

  2. Analysis of satellite data for sensor improvement (detection of severe storms from space)

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1984-01-01

    Stereo photography of clouds over southeast Asia was obtained using NOAA-7 and the Japanese GMS. Due to the breakdown of GMS2, GMS1, which had been retired, is being used as the replacement satellite. The launch of GMS should permit the US-Japan stereo experiment to be reactivated. The Lear jet experiment based at Grand Island, Nebraska was successful and provided data on the Redwood Falls clouds & Grand Island thunderstorm; an anvil-top cirrus deck; a circular thunderstorm; and jumping cirrus. The IR temperature field of the thunderstorm which induced the Andrews AFB microburst was analyzed with 1 C accuracy. The microburst and severe thunderstorm project is being planned.

  3. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.

    PubMed

    Stavrovskaya, Elena D; Niranjan, Tejasvi; Fertig, Elana J; Wheelan, Sarah J; Favorov, Alexander V; Mironov, Andrey A

    2017-10-15

    Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. favorov@sensi.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  5. Probabilistic choice between symmetric disparities in motion stereo matching for a lateral navigation system

    NASA Astrophysics Data System (ADS)

    Ershov, Egor; Karnaukhov, Victor; Mozerov, Mikhail

    2016-02-01

    Two consecutive frames of a lateral navigation camera video sequence can be considered as an appropriate approximation to epipolar stereo. To overcome edge-aware inaccuracy caused by occlusion, we propose a model that matches the current frame to the next and to the previous ones. The positive disparity of matching to the previous frame has its symmetric negative disparity to the next frame. The proposed algorithm performs probabilistic choice for each matched pixel between the positive disparity and its symmetric disparity cost. A disparity map obtained by optimization over the cost volume composed of the proposed probabilistic choice is more accurate than the traditional left-to-right and right-to-left disparity maps cross-check. Also, our algorithm needs two times less computational operations per pixel than the cross-check technique. The effectiveness of our approach is demonstrated on synthetic data and real video sequences, with ground-truth value.

  6. A Review of Depth and Normal Fusion Algorithms

    PubMed Central

    Štolc, Svorad; Pock, Thomas

    2018-01-01

    Geometric surface information such as depth maps and surface normals can be acquired by various methods such as stereo light fields, shape from shading and photometric stereo techniques. We compare several algorithms which deal with the combination of depth with surface normal information in order to reconstruct a refined depth map. The reasons for performance differences are examined from the perspective of alternative formulations of surface normals for depth reconstruction. We review and analyze methods in a systematic way. Based on our findings, we introduce a new generalized fusion method, which is formulated as a least squares problem and outperforms previous methods in the depth error domain by introducing a novel normal weighting that performs closer to the geodesic distance measure. Furthermore, a novel method is introduced based on Total Generalized Variation (TGV) which further outperforms previous approaches in terms of the geodesic normal distance error and maintains comparable quality in the depth error domain. PMID:29389903

  7. Extraction of Airport Features from High Resolution Satellite Imagery for Design and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Robinson, Chris; Qiu, You-Liang; Jensen, John R.; Schill, Steven R.; Floyd, Mike

    2001-01-01

    The LPA Group, consisting of 17 offices located throughout the eastern and central United States is an architectural, engineering and planning firm specializing in the development of Airports, Roads and Bridges. The primary focus of this ARC project is concerned with assisting their aviation specialists who work in the areas of Airport Planning, Airfield Design, Landside Design, Terminal Building Planning and design, and various other construction services. The LPA Group wanted to test the utility of high-resolution commercial satellite imagery for the purpose of extracting airport elevation features in the glide path areas surrounding the Columbia Metropolitan Airport. By incorporating remote sensing techniques into their airport planning process, LPA wanted to investigate whether or not it is possible to save time and money while achieving the equivalent accuracy as traditional planning methods. The Affiliate Research Center (ARC) at the University of South Carolina investigated the use of remotely sensed imagery for the extraction of feature elevations in the glide path zone. A stereo pair of IKONOS panchromatic satellite images, which has a spatial resolution of 1 x 1 m, was used to determine elevations of aviation obstructions such as buildings, trees, towers and fence-lines. A validation dataset was provided by the LPA Group to assess the accuracy of the measurements derived from the IKONOS imagery. The initial goal of this project was to test the utility of IKONOS imagery in feature extraction using ERDAS Stereo Analyst. This goal was never achieved due to problems with ERDAS software support of the IKONOS sensor model and the unavailability of imperative sensor model information from Space Imaging. The obstacles encountered in this project pertaining to ERDAS Stereo Analyst and IKONOS imagery will be reviewed in more detail later in this report. As a result of the technical difficulties with Stereo Analyst, ERDAS OrthoBASE was used to derive aviation obstruction measurements for this project. After collecting ancillary data such as GPS locations, South Carolina Geodetic Survey and Aero Dynamics ground survey points to set up the OrthoBASE Block File, measurements were taken of the various glide path obstructions and compared to the validation dataset. This process yielded the following conclusions: The IKONOS stereo model in conjunction with Imagine OrthoBASE can provide The LPA Group with a fast and cost efficient method for assessing aviation obstructions. Also, by creating our own stereo model we achieved any accuracy better currently available commercial products.

  8. VERDEX: A virtual environment demonstrator for remote driving applications

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.

  9. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  10. Acquisition, calibration, and performance of airborne high-resolution ADS40 SH52 sensor data for monitoring the Colorado River below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Cagney, L. E.; Kohl, K. A.; Gushue, T. M.; Fritzinger, C.; Bennett, G. E.; Hamill, J. F.; Melis, T. S.

    2010-12-01

    Periodically, the Grand Canyon Monitoring and Research Center of the U.S. Geological Survey collects and interprets high-resolution (20-cm), airborne multispectral imagery and digital surface models (DSMs) to monitor the effects of Glen Canyon Dam operations on natural and cultural resources of the Colorado River in Grand Canyon. We previously employed the first generation of the ADS40 in 2000 and the Zeiss-Imaging Digital Mapping Camera (DMC) in 2005. Data from both sensors displayed band-image misregistration owing to multiple sensor optics and image smearing along abrupt scarps due to errors in image rectification software, both of which increased post-processing time, cost, and errors from image classification. Also, the near-infrared gain on the early, 8-bit ADS40 was not properly set and its signal was saturated for the more chlorophyll-rich vegetation, which limited our vegetation mapping. Both sensors had stereo panchromatic capability for generating a DSM. The ADS40 performed to specifications; the DMC failed. In 2009, we employed the new ADS40 SH52 to acquire 11-bit multispectral data with a single lens (20-cm positional accuracy), as well as stereo panchromatic data that provided a 1-m cell DSM (40-cm root-mean-square vertical error at one sigma). Analyses of the multispectral data showed near-perfect registration of its four band images at our 20-cm resolution, a linear response to ground reflectance, and a large dynamic range and good sensitivity (except for the blue band). Data were acquired over a 10-day period for the 450-km-long river corridor in which acquisition time and atmospheric conditions varied considerably during inclement weather. We received 266 orthorectified flightlines for the corridor, choosing to calibrate and mosaic the data ourselves to ensure a flawless mosaic with consistent, realistic spectral information. A linear least-squares cross-calibration of overlapping flightlines for the corridor showed that the dominate factors in inter-flightline variability were solar zenith angle and atmospheric scattering, which respectively affect the slope and intercept of the calibration. The inter-flightline calibration slopes were consistently close to the square of the ratio of the cosines of the zenith angles of each pair of overlapping flightlines. Our results corroborate previous observations that the cosine of solar zenith angle is a good approximation for atmospheric transmission and the use of its square in radiometric calibrations may compensate for that effect and the effect of non-nadir sun angle on surface reflectance. It was more expedient to acquire imagery for each sub-linear river segment by collecting 5-6 parallel flightlines; river sinuosity caused us to use 2-3 flightlines for each segment. Surfaces near flightline edges were often smeared and replaced with adjacent, more nadir-viewed flightline data. Eliminating surface smearing was the most time consuming aspect of creating a flawless image mosaic for the river corridor, but its removal will increase the efficiency and accuracy of image analyses of monitoring parameters of interest to river managers.

  11. Topographic map of part of the Kasei Valles and Sacra Fossae regions of Mars - MTM 500k 20/287E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszca, Donna M.

    2005-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetrically using Viking Orbiter stereo image pairs and photoclinometry from a Viking Orbiter image. The contour interval is 250 m. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  12. Stereo Cloud Height and Wind Determination Using Measurements from a Single Focal Plane

    NASA Astrophysics Data System (ADS)

    Demajistre, R.; Kelly, M. A.

    2014-12-01

    We present here a method for extracting cloud heights and winds from an aircraft or orbital platform using measurements from a single focal plane, exploiting the motion of the platform to provide multiple views of the cloud tops. To illustrate this method we use data acquired during aircraft flight tests of a set of simple stereo imagers that are well suited to this purpose. Each of these imagers has three linear arrays on the focal plane, one looking forward, one looking aft, and one looking down. Push-broom images from each of these arrays are constructed, and then a spatial correlation analysis is used to deduce the delays and displacements required for wind and cloud height determination. We will present the algorithms necessary for the retrievals, as well as the methods used to determine the uncertainties of the derived cloud heights and winds. We will apply the retrievals and uncertainty determination to a number of image sets acquired by the airborne sensors. We then generalize these results to potential space based observations made by similar types of sensors.

  13. Flood Inundation Mapping and Management using RISAT-1 derived Flood Inundation Areas, Cartosat-1 DEM and a River Flow Model

    NASA Astrophysics Data System (ADS)

    Kuldeep, K.; Garg, P. K.; Garg, R. D.

    2017-12-01

    The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.

  14. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  15. ASTER Waves

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  16. Uncalibrated stereo rectification and disparity range stabilization: a comparison of different feature detectors

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; Jayarathne, Uditha L.; McLeod, A. Jonathan; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.

    2016-03-01

    This paper studies uncalibrated stereo rectification and stable disparity range determination for surgical scene three-dimensional (3-D) reconstruction. Stereoscopic endoscope calibration sometimes is not available and also increases the complexity of the operating-room environment. Stereo from uncalibrated endoscopic cameras is an alternative to reconstruct the surgical field visualized by binocular endoscopes within the body. Uncalibrated rectification is usually performed on the basis of a number of matched feature points (semi-dense correspondence) between the left and the right images of stereo pairs. After uncalibrated rectification, the corresponding feature points can be used to determine the proper disparity range that helps to improve the reconstruction accuracy and reduce the computational time of disparity map estimation. Therefore, the corresponding or matching accuracy and robustness of feature point descriptors is important to surgical field 3-D reconstruction. This work compares four feature detectors: (1) scale invariant feature transform (SIFT), (2) speeded up robust features (SURF), (3) affine scale invariant feature transform (ASIFT), and (4) gauge speeded up robust features (GSURF) with applications to uncalibrated rectification and stable disparity range determination. We performed our experiments on surgical endoscopic video images that were collected during robotic prostatectomy. The experimental results demonstrate that ASIFT outperforms other feature detectors in the uncalibrated stereo rectification and also provides a stable stable disparity range for surgical scene reconstruction.

  17. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  18. FieldSAFE: Dataset for Obstacle Detection in Agriculture.

    PubMed

    Kragh, Mikkel Fly; Christiansen, Peter; Laursen, Morten Stigaard; Larsen, Morten; Steen, Kim Arild; Green, Ole; Karstoft, Henrik; Jørgensen, Rasmus Nyholm

    2017-11-09

    In this paper, we present a multi-modal dataset for obstacle detection in agriculture. The dataset comprises approximately 2 h of raw sensor data from a tractor-mounted sensor system in a grass mowing scenario in Denmark, October 2016. Sensing modalities include stereo camera, thermal camera, web camera, 360 ∘ camera, LiDAR and radar, while precise localization is available from fused IMU and GNSS. Both static and moving obstacles are present, including humans, mannequin dolls, rocks, barrels, buildings, vehicles and vegetation. All obstacles have ground truth object labels and geographic coordinates.

  19. FieldSAFE: Dataset for Obstacle Detection in Agriculture

    PubMed Central

    Christiansen, Peter; Larsen, Morten; Steen, Kim Arild; Green, Ole; Karstoft, Henrik

    2017-01-01

    In this paper, we present a multi-modal dataset for obstacle detection in agriculture. The dataset comprises approximately 2 h of raw sensor data from a tractor-mounted sensor system in a grass mowing scenario in Denmark, October 2016. Sensing modalities include stereo camera, thermal camera, web camera, 360∘ camera, LiDAR and radar, while precise localization is available from fused IMU and GNSS. Both static and moving obstacles are present, including humans, mannequin dolls, rocks, barrels, buildings, vehicles and vegetation. All obstacles have ground truth object labels and geographic coordinates. PMID:29120383

  20. Topographic map of the Parana Valles region of Mars MTM 500k -25/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –25/347E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 25° S., longitude 347.5° E. in planetocentric coordinate system (this corresponds to –25/012; latitude 25° S., longitude 12.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  1. Topographic Map of the Northwest Loire Valles Region of Mars MTM 500k -15/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –15/337E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 15° S., longitude 337.5° E. in planetocentric coordinate system (this corresponds to –15/022; latitude 15° S., longitude 22.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0–km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  2. Full-parallax 3D display from stereo-hybrid 3D camera system

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Ansari, Amir; Saavedra, Genaro; Martinez-Corral, Manuel

    2018-04-01

    In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing angle.

  3. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  4. Immune systems are not just for making you feel better: they are for controlling autonomous robots

    NASA Astrophysics Data System (ADS)

    Rosenblum, Mark

    2005-05-01

    The typical algorithm for robot autonomous navigation in off-road complex environments involves building a 3D map of the robot's surrounding environment using a 3D sensing modality such as stereo vision or active laser scanning, and generating an instantaneous plan to navigate around hazards. Although there has been steady progress using these methods, these systems suffer from several limitations that cannot be overcome with 3D sensing and planning alone. Geometric sensing alone has no ability to distinguish between compressible and non-compressible materials. As a result, these systems have difficulty in heavily vegetated environments and require sensitivity adjustments across different terrain types. On the planning side, these systems have no ability to learn from their mistakes and avoid problematic environmental situations on subsequent encounters. We have implemented an adaptive terrain classification system based on the Artificial Immune System (AIS) computational model, which is loosely based on the biological immune system, that combines various forms of imaging sensor inputs to produce a "feature labeled" image of the scene categorizing areas as benign or detrimental for autonomous robot navigation. Because of the qualities of the AIS computation model, the resulting system will be able to learn and adapt on its own through interaction with the environment by modifying its interpretation of the sensor data. The feature labeled results from the AIS analysis are inserted into a map and can then be used by a planner to generate a safe route to a goal point. The coupling of diverse visual cues with the malleable AIS computational model will lead to autonomous robotic ground vehicles that require less human intervention for deployment in novel environments and more robust operation as a result of the system's ability to improve its performance through interaction with the environment.

  5. Enabling Autonomous Navigation for Affordable Scooters.

    PubMed

    Liu, Kaikai; Mulky, Rajathswaroop

    2018-06-05

    Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  6. Compiling Mercury relief map using several data sources

    NASA Astrophysics Data System (ADS)

    Zakharova, Maria; Lazarev, Evgeniy

    2015-04-01

    There are several data of Mercury topography obtained as the result of processing materials collected by two spacecrafts - the Mariner-10 and the MESSENGER during their Mercury flybys. The history of the visual mapping of the Mercury begins at the recent times as the first significant observations were made during the latter half of the 20th century, whereas today we have no data with 100% coverage for the entire surface of the Mercury except the global mosaic composed of the images acquired by MESSENGER. The Mercury relief map has been created with the help of four different types of data: - global mosaic with 100% coverage of Mercury's surface created by using MESSENGER orbital images (30% of the final map); - Digital Terrain Models obtained by the treating stereo images made during the Mariner 10's flybys (10% of the map) (Cook and Robinson, 2000); - Digital Terrain Models obtained from images acquired during the Messenger flybys (20% of the map) (F. Preusker et al., 2011); - the data sets produced by the MESSENGER Mercury Laser Altimeter (MLA) (40 % of the map). The main objective of this work is to collect, combine and process the existing data and then to merge them correctly for one single map compiling. The final map is created in the Lambert azimuthal Equal area projection and mainly shows the hypsometric features of the planet. It represents two hemispheres - western and eastern. In order not to divide data sources the eastern hemisphere takes an interval from 50 degrees east longitude to 130 degrees west longitude and the western one takes respectively the interval from 130 degrees west longitude to 50 degrees east longitude. References: Global mosaics of Mercury's surface. Available mosaics include one created prior to MESSENGER's orbital operations, high resolution versions that use MESSENGER's orbital images that are available in NASA's Planetary Data System (PDS) (http://messenger.jhuapl.edu/the_mission/mosaics.html). Cook, A.C., Robinson, M.S., 2000. Mariner 10 stereo image coverage of Mercury. J. Geophys. Res. 105, 9429-9443. Preusker, F., Oberst, J., Head, J.W., Watters, T.R., Robinson, M.S., Zuber, M.T., Solomon, S.C., 2010. Stereo topographic models of Mercury after three MESSENGER flybys. Planetary and Space Science 59 (2011), 1910-1917. The MLA is a time-of-flight laser rangefinder that uses direct detection and pulse-edge timing to determine precisely the range from the MESSENGER spacecraft to Mercury's surface (http://pds-geosciences.wustl.edu/missions/messenger/mla.htm).

  7. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  8. Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.

    NASA Astrophysics Data System (ADS)

    Vásquez, A. M.; Frazin, R. A.

    We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.

  9. Micro air vehicle autonomous obstacle avoidance from stereo-vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence

    2014-06-01

    We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.

  10. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs) †

    PubMed Central

    Jaramillo, Carlos; Valenti, Roberto G.; Guo, Ling; Xiao, Jizhong

    2016-01-01

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351

  11. Automatic Detection and Reproduction of Natural Head Position in Stereo-Photogrammetry.

    PubMed

    Hsung, Tai-Chiu; Lo, John; Li, Tik-Shun; Cheung, Lim-Kwong

    2015-01-01

    The aim of this study was to develop an automatic orientation calibration and reproduction method for recording the natural head position (NHP) in stereo-photogrammetry (SP). A board was used as the physical reference carrier for true verticals and NHP alignment mirror orientation. Orientation axes were detected and saved from the digital mesh model of the board. They were used for correcting the pitch, roll and yaw angles of the subsequent captures of patients' facial surfaces, which were obtained without any markings or sensors attached onto the patient. We tested the proposed method on two commercial active (3dMD) and passive (DI3D) SP devices. The reliability of the pitch, roll and yaw for the board placement were within ±0.039904°, ±0.081623°, and ±0.062320°; where standard deviations were 0.020234°, 0.045645° and 0.027211° respectively. Orientation-calibrated stereo-photogrammetry is the most accurate method (angulation deviation within ±0.1°) reported for complete NHP recording with insignificant clinical error.

  12. Automatic Detection and Reproduction of Natural Head Position in Stereo-Photogrammetry

    PubMed Central

    Hsung, Tai-Chiu; Lo, John; Li, Tik-Shun; Cheung, Lim-Kwong

    2015-01-01

    The aim of this study was to develop an automatic orientation calibration and reproduction method for recording the natural head position (NHP) in stereo-photogrammetry (SP). A board was used as the physical reference carrier for true verticals and NHP alignment mirror orientation. Orientation axes were detected and saved from the digital mesh model of the board. They were used for correcting the pitch, roll and yaw angles of the subsequent captures of patients’ facial surfaces, which were obtained without any markings or sensors attached onto the patient. We tested the proposed method on two commercial active (3dMD) and passive (DI3D) SP devices. The reliability of the pitch, roll and yaw for the board placement were within ±0.039904°, ±0.081623°, and ±0.062320°; where standard deviations were 0.020234°, 0.045645° and 0.027211° respectively. Conclusion: Orientation-calibrated stereo-photogrammetry is the most accurate method (angulation deviation within ±0.1°) reported for complete NHP recording with insignificant clinical error. PMID:26125616

  13. Multi-view line-scan inspection system using planar mirrors

    NASA Astrophysics Data System (ADS)

    Holländer, Bransilav; Štolc, Svorad; Huber-Mörk, Reinhold

    2013-04-01

    We demonstrate the design, setup, and results for a line-scan stereo image acquisition system using a single area- scan sensor, single lens and two planar mirrors attached to the acquisition device. The acquired object is moving relatively to the acquisition device and is observed under three different angles at the same time. Depending on the specific configuration it is possible to observe the object under a straight view (i.e., looking along the optical axis) and two skewed views. The relative motion between an object and the acquisition device automatically fulfills the epipolar constraint in stereo vision. The choice of lines to be extracted from the CMOS sensor depends on various factors such as the number, position and size of the mirrors, the optical and sensor configuration, or other application-specific parameters like desired depth resolution. The acquisition setup presented in this paper is suitable for the inspection of a printed matter, small parts or security features such as optical variable devices and holograms. The image processing pipeline applied to the extracted sensor lines is explained in detail. The effective depth resolution achieved by the presented system, assembled from only off-the-shelf components, is approximately equal to the spatial resolution and can be smoothly controlled by changing positions and angles of the mirrors. Actual performance of the device is demonstrated on a 3D-printed ground-truth object as well as two real-world examples: (i) the EUR-100 banknote - a high-quality printed matter and (ii) the hologram at the EUR-50 banknote { an optical variable device.

  14. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  15. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model

    NASA Astrophysics Data System (ADS)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2018-03-01

    This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.

  16. Satellite markers: a simple method for ground truth car pose on stereo video

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-04-01

    Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.

  17. Preliminary Geological Map of the Ac-H-8 Nawish Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Carrorro, F. G.; Ammannito, E.; Williams, D. A.; Mest, S. C.; Buczkowski, D.; Preusker, F.; Jaumann, R.; Roatsch, T.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Herein we present the geologic mapping of the Ac-H-8 Nawish Quadrangle of dwarf planet Ceres, produced on the basis of the Dawn spacecraft data. The Ac-H-08 Nawish quadrangle is located between -22°S and 22°N and between 144°E and 216°E. At the north-east border, a polygonal, 75km-wide crater named Nawish gives the name to the whole quadrangle. An unamed, partially degraded, 100km-diameter crater is evident in the lower central sector of the quadrangle. Bright materials have been mapped and are associated with craters. For example, bright materials occur in the central peak region of Nawish crater and in the ejecta of an unnamed crater, which is located in the nearby quadrangle Ac-H-09. The topography of the area obtained from stereo-processing of imagery shows an highland in the middle of the quadrangle. Topography is lower in the northern and southern borders, with a altitude span of about 9500 meters. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from the Approach (1.3 km/px) and Survey (415 m/px) orbits, including grayscale and color images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) images in January 2016. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, and from the German and Italian Space Agencies.

  18. Comparative morphometry of facial surface models obtained from a stereo vision system in a healthy population

    NASA Astrophysics Data System (ADS)

    López, Leticia; Gastélum, Alfonso; Chan, Yuk Hin; Delmas, Patrice; Escorcia, Lilia; Márquez, Jorge

    2014-11-01

    Our goal is to obtain three-dimensional measurements of craniofacial morphology in a healthy population, using standard landmarks established by a physical-anthropology specialist and picked from computer reconstructions of the face of each subject. To do this, we designed a multi-stereo vision system that will be used to create a data base of human faces surfaces from a healthy population, for eventual applications in medicine, forensic sciences and anthropology. The acquisition process consists of obtaining the depth map information from three points of views, each depth map is obtained from a calibrated pair of cameras. The depth maps are used to build a complete, frontal, triangular-surface representation of the subject face. The triangular surface is used to locate the landmarks and the measurements are analyzed with a MATLAB script. The classification of the subjects was done with the aid of a specialist anthropologist that defines specific subject indices, according to the lengths, areas, ratios, etc., of the different structures and the relationships among facial features. We studied a healthy population and the indices from this population will be used to obtain representative averages that later help with the study and classification of possible pathologies.

  19. Ultrahigh-resolution mapping of peatland microform using ground-based structure from motion with multiview stereo

    NASA Astrophysics Data System (ADS)

    Mercer, Jason J.; Westbrook, Cherie J.

    2016-11-01

    Microform is important in understanding wetland functions and processes. But collecting imagery of and mapping the physical structure of peatlands is often expensive and requires specialized equipment. We assessed the utility of coupling computer vision-based structure from motion with multiview stereo photogrammetry (SfM-MVS) and ground-based photos to map peatland topography. The SfM-MVS technique was tested on an alpine peatland in Banff National Park, Canada, and guidance was provided on minimizing errors. We found that coupling SfM-MVS with ground-based photos taken with a point and shoot camera is a viable and competitive technique for generating ultrahigh-resolution elevations (i.e., <0.01 m, mean absolute error of 0.083 m). In evaluating 100+ viable SfM-MVS data collection and processing scenarios, vegetation was found to considerably influence accuracy. Vegetation class, when accounted for, reduced absolute error by as much as 50%. The logistic flexibility of ground-based SfM-MVS paired with its high resolution, low error, and low cost makes it a research area worth developing as well as a useful addition to the wetland scientists' toolkit.

  20. Local Surface Reconstruction from MER images using Stereo Workstation

    NASA Astrophysics Data System (ADS)

    Shin, Dongjoe; Muller, Jan-Peter

    2010-05-01

    The authors present a semi-automatic workflow that reconstructs the 3D shape of the martian surface from local stereo images delivered by PnCam or NavCam on systems such as the NASA Mars Exploration Rover (MER) Mission and in the future the ESA-NASA ExoMars rover PanCam. The process is initiated with manually selected tiepoints on a stereo workstation which is then followed by a tiepoint refinement, stereo-matching using region growing and Levenberg-Marquardt Algorithm (LMA)-based bundle adjustment processing. The stereo workstation, which is being developed by UCL in collaboration with colleagues at the Jet Propulsion Laboratory (JPL) within the EU FP7 ProVisG project, includes a set of practical GUI-based tools that enable an operator to define a visually correct tiepoint via a stereo display. To achieve platform and graphic hardware independence, the stereo application has been implemented using JPL's JADIS graphic library which is written in JAVA and the remaining processing blocks used in the reconstruction workflow have also been developed as a JAVA package to increase the code re-usability, portability and compatibility. Although initial tiepoints from the stereo workstation are reasonably acceptable as true correspondences, it is often required to employ an optional validity check and/or quality enhancing process. To meet this requirement, the workflow has been designed to include a tiepoint refinement process based on the Adaptive Least Square Correlation (ALSC) matching algorithm so that the initial tiepoints can be further enhanced to sub-pixel precision or rejected if they fail to pass the ALSC matching threshold. Apart from the accuracy of reconstruction, it is obvious that the other criterion to assess the quality of reconstruction is the density (or completeness) of reconstruction, which is not attained in the refinement process. Thus, we re-implemented a stereo region growing process, which is a core matching algorithm within the UCL-HRSC reconstruction workflow. This algorithm's performance is reasonable even for close-range imagery so long as the stereo -pair does not too large a baseline displacement. For post-processing, a Bundle Adjustment (BA) is used to optimise the initial calibration parameters, which bootstrap the reconstruction results. Amongst many options for the non-linear optimisation, the LMA has been adopted due to its stability so that the BA searches the best calibration parameters whilst iteratively minimising the re-projection errors of the initial reconstruction points. For the evaluation of the proposed method, the result of the method is compared with the reconstruction from a disparity map provided by JPL using their operational processing system. Visual and quantitative comparison will be presented as well as updated camera parameters. As part of future work, we will investigate a method expediting the processing speed of the stereo region growing process and look into the possibility of extending the use of the stereo workstation to orbital image processing. Such an interactive stereo workstation can also be used to digitize points and line features as well as assess the accuracy of stereo processed results produced from other stereo matching algorithms available from within the consortium and elsewhere. It can also provide "ground truth" when suitably refined for stereo matching algorithms as well as provide visual cues as to why these matching algorithms sometimes fail to mitigate this in the future. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 218814 "PRoVisG".

  1. Topomapping of Mars with HRSC images, ISIS, and a commercial stereo workstation

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Galuszka, D.; Redding, B.; Hare, T. M.

    HRSC on Mars Express [1] is the first camera designed specifically for stereo imaging to be used in mapping a planet other than the Earth. Nine detectors view the planet through a single lens to obtain four-band color coverage and stereo images at 3 to 5 distinct angles in a single pass over the target. The short interval between acquisition of the images ensures that changes that could interfere with stereo matching are minimized. The resolution of the nadir channel is 12.5 m at periapsis, poorer at higher points in the elliptical orbit. The stereo channels are typically operated at 2x coarser resolution and the color channels at 4x or 8x. Since the commencement of operations in January 2004, approximately 58% of Mars has been imaged at nadir resolutions better than 50 m/pixel. This coverage is expected to increase significantly during the recently approved extended mission of Mars Express, giving the HRSC dataset enormous potential for regional and even global mapping. Systematic processing of the HRSC images is carried out at the German Aerospace Center (DLR) in Berlin. Preliminary digital topographic models (DTMs) at 200 m/post resolution and orthorectified image products are produced in near-realtime for all orbits, by using the VICAR software system [2]. The tradeoff of universal coverage but limited DTM resolution makes these products optimal for many but not all research studies. Experiments on adaptive processing with the same software, for a limited number of orbits, have allowed DTMs of higher resolution (down to 50 m/post) to be produced [3]. In addition, numerous Co-Investigators on the HRSC team (including ourselves) are actively researching techniques to improve on the standard products, by such methods as bundle adjustment, alternate approaches to stereo DTM generation, and refinement of DTMs by photoclinometry (shape-from-shading) [4]. The HRSC team is conducting a systematic comparison of these alternative processing approaches by arranging for team members to produce DTMs in a consistent coordinate system from a carefully chosen suite of test images [5]. Here, we describe our own approach to HRSC processing and the results we obtained with the test images. We have developed an independent capability for processing of HRSC images at the USGS, based on the approach previously taken with Mars Global Surveyor Mars Orbiter Camera (MGS MOC) images [6]. The chosen approach uses both the USGS digital cartographic system ISIS and the commercial photogrammetric software SOCET SET ( R BAE Systems) and exploits the strengths of each. This capability provides 1 an independent point of comparison for the standard processing, as described here. It also prepares us for systematic mapping with HRSC data, if desired, and makes some useful processing tools (including relatively powerful photometric normalization and photoclinometry software) available to a wide community of ISIS users. ISIS [7] provides an end-to-end system for the analysis of digital images and production of maps from them that is readily extended to new missions. Its stereo capabilities are, however, limited. SOCET SET [8] is tailored to aerial and Earth-orbital imagery but provides a complete workflow with modules for bundle adjustment (MST), automatic stereomatching (ATE), and interactive quality control/editing of DTMs with stereo viewing (ITE). Our processing approach for MOC and other stereo datasets has been to use ISIS to ingest images in an archival format, decompress them as necessary, and perform instrument-specific radiometric calibration. Software written in ISIS is used to translate the image and, more importantly, orientation parameters and other metadata, to the formats understood by SOCET SET. The commercial system is then used for "three-dimensional" processing: bundle-adjustment (including measurement of needed control points), DTM generation, and DTM editing. Final steps such as orthrectification and mosaicking of images can be performed either in SOCET SET or in ISIS after exporting the DTM data back to it. This workflow was modified slightly for HRSC to take advantage of the standard processing performed at the DLR. As the first step in DTM production, we import VICAR Level 2 files (radiometrically calibrated but still in the raw camera geometry) into ISIS where they can immediately be used or exported to SOCET SET. HRSC Level 3 and 4 products (DTMs and orthorectified images) can also be imported and used as map-projected data (e.g., Level 4 DTMs from DLR can be compared with those produced in SOCET SET). Our results for images from orbit h1235 (covering western Candor Chasma) and the adjacent orbits h0894, h0905, h0927 (Nanedi Valles), are encouraging even though we were unable to take full advantage of the multiple-line design of HRSC in the analysis. The version of SOCET SET used (5.2) does not allow for the introduction of constraints in the bundle adjustment to ensure that the images from a single HRSC orbit share the same trajectory and pointing history. We therefore computed offsets to the trajectory and pointing angles for each image of the set as if they were fully independent Furthermore, a limitation of the existing SOCET (and ISIS) pushbroom scanner sensor models is that the exposure time per line is taken as constant for each image. HRSC is generally operated so that the line time changes multiple times per orbit, requiring us to split each VICAR image into multiple files for processing. Because the segments of each image could not be constrained to have consistent adjustments, the DTM of Nanedi Valles produced from these image segments contained small discontinuities at the segment boundaries. This problem did not arise for Candor Chasma 2 because the entire study area was covered without changes in the time per image line. The latest release of SOCET SET (5.3) incorporates the ability to do constrained bundle adjustment and should solve these problems. In addition, we are modifying the ISIS and SOCET sensor models to allow changes of line time within an image. This will greatly reduce the effort needed to work with HRSC image sets with frequent line time changes (i.e., the vast majority), because we will no longer have to split them into short segments that must be controlled and processed individually. In addition, a bug in recent and current versions of SOCET SET prevents the capability for multi-way image matching from being used with sets of scanner images. We therefore collected separate DTMs by pairwise matching of each combination of images (nadir-stereo1, nadir-stereo2, stereo1-stereo2) within an orbit and merged the results. The bug will be corrected in a future release of SOCET SET, making multi-way matching possible. This is expected to improve the robustness of DTM generation and reduce the need for interactive editing. The Candor Chasma bundle adjustment yielded RMS two-dimensional residuals of 0.5 to 0.7 pixels in most bands, 1.4 pixels in the blue. RMS residuals to the ground control provided by Mars Orbiter Laser Altimeter (MOLA) data were ˜180 m horizontally but only 15 m vertically. Adjustments to the spacecraft orientation were surprisingly large, and may be correlated: 0.1 to 2.4 km in position, ≤0.3° in omega, ≤0.8° in the other two angles. Placement of the (manually selected) control points was found to be critical; matching MOLA to the images to constrain horizontal coordinates is easiest at slope breaks such as the canyon edges, but vertical constraints are best obtained in areas of low slope. As a result, it is preferable to choose separate points for horizontal and vertical control. It is also useful to import the MOLA ground tracks into SOCET SET in order to be sure of picking control points on or near altimetry profiles rather than in gaps where the MOLA DTM has been filled by interpolation. We collected DTMs at 75 m/post in the interior of Candor Chasma and 300 m on the walls and surrounding plateau, and merged the results from both spacings and all 3 image combinations at 75 m/post. For Nanedi Valles, which lacks the extremely steep or flat areas encountered in Candor, DTMs at both spacings were collected over the full study area. A small amount of interactive editing was performed to remove areas of obvious matcher errors from the individual DTMs before they were merged. In most cases, this resulted in the combined DTM being based on the other, more successful matching results. Parts of the plateau around Candor Chasma, which has very little image texture, could not be matched successfully and were filled with MOLA data. As would be expected, the resulting DTM appears sharper than either MOLA at 463 m/post or the preliminary HRSC DTM at 200 m/post. The added detail is subjectively well correlated with the image but is not as sharp at the 75 m (˜3 pixel) grid spacing. 3 With the DTM and orthorectified images translated back into ISIS format, a variety of useful additional processing steps could be demonstrated, such as generation of pan-sharpened true and false color images, color-albedo maps, and band-ratio images with correction for surface and atmospheric photometric effects. Similar processing of the nadir and stereo panchromatic images, which have phase angles ranging from 17° to 48°, reveals a surprising diversity of surface photometric behavior. Maps of phase- dependence of scattering will not only be useful for empirical classification of surface units and quantitative modeling of microtexture and other photometric parameters, they are also likely to be essential for the rigorous comparison of the color images, which span a comparable range of phase angles. Finally, by dividing the nadir image by a smoothed version of the albedo map, we were able to obtain an image in which all but the most localized albedo variations had been removed. The albedo-corrected image was then analyzed by two-dimensional photoclinometry [9] to generate a DTM that contains real geomorphic detail at the limit of image resolution while retaining consistency with the stereo and MOLA data over longer distances. Because photoclinometry serves merely as a form of "smart interpolation" to fill in local details in the stereo DTM, the complications that can arise in the general case [10] do not occur, and this processing can be carried out unsupervised. We note in conclusion that orthorectification of the images, photometric normalization and modeling, and photoclinometry are all performed with the free software system ISIS. At the moment, the commercial software SOCET SET is required for both bundle adjustment and stereo DTM production. The USGS is currently developing its own bundle adjustment software for HRSC and other line scanners, which, when available, will make it possible for ISIS users to control HRSC images to MOLA and therefore to use the altimetric topography in subsequent processing and analysis steps similar to those described here. Acknowledgement: For this study, the HRSC Experiment Team of the German Aerospace Center (DLR) in Berlin has provided HRSC Preliminary 200m DTM(s). References: [1] Neukum, G., et al. (2004) Nature, 432, 971. [2] Scholten, F., et al. (2005) PE&RS, 71, 1143. [3] Gwinner, K., et al. (2005) PFG, 5, 387. [4] Albertz, J., et al. (2005) PE&RS, 71, 1153. [5] Heipke, C., et al. (2006) IAPRS, submitted. [6] Kirk, R.L., et al. (2003) JGR, 108, 8088. [7] Eliason, E. (1997) LPS XXVIII, 331; Gaddis et al. (1997) LPS XXVIII, 387; Torson, J., and K. Becker, (1997) LPS XXVIII, 1443. [8] Miller, S.B., and A.S. Walker (1993) ACSM/ASPRS Annual Conv., 3, 256; S.B., and A.S. Walker (1995) Z. Phot. Fern. 63, 4. [9] Kirk, R.L. (1987) Ph.D. Thesis, Caltech, Part III. [10] Kirk, R.L., et al. (2003) ISPRS-ET Workshop, http://astrogeology.usgs.gov/Projects/ISPRS/Meetings/Houston2003/abstracts/ Kirk_isprs_mar03.pdf. 4

  2. A Vision System For A Mars Rover

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian H.; Gennery, Donald B.; Mishkin, Andrew H.; Cooper, Brian K.; Lawton, Teri B.; Lay, N. Keith; Katzmann, Steven P.

    1987-01-01

    A Mars rover must be able to sense its local environment with sufficient resolution and accuracy to avoid local obstacles and hazards while moving a significant distance each day. Power efficiency and reliability are extremely important considerations, making stereo correlation an attractive method of range sensing compared to laser scanning, if the computational load and correspondence errors can be handled. Techniques for treatment of these problems, including the use of more than two cameras to reduce correspondence errors and possibly to limit the computational burden of stereo processing, have been tested at JPL. Once a reliable range map is obtained, it must be transformed to a plan view and compared to a stored terrain database, in order to refine the estimated position of the rover and to improve the database. The slope and roughness of each terrain region are computed, which form the basis for a traversability map allowing local path planning. Ongoing research and field testing of such a system is described.

  3. A vision system for a Mars rover

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Gennery, Donald B.; Mishkin, Andrew H.; Cooper, Brian K.; Lawton, Teri B.; Lay, N. Keith; Katzmann, Steven P.

    1988-01-01

    A Mars rover must be able to sense its local environment with sufficient resolution and accuracy to avoid local obstacles and hazards while moving a significant distance each day. Power efficiency and reliability are extremely important considerations, making stereo correlation an attractive method of range sensing compared to laser scanning, if the computational load and correspondence errors can be handled. Techniques for treatment of these problems, including the use of more than two cameras to reduce correspondence errors and possibly to limit the computational burden of stereo processing, have been tested at JPL. Once a reliable range map is obtained, it must be transformed to a plan view and compared to a stored terrain database, in order to refine the estimated position of the rover and to improve the database. The slope and roughness of each terrain region are computed, which form the basis for a traversability map allowing local path planning. Ongoing research and field testing of such a system is described.

  4. Surface topography of 1€ coin measured by stereo-PIXE

    NASA Astrophysics Data System (ADS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-07-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.

  5. a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization

    NASA Astrophysics Data System (ADS)

    Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.

    2017-07-01

    Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.

  6. GF-7 Imaging Simulation and Dsm Accuracy Estimate

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Tang, X.; Gao, X.

    2017-05-01

    GF-7 satellite is a two-line-array stereo imaging satellite for surveying and mapping which will be launched in 2018. Its resolution is about 0.8 meter at subastral point corresponding to a 20 km width of cloth, and the viewing angle of its forward and backward cameras are 5 and 26 degrees. This paper proposed the imaging simulation method of GF-7 stereo images. WorldView-2 stereo images were used as basic data for simulation. That is, we didn't use DSM and DOM as basic data (we call it "ortho-to-stereo" method) but used a "stereo-to-stereo" method, which will be better to reflect the difference of geometry and radiation in different looking angle. The shortage is that geometric error will be caused by two factors, one is different looking angles between basic image and simulated image, another is not very accurate or no ground reference data. We generated DSM by WorldView-2 stereo images. The WorldView-2 DSM was not only used as reference DSM to estimate the accuracy of DSM generated by simulated GF-7 stereo images, but also used as "ground truth" to establish the relationship between WorldView-2 image point and simulated image point. Static MTF was simulated on the instantaneous focal plane "image" by filtering. SNR was simulated in the electronic sense, that is, digital value of WorldView-2 image point was converted to radiation brightness and used as radiation brightness of simulated GF-7 camera. This radiation brightness will be converted to electronic number n according to physical parameters of GF-7 camera. The noise electronic number n1 will be a random number between -√n and √n. The overall electronic number obtained by TDI CCD will add and converted to digital value of simulated GF-7 image. Sinusoidal curves with different amplitude, frequency and initial phase were used as attitude curves. Geometric installation errors of CCD tiles were also simulated considering the rotation and translation factors. An accuracy estimate was made for DSM generated from simulated images.

  7. Extracting accurate and precise topography from LROC narrow angle camera stereo observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Burns, K. N.; Seymour, P.; Speyerer, E. J.; Deran, A.; Boyd, A. K.; Howington-Kraus, E.; Rosiek, M. R.; Archinal, B. A.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that each provide 0.5 to 2.0 m scale images of the lunar surface. Although not designed as a stereo system, LROC can acquire NAC stereo observations over two or more orbits using at least one off-nadir slew. Digital terrain models (DTMs) are generated from sets of stereo images and registered to profiles from the Lunar Orbiter Laser Altimeter (LOLA) to improve absolute accuracy. With current processing methods, DTMs have absolute accuracies better than the uncertainties of the LOLA profiles and relative vertical and horizontal precisions less than the pixel scale of the DTMs (2-5 m). We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. For a baseline of 15 m the highland mean slope parameters are: median = 9.1°, mean = 11.0°, standard deviation = 7.0°. For the mare the mean slope parameters are: median = 3.5°, mean = 4.9°, standard deviation = 4.5°. The slope values for the highland terrain are steeper than previously reported, likely due to a bias in targeting of the NAC DTMs toward higher relief features in the highland terrain. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics that enable detailed characterization of large geomorphic features. From one DTM mosaic we mapped a large viscous flow related to the Orientale basin ejecta and estimated its thickness and volume to exceed 300 m and 500 km3, respectively. Despite its ∼3.8 billion year age the flow still exhibits unconfined margin slopes above 30°, in some cases exceeding the angle of repose, consistent with deposition of material rich in impact melt. We show that the NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. At this date about 2% of the lunar surface is imaged in high-resolution stereo, and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur across all of the terrestrial planets.

  8. Parametric dense stereovision implementation on a system-on chip (SoC).

    PubMed

    Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L

    2012-01-01

    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  9. Innovative Camera and Image Processing System to Characterize Cryospheric Changes

    NASA Astrophysics Data System (ADS)

    Schenk, A.; Csatho, B. M.; Nagarajan, S.

    2010-12-01

    The polar regions play an important role in Earth’s climatic and geodynamic systems. Digital photogrammetric mapping provides a means for monitoring the dramatic changes observed in the polar regions during the past decades. High-resolution, photogrammetrically processed digital aerial imagery provides complementary information to surface measurements obtained by laser altimetry systems. While laser points accurately sample the ice surface, stereo images allow for the mapping of features, such as crevasses, flow bands, shear margins, moraines, leads, and different types of sea ice. Tracking features in repeat images produces a dense velocity vector field that can either serve as validation for interferometrically derived surface velocities or it constitutes a stand-alone product. A multi-modal, photogrammetric platform consists of one or more high-resolution, commercial color cameras, GPS and inertial navigation system as well as optional laser scanner. Such a system, using a Canon EOS-1DS Mark II camera, was first flown on the Icebridge missions Fall 2009 and Spring 2010, capturing hundreds of thousands of images at a frame rate of about one second. While digital images and videos have been used for quite some time for visual inspection, precise 3D measurements with low cost, commercial cameras require special photogrammetric treatment that only became available recently. Calibrating the multi-camera imaging system and geo-referencing the images are absolute prerequisites for all subsequent applications. Commercial cameras are inherently non-metric, that is, their sensor model is only approximately known. Since these cameras are not as rugged as photogrammetric cameras, the interior orientation also changes, due to temperature and pressure changes and aircraft vibration, resulting in large errors in 3D measurements. It is therefore necessary to calibrate the cameras frequently, at least whenever the system is newly installed. Geo-referencing the images is performed by the Applanix navigation system. Our new method enables a 3D reconstruction of ice sheet surface with high accuracy and unprecedented details, as it is demonstrated by examples from the Antarctic Peninsula, acquired by the IceBridge mission. Repeat digital imaging also provides data for determining surface elevation changes and velocities that are critical parameters for ice sheet models. Although these methods work well, there are known problems with satellite images and the traditional area-based matching, especially over rapidly changing outlet glaciers. To take full advantage of the high resolution, repeat stereo imaging we have developed a new method. The processing starts with the generation of a DEM from geo-referenced stereo images of the first time epoch. The next step is concerned with extracting and matching interest points in object space. Since an interest point moves its spatial position between two time epochs, such points are only radiometrically conjugate but not geometrically. In fact, the geometric displacement of two identical points, together with the time difference, renders velocities. We computed the evolution of the velocity field and surface topography on the floating tongue of the Jakobshavn glacier from historical stereo aerial photographs to illustrate the approach.

  10. Reverse engineering physical models employing a sensor integration between 3D stereo detection and contact digitization

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Lin, Grier C. I.

    1997-12-01

    A vision-drive automatic digitization process for free-form surface reconstruction has been developed, with a coordinate measurement machine (CMM) equipped with a touch-triggered probe and a CCD camera, in reverse engineering physical models. The process integrates 3D stereo detection, data filtering, Delaunay triangulation, adaptive surface digitization into a single process of surface reconstruction. By using this innovative approach, surface reconstruction can be implemented automatically and accurately. Least-squares B- spline surface models with the controlled accuracy of digitization can be generated for further application in product design and manufacturing processes. One industrial application indicates that this approach is feasible, and the processing time required in reverse engineering process can be significantly reduced up to more than 85%.

  11. Obstacle Detection using Binocular Stereo Vision in Trajectory Planning for Quadcopter Navigation

    NASA Astrophysics Data System (ADS)

    Bugayong, Albert; Ramos, Manuel, Jr.

    2018-02-01

    Quadcopters are one of the most versatile unmanned aerial vehicles due to its vertical take-off and landing as well as hovering capabilities. This research uses the Sum of Absolute Differences (SAD) block matching algorithm for stereo vision. A complementary filter was used in sensor fusion to combine obtained quadcopter orientation data from the accelerometer and the gyroscope. PID control was implemented for the motor control and VFH+ algorithm was implemented for trajectory planning. Results show that the quadcopter was able to consistently actuate itself in the roll, yaw and z-axis during obstacle avoidance but was however found to be inconsistent in the pitch axis during forward and backward maneuvers due to the significant noise present in the pitch axis angle outputs compared to the roll and yaw axes.

  12. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  13. Shape and rotational elements of comet 67P/ Churyumov-Gerasimenko derived by stereo-photogrammetric analysis of OSIRIS NAC image data

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Scholten, Frank; Matz, Klaus-Dieter; Roatsch, Thomas; Willner, Konrad; Hviid, Stubbe; Knollenberg, Jörg; Kührt, Ekkehard; Sierks, Holger

    2015-04-01

    The European Space Agency's Rosetta spacecraft is equipped with the OSIRIS imaging system which consists of a wide-angle and a narrow-angle camera (WAC and NAC). After the approach phase, Rosetta was inserted into a descent trajectory of comet 67P/Churyumov-Gerasimenko (C-G) in early August 2014. Until early September, OSIRIS acquired several hundred NAC images of C-G's surface at different scales (from ~5 m/pixel during approach to ~0.9 m/pixel during descent). In that one month observation period, the surface was imaged several times within different mapping sequences. With the comet's rotation period of ~12.4 h and the low spacecraft velocity (< 1 m/s), the entire NAC dataset provides multiple NAC stereo coverage, adequate for stereo-photogrammetric (SPG) analysis towards the derivation of 3D surface models. We constrained the OSIRIS NAC images with our stereo requirements (15° < stereo angles < 45°, incidence angles <85°, emission angles <45°, differences in illumination < 10°, scale better than 5 m/pixel) and extracted about 220 NAC images that provide at least triple stereo image coverage for the entire illuminated surface in about 250 independent multi-stereo image combinations. For each image combination we determined tie points by multi-image matching in order to set-up a 3D control network and a dense surface point cloud for the precise reconstruction of C-G's shape. The control point network defines the input for a stereo-photogrammetric least squares adjustment. Based on the statistical analysis of adjustments we first refined C-G's rotational state (pole orientation and rotational period) and its behavior over time. Based upon this description of the orientation of C-G's body-fixed reference frame, we derived corrections for the nominal navigation data (pointing and position) within a final stereo-photogrammetric block adjustment where the mean 3D point accuracy of more than 100 million surface points has been improved from ~10 m to the sub-meter range. We finally applied point filtering and interpolation techniques to these surface 3D points and show the resulting SPG-based 3D surface model with a lateral sampling rate of about 2 m.

  14. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  15. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    USGS Publications Warehouse

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereo-plotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery.

  16. Role of stereoscopic imaging in the astronomical study of nearby stars and planetary systems

    NASA Astrophysics Data System (ADS)

    Mark, David S.; Waste, Corby

    1997-05-01

    The development of stereoscopic imaging as a 3D spatial mapping tool for planetary science is now beginning to find greater usefulness in the study of stellar atmospheres and planetary systems in general. For the first time, telescopes and accompanying spectrometers have demonstrated the capacity to depict the gyrating motion of nearby stars so precisely as to derive the existence of closely orbiting Jovian-type planets, which are gravitationally influencing the motion of the parent star. Also for the first time, remote space borne telescopes, unhindered by atmospheric effects, are recording and tracking the rotational characteristics of our nearby star, the sun, so accurately as to reveal and identify in great detail the heightened turbulence of the sun's corona. In order to perform new forms of stereo imaging and 3D reconstruction with such large scale objects as stars and planets, within solar systems, a set of geometrical parameters must be observed, and are illustrated here. The behavior of nearby stars can be studied over time using an astrometric approach, making use of the earth's orbital path as a semi- yearly stereo base for the viewing telescope. As is often the case in this method, the resulting stereo angle becomes too narrow to afford a beneficial stereo view, given the star's distance and the general level of detected noise in the signal. With the advent, though, of new earth based and space borne interferometers, operating within various wavelengths including IR, the capability of detecting and assembling the full 3-dimensional axes of motion of nearby gyrating stars can be achieved. In addition, the coupling of large interferometers with combined data sets can provide large stereo bases and low signal noise to produce converging 3- dimensional stereo views of nearby planetary systems. Several groups of new astronomical stereo imaging data sets are presented, including 3D views of the sun taken by the Solar and Heliospheric Observatory, coincident stereo views of the planet Jupiter during impact of comet Shoemaker-Levy 9, taken by the Galileo spacecraft and the Hubble Space Telescope, as well as views of nearby stars. Spatial ambiguities arising in singular 2-dimensional viewpoints are shown to be resolvable in twin perspective, 3-dimensional stereo views. Stereo imaging of this nature, therefore, occupies a complementary role in astronomical observing, provided the proper fields of view correspond with the path of the orbital geometry of the observing telescope.

  17. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  18. Vision Based Localization in Urban Environments

    NASA Technical Reports Server (NTRS)

    McHenry, Michael; Cheng, Yang; Matthies, Larry

    2005-01-01

    As part of DARPA's MARS2020 program, the Jet Propulsion Laboratory developed a vision-based system for localization in urban environments that requires neither GPS nor active sensors. System hardware consists of a pair of small FireWire cameras and a standard Pentium-based computer. The inputs to the software system consist of: 1) a crude grid-based map describing the positions of buildings, 2) an initial estimate of robot location and 3) the video streams produced by each camera. At each step during the traverse the system: captures new image data, finds image features hypothesized to lie on the outside of a building, computes the range to those features, determines an estimate of the robot's motion since the previous step and combines that data with the map to update a probabilistic representation of the robot's location. This probabilistic representation allows the system to simultaneously represent multiple possible locations, For our testing, we have derived the a priori map manually using non-orthorectified overhead imagery, although this process could be automated. The software system consists of two primary components. The first is the vision system which uses binocular stereo ranging together with a set of heuristics to identify features likely to be part of building exteriors and to compute an estimate of the robot's motion since the previous step. The resulting visual features and the associated range measurements are software component, a particle-filter based localization system. This system uses the map and the then fed to the second primary most recent results from the vision system to update the estimate of the robot's location. This report summarizes the design of both the hardware and software and will include the results of applying the system to the global localization of a robot over an approximately half-kilometer traverse across JPL'S Pasadena campus.

  19. Phase aided 3D imaging and modeling: dedicated systems and case studies

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  20. Multispectral Resource Sampler - An experimental satellite sensor for the mid-1980s

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Thompson, L. L.

    1979-01-01

    An experimental pushbroom scan sensor, the Multispectral Resource Sampler (MRS), being developed by NASA for a future earth orbiting flight is presented. This sensor will provide new earth survey capabilities beyond those of current sensor systems, with a ground resolution of 15 m over a swath width of 15 km in four bands. The four arrays are aligned on a common focal surface requiring no beamsplitters, thus causing a spatial separation on the ground which requires computer processing to register the bands. Along track pointing permits stereo coverage at variable base/height ratios and atmospheric correction experiments, while across track pointing will provide repeat coverage, from a Landsat-type orbit, of every 1 to 3 days. The MRS can be used for experiments in crop discrimination and status, rock discrimination, land use classification, and forestry.

  1. 3D environment modeling and location tracking using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.

    2016-05-01

    The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.

  2. Automated determination of cup-to-disc ratio for classification of glaucomatous and normal eyes on stereo retinal fundus images

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Nakagawa, Toshiaki; Sawada, Akira; Hatanaka, Yuji; Yamamoto, Tetsuya; Fujita, Hiroshi

    2011-09-01

    Early diagnosis of glaucoma, which is the second leading cause of blindness in the world, can halt or slow the progression of the disease. We propose an automated method for analyzing the optic disc and measuring the cup-to-disc ratio (CDR) on stereo retinal fundus images to improve ophthalmologists' diagnostic efficiency and potentially reduce the variation on the CDR measurement. The method was developed using 80 retinal fundus image pairs, including 25 glaucomatous, and 55 nonglaucomatous eyes, obtained at our institution. A disc region was segmented using the active contour method with the brightness and edge information. The segmentation of a cup region was performed using a depth map of the optic disc, which was reconstructed on the basis of the stereo disparity. The CDRs were measured and compared with those determined using the manual segmentation results by an expert ophthalmologist. The method was applied to a new database which consisted of 98 stereo image pairs including 60 and 30 pairs with and without signs of glaucoma, respectively. Using the CDRs, an area under the receiver operating characteristic curve of 0.90 was obtained for classification of the glaucomatous and nonglaucomatous eyes. The result indicates potential usefulness of the automated determination of CDRs for the diagnosis of glaucoma.

  3. Reachability Maps for In Situ Operations

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Leger, Patrick C.; Robinson, Matthew L.; Bonitz, Robert G.

    2013-01-01

    This work covers two programs that accomplish the same goal: creation of a "reachability map" from stereo imagery that tells where operators of a robotic arm can reach or touch the surface, and with which instruments. The programs are "marsreach" (for MER) and "phxreach." These programs make use of the planetary image geometry (PIG) library. However, unlike the other programs, they are not multi-mission. Because of the complexity of arm kinematics, the programs are specific to each mission.

  4. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun

    2014-10-01

    Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with "change", "non-change" and "uncertain change" status labeled through a voting strategy. The "uncertain changes" are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are extracted combining the multispectral images and the DSM by morphological operators, and the new buildings are determined by excluding the verified unchanged buildings from the second step. Both the synthetic experiment with Worldview-2 stereo imagery and the real experiment with IKONOS stereo imagery are carried out to demonstrate the effectiveness of the proposed method. It is shown that the proposed method can be applied as an effective way to monitoring the building changes, as well as updating 3D models from one epoch to the other.

  5. Resolving Topographic Changes at Volcanoes Using Pleiades-1 Tri-stereo Imagery and Other Methods: the Example of Fogo Volcano.

    NASA Astrophysics Data System (ADS)

    Bagnardi, M.; González, P. J.; Hooper, A. J.; Richter, N.; Walter, T. R.

    2016-12-01

    Precise, quantitative analyses of topographic changes associated with the emplacement of volcanic products provide the means to infer key parameters for the assessment of hazards associated with volcanic processes. Different techniques can be applied to generate high-resolution digital elevation models (DEMs), using both ground-based and air/space-borne sensors. In this study, we first evaluate the use of very high resolution (VHR) tri-stereo optical imagery from the Pleiades-1 satellite constellation for volcanological applications. With this scope, we generate a 1 m resolution DEM of Fogo Volcano, Cape Verde, and use this DEM to quantify topographic changes associated with the 2014-2015 eruption. We observe that, when compared with the classic stereo approach, the use of tri-stereo imagery highly enhances the ability of photogrammetric techniques to estimate heights through increasing the point cloud density and by reducing the number of pixels with no measurements. From the Pleiades-1 post-eruption topography we subtract heights from a pre-eruptive DEM, obtained using spaceborne synthetic aperture radar (SAR) data from the TanDEM-X mission, and estimate the volume of the 2014-2015 lava flow ( 46 million m3) and the mean output rate throughout the eruption (5-7 m3/s). We subsequently use complementary datasets from a variety of sensors (Terrestrial Laser Scanning, UAV optical imagery, Structure from Motion from hand-held DSLR cameras) to fill gaps in Pleiades-1 data coverage and to generate a merged, high-resolution DEM of the volcano. To weight the contribution of each dataset, we carry out a comparative analysis of the accuracy of the different DEMs and identify advantages and disadvantages associated with the use of each technique. Finally, using SAR data acquired by the Sentinel-1a satellite, we apply SAR interferometry (InSAR) and measure the lava flow subsidence due to cooling and contraction in the months after its emplacement and compare this to the measured lava flow thickness. Maximum subsidence is recorded in those areas where lava flow thickness is also maximum, and where the substrate onto which the lava flow was emplaced is highly compactable.

  6. Measurable realistic image-based 3D mapping

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.

    2011-12-01

    Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable realistic image-based (MRI) system can produce. The major contribution here is the implementation of measurable images on 3D maps to obtain various measurements from real scenes.

  7. Large Impact Features on Saturn's Middle-sized Icy Satellites: Global Image Mosaics and Topography

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Moore, J. M.; McKinnon, W. B.

    2003-03-01

    New topographic maps of Saturn's middle-sized icy satellites derived from stereo imaging and 2D photoclinometry provide a sneak peak at the surprises in store when Cassini arrives at Saturn. We reexamine the morphology of large impact craters and describe their relaxation state.

  8. Multiple pedestrian detection using IR LED stereo camera

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Zeifman, Michael I.; Gibson, David R. P.

    2007-09-01

    As part of the U.S. Department of Transportations Intelligent Vehicle Initiative (IVI) program, the Federal Highway Administration (FHWA) is conducting R&D in vehicle safety and driver information systems. There is an increasing number of applications where pedestrian monitoring is of high importance. Visionbased pedestrian detection in outdoor scenes is still an open challenge. People dress in very different colors that sometimes blend with the background, wear hats or carry bags, and stand, walk and change directions unpredictably. The background is various, containing buildings, moving or parked cars, bicycles, street signs, signals, etc. Furthermore, existing pedestrian detection systems perform only during daytime, making it impossible to detect pedestrians at night. Under FHWA funding, we are developing a multi-pedestrian detection system using IR LED stereo camera. This system, without using any templates, detects the pedestrians through statistical pattern recognition utilizing 3D features extracted from the disparity map. A new IR LED stereo camera is being developed, which can help detect pedestrians during daytime and night time. Using the image differencing and denoising, we have also developed new methods to estimate the disparity map of pedestrians in near real time. Our system will have a hardware interface with the traffic controller through wireless communication. Once pedestrians are detected, traffic signals at the street intersections will change phases to alert the drivers of approaching vehicles. The initial test results using images collected at a street intersection show that our system can detect pedestrians in near real time.

  9. Planialtimetric Evaluation of a CARTOSAT-1 Stereo Pair - Case Study: SÃO SEBASTIÃO, SP, Brazil

    NASA Astrophysics Data System (ADS)

    Barros, R. S.; Cruz, C. B. M.; Rabaco, L. M. L.

    2012-07-01

    It is noticed a significant increase in the development of orbital and airborne sensors that enable the extraction of three-dimensional data. So, it's important the increment of studies about the quality of altimetric values derived from these sensors to verify if the improvements implemented in the acquisition of data may influence the results. In this context, as part of a larger project that aims to evaluate the accuracy of various sensors, this work aims to analysis the planialtimetric accuracy of DEM generated from Cartosat-1 stereo pair. The project was developed for an area near the city of São Sebastião, located in the basin of the North Coast of São Paulo state, in Brasil. The relief in this area is very steep, with a predominance of dense forest vegetation, typical of the Atlantic Forest. All points in this assessment have been established in the field, with the use of single frequency (L1) GNSS receivers, through static relative positioning. In this work it was considered the Brazilian standard specifications (PEC, in Portuguese) for classification of cartographic bases. Results may be considered very good and showed that Cartosat-1 orthoimage presents accuracy equivalent to class B for 1:10.000 scale. The DEM presents altimetric accuracy compatible with class A of the 1:25.000 scale. Results obtained are true for this specific area/study case, but may vary in case different scenes or other studies areas are considered.

  10. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    NASA Astrophysics Data System (ADS)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera. In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution. We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and HIRISE image processing in the existing data processing pipeline and improve it at the same time. Currently the workflow is not finished: DEM units are relative and are not in elevation. We have been able to derive successful DEMs from CTX data Becquerel [14] and Crommelin craters as well as for some areas in the North Polar Layered Terrain. Due to its tremendous resolution HIRISE data showing great surface detail, hence allowing better correlation than other sensors considered in this work. In all cases DEM were showing considerable potential for exploration of terrain characteristics. Next steps include cross validation results with DEM produced by other teams and sensors (HRSC [6], HIRISE [7]) and providing elevation in terms of absolute height over a MOLA areoid. MRO imaging data allows us an unprecedented look at Martian terrain. This work provides a step forward derivation of DEM from HIRISE and CTX datasets and currently undergoing validation vs. other existing datasets. We will present our latest results for layering structures in both North and South Polar Layered deposits as well as layered structures inside Becquerel and Crommelin craters. Digital Elevation models derived from the CTX sensor can also be utilized effectively as a input for clutter reduction models, which are in turn used for the ground penetrating SHARAD instrument [13]. References. [1] R. Arvidson, et al. Mars exploration program 2007 phoenix landing site selection and characteristics. Journal of Geophysical Research-Planets, 113, JUN 19 2008. [2] M. Golombek, et al. Assessment of mars exploration rover landing site predictions. Nature, 436(7047):44-48, JUL 7 2005. [3] K. E. Herkenhoff, et al. Meter-scale morphology of the north polar region of mars. Science, 317(5845):1711-1715, SEP 21 2007. [4] A. B. Ivanov. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions. volume 34 of Lunar and Planetary Inst. Technical Report, pages 2084-+, Mar. 2003. [5] A. B. Ivanov and J. J. Lorre. Analysis of Mars Orbiter Camera Stereo Pairs. In Lunar and Planetary Institute Conference Abstracts, volume 33 of Lunar and Planetary Inst. Technical Report, pages 1845-+, Mar. 2002. [6] R. Jaumann, et al. The high-resolution stereo camera (HRSC) experiment on mars express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary and Space Science, 55(7-8):928-952, MAY 2007. [7] R. L. Kirk, et al. Ultrahigh resolution topographic mapping of mars with MRO HIRISE stereo images: Meter-scale slopes of candidate phoenix landing sites. Journal of Geophysical Research-Planets, 113, NOV 15 2008. [8] S. Lavoie, et al. Processing and analysis of mars pathfinder science data at the jet propulsion laboratory's science data processing systems section. Journal of Geophysical Research-Planets, 104(E4):8831-8852, APR 25 1999. [9] J. J. Lorre, et al. Recent developments at JPL in the application of image processing to astronomy. In D. L. Crawford, editor, Instrumentation in Astronomy III, volume 172 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 394-402, 1979. [10] M. Malin, et al. Early views of the martian surface from the mars orbiter camera of mars global surveyor. Science, 279(5357):1681-1685, MAR 13 1998. [11] M. C. Malin,et al. Context camera investigation on board the mars reconnaissance orbiter. Journal of Geophysical Research-Planets, 112(E5), MAY 18 2007. [12] A. S. McEwen, et al.. Mars reconnaissance orbiter's high resolution imaging science experiment (HIRISE). Journal of Geophysical Research-Planets, 112(E5), MAY 17 2007. [13] A. Rossi, et al. Multi-spacecraft synergy with MEX HRSC and MRO SHARAD: Light-Toned Deposits in crater bulges. AGU Fall Meeting Abstracts, pages B1371+, Dec. 2008. [14] A. P. Rossi, et al. Stratigraphic architecture and structural control on sediment emplacement in Becquerel crater (Mars). volume 40. Lunar and Planetary Science Institute, 2009. [15] K. L. Tanaka,et al. North polar region of mars: Advances in stratigraphy, structure, and erosional modification, AUG 2008. Icarus. [16] USGS. Planetary image processing software: ISIS3. http://isis.astrogeology.usgs.gov/

  11. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of left- and right-looking SAR stereo to depth measurements of the Ammavaru outflow channel, Lada Terra, Venus

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    1992-01-01

    Venusian channels are too narrow to be resolved by Magellan's radar altimeter, so they are not visible in the standard topographic data products. Stereo image data, in addition to their benefit to geologic mapping of Venus structures as a whole, are indispensible in measuring the topography across the channels. These measurements can then be used in conjunction with the regional topographic maps based on the altimeter data to produce cross-sectional areas for the channels and estimate the fluid discharge through them. As an example of the application of the stereo image data to venusian channels, a number of test depth and profile measurements were made of the large outflow channel system in Lada Terra, centered at 50 deg S latitude, 21 deg E longitude (F-MIDR 50S021). These measurements were made by viewing the cycle 1 and 2 digital FMIDRs in stereo on a display monitor, so as to minimize the errors in measuring parallax displacement as much as possible. The MIDRs are produced at a scale of 75 m/pixel. This corresponds to a vertical scale of about 17 m/pixel, when calculating the height of a feature from its parallax displacement. An error in placement determination of 1 pixel was assumed to characterize the vertical accuracy as plus or minus 17 m. When this technique was applied to the outflow channel, it was noted that the walls of the collapsed terrain source and 'trough reach' of the channel are laid over in both the cycle 1 and 2 images. This is evident when examining the distance between features on the plateau and the cliff walls in the two images. The layover 'shifts' the features closer to the apparent edge of the wall relative to the oppositely illuminated image.

  13. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments.

    PubMed

    Ramon Soria, Pablo; Arrue, Begoña C; Ollero, Anibal

    2017-01-07

    The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoors.

  14. Left Limb of North Pole of the Sun, March 20, 2007 (Anaglyph)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Left eye view of a stereo pair Click on the image for full resolution TIFF Figure 2: Right eye view of a stereo pair Click on the image for full resolution TIFF Figure 1: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun. This location enables us to view the Sun from the position of a virtual left eye in space. Figure 2: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-A spacecraft. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    NASA's Solar TErrestrial RElations Observatory (STEREO) satellites have provided the first three-dimensional images of the Sun. For the first time, scientists will be able to see structures in the Sun's atmosphere in three dimensions. The new view will greatly aid scientists' ability to understand solar physics and thereby improve space weather forecasting.

    This image is a composite of left and right eye color image pairs taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B and STEREO-A spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual left eye in space. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    The EUVI imager is sensitive to wavelengths of light in the extreme ultraviolet portion of the spectrum. EUVI bands at wavelengths of 304, 171 and 195 Angstroms have been mapped to the red blue and green visible portion of the spectrum; and processed to emphasize the three-dimensional structure of the solar material.

    STEREO, a two-year mission, launched October 2006, will provide a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories -- one ahead of Earth in its orbit, the other trailing behind -- will trace the flow of energy and matter from the Sun to Earth. They will reveal the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO will become a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    STEREO is the third mission in NASA's Solar Terrestrial Probes program within NASA's Science Mission Directorate, Washington. The Goddard Science and Exploration Directorate manages the mission, instruments, and science center. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., designed and built the spacecraft and is responsible for mission operations. The imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands, and Switzerland. JPL is a division of the California Institute of Technology in Pasadena.

  15. Image Processing

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new spinoff product was derived from Geospectra Corporation's expertise in processing LANDSAT data in a software package. Called ATOM (for Automatic Topographic Mapping), it's capable of digitally extracting elevation information from stereo photos taken by spaceborne cameras. ATOM offers a new dimension of realism in applications involving terrain simulations, producing extremely precise maps of an area's elevations at a lower cost than traditional methods. ATOM has a number of applications involving defense training simulations and offers utility in architecture, urban planning, forestry, petroleum and mineral exploration.

  16. Distributed multimodal data fusion for large scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2006-05-01

    Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.

  17. Object Tracking Vision System for Mapping the UCN τ Apparatus Volume

    NASA Astrophysics Data System (ADS)

    Lumb, Rowan; UCNtau Collaboration

    2016-09-01

    The UCN τ collaboration has an immediate goal to measure the lifetime of the free neutron to within 0.1%, i.e. about 1 s. The UCN τ apparatus is a magneto-gravitational ``bottle'' system. This system holds low energy, or ultracold, neutrons in the apparatus with the constraint of gravity, and keeps these low energy neutrons from interacting with the bottle via a strong 1 T surface magnetic field created by a bowl-shaped array of permanent magnets. The apparatus is wrapped with energized coils to supply a magnetic field throughout the ''bottle'' volume to prevent depolarization of the neutrons. An object-tracking stereo-vision system will be presented that precisely tracks a Hall probe and allows a mapping of the magnetic field throughout the volume of the UCN τ bottle. The stereo-vision system utilizes two cameras and open source openCV software to track an object's 3-d position in space in real time. The desired resolution is +/-1 mm resolution along each axis. The vision system is being used as part of an even larger system to map the magnetic field of the UCN τ apparatus and expose any possible systematic effects due to field cancellation or low field points which could allow neutrons to depolarize and possibly escape from the apparatus undetected. Tennessee Technological University.

  18. Bathymetric mapping of submarine sand waves using multiangle sun glitter imagery: a case of the Taiwan Banks with ASTER stereo imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-guo; Yang, Kang; Lou, Xiu-lin; Li, Dong-ling; Shi, Ai-qin; Fu, Bin

    2015-01-01

    Submarine sand waves are visible in optical sun glitter remote sensing images and multiangle observations can provide valuable information. We present a method for bathymetric mapping of submarine sand waves using multiangle sun glitter information from Advanced Spaceborne Thermal Emission and Reflection Radiometer stereo imagery. Based on a multiangle image geometry model and a sun glitter radiance transfer model, sea surface roughness is derived using multiangle sun glitter images. These results are then used for water depth inversions based on the Alpers-Hennings model, supported by a few true depth data points (sounding data). Case study results show that the inversion and true depths match well, with high-correlation coefficients and root-mean-square errors from 1.45 to 2.46 m, and relative errors from 5.48% to 8.12%. The proposed method has some advantages over previous methods in that it requires fewer true depth data points, it does not require environmental parameters or knowledge of sand-wave morphology, and it is relatively simple to operate. On this basis, we conclude that this method is effective in mapping submarine sand waves and we anticipate that it will also be applicable to other similar topography types.

  19. MRO CTX-based Digital Terrain Models

    NASA Astrophysics Data System (ADS)

    Dumke, Alexander

    2016-04-01

    In planetary surface sciences, digital terrain models (DTM) are paramount when it comes to understanding and quantifying processes. In this contribution an approach for the derivation of digital terrain models from stereo images of the NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) are described. CTX consists of a 350 mm focal length telescope and 5000 CCD sensor elements and is operated as pushbroom camera. It acquires images with ~6 m/px over a swath width of ~30 km of the Mars surface [1]. Today, several approaches for the derivation of CTX DTMs exist [e. g. 2, 3, 4]. The discussed approach here is based on established software and combines them with proprietary software as described below. The main processing task for the derivation of CTX stereo DTMs is based on six steps: (1) First, CTX images are radiometrically corrected using the ISIS software package [5]. (2) For selected CTX stereo images, exterior orientation data from reconstructed NAIF SPICE data are extracted [6]. (3) In the next step High Resolution Stereo Camera (HRSC) DTMs [7, 8, 9] are used for the rectification of CTX stereo images to reduce the search area during the image matching. Here, HRSC DTMs are used due to their higher spatial resolution when compared to MOLA DTMs. (4) The determination of coordinates of homologous points between stereo images, i.e. the stereo image matching process, consists of two steps: first, a cross-correlation to obtain approximate values and secondly, their use in a least-square matching (LSM) process in order to obtain subpixel positions. (5) The stereo matching results are then used to generate object points from forward ray intersections. (6) As a last step, the DTM-raster generation is performed using software developed at the German Aerospace Center, Berlin. Whereby only object points are used that have a smaller error than a threshold value. References: [1] Malin, M. C. et al., 2007, JGR 112, doi:10.1029/2006JE002808 [2] Broxton, M. J. et al., 2008, LPSC XXXIX, Abstract#2419 [3] Yershov, V. et al., 2015 EPSC 10, EPSC2015-343 [4] Kim, J. R. et al., 2013 EPS 65, 799-809 [5] https://isis.astrogeology.usgs.gov/index.html [6] http://naif.jpl.nasa.gov/naif/index.html [7] Gwinner et al., 2010, EPS 294, 543-540 [8] Gwinner et al., 2015, PSS [9] Dumke, A. et al., 2008, ISPRS, 37, Part B4, 1037-1042

  20. Imaging Science Panel. Multispectral Imaging Science Working Group joint meeting with Information Science Panel: Introduction

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.

  1. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and the most popular ones in each category were selected (Arc 3D, Visual SfM, Sure, Agisoft). Also four small objects with distinct geometric properties and especial complexities were chosen and their accurate models as reliable true data was created using ATOS Compact Scan 2M 3D scanner. Images were taken using Fujifilm Real 3D stereo camera, Apple iPhone 5 and Nikon D3200 professional camera and three dimensional models of the objects were obtained using each of the software. Finally, a comprehensive comparison between the detailed reviews of the results on the data set showed that the best combination of software and sensors for generating three-dimensional models is directly related to the object shape as well as the expected accuracy of the final model. Generally better quantitative and qualitative results were obtained by using the Nikon D3200 professional camera, while Fujifilm Real 3D stereo camera and Apple iPhone 5 were the second and third respectively in this comparison. On the other hand, three software of Visual SfM, Sure and Agisoft had a hard competition to achieve the most accurate and complete model of the objects and the best software was different according to the geometric properties of the object.

  2. Revised coordinates of the Mars Orbiter Laser Altimeter (MOLA) footprints

    NASA Astrophysics Data System (ADS)

    Annibali, S.; Stark, A.; Gwinner, K.; Hussmann, H.; Oberst, J.

    2017-09-01

    We revised the Mars Orbiter Laser Altimeter (MOLA) footprint locations (i.e. areocentric body-fixed latitude and longitude), using updated trajectory models for the Mars Global Surveyor and updated rotation parameters of Mars, including precession, nutation and length-of-day variation. We assess the impact of these updates on the gridded MOLA maps. A first comparison reveals that even slight corrections to the rotational state of Mars can lead to height differences up to 100 m (in particular in regions with high slopes, where large interpolation effects are expected). Ultimately, we aim at independent measurements of the rotation parameters of Mars. We co-register MOLA profiles to digital terrain models from stereo images (stereo DTMs) and measure offsets of the two data sets.

  3. Influence of camera parameters on the quality of mobile 3D capture

    NASA Astrophysics Data System (ADS)

    Georgiev, Mihail; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska

    2010-01-01

    We investigate the effect of camera de-calibration on the quality of depth estimation. Dense depth map is a format particularly suitable for mobile 3D capture (scalable and screen independent). However, in real-world scenario cameras might move (vibrations, temp. bend) form their designated positions. For experiments, we create a test framework, described in the paper. We investigate how mechanical changes will affect different (4) stereo-matching algorithms. We also assess how different geometric corrections (none, motion compensation-like, full rectification) will affect the estimation quality (how much offset can be still compensated with "crop" over a larger CCD). Finally, we show how estimated camera pose change (E) relates with stereo-matching, which can be used for "rectification quality" measure.

  4. Real-time method for establishing a detection map for a network of sensors

    DOEpatents

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  5. Forest biomass change estimated from height change in interferometric SAR height models.

    PubMed

    Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole-Martin

    2014-12-01

    There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry. We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly accurate estimates of biomass changes from 2000 to 2011. For 200 m 2 plots we obtained an accuracy of 65 t/ha, which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can be applied without having accurate terrain heights and without having former in-situ biomass data, both of which are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass change map based on interferometry corresponded well to a very accurate map derived from repeated scanning with airborne laser. Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we can estimate temporal changes in biomass and carbon.

  6. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.

  7. Mission Specification and Control for Unmanned Aerial and Ground Vehicles for Indoor Target Discovery and Tracking

    DTIC Science & Technology

    2010-01-01

    open garage leading to the building interior. The UAV is positioned north of a potential ingress to the building. As the mission begins, the UAV...camera, the difficulty in detecting and navigating around obstacles using this non- stereo camera necessitated a precomputed map of all obstacles and

  8. Aerial photo guide to New England forest cover types

    Treesearch

    Rachel Riemann Hershey; William A. Befort

    1995-01-01

    NOTE large file size. Presents color infrared photos in stereo pairs for the identification of New England forest cover types. Depicts range maps, ecological relations, and range of composition for each forest cover type described. The guide is designed to assist the needs of interpreters of medium to large-scale color infrared aerial photography.

  9. 3D road marking reconstruction from street-level calibrated stereo pairs

    NASA Astrophysics Data System (ADS)

    Soheilian, Bahman; Paparoditis, Nicolas; Boldo, Didier

    This paper presents an automatic approach to road marking reconstruction using stereo pairs acquired by a mobile mapping system in a dense urban area. Two types of road markings were studied: zebra crossings (crosswalks) and dashed lines. These two types of road markings consist of strips having known shape and size. These geometric specifications are used to constrain the recognition of strips. In both cases (i.e. zebra crossings and dashed lines), the reconstruction method consists of three main steps. The first step extracts edge points from the left and right images of a stereo pair and computes 3D linked edges using a matching process. The second step comprises a filtering process that uses the known geometric specifications of road marking objects. The goal is to preserve linked edges that can plausibly belong to road markings and to filter others out. The final step uses the remaining linked edges to fit a theoretical model to the data. The method developed has been used for processing a large number of images. Road markings are successfully and precisely reconstructed in dense urban areas under real traffic conditions.

  10. Ensemble Modeling of the July 23, 2012 CME Event

    NASA Astrophysics Data System (ADS)

    Cash, M. D.; Biesecker, D. A.; Millward, G.; Arge, C. N.; Henney, C. J.

    2013-12-01

    On July 23, 2012 a large and very fast coronal mass ejection (CME) was observed by STEREO A. This CME was unusual in that the estimates of the speed of the CME ranged from 2125 km/s to 2780 km/s based on dividing the distance of STEREO A from the Sun by the transit time of the CME. Modeling of this CME event with the WSA-Enlil model has also suggested that a very fast speed is required in order to obtain the correct arrival time at 1 AU. We present a systematic study of parameter space for the July 23, 2012 CME event through an ensemble study using the WSA-Enlil model to predict the arrival time of the CME at STEREO A. We investigate how variations in the initial speed, angular width, and direction affect the predicted arrival time. We also explore how variations in the background solar wind influence CME arrival time by using varying ADAPT maps within our ensemble study. Factors involved in the fast transit time of this large CME are discussed and the optimal CME parameters are presented.

  11. A parallel stereo reconstruction algorithm with applications in entomology (APSRA)

    NASA Astrophysics Data System (ADS)

    Bhasin, Rajesh; Jang, Won Jun; Hart, John C.

    2012-03-01

    We propose a fast parallel algorithm for the reconstruction of 3-Dimensional point clouds of insects from binocular stereo image pairs using a hierarchical approach for disparity estimation. Entomologists study various features of insects to classify them, build their distribution maps, and discover genetic links between specimens among various other essential tasks. This information is important to the pesticide and the pharmaceutical industries among others. When considering the large collections of insects entomologists analyze, it becomes difficult to physically handle the entire collection and share the data with researchers across the world. With the method presented in our work, Entomologists can create an image database for their collections and use the 3D models for studying the shape and structure of the insects thus making it easier to maintain and share. Initial feedback shows that the reconstructed 3D models preserve the shape and size of the specimen. We further optimize our results to incorporate multiview stereo which produces better overall structure of the insects. Our main contribution is applying stereoscopic vision techniques to entomology to solve the problems faced by entomologists.

  12. Stereo Correspondence Using Moment Invariants

    NASA Astrophysics Data System (ADS)

    Premaratne, Prashan; Safaei, Farzad

    Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.

  13. On-board computational efficiency in real time UAV embedded terrain reconstruction

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Athanasiou, Vasilis; Papaefstathiou, Ioannis; Mertikas, Stylianos; Kyritsis, Sarantis; Tripolitsiotis, Achilles; Zervos, Panagiotis

    2014-05-01

    In the last few years, there is a surge of applications for object recognition, interpretation and mapping using unmanned aerial vehicles (UAV). Specifications in constructing those UAVs are highly diverse with contradictory characteristics including cost-efficiency, carrying weight, flight time, mapping precision, real time processing capabilities, etc. In this work, a hexacopter UAV is employed for near real time terrain mapping. The main challenge addressed is to retain a low cost flying platform with real time processing capabilities. The UAV weight limitation affecting the overall flight time, makes the selection of the on-board processing components particularly critical. On the other hand, surface reconstruction, as a computational demanding task, calls for a highly demanding processing unit on board. To merge these two contradicting aspects along with customized development, a System on a Chip (SoC) integrated circuit is proposed as a low-power, low-cost processor, which natively supports camera sensors and positioning and navigation systems. Modern SoCs, such as Omap3530 or Zynq, are classified as heterogeneous devices and provide a versatile platform, allowing access to both general purpose processors, such as the ARM11, as well as specialized processors, such as a digital signal processor and floating field-programmable gate array. A UAV equipped with the proposed embedded processors, allows on-board terrain reconstruction using stereo vision in near real time. Furthermore, according to the frame rate required, additional image processing may concurrently take place, such as image rectification andobject detection. Lastly, the onboard positioning and navigation (e.g., GNSS) chip may further improve the quality of the generated map. The resulting terrain maps are compared to ground truth geodetic measurements in order to access the accuracy limitations of the overall process. It is shown that with our proposed novel system,there is much potential in computational efficiency on board and in optimized time constraints.

  14. Reconnaissance geologic mapping in the Dry Valleys of Antarctica using the Earth Resources Technology Satellite

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Zochol, F. W.; Smithson, S. B.

    1973-01-01

    The author has identified the following significant results. Reconnaissance geologic mapping can be done with 60-70% accuracy in the Dry Valleys of Antarctica using ERTS-1 imagery. Bedrock geology can be mapped much better than unconsolidated deposits of Quaternary age. Mapping of bedrock geology is facilitated by lack of vegetation, whereas mapping of Quaternary deposits is hindered by lack of vegetation. Antarctic images show remarkable clarity and under certain conditions (moderate relief, selection of the optimum band for specific rock types, stereo-viewing) irregular contacts can be mapped in local areas that are amazing like those mapped at a scale of 1:25,000, but, of course, lack details due to resolution limitations. ERTS-1 images should be a valuable aid to Antarctic geologists who have some limited ground truth and wish to extend boundaries of geologic mapping from known areas.

  15. Application of Ifsar Technology in Topographic Mapping: JUPEM's Experience

    NASA Astrophysics Data System (ADS)

    Zakaria, Ahamad

    2018-05-01

    The application of Interferometric Synthetic Aperture Radar (IFSAR) in topographic mapping has increased during the past decades. This is due to the advantages that IFSAR technology offers in solving data acquisition problems in tropical regions. Unlike aerial photography, radar technology offers wave penetration through cloud cover, fog and haze. As a consequence, images can be made free of any natural phenomenon defects. In Malaysia, Department of Survey and Mapping Malaysia (JUPEM) has been utilizing the IFSAR products since 2009 to update topographic maps at 1 : 50,000 map scales. Orthorectified radar imagery (ORI), Digital Surface Models (DSM) and Digital Terrain Models (DTM) procured under the project have been further processed before the products are ingested into a revamped mapping workflow consisting of stereo and mono digitizing processes. The paper will highlight the experience of Department of Survey and Mapping Malaysia (DSMM)/ JUPEM in using such technology in order to speed up mapping production.

  16. Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles; Braun, Douglas

    2017-06-01

    The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called "p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.

  17. Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting.

    PubMed

    Lindsey, Charles; Braun, Douglas

    2017-06-01

    The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called " p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.

  18. Dig Hazard Assessment Using a Stereo Pair of Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Trebi-Ollennu, Ashitey

    2012-01-01

    This software evaluates the terrain within reach of a lander s robotic arm for dig hazards using a stereo pair of cameras that are part of the lander s sensor system. A relative level of risk is calculated for a set of dig sectors. There are two versions of this software; one is designed to run onboard a lander as part of the flight software, and the other runs on a PC under Linux as a ground tool that produces the same results generated on the lander, given stereo images acquired by the lander and downlinked to Earth. Onboard dig hazard assessment is accomplished by executing a workspace panorama command sequence. This sequence acquires a set of stereo pairs of images of the terrain the arm can reach, generates a set of candidate dig sectors, and assesses the dig hazard of each candidate dig sector. The 3D perimeter points of candidate dig sectors are generated using configurable parameters. A 3D reconstruction of the terrain in front of the lander is generated using a set of stereo images acquired from the mast cameras. The 3D reconstruction is used to evaluate the dig goodness of each candidate dig sector based on a set of eight metrics. The eight metrics are: 1. The maximum change in elevation in each sector, 2. The elevation standard deviation in each sector, 3. The forward tilt of each sector with respect to the payload frame, 4. The side tilt of each sector with respect to the payload frame, 5. The maximum size of missing data regions in each sector, 6. The percentage of a sector that has missing data, 7. The roughness of each sector, and 8. Monochrome intensity standard deviation of each sector. Each of the eight metrics forms a goodness image layer where the goodness value of each sector ranges from 0 to 1. Goodness values of 0 and 1 correspond to high and low risk, respectively. For each dig sector, the eight goodness values are merged by selecting the lowest one. Including the merged goodness image layer, there are nine goodness image layers for each stereo pair of mast images.

  19. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  20. Ultra Precision Machining

    DTIC Science & Technology

    1990-05-20

    in the fields of mobile robots and military systems. In both fields extensive use is made of a variety of dissimilar sensors to gather information (Luo...and Kay [27]). For example, a mobile robot might use both sonar and stereo imaging data to get a better estimate of the distance to the nearest wall...Estimation and Modulation Theory, volume 1. McGraw-Hill, 1968. [45] R. H. Volin. Techniques and aplications of mechanical signature analsysis. Shock

  1. Understanding Shock Dynamics in the Inner Heliosphere with Modeling and Type II Radio Data: the 2010-04-03 Event

    NASA Technical Reports Server (NTRS)

    Xie, Hong Na; Odstrcil, Dusan; Mays, L.; Cyr, O. C. St.; Gopalswamy, N.; Cremades, H.

    2012-01-01

    The 2010 April 03 solar event was studied using observations from STEREO SECCHI, SOHO LASCO, and Wind kilometric Type II data (kmTII) combined with WSA-Cone-ENLIL model simulations performed at the Community Coordinated Modeling Center (CCMC). In particular, we identified the origin of the coronal mass ejection (CME) using STEREO EUVI and SOHO EIT images. A flux-rope model was fit to the SECCHI A and B, and LASCO images to determine the CMEs direction, size, and actual speed. J-maps from STEREO COR2HI-1HI-2 and simulations fromCCMC were used to study the formation and evolution of the shock in the inner heliosphere. In addition, we also studied the time-distance profile of the shock propagation from kmTII radio burst observations. The J-maps together with in-situ datafrom the Wind spacecraft provided an opportunity to validate the simulation results andthe kmTII prediction. Here we report on a comparison of two methods of predictinginterplanetary shock arrival time: the ENLIL model and the kmTII method; andinvestigate whether or not using the ENLIL model density improves the kmTIIprediction. We found that the ENLIL model predicted the kinematics of shock evolutionwell. The shock arrival times (SAT) and linear-fit shock velocities in the ENLILmodel agreed well with those measurements in the J-maps along both the CME leading edge and the Sun-Earth line. The ENLIL model also reproduced most of the largescale structures of the shock propagation and gave the SAT prediction at Earth with an error of 17 hours. The kmTII method predicted the SAT at Earth with an error of 15 hours when using n0 4.16 cm3, the ENLIL model plasma density near Earth; but itimproved to 2 hours when using n0 6.64 cm3, the model density near the CMEleading edge at 1 AU.

  2. The HRSC on Mars Express: Mert Davies' Involvement in a Novel Planetary Cartography Experiment

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Waehlisch, M.; Giese, B.; Scholten, F.; Hoffmann, H.; Jaumann, R.; Neukum, G.

    2002-12-01

    Mert Davies was a team member of the HRSC (High Resolution Stereo Camera) imaging experiment (PI: Gerhard Neukum) on ESA's Mars Express mission. This pushbroom camera is equipped with 9 forward- and backward-looking CCD lines, 5184 samples each, mounted in parallel, perpendicular to the spacecraft velocity vector. Flight image data with resolutions of up to 10m/pix (from an altitude of 250 km) will be acquired line by line as the spacecraft moves. This acquisition strategy will result in 9 separate almost completely overlapping image strips, each of them having more than 27,000 image lines, typically. [HRSC is also equipped with a superresolution channel for imaging of selected targets at up to 2.3 m/pixel]. The combined operation of the nadir and off-nadir CCD lines (+18.9°, 0°, -18.9°) gives HRSC a triple-stereo capability for precision mapping of surface topography and for modelling of spacecraft orbit- and camera pointing errors. The goals of the camera are to obtain accurate control point networks, Digital Elevation Models (DEMs) in Mars-fixed coordinates, and color orthoimages at global (100% of the surface will be covered with resolutions better than 30m/pixel) and local scales. With his long experience in all aspects of planetary geodesy and cartography, Mert Davies was involved in the preparations of this novel Mars imaging experiment which included: (a) development of a ground data system for the analysis of triple-stereo images, (b) camera testing during airborne imaging campaigns, (c) re-analysis of the Mars control point network, and generation of global topographic orthoimage maps on the basis of MOC images and MOLA data, (d) definition of the quadrangle scheme for a new topographic image map series 1:200K, (e) simulation of synthetic HRSC imaging sequences and their photogrammetric analysis. Mars Express is scheduled for launch in May of 2003. We miss Mert very much!

  3. Lunar Cartography: Progress in the 2000S and Prospects for the 2010S

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Archinal, B. A.; Gaddis, L. R.; Rosiek, M. R.

    2012-08-01

    The first decade of the 21st century has seen a new golden age of lunar exploration, with more missions than in any decade since the 1960's and many more nations participating than at any time in the past. We have previously summarized the history of lunar mapping and described the lunar missions planned for the 2000's (Kirk et al., 2006, 2007, 2008). Here we report on the outcome of lunar missions of this decade, the data gathered, the cartographic work accomplished and what remains to be done, and what is known about mission plans for the coming decade. Four missions of lunar orbital reconnaissance were launched and completed in the decade 2001-2010: SMART-1 (European Space Agency), SELENE/Kaguya (Japan), Chang'e-1 (China), and Chandrayaan-1 (India). In addition, the Lunar Reconnaissance Orbiter or LRO (USA) is in an extended mission, and Chang'e-2 (China) operated in lunar orbit in 2010-2011. All these spacecraft have incorporated cameras capable of providing basic data for lunar mapping, and all but SMART-1 carried laser altimeters. Chang'e-1, Chang'e-2, Kaguya, and Chandrayaan-1 carried pushbroom stereo cameras intended for stereo mapping at scales of 120, 10, 10, and 5 m/pixel respectively, and LRO is obtaining global stereo imaging at 100 m/pixel with its Wide Angle Camera (WAC) and hundreds of targeted stereo observations at 0.5 m/pixel with its Narrow Angle Camera (NAC). Chandrayaan-1 and LRO carried polarimetric synthetic aperture radars capable of 75 m/pixel and (LRO only) 7.5 m/pixel imaging even in shadowed areas, and most missions carried spectrometers and imaging spectrometers whose lower resolution data are urgently in need of coregistration with other datasets and correction for topographic and illumination effects. The volume of data obtained is staggering. As one example, the LRO laser altimeter, LOLA, has so far made more than 5.5 billion elevation measurements, and the LRO Camera (LROC) system has returned more than 1.3 million archived image products comprising over 220 Terabytes of image data. The processing of controlled map products from these data is as yet relatively limited. A substantial portion of the LOLA altimetry data have been subjected to a global crossover analysis, and local crossover analyses of Chang'e-1 LAM altimetry have also been performed. LRO NAC stereo digital topographic models (DTMs) and orthomosaics of numerous sites of interest have been prepared based on control to LOLA data, and production of controlled mosaics and DTMs from Mini-RF radar images has begun. Many useful datasets (e.g., DTMs from LRO WAC images and Kaguya Terrain Camera images) are currently uncontrolled. Making controlled, orthorectified map products is obviously a high priority for lunar cartography, and scientific use of the vast multinational set of lunar data now available will be most productive if all observations can be integrated into a single reference frame. To achieve this goal, the key steps required are (a) joint registration and reconciliation of the laser altimeter data from multiple missions, in order to provide the best current reference frame for other products; (b) registration of image datasets (including spectral images and radar, as well as monoscopic and stereo optical images) to one another and the topographic surface from altimetry by bundle adjustment; (c) derivation of higher density topographic models than the altimetry provides, based on the stereo images registered to the altimetric data; and (d) orthorectification and mosaicking of the various datasets based on the dense and consistent topographic model resulting from the previous steps. In the final step, the dense and consistent topographic data will be especially useful for correcting spectrophotometric observations to facilitate mapping of geologic and mineralogic features. We emphasize that, as desirable as short term progress may seem, making mosaics before controlling observations, and controlling observations before a single coordinate reference frame is agreed upon by all participants, are counterproductive and will result in a collection of map products that do not align with one another and thus will not be fully usable for correlative scientific studies. Only a few lunar orbital missions performing remote sensing are projected for the decade 2011-2020. These include the possible further extension of the LRO mission; NASA's GRAIL mission, which is making precise measurements of the lunar gravity field that will likely improve the cartographic accuracy of data from other missions, and the Chandrayaan-2/Luna Resurs mission planned by India and Russia, which includes an orbital remote sensing component. A larger number of surface missions are being discussed for the current decade, including the lander/rover component of Chandrayaan-2/Luna Resurs, Chang'e-3 (China), SELENE-2 (Japan), and privately funded missions inspired by the Google Lunar X-Prize. The US Lunar Precursor Robotic Program was discontinued in 2010, leaving NASA with no immediate plans for robotic or human exploration of the lunar surface, though the MoonRise sample return mission might be reproposed in the future. If the cadence of missions cannot be continued, the desired sequel to the decade of lunar mapping missions 2001-2010 should be a decade of detailed and increasingly multinational analysis of lunar data from 2011 onward.

  4. Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Benítez, V.; Ullán, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.; Sperlich, D.; Hauser, M.; Wonsak, S.; Parzefall, U.; Mahboubi, K.; Kuehn, S.; Mori, R.; Jakobs, K.; Bernabeu, J.; García, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.; Ariza, D.; Bloch, I.; Diez, S.; Gregor, I. M.; Keller, J.; Lohwasser, K.; Peschke, R.; Poley, L.; Brenner, R.; Affolder, A.

    2016-10-01

    The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-in stereo angle. In order to investigate these specific problems, the "petalet" prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITk strip community acquiring the necessary expertise to develop the full End-cap structure, the petal.

  5. Three-dimensional online surface reconstruction of augmented fluorescence lifetime maps using photometric stereo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura

    2017-02-01

    Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.

  6. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  7. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  8. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1972-01-01

    A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.

  9. A long baseline global stereo matching based upon short baseline estimation

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhao, Hong; Li, Zigang; Gu, Feifei; Zhao, Zixin; Ma, Yueyang; Fang, Meiqi

    2018-05-01

    In global stereo vision, balancing the matching efficiency and computing accuracy seems to be impossible because they contradict each other. In the case of a long baseline, this contradiction becomes more prominent. In order to solve this difficult problem, this paper proposes a novel idea to improve both the efficiency and accuracy in global stereo matching for a long baseline. In this way, the reference images located between the long baseline image pairs are firstly chosen to form the new image pairs with short baselines. The relationship between the disparities of pixels in the image pairs with different baselines is revealed by considering the quantized error so that the disparity search range under the long baseline can be reduced by guidance of the short baseline to gain matching efficiency. Then, the novel idea is integrated into the graph cuts (GCs) to form a multi-step GC algorithm based on the short baseline estimation, by which the disparity map under the long baseline can be calculated iteratively on the basis of the previous matching. Furthermore, the image information from the pixels that are non-occluded under the short baseline but are occluded for the long baseline can be employed to improve the matching accuracy. Although the time complexity of the proposed method depends on the locations of the chosen reference images, it is usually much lower for a long baseline stereo matching than when using the traditional GC algorithm. Finally, the validity of the proposed method is examined by experiments based on benchmark datasets. The results show that the proposed method is superior to the traditional GC method in terms of efficiency and accuracy, and thus it is suitable for long baseline stereo matching.

  10. Blur spot limitations in distal endoscope sensors

    NASA Astrophysics Data System (ADS)

    Yaron, Avi; Shechterman, Mark; Horesh, Nadav

    2006-02-01

    In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.

  11. Stereoscopic 3D reconstruction using motorized zoom lenses within an embedded system

    NASA Astrophysics Data System (ADS)

    Liu, Pengcheng; Willis, Andrew; Sui, Yunfeng

    2009-02-01

    This paper describes a novel embedded system capable of estimating 3D positions of surfaces viewed by a stereoscopic rig consisting of a pair of calibrated cameras. Novel theoretical and technical aspects of the system are tied to two aspects of the design that deviate from typical stereoscopic reconstruction systems: (1) incorporation of an 10x zoom lens (Rainbow- H10x8.5) and (2) implementation of the system on an embedded system. The system components include a DSP running μClinux, an embedded version of the Linux operating system, and an FPGA. The DSP orchestrates data flow within the system and performs complex computational tasks and the FPGA provides an interface to the system devices which consist of a CMOS camera pair and a pair of servo motors which rotate (pan) each camera. Calibration of the camera pair is accomplished using a collection of stereo images that view a common chess board calibration pattern for a set of pre-defined zoom positions. Calibration settings for an arbitrary zoom setting are estimated by interpolation of the camera parameters. A low-computational cost method for dense stereo matching is used to compute depth disparities for the stereo image pairs. Surface reconstruction is accomplished by classical triangulation of the matched points from the depth disparities. This article includes our methods and results for the following problems: (1) automatic computation of the focus and exposure settings for the lens and camera sensor, (2) calibration of the system for various zoom settings and (3) stereo reconstruction results for several free form objects.

  12. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near-real-time volcano monitoring. In addition, we recommend improvements to future satellite mission capabilities (e.g., repeat times, resolutions) to improve lava flow monitoring techniques.

  13. Side-Looking Airborne Radar (SLAR): A Tool for Introductory Physical Geography Courses.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.

    1980-01-01

    Suggests how to use remote sensing techniques and data in geography courses in high school and college as well as in geography research. Tips are presented on using techniques such as topographic maps, vertical aerial photographs in stereo pairs, satellite images, and SLAR images (which are particularly useful in teaching landforms and…

  14. Time-to-impact sensors in robot vision applications based on the near-sensor image processing concept

    NASA Astrophysics Data System (ADS)

    Åström, Anders; Forchheimer, Robert

    2012-03-01

    Based on the Near-Sensor Image Processing (NSIP) concept and recent results concerning optical flow and Time-to- Impact (TTI) computation with this architecture, we show how these results can be used and extended for robot vision applications. The first case involves estimation of the tilt of an approaching planar surface. The second case concerns the use of two NSIP cameras to estimate absolute distance and speed similar to a stereo-matching system but without the need to do image correlations. Going back to a one-camera system, the third case deals with the problem to estimate the shape of the approaching surface. It is shown that the previously developed TTI method not only gives a very compact solution with respect to hardware complexity, but also surprisingly high performance.

  15. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the corresponding real world pixel on the DEM, and then extract georeferenced vector data and orthorectified raster data from terrestrial photographs (Bozzini et al., 2012; Scapozza et al., 2014). Through some case studies, we show (1) how 3D digital stereo-photogrammetry makes it possible the production of Quaternary geological and geomorphological maps, (2) how digital mono-photogrammetry is a powerful tool for supporting geological mapping in very steep zones and (3) how the combination of these two digital tools permits diachronical mapping of phenomena evolution (such as landslides or rockglaciers) during the entire twentieth century. Ambrosi C. and Scapozza C. 2015. Improvements in 3-D digital mapping for geomorphological and Quaternary geological cartography. Geographica Helvetica 70: 121-133. doi: 10.5194/gh-70-121-2015 Bozzini C., Conedera M. and Krebs P. 2012. A new monoplotting tool to extract georeferenced vector data and orthorectified raster data from oblique non-metric photographs. International Journal of Heritage in the Digital Era 1: 499-518. doi: 10.1260/2047-4970.1.3.499 Scapozza C., Lambiel C., Bozzini C., Mari S. and Conedera M. 2014. Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps. Earth Surface Processes and Landforms 39: 2056-2069. doi: 10.1002/esp.3599

  16. Evaluation of ZY-3 for Dsm and Ortho Image Generation

    NASA Astrophysics Data System (ADS)

    d'Angelo, P.

    2013-04-01

    DSM generation using stereo satellites is an important topic for many applications. China has launched the three line ZY-3 stereo mapping satellite last year. This paper evaluates the ZY-3 performance for DSM and orthophoto generation on two scenes east of Munich. The direct georeferencing performance is tested using survey points, and the 3D RMSE is 4.5 m for the scene evaluated in this paper. After image orientation with GCPs and tie points, a DSM is generated using the Semi-Global Matching algorithm. For two 5 × 5 km2 test areas, a LIDAR reference DTM was available. After masking out forest areas, the overall RMSE between ZY-3 DSM and LIDAR reference is 2.0 m (RMSE). Additionally, qualitative comparison between ZY-3 and Cartosat-1 DSMs is performed.

  17. Precise visual navigation using multi-stereo vision and landmark matching

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Oskiper, Taragay; Samarasekera, Supun; Kumar, Rakesh

    2007-04-01

    Traditional vision-based navigation system often drifts over time during navigation. In this paper, we propose a set of techniques which greatly reduce the long term drift and also improve its robustness to many failure conditions. In our approach, two pairs of stereo cameras are integrated to form a forward/backward multi-stereo camera system. As a result, the Field-Of-View of the system is extended significantly to capture more natural landmarks from the scene. This helps to increase the pose estimation accuracy as well as reduce the failure situations. Secondly, a global landmark matching technique is used to recognize the previously visited locations during navigation. Using the matched landmarks, a pose correction technique is used to eliminate the accumulated navigation drift. Finally, in order to further improve the robustness of the system, measurements from low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) sensors are integrated with the visual odometry in an extended Kalman Filtering framework. Our system is significantly more accurate and robust than previously published techniques (1~5% localization error) over long-distance navigation both indoors and outdoors. Real world experiments on a human worn system show that the location can be estimated within 1 meter over 500 meters (around 0.1% localization error averagely) without the use of GPS information.

  18. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    NASA Astrophysics Data System (ADS)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  19. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments

    PubMed Central

    Ramon Soria, Pablo; Arrue, Begoña C.; Ollero, Anibal

    2017-01-01

    The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoors. PMID:28067851

  20. Furo-fused BINOL based crown as a fluorescent chiral sensor for enantioselective recognition of phenylethylamine and ethyl ester of valine.

    PubMed

    Upadhyay, Sunil P; Pissurlenkar, Raghuvir R S; Coutinho, Evans C; Karnik, Anil V

    2007-07-20

    A furo-fused BINOL based chiral crown was developed as an enantioselective chiral sensor for phenylethylamine and ethyl ester of valine. Fusion of furan to BINOL has resulted in a highly stereo-discriminating backbone for the chiral crown developed. This chiral crown exhibited a fluorescence enhancement difference of 2.97 times between two enantiomers of phenylethylamine and 2.55 times between two enantiomers of ethyl ester of valine. The ratio of association constants for two diastereomeric complexes of two enantiomers of phenylethylamine was found to be 11.30, and the ratio for two enantiomers of ethyl ester of valine was 7.02.

  1. Comparison and Analysis of Accuracy of Elevation Extraction Based on the ZY-3 01 and 02 Satellites Stereoscopic Images

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Fu, X.; Dou, X.; Liu, H.; Fang, Z.

    2018-04-01

    The ZY-3 is the civil high-resolution optical stereoscopic mapping satellite independently developed by China. The ZY-3 constellation of the twin satellites operates in a sun-synchronous, near-polar, circular 505 km orbit, with a descending location time of 10:30 AM and a 29-day revisiting period. The panchromatic triplet sensors, pointing forward, nadir, and backward with an angle of 22°, have excellent base-to-height ratio, which is beneficial to the extraction of DEM. In order to extract more detailed and highprecision DEM, the ZY-3 (02) satellite has been upgraded based on the ZY-3 (01), and the GSD of the stereo camera has been optimized from 3.5 to 2.5 meters. In the paper case studies using the ZY-3 01 and the 02 satellite data for block adjustment and DEM extraction have been carried out in Liaoning Province of China. The results show that the planimetric and altimetric accuracy can reach 3 meters, which meet the mapping requirements of 1 : 50,000 national topographic map and the design performance of the satellites. The normalized elevation accuracy index (NEAI) is adopted to evaluate the twin satellite stereoscopic performance, and the NEAIs of the twin ZY-3 satellites are good and the index of the ZY-3(02) is slightly better. The comparison of the overlapping DEMs from the twin ZY-3 satellites and SRTM is analysed. The bias and the standard deviation of all the DEMs are better than 5 meters. In addition, in the process of accuracy comparison, some gross errors of the DEM can be identified, and some elevation changes of the DEM can also be found. The differential DEM becomes a new tool and application.

  2. Left Limb of North Pole of the Sun, March 20, 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Left eye view of a stereo pair Click on the image for full resolution TIFF Figure 2: Right eye view of a stereo pair Click on the image for full resolution TIFF Figure 1: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-B spacecraft. STEREO-B is located behind the Earth, and follows the Earth in orbit around the Sun. This location enables us to view the Sun from the position of a virtual left eye in space. Figure 2: This image was taken by the SECCHI Extreme UltraViolet Imager (EUVI) mounted on the STEREO-A spacecraft. STEREO-A is located ahead of the Earth, and leads the Earth in orbit around the Sun, This location enables us to view the Sun from the position of a virtual right eye in space.

    NASA's Solar TErrestrial RElations Observatory (STEREO) satellites have provided the first three-dimensional images of the Sun. For the first time, scientists will be able to see structures in the Sun's atmosphere in three dimensions. The new view will greatly aid scientists' ability to understand solar physics and thereby improve space weather forecasting.

    The EUVI imager is sensitive to wavelengths of light in the extreme ultraviolet portion of the spectrum. EUVI bands at wavelengths of 304, 171 and 195 Angstroms have been mapped to the red blue and green visible portion of the spectrum; and processed to emphasize the temperature difference of the solar material.

    STEREO, a two-year mission, launched October 2006, will provide a unique and revolutionary view of the Sun-Earth System. The two nearly identical observatories -- one ahead of Earth in its orbit, the other trailing behind -- will trace the flow of energy and matter from the Sun to Earth. They will reveal the 3D structure of coronal mass ejections; violent eruptions of matter from the sun that can disrupt satellites and power grids, and help us understand why they happen. STEREO will become a key addition to the fleet of space weather detection satellites by providing more accurate alerts for the arrival time of Earth-directed solar ejections with its unique side-viewing perspective.

    STEREO is the third mission in NASA's Solar Terrestrial Probes program within NASA's Science Mission Directorate, Washington. The Goddard Science and Exploration Directorate manages the mission, instruments, and science center. The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., designed and built the spacecraft and is responsible for mission operations. The imaging and particle detecting instruments were designed and built by scientific institutions in the U.S., UK, France, Germany, Belgium, Netherlands, and Switzerland. JPL is a division of the California Institute of Technology in Pasadena.

  3. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    NASA Astrophysics Data System (ADS)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  4. New Geologic Map of the Scandia Region of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Rodriquez, J. A. P.; Skinner, J. A., Jr.; Hayward, R. K.; Fortezzo, C.; Edmundson, K.; Rosiek, M.

    2009-01-01

    We have begun work on a sophisti-cated digital geologic map of the Scandia region (Fig. 1) at 1:3,000,000 scale based on post-Viking image and to-pographic datasets. Through application of GIS tools, we will produce a map product that will consist of (1) a printed photogeologic map displaying geologic units and relevant modificational landforms produced by tectonism, erosion, and collapse/mass wasting; (2) a landform geoda-tabase including sublayers of key landform types, attributed with direct measurements of their planform and to-pography using Mars Orbiter Laser Altimeter (MOLA) altimetry data and High-Resolution Stereo Camera (HRSC) digital elevation models (DEMs) and various image datasets; and (3) a series of digital, reconstructed paleostratigraphic and paleotopographic maps showing the inferred distribution and topographic form of materi-als and features during past ages

  5. Stereoscopic imaging of gravity waves in the mesosphere over Per.

    NASA Astrophysics Data System (ADS)

    Moreels, G.; Faivre, M.; Clairemidi, J.; Meriwether, J. W.; Lehmacher, G. A.; Chau, J. L.; Vidal, E.; Veliz, O.

    A program of stereo-imaging of the mesospheric near-infrared emissive layer has recently been initiated using two CCD cameras operating in a vis- a -vis observation mode at a separation distance of sim 550 km These images were analyzed using a stereo-correlation method suitable for low contrast objects without discrete contours This approach consists of calculating a normalized cross-correlation parameter for the intensities of matched points Initially the altitude of the layer is chosen to be between 82 and 92 km The computer code calculates the altitude of the centroid of the emissive layer for each observed point and produces surface maps of the layer for 50x50 km 2 areas In addition to results from the Peruvian observations results of simultaneous observations obtained at the Pic du Midi Pyr e n e es and the Ch a teau-Renard Alpes observatories will be presented The surface maps are compared with coded maps of the emission intensity Both types of maps show significant wave structures The vertical amplitude of the waves is found to be typically between 1 and 2 km The Fourier characteristics are measured using a Morlet type wavelet generator function The horizontal wavelengths in the meridional and zonal directions are sim 20-40 km and 100-150 km and the temporal periods are sim 15-30 minutes The same observational program was conducted in the Peruvian Andes in October 2005 The sites were the Cosmos Observatory 12 r 04 S 75 r 34 W altitude 4620m and the Cerro Verde Tellolo mountain 16 r 33 S

  6. Design and application of star map simulation system for star sensors

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  7. 3D Visualization for Phoenix Mars Lander Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol

    2012-01-01

    Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.

  8. Graph-based surface reconstruction from stereo pairs using image segmentation

    NASA Astrophysics Data System (ADS)

    Bleyer, Michael; Gelautz, Margrit

    2005-01-01

    This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.

  9. Earth observations and photography experiment: Summary of significant results

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    Observation and photographic data from the Apollo Soyuz Test Project are analyzed. The discussion is structured according to the fields of investigation including: geology, desert studies, oceanography, hydrology, and meteorology. The data were obtained by: (1) visual observations of selected Earth features, (2) hand-held camera photography to document observations, and (3) stereo mapping photography of areas of significant scientific interest.

  10. Determination of temperature maps of EUV coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Patsourakos, Spiros; Bothmer, Volker; Zimbardo, Gaetano

    2011-11-01

    Coronal hole jets are fast ejections of plasma occurring within coronal holes, observed at Extreme-UltraViolet (EUV) and X-ray wavelengths. Recent observations of jets by the STEREO and Hinode missions show that they are transient phenomena which occur at much higher rates than large-scale impulsive phenomena like flares and Coronal Mass Ejections (CMEs). In this paper we describe some typical characteristics of coronal jets observed by the SECCHI instruments of STEREO spacecraft. We show an example of 3D reconstruction of the helical structure for a south pole jet, and present how the angular distribution of the jet position angles changes from the Extreme-UltraViolet-Imager (EUVI) field of view to the CORonagraph1 (COR1) (height ∼2.0 R⊙ heliocentric distance) field of view. Then we discuss a preliminary temperature determination for the jet plasma by using the filter ratio method at 171 and 195 Å and applying a technique for subtracting the EUV background radiation. The results show that jets are characterized by electron temperatures ranging between 0.8 and 1.3 MK. We present the thermal structure of the jet as temperature maps and we describe its thermal evolution.

  11. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  12. Use of UAVs for Remote Measurement of Vegetation Canopy Variables

    NASA Astrophysics Data System (ADS)

    Rango, A.; Laliberte, A.; Herrick, J.; Steele, C.; Bestelmeyer, B.; Chopping, M. J.

    2006-12-01

    Remote sensing with different sensors has proven useful for measuring vegetation canopy variables at scales ranging from landscapes down to individual plants. For use at landscape scales, such as desert grasslands invaded by shrubs, it is possible to use multi-angle imagery from satellite sensors, such as MISR and CHRIS/Proba, with geometric optical models to retrieve fractional woody plant cover. Vegetation community states can be mapped using visible and near infrared ASTER imagery at 15 m resolution. At finer scales, QuickBird satellite imagery with approximately 60 cm resolution and piloted aircraft photography with 25-80 cm resolution can be used to measure shrubs above a critical size. Tests conducted with the QuickBird data in the Jornada basin of southern New Mexico have shown that 87% of all shrubs greater than 2 m2 were detected whereas only about 29% of all shrubs less than 2 m2 were detected, even at these high resolutions. Because there is an observational gap between satellite/aircraft measurements and ground observations, we have experimented with Unmanned Aerial Vehicles (UAVs) producing digital photography with approximately 5 cm resolution. We were able to detect all shrubs greater than 2 m2, and we were able to map small subshrubs indicative of rangeland deterioration, as well as remnant grass patches, for the first time. None of these could be identified on the 60 cm resolution data. Additionally, we were able to measure canopy gaps, shrub patterns, percent bare soil, and vegetation cover over mixed rangeland vegetation. This approach is directly applicable to rangeland health monitoring, and it provides a quantitative way to assess shrub invasion over time and to detect the depletion or recovery of grass patches. Further, if the UAV images have sufficient overlap, it may be possible to exploit the stereo viewing capabilities to develop a digital elevation model from the orthophotos, with a potential for extracting canopy height. We envision two parallel routes for investigation: one which emphasizes utilization of the most technically advanced passive and active space and aircraft sensors (e.g., LIDAR, radar, Hyperion, ASTER, QuickBird follow-on) for modeling research, and a second which emphasizes minimization of costs and maximization of simplicity for monitoring purposes utilizing inexpensive sensors such as digital cameras on UAVs for arid and semiarid rangelands. The use of UAVs will provide management agencies a way to assess various vegetation canopy variables for a very reasonable cost.

  13. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  14. Image Understanding. Proceedings of a Workshop Held in Pittsburgh, Pennsylvania on 11-13 September, 1990

    DTIC Science & Technology

    1990-09-01

    performed some preliminary longest piers are about three times the length of a de- experiments to detect the ships in the high resolution stroyer...statistics, and these are coordinates then shipped via a high - speed interface to a host where the stereo triangulation and kinematic control algorithms Grasp...Design: Perception research includes the design of new sensor technologies, such as this hybrid analog/digital chip for a high - speed light-stripe

  15. VLSI chips for vision-based vehicle guidance

    NASA Astrophysics Data System (ADS)

    Masaki, Ichiro

    1994-02-01

    Sensor-based vehicle guidance systems are gathering rapidly increasing interest because of their potential for increasing safety, convenience, environmental friendliness, and traffic efficiency. Examples of applications include intelligent cruise control, lane following, collision warning, and collision avoidance. This paper reviews the research trends in vision-based vehicle guidance with an emphasis on VLSI chip implementations of the vision systems. As an example of VLSI chips for vision-based vehicle guidance, a stereo vision system is described in detail.

  16. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes

    PubMed Central

    Yebes, J. Javier; Bergasa, Luis M.; García-Garrido, Miguel Ángel

    2015-01-01

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles). In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity), while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM. PMID:25903553

  17. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes.

    PubMed

    Yebes, J Javier; Bergasa, Luis M; García-Garrido, Miguel Ángel

    2015-04-20

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban scenarios is the detection of road participants (e.g., cyclists, pedestrians and vehicles). In this regard, this paper tackles the detection and orientation estimation of cars, pedestrians and cyclists, employing the challenging and naturalistic KITTI images. This work proposes 3D-aware features computed from stereo color images in order to capture the appearance and depth peculiarities of the objects in road scenes. The successful part-based object detector, known as DPM, is extended to learn richer models from the 2.5D data (color and disparity), while also carrying out a detailed analysis of the training pipeline. A large set of experiments evaluate the proposals, and the best performing approach is ranked on the KITTI website. Indeed, this is the first work that reports results with stereo data for the KITTI object challenge, achieving increased detection ratios for the classes car and cyclist compared to a baseline DPM.

  18. Geometric correction and digital elevation extraction using multiple MTI datasets

    USGS Publications Warehouse

    Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.

    2007-01-01

    Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.

  19. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites.

    PubMed

    Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin

    2015-12-05

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information.

  20. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    PubMed Central

    Jordt, Anne; Zelenka, Claudius; Schneider von Deimling, Jens; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  1. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.

    2018-07-01

    Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimization of the existing systems, but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time, and isoplanatic angle, but for more sophisticated systems such as wide-field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR (Scintillation Detection and Ranging) is a technique specifically designed to characterize the Earth's atmospheric turbulence with high-altitude resolution and high sensitivity. Together with ESO (European Southern Observatory), Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64″ with 50 per cent of the turbulence confined to an altitude below 2 km and 40 per cent below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75″, respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer Slope Detection And Ranging, Multi-Aperture Scintillation Sensor-Differential Image Motion Monitor, and the European Centre for Medium Range Weather Forecasts model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).

  2. X-ray and optical stereo-based 3D sensor fusion system for image-guided neurosurgery.

    PubMed

    Kim, Duk Nyeon; Chae, You Seong; Kim, Min Young

    2016-04-01

    In neurosurgery, an image-guided operation is performed to confirm that the surgical instruments reach the exact lesion position. Among the multiple imaging modalities, an X-ray fluoroscope mounted on C- or O-arm is widely used for monitoring the position of surgical instruments and the target position of the patient. However, frequently used fluoroscopy can result in relatively high radiation doses, particularly for complex interventional procedures. The proposed system can reduce radiation exposure and provide the accurate three-dimensional (3D) position information of surgical instruments and the target position. X-ray and optical stereo vision systems have been proposed for the C- or O-arm. Two subsystems have same optical axis and are calibrated simultaneously. This provides easy augmentation of the camera image and the X-ray image. Further, the 3D measurement of both systems can be defined in a common coordinate space. The proposed dual stereoscopic imaging system is designed and implemented for mounting on an O-arm. The calibration error of the 3D coordinates of the optical stereo and X-ray stereo is within 0.1 mm in terms of the mean and the standard deviation. Further, image augmentation with the camera image and the X-ray image using an artificial skull phantom is achieved. As the developed dual stereoscopic imaging system provides 3D coordinates of the point of interest in both optical images and fluoroscopic images, it can be used by surgeons to confirm the position of surgical instruments in a 3D space with minimum radiation exposure and to verify whether the instruments reach the surgical target observed in fluoroscopic images.

  3. Autonomous Rock Tracking and Acquisition from a Mars Rover

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.; Nesnas, Issa A.; Das, Hari

    1999-01-01

    Future Mars exploration missions will perform two types of experiments: science instrument placement for close-up measurement, and sample acquisition for return to Earth. In this paper we describe algorithms we developed for these tasks, and demonstrate them in field experiments using a self-contained Mars Rover prototype, the Rocky 7 rover. Our algorithms perform visual servoing on an elevation map instead of image features, because the latter are subject to abrupt scale changes during the approach. 'This allows us to compensate for the poor odometry that results from motion on loose terrain. We demonstrate the successful grasp of a 5 cm long rock over 1m away using 103-degree field-of-view stereo cameras, and placement of a flexible mast on a rock outcropping over 5m away using 43 degree FOV stereo cameras.

  4. Image synchronization for 3D application using the NanEye sensor

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Based on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a novel technique to perfectly synchronize up to 8 individual self-timed cameras. Minimal form factor self-timed camera modules of 1 mm x 1 mm or smaller do not generally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge to synchronize multiple self-timed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras to synchronize their frame rate and frame phase. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames of multiple cameras, a Master-Slave interface was implemented. A single camera is defined as the Master entity, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the realization of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  5. ASTER Mexicali

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dramatic differences in land use patterns are highlighted in this image of the U.S.-Mexico border. Lush, regularly gridded agricultural fields on the U.S. side contrast with the more barren fields of Mexico This June 12, 2000, sub-scene combines visible and near infrared bands, displaying vegetation in red. The town of Mexicali-Calexico spans the border in the middle of the image; El Centro, California, is in the upper left. Watered by canals fed from the Colorado River, California's Imperial Valley is one of the country's major fruit and vegetable producers. This image covers an area 24 kilometers (15 miles) wide and 30 kilometers (19 miles) long in three bands of the reflected visible and infrared wavelength region.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  6. Multiple resource evaluation of region 2 US forest service lands utilizing LANDSAT MSS data. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Krebs, P. V.; Hoffer, R. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT MSS imagery provided an excellent overview which put a geomorphic study into a regional perspective, using scale 1:250,000 or smaller. It was used for deriving a data base for land use planning for southern San Juan Mountains. Stereo pairing of adjacent images was the best method for all geomorphic mapping. Combining this with snow enhancement, seasonal enhancement, and reversal aided in interpretation of geomorphic features. Drainage patterns were mapped in much greater detail from LANDSAT than from a two deg quadrangle base.

  7. Optimized Global Digital Elevation Data Records (Invited)

    NASA Astrophysics Data System (ADS)

    Kobrick, M.; Farr, T.; Crippen, R. E.

    2009-12-01

    The Shuttle Radar Topography Mission (SRTM) used radar interferometry to map the Earth's topography between ±60° latitude - representing 80% of the land surface. The resulting digital elevation models bettered existing topographic data sets (including restricted military data) in accuracy, areal coverage and uniformity by several orders of magnitude, and the resulting data records have found broad application in most of the geosciences, military operations, even Google Earth. Despite their popularity the SRTM data have several limitations, including lack of coverage in polar regions and occasional small voids, or areas of no data in regions of high slope of low radar backscatter. Fortunately additional data sets have become available that, although lacking SRTM's data quality, are sufficient to mitigate many of these limitations. Primary among these is the Global Digital Elevation Model (GDEM) produced from ASTER stereo pairs. The MEaSUREs program is sponsoring an effort to merge these sets to produce and distribute an improved collection of data records that will optimize the topographic data, as well as make available additional non-topographic data products from the SRTM mission. There are four main areas of effort: (1) A systematic program to combine SRTM elevation data with those from other sensors, principally GDEM but also including SPOT stereo, the USGS’s National Elevation Data Set and others, to fill voids in the DEMs according to a prioritized plan, as well as extend the coverage beyond the current 60° latitude limit. (2) Combine the topographic data records with ICESat laser altimeter topography profiles to produce and distribute data records with enhanced ground control. (3) Document the existing SRTM radar image and ancillary data records, as well as generate image mosaics at multiple scales and distribute them via the world wide web. (4) Generate, document and distribute a standard and representative set of SRTM raw radar echo data, along with the appropriate ancillary tracking and pointing data necessary to process the echoes into DEMS using improved algorithms or

  8. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  9. Signs of Recent Volcanism and Hydrothermal Activity Along the Eastern Segment of the Galapagos Spreading Center

    NASA Astrophysics Data System (ADS)

    Raineault, N.; Smart, C.; Mayer, L. A.; Ballard, R. D.; Fisher, C. R.; Marsh, L.; Shank, T. M.

    2016-12-01

    Since the initial discovery of the Galápagos Spreading Center (GSC) vents in 1977, large-scale disturbances resulting from eruptive and tectonic activity have both destroyed and created vent habitats along the GSC. In 2015, the E/V Nautilus returned to the GSC with remotely operated vehicles (ROVs) to explore 17 kilometers of the rift valley from the Rosebud site in the west, to a previously unexplored temperature anomaly east of the Tempus Fugit vent site. In the years to over a decade since scientists last visited the Rosebud, Rose Garden, and Tempus Fugit sites, there were many changes. Most notably, the Rosebud site, where scientists found a nascent vent community and left site markers in 2002, was apparently covered with glassy basaltic sheet flows. In addition to visual exploration, oceanographic sensor measurements and direct sampling, we used the ROV Hercules imaging suite, comprised of stereo cameras and a structured light laser sensor to map an area of diffuse flow in the Tempus Fugit field (100 m x 150 m). The centimeter-level photographic and bathymetric maps created with this system, along with ROV HD video, samples, and environmental sensors, documented hydrothermal activity and changes in biological community structure (e.g., Riftia tubeworms observed in nascent stages of community development in 2011 were now, in 2015, in greater abundance (with tubes almost 4 m in length). The detection of active venting and associated faunal assemblages will provide insight into the temporal and spatial variability of venting activity at the Tempus Fugit site. On a visual survey of the Rift east of the Tempus Fugit site, extinct sulfide chimney structures were discovered and sampled. There were several chimneys and sulfide deposits in a span of over 8 km that ranged in height from over a half meter to 1.5 m tall. Diffuse flow hosting white and blue bacterial mats was observed near the chimneys complexes. The base of a large chimney structure, venting white fluids, as well as adjacent chemically-stained sediments supported vent-endemic fauna including the Pompeii worm (Alvinella pompejana) and other polychaete worms, along with pycnogonids, rat-tail fish, and galatheid crabs. This discovery provided the first evidence that the eastern segment of the GSC may have contained high-temperature, black smoker vents.

  10. On-the-go mapping of soil mechanical resistance using a linear depth effect model.

    USDA-ARS?s Scientific Manuscript database

    An instrumented blade sensor was developed to map soil mechanical resistance as well as its change with depth. The sensor has become a part of the Integrated Soil Physical Properties Mapping System (ISPPMS), which also includes an optical and a capacitor-based sensor. The instrumented blade of the...

  11. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  12. Application of remote sensing technology to land evaluation, planning utilization of land resources, and assessment of wildlife areas in eastern South Dakota

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A soils map for land evaluation in Potter County (Eastern South Dakota) was developed to demonstrate the use of remote sensing technology in the area of diverse parent materials and topography. General land use and soils maps have also been developed for land planning LANDSAT, RB-57 imagery, and USGS photographs are being evaluated for making soils and land use maps. LANDSAT fulfilled the requirements for general land use and a general soils map. RB-57 imagery supplemented by large scale black and white stereo coverage was required to provide the detail needed for the final soils map for land evaluation. Color infrared prints excelled black and white coverage for this soil mapping effort. An identification and classification key for wetland types in the Lake Dakota Plain was developed for June 1975 using color infrared imagery. Wetland types in the region are now being mapped via remote sensing techniques to provide a current inventory for development of mitigation measures.

  13. Turbulence profiling for adaptive optics tomographic reconstructors

    NASA Astrophysics Data System (ADS)

    Laidlaw, Douglas J.; Osborn, James; Wilson, Richard W.; Morris, Timothy J.; Butterley, Timothy; Reeves, Andrew P.; Townson, Matthew J.; Gendron, Éric; Vidal, Fabrice; Morel, Carine

    2016-07-01

    To approach optimal performance advanced Adaptive Optics (AO) systems deployed on ground-based telescopes must have accurate knowledge of atmospheric turbulence as a function of altitude. Stereo-SCIDAR is a high-resolution stereoscopic instrument dedicated to this measure. Here, its profiles are directly compared to internal AO telemetry atmospheric profiling techniques for CANARY (Vidal et al. 20141), a Multi-Object AO (MOAO) pathfinder on the William Herschel Telescope (WHT), La Palma. In total twenty datasets are analysed across July and October of 2014. Levenberg-Marquardt fitting algorithms dubbed Direct Fitting and Learn 2 Step (L2S; Martin 20142) are used in the recovery of profile information via covariance matrices - respectively attaining average Pearson product-moment correlation coefficients with stereo-SCIDAR of 0.2 and 0.74. By excluding the measure of covariance between orthogonal Wavefront Sensor (WFS) slopes these results have revised values of 0.65 and 0.2. A data analysis technique that combines L2S and SLODAR is subsequently introduced that achieves a correlation coefficient of 0.76.

  14. The Modular Optical Underwater Survey System

    PubMed Central

    Amin, Ruhul; Richards, Benjamin L.; Misa, William F. X. E.; Taylor, Jeremy C.; Miller, Dianna R.; Rollo, Audrey K.; Demarke, Christopher; Ossolinski, Justin E.; Reardon, Russell T.; Koyanagi, Kyle H.

    2017-01-01

    The Pacific Islands Fisheries Science Center deploys the Modular Optical Underwater Survey System (MOUSS) to estimate the species-specific, size-structured abundance of commercially-important fish species in Hawaii and the Pacific Islands. The MOUSS is an autonomous stereo-video camera system designed for the in situ visual sampling of fish assemblages. This system is rated to 500 m and its low-light, stereo-video cameras enable identification, counting, and sizing of individuals at a range of 0.5–10 m. The modular nature of MOUSS allows for the efficient and cost-effective use of various imaging sensors, power systems, and deployment platforms. The MOUSS is in use for surveys in Hawaii, the Gulf of Mexico, and Southern California. In Hawaiian waters, the system can effectively identify individuals to a depth of 250 m using only ambient light. In this paper, we describe the MOUSS’s application in fisheries research, including the design, calibration, analysis techniques, and deployment mechanism. PMID:29019962

  15. The high resolution stereo camera (HRSC): acquisition of multi-spectral 3D-data and photogrammetric processing

    NASA Astrophysics Data System (ADS)

    Neukum, Gerhard; Jaumann, Ralf; Scholten, Frank; Gwinner, Klaus

    2017-11-01

    At the Institute of Space Sensor Technology and Planetary Exploration of the German Aerospace Center (DLR) the High Resolution Stereo Camera (HRSC) has been designed for international missions to planet Mars. For more than three years an airborne version of this camera, the HRSC-A, has been successfully applied in many flight campaigns and in a variety of different applications. It combines 3D-capabilities and high resolution with multispectral data acquisition. Variable resolutions depending on the camera control settings can be generated. A high-end GPS/INS system in combination with the multi-angle image information yields precise and high-frequent orientation data for the acquired image lines. In order to handle these data a completely automated photogrammetric processing system has been developed, and allows to generate multispectral 3D-image products for large areas and with accuracies for planimetry and height in the decimeter range. This accuracy has been confirmed by detailed investigations.

  16. A stereo vision-based obstacle detection system in vehicles

    NASA Astrophysics Data System (ADS)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  17. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Spinhirne, James D.; OCStarr, David (Technical Monitor)

    2001-01-01

    Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  18. Large Amplitude Whistlers in the Magnetosphere Observed with Wind-Waves

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2011-01-01

    We describe the results of a statistical survey of Wind-Waves data motivated by the recent STEREO/Waves discovery of large-amplitude whistlers in the inner magnetosphere. Although Wind was primarily intended to monitor the solar wind, the spacecraft spent 47 h inside 5 R(sub E) and 431 h inside 10 R(sub E) during the 8 years (1994-2002) that it orbited the Earth. Five episodes were found when whistlers had amplitudes comparable to those of Cattell et al. (2008), i.e., electric fields of 100 m V/m or greater. The whistlers usually occurred near the plasmapause. The observations are generally consistent with the whistlers observed by STEREO. In contrast with STEREO, Wind-Waves had a search coil, so magnetic measurements are available, enabling determination of the wave vector without a model. Eleven whistler events with useable magnetic measurements were found. The wave vectors of these are distributed around the magnetic field direction with angles from 4 to 48deg. Approximations to observed electron distribution functions show a Kennel-Petschek instability which, however, does not seem to produce the observed whistlers. One Wind episode was sampled at 120,000 samples/s, and these events showed a signature that is interpreted as trapping of electrons in the electrostatic potential of an oblique whistler. Similar waveforms are found in the STEREO data. In addition to the whistler waves, large amplitude, short duration solitary waves (up to 100 mV/m), presumed to be electron holes, occur in these passes, primarily on plasma sheet field lines mapping to the auroral zone.

  19. New technological developments provide deep-sea sediment density flow insights: the Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.

    2017-12-01

    The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.

  20. Regional Topographic Properties of Pluto and Charon from New Horizons

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Ennico Smith, K.; Stern, A.

    2016-12-01

    Topographic mapping was among the high priority observations for both Pluto and Charon, and as a result these are the best characterized icy bodies outside of Ceres and the Saturn system in terms of topography. Roughly 30-40% of each body was mapped in stereo, resulting in high-quality DEM mapping coverage of both at vertical resolutions of 100-500 m and spatial scales of 300-800 m. On Charon, stereo mapping reveals the rolling topography of Vulcan Planum and its marginal "moat" depressed several hundred meters. The older cratered plains are also broken into large blocks 100-300 km across, separated by extensional troughs 1-3 km deep. Total relief across Charon exceeds 15 km, making it one of the most rugged midsize icy bodies outside Iapetus. Pluto is divided into several distinct geologic provinces, each with its own topographic character. The globally highest features are the elevated bladed terrain plateaus standing 2-3 km high. Cratered plains to the northwest have low relief of a few hundred meters, except for 2-3 km deep unmodified extensional fractures. Etched or eroded plains to the east have local relief of 2-3 km. The most dominant feature is the 3-km deep elliptical basin associated with the nitrogen-rich ice plains of Sputnik Planitia (informally named). This depression most obviously resembles large impact basins on other bodies, most notably Hellas basin on Mars and Caloris basin on Mercury. The basin has a raised rim in some quadrants but is very ancient and eroded and primary impact textures are now lost. Nonetheless, a low-velocity oblique impact remains the most likely explanation for this feature, leaving a depression that became the focus for subsequent volatile ice accumulation.

  1. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such as the vehicle track, science markers, and locations of video snapshots. The actual vehicle was driven either from within the virtual environment or through a telepresence interface. All vehicle functions could be controlled remotely over the satellite link.

  2. Community tools for cartographic and photogrammetric processing of Mars Express HRSC images

    USGS Publications Warehouse

    Kirk, Randolph L.; Howington-Kraus, Elpitha; Edmundson, Kenneth L.; Redding, Bonnie L.; Galuszka, Donna M.; Hare, Trent M.; Gwinner, K.; Wu, B.; Di, K.; Oberst, J.; Karachevtseva, I.

    2017-01-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged ~ 77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result, it was necessary to split observations into blocks of constant exposure time, greatly increasing the effort needed to control the images and collect DTMs. Here, we describe a substantially improved HRSC processing capability that incorporates sensor models with varying line timing in the current ISIS3 system (Sides 2017) and SOCET SET. This enormously reduces the work effort for processing most images and eliminates the artifacts that arose from segmenting them. In addition, the software takes advantage of the continuously evolving capabilities of ISIS3 and the improved image matching module NGATE (Next Generation Automatic Terrain Extraction, incorporating area and feature based algorithms, multi-image and multi-direction matching) of SOCET SET, thus greatly reducing the need for manual editing of DTM errors. We have also developed a procedure for geodetically controlling the images to Mars Orbiter Laser Altimeter (MOLA) data by registering a preliminary stereo topographic model to MOLA by using the point cloud alignment (pc_align) function of the NASA Ames Stereo Pipeline (ASP; Moratto et al. 2010). This effectively converts inter-image tiepoints into ground control points in the MOLA coordinate system. The result is improved absolute accuracy and a significant reduction in work effort relative to manual measurement of ground control. The ISIS and ASP software used are freely available; SOCET SET, is a commercial product. By the end of 2017 we expect to have ported our SOCET SET HRSC sensor model to the Community Sensor Model (CSM; Community Sensor Model Working Group 2010; Hare and Kirk 2017) standard utilized by the successor photogrammetric system SOCET GXP that is currently offered by BAE. In early 2018, we are also working with BAE to release the CSM source code under a BSD or MIT open source license. 

  3. Hyper thin 3D edge measurement of honeycomb core structures based on the triangular camera-projector layout & phase-based stereo matching.

    PubMed

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong; Quan, Chenggen

    2016-03-07

    We propose a novel hyper thin 3D edge measurement technique to measure the profile of 3D outer envelope of honeycomb core structures. The width of the edges of the honeycomb core is less than 0.1 mm. We introduce a triangular layout design consisting of two cameras and one projector to measure hyper thin 3D edges and eliminate data interference from the walls. A phase-shifting algorithm and the multi-frequency heterodyne phase-unwrapping principle are applied for phase retrievals on edges. A new stereo matching method based on phase mapping and epipolar constraint is presented to solve correspondence searching on the edges and remove false matches resulting in 3D outliers. Experimental results demonstrate the effectiveness of the proposed method for measuring the 3D profile of honeycomb core structures.

  4. Low Cost Embedded Stereo System for Underwater Surveys

    NASA Astrophysics Data System (ADS)

    Nawaf, M. M.; Boï, J.-M.; Merad, D.; Royer, J.-P.; Drap, P.

    2017-11-01

    This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.

  5. On improving IED object detection by exploiting scene geometry using stereo processing

    NASA Astrophysics Data System (ADS)

    van de Wouw, Dennis W. J. M.; Dubbelman, Gijs; de With, Peter H. N.

    2015-03-01

    Detecting changes in the environment with respect to an earlier data acquisition is important for several applications, such as finding Improvised Explosive Devices (IEDs). We explore and evaluate the benefit of depth sensing in the context of automatic change detection, where an existing monocular system is extended with a second camera in a fixed stereo setup. We then propose an alternative frame registration that exploits scene geometry, in particular the ground plane. Furthermore, change characterization is applied to localized depth maps to distinguish between 3D physical changes and shadows, which solves one of the main challenges of a monocular system. The proposed system is evaluated on real-world acquisitions, containing geo-tagged test objects of 18 18 9 cm up to a distance of 60 meters. The proposed extensions lead to a significant reduction of the false-alarm rate by a factor of 3, while simultaneously improving the detection score with 5%.

  6. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control.

  7. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control. PMID:22247676

  8. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  9. EIT-based fabric pressure sensing.

    PubMed

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  10. Curveslam: Utilizing Higher Level Structure In Stereo Vision-Based Navigation

    DTIC Science & Technology

    2012-01-01

    consider their applica- tion to SLAM . The work of [31] [32] develops a spline-based SLAM framework, but this is only for application to LIDAR -based SLAM ...Existing approaches to visual Simultaneous Localization and Mapping ( SLAM ) typically utilize points as visual feature primitives to represent landmarks...regions of interest. Further, previous SLAM techniques that propose the use of higher level structures often place constraints on the environment, such as

  11. Integrating terrestrial LiDAR and stereo photogrammetry to map the Tolay lakebed in northern San Francisco Bay

    USGS Publications Warehouse

    Woo, Isa; Storesund,; Takekawa, John Y.; Gardiner, Rachel J.; Ehret,

    2009-01-01

    The Tolay Creek Watershed drains approximately 3,520 ha along the northern edge of San Francisco Bay. Surrounded by a mosaic of open space conservation easements and public wildlife areas, it is one of the only watersheds in this urbanized estuary that is protected from its headwaters to the bay. Tolay Lake is a seasonal, spring-fed lake found in the upper watershed that historically extended over 120 ha. Although the lakebed was farmed since the early 1860s, the majority of the lakebed was recently acquired by the Sonoma County Regional Parks Department to restore its natural habitat values. As part of the restoration planning process, we produced a digital elevation model (DEM) of the historic extent of Tolay Lake by integrating terrestrial LiDAR (light detection and ranging) and stereo photogrammetry datasets, and real-time kinematic (RTK) global positioning system (GPS) surveys. We integrated the data, generated a DEM of the lakebed and upland areas, and analyzed errors. The accuracy of the composite DEM was verified using spot elevations obtained from the RTK GPS. Thus, we found that by combining photogrammetry, terrestrial LiDAR, and RTK GPS, we created an accurate baseline elevation map to use in watershed restoration planning and design.

  12. Membrane-mirror-based autostereoscopic display for tele-operation and teleprescence applications

    NASA Astrophysics Data System (ADS)

    McKay, Stuart; Mair, Gordon M.; Mason, Steven; Revie, Kenneth

    2000-05-01

    An autostereoscopic display for telepresence and tele- operation applications has been developed at the University of Strathclyde in Glasgow, Scotland. The research is a collaborative effort between the Imaging Group and the Transparent Telepresence Research Group, both based at Strathclyde. A key component of the display is the directional screen; a 1.2-m diameter Stretchable Membrane Mirror is currently used. This patented technology enables large diameter, small f No., mirrors to be produced at a fraction of the cost of conventional optics. Another key element of the present system is an anthropomorphic and anthropometric stereo camera sensor platform. Thus, in addition to mirror development, research areas include sensor platform design focused on sight, hearing, research areas include sensor platform design focused on sight, hearing, and smell, telecommunications, display systems for all visual, aural and other senses, tele-operation, and augmented reality. The sensor platform is located at the remote site and transmits live video to the home location. Applications for this technology are as diverse as they are numerous, ranging from bomb disposal and other hazardous environment applications to tele-conferencing, sales, education and entertainment.

  13. Photogrammetric application of viking orbital photography

    USGS Publications Warehouse

    Wu, S.S.C.; Elassal, A.A.; Jordan, R.; Schafer, F.J.

    1982-01-01

    Special techniques are described for the photogrammetric compilation of topographic maps and profiles from stereoscopic photographs taken by the two Viking Orbiter spacecraft. These techniques were developed because the extremely narrow field of view of the Viking cameras precludes compilation by conventional photogrammetric methods. The techniques adjust for internal consistency the Supplementary Experiment Data Record (SEDR-the record of spacecraft orientation when photographs were taken) and the computation of geometric orientation parameters of the stereo models. A series of contour maps of Mars is being compiled by these new methods using a wide variety of Viking Orbiter photographs, to provide the planetary research community with topographic information. ?? 1982.

  14. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment.

    PubMed

    Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno

    2014-01-01

    The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.

  15. Quantifying ice cliff contribution to debris-covered glacier mass balance from multiple sensors

    NASA Astrophysics Data System (ADS)

    Brun, Fanny; Wagnon, Patrick; Berthier, Etienne; Kraaijenbrink, Philip; Immerzeel, Walter; Shea, Joseph; Vincent, Christian

    2017-04-01

    Ice cliffs on debris-covered glaciers have been recognized as a hot spot for glacier melt. Ice cliffs are steep (even sometimes overhanging) and fast evolving surface features, which make them challenging to monitor. We surveyed the topography of Changri Nup Glacier (Nepalese Himalayas, Everest region) in November 2015 and 2016 using multiple sensors: terrestrial photogrammetry, Unmanned Aerial Vehicle (UAV) photogrammetry, Pléiades stereo images and ASTER stereo images. We derived 3D point clouds and digital elevation models (DEMs) following a Structure-from-Motion (SfM) workflow for the first two sets of data to monitor surface elevation changes and calculate the associated volume loss. We derived only DEMs for the two last data sets. The derived DEMs had resolutions ranging from < 5 cm to 30 m. The derived point clouds and DEMs are used to quantify the ice melt of the cliffs at different scales. The very high resolution SfM point clouds, together with the surface velocity field, will be used to calculate the volume losses of 14 individual cliffs, depending on their size, aspect or the presence of supra glacial lake. Then we will extend this analysis to the whole glacier to quantify the contribution of ice cliff melt to the overall glacier mass balance, calculated with the UAV and Pléiades DEMs. This research will provide important tools to evaluate the role of ice cliffs in regional mass loss.

  16. Using Stereo Vision to Support the Automated Analysis of Surveillance Videos

    NASA Astrophysics Data System (ADS)

    Menze, M.; Muhle, D.

    2012-07-01

    Video surveillance systems are no longer a collection of independent cameras, manually controlled by human operators. Instead, smart sensor networks are developed, able to fulfil certain tasks on their own and thus supporting security personnel by automated analyses. One well-known task is the derivation of people's positions on a given ground plane from monocular video footage. An improved accuracy for the ground position as well as a more detailed representation of single salient people can be expected from a stereoscopic processing of overlapping views. Related work mostly relies on dedicated stereo devices or camera pairs with a small baseline. While this set-up is helpful for the essential step of image matching, the high accuracy potential of a wide baseline and the according good intersection geometry is not utilised. In this paper we present a stereoscopic approach, working on overlapping views of standard pan-tilt-zoom cameras which can easily be generated for arbitrary points of interest by an appropriate reconfiguration of parts of a sensor network. Experiments are conducted on realistic surveillance footage to show the potential of the suggested approach and to investigate the influence of different baselines on the quality of the derived surface model. Promising estimations of people's position and height are retrieved. Although standard matching approaches show helpful results, future work will incorporate temporal dependencies available from image sequences in order to reduce computational effort and improve the derived level of detail.

  17. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    PubMed Central

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-01-01

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843

  18. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    PubMed

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  19. Precision Mapping of the California Connected Vehicle Testbed Corridor

    DOT National Transportation Integrated Search

    2015-11-01

    In this project the University of California Riverside mapping sensor hardware was successfully mounted on an instrumented vehicle to map a segment of the California Connected Vehicle testbed corridor on State Route 82. After calibrating the sensor p...

  20. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    PubMed Central

    Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze

    2009-01-01

    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019

  1. Development of a sensor platform for roadway mapping : part b - mapping the road fog lines : final report.

    DOT National Transportation Integrated Search

    2015-04-01

    Our objective is the development and evaluation of a low-cost, vehicle-mounted sensor suite capable of generating : map data with lane and road boundary information accurate to the 10 cm (4 in) level. Such a map could be used for : a number of differ...

  2. Photogrammetric point cloud compression for tactical networks

    NASA Astrophysics Data System (ADS)

    Madison, Andrew C.; Massaro, Richard D.; Wayant, Clayton D.; Anderson, John E.; Smith, Clint B.

    2017-05-01

    We report progress toward the development of a compression schema suitable for use in the Army's Common Operating Environment (COE) tactical network. The COE facilitates the dissemination of information across all Warfighter echelons through the establishment of data standards and networking methods that coordinate the readout and control of a multitude of sensors in a common operating environment. When integrated with a robust geospatial mapping functionality, the COE enables force tracking, remote surveillance, and heightened situational awareness to Soldiers at the tactical level. Our work establishes a point cloud compression algorithm through image-based deconstruction and photogrammetric reconstruction of three-dimensional (3D) data that is suitable for dissimination within the COE. An open source visualization toolkit was used to deconstruct 3D point cloud models based on ground mobile light detection and ranging (LiDAR) into a series of images and associated metadata that can be easily transmitted on a tactical network. Stereo photogrammetric reconstruction is then conducted on the received image stream to reveal the transmitted 3D model. The reported method boasts nominal compression ratios typically on the order of 250 while retaining tactical information and accurate georegistration. Our work advances the scope of persistent intelligence, surveillance, and reconnaissance through the development of 3D visualization and data compression techniques relevant to the tactical operations environment.

  3. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors

    PubMed Central

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C.; Ude, Aleš; Ollero, Aníbal

    2016-01-01

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object’s shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object’s centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results. PMID:27187413

  4. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors.

    PubMed

    Ramon Soria, Pablo; Bevec, Robert; Arrue, Begoña C; Ude, Aleš; Ollero, Aníbal

    2016-05-14

    Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object's shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM) classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object's centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results.

  5. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    NASA Astrophysics Data System (ADS)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  6. Mars Surface Compositional Units and Some Geological Implications from the Mars Express High Resolution Stereo Camera (HRSC)

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J.-P.; Hayne, P. O.

    We are investigating the composition of the Martian surface partly by mapping the small spatial variations of water ice and salt minerals using the spectral images provided by the High Resolution Stereo Camera (HRSC). In order to identify the main mineral components, high spectral resolution data from the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) imaging spectrometer are used. The join analysis of these two dataset makes the most of their respective abilities and, because of that, it requires a close agreement of their calibration [1]. The first part of this work is a comparison of HRSC and OMEGA measurements, exploration of atmosphere effects and checks of calibration. Then, an attempt to detect and map quantitatively at high spatial resolution (1) water ice both at the poles and in equatorial regions and (2) salts minerals is performed by exploring the spectral types evidenced in HRSC color data. For a given region, these two materials do or could represent additional endmember compositional units detectable with HRSC in addition to the basic units so far: 1) dark rock (basalt) and 2) red rock (iron oxide-rich material) [1]. Both materials also have been reported detected by OMEGA, but at much lower spatial resolution than HRSC. An ice mapping of the north polar regions is performed with OMEGA data by using a spectral index calibrated to ice fraction by using a set of linear combinations of various categories of materials with ice. In addition, a linear spectral unmixing model is used on HRSC data. Both ice fraction maps produce similar quantitative results, allowing us to interpret HRSC data at their full spatial resolution. Low-latitude sites are also explored where past but recent glacial activities have been reported as possible evidence of current water-ice. This includes looking for fresh frost and changes with time. The salt detection with HRSC firstly focused on the Candor Chasma area, where salt have been reported by using OMEGA [2]. The present work extends the analysis to other regions in order to constrain better the general geology and climate of Mars. References: [1] McCord T. B., et al. (2006). The Mars Express High Resolution Stereo Camera spectrophotometric data: Characteristics and science analysis, JGR, submitted. [2] Gendrin, A., N. Mangold, J-P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. LeMouelic (2005), Sulfates in Martian layered terrains: The OMEGA/Mars Express View, Science, 307, 1587-1591

  7. Real-time image processing of TOF range images using a reconfigurable processor system

    NASA Astrophysics Data System (ADS)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  8. Sensor-agnostic photogrammetric image registration with applications to population modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Devin A; Moehl, Jessica J

    2016-01-01

    Photogrammetric registration of airborne and spaceborne imagery is a crucial prerequisite to many data fusion tasks. While embedded sensor models provide a rough geolocation estimate, these metadata may be incomplete or imprecise. Manual solutions are appropriate for small-scale projects, but for rapid streams of cross-modal, multi-sensor, multi-temporal imagery with varying metadata standards, an automated approach is required. We present a high-performance image registration workflow to address this need. This paper outlines the core development concepts and demonstrates its utility with respect to the 2016 data fusion contest imagery. In particular, Iris ultra-HD video is georeferenced to the Earth surface viamore » registration to DEIMOS-2 imagery, which serves as a trusted control source. Geolocation provides opportunity to augment the video with spatial context, stereo-derived disparity, spectral sensitivity, change detection, and numerous ancillary geospatial layers. We conclude by leveraging these derivative data layers towards one such fusion application: population distribution modeling.« less

  9. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision

    PubMed Central

    Reina, Giulio; Milella, Annalisa

    2012-01-01

    Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.

  10. Implementation and testing of a sensor-netting algorithm for early warning and high confidence C/B threat detection

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Grim, Larry; Fauth, Ryan; Tercha, Brian; Powell, Chris; Steinhardt, Kristin

    2011-05-01

    Large networks of disparate chemical/biological (C/B) sensors, MET sensors, and intelligence, surveillance, and reconnaissance (ISR) sensors reporting to various command/display locations can lead to conflicting threat information, questions of alarm confidence, and a confused situational awareness. Sensor netting algorithms (SNA) are being developed to resolve these conflicts and to report high confidence consensus threat map data products on a common operating picture (COP) display. A data fusion algorithm design was completed in a Phase I SBIR effort and development continues in the Phase II SBIR effort. The initial implementation and testing of the algorithm has produced some performance results. The algorithm accepts point and/or standoff sensor data, and event detection data (e.g., the location of an explosion) from various ISR sensors (e.g., acoustic, infrared cameras, etc.). These input data are preprocessed to assign estimated uncertainty to each incoming piece of data. The data are then sent to a weighted tomography process to obtain a consensus threat map, including estimated threat concentration level uncertainty. The threat map is then tested for consistency and the overall confidence for the map result is estimated. The map and confidence results are displayed on a COP. The benefits of a modular implementation of the algorithm and comparisons of fused / un-fused data results will be presented. The metrics for judging the sensor-netting algorithm performance are warning time, threat map accuracy (as compared to ground truth), false alarm rate, and false alarm rate v. reported threat confidence level.

  11. EIT-Based Fabric Pressure Sensing

    PubMed Central

    Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538

  12. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.

  13. Arizona in . . . 16mm Films, 8mm Films, Filmloops, Filmstrips, Slides, Transparencies, Cassettes, Records, Photos, Prints, Posters, Charts, Study Prints, Maps, Flags, Book Returns, Bookmarks, Foods, Microfilm, Place Mats, Relief Model Kits, Stereo Picture Reels.

    ERIC Educational Resources Information Center

    Choncoff, Mary, Comp.

    The product of a year's search through numerous selection aids, catalogs, conference exhibits, book stores, shops at Arizona historical sites, etc., this compilation presents both instructional and promotional non-print materials relative to Arizona. Procedures for procuring materials, annotations, and bibliographic information (source, date of…

  14. Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft

    NASA Astrophysics Data System (ADS)

    Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.

    2018-03-01

    The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the Earth.

  15. Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

  16. An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine.

    PubMed

    Liu, Zhiyuan; Wang, Changhui

    2015-10-23

    In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.

  17. Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.

    PubMed

    Riaz, Bushra; Pfeiffer, Christoph; Schneiderman, Justin F

    2017-08-01

    While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c ) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.

  18. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and southeastern-facing slopes. In these areas, holes, large pits, and spikes were generated by the software during the correlation process and the automatic interpolation method. To eliminate these problems, overlapping DEMs were generated and filtered using a progressive morphologic filter. The quadrangles used to delineate the DEMs in the publication were derived from the Afghan Geodesy and Cartography Head Office's (AGCHO) 1:100,000-scale maps series quadrangles. Each DEM was clipped and assigned a name according to the associated AGCHO quadrangle name. The geospatial data included in this publication are intended to be used with any GIS software packages including, but not limited to, ESRI's ArcGIS and ERDAS IMAGINE.

  19. ASTER Paris

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Eiffel Tower and its shadow can be seen next to the Seine in the left middle of this ASTER image of Paris. Based on the length of the shadow and the solar elevation angle of 59 degrees, we can calculate its height as 324 meters (1,054 feet), compared to its actual height of 303 meters (985 feet). Acquired on July 23, 2000, this image covers an area 23 kilometers (15 miles) wide and 20 kilometers (13 miles) long in three bands of the reflected visible and infrared wavelength region. Known as the City of Light, Paris has been extolled for centuries as one of the great cities of the world. Its location on the Seine River, at a strategic crossroads of land and river routes, has been the key to its expansion since the Parisii tribe first settled here in the 3rd century B.C.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  20. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    PubMed

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  1. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  2. Intraoperative on-the-fly organ-mosaicking for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Bodenstedt, S.; Reichard, D.; Suwelack, S.; Wagner, M.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.; Speidel, S.

    2015-03-01

    The goal of computer-assisted surgery is to provide the surgeon with guidance during an intervention using augmented reality (AR). To display preoperative data correctly, soft tissue deformations that occur during surgery have to be taken into consideration. Optical laparoscopic sensors, such as stereo endoscopes, can produce a 3D reconstruction of single stereo frames for registration. Due to the small field of view and the homogeneous structure of tissue, reconstructing just a single frame in general will not provide enough detail to register and update preoperative data due to ambiguities. In this paper, we propose and evaluate a system that combines multiple smaller reconstructions from different viewpoints to segment and reconstruct a large model of an organ. By using GPU-based methods we achieve near real-time performance. We evaluated the system on an ex-vivo porcine liver (4.21mm+/- 0.63) and on two synthetic silicone livers (3.64mm +/- 0.31 and 1.89mm +/- 0.19) using three different methods for estimating the camera pose (no tracking, optical tracking and a combination).

  3. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction

    NASA Astrophysics Data System (ADS)

    Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.

    2015-02-01

    Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.

  4. 3-Dimensional stereo implementation of photoacoustic imaging based on a new image reconstruction algorithm without using discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu

    2017-05-01

    In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.

  5. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    NASA Astrophysics Data System (ADS)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  6. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    NASA Astrophysics Data System (ADS)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  7. The planetary hydraulics analysis based on a multi-resolution stereo DTMs and LISFLOOD-FP model: Case study in Mars

    NASA Astrophysics Data System (ADS)

    Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.

    2013-12-01

    Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.

  8. Fusion of sensor geometry into additive strain fields measured with sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Sadoughi, Mohammadkazem; Laflamme, Simon; Hu, Chao

    2018-07-01

    Recently, numerous studies have been conducted on flexible skin-like membranes for the cost effective monitoring of large-scale structures. The authors have proposed a large-area electronic consisting of a soft elastomeric capacitor (SEC) that transduces a structure’s strain into a measurable change in capacitance. Arranged in a network configuration, SECs deployed onto the surface of a structure could be used to reconstruct strain maps. Several regression methods have been recently developed with the purpose of reconstructing such maps, but all these algorithms assumed that each SEC-measured strain located at its geometric center. This assumption may not be realistic since an SEC measures the average strain value of the whole area covered by the sensor. One solution is to reduce the size of each SEC, but this would also increase the number of required sensors needed to cover the large-scale structure, therefore increasing the need for the power and data acquisition capabilities. Instead, this study proposes an algorithm that accounts for the sensor’s strain averaging feature by adjusting the strain measurements and constructing a full-field strain map using the kriging interpolation method. The proposed algorithm fuses the geometry of an SEC sensor into the strain map reconstruction in order to adaptively adjust the average kriging-estimated strain of the area monitored by the sensor to the signal. Results show that by considering the sensor geometry, in addition to the sensor signal and location, the proposed strain map adjustment algorithm is capable of producing more accurate full-field strain maps than the traditional spatial interpolation method that considered only signal and location.

  9. Real-Time Mapping: Contemporary Challenges and the Internet of Things as the Way Forward

    NASA Astrophysics Data System (ADS)

    Bęcek, Kazimierz

    2016-12-01

    The Internet of Things (IoT) is an emerging technology that was conceived in 1999. The key components of the IoT are intelligent sensors, which represent objects of interest. The adjective `intelligent' is used here in the information gathering sense, not the psychological sense. Some 30 billion sensors that `know' the current status of objects they represent are already connected to the Internet. Various studies indicate that the number of installed sensors will reach 212 billion by 2020. Various scenarios of IoT projects show sensors being able to exchange data with the network as well as between themselves. In this contribution, we discuss the possibility of deploying the IoT in cartography for real-time mapping. A real-time map is prepared using data harvested through querying sensors representing geographical objects, and the concept of a virtual sensor for abstract objects, such as a land parcel, is presented. A virtual sensor may exist as a data record in the cloud. Sensors are identified by an Internet Protocol address (IP address), which implies that geographical objects through their sensors would also have an IP address. This contribution is an updated version of a conference paper presented by the author during the International Federation of Surveyors 2014 Congress in Kuala Lumpur. The author hopes that the use of the IoT for real-time mapping will be considered by the mapmaking community.

  10. New method for analysis of facial growth in a pediatric reconstructed mandible.

    PubMed

    Kau, Chung How; Kamel, Sherif Galal; Wilson, Jim; Wong, Mark E

    2011-04-01

    The aim of this article was to present a new method of analysis for the assessment of facial growth and morphology after surgical resection of the mandible in a growing patient. This was a 2-year longitudinal study of facial growth in a child who had undergone segmental resection of the mandible with immediate reconstruction as a treatment for juvenile aggressive fibromatosis. Three-dimensional digital stereo-photogrammteric cameras were used for image acquisition at several follow-up intervals: immediate, 6 months, and 2 years postresection. After processing and superimposition, shell-to-shell deviation maps were used for the analysis of the facial growth pattern and its deviation from normal growth. The changes were seen as mean surface changes and color maps. An average constructed female face from a previous study was used as a reference for a normal growth pattern. The patient showed significant growth during this period. Positive changes took place around the nose, lateral brow area, and lower lip and chin, whereas negative changes were evident at the lower lips and cheeks area. An increase in the vertical dimension of the face at the chin region was also seen prominently. Three-dimensional digital stereo-photogrammetry can be used as an objective, noninvasive method for quantifying and monitoring facial growth and its abnormalities. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. The contribution of stereo vision to the control of braking.

    PubMed

    Tijtgat, Pieter; Mazyn, Liesbeth; De Laey, Christophe; Lenoir, Matthieu

    2008-03-01

    In this study the contribution of stereo vision to the control of braking in front of a stationary target vehicle was investigated. Participants with normal (StereoN) and weak (StereoW) stereo vision drove a go-cart along a linear track towards a stationary vehicle. They could start braking from a distance of 4, 7, or 10m from the vehicle. Deceleration patterns were measured by means of a laser. A lack of stereo vision was associated with an earlier onset of braking, but the duration of the braking manoeuvre was similar. During the deceleration, the time of peak deceleration occurred earlier in drivers with weak stereo vision. Stopping distance was greater in those lacking in stereo vision. A lack of stereo vision was associated with a more prudent brake behaviour, in which the driver took into account a larger safety margin. This compensation might be caused either by an unconscious adaptation of the human perceptuo-motor system, or by a systematic underestimation of distance remaining due to the lack of stereo vision. In general, a lack of stereo vision did not seem to increase the risk of rear-end collisions.

  12. Biomass Retrieval from L-Band Polarimetric UAVSAR Backscatter and PRISM Stereo Imagery

    NASA Technical Reports Server (NTRS)

    Zhang, Zhiyu; Ni, Wenjian; Sun, Guoqing; Huang, Wenli; Ranson, Kenneth J.; Cook, Bruce D.; Guo, Zhifeng

    2017-01-01

    The forest above-ground biomass (AGB) and spatial distribution of vegetation elements have profound effects on the productivity and biodiversity of terrestrial ecosystems. In this paper, we evaluated biomass estimation from L-band Synthetic Aperture Radar (SAR) data acquired by National Aeronautics and Space Administration (NASA) Uninhabited Aerial Vehicle SAR (UAVSAR) and the improvement of accuracy by adding canopy height information derived from stereo imagery acquired by Japan Aerospace Exploration Agency (JAXA) Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM) on-board the Advanced Land Observing Satellite (ALOS). Various models for prediction of forest biomass from UAVSAR data were investigated at pixel sizes of 1/4 ha (50 m x 50 m) and 1 ha. The variance inflation factor (VIF) was calculated for each of the explanatory variables in multivariable regression models to assess the multi-collinearity between explanatory variables. In addition, the t-and p-values were used to interpret the significance of the coefficients of each explanatory variables. The R(exp. 2), Root Mean Square Error (RMSE), bias and Akaike information criterion (AIC), and leave-one-out cross-validation (LOOCV) and bootstrapping were used to validate models. At 1/4-ha scale, the R(exp. 2) and RMSE of biomass estimation from a model using a single track of polarimetric UAVSAR data were 0.59 and 52.08 Mg/ha. With canopy height from PRISM as additional independent variable, R(exp. 2) increased to 0.76 and RMSE decreased to 39.74 Mg/ha (28.24%). At 1-ha scale, the RMSE of biomass estimation based on UAVSAR data of a single track was 39.42 Mg/ha with a R(exp. 2) of 0.77. With the canopy height from PRISM, R(exp. 2) increased to 0.86 and RMSE decreased to 29.47 Mg/ha (20.18%). The models using UAVSAR data alone underestimated biomass at levels above approximately 150 Mg/ha showing the saturation phenomenon. Adding canopy height from PRISM stereo imagery significantly improved the biomass estimation and elevated the saturation level in estimating biomass. Combined use of UAVSAR data acquired from opposite directions (odd and even tracks) slightly improved the biomass estimation.Combined use of UAVSAR data acquired from opposite directions (odd and even tracks) slightly improved the biomass estimation at 1/4-ha scale, R(exp. 2) increased from 0.59 to 0.66 and RMSE reduced from 52.08 to 48.57 Mg/ha. Averaging multiple acquisitions of UAVSAR data from the same look azimuth direction did not improve biomass estimation. A biomass map derived from NASA's LVIS (Laser Vegetation Imaging System) wave-form data was used as a reference for evaluation of the biomass maps from these models. The study has also shown that the errors decreased when deciduous, evergreen, and mixed forests were modeled separately but the improvement was not significant

  13. Parallel implementation and evaluation of motion estimation system algorithms on a distributed memory multiprocessor using knowledge based mappings

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.

  14. Preliminary optical design of the stereo channel of the imaging system simbiosys for the BepiColombo ESA mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Naletto, Giampiero; Cremonese, Gabriele; Debei, Stefano; Flamini, Enrico

    2017-11-01

    The paper describes the optical design and performance budget of a novel catadioptric instrument chosen as baseline for the Stereo Channel (STC) of the imaging system SIMBIOSYS for the BepiColombo ESA mission to Mercury. The main scientific objective is the 3D global mapping of the entire surface of Mercury with a scale factor of 50 m per pixel at periherm in four different spectral bands. The system consists of two twin cameras looking at +/-20° from nadir and sharing some components, such as the relay element in front of the detector and the detector itself. The field of view of each channel is 4° x 4° with a scale factor of 23''/pixel. The system guarantees good optical performance with Ensquared Energy of the order of 80% in one pixel. For the straylight suppression, an intermediate field stop is foreseen, which gives the possibility to design an efficient baffling system.

  15. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Complete Vision-Based Traffic Sign Recognition Supported by an I2V Communication System

    PubMed Central

    García-Garrido, Miguel A.; Ocaña, Manuel; Llorca, David F.; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance. PMID:22438704

  17. Complete vision-based traffic sign recognition supported by an I2V communication system.

    PubMed

    García-Garrido, Miguel A; Ocaña, Manuel; Llorca, David F; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance.

  18. Big data; sensor networks and remotely-sensed data for mapping; feature extraction from lidar

    NASA Astrophysics Data System (ADS)

    Tlhabano, Lorato

    2018-05-01

    Unmanned aerial vehicles (UAVs) can be used for mapping in the close range domain, combining aerial and terrestrial photogrammetry and now the emergence of affordable platforms to carry these technologies has opened up new opportunities for mapping and modeling cadastral boundaries. At the current state mainly low cost UAVs fitted with sensors are used in mapping projects with low budgets, the amount of data produced by the UAVs can be enormous hence the need for big data techniques' and concepts. The past couple of years have witnessed the dramatic rise of low-cost UAVs fitted with high tech Lidar sensors and as such the UAVS have now reached a level of practical reliability and professionalism which allow the use of these systems as mapping platforms. UAV based mapping provides not only the required accuracy with respect to cadastral laws and policies as well as requirements for feature extraction from the data sets and maps produced, UAVs are also competitive to other measurement technologies in terms of economic aspects. In the following an overview on how the various technologies of UAVs, big data concepts and lidar sensor technologies can work together to revolutionize cadastral mapping particularly in Africa and as a test case Botswana in particular will be used to investigate these technologies. These technologies can be combined to efficiently provide cadastral mapping in difficult to reach areas and over large areas of land similar to the Land Administration Procedures, Capacity and Systems (LAPCAS) exercise which was recently undertaken by the Botswana government, we will show how the uses of UAVS fitted with lidar sensor and utilizing big data concepts could have reduced not only costs and time for our government but also how UAVS could have provided more detailed cadastral maps.

  19. An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine

    PubMed Central

    Liu, Zhiyuan; Wang, Changhui

    2015-01-01

    In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method. PMID:26512675

  20. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.

    PubMed

    Gao, Xiang; Acar, Levent

    2016-07-04

    This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  1. Constraint-based stereo matching

    NASA Technical Reports Server (NTRS)

    Kuan, D. T.

    1987-01-01

    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.

  2. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  3. Design issues for stereo vision systems used on tele-operated robotic platforms

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, Jim; Pezzaniti, J. Larry; Chenault, David B.; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Pettijohn, Brad

    2010-02-01

    The use of tele-operated Unmanned Ground Vehicles (UGVs) for military uses has grown significantly in recent years with operations in both Iraq and Afghanistan. In both cases the safety of the Soldier or technician performing the mission is improved by the large standoff distances afforded by the use of the UGV, but the full performance capability of the robotic system is not utilized due to insufficient depth perception provided by the standard two dimensional video system, causing the operator to slow the mission to ensure the safety of the UGV given the uncertainty of the perceived scene using 2D. To address this Polaris Sensor Technologies has developed, in a series of developments funded by the Leonard Wood Institute at Ft. Leonard Wood, MO, a prototype Stereo Vision Upgrade (SVU) Kit for the Foster-Miller TALON IV robot which provides the operator with improved depth perception and situational awareness, allowing for shorter mission times and higher success rates. Because there are multiple 2D cameras being replaced by stereo camera systems in the SVU Kit, and because the needs of the camera systems for each phase of a mission vary, there are a number of tradeoffs and design choices that must be made in developing such a system for robotic tele-operation. Additionally, human factors design criteria drive optical parameters of the camera systems which must be matched to the display system being used. The problem space for such an upgrade kit will be defined, and the choices made in the development of this particular SVU Kit will be discussed.

  4. Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Mohanty, Lipi; Tjin, Swee Chuan

    2006-02-01

    We present the concept of a fiber-optic sensor that can be used for pressure mapping at the prosthetic knee joint, in vitro and in vivo. An embedded array of fiber Bragg gratings is used to measure the load on the tibial spacer. The sensor gives the magnitude and the location of the applied load. The effect of material properties on the sensitivity of each subgrating is presented. The wavelength-shift maps show the malalignment of implants and demonstrate the potential of this sensor for use during total knee arthroplasty.

  5. Multi-model stereo restitution

    USGS Publications Warehouse

    Dueholm, K.S.

    1990-01-01

    Methods are described that permit simultaneous orientation of many small-frame photogrammetric models in an analytical plotter. The multi-model software program enables the operator to move freely between the oriented models during interpretation and mapping. Models change automatically when the measuring mark is moved from one frame to another, moving to the same ground coordinates in the neighboring model. Thus, data collection and plotting can be performed continuously across model boundaries. The orientation of the models is accomplished by a bundle block adjustment. -from Author

  6. Large scale 20mm photography for range resources analysis in the Western United States. [Casa Grande, Arizona, Mercury, Nevada, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Tueller, P. T.

    1977-01-01

    Large scale 70mm aerial photography is a valuable supplementary tool for rangeland studies. A wide assortment of applications were developed varying from vegetation mapping to assessing environmental impact on rangelands. Color and color infrared stereo pairs are useful for effectively sampling sites limited by ground accessibility. They allow an increased sample size at similar or lower cost than ground sampling techniques and provide a permanent record.

  7. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-03-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor (the size of the standard 35mm frame) with the means to select left and right image information. Even with the added stereoscopic capability the appearance of existing camera bodies will be unaltered.

  8. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  9. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  10. Decision-level fusion of SAR and IR sensor information for automatic target detection

    NASA Astrophysics Data System (ADS)

    Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon

    2017-05-01

    We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.

  11. The Maneuverable Atmospheric Probe (MAP), a Remotely Piloted Vehicle.

    DTIC Science & Technology

    1982-05-01

    9 lb. MAP vehicle and major- components .................................... 10 2. Endevco Pitot tube airspeed indicator mounted below front...28 8. Cascaded PIXE impactors, housing cylinder and wing pod front end cup with aerosol inlet plastic tubing ........................... 30 9...turbulence sensors, a Pitot tube , two air temperature sensors, and a yaw gust probe. Located at each wing tip are sensors that contain encapsulated

  12. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    PubMed

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  13. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    PubMed Central

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  14. Detecting Traversable Area and Water Hazards for the Visually Impaired with a pRGB-D Sensor

    PubMed Central

    Yang, Kailun; Wang, Kaiwei; Cheng, Ruiqi; Hu, Weijian; Huang, Xiao; Bai, Jian

    2017-01-01

    The use of RGB-Depth (RGB-D) sensors for assisting visually impaired people (VIP) has been widely reported as they offer portability, function-diversity and cost-effectiveness. However, polarization cues to assist traversability awareness without precautions against stepping into water areas are weak. In this paper, a polarized RGB-Depth (pRGB-D) framework is proposed to detect traversable area and water hazards simultaneously with polarization-color-depth-attitude information to enhance safety during navigation. The approach has been tested on a pRGB-D dataset, which is built for tuning parameters and evaluating the performance. Moreover, the approach has been integrated into a wearable prototype which generates a stereo sound feedback to guide visually impaired people (VIP) follow the prioritized direction to avoid obstacles and water hazards. Furthermore, a preliminary study with ten blindfolded participants suggests its effectivity and reliability. PMID:28817069

  15. Generalized parallel-perspective stereo mosaics from airborne video.

    PubMed

    Zhu, Zhigang; Hanson, Allen R; Riseman, Edward M

    2004-02-01

    In this paper, we present a new method for automatically and efficiently generating stereoscopic mosaics by seamless registration of images collected by a video camera mounted on an airborne platform. Using a parallel-perspective representation, a pair of geometrically registered stereo mosaics can be precisely constructed under quite general motion. A novel parallel ray interpolation for stereo mosaicing (PRISM) approach is proposed to make stereo mosaics seamless in the presence of obvious motion parallax and for rather arbitrary scenes. Parallel-perspective stereo mosaics generated with the PRISM method have better depth resolution than perspective stereo due to the adaptive baseline geometry. Moreover, unlike previous results showing that parallel-perspective stereo has a constant depth error, we conclude that the depth estimation error of stereo mosaics is in fact a linear function of the absolute depths of a scene. Experimental results on long video sequences are given.

  16. Relationship Between the Expansion Speed and Radial Speed of CMEs Confirmed Using Quadrature Observations from SOHO and STEREO

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Makela, Pertti; Yashiro, Seiji

    2011-01-01

    It is difficult to measure the true speed of Earth-directed CMEs from a coronagraph along the Sun-Earth line because of the occulting disk. However, the expansion speed (the speed with which the CME appears to spread in the sky plane) can be measured by such coronagraph. In order to convert the expansion speed to radial speed (which is important for space weather applications) one can use empirical relationship between the two that assumes an average width for all CMEs. If we have the width information from quadrature observations, we can confirm the relationship between expansion and radial speeds derived by Gopalswamy et al. (2009, CEAB, 33, 115,2009). The STEREO spacecraft were in quadrature with SOHO (STEREO-A ahead of Earth by 87 and STEREO-B 94 behind Earth) on 2011 February 15, when a fast Earth-directed CME occurred. The CME was observed as a halo by the Large-Angle and Spectrometric Coronagraph (LASCO) on board SOHO. The sky-plane speed was measured by SOHO/LASCO as the expansion speed, while the radial speed was measured by STEREO-A and STEREO-B. In addition, STEREO-A and STEREO-B images measured the width of the CME, which is unknown from Earth view. From the SOHO and STEREO measurements, we confirm the relationship between the expansion speed (Vexp ) and radial speed (Vrad ) derived previously from geometrical considerations (Gopalswamy et al. 2009): Vrad = 1/2 (1 + cot w) Vexp, where w is the half width of the CME. STEREO-B images of the CME, we found that CME had a full width of 75 degrees, so w = 37.5 degrees. This gives the relation as Vrad = 1.15 Vexp. From LASCO observations, we measured Vexp = 897 km/s, so we get the radial speed as 1033 km/s. Direct measurement of radial speed from STEREO gives 945 km/s (STEREO-A) and 1057 km/s (STEREO-B). These numbers are different only by 2.3% and 8.5% (for STEREO-A and STEREO-B, respectively) from the computed value.

  17. A Free Database of Auto-detected Full-sun Coronal Hole Maps

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Downs, C.; Linker, J.

    2016-12-01

    We present a 4-yr (06/10/2010 to 08/18/14 at 6-hr cadence) database of full-sun synchronic EUV and coronal hole (CH) maps made available on a dedicated web site (http://www.predsci.com/chd). The maps are generated using STEREO/EUVI A&B 195Å and SDO/AIA 193Å images through an automated pipeline (Caplan et al, (2016) Ap.J. 823, 53).Specifically, the original data is preprocessed with PSF-deconvolution, a nonlinear limb-brightening correction, and a nonlinear inter-instrument intensity normalization. Coronal holes are then detected in the preprocessed images using a GPU-accelerated region growing segmentation algorithm. The final results from all three instruments are then merged and projected to form full-sun sine-latitude maps. All the software used in processing the maps is provided, which can easily be adapted for use with other instruments and channels. We describe the data pipeline and show examples from the database. We also detail recent CH-detection validation experiments using synthetic EUV emission images produced from global thermodynamic MHD simulations.

  18. Aspects of Voyager photogrammetry

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Schafer, Francis J.; Jordan, Raymond; Howington, Annie-Elpis

    1987-01-01

    In January 1986, Voyager 2 took a series of pictures of Uranus and its satellites with the Imaging Science System (ISS) on board the spacecraft. Based on six stereo images from the ISS narrow-angle camera, a topographic map was compiled of the Southern Hemisphere of Miranda, one of Uranus' moons. Assuming a spherical figure, a 20-km surface relief is shown on the map. With three additional images from the ISS wide-angle camera, a control network of Miranda's Southern Hemisphere was established by analytical photogrammetry, producing 88 ground points for the control of multiple-model compilation on the AS-11AM analytical stereoplotter. Digital terrain data from the topographic map of Miranda have also been produced. By combining these data and the image data from the Voyager 2 mission, perspective views or even a movie of the mapped area can be made. The application of these newly developed techniques to Voyager 1 imagery, which includes a few overlapping pictures of Io and Ganymede, permits the compilation of contour maps or topographic profiles of these bodies on the analytical stereoplotters.

  19. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.

    PubMed

    Cheng, Victor S; Bai, Jinfen; Chen, Yazhu

    2009-11-01

    As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses.

  20. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

Top