Sample records for stf reactor

  1. LPT. EBOR (TAN646) interior, installing reactor in STF pool ("vault"). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR (TAN-646) interior, installing reactor in STF pool ("vault"). Pressure vessel shows core barrel and outlet nozzle (next to man below) to inner duct weld, which is prepared and in position for stress relieving. Camera facing southeast. Photographer: Comiskey. Date: January 20, 1965. INEEL negative no. 65-239 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. In-situ material-motion diagnostics and fuel radiography in experimental reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVolpi, A.

    1982-01-01

    Material-motion monitoring has become a routine part of in-pile transient reactor-safety experiments. Diagnostic systems, such as the fast-neutron hodoscope, were developed for the purpose of providing direct time-resolved data on pre-failure fuel motion, cladding-breach time and location, and post-failure fuel relocation. Hodoscopes for this purpose have been installed at TREAT and CABRI; other types of imaging systems that have been tested are a coded-aperture at ACRR and a pinhole at TREAT. Diagnostic systems that use penetrating radiation emitted from the test section can non-invasively monitor fuel without damage to the measuring instrument during the radiographic images of test sections installedmore » in the reator. Studies have been made of applications of hodoscopes to other experimental reactors, including PBF, FARET, STF, ETR, EBR-II, SAREF-STF, and DMT.« less

  3. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with the Advanced TREAT loop, and the stress placed on these calculations reflects this. Additional material on performance and safety is provided. Backup calculations on calculations of plutonium-release limits are described. Cost and schedule information for the Upgrade are presented.« less

  4. Dynamical and fractal properties in periodically forced stretch-twist-fold (STF) flow

    NASA Astrophysics Data System (ADS)

    Aqeel, Muhammad; Ahmad, Salman; Azam, Anam; Ahmed, Faizan

    2017-05-01

    The periodically forced stretch-twist-fold (STF) flow is introduced in this article. The nonlinear behavior of the STF flow with periodic force along the y -axis is investigated analytically and numerically. The STF flow is a prototype of the dynamo theory that proposes a mechanism of magnetic field generation continuously. The stability analysis is done by Routh Huwritz criteria and Cardano method. Chasing chaos through numerical simulation is determined to demonstrate the chaotic behavior of the forced STF flow. With the help of fractal processes based on the forced STF flow, a multi-wing forced STF flow is obtained that gives a n -wing forced STF flow system.

  5. Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties.

    PubMed

    Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun

    2013-09-25

    VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550 °C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5 °C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films.

  6. Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties

    PubMed Central

    Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun

    2013-01-01

    VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550°C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5°C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films. PMID:24067743

  7. Astrometric Measurements of Triple Star System 15379+3006 STF 1963AB, STF 1963AC

    NASA Astrophysics Data System (ADS)

    Russell, Harker; Miller, Lindsey; Beltzer-Sweeney, Alexander; Shilts, Trey; Stojimirovic, Irena

    2018-04-01

    Research team PRSM reports astrometric measurements of the double star system WDS 15379+3006 (STF 1963AB, STF 1963AC) obtained using the iTelescope Network. By performing CCD astrometry, the team determined a position angle of 298.4° ± 0.1° with an angular separation of 05. 28" ± 0.1" for STF 1963AB, and a position angle of 116.1° ± 0.1° with an angular separation of 32.35" ± 0.1" for STF 1963AC. The angular separation and position angle have changed from previous measurements.

  8. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Yingbo; Chang Guodong; Zhan Shunli

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, whichmore » implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.« less

  9. Fall Prevention Research and Practice: A Total Worker Safety Approach

    PubMed Central

    HSIAO, Hongwei

    2014-01-01

    Slips, trips, and falls (STF) represent a serious hazard to workers and occupants in many industries, homes, and communities. Often, the cause of a STF incident is multifactorial, encompassing human, environmental, and task risk factors. A STF-related disability can greatly diminish the occupational capability and quality of life of individuals in both the workplace and the home. Countering STF hazards and risks both on and off the job and on all aspects of control measures is a “total worker safety” matter, a challenging yet tangible undertaking. As the federal organization responsible for conducting research for the prevention of work-related injuries in the United States, the National Institute for Occupational Safety and Health (NIOSH) has been conducting research on STF controls for some decades. Many NIOSH research outcomes have been utilized for STF prevention in workplaces, with potential for prevention in homes as well. This paper summarizes the concept of total worker safety for STF control, NIOSH priority research goals, major activities, and accomplishments, and some emerging issues on STF. The strategic planning process for the NIOSH research goals and some identified research focuses are applicable to the development and implementation of global STF research goals. PMID:25345424

  10. Development of a standardized transfusion ratio as a metric for evaluating dialysis facility anemia management practices.

    PubMed

    Liu, Jiannong; Li, Suying; Gilbertson, David T; Monda, Keri L; Bradbury, Brian D; Collins, Allan J

    2014-10-01

    Because transfusion avoidance has been the cornerstone of anemia treatment for patients with kidney disease, direct measurement of red blood cell transfusion use to assess dialysis facility anemia management performance is reasonable. We aimed to explore methods for estimating facility-level standardized transfusion ratios (STfRs) to assess provider anemia treatment practices. Retrospective cohort study. Point prevalent US hemodialysis patients on January 1, 2009, with Medicare as primary payer and dialysis duration of 90 days or longer were included (n = 223,901). All dialysis facilities with eligible patients were included (n = 5,345). Dialysis facility assignment. Receiving a red blood cell transfusion in the inpatient or outpatient setting. We evaluated 3 approaches for estimating STfR: ratio of observed to expected numbers of transfusions (STfR(obs)), a Bayesian approach (STfR(Bayes)), and a modified version of the Bayesian approach (STfR(modBayes)). The overall national transfusion rate in 2009 was 23.2 per 100 patient-years. Our model for predicting the expected number of transfusions performed well. For large facilities, all 3 STfRs worked well. However, for small facilities, while the STfR(modBayes) worked well, STfR(obs) values demonstrated instability and the STfR(Bayes) may produce more bias. Administration of transfusions to dialysis patients reflects medical practice both within and outside the dialysis unit. Some transfusions may be deemed unavoidable and transfusion practices are subject to considerable regional variation. Development of an STfR metric is feasible and reasonable for assessing anemia treatment at dialysis facilities. The STfR(obs) is simple to calculate and works well for larger dialysis facilities. The STfR(modBayes) is more analytically complex, but facilitates comparisons across all dialysis facilities, including small facilities. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. 'Start to finish trans-institutional transdisciplinary care': a novel approach improves colorectal surgical results in frail elderly patients.

    PubMed

    Chia, C L K; Mantoo, S K; Tan, K Y

    2016-01-01

    The frail elderly surgical patient is at increased risk of morbidity after major surgery. A transdisciplinary Geriatric Surgery Service (GSS) has been shown to produce consistently positive results in our institution. A trans-institutional transdisciplinary Start to Finish (STF) programme was initiated incorporating seamless prehabilitation and rehabilitation to enhance the outcome further. Patients who underwent major colorectal resection in Khoo Teck Puat Hospital and were managed under the GSS from January 2007 to December 2014 were included in this prospective study. The STF programme was initiated from January 2012. The surgical outcome of patients managed under the GSS before the initiation of STF was compared with that after its implementation. There were 57 patients after the initiation of the STF programme compared with 60 patients managed before STF. There were 26.4% and 25% of frail patients in the STF group compared with the non-STF group (P = 0.874). The mean length of hospital stay was significantly shorter in the STF group (8.4 days vs 11.0 days, P = 0.029). Functional recovery in patients available for follow-up at 6 weeks showed 100% (46/46) recovery in the elective STF group who received prehabilitation and 95.7% (45/47) in the elective non-STF group who did not (P = 0.157). There were no significant differences in a Clavien-Dindo complication score of Grade 3 or more and 30-day mortality between the two groups. Through a trans-institutional transdisciplinary approach, we managed to achieve a significantly shorter hospital stay in frail patients having colorectal surgery. All elective patients who received prehabilitation achieved full functional recovery. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  12. Dynamic performance and mechanical model analysis of a shear thickening fluid damper

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; He, Yonghui; Yao, Hongliang; Wen, Bangchun

    2018-07-01

    This paper presents an experimental study of the dynamic performance of a self-developed shear thickening fluid (STF) damper and its mechanical model was proposed by nonlinear fitting. First, STF samples with different mass fraction and dispersion medium were fabricated by nano fumed silica and polyethylene glycol, and its rheological properties were investigated by a rheometer. Second, a smart STF damper was developed and manufactured. Its dynamic properties were experimentally investigated by establishing a vibration test bench, and results indicated that the STF damper can output variable damping force by controlling the loading frequency, loading amplitude and fluid gap. Third, the Bouc–Wen model was proposed to address the dynamic properties of STF damper, and mechanical model analysis was carried out by comparing several fitting functions. It verified that the Bouc–Wen hysteresis model can be better used to describe the nonlinear stiffness, nonlinear damping and rate-dependence characteristics of the STF damper. All these investigations can offer an effective guidance for further theoretical and application study of the smart STF damper in energy dissipation fields.

  13. Determining Binary Star Orbits Using Kepler's Equation

    NASA Astrophysics Data System (ADS)

    Boule, Cory; Andrews, Kaitlyn; Penfield, Andrew; Puckette, Ian; Goodale, Keith; Harfenist, Steven

    2017-04-01

    Students calculated ephemerides and generated orbits of four well-known binary systems. Using an iterative technique in Microsoft® Excel® to solve Kepler's equation, separation and position angle values were generated as well as plots of the apparent orbits. Current position angle and separation values were measured in the field and compared well to the calculated values for the stars: STF1196AB,C, STF296AB, STF296AB and STF60AB.

  14. Vasculoprotective and vasodilatation effects of herbal formula (Sahatsatara) and piperine in spontaneously hypertensive rats.

    PubMed

    Booranasubkajorn, Suksalin; Huabprasert, Sukit; Wattanarangsan, Jantanee; Chotitham, Pruksa; Jutasompakorn, Pinpilai; Laohapand, Tawee; Akarasereenont, Pravit; Tripatara, Pinpat

    2017-01-15

    The herbal formula (Sahatsatara, STF), the Thai traditional poly-herbal recipe, has been used for treatment of muscle pain, anti-flatulence and numbness on hands and feet, with the caution when used in hypertensive patients. However, there is no scientific evidence to prove its effects on cardiovascular system. Piperine is the proposed major active compound in STF. It is shown to have antihypertensive effect in the L-NAME-induced endothelial dysfunction rats. This study investigated the pharmacokinetics, mechanism of action, as well as the hemodynamic and vasoactive effect and toxicity of STF and piperine using spontaneously hypertensive rats (SHR) and normal Wistar rats (NWR). The amount of piperine in STF was measured by ultra performance liquid chromatography (UPLC). SHR and NWR were gavaged with piperine (50mg/kg/day) or STF (100, 300, or 1000mg/kg/day) alone or together with L-NAME (in drinking water) for 28 days. Hemodynamic effects were monitored by noninvasive tail cuff every 7 days. Vasorelaxation effect on the thoracic aorta in organ chamber was observed through force transducer at the end of the experiment. Biochemical parameters for kidney and liver toxicity were measured. In addition, pharmacokinetic study was performed using non-compartment analysis. The amount of piperine in STF was 1.29%w/w. Both STF and piperine did not affect blood pressure and heart rate in both SHR and NWR. Interestingly, STF and piperine increased acetylcholine-induced vasorelaxation of isolated thoracic aorta and have vascoluprotective effect in nitric oxide (NO) impaired rats. No liver or kidney toxicity was found in this study. Non-compartment pharmacokinetic analysis showed that the time to reach maximum concentration (T max ) of plasma piperine after administration of piperine and STF were 3.9 and 1.7h, respectively. This result suggested that piperine in the recipe had better absorption than the pure standard piperine. STF had no effect on blood pressure in both SHR and NWR. However, it was able to relax isolated thoracic aorta and had the potential for vasculoprotective effect in hypertensive and NO impaired condition. The effects of STF were comparable to those of piperine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Detection of cerebrospinal fluid leakage by specific measurement of transferrin glycoforms.

    PubMed

    Kwon, Seok-Joon; Zhang, Fuming; Dordick, Jonathan S; Sonstein, William J; Linhardt, Robert J

    2015-10-01

    A simple and rapid detection of cerebrospinal fluid (CSF) leakage would benefit spine surgeons making critical postoperative decisions on patient care. We have assessed novel approaches to selectively determine CSF β2-transferrin (β2TF), an asialo-transferrin (aTF) biomarker, without interference from serum sialo-transferrin (sTF) in test samples. First, we performed mild periodate oxidation to selectively generate aldehyde groups in sTF for capture with magnetic hydrazide microparticles, and selective removal with a magnetic separator. Using this protocol sTF was selectively removed from mixtures of CSF and serum containing CSF aTF (β2TF) and serum sTF, respectively. Second, a two-step enzymatic method was developed with neuraminidase and galactose oxidase for generating aldehyde groups in sTF present in CSF and serum mixtures for magnetic hydrazide microparticle capture. After selectively removing sTF from mixtures of CSF and serum, ELISA could detect significant TF signal only in CSF, while the TF signal in serum was negligible. The new approach for selective removal of only sTF in test samples will be promising for the required intervention by a spine surgeon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of a comprehensive slip, trip and fall prevention programme for hospital employees.

    PubMed

    Bell, Jennifer L; Collins, James W; Wolf, Laurie; Gronqvist, Raoul; Chiou, Sharon; Chang, Wen-Ruey; Sorock, Gary S; Courtney, Theodore K; Lombardi, David A; Evanoff, Bradley

    2008-12-01

    In 2007, the Bureau of Labor Statistics reported that the incidence rate of lost workday injuries from slips, trips and falls (STFs) on the same level in hospitals was 35.2 per 10,000 full-time equivalents (FTE), which was 75% greater than the average rate for all other private industries combined (20.2 per 10,000 FTEs). The objectives of this 10-year (1996-2005) longitudinal study were to: 1) describe occupational STF injury events in hospitals; 2) evaluate the effectiveness of a comprehensive programme for reducing STF incidents among hospital employees. The comprehensive prevention programme included analysis of injury records to identify common causes of STFs, on-site hazard assessments, changes to housekeeping procedures and products, introduction of STF preventive products and procedures, general awareness campaigns, programmes for external ice and snow removal, flooring changes and slip-resistant footwear for certain employee subgroups. The hospitals' total STF workers' compensation claims rate declined by 58% from the pre-intervention (1996-1999) rate of 1.66 claims per 100 FTE to the post-intervention (2003-2005) time period rate of 0.76 claims per 100 FTE (adjusted rate ratio = 0.42, 95% CI: 0.33-0.54). STFs due to liquid contamination (water, fluid, slippery, greasy and slick spots) were the most common cause (24%) of STF claims for the entire study period 1996-2005. Food services, transport/emergency medical service and housekeeping staff were at highest risk of a STF claim in the hospital environment. Nursing and office administrative staff generated the largest numbers of STF claims. STF injury events in hospitals have a myriad of causes and the work conditions in hospitals are diverse. This research provides evidence that implementation of a broad-scale prevention programme can significantly reduce STF injury claims.

  17. VizieR Online Data Catalog: CCDM (Catalog of Components of Double & Multiple stars) (Dommanget+ 2002)

    NASA Astrophysics Data System (ADS)

    Dommanget, J.; Nys, O.

    2002-03-01

    This is the second edition of the Catalogue of the Components of Double and Multiple stars (CCDM). The first one, of which a detailed description has been given in Communication de l'Observatoire Royal de Belgique, Serie A, 115, 1994, may be found at the CDS under reference . The complete description of this second edition is published (in French and English) in "Observations et Travaux", a review edited by the Societe Astronomique de France. A detailed historical sketch of the creation and development of the catalogue -- which served as double star data base for the preparation of the HIpparcos Input Catalogue -- has been published in issue 25, pp.29-31 (1999) of this same review. There are no fundamental differences between the two editions: format, presentation and construction are similar. The main difference lies in the important increase of the considered systems of which number expands from 34.031 to 49.325. Few additions exist in the description of the contents of the various columns, and some new codes had to be used for references to astronomical positions, especially related to the introduction of new Hipparcos systems or components to known systems (see the "refpos.dat" file). Concerning the names of the systems in columns 16 to 22, one has also to mention some additions to those given in the INDEX-WDS (C.E.Worley, 1984). They are: AOT = Oss. di Torino ACG = Astr.Cat.Greenw. BAC = P.Bacchus BEW = U.Bastian et al. CRI = F.Crifo DUF = M.Duflot DYL = J. Doyle HDS = Hipparcos JRN = A. Jorissen JKS = M.P.Jenniskens KZA = S.M.Kazeza LMP = P.Lampens LYS = L. Louys MCO = McCormick NYS = O.Nys ONL = Occult. News Letters PWS = Th.Pauwels RSU = M.Rousseau SLE = G.Soulie VHS = P.Verhas Note that: MAL = McAlister in WDS 1984 MCA = McAlister in WDS 1994 Some changes have finally been brought to the names of particular STT and STF systems (App) as shown here, to avoid some confusion that exists with the non (App) systems: --> For STF (App)I, addition of 4000, i.e. STF 4001 instead of STF 1(App)I STF 4002 instead of STF 2(App)I ............... STF 4060 instead of STF 60(App)I --> For STF (App)II, addition of 5000, i.e. STF 5003 instead of STF 3(App)II ............... STF 5012 instead of STF 12(App)II --> For STT (App)I, addition of 4000, i.e. STT 4001 instead of STT 1(App) STT 4005 instead of STT 5(App) ............... STT 4256 instead of STT 256(App) (2 data files).

  18. VizieR Online Data Catalog: CCDM (Components of Double and Multiple stars) (Dommanget+ 2002)

    NASA Astrophysics Data System (ADS)

    Dommanget, J.; Nys, O.

    2002-03-01

    This is the second edition of the Catalogue of the Components of Double and Multiple stars (CCDM). The first one, of which a detailed description has been given in Communication de l'Observatoire Royal de Belgique, Serie A, 115, 1994, may be found at the CDS under reference . The complete description of this second edition will be found in its introduction that will be published (in French and English) in "Observations et Travaux", a review edited by the Societe Astronomique de France. A detailed historical sketch of the creation and development of the catalogue -- which served as double star data base for the preparation of the HIpparcos Input Catalogue -- has been published in issue 25, pp.29-31 (1999) of this same review. There are no fundamental differences between the two editions: format, presentation and construction are similar. The main difference lies in the important increase of the considered systems of which number expands from 34.031 to 49.325. Few additions exist in the description of the contents of the various columns (see table 1) and some new codes had to be used for references to astronomical positions, especially related to the introduction of new Hipparcos systems or components to known systems (see the "refpos.dat" file). Concerning the names of the systems in columns 16 to 22, one has also to mention some additions to those given in the INDEX-WDS (C.E.Worley, 1984). They are: AOT = Oss. di Torino ACG = Astr.Cat.Greenw. BAC = P.Bacchus BEW = U.Bastian et al. CRI = F.Crifo DUF = M.Duflot DYL = J. Doyle HDS = Hipparcos JRN = A. Jorissen JKS = M.P.Jenniskens KZA = S.M.Kazeza LMP = P.Lampens LYS = L. Louys MCO = McCormick NYS = O.Nys ONL = Occult. News Letters PWS = Th.Pauwels RSU = M.Rousseau SLE = G.Soulie VHS = P.Verhas Note that: MAL = McAlister in WDS 1984 MCA = McAlister in WDS 1994 Some changes have finally been brought to the names of particular STT and STF systems (App) as shown here, to avoid some confusion that exists with the non (App) systems: --> For STF (App)I, addition of 4000, i.e. STF 4001 instead of STF 1(App)I STF 4002 instead of STF 2(App)I ............... STF 4060 instead of STF 60(App)I --> For STF (App)II, addition of 5000, i.e. STF 5003 instead of STF 3(App)II ............... STF 5012 instead of STF 12(App)II --> For STT (App)I, addition of 4000, i.e. STT 4001 instead of STT 1(App) STT 4005 instead of STT 5(App) ............... STT 4256 instead of STT 256(App) (2 data files).

  19. PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ashok; Klebanov, Matvey; Abdulhalim, Ibrahim

    2015-11-01

    Lead-sulphide (PbS) nanosculptured thin film (nSTF) is prepared using a glancing angle deposition (GLAD) technique and the physical vapour deposition (PVD) process. The morphology of the GLAD films clearly shows that an anisotropic structure is obtained and is composed of micro-sheets with sharp top edges (a few tens of nanometres tip width). Due to this anisotropy, optical birefringence is induced in the nSTF as well as linear dichroism. The structural and optical properties of the PbS nSTF have been characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy and transmission measurements. The Raman spectra of PbS nSTF exhibit sharp peaks representative of vibrations in nano-crystalline PbS. Due to the absorption of PbS the nSTF is found to act as a linear polarizer with good extinction and contrast in the near infra-red range. Due to its porosity this nSTF also has the ability to sense fluids, which we demonstrate using ethanol-water solution at different concentrations. The combination of these effects in PbS nSTF is believed to constitute a prime candidate for many desirable device applications in different aspects with the low cost of production in large areas.

  20. Systemic Thinking in Career Development Theory: Contributions of the Systems Theory Framework

    ERIC Educational Resources Information Center

    McMahon, Mary; Patton, Wendy

    2018-01-01

    This article considers systemic thinking in relation to the Systems Theory Framework (STF) and to career theory. An overview of systems theory and its applications is followed by a discussion of career theory to provide a context for the subsequent description of STF. The contributions of STF to career theory and to theory integration are…

  1. STF Optimierung von single-bit CT ΣΔ Modulatoren basierend auf skalierten Filterkoeffizienten

    NASA Astrophysics Data System (ADS)

    Widemann, C.; Zorn, C.; Brückner, T.; Ortmanns, M.; Mathis, W.

    2012-09-01

    Die vorliegende Arbeit beschäftigt sich mit dem Signalübertragungsverhalten von single-bit continuous-time (CT) ΣΔ Modulatoren. Dabei liegt der Fokus der Untersuchung auf dem Peaking der Signaltransferfunktion (STF). Dieser Effekt kann die Performance und die Stabilität des Gesamtsystems negativ beeinflussen, da bei auftretendem STF-Peaking Signale außerhalb des Signalbands verstärkt werden. In dieser Arbeit wird ein neuer Ansatz zur Reduktion des Peakings vorgestellt, der auf der Optimierung der Systemdynamik basiert. Dabei werden die Filterkoeffizienten des Modulators systematisch angepasst. Anhand eines Beispielsystems wird gezeigt, dass der Ansatz genutzt werden kann, um das Übertragungsverhalten des Modulators abhängig vom Ausgangssystem zu verändern. So kann entweder die Systemsperformance verbessert werden, ohne Peaking in der STF zu erzeugen, oder das STF-Peaking reduziert werden, ohne die Systemperformance stark zu beeinflussen.

  2. Evolution of the soil cover of soccer fields

    NASA Astrophysics Data System (ADS)

    Belobrov, V. P.; Zamotaev, I. V.

    2014-04-01

    A soccer field can be considered a soil-like technogenic formation (STF). According to the theory of soil cover patterns, the artificially constructed (anthropogenic) soil cover of a soccer field is an analogue of a relatively homogeneous elementary soil area. However, the spatial homogeneity of the upper part (50-80 cm) of the STF of soccer fields is unstable and is subjected to gradual transformation under the impact of pedogenetic processes, agrotechnical loads, and mechanical loads during the games. This transformation is favored by the initial heterogeneity of the deep (buried) parts of the STF profile. The technogenic factors and elementary pedogenetic processes specify the dynamic functioning regime of the STF. In 50-75 years, the upper part of the STF is transformed into soil-like bodies with properties close to those in zonal soils. Certain micro- and nanopatterns of the soil cover are developed within the field creating its spatial heterogeneity.

  3. Dynamic Studies of Struve Double Stars: STF4 and STF 236AB Appear Gravitationally Bound

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.; Rica, F. M.

    2015-01-01

    Dynamics of two Struve double stars, WDS 00099+0827 (STF 4) and WDS 02556+2652 (STF 326 AB) are analyzed using astrometric criteria to determine their natures as gravitationally bound or unbound systems. If gravitationally bound, then observed relative velocity will be within limits according to the orbital energy conservation equation. Full implementation of this criterion was possible because the relative radial velocities as well as proper motions have been estimated. Other physical parameters were taken from literature or estimated using published protocols. Monte Carlo analysis indicates that both pairs have a high probability of being gravitationally bound and thus are long-period binaries.

  4. Slush Hydrogen Technology Program

    NASA Technical Reports Server (NTRS)

    Cady, Edwin C.

    1994-01-01

    A slush hydrogen (SH2) technology facility (STF) was designed, fabricated, and assembled by a contractor team of McDonnell Douglas Aerospace (MDA), Martin Marietta Aerospace Group (MMAG), and Air Products and Chemicals, Inc. (APCI). The STF consists of a slush generator which uses the freeze-thaw production process, a vacuum subsystem, a test tank which simulates the NASP vehicle, a triple point hydrogen receiver tank, a transfer subsystem, a sample bottle, a pressurization system, and a complete instrumentation and control subsystem. The STF was fabricated, checked-out, and made ready for testing under this contract. The actual SH2 testing was performed under the NASP consortium following NASP teaming. Pre-STF testing verified SH2 production methods, validated special SH2 instrumentation, and performed limited SH2 pressurization and expulsion tests which demonstrated the need for gaseous helium pre-pressurized of SH2 to control pressure collapse. The STF represents cutting-edge technology development by an effective Government-Industry team under very tight cost and schedule constraints.

  5. CCD Astrometry of the Four Components of STF 1088

    NASA Astrophysics Data System (ADS)

    Martin, Stuart; Daclison, Linsey; Ramos, Cathrina; Castaneda, Diana; Genet, Russell; Mohanan, Kakkala; Carro, Joseph M.

    2016-01-01

    Fifty CCD astrometric measurements were made of the separations and position angles of the AB, AC, AD, and AE components of STF 1088. Longer integration times provided more stars in the astrometric solution which may have significantly improved the precision of the measurements. The precision of the measurements did not appear to be a function of component separation, although the smallest separation (that of STF 1088 AB) was only 11".

  6. Effect of zirconia nanoparticles on the rheological properties of silica-based shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Sun, Li; Zhu, Jie; Wei, Minghai; Zhang, Chunwei; Song, Yansheng; Qi, Peipei

    2018-05-01

    In this study, the rheological characteristic of shear thickening fluid (STF) with various mass ratios of zirconium dioxide (ZrO2) to silicon dioxide (SiO2) was investigated. The influence of the ZrO2 mass ratio on the sensitivity of nano-ZrO2/SiO2-STF to temperature was further discussed. Nano-ZrO2/SiO2-STF of different concentrations (9.0–20.0 wt%) were prepared via an ultrasonication and mechanical stirring technique. The presence of ZrO2 and their interaction with the SiO2 nanoparticles in the STF were analyzed using scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and x-ray diffractometer (XRD). The rheological testing results showed that the ZrO2/SiO2-STF system produced a considerable shear thickening effect; when the nano-ZrO2 mass ratio was 12%, the critical shear rate of the system was relatively small and the peak value of apparent viscosity was relatively large. More importantly, as the nano-ZrO2 mass ratio increased, temperature exerted less influence on the viscosity of the ZrO2/SiO2-STF system diminished, but still had a significant influence on the shear thickening effect.

  7. stem fasciated, a Recessive Mutation in Sunflower (Helianthus annuus), Alters Plant Morphology and Auxin Level

    PubMed Central

    FAMBRINI, MARCO; BONSIGNORI, ELISA; RAPPARINI, FRANCESCA; CIONINI, GIULIANO; MICHELOTTI, VANIA; BERTINI, DANIELE; BARALDI, RITA; PUGLIESI, CLAUDIO

    2006-01-01

    • Background and Aims Plant lateral organs such as leaves arise from a group of initial cells within the flanks of the shoot apical meristem (SAM). Alterations in the initiation of lateral organs are often associated with changes in the dimension and arrangement of the SAM as well as with abnormal hormonal homeostasis. A mutation named stem fasciated (stf) that affects various aspects of plant development, including SAM shape and auxin level, was characterized in sunflower (Helianthus annuus). • Methods F1, F2 and F3 generations were obtained through reciprocal crosses between stf and normal plants. For the genetic analysis, a χ2 test was used. Phenotypic observations were made in field-grown and potted plants. A histological analysis of SAM, hypocotyl, epicotyl, stem and root apical meristem was also conducted. To evaluate the level of endogenous indole-3-acetic acid (IAA), a capillary gas chromatography–mass spectrometry–selected ion monitoring analysis was performed. • Key Results stf is controlled by a single nuclear recessive gene. stf plants are characterized by a dramatically increased number of leaves and vascular bundles in the stem, as well as by a shortened plastochron and an altered phyllotaxis pattern. By histological analysis, it was demonstrated that the stf phenotype is related to an enlarged vegetative SAM. Microscopy analysis of the mutant's apex also revealed an abnormal enlargement of nuclei in both central and peripheral zones and a disorganized distribution of cells in the L2 layer of the central zone. The stf mutant showed a high endogenous free IAA level, whereas auxin perception appeared normal. • Conclusions The observed phenotype and the high level of auxin detected in stf plants suggest that the STF gene is necessary for the proper initiation of primordia and for the establishment of a phyllotactic pattern through control of both SAM arrangement and hormonal homeostasis. PMID:16845141

  8. Non-exhibition of Bragg phenomenon by chevronic sculptured thin films

    NASA Astrophysics Data System (ADS)

    Vepachedu, Vikas; McAtee, Patrick D.; Lakhtakia, Akhlesh

    2017-08-01

    The unit cell of a chevronic sculptured thin film (ChevSTF) comprises two identical columnar thin films (CTFs) except that the nanocolumns of the first are oriented at an angle Χ and nanocolumns of the second are oriented at an angle π - χ with respect to the interface of the two CTFs. A ChevSTF containing 10 unit cells was fabricated and its planewave reflectance and transmittance spectrums of this ChevSTF were measured. Despite its structural periodicity, the ChevSTF did not exhibit the Bragg phenomenon. Theoretical calculations with the CTFs modeled as biaxial dielectric materials indicated that the Bragg phenomenon would not be manifested for normal and near-normal incidence, but vestigial manifestation was possible for sufficiently oblique incidence.

  9. Design and testing of a rotational brake with shear thickening fluids

    NASA Astrophysics Data System (ADS)

    Tian, Tongfei; Nakano, Masami

    2017-03-01

    A rotational brake working with shear thickening fluid (STF) was designed and tested in this study. With the optimisation in design, most of the STF in the brake can receive the same shear rate when the brake rotates. The parts of this brake were fabricated with a 3D printer and then assembled manually. Three types of STFs with various carrier fluids and different particles were fabricated and tested with a rheometer. Then the brake with each STF was separately tested with the rheometer. The estimated and measured torques as a function of the angular velocity fit each other well. The stability of the rotational STF brake was investigated in repeated tests, which proved the function of the brake for a long time.

  10. Sagittal Alignment Two Years After Selective and Nonselective Thoracic Fusion for Lenke 1C Adolescent Idiopathic Scoliosis.

    PubMed

    Celestre, Paul C; Carreon, Leah Y; Lenke, Lawrence G; Sucato, Daniel J; Glassman, Steven D

    2015-11-01

    Matched cohort. To evaluate thoracic and thoracolumbar sagittal Cobb angles in patients undergoing either selective thoracic fusion (STF) or nonselective thoracic fusion (NSTF) for Lenke 1C adolescent idiopathic scoliosis (AIS). The Lenke classification is used to guide fusion levels in AIS. For some curve types, including 1C, there is a disparity in practice regarding whether the thoracolumbar/lumbar curve should be included in the arthrodesis. The impact of performing an NSTF on sagittal parameters has not been adequately evaluated. A multicenter database of AIS was queried for patients with right-sided 1C curves treated with posterior correction and fusion. A matched cohort for each group was created based on age, gender, preoperative Cobb angles, and Scoliosis Research Society-22R domain scores. Independent t tests for continuous variables and Fisher exact test for categorical variables were used to compare the STF and NSTF groups. Thirty-eight patients who underwent NSTF were matched to 38 patients in the STF. An average of 8.0 levels were fused in the STF group and 11.6 in the NSTF group (p < .001). Preoperative and radiographic variables were similar between the two groups. Postoperatively, there was a statistically significant difference between the STF and NSTF sagittal Cobb in the thoracic spine, 26.9° and 21.7° (p = .013). The greatest difference was in the thoracolumbar sagittal Cobb, which increased to 4.3° kyphosis in the STF group and decreased to 9° of lordosis in the NSTF group (p < .001). Residual thoracolumbar/lumbar scoliosis was 25.5° in the STF group and 14.5° in the NSTF group (p < .001). STF in 1C curves preserves lumbar motion segments but may be associated with an increase in thoracic and thoracolumbar kyphosis compared to NSTF. As expected, residual thoracolumbar/lumbar scoliosis was less in the NSTF group compared to the STF group. Although the long-term implications of these changes are unknown, consideration of sagittal balance is critical. Following these patients in the medium and long term will provide important information to guide fusion levels. II. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  11. Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress.

    PubMed

    Dan, Yinghui; Zhang, Song; Zhong, Heng; Yi, Hochul; Sainz, Manuel B

    2015-02-01

    Agrobacterium tumefaciens caused tissue browning leading to subsequent cell death in plant transformation and novel anti-oxidative compounds enhanced Agrobacterium -mediated plant transformation by mitigating oxidative stress. Browning and death of cells transformed with Agrobacterium tumefaciens is a long-standing and high impact problem in plant transformation and the agricultural biotechnology industry, severely limiting the production of transgenic plants. Using our tomato cv. MicroTom transformation system, we demonstrated that Agrobacterium caused tissue browning (TB) leading to subsequent cell death by our correlation study. Without an antioxidant (lipoic acid, LA) TB was severe and associated with high levels of GUS transient expression and low stable transformation frequency (STF). LA addition shifted the curve in that most TB was intermediate and associated with the highest levels of GUS transient expression and STF. We evaluated 18 novel anti-oxidative compounds for their potential to enhance Agrobacterium-mediated transformation, by screening for TB reduction and monitoring GUS transient expression. Promising compounds were further evaluated for their effect on MicroTom and soybean STF. Among twelve non-antioxidant compounds, seven and five significantly (P < 0.05) reduced TB and increased STF, respectively. Among six antioxidants four of them significantly reduced TB and five of them significantly increased STF. The most efficient compound found to increase STF was melatonin (MEL, an antioxidant). Optimal concentrations and stages to use MEL in transformation were determined, and Southern blot analysis showed that T-DNA integration was not affected by MEL. The ability of diverse compounds with different anti-oxidative mechanisms can reduce Agrobacterium-mediated TB and increase STF, strongly supporting that oxidative stress is an important limiting factor in Agrobacterium-mediated transformation and the limiting factor can be controlled by these compounds at different levels.

  12. Exploring the Binary Nature of STF 2128 Using Separation and Position Angle Measurements

    NASA Astrophysics Data System (ADS)

    Minarik, Holly; Helm, Victoria; Asquith, Ezra; Hoffman, Andrew; Fielding, Alec; Gaytan, Humberto; Marvier, Kevin; Warneke, Walter; Howell, James; Rowe, David; Freed, Rachel; Genet, Russell

    2018-01-01

    A team of nine students from Cuesta College studied double star STF 2128 (WDS 17033+5935) using ten CCD images obtained at the Sierra Remote Observatories. Calculations of these ten observations yielded an average separation of 12.203" and an average position angle of 42.957°. By comparing these values with past observations from the Washington Double Star Catalogue, we concluded that STF 2128 is likely a true binary system.

  13. The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells

    DOE PAGES

    Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...

    2017-02-18

    Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less

  14. Interleukin 4 signals through two related pathways.

    PubMed

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  15. Modeling mechanical properties of a shear thickening fluid damper based on phase transition theory

    NASA Astrophysics Data System (ADS)

    Wei, Minghai; Lin, Kun; Guo, Qian

    2018-03-01

    Shear thickening fluids (STFs) are highly concentrated colloidal suspensions consisting of monodisperse nano-particles suspended in a carrying fluid, and have the capacity to display both flowable and rigid behaviors, when subjected to sudden stimuli. In that process, the external energy that acts on an STF can be dissipated quickly. The aim of this study is to present a dynamic model of a damper filled with STF that can be directly used in control engineering fields. To this end, shear stress during phase transition of the STF material is chosen as an internal variable. A non-convex function with bifurcation behavior is used to describe the phase transitioning of STF by determining the relationship between the behavioral characteristics of the microscopic phase and macroscopic damping force. This model is able to predict force-velocity and force-displacement relationships as functions of the loading frequency. Efficacy of the model is demonstrated via comparison with experimental results from previous studies. In addition, the results confirm the hypothesis regarding the occurrence of STF phase transitioning when subject to shear stress.

  16. Seasonal and Solar Activity Variations of f3 Layer and StF-4 F-Layer Quadruple Stratification) Near the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Tardelli, A.; Fagundes, P. R.; Pezzopane, M.; Kavutarapu, V.

    2016-12-01

    The ionospheric F-layer shape and electron density peak variations depend on local time, latitude, longitude, season, solar cycle, geomagnetic activity, and electrodynamic conditions. In particular, the equatorial and low latitude F-layer may change its shape and peak height in a few minutes due to electric fields induced by propagation of medium-scale traveling ionospheric disturbances (MSTIDs) or thermospheric - ionospheric coupling. This F-layer electrodynamics feature characterizing the low latitudes is one of the most remarkable ionospheric physics research field. The study of multiple-stratification of the F-layer has the initial records in the mid of the 20th century. Since then, many studies were focused on F3 layer. The diurnal, seasonal and solar activity variations of the F3 layer characteristics have been investigated by several researchers. Recently, investigations on multiple-stratifications of F-layer received an important boost after the quadruple stratification (StF-4) was observed at Palmas (10.3°S, 48.3°W; dip latitude 5.5°S - near equatorial region), Brazil (Tardelli & Fagundes, JGR, 2015). This study present the latest findings related with the seasonal and solar activity characteristics of the F3 layer and StF-4 near the equatorial region during the period from 2002 to 2006. A significant connection between StF-4 and F3 layer has been noticed, since the StF-4 is always preceded and followed by an F3 layer appearance. However, the F3 layer and StF-4 present different seasonal and solar cycle variations. At a near equatorial station Palmas, the F3 layer shows the maximum and minimum occurrence during summer and winter seasons respectively. On the contrary, the StF-4 presents the maximum and minimum occurrence during winter and summer seasons respectively. While the F3 layer occurrence is not affected by solar cycle, the StF-4 appearance is instead more frequent during High Solar Activity (HSA).

  17. Interleukin 4 signals through two related pathways.

    PubMed Central

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-01-01

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7544011

  18. On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors

    NASA Astrophysics Data System (ADS)

    Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.

    2018-01-01

    The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.

  19. The Science Teaching Fellows Program: A Model for Online Faculty Development of Early Career Scientists Interested in Teaching.

    PubMed

    Brancaccio-Taras, Loretta; Gull, Kelly A; Ratti, Claudia

    2016-12-01

    The American Society for Microbiology (ASM) has a history of providing a wide range of faculty development opportunities. Recently, ASM developed the Science Teaching Fellows Program (STF) for early career biologists and postdoctoral students to explore student-centered teaching and develop the skills needed to succeed in positions that have a significant teaching component. Participants were selected to STF through a competitive application process. The STF program consisted of a series of six webinars. In preparation for each webinar, participants completed a pre-webinar assignment. After each webinar, fellows practiced what they learned by completing a post-webinar assignment. In a survey used to assess the impact of STF, participants reported greater knowledge of the webinar-based instructional topics and a sense of being part of an educational community and were more confident about varied teaching methods.

  20. The Science Teaching Fellows Program: A Model for Online Faculty Development of Early Career Scientists Interested in Teaching†

    PubMed Central

    Brancaccio-Taras, Loretta; Gull, Kelly A.; Ratti, Claudia

    2016-01-01

    The American Society for Microbiology (ASM) has a history of providing a wide range of faculty development opportunities. Recently, ASM developed the Science Teaching Fellows Program (STF) for early career biologists and postdoctoral students to explore student-centered teaching and develop the skills needed to succeed in positions that have a significant teaching component. Participants were selected to STF through a competitive application process. The STF program consisted of a series of six webinars. In preparation for each webinar, participants completed a pre-webinar assignment. After each webinar, fellows practiced what they learned by completing a post-webinar assignment. In a survey used to assess the impact of STF, participants reported greater knowledge of the webinar-based instructional topics and a sense of being part of an educational community and were more confident about varied teaching methods. PMID:28101259

  1. Ultrastructure of spermatozoa of Orsolobidae (Haplogynae, Araneae) with implications on the evolution of sperm transfer forms in Dysderoidea.

    PubMed

    Lipke, Elisabeth; Ramírez, Martín J; Michalik, Peter

    2014-11-01

    Haplogynae are highly diverse with respect to the primary male genital system and sperm characteristics. Additionally, all sperm transfer forms (STF) known for spiders are present. Besides individually transferred sperm (cleistospermia), sperm are transferred as conjugates, both primary (synspermia) and secondary sperm conjugates (coenospermia, rouleaux) occur. Nevertheless, the ultrastructure of spermatozoa and STF are described for few Haplogynae and often only one representative species was studied, resulting in a superficial insight in the evolution of these traits. To elucidate the evolution of STF within Haplogynae we investigated representatives of four genera of the dysderoid family Orsolobidae. Our data show the presence of synspermia (Orsolobus, Osornolobus, Hickmanolobus, and Tasmanoonops) and also cleistospermia (Osornolobus). The occurrence of different STF within one family or even genus has not been described for any other spider taxon so far. Moreover, the synspermia of species of Tasmanoonops and Hickmanolobus were not covered by a secretion sheath suggesting a previously unknown strategy of transferring sperm that is possibly related to sperm residency time or female triggered processes after copulation. Based on serial ultrathin sectioning and subsequent 3D-reconstruction, we obtained detailed measurements revealing remarkable size differences of STF. To evaluate the previously suggested correlation with the most distal region of the spermophor inside the embolus (intromittent part of the copulatory organ) we measured the diameter of the spermophor using micro-computed X-ray tomography data to obtain corresponding morphometric parameters. Based on these data only two species show similarity in STF and spermophor diameter. © 2014 Wiley Periodicals, Inc.

  2. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica.

    PubMed

    Cancela, Martín; Corvo, Ileana; DA Silva, Edileuza; Teichmann, Aline; Roche, Leda; Díaz, Alvaro; Tort, José Fransisco; Ferreira, Henrique B; Zaha, Arnaldo

    2017-11-01

    Cystatins are small, phylogenetically conserved proteins that are tight-binding inhibitors of cysteine proteinases. The liver fluke Fasciola hepatica uses a diverse set of cysteine proteinases of the papain superfamily for host invasion, immune evasion and nutrition, but little is known about the regulation of these enzymes. The aim of this work is to characterize the cystatin repertoire of F. hepatica. For this purpose, we first surveyed the available sequence databases, identifying three different F. hepatica single-domain cystatins. In agreement with the in silico predictions, at least three small proteins with cysteine proteinase binding activity were identified. Phylogenetic analyses showed that the three cystatins (named FhStf-1, -2 and -3) are members of the I25A subfamily (stefins). Whereas FhStf-1 grouped with classical stefins, FhStf-2 and 3 fell in a divergent stefin subgroup unusually featuring signal peptides. Recombinant rFhStf-1, -2 and -3 had potent inhibitory activity against F. hepatica cathepsin L cysteine proteinases but differed in their capacity to inhibit mammalian cathepsin B, L and C. FhStf-1 was localized in the F. hepatica reproductive organs (testes and ovary), and at the surface lamella of the adult gut, where it may regulate cysteine proteinases related with reproduction and digestion, respectively. FhStf-1 was also detected among F. hepatica excretion-secretion (E/S) products of adult flukes. This suggests that it is secreted by non-classical secretory pathway and that it may interact with host lysosomal cysteine proteinases.

  3. Firefighting to Innovation: Using Human Factors and Ergonomics to Tackle Slip, Trip, and Fall Risks in Hospitals.

    PubMed

    Hignett, Sue; Wolf, Laurie; Taylor, Ellen; Griffiths, Paula

    2015-11-01

    The aim of this study was to use a theoretical model (bench) for human factors and ergonomics (HFE) and a comparison with occupational slips, trips, and falls (STFs) risk management to discuss patient STF interventions (bedside). Risk factors for patient STFs have been identified and reported since the 1950s and are mostly unchanged in the 2010s. The prevailing clinical view has been that STF events indicate underlying frailty or illness, and so many of the interventions over the past 60 years have focused on assessing and treating physiological factors (dizziness, illness, vision/hearing, medicines) rather than designing interventions to reduce risk factors at the time of the STF. Three case studies are used to discuss how HFE has been, or could be, applied to STF risk management as (a) a design-based (building) approach to embed safety into the built environment, (b) a staff- (and organization-) based approach, and (c) a patient behavior-based approach to explore and understand patient perspectives of STF events. The results from the case studies suggest taking a similar HFE integration approach to other industries, that is, a sustainable design intervention for the person who experiences the STF event-the patient. This paper offers a proactive problem-solving approach to reduce STFs by patients in acute hospitals. Authors of the three case studies use HFE principles (bench/book) to understand the complex systems for facility and equipment design and include the perspective of all stakeholders (bedside). © 2015, Human Factors and Ergonomics Society.

  4. Fat embolism syndrome secondary to injection of large amounts of soft tissue filler in the gluteal area.

    PubMed

    Coronado-Malagón, Martín; Visoso-Palacios, Porfirio; Arce-Salinas, C Alejandro

    2010-01-01

    There are no reports in the literature of an association between soft tissue filler (STF) injection and fat embolism syndrome (FES). The authors present the case of a 26-year-old woman who was injected in the gluteal area with approximately 200 cc of STF on each side for aesthetic purposes. After this procedure, she presented with the triad of hypoxemia, neurological impairment, and petechiae consistent with the diagnosis of FES. After advanced support measures, she recovered completely. This article reviews the presence of FES after a cosmetic procedure with STF.

  5. Investigating slips, trips and falls in the New Zealand dairy farming sector.

    PubMed

    Bentley, Tim; Tappin, David; Moore, Dave; Legg, Stephen; Ashby, Liz; Parker, Richard

    2005-06-22

    The paper presents findings from 39 detailed follow-up investigations of slips, trips and falls (STF) incurred by individuals working in New Zealand's dairy farming industry. The study sought to identify the key contributory risk factors for STF in this sector to provide evidence to support intervention design, and to determine the effectiveness of the investigative methodology used to achieve these objectives. Findings from the follow-up investigations included an analysis of factors related to the underfoot surface, underfoot hazard and footwear. Of note here was the propensity for STF-involved workers to not see or identify an underfoot hazard due to concurrent visual task distractions, and for workers to use footwear that both lacked effective tread and was unsuitable for the task and underfoot surface. Key latent risk factors and their interactions identified included problems associated with time pressure and related time-saving behaviours and the presence of design errors that, for example, required workers to climb onto equipment to view aspects of the task they were working on. The paper concludes that the potential resource and logistical problems associated with conducting detailed STF investigations are outweighed by the opportunity to collect rich data on key risk factors and their interactions in STF research.

  6. Shifting of phytoplankton community in the frontal regions of Indian Ocean sector of the Southern Ocean using in situ and satellite data

    NASA Astrophysics Data System (ADS)

    Mishra, Rajani Kanta; Jena, Babula; Anilkumar, Narayana Pillai; Sinha, Rupesh Kumar

    2017-01-01

    The phytoplankton pigment indices were used to characterize the spatial succession of the community composition in the frontal regions of the subtropical front (STF), sub-Antarctic front (SAF), and polar front (PF) in the Indian Ocean sector of the Southern Ocean during austral summer 2013. Diagnostic indices revealed that the flagellates were dominant in STF (51%) and progressively declined toward SAF (39%) and PF (11%). Similarly, the prokaryotes were highest in STF (43%) and decreased to SAF (32%) and PF (28%). In contrast, the diatoms were gradually increased from STF (6%) to SAF (29%) and PF (61%). The variability of flagellates and diatoms from the STF to PF is attributed to the variability of photosynthetically available radiation, sea surface temperature, and sea surface wind speed. The in-situ pigment indices were then compared to the NASA Ocean Biogeochemical model that shows the similar patterns of frontal community distribution except their magnitude. Similarly, the satellite retrieved phytoplankton biomass (chlorophyll a) was checked for its consistency after comparing with the in-situ observations and the result shows underestimation of satellite measured values. The result suggests that the conjunctive analysis of in-situ, satellite, and model archive is suitable to study the impact of climate variability on the structure of marine ecosystems.

  7. Enhanced stab resistance of armor composites with functionalized silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahfuz, Hassan; Clements, Floria; Rangari, Vijaya; Dhanak, Vinod; Beamson, Graham

    2009-03-01

    Traditionally shear thickening fluid (STF) reinforced with Kevlar has been used to develop flexible armor. At the core of the STF-Kevlar composites is a mixture of polyethylene glycol (PEG) and silica particles. This mixture is often known as STF and is consisted of approximately 45 wt % PEG and 55 wt % silica. During rheological tests, STF shows instantaneous spike in viscosity above a critical shear rate. Fabrication of STF-Kevlar composites requires preparation of STF, dilution with ethanol, and then impregnation with Kevlar. In the current approach, nanoscale silica particles were dispersed directly into a mixture of PEG and ethanol through a sonic cavitation process. Two types of silica nanoparticles were used in the investigation: 30 nm crystalline silica and 7 nm amorphous silica. The admixture was then reinforced with Kevlar fabric to produce flexible armor composites. In the next step, silica particles are functionalized with a silane coupling agent to enhance bonding between silica and PEG. The performance of the resulting armor composites improved significantly. As evidenced by National Institute of Justice spike tests, the energy required for zero-layer penetration (i.e., no penetration) jumped twofold: from 12 to 25 J cm2/g. The source of this improvement has been traced to the formation of siloxane (Si-O-Si) bonds between silica and PEG and superior coating of Kevlar filaments with particles. Fourier transform infrared, x-ray photoemission spectroscopy, and scanning electron microscopy studies were performed to examine chemical bonds, elemental composition, and particle dispersion responsible for such improvement. In summary, our experiments have demonstrated that functionalization of silica particles followed by direct dispersion into PEG resulted in superior Kevlar composites having much higher spike resistance.

  8. Adaptations of phytoplankton in the Indian Ocean sector of the Southern Ocean during austral summer of 1998—2014

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Naik, R. K.; Anil Kumar, N.

    2015-12-01

    This study investigates the effects of light and temperature on the surface water diatoms and chlorophytes, phytoplankton in the Indian Ocean sector of the Southern Ocean (SO) during the austral summer of 1998‒2014. Significant longitudinal variations in hydrographic and biological parameters were observed at the Sub tropical front (STF), Sub Antarctic front (SAF) and Polar front (PF) along 56°E‒58°E. The concentrations of total surface chlorophyll a ( Chl a), diatoms, and chlorophytes measured by the National Aeronautics Space Agency (NASA) estimated by the Sea-Viewing Wide Field-of-View Sensors (SeaWiFS), the Moderate Resolution Imaging Spectro Radiometer (MODIS), and the NASA Ocean Biological Model (NOBM) were used in the study. Variations in the concentration of total Chl a was remarkable amongst the fronts during the study period. The contribution of diatoms to the total concentration of surface Chl a increased towards south from the STF to the PF while it decreased in the case of chlorophytes. The maximum photosynthetically active radiation (PAR) was observed at the STF and it progressively decreased to the PF through the SAF. At the PF region the contribution of diatoms to the total Chl a biomass was ≥80%. On the other hand, the chlorophytes showed a contrary distribution pattern with ≥70% of the total Chl a biomass recorded at the STF which gradually decreased towards the PF, mainly attributed to the temperate adaptation. This clearly reveals that the trend of diatoms increased at the STF and decreased at the SAF and the PF. Further, the trend of chlorophytes was increased at the STF, SAF and PF with a shift in the community in the frontal system of the Indian Ocean sector of the SO.

  9. Contribution of Surface Thermal Forcing to Mixing in the Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Huang, Shi-Di; Xia, Ke-Qing

    2018-02-01

    A critical ingredient of the meridional overturning circulation (MOC) is vertical mixing, which causes dense waters in the deep sea to rise throughout the stratified interior to the upper ocean. Here, we report a laboratory study aimed at understanding the contributions from surface thermal forcing (STF) to this mixing process. Our study reveals that the ratio of the thermocline thickness to the fluid depth largely determines the mixing rate and the mixing efficiency in an overturning flow driven by STF. By applying this finding to a hypothetical MOC driven purely by STF, we obtain a mixing rate of O(10-6 m2/s) and a corresponding meridional heat flux of O(10-2 petawatt, PW), which are far smaller than the values found for real oceans. These results provide quantitative support for the notion that STF alone is not sufficient to drive the MOC, which essentially acts as a heat conveyor belt powered by other energy sources.

  10. Biosynthesis and Regulation of Sulfomenaquinone, a Metabolite Associated with Virulence in Mycobacterium tuberculosis.

    PubMed

    Sogi, Kimberly M; Holsclaw, Cynthia M; Fragiadakis, Gabriela K; Nomura, Daniel K; Leary, Julie A; Bertozzi, Carolyn R

    2016-11-11

    Sulfomenaquinone (SMK) is a recently identified metabolite that is unique to the Mycobacterium tuberculosis (M. tuberculosis) complex and is shown to modulate its virulence. Here, we report the identification of the SMK biosynthetic operon that, in addition to a previously identified sulfotransferase stf3, includes a putative cytochrome P450 gene (cyp128) and a gene of unknown function, rv2269c. We demonstrate that cyp128 and stf3 are sufficient for the biosynthesis of SMK from menaquinone and rv2269c exhibits promoter activity in M. tuberculosis. Loss of Stf3 expression, but not that of Cyp128, is correlated with elevated levels of menaquinone-9, an essential component in the electron-transport chain in M. tuberculosis. Finally, we showed in a mouse model of infection that the loss of cyp128 exhibits a hypervirulent phenotype similar to that in previous studies of the stf3 mutant. These findings provide a platform for defining the molecular basis of SMK's role in M. tuberculosis pathogenesis.

  11. Speckle Interferometry at the U.S. Naval Observatory. 19th

    DTIC Science & Technology

    2013-09-01

    Hartkopf & Mason (2011b) 02563+7253 STF 312 12.850 46.2 1.73 2 1.4 −0.08 Cvetkovic & Novakovic (2006) 02592+2120 STF 333 12.066 209.1 1.35 1 −0.4 −0.01...0.2 −0.17 Mason et al. (2004b) 0.4 −0.11 Novakovic & Todorovic (2006) 18443+3940 STF 2383 CD 12.628 77.6 2.26 2 0.6 −0.12 Docobo & Costa (1984) 18489...Carnegie Inst.) Cvetkovic, Z., & Novakovic , B. 2006, SerAJ, 173, 73 DeRosa, R. J., Patience, J., Vigan, A., et al. 2012, MNRAS, 422, 2765 Docobo, J. A

  12. Investigating risk factors for slips, trips and falls in New Zealand residential construction using incident-centred and incident-independent methods.

    PubMed

    Bentley, Tim A; Hide, Sophie; Tappin, David; Moore, Dave; Legg, Stephen; Ashby, Liz; Parker, Richard

    2006-01-15

    Slip, trip and fall (STF) incidents, particularly falls from a height, are a leading cause of injury in the New Zealand residential construction industry. The most common origins of falls from a height in this sector are ladders, scaffolding and roofs, while slipping is the most frequent fall initiating event category. The study aimed to provide detailed information on construction industry STF risk factors for high-risk tasks, work equipment and environments, as identified from an earlier analysis of STF claims data, together with information to be used in the development of interventions to reduce STF risk in New Zealand residential construction. The study involved the use of both incident-centred and incident-independent methods of investigation, including detailed follow-up investigations of incidents and observations and interviews with workers on construction sites, to provide data on a wide range of risk factors. A large number of risk factors for residential construction STFs were identified, including factors related to the work environment, tasks and the use and availability of appropriate height work equipment. The different methods of investigation produced complementary information on factors related to equipment design and work organization, which underlie some of the site conditions and work practices identified as key risk factors for residential construction STFs. A conceptual systems model of residential construction STF risk is presented.

  13. Double Star Measurements Using a Webcam and CCD Camera, Annual Report of 2016

    NASA Astrophysics Data System (ADS)

    Schlimmer, Jeorg

    2018-01-01

    This report shows the results on 223 double star measurements from 2016; mini-mum separation is 1.23 a.s. (STF1024AB), maximum separation is 371 a.s. (STF1424AD). The mean value of all measurements is 18.7 a.s.

  14. The Systems Theory Framework of Career Development

    ERIC Educational Resources Information Center

    McMahon, Mary

    2011-01-01

    The Systems Theory Framework (STF; McMahon & Patton, 1995; Patton & McMahon, 2006) of career development was proposed as a metatheoretical framework that accommodates the contribution of all theories and offers an integrative and coherent framework of career influences. In this article, the author provides an overview of the STF, outlines its…

  15. A Hypermedia System To Aid in Preservice Teacher Education: Instructional Design and Evaluation.

    ERIC Educational Resources Information Center

    Lambdin, Diana V.; And Others

    This research investigated how use of an interactive videodisk information system, the Strategic Teaching Framework (STF), helped preservice teachers expand their visions of teaching, learning, and assessment in mathematics, and helped develop their skills in translating that vision into action in the classroom. STF consisted of videos of…

  16. Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Vermeul, Vincent R.; Adamson, David

    2015-03-01

    Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection ofmore » a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.« less

  17. On the Reliability of Source Time Functions Estimated Using Empirical Green's Function Methods

    NASA Astrophysics Data System (ADS)

    Gallegos, A. C.; Xie, J.; Suarez Salas, L.

    2017-12-01

    The Empirical Green's Function (EGF) method (Hartzell, 1978) has been widely used to extract source time functions (STFs). In this method, seismograms generated by collocated events with different magnitudes are deconvolved. Under a fundamental assumption that the STF of the small event is a delta function, the deconvolved Relative Source Time Function (RSTF) yields the large event's STF. While this assumption can be empirically justified by examination of differences in event size and frequency content of the seismograms, there can be a lack of rigorous justification of the assumption. In practice, a small event might have a finite duration when the RSTF is retrieved and interpreted as the large event STF with a bias. In this study, we rigorously analyze this bias using synthetic waveforms generated by convolving a realistic Green's function waveform with pairs of finite-duration triangular or parabolic STFs. The RSTFs are found using a time-domain based matrix deconvolution. We find when the STFs of smaller events are finite, the RSTFs are a series of narrow non-physical spikes. Interpreting these RSTFs as a series of high-frequency source radiations would be very misleading. The only reliable and unambiguous information we can retrieve from these RSTFs is the difference in durations and the moment ratio of the two STFs. We can apply a Tikhonov smoothing to obtain a single-pulse RSTF, but its duration is dependent on the choice of weighting, which may be subjective. We then test the Multi-Channel Deconvolution (MCD) method (Plourde & Bostock, 2017) which assumes that both STFs have finite durations to be solved for. A concern about the MCD method is that the number of unknown parameters is larger, which would tend to make the problem rank-deficient. Because the kernel matrix is dependent on the STFs to be solved for under a positivity constraint, we can only estimate the rank-deficiency with a semi-empirical approach. Based on the results so far, we find that the rank-deficiency makes it improbable to solve for both STFs. To solve for the larger STF we need to assume the shape of the small STF to be known a priori. Thus, the reliability of the estimated large STF depends on the difference between the assumed and true shapes of the small STF. We will show how the reliability varies with realistic scenarios.

  18. An impact of environmental changes on flows in the reach scale under a range of climatic conditions

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Romanowicz, Renata J.

    2016-04-01

    The present paper combines detection and adequate identification of causes of changes in flow regime at cross-sections along the Middle River Vistula reach using different methods. Two main experimental set ups (designs) have been applied to study the changes, a moving three-year window and low- and high-flow event based approach. In the first experiment, a Stochastic Transfer Function (STF) model and a quantile-based statistical analysis of flow patterns were compared. These two methods are based on the analysis of changes of the STF model parameters and standardised differences of flow quantile values. In the second experiment, in addition to the STF-based also a 1-D distributed model, MIKE11 was applied. The first step of the procedure used in the study is to define the river reaches that have recorded information on land use and water management changes. The second task is to perform the moving window analysis of standardised differences of flow quantiles and moving window optimisation of the STF model for flow routing. The third step consists of an optimisation of the STF and MIKE11 models for high- and low-flow events. The final step is to analyse the results and relate the standardised quantile changes and model parameter changes to historical land use changes and water management practices. Results indicate that both models give consistent assessment of changes in the channel for medium and high flows. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.

  19. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study.

    PubMed

    Bauersfeld, Stephan P; Kessler, Christian S; Wischnewsky, Manfred; Jaensch, Annette; Steckhan, Nico; Stange, Rainer; Kunz, Barbara; Brückner, Barbara; Sehouli, Jalid; Michalsen, Andreas

    2018-04-27

    This pilot trial aimed to study the feasibility and effects on quality of life (QOL) and well-being of short-term fasting (STF) during chemotherapy in patients with gynecological cancer. In an individually-randomized cross-over trial patients with gynecological cancer, 4 to 6 planned chemotherapy cycles were included. Thirty-four patients were randomized to STF in the first half of chemotherapies followed by normocaloric diet (group A;n = 18) or vice versa (group B;n = 16). Fasting started 36 h before and ended 24 h after chemotherapy (60 h-fasting period). QOL was assessed by the FACIT-measurement system. The chemotherapy-induced reduction of QOL was less than the Minimally Important Difference (MID; FACT-G = 5) with STF but greater than the MID for non-fasted periods. The mean chemotherapy-induced deterioration of total FACIT-F was 10.4 ± 5.3 for fasted and 27.0 ± 6.3 for non-fasted cycles in group A and 14.1 ± 5.6 for non-fasted and 11.0 ± 5.6 for fasted cycles in group B. There were no serious adverse effects. STF during chemotherapy is well tolerated and appears to improve QOL and fatigue during chemotherapy. Larger studies should prove the effect of STF as an adjunct to chemotherapy. This trial was registered at clinicaltrials.gov: NCT01954836 .

  20. Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis

    PubMed Central

    Meng, Yingying; Sang, Dajun; Yin, Pengcheng; Wu, Jinxia; Tang, Yuhong; Lu, Tiegang; Wang, Zeng-Yu; Tadege, Million

    2017-01-01

    Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs. PMID:28264034

  1. Vanguard Preparatory School Observations of the Double Star STF 1692

    NASA Astrophysics Data System (ADS)

    Anderson, Serenity; Buccola, Breck; Garcia, Karen; Gosney, Matthew; Housatchenko, Jonathan; Martinez, Lilian; Myskow, Wyatt; Renteria, Noah; Schlosser, Ruth; Thompson, Leone; Estrada, Reed; Estrada, Chris

    2016-01-01

    Using a 22-inch Newtonian Alt/Az telescope and a Celestron Micro Guide eyepiece, students from Vanguard Preparatory observed the binary star Cor Caroli (STF 1692) and found a position angle of 228 degrees as well as an average separation of 21.10". This project was a part of the Vanguard Preparatory Double Star Workshop 2015 in Apple Valley, California.

  2. Evaluation and simplification of the occupational slip, trip and fall risk-assessment test

    PubMed Central

    NAKAMURA, Takehiro; OYAMA, Ichiro; FUJINO, Yoshihisa; KUBO, Tatsuhiko; KADOWAKI, Koji; KUNIMOTO, Masamizu; ODOI, Haruka; TABATA, Hidetoshi; MATSUDA, Shinya

    2016-01-01

    Objective: The purpose of this investigation is to evaluate the efficacy of the occupational slip, trip and fall (STF) risk assessment test developed by the Japan Industrial Safety and Health Association (JISHA). We further intended to simplify the test to improve efficiency. Methods: A previous cohort study was performed using 540 employees aged ≥50 years who took the JISHA’s STF risk assessment test. We conducted multivariate analysis using these previous results as baseline values and answers to questionnaire items or score on physical fitness tests as variables. The screening efficiency of each model was evaluated based on the obtained receiver operating characteristic (ROC) curve. Results: The area under the ROC obtained in multivariate analysis was 0.79 when using all items. Six of the 25 questionnaire items were selected for stepwise analysis, giving an area under the ROC curve of 0.77. Conclusion: Based on the results of follow-up performed one year after the initial examination, we successfully determined the usefulness of the STF risk assessment test. Administering a questionnaire alone is sufficient for screening subjects at risk of STF during the subsequent one-year period. PMID:27021057

  3. Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification

    NASA Technical Reports Server (NTRS)

    Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand; hide

    2016-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  4. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  5. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.« less

  6. CCD Observation of STF1169AB

    NASA Astrophysics Data System (ADS)

    Newton, Colette; Anderson, David; Morales, Robin; Gerow, Thomas; Ramirez, Brandon; Whipp, Paul; Rowe, David; Freed, Rachel; Genet, Russell

    2018-01-01

    Binary star system STF1169AB was observed on April 9th, 2017 using the 17-inch Corrected Dall-Kirkham, Optical Tube Assembly Astrograph Telescope at the Sierra Remote Observatory. Ten images were taken using a Charge-Coupled Device, allowing position angle and separation to be calculated to within 1.2% standard error. The position angle was recorded as 14.95 degrees and the separation as 20.73 arc seconds.

  7. Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter.

    PubMed

    Takesono, Satoshi; Onodera, Masayuki; Toda, Kiyoshi; Yoshida, Masanori; Yamagiwa, Kazuaki; Ohkawa, Akira

    2006-03-01

    This study examined a stirred-tank fermenter (STF) containing low-viscosity foaming liquids with an agitation impeller and foam-breaking impeller mounted on the same shaft. Results showed that the performance of the foam-breaking impeller can be improved by changing a conventional six-blade turbine impeller into a rod impeller as the agitation impeller. The volumetric oxygen-transfer coefficient, kLa, in the mechanical foam-control method (MFM) using a six-blade vaned disk as the foam-breaking impeller in the STF with the rod impeller was approximately five times greater than that of the chemical foam-control method (CFM) adding an anti-foaming agent in the STF with the six-blade turbine impeller. Application of the present method to the cultivation of Saccharomyces cerevisiae K-7 demonstrated that the cultivation time up to the maximum cell concentration was remarkably shorter than that achieved using a conventional CFM.

  8. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions.

    PubMed

    Kalman, Dennis P; Merrill, Richard L; Wagner, Norman J; Wetzel, Eric D

    2009-11-01

    The penetration behavior of Kevlar fabric intercalated with dry particles and shear thickening fluids (STF), highly concentrated fluid-particle suspensions, is presented. In particular, the role of particle hardness is explored by comparing fabric treatments containing SiO(2) particles, which are significantly harder than Kevlar, to treatments containing softer poly(methyl methacrylate) (PMMA) particles. The fabric testing includes yarn pull-out, quasi-static spike puncture, and ballistic penetration resistance, performed on single fabric layers. It was found that both dry particle and STF treatments resulted in improvements in fabric properties relative to neat or poly(ethylene glycol) (PEG) treated fabrics. On comparison of treatments with different particle hardness, the SiO(2) materials performed better in all tests than comparable PMMA materials, although the SiO(2) treatments caused yarn failure in pull-out testing, reducing the total pull-out energy. In addition, resistance to yarn pull-out was found to be substantially higher for STF-treated fabrics than for dry particle treated fabrics. However, both dry particle addition and STF treatments exhibited comparable enhancements in puncture and ballistic resistance. These observations suggest that viscous stress transfer, friction, and physical entrainment of hard particles into filaments contribute to the demonstrated improvements in the properties of protective fabrics treated with shear thickening fluids.

  9. [Clinical evaluation of the postburn retention and the metabolism of Imipenem in the third space].

    PubMed

    Rong, Xin-Zhou; Bei, Chun-Hua; Huang, Xiao-Hua; Li, Qing-Hui

    2003-04-01

    To explore the half life and retention of Imipenem in the third space. Eight severely burned patients and eight healthy volunteers were enrolled as the burn group (B) and normal control group (C), respectively. HPLC (high performance liquid chromatography) was employed to determine the contents of Imipenem in the plasma, subeschar tissue fluid (STF) and the changes in its pharmacokinetics. Furthermore, the Imipenem content in the third space was calculated according to the systemic edema degree. The half life of Imipenem in STF (2.53 h) was longer than that in plasma (1.73 h), P < 0.05). The Imipenem content in STF increased gradually along with the lapse of time after repeated intravenous infusion of Imipenem, and at the same the total content of imipenem was increased significantly in the third space. There was antibiotic retention in the third space after severe burn injury, and a prolonged action of the drug could be expected when the drug re-entered the blood stream.

  10. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  11. Chico High School Students' Astrometric Observations of the Visual Double Star STF 1657

    NASA Astrophysics Data System (ADS)

    Ahiligwo, Jonelle; Bergamini, Clara; Berglund, Kallan; Bhardwaj, Mohit; Chelson, Spud; Costa, Amanda; Epis, Ashley; Grant, Azure; Osteen, Courtney; Reiner, Skyla; Rose, Adam; Schmidt, Emily; Sears, Forest; Sullivan-Hames, Maddie; Johnson, Jolyon

    2012-01-01

    In the spring of 2011, Chico Senior High School students participated in an astronomy seminar at the Gateway Science Museum, University of California, Chico. The observers used a Celestron NexStar 6 SE telescope and a Celestron MicroGuide eyepiece to determine the separation and position angle of the visual double star STF 1657. Observations were made in approximately one hour on the evening of May 1, 2011. The observers determined that the separation of STF 1657 was 22.1" and the position angle was 273.4&°. Seminar members then used the spectral type, parallax, and proper motion vectors of the two stars to determine if they are a line-of-sight optical pair or physically bound by gravity. Due to large errors in the parallax and the proper motion vector for the secondary star, the results were inconclusive. Through this experience, the students learned the skills needed to observe, analyze, and report on double stars.

  12. Effect of Blood Contamination on Marginal Adaptation and Surface Microstructure of Mineral Trioxide Aggregate: A SEM Study.

    PubMed

    Salem Milani, Amin; Rahimi, Saeed; Froughreyhani, Mohammad; Vahid Pakdel, Mahdi

    2013-01-01

    In various clinical situations, mineral trioxide aggregate (MTA) may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly divided into two groups (n = 15): in group 1, the internal surface of the cavities was coated with fresh blood. Then, the cavities were filled with MTA. The roots were immersed in molds containing fresh blood. In group 2, the aforementioned procedures were performed except that synthetic tissue fluid (STF) was used instead of blood. To assess the marginal adaptation, "gap perimeter" and "maximum gap width" were measured under scanning electron microscope. The surface microstructure was also examined. Independent samples t-test and Mann-Whitney U test were used to analyze the data. Maximum gap width and gap perimeter in the blood-exposed group were significantly larger than those in the STF-exposed group (p < 0.01). In the blood-exposed group, the crystals tended to be more rounded and less angular compared with the STF-exposed group, and there was a general lack of needle-like crystals. Exposure to blood during setting has a negative effect on marginal adaptation of MTA, and blood-exposed MTA has a different surface microstructure compared to STF-exposed MTA.

  13. Frequency and Efficacy of Talk-Related Tasks in Primary Science

    NASA Astrophysics Data System (ADS)

    Braund, Martin; Leigh, Joanne

    2013-04-01

    Pupil talk and discussion are seen as having important social and cognitive outcomes. In science classes, pupils' collaborative talk supports the construction of meaning and helps examine the status of evidence, theory and knowledge. However, pupil interactive talk in groups is rare in science lessons. The research reported is part of a project to increase the amount of pupil-pupil talk in primary schools through a programme of teaching and professional development. Pupils' self-reports of the frequency and learning efficacies of talk related activities in science lessons were collected before and after a programme of teaching in 24 schools in one of the most socially and educationally deprived areas of England. Findings showed pupils valued talking about their ideas over listening to those of other pupils. Science talk frequency (STF) was closely correlated with science talk efficacy (STE) and both were positively correlated with pupils' attitudes to school science. Analysis of covariance (ANCOVA) of the correlation of STF with STE showed values were independent of gender and ability but that school experience was a significant factor. After the teaching programme and, contrary to expectations, the frequency of talk activities in science lessons appeared to have decreased but varied according to class grades. The degree of correlation between STF and STE was stronger after the teaching in over half of the schools. Schools where STF/STE strengthened most as a result of teaching were those involved in an additional initiative to use modelled talk related to industrial contexts.

  14. Student Measurements of Double Star STF 747AB

    NASA Astrophysics Data System (ADS)

    Bateman, Grace; Funk, Benjamin; Gillette, Travis; Rhoades, Breauna; Rhoades, Mark; Schlosser, Ruth; Sharpe, Scott; Thompson, Leone

    2017-04-01

    Data gathered from a 22-Inch Newtonian Alt/Az telescope and a Celestron Micro Guide eyepiece were used to measure the double star STF 747AB. Students from Apple Valley High School determined the separation to be 39.97 arc sec and the position angle to be 227.91 degrees. The students also used data from the digitized sky survey and determined a separation of 39.99 arc sec and a position angle of 225 degrees. The research was semi-independent from the Vanguard Double Star Workshop 2016 in Apple Valley, California.

  15. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    NASA Astrophysics Data System (ADS)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh

    2017-01-01

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  16. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  17. Review of Recent US Value Frameworks-A Health Economics Approach: An ISPOR Special Task Force Report [6].

    PubMed

    Willke, Richard J; Neumann, Peter J; Garrison, Louis P; Ramsey, Scott D

    2018-02-01

    The sixth section of our Special Task Force (STF) report reviews and comments on recent US-oriented value assessment frameworks, specifically those published by the American College of Cardiology/American Heart Association, the Institute for Clinical and Economic Research, the American Society of Clinical Oncology, the National Comprehensive Cancer Network, and the Memorial Sloan Kettering Cancer Center. We review published commentaries that address the validity, reliability, and conceptual underpinnings of these frameworks. We find common themes of critique regarding the strengths and limitations across frameworks. Particular shortcomings of some frameworks pose greater threats to their face validity and utility compared with others. The most significant limitations include lack of clear perspective (e.g., patient vs. health plan) and poor transparency in accounting for costs and benefits. We then review how each framework adheres to core STF recommendations, with particular emphasis on whether the framework can be used to support coverage decisions by health insurers, and whether it adheres to core principles of cost-effectiveness analysis. The Institute for Clinical and Economic Research framework most closely adheres to core STF recommendations. Others have significant limitations that vary widely from framework to framework. We also review how the frameworks follow STF recommendations for addressing potentially relevant issues beyond cost-effectiveness analysis - for example, equity in resource allocation and patient heterogeneity. Finally, we review whether and how each framework uses value thresholds and addresses affordability concerns. We conclude with suggestions for further research, particularly in the areas of testing the measurement and use of novel elements of value and deliberative processes. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Spectral characterization as a tool for parchment analysis

    NASA Astrophysics Data System (ADS)

    Radis, Michela; Iacomussi, Paola; Rossi, Giuseppe

    2015-06-01

    The paper presents an investigation on the correlation between spectral characteristics and conservation conditions of parchment to define a NON invasive methodology able to detect and monitor deterioration process in historical parchment without the need of taking small samples. To verify the feasibility and define the most appropriate measurement method, several samples of contemporary parchments, produced following ancient recipes and coming from different animal species, with different degrees of artificially induced damage, were analyzed. The SRF and STF of each sample were measured in the same point, before and after each step of the artificial ageing treatment. Having at disposal a parchment coming from a whole lamb leather, allowed also the study of the correlations between the variations of SRF - STF and the intrinsic factors of a parchment like the variability of animal skin anatomy and of manufacturing. Analyzing different samples allowed also the definition of the measuring method sensitivity and of reference spectrum for the different animal species parchments with accuracy limits. The definition of a reference spectrum of not damaged parchment with acceptability limits is a necessary step for understanding, through SRF - STF measurements, historical parchments conservation conditions: indeed it is necessary to know if deviations from the reference spectrum are ascribable to damage or only to parchment anatomic/production variability. As a case study, the method has been applied to two historical parchment scrolls stored at the Archivio di Stato di Torino (Italy). The SRF - STF of both scrolls was acquired in several points of the scroll, the average spectrum of each scroll was compared with the reference spectra with the relative tolerance limits, recognizing the animal species and damage alterations and demonstrating the feasibility of the method.

  19. Deformable known component model-based reconstruction for coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tilley, S.; Xu, S.; Mathews, A.; McVeigh, E. R.; Stayman, J. W.

    2017-03-01

    Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.

  20. Remedial Amendment Delivery near the Water Table Using Shear Thinning Fluids: Experiments and Numerical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Truex, Michael J.; Vermeul, Vincent R.

    2014-08-19

    The use of shear thinning fluids (STFs) containing xanthan is a potential enhancement for emplacing a solute amendment near the water table and within the capillary fringe. Most research to date related to STF behavior has involved saturated and confined conditions. A series of flow cell experiments were conducted to investigate STF emplacement in variable saturated homogeneous and layered heterogeneous systems. Besides flow visualization using dyes, amendment concentrations and pressure data were obtained at several locations. The experiments showed that injection of STFs considerably improved the subsurface distribution near the water table by mitigating preferential flow through higher permeability zonesmore » compared to no-polymer injections. The phosphate amendment migrated with the xanthan SFT without retardation. Despite the high viscosity of the STF, no excessive mounding or preferential flow were observed in the unsaturated zone. The STOMP simulator was able to predict the experimentally observed fluid displacement and amendment concentrations reasonably well. Cross flow between layers could be interpreted as the main mechanism to transport STFs into lower permeability layers based on the observed pressure gradient and concentration data in layers of differing hydraulic conductivity.« less

  1. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  2. Complex Actions of Estradiol-3-Sulfate in Late Gestation Fetal Brain

    PubMed Central

    Winikor, Jared; Schlaerth, Christine; Rabaglino, Maria Belen; Cousins, Roderick; Sutherland, Monique

    2011-01-01

    The most abundant form of estrogen circulating in fetal plasma is sulfo-conjugated estrogen; for example, estradiol-3-sulfate (E2SO4) is more highly abundant than estradiol (E2). The present study investigated the ontogeny of the deconjugating (steroid sulfatase [STS]) and conjugating (estrogen sulfotransferase [STF]) enzymes in ovine fetal brain and tested the hypothesis that treatment with E2SO4 would alter the expression of one or both enzymes. Steroid sulfatase was more highly expressed than STF, and both changed as a function of gestational age. Estradiol-3-sulfate infused intracerebroventricularly (icv) significantly increased plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Plasma E2 and E2SO4 were increased, and brain expression of estrogen receptor α was decreased. The proteins STS and STF were up- and downregulated, respectively. Pituitary proopiomelanocortin (POMC) and follicle-stimulating hormone (FSH) and hypothalamic corticotrophin-releasing hormone (CRH) messenger RNA (mRNA) was decreased. We conclude that E2SO4 has complex actions on the fetal brain, which might involve deconjugation by STS, but that the net result of direct E2SO4 icv infusion is more complex than can be accounted for by infusion of E2 alone. PMID:21273638

  3. NASA Operational Simulator for Small Satellites (NOS3)

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  4. Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory, Idaho, with paleomagnetic data tables for drill cores

    USGS Publications Warehouse

    Champion, Duane E.; Hodges, Mary K.V.; Davis, Linda C.; Lanphere, Marvin A.

    2011-01-01

    Paleomagnetic inclination and polarity studies have been conducted on thousands of subcore samples from 51 coreholes located at and near the Idaho National Laboratory. These studies are used to paleomagnetically characterize and correlate successive stratigraphic intervals in each corehole to similar depth intervals in adjacent coreholes. Paleomagnetic results from 83 surface paleomagnetic sites, within and near the INL, are used to correlate these buried lava flow groups to basaltic shield volcanoes still exposed on the surface of the eastern Snake River Plain. Sample handling and demagnetization protocols are described as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons between coreholes located only kilometers apart show comparable stratigraphic successions of mean inclination values over tens of meters of depth. At greater distance between coreholes, comparable correlation of mean inclination values is less consistent because flow groups may be missing or additional flow groups may be present and found at different depth intervals. Two shallow intersecting cross-sections, A-A- and B-B- (oriented southwest-northeast and northwest-southeast, respectively), drawn through southwest Idaho National Laboratory coreholes show the corehole to corehole or surface to corehole correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results included the (1) Quaking Aspen Butte flow group, which erupted from Quaking Aspen Butte southwest of the Idaho National Laboratory, flowed northeast, and has been found in the subsurface in corehole USGS 132; (2) Vent 5206 flow group, which erupted near the southwestern border of the Idaho National Laboratory, flowed north and east, and has been found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01; and (3) Mid Butte flow group, which erupted north of U.S. Highway 20, flowed northwest, and has been found in the subsurface at coreholes ARA-COR-005 and STF-AQ-01. The high K20 flow group erupted from a vent that may now be buried south of U.S. Highway 20 near Middle Butte, flowed north, and is found in the subsurface in coreholes USGS 131, USGS 127, USGS 130, USGS 128, USGS 123, STF-AQ-01, and ARA-COR-005 ending near the Idaho Nuclear Technology and Engineering Center. The vent 5252 flow group erupted just south of U.S. Highway 20 near Middle and East Buttes, flowed northwest, and is found in the subsurface in coreholes ARA-COR-005, STF-AQ-01, USGS 130, USGS 128, ICPP 214, USGS 123, ICPP 023, USGS 121, USGS 127, and USGS 131. The Big Lost flow group erupted from a now-buried vent near the Radioactive Waste Management Complex, flowed southwest to corehole USGS 135, and northeast to coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, STF-AQ-01, and ARA-COR-005. The AEC Butte flow group erupted from AEC Butte near the Advanced Test Reactor Complex and flowed south to corehole Middle 1823, northwest to corehole USGS 134, northeast to coreholes USGS 133 and NRF 7P, and south to coreholes USGS 121, ICPP 023, USGS 123, and USGS 128. Evidence of progressive subsidence of the axial zone of the ESRP is shown in these cross-sections, distorting the original attitudes of the lava flow groups and interbedded sediments. A deeper cross-section, C-C- (oriented west to east), spanning the entire southern Idaho National Laboratory shows correlations of the lava flow groups in the saturated part of the ESRP aquifer. Areally extensive flow groups in the deep subsurface (from about 100-800 meters below land surface) can be traced over long distances. In cross-section C-C-, the flow group labeled "Matuyama" can be correlated from corehole USGS 135 to corehole NPR Test/W-02, a distance of about 28 kilometers (17 miles). The flow group labeled "Matuyama 1.21 Ma" can be correlated from corehole Middle 1823 to corehole ANL-OBS-A-001, a distance of 26 kilometers (16 miles). Other flo

  5. CCD Astrometric Measurements of Double Stars BAL 746, BPM 342, KU 92, and STF 897

    NASA Astrophysics Data System (ADS)

    Smith, Schuyler

    2017-07-01

    Double stars WDS 06589-0106 (BAL 746), WDS 06579+1430 (BPM 342), WDS 07006+0921 (KU 92), and WDS 06224+2640 (STF 897) were measured as part of a science fair project for the 2016 Greater San Diego Science and Engineering Fair. The goal was to measure the separation and position angles of stars by using a telescope with a charge-coupled device (CCD) on the iTelescope network. Five images were taken of each of the stars. These images were plate solved with Visual PinPoint and measured using Aladin Sky Atlas. Measurements for all five doubles compare well to the more recent values in the Washington Double Star Catalog.

  6. Observation of STF 2686 from Haleakala

    NASA Astrophysics Data System (ADS)

    McGaughey, Stephen A.; Genet, Russell M.

    2012-07-01

    The visual double star STF 2686 was observed with a small telescope from the summit of Haleakala in Hawaii. Although our visually-estimated separation of 26.6 arc seconds was in close agreement with 19 past observations spread over 186 years, our position angle estimate of 277 degrees differed from the average of past observations by 1.5 degrees, a sizeable 2.4 sigma standard deviation difference. We concluded that in future observations from Haleakala with this telescope our precision could be improved by making multiple observations and by incorporating a Barlow in the optical path. Our position angle accuracy might be improved by rotating the astrometric eyepiece 180 degrees between each observation to avoid initial positioning bias.

  7. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  8. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  9. Neural Computations in a Dynamical System with Multiple Time Scales.

    PubMed

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  10. Mechanochemical synthesis of nanostructured Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} solid-solution powders and their surface photovoltage responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xiaofeng; Luo Qiong; GlobalFoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406

    2012-05-15

    A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significantmore » Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.« less

  11. Soft tissue augmentation around osseointegrated and uncovered dental implants: a systematic review.

    PubMed

    Bassetti, Renzo G; Stähli, Alexandra; Bassetti, Mario A; Sculean, Anton

    2017-01-01

    The aim was to compile the current knowledge about the efficacy of different soft tissue correction methods around osseointegrated, already uncovered and/or loaded (OU/L) implants with insufficient soft tissue conditions. Procedures to increase peri-implant keratinized mucosa (KM) width and/or soft tissue volume were considered. Screening of two databases: MEDLINE (PubMed) and EMBASE (OVID), and manual search of articles were performed. Human studies reporting on soft tissue augmentation/correction methods around OU/L implants up to June 30, 2016, were considered. Quality assessment of selected full-text articles to weight risk of bias was performed using the Cochrane collaboration's tool. Overall, four randomized controlled trials (risk of bias = high/low) and five prospective studies (risk of bias = high) were included. Depending on the surgical techniques and graft materials, the enlargement of keratinized tissue (KT) ranged between 1.15 ± 0.81 and 2.57 ± 0.50 mm. The apically positioned partial thickness flap (APPTF), in combination with a free gingival graft (FGG), a subepithelial connective tissue graft (SCTG), or a xenogeneic graft material (XCM) were most effective. A coronally advanced flap (CAF) combined with SCTG in three, combined with allogenic graft materials (AMDA) in one, and a split thickness flap (STF) combined with SCTG in another study showed mean soft tissue recession coverage rates from 28 to 96.3 %. STF combined with XCM failed to improve peri-implant soft tissue coverage. The three APPTF-techniques combined with FGG, SCTG, or XCM achieved comparable enlargements of peri-implant KT. Further, both STF and CAF, both in combination with SCTG, are equivalent regarding recession coverage rates. STF + XCM and CAF + AMDA did not reach significant coverage. In case of soft tissue deficiency around OU/L dental implants, the selection of both an appropriate surgical technique and a suitable soft tissue graft material is of utmost clinical relevance.

  12. Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure

    NASA Astrophysics Data System (ADS)

    Xie, J. "; Schaff, D. P.

    2010-12-01

    Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.

  13. Percutaneous closure of patent foramen ovale in patients with cryptogenic embolism: a network meta-analysis.

    PubMed

    Stortecky, Stefan; da Costa, Bruno R; Mattle, Heinrich P; Carroll, John; Hornung, Marius; Sievert, Horst; Trelle, Sven; Windecker, Stephan; Meier, Bernhard; Jüni, Peter

    2015-01-07

    Up to 40% of ischaemic strokes are cryptogenic. A strong association between cryptogenic stroke and the prevalence of patent foramen ovale (PFO) suggests paradoxical embolism via PFO as a potential cause. Randomized trials failed to demonstrate superiority of PFO closure over medical therapy. Randomized trials comparing percutaneous PFO closure against medical therapy or devices head-to-head published or presented by March 2013 were identified through a systematic search. We performed a network meta-analysis to determine the effectiveness and safety of PFO closure with different devices when compared with medical therapy. We included four randomized trials (2963 patients with 9309 patient-years). Investigated devices were Amplatzer (AMP), STARFlex (STF), and HELEX (HLX). Patients allocated to PFO closure with AMP were less likely to experience a stroke than patients allocated to medical therapy [rate ratio (RR) 0.39; 95% CI: 0.17-0.84]. No significant differences were found for STF (RR 1.01; 95% CI: 0.44-2.41), and HLX (RR, 0.71; 95% CI: 0.17-2.78) when compared with medical therapy. The probability to be best in preventing strokes was 77.1% for AMP, 20.9% for HLX, 1.7% for STF, and 0.4% for medical therapy. No significant differences were found for transient ischaemic attack and death. The risk of new-onset atrial fibrillation was more pronounced for STF (RR 7.67; 95% CI: 3.25-19.63), than AMP (RR 2.14; 95% CI: 1.00-4.62) and HLX (RR 1.33; 95%-CI 0.33-4.50), when compared with medical therapy. The effectiveness of PFO closure depends on the device used. PFO closure with AMP appears superior to medical therapy in preventing strokes in patients with cryptogenic embolism. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  14. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung-and-ladder" seismicity seen within the Salton Sea. Additionally, the presence of the STF may explain the gaps seen in the paleoseismic record along the SSAF (i.e. Philibosian et al., 2011), which shows an extended period of non-rupture. The STF may play a role in strain release along the SSAF, so a combined history may yield improved insight to the long periods of quiescence.

  15. Speckle Interferometry of Four Close Binaries: First Results of the Tierra Astronomical Institute Telescope

    NASA Astrophysics Data System (ADS)

    Wasson, Rick; Goldbaum, Jesse; Boyce, Pat; Harwell, Robert; Hillburn, Jerry; Rowe, Dave; Sadjadi, Sina; Westergren, Donald; Genet, Russell

    2017-04-01

    This paper documents first use for speckle interferometry of the Tierra Astronomical Institute’s 24-inch telescope, located at Terra Del Sol, some 60-miles east of San Diego, CA. Measurements are reported for four close binary systems - STF2173AB, D15, STF2205, and HSD2685 - observed over the weekend of July 1-3, 2016. The objectives of this engineering checkout run were to evaluate the integration of the telescope and ZWO ASI 290MM high speed CMOS camera, and to establish observational procedures for future speckle observations, including those made with advanced high school and college student researchers. Difficulties encountered in the checkout are described, along with suggestions for overcoming them in the next run.

  16. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.

    PubMed

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2017-01-01

    Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.

  17. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation

    NASA Astrophysics Data System (ADS)

    Han, Hao; Gao, Hao; Xing, Lei

    2017-08-01

    Excessive radiation exposure is still a major concern in 4D cone-beam computed tomography (4D-CBCT) due to its prolonged scanning duration. Radiation dose can be effectively reduced by either under-sampling the x-ray projections or reducing the x-ray flux. However, 4D-CBCT reconstruction under such low-dose protocols is prone to image artifacts and noise. In this work, we propose a novel joint regularization-based iterative reconstruction method for low-dose 4D-CBCT. To tackle the under-sampling problem, we employ spatiotemporal tensor framelet (STF) regularization to take advantage of the spatiotemporal coherence of the patient anatomy in 4D images. To simultaneously suppress the image noise caused by photon starvation, we also incorporate spatiotemporal nonlocal total variation (SNTV) regularization to make use of the nonlocal self-recursiveness of anatomical structures in the spatial and temporal domains. Under the joint STF-SNTV regularization, the proposed iterative reconstruction approach is evaluated first using two digital phantoms and then using physical experiment data in the low-dose context of both under-sampled and noisy projections. Compared with existing approaches via either STF or SNTV regularization alone, the presented hybrid approach achieves improved image quality, and is particularly effective for the reconstruction of low-dose 4D-CBCT data that are not only sparse but noisy.

  18. Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy.

    PubMed

    den Broeder, Marjo J; Moester, Miriam J B; Kamstra, Jorke H; Cenijn, Peter H; Davidoiu, Valentina; Kamminga, Leonie M; Ariese, Freek; de Boer, Johannes F; Legler, Juliette

    2017-04-24

    Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish ( Danio rerio ). We used label-free Stimulated Raman Scattering (SRS) microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf) and compared standard feed conditions (StF) to a high fat diet (HFD) or high glucose diet (HGD). We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM) or Tris(1,3-dichloroisopropyl)phosphate (TDCiPP, 0.5 µM) from 0-6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda , lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo.

  19. Nonshivering thermogenesis in king penguin chicks. II. Effect of fasting.

    PubMed

    Duchamp, C; Barré, H; Rouanet, J L; Lanni, A; Cohen-Adad, F; Berne, G; Brebion, P

    1991-12-01

    The effect of fasting on the energy metabolism of skeletal muscle and liver was investigated in cold-acclimatized short-term fasting (STF) (3 wk) and naturally long-term fasting (LTF) (4-5 mo) king penguin chicks, both groups exhibiting nonshivering thermogenesis (NST). A comparison was made with nourished cold-acclimatized controls. In these chicks, no brown adipose tissue deposits could be found on electron-microscopic observations of fat deposits. Protein content and cytochrome oxidase (CO) activity of tissue homogenates were measured in liver and pectoralis and gastrocnemius muscles, as were protein content, CO activity, and respiration rates of mitochondria isolated from these organs. Fasting-induced protein loss affected the pectoralis more than the gastrocnemius muscle, thus preserving locomotor function. In STF chicks, specific mitochondrial protein content and specific tissue CO activity were preserved but total organ CO capacity was reduced by half in pectoralis and liver following the fall in organ mass. In LTF chicks, both specific and total CO activity were drastically reduced in muscles, whereas specific CO activity was preserved in liver. In these LTF chicks, muscle mitochondria showed an energized configuration associated with an increased area of inner membrane in gastrocnemius. A reduction of respiratory control ratio (RCR) was observed in subsarcolemmal muscle mitochondria of STF chicks, whereas intermyofibrillar and liver mitochondria kept high RCR values.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy

    PubMed Central

    den Broeder, Marjo J.; Moester, Miriam J. B.; Kamstra, Jorke H.; Cenijn, Peter H.; Davidoiu, Valentina; Kamminga, Leonie M.; Ariese, Freek; de Boer, Johannes F.; Legler, Juliette

    2017-01-01

    Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio). We used label-free Stimulated Raman Scattering (SRS) microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf) and compared standard feed conditions (StF) to a high fat diet (HFD) or high glucose diet (HGD). We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM) or Tris(1,3-dichloroisopropyl)phosphate (TDCiPP, 0.5 µM) from 0–6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo. PMID:28441764

  1. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  2. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  3. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    NASA Astrophysics Data System (ADS)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  4. Development and evaluation of a Naïve Bayesian model for coding causation of workers' compensation claims.

    PubMed

    Bertke, S J; Meyers, A R; Wurzelbacher, S J; Bell, J; Lampl, M L; Robins, D

    2012-12-01

    Tracking and trending rates of injuries and illnesses classified as musculoskeletal disorders caused by ergonomic risk factors such as overexertion and repetitive motion (MSDs) and slips, trips, or falls (STFs) in different industry sectors is of high interest to many researchers. Unfortunately, identifying the cause of injuries and illnesses in large datasets such as workers' compensation systems often requires reading and coding the free form accident text narrative for potentially millions of records. To alleviate the need for manual coding, this paper describes and evaluates a computer auto-coding algorithm that demonstrated the ability to code millions of claims quickly and accurately by learning from a set of previously manually coded claims. The auto-coding program was able to code claims as a musculoskeletal disorders, STF or other with approximately 90% accuracy. The program developed and discussed in this paper provides an accurate and efficient method for identifying the causation of workers' compensation claims as a STF or MSD in a large database based on the unstructured text narrative and resulting injury diagnoses. The program coded thousands of claims in minutes. The method described in this paper can be used by researchers and practitioners to relieve the manual burden of reading and identifying the causation of claims as a STF or MSD. Furthermore, the method can be easily generalized to code/classify other unstructured text narratives. Published by Elsevier Ltd.

  5. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  6. Oxygen evolution from single- and multiple-turnover light pulses: temporal kinetics of electron transport through PSII in sunflower leaves.

    PubMed

    Oja, Vello; Eichelmann, Hillar; Laisk, Agu

    2011-12-01

    Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011

  7. Determining the Separation and Position Angles of Orbiting Binary Stars: Comparison of Three Methods

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Boule, Cory; Andrews, Katelyn; Penfield, Andrew; Ross, Ian; Lucas, Gaylon; Braught, Trisha; Harfenist, Steven; Goodale, Keith

    2015-07-01

    To initiate a long term binary star research program, undergraduate students compared the accuracy and ease of measuring the separations and position angles of three long period binary pairs using three different measurement techniques. It was found that digital image capture using BackyardEOS software and subsequent analysis in Adobe Photoshop was the most accurate and easiest to use of our three methods. The systems WDS J17419+7209 (STF 2241AB), WDS 19418+5032 (STFA 46AB), and WDS 16362+5255 (STF 2087AB) were found to have separations and position angles of: 30", 16°; 39.7", 133°; and 3.1", 104°, respectively. This method produced separation values within 1.3" and position angle values within 1.3° of the most recently observed values found in the Washington Double Star Catalog.

  8. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  9. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    DOE PAGES

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less

  10. Storage Medium Affects the Surface Porosity of Dental Cements.

    PubMed

    Saghiri, M Ali; Shabani, Asal; Asatourian, Armen; Sheibani, Nader

    2017-08-01

    Calcium silicate-based cements physical properties is influenced by environmental changes. Here, we intended to evaluate the effect of storage medium on surface porosity of root Mineral Trioxide Aggregate (MTA) and Biodentine cement. A total of 40 polyethylene tubes were selected and divided into two groups: Group A (MTA) and Group B (Biodentine). Each group was subdivided into two subgroups (n=10). In subgroups A1 and B1, tubes were transferred to Distilled Water (DW), while samples of subgroup A2 and B2 were transferred to Synthetic Tissue Fluid (STF) as storage medium and samples were stored for three days. All specimens were then placed in a desiccator for 24 hours and then subject to surface porosity evaluation by Scanning Electron Microscopy (SEM) at ×500, ×1000, ×2000 and ×5000 magnifications. The number and the surface porosities were determined by Image J analysis. Data were analyzed by ANOVA at level of significance of p<0.05. The lowest surface porosity was observed in MTA samples stored in STF and the highest was in Biodentine samples stored in DW. Significant differences were noted between groups and subgroups of each group (p< 0.05). MTA samples stored in DW and STF showed significantly lower surface porosities compared to Biodentine samples (p < 0.05). Storage medium can drastically affect the surface porosity of tested calcium silicate-based cements. However, MTA showed lower surface porosity compared to Biodentine cement, which can result in lower microleakage in applied area.

  11. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.

    PubMed

    Fung, C C Alan; Wong, K Y Michael; Wang, He; Wu, Si

    2012-05-01

    Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.

  12. Development and evaluation of a Naïve Bayesian model for coding causation of workers’ compensation claims☆

    PubMed Central

    Bertke, S. J.; Meyers, A. R.; Wurzelbacher, S. J.; Bell, J.; Lampl, M. L.; Robins, D.

    2015-01-01

    Introduction Tracking and trending rates of injuries and illnesses classified as musculoskeletal disorders caused by ergonomic risk factors such as overexertion and repetitive motion (MSDs) and slips, trips, or falls (STFs) in different industry sectors is of high interest to many researchers. Unfortunately, identifying the cause of injuries and illnesses in large datasets such as workers’ compensation systems often requires reading and coding the free form accident text narrative for potentially millions of records. Method To alleviate the need for manual coding, this paper describes and evaluates a computer auto-coding algorithm that demonstrated the ability to code millions of claims quickly and accurately by learning from a set of previously manually coded claims. Conclusions The auto-coding program was able to code claims as a musculoskeletal disorders, STF or other with approximately 90% accuracy. Impact on industry The program developed and discussed in this paper provides an accurate and efficient method for identifying the causation of workers’ compensation claims as a STF or MSD in a large database based on the unstructured text narrative and resulting injury diagnoses. The program coded thousands of claims in minutes. The method described in this paper can be used by researchers and practitioners to relieve the manual burden of reading and identifying the causation of claims as a STF or MSD. Furthermore, the method can be easily generalized to code/classify other unstructured text narratives. PMID:23206504

  13. A Space-Time-Frequency Dictionary for Sparse Cortical Source Localization.

    PubMed

    Korats, Gundars; Le Cam, Steven; Ranta, Radu; Louis-Dorr, Valerie

    2016-09-01

    Cortical source imaging aims at identifying activated cortical areas on the surface of the cortex from the raw electroencephalogram (EEG) data. This problem is ill posed, the number of channels being very low compared to the number of possible source positions. In some realistic physiological situations, the active areas are sparse in space and of short time durations, and the amount of spatio-temporal data to carry the inversion is then limited. In this study, we propose an original data driven space-time-frequency (STF) dictionary which takes into account simultaneously both spatial and time-frequency sparseness while preserving smoothness in the time frequency (i.e., nonstationary smooth time courses in sparse locations). Based on these assumptions, we take benefit of the matching pursuit (MP) framework for selecting the most relevant atoms in this highly redundant dictionary. We apply two recent MP algorithms, single best replacement (SBR) and source deflated matching pursuit, and we compare the results using a spatial dictionary and the proposed STF dictionary to demonstrate the improvements of our multidimensional approach. We also provide comparison using well-established inversion methods, FOCUSS and RAP-MUSIC, analyzing performances under different degrees of nonstationarity and signal to noise ratio. Our STF dictionary combined with the SBR approach provides robust performances on realistic simulations. From a computational point of view, the algorithm is embedded in the wavelet domain, ensuring high efficiency in term of computation time. The proposed approach ensures fast and accurate sparse cortical localizations on highly nonstationary and noisy data.

  14. Slip, Trip and Fall Prevention for Healthcare Workers

    MedlinePlus

    ... compensation claims. Researchers worked with hospital staff to design, implement, and evaluate a comprehensive STF prevention program ... hospital building Figure 4.2. Area of sloped pavement that should be highlighted with Safety Yellow paint ...

  15. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  16. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    PubMed

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  17. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  18. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  19. Storage Medium Affects the Surface Porosity of Dental Cements

    PubMed Central

    Shabani, Asal; Asatourian, Armen; Sheibani, Nader

    2017-01-01

    Introduction Calcium silicate-based cements physical properties is influenced by environmental changes. Aim Here, we intended to evaluate the effect of storage medium on surface porosity of root Mineral Trioxide Aggregate (MTA) and Biodentine cement. Materials and Methods A total of 40 polyethylene tubes were selected and divided into two groups: Group A (MTA) and Group B (Biodentine). Each group was subdivided into two subgroups (n=10). In subgroups A1 and B1, tubes were transferred to Distilled Water (DW), while samples of subgroup A2 and B2 were transferred to Synthetic Tissue Fluid (STF) as storage medium and samples were stored for three days. All specimens were then placed in a desiccator for 24 hours and then subject to surface porosity evaluation by Scanning Electron Microscopy (SEM) at ×500, ×1000, ×2000 and ×5000 magnifications. The number and the surface porosities were determined by Image J analysis. Data were analyzed by ANOVA at level of significance of p<0.05. Results The lowest surface porosity was observed in MTA samples stored in STF and the highest was in Biodentine samples stored in DW. Significant differences were noted between groups and subgroups of each group (p< 0.05). MTA samples stored in DW and STF showed significantly lower surface porosities compared to Biodentine samples (p < 0.05). Conclusion Storage medium can drastically affect the surface porosity of tested calcium silicate-based cements. However, MTA showed lower surface porosity compared to Biodentine cement, which can result in lower microleakage in applied area. PMID:28969288

  20. Wireless Fading Channel Models: From Classical to Stochastic Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; Djouadi, Seddik M; Charalambous, Prof. Charalambos

    2010-01-01

    The wireless communications channel constitutes the basic physical link between the transmitter and the receiver antennas. Its modeling has been and continues to be a tantalizing issue, while being one of the most fundamental components based on which transmitters and receivers are designed and optimized. The ultimate performance limits of any communication system are determined by the channel it operates in. Realistic channel models are thus of utmost importance for system design and testing. In addition to exponential power path-loss, wireless channels suffer from stochastic short term fading (STF) due to multipath, and stochastic long term fading (LTF) due tomore » shadowing depending on the geographical area. STF corresponds to severe signal envelope fluctuations, and occurs in densely built-up areas filled with lots of objects like buildings, vehicles, etc. On the other hand, LTF corresponds to less severe mean signal envelope fluctuations, and occurs in sparsely populated or suburban areas. In general, LTF and STF are considered as superimposed and may be treated separately. Ossanna was the pioneer to characterize the statistical properties of the signal received by a mobile user, in terms of interference of incident and reflected waves. His model was better suited for describing fading occurring mainly in suburban areas (LTF environments). It is described by the average power loss due to distance and power loss due to reflection of signals from surfaces, which when measured in dB's give rise to normal distributions, and this implies that the channel attenuation coefficient is log-normally distributed. Furthermore, in mobile communications, the LTF channel models are also characterized by their special correlation characteristics which have been reported. Clarke introduced the first comprehensive scattering model describing STF occurring mainly in urban areas. An easy way to simulate Clarke's model using a computer simulation is described. This model was later expanded to three-dimensions (3D) by Aulin. An indoor STF was introduced. Most of these STF models provide information on the frequency response of the channel, described by the Doppler power spectral density (DPSD). Aulin presented a methodology to find the Doppler power spectrum by computing the Fourier transform of the autocorrelation function of the channel impulse response with respect to time. A different approach, leading to the same Doppler power spectrum relation was presented by Gans. These STF models suggest various distributions for the received signal amplitude such as Rayleigh, Rician, or Nakagami. Models based on autoregressive and moving averages (AR) are proposed. However, these models assume that the channel state is completely observable, which in reality is not the case due to additive noise, and requires long observation intervals. First order Markov models for Raleigh fading have been proposed, and the usefulness of a finite-state Markov channel model is argued. Mobile-to-mobile (or ad hoc) wireless networks comprise nodes that freely and dynamically self-organize into arbitrary and/or temporary network topology without any fixed infrastructure support. They require direct communication between a mobile transmitter and a mobile receiver over a wireless medium. Such mobile-to-mobile communication systems differ from the conventional cellular systems, where one terminal, the base station, is stationary, and only the mobile station is moving. As a consequence, the statistical properties of mobile-to-mobile links are different from cellular ones. Copious ad hoc networking research exists on layers in the open system interconnection (OSI) model above the physical layer. However, neglecting the physical layer while modeling wireless environment is error prone and should be considered more carefully. The experimental results show that the factors at the physical layer not only affect the absolute performance of a protocol, but because their impact on different protocols is nonuniform, it can even change the relative ranking among protocols for the same scenario. The importance of the physical layer is demonstrated by evaluating the Medium Access Control (MAC) performance. Most of the research conducted on wireless channel modeling deals mainly with deterministic wireless channel models. In these models, the speeds of the nodes are assumed to be constant and the statistical characteristics of the received signal are assumed to be fixed with time. But in reality, the propagation environment varies continuously due to mobility of the nodes at variable speeds and movement of objects or scatter across transmitters and receivers resulting in appearance or disappearance of existing paths from one instant to the next. As a result, the current models that assume fixed statistics are unable to capture and track complex time variations in the propagation environment.« less

  1. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy.

    PubMed

    McColl, Damian J; Chen, Xiaowu

    2010-01-01

    HIV-1 integrase (IN) is one of three essential enzymes (along with reverse transcriptase and protease) encoded by the viral pol gene. IN mediates two critical reactions during viral replication; firstly 3'-end processing (3'EP) of the double-stranded viral DNA ends and then strand transfer (STF) which joins the viral DNA to the host chromosomal DNA forming a functional integrated proviral DNA. IN is a 288 amino acid protein containing three functional domains, the N-terminal domain (NTD), catalytic core domain (CCD) and the C-terminal domain (CTD). The CCD contains three conserved catalytic residues, Asp64, Asp116 and Glu152, which coordinate divalent metal ions essential for the STF reaction. Intensive research over the last two decades has led to the discovery and development of small molecule inhibitors of the IN STF reaction (INSTIs). INSTIs are catalytic inhibitors of IN, and act to chelate the divalent metal ions in the CCD. One INSTI, raltegravir (RAL, Merck Inc.) was approved in late 2007 for the treatment of HIV-1 infection in patients with prior antiretroviral (ARV) treatment experience and was recently approved also for first line therapy. A second INSTI, elvitegravir (EVG, Gilead Sciences, Inc.) is currently undergoing phase 3 studies in ARV treatment-experienced patients and phase 2 studies in ARV naïve patients as part of a novel fixed dose combination. Several additional INSTIs are in early stage clinical development. This review will discuss the discovery and development of this novel class of antiretrovirals. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. Copyright 2009. Published by Elsevier B.V.

  2. Federal Aviation Administration Small Business Innovation Research 5- Year Project Summaries

    DTIC Science & Technology

    1990-02-01

    Completed Project: The project’s two primary objectives were to further develop the technology base for the Slaved Tandem Freewing (STF) Airplance and...margins than conventional airplances , and can meet all applicable airworthiness requirements. Adaitionally, basic design parameters were developed

  3. Coherency Between Volume Transport in the Antarctic Circumpolar Current and Southern Hemisphere Winds

    NASA Astrophysics Data System (ADS)

    Makowski, Jessica; Chambers, Don; Bonin, Jennifer

    2013-04-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). The OBP observations from the Gravity Recovery and Climate Experiment (GRACE) will be used to calculate transport along the 150°E longitude choke point, between Antarctica and Australia. We will examine whether zonally averaged wind stress, wind stress curl, or local zonal winds are more coherent with zonal mass transport variability. Preliminary studies suggest that seasonal variation in transport across 150°E is more correlated with winds along and north of the northern front of the ACC: the Sub Tropical front (STF). It also appears that interannual variations in transport along 150°E are related to wind variations south of the STF and centered south of the Sub Antarctic Front (SAF). We have observed a strong anti-correlation across the SAF, in the Indian Ocean, which suggests wind stress curl may also be responsible for transport variations. Preliminary results will be presented.

  4. Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp.

    PubMed

    Waters, Jonathan M; King, Tania M; Fraser, Ceridwen I; Craw, Dave

    2018-03-01

    The subtropical front (STF) generally represents a substantial oceanographic barrier to dispersal between cold-sub-Antarctic and warm-temperate water masses. Recent studies have suggested that storm events can drastically influence marine dispersal and patterns. Here we analyse biological and geological dispersal driven by two major, contrasting storm events in southern New Zealand, 2017. We integrate biological and physical data to show that a severe southerly system in July 2017 disrupted this barrier by promoting movement of substantial numbers of southern sub-Antarctic Durvillaea kelp rafts across the STF, to make landfall in mainland NZ. By contrast, a less intense easterly storm (Cyclone Cook, April 2017) resulted in more moderate dispersal distances, with minimal dispersal between the sub-Antarctic and mainland New Zealand. These quantitative analyses of approximately 200 freshly beach-cast kelp specimens indicate that storm intensity and wind direction can strongly influence marine dispersal and landfall outcomes. © 2018 The Author(s).

  5. Work with Us | Photovoltaic Research | NREL

    Science.gov Websites

    Research Facility (SERF) Science and Technology Facility (S&TF) Outdoor Test Facility (OTF) Energy the Hands On Photovoltaic Experience (HOPE). Photo of a researcher in a lab Photovoltaic research and related activities occur in various locations across the NREL campus, including the Solar Energy Research

  6. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    We use recently collected slip vector and total offset data from the Agua Blanca fault (ABF) to constrain a pixel translation digital elevation model (DEM) to reconstruct the slip history of this fault. This model was constructed using a Perl script that reads a DEM file (Easting, Northing, Elevation) and a configuration file with coordinates that define the boundary of each fault segment. A pixel translation vector is defined as a magnitude of lateral offset in an azimuthal direction. The program translates pixels north of the fault and prints their pre-faulting position to a new DEM file that can be gridded and displayed. This analysis, where multiple DEMs are created with different translation vectors, allows us to identify areas of transtension or transpression while seeing the topographic expression in these areas. The benefit of this technique, in contrast to a simple block model, is that the DEM gives us a valuable graphic which can be used to pose new research questions. We have found that many topographic features correlate across the fault, i.e. valleys and ridges, which likely have implications for the age of the ABF, long term landscape evolution rates, and potentially provide conformation for total slip assessments The ABF of northern Baja California, Mexico is an active, dextral strike slip fault that transfers Pacific-North American plate boundary strain out of the Gulf of California and around the "Big Bend" of the San Andreas Fault. Total displacement on the ABF in the central and eastern parts of the fault is 10 +/- 2 km based on offset Early-Cretaceous features such as terrane boundaries and intrusive bodies (plutons and dike swarms). Where the fault bifurcates to the west, the northern strand (northern Agua Blanca fault or NABF) is constrained to 7 +/- 1 km. We have not yet identified piercing points on the southern strand, the Santo Tomas fault (STF), but displacement is inferred to be ~4 km assuming that the sum of slip on the NABF and STF is approximately equal to that to the east. The ABF has varying kinematics along strike due to changes in trend of the fault with respect to the nearly east-trending displacement vector of the Ensenada Block to the north of the fault relative to a stable Baja Microplate to the south. These kinematics include nearly pure strike slip in the central portion of the ABF where the fault trends nearly E-W, and minor components of normal dip-slip motion on the NABF and eastern sections of the fault where the trends become more northerly. A pixel translation vector parallel to the trend of the ABF in the central segment (290 deg, 10.5 km) produces kinematics consistent with those described above. The block between the NABF and STF has a pixel translation vector parallel the STF (291 deg, 3.5 km). We find these vectors are consistent with the kinematic variability of the fault system and realign several major drainages and ridges across the fault. This suggests these features formed prior to faulting, and they yield preferred values of offset: 10.5 km on the ABF, 7 km on the NABF and 3.5 km on the STF. This model is consistent with the kinematic model proposed by Hamilton (1971) in which the ABF is a transform fault, linking extensional regions of Valle San Felipe and the Continental Borderlands.

  7. Connecting Relational Theory and the Systems Theory Framework: Individuals and Their Systems

    ERIC Educational Resources Information Center

    Patton, Wendy

    2007-01-01

    The Systems Theory Framework (STF) facilitates the inclusion of relevant aspects of multiple existing theories within an integrated framework, wherein relevance and meaning is decided upon by each individual. Patton and McMahon emphasise that the application of the Systems Theory Framework in integrating theory and practice is located within the…

  8. Fine water spray for fire extinguishing. Phase 2: Turbine hood

    NASA Astrophysics Data System (ADS)

    Aune, P.; Wighus, R.; Drangsholt, G.; Stensaas, J. P.

    1994-12-01

    SINTEF has carried out tests of a Fine Water Spray fire suppression system intended to be used as a replacement for Halon systems in turbine hoods on offshore platforms operated by British Petroleum Norway. The tests were carried out in a 70 cu m full scale model representing a turbine hood of the Ula platform in the North Sea. A mock-up of a gas turbine was installed in the model. The scope of work in Phase 2 was to verify the efficiency of fire suppression in realistic fire scenarios using a Fine Water Spray system, and to find an optimum procedure for water application in a fire situation. Two reports have been made from the experiments in Phase 2, one Main Report, STF25 A94036, and the present Technical Report, STF25 A94037. The discussion and conclusions are given in the Main Report while this Technical Report gives a more thorough presentation of the experimental setup and methods used for calibration and calculation of measured values. In addition, a complete set of curves for each experiment is included.

  9. Role of the d -d interaction in the antiferromagnetic phase of λ -(BEDT-STF ) 2FeCl4

    NASA Astrophysics Data System (ADS)

    Minamidate, Takaaki; Shindo, Hironori; Ihara, Yoshihiko; Kawamoto, Atsushi; Matsunaga, Noriaki; Nomura, Kazushige

    2018-03-01

    Magnetic susceptibility and proton nuclear magnetic resonance (1H-NMR ) measurements were performed for the quasi-two-dimensional π -d interacting system λ -(BEDT-STF ) 2FeCl4 at ambient pressure. Magnetic susceptibility arising from the 3 d spins of the FeCl4 anion show an anisotropy at low temperature and its temperature dependence for the external field parallel to the c axis is described as a broad peak structure at 8 K. A sharp peak in the temperature dependence of T1-1 associated with the antiferromagnetic (AF) transition is observed at TAF=16 K, together with the drastic splitting of the NMR spectrum below TAF. The relation between the static susceptibility and the splitting of the NMR shift suggests the existence of the relatively strong d -d AF interaction. These results can be explained by the model considering the AF-coupled d -spin system in the AF long-range-ordered π -spin system. We find that the AF phases in λ -type salts can be universally explained by this model.

  10. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-03-31

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.

  11. Study on ductility dip cracking susceptibility in Filler Metal 82 during welding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Qing; Lu, Hao; Cui, Wei

    2011-06-01

    In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.

  12. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev

    2018-05-01

    The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.

  13. Comparison of the BCI Performance between the Semitransparent Face Pattern and the Traditional Face Pattern.

    PubMed

    Cheng, Jiao; Jin, Jing; Wang, Xingyu

    2017-01-01

    Brain-computer interface (BCI) systems allow users to communicate with the external world by recognizing the brain activity without the assistance of the peripheral motor nervous system. P300-based BCI is one of the most common used BCI systems that can obtain high classification accuracy and information transfer rate (ITR). Face stimuli can result in large event-related potentials and improve the performance of P300-based BCI. However, previous studies on face stimuli focused mainly on the effect of various face types (i.e., face expression, face familiarity, and multifaces) on the BCI performance. Studies on the influence of face transparency differences are scarce. Therefore, we investigated the effect of semitransparent face pattern (STF-P) (the subject could see the target character when the stimuli were flashed) and traditional face pattern (F-P) (the subject could not see the target character when the stimuli were flashed) on the BCI performance from the transparency perspective. Results showed that STF-P obtained significantly higher classification accuracy and ITR than those of F-P ( p < 0.05).

  14. Analyzing the Proper Motion of Two Double Star Systems from Astrometric Measurements

    NASA Astrophysics Data System (ADS)

    Falatoun, Alex; Barrera, Janet; de Neef, Anna; Gonzalez, Aura; Calanog, Jae; Boyce, Pat; Boyce, Grady

    2018-04-01

    The iTelescope network was used to obtain astrometric measurements of double star systems WDS 12202-1408 (STF 1631) and WDS 12339+5522 (STI 2286). Through astrometric measurement softwares SAOImage DS9 and Mira Pro x64, a mean position angle for STF 1631 of 304.8° ± 0.9° and a mean separation 14.7" ± 0.2" was measured. For STI 2286, a newly measured mean position angle of 85.9° ± 0.9° and mean separation 11.5" ± 0.3" were obtained. The relative proper motion of 1631 shows that the system could be demonstrating a linear path or an approximately circular orbit with a period of 1400 years. Parallax measurements of the secondary star will aid in classifying if this system is a physical or a visual pair. The proper motion of STI 2286 indicates that it could be a physical pair, featuring an orbit nearing a turning point. Follow-up observations in three to four year intervals will further validate or refute this claim and constrain the shape of a possible orbit.

  15. Tissue distribution and metabolism of triadimefon and triadimenol enantiomers in Chinese lizards (Eremias argus).

    PubMed

    Li, Jitong; Wang, Yinghuan; Li, Wei; Xu, Peng; Guo, Baoyuan; Li, Jianzhong; Wang, Huili

    2017-08-01

    Triadimefon (TF, S-(+)-TF, R-(-)-TF) and its metabolite triadimenol (TN, TN-A1, A2 and TN-B1, B2) are two systemic fungicides and both of them are chiral pharmaceuticals which are widely used in agricultural industry. Many researches focused on the toxicity effects of triadimefon on mammals, while the ecotoxicological data of tiradimefon on reptiles is limited. In order to understand the toxicity mechanism of triadimefon in reptiles, the current study administrated S-(+)-TF or R-(-)-TF traidimefon (50mg/kg bw ) to Chinese lizards (Eremias argus) respectively, the absorption, distribution of triadimefon and the formation of triadimenol were analysed at different sampling times. The metabolic pathways were demonstrated through relative gene expression using quantitative real-time PCR reaction. During the experiment time, triadimefon was quickly peaked to the maximum concentration within 12h in liver, brain, kidney, and plasma, eliminated slowly. The biotransformation in kidney was the lowest and fat possessed the worst degradation ability among others. The metabolite, triadimenol was detected in blood in 2h and reached to a plateau at about 12h in most organs (fat excepted), while the process of metabolism is stereoselective. The mainly metabolite in R-(-)-TF treated group was TN-B1, and TN-A2 in S-(+)-TF group which showed the selective metabolism to other species caused by environmental conditions, differences in the animal models and concentration of TF. The related gene expression of cyp1a1, cyp3a1 and hsd11β mRNA level in lizards showed different metabolic pathways in the liver and brain. Both P450s enzymes and 11β-hydroxysteroid dehydrogenase participated in metabolic reaction in liver, while no 11β-hydroxysteroid dehydrogenase pathway observed in brain. This diversity in liver and brain may cause different degradation rate and ecotoxicological effect in different organs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  17. Patient perspectives on de-simplifying their single-tablet co-formulated antiretroviral therapy for societal cost savings.

    PubMed

    Krentz, H B; Campbell, S; Gill, V C; Gill, M J

    2018-04-01

    The incremental costs of expanding antiretroviral (ARV) drug treatment to all HIV-infected patients are substantial, so cost-saving initiatives are important. Our objectives were to determine the acceptability and financial impact of de-simplifying (i.e. switching) more expensive single-tablet formulations (STFs) to less expensive generic-based multi-tablet components. We determined physician and patient perceptions and acceptance of STF de-simplification within the context of a publicly funded ARV budget. Programme costs were calculated for patients on ARVs followed at the Southern Alberta Clinic, Canada during 2016 (Cdn$). We focused on patients receiving Triumeq® and determined the savings if patients de-simplified to eligible generic co-formulations. We surveyed all prescribing physicians and a convenience sample of patients taking Triumeq® to see if, for budgetary purposes, they felt that de-simplification would be acceptable. Of 1780 patients receiving ARVs, 62% (n = 1038) were on STF; 58% (n = 607) of patients on STF were on Triumeq®. The total annual cost of ARVs was $26 222 760. The cost for Triumeq® was $8 292 600. If every patient on Triumeq® switched to generic abacavir/lamivudine and Tivicay® (dolutegravir), total costs would decrease by $4 325 040. All physicians (n = 13) felt that de-simplifying could be safely achieved. Forty-eight per cent of 221 patients surveyed were agreeable to de-simplifying for altruistic reasons, 27% said no, and 25% said maybe. De-simplifying Triumeq® generates large cost savings. Additional savings could be achieved by de-simplifying other STFs. Both physicians and patients agreed that selective de-simplification was acceptable; however, it may not be acceptable to every patient. Monitoring the medical and cost impacts of de-simplification strategies seems warranted. © 2018 British HIV Association.

  18. The outcome of scapulothoracic fusion for painful winging of the scapula in dystrophic and non-dystrophic conditions.

    PubMed

    Sewell, M D; Higgs, D S; Al-Hadithy, N; Falworth, M; Bayley, I; Lambert, S M

    2012-09-01

    Scapulothoracic fusion (STF) for painful winging of the scapula in neuromuscular disorders can provide effective pain relief and functional improvement, but there is little information comparing outcomes between patients with dystrophic and non-dystrophic conditions. We performed a retrospective review of 42 STFs in 34 patients with dystrophic and non-dystrophic conditions using a multifilament trans-scapular, subcostal cable technique supported by a dorsal one-third semi-tubular plate. There were 16 males and 18 females with a mean age of 30 years (15 to 75) and a mean follow-up of 5.0 years (2.0 to 10.6). The mean Oxford shoulder score improved from 20 (4 to 39) to 31 (4 to 48). Patients with non-dystrophic conditions had lower overall functional scores but achieved greater improvements following STF. The mean active forward elevation increased from 59° (20° to 90°) to 97° (30° to 150°), and abduction from 51° (10° to 90°) to 83° (30° to 130°) with a greater range of movement achieved in the dystrophic group. Revision fusion for nonunion was undertaken in five patients at a mean time of 17 months (7 to 31) and two required revision for fracture. There were three pneumothoraces, two rib fractures, three pleural effusions and six nonunions. The main risk factors for nonunion were smoking, age and previous shoulder girdle surgery. STF is a salvage procedure that can provide good patient satisfaction in 82% of patients with both dystrophic and non-dystrophic pathologies, but there was a relatively high failure rate (26%) when poor outcomes were analysed. Overall function was better in patients with dystrophic conditions which correlated with better range of movement; however, patients with non-dystrophic conditions achieved greater functional improvement.

  19. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  20. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  1. Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Patra, Sivaji; Vishnu Vardhan, K.; Sarkar, A.; Mishra, R. K.; Anilkumar, N.

    2018-03-01

    This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 - and SiO4 4-) concentrations increased southward from STF to PF; while ammonium (NH4 +), nitrite (NO2 -) and phosphate (PO4 3-) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4 + and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump".

  2. A stratigraphic network across the Subtropical Front in the central South Atlantic: Multi-parameter correlation of magnetic susceptibility, density, X-ray fluorescence and @d^1^8O records [rapid communication

    NASA Astrophysics Data System (ADS)

    Hofmann, Daniela I.; Fabian, Karl; Schmieder, Frank; Donner, Barbara; Bleil, Ulrich

    2005-12-01

    Computer aided multi-parameter signal correlation is used to develop a common high-precision age model for eight gravity cores from the subtropical and subantarctic South Atlantic. Since correlations between all pairs of multi-parameter sequences are used, and correlation errors between core pairs ( A, B) and ( B, C) are controlled by comparison with ( A, C), the resulting age model is called a stratigraphic network. Precise inter-core correlation is achieved using high-resolution records of magnetic susceptibility κ, wet bulk density ρ and X-ray fluorescence scans of elemental composition. Additional δ18O records are available for two cores. The data indicate nearly undisturbed sediment series and the absence of significant hiatuses or turbidites. After establishing a high-precision common depth scale by synchronously correlating four densely measured parameters (Fe, Ca, κ, ρ), the final age model is obtained by simultaneously fitting the aligned δ18O and κ records of the stratigraphic network to orbitally tuned oxygen isotope [J. Imbrie, J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, N. J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: A. Berger, J. Imbrie, J. Hays, G. Kukla, B. Saltzman (Eds.), Milankovitch and Climate: Understanding the Response to Orbital Forcing, Reidel Publishing, Dordrecht, 1984, pp. 269-305; D. Martinson, N. Pisias, J. Hays, J. Imbrie, T. C. Moore Jr., N. Shackleton, Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300.000-Year chronostratigraphy, Quat. Res. 27 (1987) 1-29.] or susceptibility stacks [T. von Dobeneck, F.Schmieder, Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch Bands, in: G. Fischer, G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic, Springer-Verlag, Berlin (1999), pp. 601-633.]. Besides the detection and elimination of errors in single records, the stratigraphic network approach allows to check the intrinsic consistency of the final result by comparing it to the outcome of more restricted alignment procedures. The final South Atlantic stratigraphic network covers the last 400 kyr south and the last 1200 kyr north of the Subtropical Front (STF) and provides a highly precise age model across the STF representing extremely different sedimentary regimes. This allows to detect temporal shifts of the STF by mapping δMn / Fe. It turns out that the apparent STF movements by about 200 km are not directly related to marine oxygen isotope stages.

  3. Systemic Influences on Career Development: Assisting Clients to Tell Their Career Stories

    ERIC Educational Resources Information Center

    McMahon, Mary L.; Watson, Mark B.

    2008-01-01

    A challenge for career theory informed by constructivism is how to apply it in practice. This article describes a career counseling intervention based on the constructivist Systems Theory Framework (STF) of career development and the qualitative career assessment instrument derived from it, the My System of Career Influences (MSCI; M. McMahon, W.…

  4. Speckle Interferometry at the US Naval Observatory. XIII

    DTIC Science & Technology

    2007-10-01

    18443+3940 ............................. STF 2382 AB 6.394 348.9 2.35 1 0.3 0.06 Mason et al. (2004a) 0.2 0.03 Novakovic & Todorovic (2005) 18443+3940...1952, Bull. Astron. Paris, 16, 263 Novakovic , B., & Todorovic, N. 2005, Circ. d’Inf. 157 Olevic, D. 2002, Circ. d’Inf. 147 Olevic, D., & Cvetkovic, Z

  5. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions

    DTIC Science & Technology

    2009-11-03

    uniform appearance, while PMMA- and SiO2-coated fabrics without PEG appeared streaky with a whitened or slightly chalky appearance. If placed in...coatings. One complicating factor in determining the role of STF rheology is that the extremely high surface area of the fabric could cause microscale

  6. Yankee Tank Creek Observatory Report No. 1: Forty-One Measures from 2012

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2014-01-01

    This report contains 41 measures of mostly STF pairs taken in 2012 and comprises those pairs not reported in other papers. All measures were taken with a 0.2M Dall-Kirkham and a DMK21 video camera working at F22.5. Both stacking and pixel correlation techniques were used to obtain measures using REDUC.

  7. Envision and Observe: Using the Studio Thinking Framework for Learning and Teaching in Digital Arts

    ERIC Educational Resources Information Center

    Sheridan, Kimberly M.

    2011-01-01

    The Studio Thinking Framework (STF) focuses on habits of mind taught through studio arts rather than disciplinary content or media-specific techniques. It is well suited to integrate studies of arts learning and teaching in a range of contexts, and it provides a framework for understanding how visual arts participation is dramatically changing…

  8. Factors Influencing the Selection of Speech Pathology as a Career: A Qualitative Analysis Utilising the Systems Theory Framework

    ERIC Educational Resources Information Center

    Byrne, Nicole

    2007-01-01

    Factors identified by 16 participants during in-depth interviews as influencing selection of speech pathology as a career were described using the Systems Theory Framework (STF, Patton & McMahon, 2006). Participants were highly likely to identify factors from the individual and social systems, but not the environmental-societal system, of the STF…

  9. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film.

    PubMed

    Chang, C T; Zeng, F; Li, X J; Dong, W S; Lu, S H; Gao, S; Pan, F

    2016-01-07

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  10. Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.

    2007-12-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.

  11. A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.

    2006-08-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.

  12. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film

    PubMed Central

    Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.

    2016-01-01

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP. PMID:26739613

  13. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film

    NASA Astrophysics Data System (ADS)

    Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.

    2016-01-01

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  14. Intermediate temperature grain boundary embrittlement in nickel-base weld metals

    NASA Astrophysics Data System (ADS)

    Nissley, Nathan Eugene

    The ductility-dip cracking (DDC) susceptibility of NiCrFe filler metals was evaluated using the strain-to-fracture (STF) GleebleRTM-based testing technique1. These high chromium Ni-base filler metals are frequently used in nuclear power plant applications for welding Ni-base Alloy 690 and included INCONELRTM Filler Metal 52 and 52M (FM-52 and FM-52M)2, and a number of FM-52M-type experimental alloys including two with additions of molybdenum and niobium. A wide range in DDC susceptibilities was observed in the tested alloys including significant variations in susceptibility with only small compositional changes. The interpretation of the STF results now includes both the threshold strain for cracking and the transition to "massive" cracking. While the threshold strain is still insightful and an indication of cracking susceptibility, materials which transition rapidly from the threshold strain to "massive" cracking are typically more susceptible to DDC. The spot pre-welds made on the STF samples, used to produce a repeatable microstructure were found to significantly affect the DDC resistance when the current downslope time was altered. Decreasing the downslope time resulted in a faster cooling rate, finer solidification substructure, fewer metastable intragranular precipitates, and a reduced DDC susceptibility. The downslope time has been found to be the most important STF testing variable evaluated to date. A significant decrease in DDC susceptibility was observed in the alloys with Mo and Nb additions. The threshold strain for cracking in the 2.5% Nb and 4% Mo NiCrFe alloy was approximately 10%, and demonstrated a DDC resistance of more than twice that observed in typical FM-82 alloys. This remarkable increase in DDC resistance was attributed to the skeletal precipitate morphology whose large surface area and dense distribution were highly effective at pinning grain boundaries and preventing crack initiation. The resulting wavy or tortuous grain boundaries act to mechanically lock the grains together and thereby reduce the cracking susceptibility. A general improvement in the DDC cracking resistance of FM-52M-type alloys was observed over FM-52, particularly at lower temperatures (750°C) in the DDC range. Compositional changes in the FM-52M experimental alloys resulted in a range of DDC susceptibilities, indicating the strong effect of minor changes in composition. Boron additions resulted in an increase in Cr-rich M23C6 intergranular carbides in the as-welded condition. Electron backscatter diffraction (EBSD) data showed increased intragranular deformation that was attributed to improved grain boundary strengthening as a result of the intergranular M23C6 formation prior to deformation. Elongated intergranular carbides were also found to be more effective in improving grain boundary strengthening when compared with more symmetrical carbides. (Abstract shortened by UMI.) 1GleebleRTM is a registered trademark of Dynamic Systems Inc. 2INCONELRTM is a registered trademark of Special Metals Company, a PCC company.

  15. Secondary Chemistry School Teachers Working in Tertiary Education Chemistry Departments; Critical Reflections on the Positives and Negatives

    ERIC Educational Resources Information Center

    Glover, S. R.; Harrison, T. G.; Shallcross, D. E.

    2016-01-01

    Several UK University Chemistry Departments have former secondary school chemistry teachers employed as School Teacher Fellows (STF) who are heavily involved in outreach work and a range of teaching responsibilities. This study looks at the outreach role from the point of view of several of the STFs; the benefits, and the barriers and how this…

  16. Effect of core polarizability on photoionization cross-section calculations.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  17. Large seismic source imaging from old analogue seismograms

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Buforn, Elisa; Borges, José; Bezzeghoud, Mourad

    2017-04-01

    In this work we present a procedure to recover the ground motions by a proper digital structure, from old seismograms in analogue physical support (paper or microfilm) to study the source rupture process, by application of modern finite source inversion tools. Despite the quality that the analog data and the digitizing technologies available may have, recover the ground motions with the accurate metrics from old seismograms, is often an intricate procedure. Frequently the general parameters of the analogue instruments response that allow recover the shape of the ground motions (free periods and damping) are known, but the magnification that allow recover the metric of these motions is dubious. It is in these situations that the procedure applies. The procedure is based on assign of the moment magnitude value to the integral of the apparent Source Time Function (STF), estimated by deconvolution of a synthetic elementary seismogram from the related observed seismogram, corrected with an instrument response affected by improper magnification. Two delicate issues in the process are 1) the calculus of the synthetic elementary seismograms that must consider later phases if applied to large earthquakes (the portions of signal should be 3 or 4 times larger than the rupture time) and 2) the deconvolution to calculate the apparent STF. In present version of the procedure was used the Direct Solution Method to compute the elementary seismograms and the deconvolution was processed in time domain by an iterative algorithm that allow constrains the STF to stay positive and time limited. The method was examined using synthetic data to test the accuracy and robustness. Finally, a set of 17 real old analog seismograms from the Santa Maria (Azores) 1939 earthquake (Mw=7.1) was used in order to recover the waveforms in the required digital structure, from which by inversion allows compute the finite source rupture model (slip distribution). Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.

  18. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes.

    PubMed

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D

    2017-07-17

    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion mechanism of these compounds and show their ability to induce early and late apoptosis.

  19. Enhanced Amendment Delivery to Low Permeability Zones for Chlorinated Solvent Source Area Bioremediation

    DTIC Science & Technology

    2014-10-01

    enhanced amendments delivery process, a non-toxic biodegradable polymer, such as xanthan gum, is added to the injection solution to form a non- Newtonian...Once injection stops, the injected fluid viscosity increases and creates a more stable zone for biodegradation reactions because the amendment-laden...electron acceptors and biodegradation of the shear-thinning agent. • Determine the cost factors for applying the STF enhanced delivery technology

  20. Assessment Alternatives for a High Skill MOS

    DTIC Science & Technology

    1975-12-01

    tests. CR measurement advocates frequently claim that variance dependent statistics are inapplicable In CR test- ing because CR test scores have...rather than statistically . The Spearman- Brown reliability coefficient was .70. 17 In 1964, Shriver, Fink and Trexler (76) modified the M-33...ATTN: ATSW-SE-L 1 USA Cmd ft General Stf C- IVge . Ft Leavenworth, ATTN: Ed Advisor 1 USA Combined Arms Cmbt Dev Act, Ft Leavenworth, ATTN: DepCdr

  1. Effect of addition of different nano-clays on the fumed silica-polyethylene glycol based shear-thickening fluids

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Mehta, Rajeev; Verma, Sanjeev K.; Biswas, Ipsita

    2018-01-01

    A comparative study of the rheology of shear thickening suspensions of 20% fumed silica in polyethylene glycol (PEG200) with different nano clays as additives has been done. The nano-clays used are montmorillonite (MMT), Closite15A, Kaolin and Halloysite clay. The objective was to study the effect of relatively cost-effective clays as a partial substitute of silica. Specifically, the effect of type, concentration, temperature and frequency were considered. The results indicate that the shear thickening properties of Closite15A as additive in temperature ranges of 25 °C-45 °C performs the best and Halloysite performs best at higher (55 °C) and lower temperatures (5, 15 °C). The elasticity effects in dynamic experiments were markedly enhanced by Halloysite clay addition. Addition of MMT, however, led to insignificant enhancement in critical viscosity in steady-state as well as dynamic state-rheology. Interestingly, shear thickening fluid (STF) with all clay except MMT was stable after storing for more than a month. These findings indicate that the introduction of nano-clay as additives is a promising and cost effective method for enhancing the STF behavior which can be utilized in high impact resistant (about 3000% strain and 300 rad s-1 frequency) applications.

  2. Engineering of a membrane-triggered activity switch in coagulation factor VIIa

    PubMed Central

    Nielsen, Anders L.; Sorensen, Anders B.; Holmberg, Heidi L.; Gandhi, Prafull S.; Karlsson, Johan; Buchardt, Jens; Lamberth, Kasper; Kjelgaard-Hansen, Mads; Ley, Carsten Dan; Sørensen, Brit B.; Ruf, Wolfram; Olsen, Ole H.; Østergaard, Henrik

    2017-01-01

    Recombinant factor VIIa (FVIIa) variants with increased activity offer the promise to improve the treatment of bleeding episodes in patients with inhibitor-complicated hemophilia. Here, an approach was adopted to enhance the activity of FVIIa by selectively optimizing substrate turnover at the membrane surface. Under physiological conditions, endogenous FVIIa engages its cell-localized cofactor tissue factor (TF), which stimulates activity through membrane-dependent substrate recognition and allosteric effects. To exploit these properties of TF, a covalent complex between FVIIa and the soluble ectodomain of TF (sTF) was engineered by introduction of a nonperturbing cystine bridge (FVIIa Q64C-sTF G109C) in the interface. Upon coexpression, FVIIa Q64C and sTF G109C spontaneously assembled into a covalent complex with functional properties similar to the noncovalent wild-type complex. Additional introduction of a FVIIa-M306D mutation to uncouple the sTF-mediated allosteric stimulation of FVIIa provided a final complex with FVIIa-like activity in solution, while exhibiting a two to three orders-of-magnitude increase in activity relative to FVIIa upon exposure to a procoagulant membrane. In a mouse model of hemophilia A, the complex normalized hemostasis upon vascular injury at a dose of 0.3 nmol/kg compared with 300 nmol/kg for FVIIa. PMID:29109275

  3. The Enlisted Survival Tracking File (STF): A Revision.

    DTIC Science & Technology

    1982-09-01

    GAY , J I aORACK UNCLASSIFIED NPRDC-TN-N2-27 NLSEEEI*EIIIIIl IIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIII lllllllllllhl...Son Diego, CaI~lomis 92152 82 09 28 011 NPRDC Technical Note 82-27 September 1982 THE ENIZTED SURVIVAL TRACKING PILE (STh): A REVISIO Kenneth W. Gay ...W. Gay , Naval Military Personnel Command 3ules 1. Borack Navy Personnel Research and Development Center , PEIrFORMING, OrGANI9AWION NAME AND A5ES I

  4. The epidemiology of slips, trips, and falls in a helicopter manufacturing plant.

    PubMed

    Amandus, Harlan; Bell, Jennifer; Tiesman, Hope; Biddle, Elyce

    2012-06-01

    The purpose of this evaluation was to evaluate the causes and costs of slips, trips, and falls (STFs) in a helicopter manufacturing plant. STFs are a significant portion of the total industry injury burden. For this study, 4,070 helicopter plant workers who were employed from January 1, 2004, through February 28, 2008, were enrolled. Company records on workers' compensation claims, occupational health first report of injury, and payroll records on hours worked were collected. Cause and source of all injuries, including STFs, were coded for analysis. During the 4-year study period, there were 2,378 injuries and 226 STFs (46 falls [20%] to a lower level, 117 [52%] falls on the same level, 41 [18%] from loss of balance without a fall, and 22 [10%] from other events). Of the 226 STFs, 123 falls to the same level were caused by slippery substances (52), objects on floor (43), and surface hazards (28), and they cost $1,543,946. Falls to lower levels primarily involved access to stands to and from aircraft and falling off large machines. More than half of the STF injury claims likely could have been prevented by housekeeping and maintenance, and this cost saving could reasonably offset a considerable portion of the cost of prevention. Training and stand modifications could be considered to prevent falls from elevation from stands, machines, and aircraft. Recommendations for STF prevention are discussed.

  5. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  6. The safety experience of New Zealand adventure tourism operators.

    PubMed

    Bentley, Tim A; Page, Stephen; Walker, Linda

    2004-01-01

    This survey examined parameters of the New Zealand adventure tourism industry client injury risk. The research also sought to establish priorities for intervention to reduce adventure tourism risk, and identify client injury control measures currently in place (or absent) in the New Zealand adventure tourism industry, with a view to establishing guidelines for the development of effective adventure tourism safety management systems. This 2003 survey builds upon an exploratory study of New Zealand adventure tourism safety conducted by us during 1999. A postal questionnaire was used to survey all identifiable New Zealand adventure tourism operators. The questionnaire asked respondents about their recorded client injury experience, perceptions of client injury risk factors, safety management practices, and barriers to safety. Some 27 adventure tourism activities were represented among the responding sample (n=96). The highest client injury risk was reported in the snow sports, bungee jumping and horse riding sectors, although serious underreporting of minor injuries was evident across the industry. Slips, trips and falls (STF) were the major client injury mechanisms, and a range of risk factors for client injuries were identified. Safety management measures were inconsistently applied across the industry. The industry should consider the implications of poor injury reporting standards and safety management practices generally. Specifically, the industry should consider risk management that focuses on minor (e.g., STF) as well as catastrophic events.

  7. Relative Motion of the WDS 05110+3203 STF 648 System, With a Protocol for Calculating Relative Motion

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2010-07-01

    Relative motion studies of visual double stars can be investigated using least squares regression techniques and readily accessible programs such as Microsoft Excel and a calculator. Optical pairs differ from physical pairs under most geometries in both their simple scatter plots and their regression models. A step-by-step protocol for estimating the rectilinear elements of an optical pair is presented. The characteristics of physical pairs using these techniques are discussed.

  8. Control and Optimization Tools for Systems Governed by Nonlinear Partial Differential Equations

    DTIC Science & Technology

    2006-09-06

    parameter a) leading to a J&(a) f VST (X, y; a). ih dFb. aai Jrb where ST= aT " caai This sensitivity variable, along with s,, =-u and s = _-•p satisfy...with respect to the parameter ai: p(sU-Vu+u-Vsu) = --Vsp+V-.T(s)-pgI0sT+f, v.s =O0 pC (Su. VT + u VST ) V (KVST) +±q where we have assumed, among other

  9. Observations of the star Cor Caroli at the Apple Valley Workshop 2016

    NASA Astrophysics Data System (ADS)

    Estrada, Reed; Boyd, Sidney; Estrada, Chris; Evans, Cody; Rhoades, Hannah; Rhoades, Mark; Rhoades, Trevor

    2017-06-01

    Using a 22-inch Newtonian Alt/Az telescope and Celestron Micro Guide eyepiece, students participating in a workshop observed the binary star Cor Caroli (STF 1692) and found a position angle of 231.0 degrees as well as an average separation of 18.7" This observation compared favorably with the 2015 Washington Double Star published position. This project was part of Mark Brewer's Apple Valley Double Star Workshop. The results were analyzed using bias and circle error probability calculations.

  10. The effects of chronic administration of pyrimethamine on spermatogenesis and fertility in male rats.

    PubMed

    Awoniyi, C A; Chandrashekar, V; Hurst, B S; Kim, W K; Schlaff, W D

    1993-01-01

    The present study examines whether the antifertility effects of pyrimethamine (PYR), an inhibitor of dihydrofolate reductase, are mediated by a reduction in intratesticular testosterone (T) concentrations or whether PYR exerts its effect by a cytotoxic insult to spermatogenic cells that is independent of intratesticular testosterone. Adult male rats were treated daily with 100 mg/kg (n = 16) or 400 mg/kg (n = 16) of PYR in honey for 8 weeks. Control rats (n = 16) received honey without PYR. Eight weeks after treatment, five rats from each PYR-treated group and five control rats were mated with normal cycling female rats, and fertility was assessed. These rats were euthanized after the fertility trial; testis weight, testicular sperm, and epididymal sperm counts were determined, and serum levels of T, LH, FSH, and seminiferous tubule fluid T (STF-T) concentrations were measured by RIA. Testes from three rats per group were perfusion-fixed for histological evaluation. PYR was discontinued in the remaining rats for 8 weeks and similar parameters were evaluated after 8 weeks of recovery. PYR (100 mg/kg/day) treatment for 8 weeks did not have any effects on organ weights, testicular and epididymal sperm counts, and hormone levels when compared to controls. In contrast, PYR (400 mg/kg/day) treatment significantly reduced testis and epididymis weights, testicular and epididymal sperm counts, and fertility. Despite these effects, serum T, LH, FSH, and STF-T concentrations were not altered.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Report of the Task Force on SSC Magnet System Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1984-10-01

    The Task Force on SSC Magnet Systems test Site was appointed by Maury Tigner, Director of the SSC, Phase 1 in August 1984. In brief, the charge asked the Task Force to make a critical evaluation of potential test sites for a major SSC magnet System Test Facility (STF) with regard to: (1) availability of the needed space, utilities, staff and other requirements on the desired time scale; and (2) the cost of preparing the sites for the tests and for operating the facilities during the test period. The charge further suggests that, by virtue of existing facilities and availabilitymore » of experienced staff, BNL and FNAL are the two best candidate sites and that is therefore appears appropriate to restrict the considerations of the Task Force to these sites. During the subsequent deliberations of the Task Force, no new facts were revealed that altered the assumptions of the charge in this regard. The charge does not ask for a specific site recommendation for the STF. Indeed, an agreement on such a recommendation would be difficult to achieve considering the composition of the Task Force, wherein a large fraction of the membership is drawn from the two contending laboratories. Instead, we have attempted to describe the purpose of the facility, outline a productive test program, list the major facilities required, carefully review the laboratories` responses to the facility requirements, and make objective comparisons of the specific features and capabilities offered.« less

  12. PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells.

    PubMed

    Varagnolo, Linda; Lin, Qiong; Obier, Nadine; Plass, Christoph; Dietl, Johannes; Zenke, Martin; Claus, Rainer; Müller, Albrecht M

    2015-07-22

    Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different H3K4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okihira, K.; Hara, H.; Ikeda, N.

    MHI have supplied several 9-cell cavities for STF (R&D of ILC project at KEK) and have been considering production method for stable quality and cost reduction, seamless dumb-bell cavity was one of them. We had fabricated a 2 cell seamless dumb-bell cavity for cost reduction and measured RF performance in collaboration with JLab, KEK and MHI. Surface treatment recipe for ILC was applied for MHI 2-cell cavity and vertical test was performed at JLab. The cavity reached Eacc=32.4MV/m after BCP and EP. Details of the result are reported.

  14. Best practices in OR suite layout and equipment choices to reduce slips, trips, and falls.

    PubMed

    Brogmus, George; Leone, William; Butler, Lorraine; Hernandez, Edward

    2007-09-01

    Slips, trips, and falls (STFs) account for about 20% of lost-time injuries for health care personnel. Although the effect that OR layout and equipment choices have on STF risk has not been specifically addressed in the literature, STFs in the perioperative suite are of particular concern because of their potential to cause adverse patient consequences. Increased renovation of ORs to include equipment for minimally invasive procedures intensifies the importance of examining best practices in OR layout and equipment choices to reduce the potential for STFs.

  15. Remedial Action Report for Operable Units 6-05 and 10-04, Phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. P. Wells

    2007-08-15

    This Phase III remedial action report addresses the remediation of lead-contaminated soils found at the Security Training Facility STF-02 Gun Range at the Idaho National Laboratory Site. Phase I, consisting of developing and implementing institutional controls at Operble Unit 10-04 sites and developing and implementing Idaho National Laboratory Site-wide plans for both institutional controls and ecological monitoring, was addressed in a previous report. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase IV will remediate hazards from unexploded ordnance.

  16. Observations of the Star Cor Caroli at the Apple Valley Workshop 2016 (Abstract)

    NASA Astrophysics Data System (ADS)

    Estrada, R.; Boyd, S.; Estrada, C.; Evans, C.; Rhoades, H.; Rhoades, M.; Rhoades, T.

    2017-12-01

    (Abstract only) Using a 22-inch Newtonian Alt/Az telescope and Celestron Micro Guide eyepiece, students participating in a workshop observed the binary star Cor Caroli (STF 1692; alpha CVn) and found a position angle of 231.0 degrees as well as an average separation of 18.7" This observation compared favorably with the 2015 Washington Double Star published position. This project was part of Mark Brewer's Apple Valley Double Star Workshop. The results were analyzed using bias and circle error probability calculations.

  17. High Velocity Jet Noise Source Location and Reduction. Task 3 - Experimental Investigation of Suppression Principles. Volume II - Parametric Testing and Source Measurements

    DTIC Science & Technology

    1978-12-01

    tested at typical dual-flow cycle conditions. B. Models 9, 10, and 12 are similar in geometry to Modelo 6, 7, and 8; however, inner flow was regulated to...Stream I.- Mt. Stf 2., drl 1 I Tl Vý v N.. (T/PO) t (’k) (it;=ecl (PT/Po), (*R) (W.-/2 1 (tc’eeo) 1 1.119 45 1000 6 l.$& 100 100 . 6 1.221 1SO0 1000 Xot

  18. Project health and safety plan for the Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abston, J.P.

    1997-04-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Gunite and Associated Tanks (GAAT) in the North and South Tank Farms (NTF and STF) at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to health and safety (H and S) issues. The policy and procedures in this plan apply to all GAAT operations in the NTF and STF. The provisions of this plan are to bemore » carried out whenever activities identifies s part of the GAAT are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices in order to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air. This plan explains additional task-specific health and safety requirements such as the Site Safety and health Addendum and Activity Hazard Analysis, which should be used in concert with this plan and existing established procedures.« less

  19. CMIP5 downscaling and its uncertainty in China

    NASA Astrophysics Data System (ADS)

    Yue, TianXiang; Zhao, Na; Fan, ZeMeng; Li, Jing; Chen, ChuanFa; Lu, YiMin; Wang, ChenLiang; Xu, Bing; Wilson, John

    2016-11-01

    A comparison between the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and observations at 735 meteorological stations indicated that mean annual temperature (MAT) was underestimated about 1.8 °C while mean annual precipitation (MAP) was overestimated about 263 mm in general across the whole of China. A statistical analysis of China-CMIP5 data demonstrated that MAT exhibits spatial stationarity, while MAP exhibits spatial non-stationarity. MAT and MAP data from the China-CMIP5 dataset were downscaled by combining statistical approaches with a method for high accuracy surface modeling (HASM). A statistical transfer function (STF) of MAT was formulated using minimized residuals output by HASM with an ordinary least squares (OLS) linear equation that used latitude and elevation as independent variables, abbreviated as HASM-OLS. The STF of MAP under a BOX-COX transformation was derived as a combination of minimized residuals output by HASM with a geographically weight regression (GWR) using latitude, longitude, elevation and impact coefficient of aspect as independent variables, abbreviated as HASM-GB. Cross validation, using observational data from the 735 meteorological stations across China for the period 1976 to 2005, indicates that the largest uncertainty occurred on the Tibet plateau with mean absolute errors (MAEs) of MAT and MAP as high as 4.64 °C and 770.51 mm, respectively. The downscaling processes of HASM-OLS and HASM-GB generated MAEs of MAT and MAP that were 67.16% and 77.43% lower, respectively across the whole of China on average, and 88.48% and 97.09% lower for the Tibet plateau.

  20. Factors associated with worker slipping in limited-service restaurants.

    PubMed

    Courtney, Theodore K; Verma, Santosh K; Huang, Yueng-Hsiang; Chang, Wen-Ruey; Li, Kai Way; Filiaggi, Alfred J

    2010-02-01

    Slips, trips and falls (STF) are responsible for a substantial injury burden in the global workplace. Restaurant environments are challenged by STF. This study assessed individual and work environment factors related to slipping in US limited-service restaurant workers. Workers in 10 limited-service restaurants in Massachusetts were recruited to participate. Workers' occupational slip and/or fall history within the past 4 weeks was collected by multilingual written questionnaires. Age, gender, job tenure, work hours per week and work shift were also collected. Shoe type, condition and gross shoe contamination were visually assessed. Floor friction was measured and each restaurant's overall mean coefficient of friction (COF) was calculated. The logistic generalised estimating equations model was used to compute adjusted odds ratios (OR). Of 125 workers, 42 reported one or more slips in the past 4 weeks with two reporting a resultant fall. Results from multivariable regression showed that higher restaurant mean COF was significantly associated with a decreased risk of self-reported slipping (OR 0.59, 95% CI 0.42 to 0.82). From the highest to the lowest COF restaurant, the odds of a positive slip history increased by a factor of more than seven. Younger age, male gender, lower weekly work hours and the presence of gross contamination on worker's shoe sole were also associated with increased odds of slip history. Published findings of an association between friction and slipping and falling in actual work environments are rare. The findings suggest that effective intervention strategies to reduce the risk of slips and falls in restaurant workers could include increasing COF and improving housekeeping practices.

  1. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control.

    PubMed

    Perez, Justo; Springthorpe, V Susan; Sattar, Syed A

    2005-08-01

    Clostridium difficile is an increasingly common nosocomial pathogen, and its spores are resistant to common environmental surface disinfectants. Many high-level disinfectants (eg, aldehydes) are unsuitable for environmental decontamination because they need several hours of contact to be sporicidal. This study tested the potential of selected oxidative microbicides to inactivate C. difficile spores on hard surfaces in relatively short contact times at room temperature. The spores of a clinical isolate of C. difficile were tested using disks (1 cm diameter) of brushed stainless steel in a quantitative carrier test. The spores of C. sporogenes and Bacillus subtilis, common surrogates for evaluating sporicides, were included for comparison. The clostridia were grown separately in Columbia broth (CB), and B. subtilis was grown in a 1:10 dilution of CB. Each disk received 10 microL test spores with an added soil load, and the inoculum was dried. One disk each was placed in a glass vial and overlaid with 50 microL test formulation; controls received an equivalent volume of normal saline with 0.1% Tween 80. At the end of the contact time the microbicide was neutralized, the inoculum recovered from the disks by vortexing, the eluates were membrane filtered, and the filters placed on plates of recovery medium. The colony-forming units (CFU) on the plates were recorded after 5 days of incubation. The performance criterion was > or = 6 log(10) (> or = 99.9999%) reduction in the viability titer of the spores. The microbicides tested were domestic bleach with free-chlorine (FC) levels of 1000, 3000, and 5000 mg/L; an accelerated hydrogen peroxide (AHP)-based product with 70,000 mg/L H2O2 (Virox STF); chlorine dioxide (600 mg/L FC); and acidified domestic bleach (5000 mg/L FC). Acidified bleach and the highest concentration of regular bleach tested could inactivate all the spores in < or = 10 minutes; Virox STF could do the same in < or = 13 minutes. Regular bleach with 3000 mg/L FC required up to 20 minutes to reduce the viability of the all the spores tested to undetectable levels; chlorine dioxide and the lowest concentration of regular bleach tested needed approximately 30 minutes for the same level of activity. Acidified bleach, Virox STF, and regular bleach (3000-5000 mg/L FC) could inactivate C. difficile spores on hard environmental surfaces in approximately 10 to 15 minutes under ambient conditions. All of these products are strong oxidizers and should be handled with care for protection of staff, but acidified and regular bleach with high levels of FC also release chlorine gas, which can be hazardous if inhaled by staff or patients.

  2. An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal

    NASA Astrophysics Data System (ADS)

    Gallagher, Morgan Leo

    Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)

  3. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  4. Resistance to vertical fracture of MTA-filled roots.

    PubMed

    EL-Ma'aita, Ahmad M; Qualtrough, Alison J E; Watts, David C

    2014-02-01

    To investigate the effect of MTA root canal fillings on the resistance to vertical root fracture (VRF) over different time intervals. Freshly extracted anterior human teeth with single canals and minimal curvatures were decoronated, instrumented to size 50/.05 ProTaper file, irrigated with 1%NaOCl and randomly allocated to one of three groups (n = 36): (i) filled with MTA, (ii) filled with gutta-percha and sealer and (iii) unfilled roots used as a negative control. Each group was subdivided into three subgroups (n = 12) according to the storage time of 48 h, 1 and 6 months at 37°C in synthetic tissue fluid (STF). Following the storage periods, filled roots were mounted in acrylic supports, and the periodontal ligament was simulated using elastomeric impression material. Vertical loading was carried out with a ball-ended steel cylinder fitted on a universal testing machine at 1 mm/min crosshead speed. The maximum force at fracture (F-max) and the fracture mode were recorded for each root. Data were statistically analysed using two-way anova and Bonferroni post hoc tests. The mean F-max was significantly higher in the MTA subgroups after 1 and 6 months compared with all other subgroups. Two modes of fracture were identified: split and comminuted. The mean F-max values recorded with the latter were significantly higher compared with the former (P < 0.001). In all groups, split fracture was the most dominant mode apart from the MTA/1 month and MTA/6 month groups. MTA increases the resistance to VRF of endodontically treated teeth and influences the mode of fracture after 1 and 6 month of storage in STF compared with gutta-percha and sealer. © 2013 John Wiley & Sons A/S.

  5. Nonlinear damping for vibration isolation of microsystems using shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.

    2013-06-01

    This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.

  6. Impact of view reduction in CT on radiation dose for patients

    NASA Astrophysics Data System (ADS)

    Parcero, E.; Flores, L.; Sánchez, M. G.; Vidal, V.; Verdú, G.

    2017-08-01

    Iterative methods have become a hot topic of research in computed tomography (CT) imaging because of their capacity to resolve the reconstruction problem from a limited number of projections. This allows the reduction of radiation exposure on patients during the data acquisition. The reconstruction time and the high radiation dose imposed on patients are the two major drawbacks in CT. To solve them effectively we adapted the method for sparse linear equations and sparse least squares (LSQR) with soft threshold filtering (STF) and the fast iterative shrinkage-thresholding algorithm (FISTA) to computed tomography reconstruction. The feasibility of the proposed methods is demonstrated numerically.

  7. Onderzoek Naar de Bepaling van Wrijvingscoefficienten van een Voertuig uit Uitrolcurves (Research into the Determination of Friction Coefficients of a Vehicle from Deceleration Curves)

    DTIC Science & Technology

    1991-08-01

    en Aemne Vrwaarden Wo OndOrzoeks 8 FE 1 1 opdrchl aT00’ dn wet do bereflende F B 0 1 9 terzake tussen partilon geslOlen dw:Agsu overOerikomStf...Ongemlbric~~d 9 -028 14 :259 wwWmtmd.fl 59w IEEIIIIiiiarabIg𔃽 1 c~ Vrederikkazerle, Geb. InO 03 3.. ~ van den Burchlaal 312 03 173Telefoofl 070-3166394...1ILEIDING 6 2 HET FYSISCHE MODEL 8 3 ONDERZOEK AAN DE DIFFERENTIAALVERGELIJKING 11 3.1 Existentie en uniciteit van ccii oplossing 11 3.2 Continulleit en

  8. Applying Game Thinking to Slips, Trips and Falls Prevention.

    PubMed

    Dewick, Paul; Stanmore, Emma

    2017-01-01

    Gamification is about the way in which 'game thinking' can engage participants and change behaviours in real, non-game contexts. This paper explores how game thinking can be applied to help prevent slips, trips and falls (STF), which are the largest cause of accidental death in older people across Europe. The paper contributes to the assistive technology, digital health and computer science/human behaviour communities by responding to a gap in the literature for papers detailing the innovation process of developing interventions to improve health and quality of life. The aim of the paper is of interest to the many stakeholders involved in enabling older people to live independent, confident, healthy and safe lives in the community.

  9. A Survey of the High Order Multiplicity of Nearby Solar-Type Binary Stars with Robo-AO

    DTIC Science & Technology

    2015-01-20

    auxiliary images are not used for astrometry or photometry , but are helpful for verifying compan- ion detection and for resolving the 180◦ ambiguity of...pair Ba,Bb was resolved by Robo-AO three times at 0.′′16 with Δi = 0.87m, Δr = 0.97m, and Δz = 0.52m. This corresponds to a mass for Bb of ∼0.6M. We...known quintuple system. The component E (STF 2032AE, E=HIP 79551=GJ 615.2C) is resolved here at 0.′′4 (but not for the first time : Ea,Eb=YSC 152

  10. A Prospective Open-label Pilot Study of Fluvastatin on Pro-inflammatory and Pro-thrombotic Biomarkers in Antiphospholipid Antibody Positive Patients

    PubMed Central

    Erkan, Doruk; Willis, Rohan; Murthy, Vijaya L.; Basra, Gurjot; Vega, JoAnn; Ruiz Limón, Patricia; Carrera, Ana Laura; Papalardo, Elizabeth; Martínez-Martínez, Laura Aline; González, Emilio B.; Pierangeli, Silvia S.

    2014-01-01

    Objective: To determine if pro-inflammatory and pro-thrombotic biomarkers are differentially upregulated in persistently antiphospholipid antibody (aPL)-positive patients, and to examine the effects of fluvastatin on these biomarkers. Methods: Four groups of patients (age 18-65) were recruited: a) Primary Antiphospholipid Syndrome (PAPS); b) Systemic Lupus Erythematosus (SLE) with APS (SLE/APS); c) Persistent aPL positivity without SLE or APS (Primary aPL); and d) Persistent aPL positivity with SLE but no APS (SLE/aPL). The frequency-matched control group, used for baseline data comparison, was identified from a databank of healthy persons. Patients received fluvastatin 40 mg daily for three months. At three months, patients stopped the study medication and they were followed for another three months. Blood samples for 12 pro-inflammatory and pro-thrombotic biomarkers were collected monthly for six months. Results: Based on the comparison of the baseline samples of 41 aPL-positive patients with 30 healthy controls, 9/12 (75%) biomarkers (interleukin [IL]-6, IL1β, vascular endothelial growth factor [VEGF], tumor necrosis factor [TNF]-□α, interferon [IFN]-α, inducible protein-10 [IP10], soluble CD40 ligand [sCD40L], soluble tissue factor [sTF], and intracellular cellular adhesion molecule [ICAM]-1) were significantly elevated. Twenty-four patients completed the study; fluvastatin significantly and reversibly reduced the levels of 6/12 (50%) biomarkers (IL1β, VEGF, TNFα, IP10, sCD40L, and sTF). Conclusion: Our prospective mechanistic study demonstrates that pro-inflammatory and pro-thrombotic biomarkers, which are differentially upregulated in persistently aPL-positive patients, can be reversibly reduced by fluvastatin. Thus, statin-induced modulation of the aPL effects on target cells can be a valuable future approach in the management of aPL-positive patients. PMID:23933625

  11. Assessment of trophic ecomorphology in non-alligatoroid crocodylians and its adaptive and taxonomic implications.

    PubMed

    Iijima, Masaya

    2017-08-01

    Although the establishment of trophic ecomorphology in living crocodylians can contribute to estimating feeding habits of extinct large aquatic reptiles, assessment of ecomorphological traits other than the snout shape has scarcely been conducted in crocodylians. Here, I tested the validity of the proposed trophic ecomorphological traits in crocodylians by examining the correlation between those traits and the snout shape (an established trophic ecomorphology), using 10 non-alligatoroid crocodylian species with a wide range of snout shape. I then compared the ontogenetic scaling of trophic ecomorphology to discuss its adaptive and taxonomic significance. The results demonstrated that degree of heterodonty, tooth spacing, size of supratemporal fenestra (STF), ventral extension of pterygoid flange and length of lower jaw symphysis are significantly correlated with snout shape by both non-phylogenetic and phylogenetic regression analyses. Gavialis gangeticus falls outside of 95% prediction intervals for the relationships of some traits and the snout shape, suggesting that piscivorous specialization involves the deviation from the typical transformation axis of skull characters. The comparative snout shape ontogeny revealed a universal trend of snout widening through growth in the sampled crocodylians, implying the existence of a shared size-dependent biomechanical constraint in non-alligatoroid crocodylians. Growth patterns of other traits indicated that G. gangeticus shows atypical trends for degree of heterodonty, size of STF, and symphysis length, whereas the same trends are shared for tooth spacing and ventral extension of pterygoid flange among non-alligatoroid crocodylians. These suggest that some characters are ontogenetically labile in response to prey preference shifts through growth, but other characters are in keeping with the conserved biomechanics among non-alligatoroid crocodylians. Some important taxonomic characters such as the occlusal pattern are likely correlated with ontogeny and trophic ecomorphology rather than are constrained by phylogenetic relationships, and careful reassessment of such characters might be necessary for better reconstructing the morphological phylogeny of crocodylians. © 2017 Anatomical Society.

  12. Waterborne Transportation Lines of the United States 1988

    DTIC Science & Technology

    1989-10-20

    14.01NONE 1 1 157 1 1 175.01 26.01 1.51 1 - I 1! EHtN4I IVTCCI SIPENSION$ S AY 1069 CAAC17Y| MICR- I I V I S I I L I I DIET | OPERATOR INET |COVE...ICAPACITYI HIGH- I I V t S S ( L I I DtSTf OPERATOR I PET !COOEILENGTN|MROTNI 1 1 I EST I CARGO HANDLING IS IOPERATING I ............................. .IGIS...I 1 195:"!! 2,,:C! ;:u! - I I low CThC14NATI1 197! 11575765 559 4A40 094! 11.4thCNE I 1 1 19S.I! 26.0 1.9! 1 - I I I I TO pets W155a 495!4A401 115.3i

  13. Neurovision processor for designing intelligent sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1992-03-01

    A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.

  14. Effects of endophyte-infected tall fescue on indicators of thermal status and growth in Hereford and Senepol steers.

    PubMed

    Browning, R

    2004-02-01

    Poor growth often occurs in cattle consuming ergot alkaloids associated with endophyte-infected (EI) tall fescue. Hyperthermia may contribute significantly to poor growth resulting from fescue toxicosis. This study examined indicators of thermal status and growth in Hereford (n = 30; heat-sensitive Bos taurus; H) and Senepol (n = 28; heat-tolerant Bos taurus; S) steers fed EI tall fescue (TF) or orchardgrass (OG) in 2 x 2 factorial experiments. Respiration rates, daytime shade use, tail skin temperatures, and body weights were measured during the summer and fall of 2000 (Exp. 1) and 2001 (Exp. 2). Experimental diets consisted of hay and seed for 12 wk in 2000, hay for 6 wk during the summer of 2001, and hay plus seed for 6 wk during the fall of 2001. In Exp. 1, EI tall fescue increased (P < 0.01) respiration rates, shade use, and skin temperatures in both breeds. Breed x diet affected (P < 0.01) 12-wk ADG in Exp. 1. Growth rate was lower for H-TF (262 g/d) than for S-TF, S-OG, and H-OG (475, 497, and 524 g/d, respectively). In Exp. 2, Senepol had lower (P < 0.01) respiration rates, shade use, and skin temperatures compared with Hereford, but diet did not alter (P > 0.14) these indicator traits in either breed. Breed x diet affected (P < 0.01) summer growth rates. Growth rate was lower for H-TF (88 g/d) than for H-OG, S-TF, and S-OG (508, 555, and 566 g/d, respectively). Adding seed to the diets in Exp. 2 decreased (P < 0.01) ADG for both breeds on TF during the fall. Thermal status indicator traits in Senepol and Hereford steers were similarly altered by TF; however, only Hereford showed consistently poor growth. Senepol showed resilience in their capacity for growth under conditions of fescue toxicosis. Senepol influence may enhance cattle performance in production systems that use EI tall fescue as the base forage.

  15. Multitask neurovision processor with extensive feedback and feedforward connections

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1991-11-01

    A multi-task neuro-vision parameter which performs a variety of information processing operations associated with the early stages of biological vision is presented. The network architecture of this neuro-vision processor, called the positive-negative (PN) neural processor, is loosely based on the neural activity fields exhibited by thalamic and cortical nervous tissue layers. The computational operation performed by the processor arises from the strength of the recurrent feedback among the numerous positive and negative neural computing units. By adjusting the feedback connections it is possible to generate diverse dynamic behavior that may be used for short-term visual memory (STVM), spatio-temporal filtering (STF), and pulse frequency modulation (PFM). The information attributes that are to be processes may be regulated by modifying the feedforward connections from the signal space to the neural processor.

  16. The Chemical Capacitance as a Fingerprint of Defect Chemistry in Mixed Conducting Oxides.

    PubMed

    Fleig, Juergen; Schmid, Alexander; Rupp, Ghislain M; Slouka, Christoph; Navickas, Edvinas; Andrejs, Lukas; Hutter, Herbert; Volgger, Lukas; Nenning, Andreas

    2016-01-01

    The oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance. Impedance measurements on different oxides ((La,Sr)FeO3-δ = LSF, Sr(Ti,Fe)O3-δ = STF, and Pb(Zr,Ti)O3 = PZT) are presented, and demonstrate how the chemical capacitance may affect impedance spectra in different types of electrochemical cells. A quantitative analysis of the spectra is based on generalized equivalent circuits developed for mixed conducting oxides by J. Jamnik and J. Maier. It is discussed how defect chemical information can be deduced from the chemical capacitance.

  17. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    PubMed Central

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  18. Obesity epidemic in Brazil and Argentina: a public health concern.

    PubMed

    Arbex, Alberto K; Rocha, Denise R T W; Aizenberg, Marisa; Ciruzzi, Maria S

    2014-06-01

    The obesity epidemic is rapidly advancing in South America, leading to inevitable health consequences. Argentinian and Brazilian health policies try to become adapted to the new economic and social framework that follows from this epidemic. It is in incipient and ineffective control so far since the prevalence of obesity was not restrained. The Argentine national legislation is more advanced, through the so-called "Ley de Obesidad." In Brazil, there are numerous local initiatives but still not a comprehensive law. National policies relating to decisions regarding obesity are discussed in this paper. Trends in decisions issued in higher courts of Argentina (Supreme Court of Justice of the Nation--CSJN) and Brazil (Supreme Court of Justice--STF), in the last 15 years, seek to clarify the approach of each country and court's resolutions. Marked differences were found in their positions. Finally, legal and health solutions to this obesity epidemic are proposed.

  19. Task Assignment Heuristics for Parallel and Distributed CFD Applications

    NASA Technical Reports Server (NTRS)

    Lopez-Benitez, Noe; Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper proposes a task graph (TG) model to represent a single discrete step of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is then used to not only balance the computational workload across the overset grids but also to reduce inter-grid communication costs. We have developed a set of task assignment heuristics based on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest task first (STF) and the largest task first (LTF), are first presented. They are then systematically costs. To predict the performance of the proposed task assignment heuristics, extensive performance evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid points is also used as a test case.

  20. Obesity Epidemic in Brazil and Argentina: A Public Health Concern

    PubMed Central

    Rocha, Denise R.T.W.; Aizenberg, Marisa; Ciruzzi, Maria S.

    2014-01-01

    ABSTRACT The obesity epidemic is rapidly advancing in South America, leading to inevitable health consequences. Argentinian and Brazilian health policies try to become adapted to the new economic and social framework that follows from this epidemic. It is in incipient and ineffective control so far since the prevalence of obesity was not restrained. The Argentine national legislation is more advanced, through the so-called “Ley de Obesidad.” In Brazil, there are numerous local initiatives but still not a comprehensive law. National policies relating to decisions regarding obesity are discussed in this paper. Trends in decisions issued in higher courts of Argentina (Supreme Court of Justice of the Nation—CSJN) and Brazil (Supreme Court of Justice—STF), in the last 15 years, seek to clarify the approach of each country and court's resolutions. Marked differences were found in their positions. Finally, legal and health solutions to this obesity epidemic are proposed. PMID:25076669

  1. Virtual Exploitation Environment Demonstration for Atmospheric Missions

    NASA Astrophysics Data System (ADS)

    Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano

    2017-04-01

    The scientific and industrial communities are being confronted with a strong increase of Earth Observation (EO) satellite missions and related data. This is in particular the case for the Atmospheric Sciences communities, with the upcoming Copernicus Sentinel-5 Precursor, Sentinel-4, -5 and -3, and ESA's Earth Explorers scientific satellites ADM-Aeolus and EarthCARE. The challenge is not only to manage the large volume of data generated by each mission / sensor, but to process and analyze the data streams. Creating synergies among the different datasets will be key to exploit the full potential of the available information. As a preparation activity supporting scientific data exploitation for Earth Explorer and Sentinel atmospheric missions, ESA funded the "Technology and Atmospheric Mission Platform" (TAMP) [1] [2] project; a scientific and technological forum (STF) has been set-up involving relevant European entities from different scientific and operational fields to define the platforḿs requirements. Data access, visualization, processing and download services have been developed to satisfy useŕs needs; use cases defined with the STF, such as study of the SO2 emissions for the Holuhraun eruption (2014) by means of two numerical models, two satellite platforms and ground measurements, global Aerosol analyses from long time series of satellite data, and local Aerosol analysis using satellite and LIDAR, have been implemented to ensure acceptance of TAMP by the atmospheric sciences community. The platform pursues the "virtual workspace" concept: all resources (data, processing, visualization, collaboration tools) are provided as "remote services", accessible through a standard web browser, to avoid the download of big data volumes and for allowing utilization of provided infrastructure for computation, analysis and sharing of results. Data access and processing are achieved through standardized protocols (WCS, WPS). As evolution toward a pre-operational environment, the "Virtual Exploitation Environment Demonstration for Atmospheric Missions" (VEEDAM) aims at maintaining, running and evolving the platform, demonstrating e.g. the possibility to perform massive processing over heterogeneous data sources. This work presents the VEEDAM concepts, provides pre-operational examples, stressing on the interoperability achievable exposing standardized data access and processing services (e.g. making accessible data and processing resources from different VREs). [1] TAMP platform landing page http://vtpip.zamg.ac.at/ [2] TAMP introductory video https://www.youtube.com/watch?v=xWiy8h1oXQY

  2. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    NASA Astrophysics Data System (ADS)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which presents opportunities for the new kinds of ex situ and in situ experiments performed in this thesis. Ex situ experiments involved reducing powder samples at SOFC operating temperatures under hydrogen gas and characterizing them via electron microscopy and X-ray diffraction (XRD). For the in situ experiments, powders were heated, then reduced at temperature, and catalyst exsolution was observed in real-time. Pechini-synthesized cerium oxide substituted with 2-5 mol% Pd was studied using in situ X-ray heating experiments at Argonne National Laboratory's Advanced Photon Source. In these experiments, the powder was subjected to several cycles of reduction and oxidation at 800°C, and Pd metal formation was confirmed through the appearance of Pd peaks in the X-ray spectra. Next, Fe- and Ru-substituted lanthanum strontium chromite (LSCrFeRu14) synthesized by solid state reaction was characterized with ex situ and in situ microscopy. Transmission electron microscopy (TEM) in situ heating experiments were conducted to observe Ru nanoparticle evolution under the reducing conditions of the TEM vacuum chamber. LSCrFeRu14 was heated to 750°C and observed over ˜ 90 min at temperature during which time nanoparticle formation, coarsening, and di?usion were observed. Experiments on both materials sought to understand the conditions and timing of nanoparticle formation in the anode, which is not necessarily apparent from electrochemical data. Reducing the operating temperature of SOFCs from the current state-of-the-art range of 700-800°C to ≤ 650°C has many advantages, among them increased long-term stability, reduced balance of plant costs, fewer interconnect/seal material issues, and decreased start-up times. In order to maintain good performance at reduced temperature, these intermediate temperature SOFCs require new materials including highly active alternatives to micron-scale Ni-YSZ composite anodes. The present work focuses on the development of IT-SOFCs with Sr0.8La 0.2TiO3 (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  3. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  4. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  5. Prime Contract Awards Alphabetically by Contractor, by State or Country, and Place, FY 85. Part 19 (Star & Stripes - Tokimori Kensetsu Co Ltd).

    DTIC Science & Technology

    1985-01-01

    GROUP SU-TOU Accession~ F’r I$ A-.TPAC" (Continue on reverse if necessary and identify by block number) DT10 TAg F U11, A n.. el ,r I-; r i...moi-z o~- w o 0 I" 1P. o zm <wxcz xu 0 -WŔIQ~l-o&~w oC0M I- 6m < w :D < Z" V) U 4 I.-lz. ’-4 1-" EL 0 0 3-1-U-04-4 0.0-" 0 00001 00o ~ oWW4xw-w"’’- 0...4-1 COD100.-4’)S 166 V_1C’St.f l.P CS (0 cmS V) el IRS 00000000000000 tA W-"NSI IS 4 c (4800-40 a N N N N N CN CN Nm Nm N4 CNI N NNINNN * 0 0 5

  6. Boehmenan, a lignan from Hibiscus ficulneus, showed Wnt signal inhibitory activity.

    PubMed

    Shono, Takumi; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Ahmed, Firoj; Sadhu, Samir K; Ishibashi, Masami

    2015-07-15

    The Wnt signal pathway modulates numerous biological processes, and its aberrant activation is related to various diseases. Therefore, inhibition of the Wnt signal may provide an effective (or efficient) strategy for these diseases. Cell-based luciferase assay targeting the Wnt signal (TOP assay) revealed that Hibiscus ficulneus extract inhibited the Wnt signal. The activity-guided isolation of the MeOH extract of H. ficulneus stems yielded four known (1-4) lignans along with myriceric acid (5). Compounds 1-4 potently inhibited the Wnt signal with TOPflash IC50 values of 1.0, 4.5, 6.3, and 1.9 μM, respectively. Compound 1 exhibited cytotoxicity against both Wnt-dependent (HCT116) and Wnt-independent (RKO) cells. Western blot analysis showed that 1 decreased the expression of full, cytosolic and nuclear β-catenin along with c-myc in STF/293 cells. Our results suggested that 1 may have inhibited the Wnt signal by decreasing β-catenin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterization of drug release from liposomal formulations in ocular fluid.

    PubMed

    Jafari, M R; Jones, A B; Hikal, A H; Williamson, J S; Wyandt, C M

    1998-01-01

    The successful application of liposomes in topical ophthalmic drug delivery requires knowledge of vesicle stabilization in the presence of tear fluid. The release of procaine hydrochloride (PCH) from large unilamellar liposomes in the presence of simulated tear fluid was studied in vitro as a function of bilayer lipid content and tear protein composition. Reverse-phase evaporation vesicles were prepared from egg phosphatidylcholine, stearylamine or dicetyl phosphate, and cholesterol. The relationship between lipid composition and encapsulation efficiency, vesicle size, drug leakage upon storage at 4 degrees C, and the release of PCH-loaded liposomes was studied. The encapsulation efficiency was found to be dependent upon the lipid composition used in the liposome preparation. In particular, phosphatidylcholine vesicles containing cholesterol and/or charged lipids had a lower entrapment efficiency than liposomes prepared with phosphatidylcholine alone. However, the drug release rate was reduced significantly by inclusion of cholesterol and/or charged lipids in the liposomes. The release kinetics of the entrapped agent seemed to be a biphasic process and the drug-release in both simulated tear fluid (STF) and pH 7.4 phosphate buffered saline (PBS) solutions followed pseudo first-order kinetics in the early stage of the release profile. The drug-release appeared to be diffusion and/or partition controlled. Drug release from liposomes into STF, pH 7.4 PBS, and five different modified tear formulations was also evaluated. While serum-induced leakage is attributed to high-density lipoprotein-mediated destabilization, it was determined that lactoferrin might be the protein component in tear fluid that has the primary influence on the liposome-entrapped drug release rate. Five local anesthetics, benoxinate, proparacaine, procaine, tetracaine, and benzocaine were entrapped in liposomal vesicles by a reverse-phase evaporation (REV) technique. The release of these structurally similar topical anesthetics entrapped in positively charged liposomes (egg phosphatidylcholine, stearylamine, and cholesterol in a 7:2:1 molar ratio) was evaluated in a simulated tear fluid and pH 7.4 phosphate buffered saline solution. The liposomes appeared to be useful carriers for these drugs to retard their in vitro release in tear fluid and perhaps sustain or control their release in the eye for better therapeutic efficacy. An analysis of the release data demonstrated that for this series of drugs, drug partition coefficient has the largest effect on release rate, with molecular weight exhibiting a smaller effect. Release rate was found to decrease with increased lipophilicity or increased molecular weight.

  8. Fabrication of dense wavelength division multiplexing filters with large useful area

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  9. Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Ian J.; Wu, Qi h.; Arnold, Matthew; McCall, Martin W.; Lakhtakia, Akhlesh

    2002-09-01

    A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry-Perot resonators, but the handed resonator is transparent to RCP light.

  10. Importance of stimulation paradigm in determining facilitation and effects of neuromodulation.

    PubMed

    Crider, M E; Cooper, R L

    1999-09-25

    Evoked synaptic activity within the CNS and at the neuromuscular junction in most in vivo preparations studied occurs not with single isolated stimuli, but with trains, or bursts, of stimuli. Although for ease in studying the mechanisms of vesicular synaptic transmission one often uses single discrete stimuli, the true mechanisms in the animal may be far more complex. When repetitive stimuli are present at a nerve terminal, often a heightened (i.e., facilitated) postsynaptic potential can be as a result. Facilitation is commonly used as an index of synaptic function and plasticity induced by chronic stimulation or by neuromodulation. The mechanisms that give rise to facilitation are thought to be the same that may underlie short-term learning and memory [C.H. Bailey, E.R. Kandel, Structural changes accompanying memory storage. Annu. Rev. Physiol. 55 (1993) 397-426.]. Differences in short term facilitation (STF) are seen depending on the conventional stimulation paradigm (twin pulse, train, or continuous) used to induce facilitation. Thus, a battery of paradigms should be used to characterize synaptic function to obtain a closer understanding of the possible in vivo conditions.

  11. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347

  12. A quantitative model of optimal data selection in Wason's selection task.

    PubMed

    Hattori, Masasi

    2002-10-01

    The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.

  13. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  14. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Putnam, Aaron E.; Schaefer, Joerg M.; Denton, George H.; Barrell, David J. A.; Andersen, Bjørn G.; Koffman, Tobias N. B.; Rowan, Ann V.; Finkel, Robert C.; Rood, Dylan H.; Schwartz, Roseanne; Vandergoes, Marcus J.; Plummer, Mitchell A.; Brocklehurst, Simon H.; Kelley, Samuel E.; Ladig, Kathryn L.

    2013-11-01

    The termination of the last ice age featured a major reconfiguration of Earth's climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 ± 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Ben of 12.5 km (Lake Coleridge), ∼25 km (Castle Hill), ∼28 km (Double Hill), ∼43 km (Prospect Hill), and ∼58 km (Reischek knob) have ages of 17,020 ± 70 yrs, 17,100 ± 110 yrs, 16,960 ± 370 yrs, 16,250 ± 340 yrs, and 15,660 ± 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of ∼4.65 °C between the end of the LGM and the start of the Holocene, the glacier recession between ∼17,840 and ∼15,660 yrs ago is attributable to a net temperature increase of ∼4.0 °C (from -6.25 to -2.25 °C), accounting for ∼86% of the overall warming. Approximately 3.75 °C (∼70%) of the warming occurred between ∼17,840 and ∼16,250 yrs ago, with a further 0.75 °C (∼16%) increase between ∼16,250 and ∼15,660 yrs ago. A sustained southward shift of the Subtropical Front (STF) south of Australia between ∼17,800 and ∼16,000 yrs ago coincides with the warming over the Rakaia valley, and suggests a close link between Southern Ocean frontal boundary positions and southern mid-latitude climate. Most of the deglacial warming in the Southern Alps occurred during the early part of Heinrich Stadial 1 (HS1) of the North Atlantic region. Because the STF is associated with the position of the westerly wind belt, our findings support the concept that a southward shift of Earth's wind belts accompanied the early part of HS1 cooling in the North Atlantic, leading to warming and deglaciation in southern middle latitudes.

  15. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron E. Putnam; Joerg M. Schaefe; George H .Denton

    2013-11-01

    The termination of the last ice age featured a major reconfiguration of Earth's climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 +/- 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Benmore » of 12.5 km (Lake Coleridge), approximately 25 km (Castle Hill), approximately 28 km (Double Hill), approximately 43 km (Prospect Hill), and approximately 58 km (Reischek knob) have ages of 17,020 +/- 70 yrs, 17,100 +/- 110 yrs, 16,960 +/- 370 yrs, 16,250 +/- 340 yrs, and 15,660 +/- 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of approximately 4.65?degrees C between the end of the LGM and the start of the Holocene, the glacier recession between approximately 17,840 and approximately 15,660 yrs ago is attributable to a net temperature increase of approximately 4.0?degrees C (from -6.25 to -2.25?degrees C), accounting for approximately 86% of the overall warming. Approximately 3.75?degrees C (approximately 70%) of the warming occurred between approximately 17,840 and approximately 16,250 yrs ago, with a further 0.75?degrees C (approximately 16%) increase between approximately 16,250 and approximately 15,660 yrs ago. A sustained southward shift of the Subtropical Front (STF) south of Australia between approximately 17,800 and approximately 16,000 yrs ago coincides with the warming over the Rakaia valley, and suggests a close link between Southern Ocean frontal boundary positions and southern mid-latitude climate. Most of the deglacial warming in the Southern Alps occurred during the early part of Heinrich Stadial 1 (HS1) of the North Atlantic region. Because the STF is associated with the position of the westerly wind belt, our findings support the concept that a southward shift of Earth's wind belts accompanied the early part of HS1 cooling in the North Atlantic, leading to warming and deglaciation in southern middle latitudes.« less

  16. DuOCam: A Two-Channel Camera for Simultaneous Photometric Observations of Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Maier, Erin R.; Witt, Emily; Depoy, Darren L.; Schmidt, Luke M.

    2017-01-01

    We have designed the Dual Observation Camera (DuOCam), which uses commercial, off-the-shelf optics to perform simultaneous photometric observations of astronomical objects at red and blue wavelengths. Collected light enters DuOCam’s optical assembly, where it is collimated by a negative doublet lens. It is then separated by a 45 degree blue dichroic filter (transmission bandpass: 530 - 800 nm, reflection bandpass: 400 - 475 nm). Finally, the separated light is focused by two identical positive doublet lenses onto two independent charge-coupled devices (CCDs), the SBIG ST-8300M and the SBIG STF-8300M. This optical assembly converts the observing telescope to an f/11 system, which balances maximum field of view with optimum focus. DuOCam was commissioned on the McDonald Observatory 0.9m, f/13.5 telescope from July 21st - 24th, 2016. Observations of three globular and three open stellar clusters were carried out. The resulting data were used to construct R vs. B-R color magnitude diagrams for a selection of the observed clusters. The diagrams display the characteristic evolutionary track for a stellar cluster, including the main sequence and main sequence turn-off.

  17. JPRS Report, Science & Technology, China: Energy.

    DTIC Science & Technology

    1992-03-30

    breeder reactors should become...the primary type of reactors . In developing breeder reactors , we should follow the path of using metal fuel. Breeder reactors give us more time to...first reactor used for power generation was a fast reactor : the " Breeder 1" reactor at the Idaho National Reactor Test Center which was used to

  18. Detection efficiency of auditory steady state evoked by modulated noise.

    PubMed

    Santos, T S; Silva, J J; Lins, O G; Melges, D B; Tierra-Criollo, C J

    2016-09-01

    This study aimed to investigate the efficiency of Magnitude Squared Coherence (MSC) and Spectral F test (SFT) for the detection of auditory steady state responses (ASSR) obtained by amplitude-modulated noises. Twenty individuals (12 women) without any history of neurological or audiological diseases, aged from 18 to 59 years (mean ± standard deviation = 26.45 ± 3.9 years), who provided written informed consent, participated in the study. The Audiostim system was used for stimulating and ASSR recording. The tested stimuli were amplitude-modulated Wide-band noise (WBN), Low-band noise (LBN), High-band noise (HBN), Two-band noise (TBN) between 77 and 110 Hz, applied in intensity levels of 55, 45, and 25 dB sound pressure level (SPL). MSC and SFT, two statistical-based detection techniques, were applied with a significance level of 5%. Detection times and rates were compared using the Friedman test and Tukey-Kramer as post hoc analysis. Also based on the stimulation parameters (stimuli types and intensity levels) and detection techniques (MSC or SFT), 16 different pass/fail protocols, for which the true negatives (TN) were calculated. The median detection times ranged from 68 to 157s for 55 dB SPL, 68-99s for 45 dB SPL, and 84-118s for 25 dB SPL. No statistical difference was found between MSC and STF considering the median detection times (p > 0.05). The detection rates ranged from 100% to 55.6% in 55 dB SPL, 97.2%-38.9% in 45 dB SPL and 66.7%-8.3% in 25 dB SPL. Also for detection rates, no statistical difference was observed between MSC and STF (p > 0.05). True negatives (TN) above 90% were found for Protocols that employed WBN or HBN, at 55 dB SPL or that used WBN or HBN, at 45 dB SPL. For Protocols employing TBN, at 55 dB SPL or 45 dB SPL TN below 60% were found due to the low detection rates of stimuli that included low-band frequencies. The stimuli that include high-frequency content showed higher detection rates (>90%) and lower detection times (<3 min). The noise composed by two bands applied separately (TBN) is not feasible for clinical applications since it requires prolonging the exam duration, and also led to a reduced percentage of true negatives. On the other hand, WBN and HBN achieved high detection performance and high TN and should be investigated to implement pass/fail protocol for hearing screening with clinical population. Finally, both WBN and HBN seemed to be indifferent to the employed technique (SFT or MSC), which can be seen as another advantage of ASSR employment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  20. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  1. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  2. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  3. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  4. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  5. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  6. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  7. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  8. Heat transfer analysis of cylindrical anaerobic reactors with different sizes: a heat transfer model.

    PubMed

    Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu

    2017-10-01

    The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.

  9. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  10. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  11. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  12. Reactor pressure vessel head vents and methods of using the same

    DOEpatents

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  13. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  14. 10 CFR 52.167 - Issuance of manufacturing license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...

  15. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.

  16. Process and apparatus for adding and removing particles from pressurized reactors

    DOEpatents

    Milligan, John D.

    1983-01-01

    A method for adding and removing fine particles from a pressurized reactor is provided, which comprises connecting the reactor to a container, sealing the container from the reactor, filling the container with particles and a liquid material compatible with the reactants, pressurizing the container to substantially the reactor pressure, removing the seal between the reactor and the container, permitting particles to fall into or out of the reactor, and resealing the container from the reactor. An apparatus for adding and removing particles is also disclosed.

  17. Effects of imperfect mixing on low-density polyethylene reactor dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, C.M.; Dihora, J.O.; Ray, W.H.

    1998-07-01

    Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less

  18. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    PubMed

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  19. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  20. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  1. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  2. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  3. KINETICS OF TREAT USED AS A TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C.E.; Johnson, R.D.; Gasidlo, J.

    1962-05-01

    An analysis is presented concerning the reactor kinetics of TREAT used as a pulsed, engineering test reactor for fast reactor fuel element studies. A description of the reactor performance is given for a wide range of conditions associated with its use as a test reactor. Supplemental information on meltdown experimentation is included. (J.R.D.)

  4. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  5. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  6. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  7. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  8. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  9. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  10. METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS

    DOEpatents

    Reed, G.A.

    1961-01-10

    A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.

  11. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  12. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  13. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  14. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor.

    PubMed

    Elmitwalli, Tarek A; Sklyar, Vladimir; Zeeman, Grietje; Lettinga, Gatze

    2002-05-01

    The pre-treatment of domestic sewage for removal of suspended solids (SS) at a process temperature of 13 degrees C and an hydraulic retention time (HRT) of 4 h was investigated in an anaerobic filter (AF) and anaerobic hybrid (AH) reactor. The AF and the top of the AH reactor consisted of vertical sheets of reticulated polyurethane foam (RPF) with knobs. All biomass in the AF was only in attached form to avoid clogging and sludge washout. The AF reactor showed a significantly higher removal of total and suspended chemical oxygen demand (COD) than the AH reactor, respectively, 55% and 82% in the AF reactor and 34% and 53% in the AH reactor. Because the reactors were operated at a short HRT and low temperature, the hydrolysis, acidification and methanogenesis based on the influent COD were limited to, respectively, 12%, 21% and 23% for the AF reactor and 12%, 17% and 16% for the AH reactor. The excess sludge from the AH reactor was more stabilised and had a better settling capacity and dewaterability. However, the excess sludge from both the AH and AF reactors needed stabilisation. Therefore, the AF reactor is recommended for the pretreatment of domestic sewage at low temperatures.

  15. Nuclear reactor cavity floor passive heat removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluidmore » communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.« less

  16. Methods and apparatuses for deoxygenating pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less

  17. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  18. Insights into the anticancer properties of the first antimicrobial peptide from Archaea.

    PubMed

    Gaglione, Rosa; Pirone, Luciano; Farina, Biancamaria; Fusco, Salvatore; Smaldone, Giovanni; Aulitto, Martina; Dell'Olmo, Eliana; Roscetto, Emanuela; Del Gatto, Annarita; Fattorusso, Roberto; Notomista, Eugenio; Zaccaro, Laura; Arciello, Angela; Pedone, Emilia; Contursi, Patrizia

    2017-09-01

    The peptide VLL-28, identified in the sequence of an archaeal protein, the transcription factor Stf76 from Sulfolobus islandicus, was previously identified and characterized as an antimicrobial peptide, possessing a broad-spectrum antibacterial activity. Through a combined approach of NMR and Circular Dichroism spectroscopy, Dynamic Light Scattering, confocal microscopy and cell viability assays, the interaction of VLL-28 with the membranes of both parental and malignant cell lines has been characterized and peptide mechanism of action has been studied. It is here demonstrated that VLL-28 selectively exerts cytotoxic activity against murine and human tumor cells. By means of structural methodologies, VLL-28 interaction with the membranes has been proven and the binding residues have been identified. Confocal microscopy data show that VLL-28 is internalized only into tumor cells. Finally, it is shown that cell death is mainly caused by a time-dependent activation of apoptotic pathways. VLL-28, deriving from the archaeal kingdom, is here found to be endowed with selective cytotoxic activity towards both murine and human cancer cells and consequently can be classified as an ACP. VLL-28 represents the first ACP identified in an archaeal microorganism, exerting a trans-kingdom activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    PubMed

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Design of an artificial photosynthetic system for production of alcohols in high concentration from CO 2

    DOE PAGES

    Singh, Meenesh R.; Bell, Alexis T.

    2015-11-06

    Artificial photosynthesis of liquid fuels is a potential source for clean energy. Alcohols are particularly attractive products because of their high energy density and market value per amount of energy input. The major challenges in photo/electrochemical synthesis of alcohols from sunlight, water and CO 2 are low product selectivity, high membrane fuel-crossover losses, and high cost of product separation from the electrolyte. Here we propose an artificial photosynthesis scheme for direct synthesis and separation to almost pure ethanol with minimum product crossover using saturated salt electrolytes. The ethanol produced in the saturated salt electrolytes can be readily phase separated intomore » a microemulsion, which can be collected as pure products in a liquid–liquid extractor. A novel design of an integrated artificial photosynthetic system is proposed that continuously produces >90 wt% pure ethanol using a polycrystalline copper cathode at a current density of 0.85 mA cm -2. The annual production rate of >90 wt% ethanol using such a photosynthesis system operating at 10 mA cm -2 (12% solar-to-fuel (STF) efficiency) can be 15.27 million gallons per year per square kilometer, which corresponds to 7% of the industrial ethanol production capacity of California.« less

  1. The effect of cap lamp lighting on postural control and stability

    PubMed Central

    Sammarco, John J.; Pollard, Jonisha P.; Porter, William L.; Dempsey, Patrick G.; Moore, Caitlin T.

    2015-01-01

    Researchers at the National Institute for Occupational Safety and Health (NIOSH) are conducting mine illumination research with the objective of improving miner safety. Slips, trips, and falls (STFs) are the second leading accident class (18.1%, n = 2,374) of nonfatal lost-time injuries at underground mines (MSHA, 2005–2009). Factors contributing to STFs include recognition of hazards as well as postural balance and age. Improved lighting may enable better hazard recognition and reduce the impact of postural balance and age. Previous research has shown that cap lamp technology that used light-emitting diodes (LEDs) has improved hazard detection. This study was an initial investigation to determine if cap lamp lighting significantly influences measures of static postural stability (displacement and velocity of center of pressure). Results of this investigation showed no significant differences in the balance measures of interest between cap lamps tested. However, balance was shown to significantly decline (p < 0.05) when tested in an underground coal mine compared to the laboratory testing condition. Relevance to industry: Underground coal mine workers wear cap lamps on their hard hats as their primary light source to illuminate nearby areas where their vision is directed. Proper illumination may improve miner safety by improving their STF hazard recognition and balance. PMID:26472917

  2. Design of an artificial photosynthetic system for production of alcohols in high concentration from CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenesh R.; Bell, Alexis T.

    Artificial photosynthesis of liquid fuels is a potential source for clean energy. Alcohols are particularly attractive products because of their high energy density and market value per amount of energy input. The major challenges in photo/electrochemical synthesis of alcohols from sunlight, water and CO 2 are low product selectivity, high membrane fuel-crossover losses, and high cost of product separation from the electrolyte. Here we propose an artificial photosynthesis scheme for direct synthesis and separation to almost pure ethanol with minimum product crossover using saturated salt electrolytes. The ethanol produced in the saturated salt electrolytes can be readily phase separated intomore » a microemulsion, which can be collected as pure products in a liquid–liquid extractor. A novel design of an integrated artificial photosynthetic system is proposed that continuously produces >90 wt% pure ethanol using a polycrystalline copper cathode at a current density of 0.85 mA cm -2. The annual production rate of >90 wt% ethanol using such a photosynthesis system operating at 10 mA cm -2 (12% solar-to-fuel (STF) efficiency) can be 15.27 million gallons per year per square kilometer, which corresponds to 7% of the industrial ethanol production capacity of California.« less

  3. When Do Commercial Reactors Permanently Shut Down?

    EIA Publications

    2011-01-01

    For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

  4. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  5. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  6. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  7. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  8. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  9. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less

  10. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid.

    PubMed

    Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina

    2009-06-01

    A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.

  11. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    PubMed

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better performance of the thermophilic reactor. Copyright © 2018. Published by Elsevier Ltd.

  12. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  13. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  14. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  15. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  16. Operators in the Plum Brook Reactor Facility Control Room

    NASA Image and Video Library

    1970-03-21

    Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.

  17. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  18. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  19. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  20. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  1. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  2. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  3. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  4. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  5. Demonstration of Robustness and Integrated Operation of a Series-Bosch System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent

    2016-01-01

    Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.

  6. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  7. The role of nuclear reactors in space exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. Onemore » reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built and flew space reactors; it is time to do so again.« less

  8. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.

  9. 10 CFR 72.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...

  10. 10 CFR 72.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...

  11. Unmixed fuel processors and methods for using the same

    DOEpatents

    Kulkarni, Parag Prakash; Cui, Zhe

    2010-08-24

    Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.

  12. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.; Brummond, William A.

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  13. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  14. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  16. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  17. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  18. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  19. 97. ARAIII. ML1 reactor has been moved into GCRE reactor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. ARA-III. ML-1 reactor has been moved into GCRE reactor building (ARA-608) for examination of corrosion on its underside and repair. May 24, 1963. Ineel photo no. 63-3485. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  20. NEUTRONIC REACTOR MANIPULATING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1962-08-01

    A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

  1. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  2. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY: The U.S..., Revision 10, ``Operator Licensing Examination Standards for Power Reactors.'' DATES: Submit comments [email protected] . Both of the Office of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U...

  3. 76 FR 55718 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor...'' for reactor coolant system (RCS) components, as mentioned in 10 CFR 50 Appendix A, GDC-4. The...

  4. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  5. 75 FR 58449 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor... would result in a major inconvenience. Dated: September 17, 2010. Antonio Dias, Chief, Reactor Safety...

  6. 151. ARAIII Reactor building (ARA608) Details of reactor pit and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  7. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...

  8. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  10. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  11. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  12. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  13. A Review of Gas-Cooled Reactor Concepts for SDI Applications

    DTIC Science & Technology

    1989-08-01

    710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests

  14. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  15. Function of university reactors in operator licensing training for nuclear utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1985-11-01

    The director of the Division of the US Nuclear Regulatory Commission in generic letter 84-10, dated April 26, 1984, spoke the requirement that applicants for senior reactor operator licenses for power reactors shall have performed then reactor startups. Simulator startups were not acknowledged. Startups performed on a university reactor are acceptable. The content and results of a five-day program combining instruction and experiments with the Rensselaer reactor are summarized.

  16. Numerical Simulations of a 96-rod Polysilicon CVD Reactor

    NASA Astrophysics Data System (ADS)

    Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang

    2018-05-01

    With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.

  17. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  18. Characteristics and Dose Levels for Spent Reactor Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W

    2007-01-01

    Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less

  19. Comparing the new generation accelerator driven subcritical reactor system (ADS) to traditional critical reactors

    NASA Astrophysics Data System (ADS)

    Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza

    2017-02-01

    In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.

  20. Reactor operation environmental information document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselow, J.S.; Price, V.; Stephenson, D.E.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimalmore » impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.« less

  1. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anodemore » of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.« less

  3. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  4. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  5. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  6. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  7. A comparison of the technological effectiveness of dairy wastewater treatment in anaerobic UASB reactor and anaerobic reactor with an innovative design.

    PubMed

    Jedrzejewska-Cicinska, M; Kozak, K; Krzemieniewski, M

    2007-10-01

    The present research was an investigation of the influence of an innovative design of reactor filled with polyethylene (PE) granulate on model dairy wastewater treatment efficiency under anaerobic conditions compared to that obtained in a typical UASB reactor. The experiment was conducted at laboratory scale. An innovative reactor was designed with the reaction chamber inclined 30 degrees in relation to the ground with upward waste flow and was filled with PE granular material. Raw model dairy wastewater was fed to two anaerobic reactors of different design at the organic loading rate of 4 kg COD m(-3)d(-1). Throughout the experiment, a higher removal efficiency of organic compounds was observed in the reactor with an innovative design and it was higher by 7.1% on average than in the UASB reactor. The total suspended solids was lower in the wastewater treated in the anaerobic reactor with the innovative design. Applying a PE granulated filling in the chamber of the innovative reactor contributed to an even distribution of sludge biomass in the reactor, reducing washout of anaerobic sludge biomass from the reaction chamber and giving a higher organic compounds removal efficiency.

  8. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  9. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  10. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  11. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  12. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOEpatents

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  13. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOEpatents

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  14. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  15. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  16. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-09-29

    to design a smaller scale version of a naval pressurized water reactor , or to design a new reactor type potentially using a thorium liquid salt...integrated nuclear power system capable of use on destroyer- sized vessels either using a pressurized water reactor or a thorium liquid salt reactor ...nuclear reactors for Navy surface ships. The text of Section 246 is as follows: SEC. 246. STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES

  17. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  18. Modification of UASB reactor by using CFD simulations for enhanced treatment of municipal sewage.

    PubMed

    Das, Suprotim; Sarkar, Supriya; Chaudhari, Sanjeev

    2018-02-01

    Up-flow anaerobic sludge blanket (UASB) has been in use since last few decades for the treatment of organic wastewaters. However, the performance of UASB reactor is quite low for treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. In the present research work, a modification was done in the design of UASB to improve mixing of reactor liquid which is important to enhance the reactor performance. The modified UASB (MUASB) reactor was designed by providing a slanted baffle along the height of the reactor having an angle of 5.7° with the vertical wall. A two-dimensional computational fluid dynamics (CFD) simulation of three phase gas-liquid-solid flow in MUASB reactor was performed and compared with conventional UASB reactor. The CFD study indicated better mixing in terms of vorticity magnitude in MUASB reactor as compared to conventional UASB, which was reflected in the reactor performance. The performance of MUASB was compared with conventional UASB reactor for the onsite treatment of domestic sewage as LSW. Around 16% higher total chemical oxygen demand removal efficiency was observed in MUASB reactor as compared to conventional UASB during this study. Therefore, this MUASB model demonstrates a qualitative relationship between mixing and performance during the treatment of LSW. From the study, it seems that MUASB holds promise for field applications.

  19. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  20. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  1. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  2. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  3. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and... 20, 2012 (77 FR 42771), ``License Renewal for the Dow Chemical TRIGA Research Reactor,'' to inform... Chemical Company which would authorize continued operation of the Dow TRIGA Research Reactor. The notice...

  4. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...

  5. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...

  6. PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  8. 155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  9. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  10. Breeder Reactors, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  11. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  12. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  13. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  14. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  15. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  16. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  17. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  18. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less

  19. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  20. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  1. Reactor vibration reduction based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  2. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki; Anshari, Rio

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less

  3. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichman, K.; Tsao, J.; Mayfield, M.

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less

  5. Solution of heat removal from nuclear reactors by natural convection

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  6. Imaging Fukushima Daiichi reactors with muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi tomore » make this determination in the near future.« less

  7. Imaging Fukushima Daiichi reactors with muons

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.

    2013-05-01

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, F.C.; Gray, D.D.; Hyndman, J.R.

    The thermal, ecological, and social impacts of a 40-reactor NEC are compared to impacts from four 10-reactor NECs and ten 4-reactor power plants. The comparison was made for surrogate sites in western Tennessee. The surrogate site for the 40-reactor NEC is located on Kentucky Lake. A layout is postulated for ten clusters of four reactors each with 2.5-mile spacing between clusters. The plants use natural-draft cooling towers. A transmission system is proposed for delivering the power (48,000 MW) to five load centers. Comparable transmission systems are proposed for the 10-reactor NECs and the 4-reactor dispersed sites delivering power to themore » same load centers. (auth)« less

  9. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  10. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  11. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    NASA Astrophysics Data System (ADS)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  13. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    PubMed

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  14. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    The present plant protection system (PPS) has been defined for use in the TREAT-upgrade (TU) reactor for controlled transient operation of reactor-fuel behavior testing under simulated reactor-accident conditions. A PPS with energy-dependent trip set points lowered worst-case clad temperatures by as much as 180 K, relative to the use of conventional fixed-level trip set points. The multilayered multilevel protection strategy represents the state-of-the-art in terrestrial transient reactor protection systems, and should be applicable to multi-MW space reactors.

  15. Nuclear Energy Policy

    DTIC Science & Technology

    2009-12-10

    Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,

  16. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    PubMed

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  17. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less

  18. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  19. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. [FR Doc. 2013-08131 Filed 4-5-13; 8:45 am] BILLING CODE 7590-01-P ...

  20. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  1. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental...

  2. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  3. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...

  4. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  5. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note: A nuclear reactor... core of a nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2...

  6. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  7. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  8. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  9. Next generation fuel irradiation capability in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo

    2009-07-01

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  10. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    PubMed

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  12. Employing ISRU Models to Improve Hardware Design

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    2010-01-01

    An analytical model for hydrogen reduction of regolith was used to investigate the effects of several key variables on the energy and mass performance of reactors for a lunar in-situ resource utilization oxygen production plant. Reactor geometry, reaction time, number of reactors, heat recuperation, heat loss, and operating pressure were all studied to guide hardware designers who are developing future prototype reactors. The effects of heat recuperation where the incoming regolith is pre-heated by the hot spent regolith before transfer was also investigated for the first time. In general, longer reaction times per batch provide a lower overall energy, but also result in larger and heavier reactors. Three reactors with long heat-up times results in similar energy requirements as a two-reactor system with all other parameters the same. Three reactors with heat recuperation results in energy reductions of 20 to 40 percent compared to a three-reactor system with no heat recuperation. Increasing operating pressure can provide similar energy reductions as heat recuperation for the same reaction times.

  13. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  14. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less

  15. The IRIS Spool-Type Reactor Coolant Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujawski, J.M.; Kitch, D.M.; Conway, L.E.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the major reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long life core and enhanced safetymore » to address the requirements defined by the US DOE for Generation IV reactors. One of the innovative features of the IRIS design is the adoption of a reactor coolant pump (called 'spool' pump) which is completely contained inside the reactor vessel. Background, status and future developments of the IRIS spool pump are presented in this paper. (authors)« less

  16. 10 CFR 171.3 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding an operating license for a power reactor, test reactor or research reactor issued under part 50 of... authorizes operation of a power reactor. The regulations in this part also apply to any person holding a...

  17. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2017-12-21

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored.

  18. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  19. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Astrophysics Data System (ADS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-09-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  20. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  1. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  2. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  3. Plum Brook Reactor Facility Control Room during Facility Startup

    NASA Image and Video Library

    1961-02-21

    Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.

  4. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  5. Experiment for search for sterile neutrino at SM-3 reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  6. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  7. A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.

    1995-09-01

    This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.

  8. A Roadmap of Innovative Nuclear Energy System

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  9. SNAP 10A FS-3 reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, J.P.; Johnson, R.A.

    1966-08-15

    SNAP 10FS-3 was the first flight-qualified SNAP reactor system to be operated in a simulated space environment. Prestart-up qualification testing, automatic start-up, endurance period performance, extended operation test and reactor shutdown are described as they affected, or were affected by, overall reactor performance. Performance of the reactor control system and the diagnostic instrumentation is critically evaluted.

  10. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  11. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  12. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  13. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as...) The Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation... of Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the...

  14. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

    PubMed Central

    Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067

  15. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    PubMed

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  16. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, J.

    1996-02-20

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  17. Pressurized fluidized bed reactor and a method of operating the same

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  18. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  19. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  20. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  1. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  2. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.

    This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less

  3. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  4. Reactor vessel support system. [LMFBR

    DOEpatents

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  5. NUCLEAR REACTOR AS THE OBJECT OF CONTROL. AUTOMATIC CONTROL OF AIRCRAFT ENGINES . B.S. Voronkev Collection of Articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BS> The dynamics of a power reactor is treated in some detail. Although the reactor is described by a nonlinear differential equation of the seventh order, a two-group approximstion with prompt neutrons and one averaged group of delayed neutrons may be used. When the reactor is in equilibrium, the reactor equation may be linearized in two ways. The effects of positive and negative coefficients of tins of the reactor are discussed. The nonlinear character of the control rods is trested. (D.L.C.)

  6. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  7. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  8. Special features of the inverse-beta-decay reaction proceeding on a proton in a reactor-antineutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopeikin, V. I., E-mail: kopeikin46@yandex.ru; Skorokhvatov, M. D., E-mail: skorokhvatov-md@nrcki.ru

    2017-03-15

    The evolution of the reactor-antineutrino spectrum and the evolution of the spectrum of positrons from the inverse-beta-decay reaction in the course of reactor operation and after reactor shutdown are considered. The present-day status in determining the initial reactor-antineutrino spectrum on the basis of spectra of beta particles from mixtures of products originating from uranium and plutonium fission is described. A local rise of the experimental spectrum of reactor antineutrinos with respect to the expected spectrum is studied.

  9. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  10. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  11. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  12. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  13. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  14. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  15. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  16. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  17. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less

  18. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  19. A brief history of design studies on innovative nuclear reactors

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  20. WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Looking Northeast in Oxide Building at Reactors on Second Floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast in Oxide Building at Reactors on Second Floor Including Reactor One (Left) and Reactor Two (Right) - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO

  2. Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi

    1997-09-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.

  3. High throughput semiconductor deposition system

    DOEpatents

    Young, David L.; Ptak, Aaron Joseph; Kuech, Thomas F.; Schulte, Kevin; Simon, John D.

    2017-11-21

    A reactor for growing or depositing semiconductor films or devices. The reactor may be designed for inline production of III-V materials grown by hydride vapor phase epitaxy (HVPE). The operating principles of the HVPE reactor can be used to provide a completely or partially inline reactor for many different materials. An exemplary design of the reactor is shown in the attached drawings. In some instances, all or many of the pieces of the reactor formed of quartz, such as welded quartz tubing, while other reactors are made from metal with appropriate corrosion resistant coatings such as quartz or other materials, e.g., corrosion resistant material, or stainless steel tubing or pipes may be used with a corrosion resistant material useful with HVPE-type reactants and gases. Using HVPE in the reactor allows use of lower-cost precursors at higher deposition rates such as in the range of 1 to 5 .mu.m/minute.

  4. Nuclear reactor vessel fuel thermal insulating barrier

    DOEpatents

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  5. Nuclear reactors built, being built, or planned, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor ismore » an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  6. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  7. Safety control circuit for a neutronic reactor

    DOEpatents

    Ellsworth, Howard C.

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  8. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoj, L.; Sklenka, L.; Rataj, J.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less

  9. Eddy Current Flow Measurements in the FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less

  10. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  11. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  12. Double-clad nuclear-fuel safety rod

    DOEpatents

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  13. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  14. U.S. Nuclear Cooperation with India: Issues for Congress

    DTIC Science & Technology

    2008-11-03

    separation list: ! 8 indigenous Indian power reactors ! Fast Breeder test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction...facilities like reprocessing and enrichment plants and breeder reactors could be viewed as providing a significant nonproliferation benefit because the... breeder reactors would support the 2002 U.S. National Strategy to Combat Weapons of Mass Destruction, in which the United States pledged to “continue to

  15. U.S. Nuclear Cooperation with India: Issues for Congress

    DTIC Science & Technology

    2008-10-02

    8 indigenous Indian power reactors ! Fast Breeder test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction ! Enrichment... breeder reactors could be viewed as providing a significant nonproliferation benefit because the materials produced by these plants are a few steps closer...to potential use in a bomb. In addition, safeguards on enrichment, reprocessing plants, and breeder reactors would support the 2002 U.S. National

  16. BUILDING FOR THE EXPERIMENTAL SWIMMING POOL REACTOR OF 3Mw OF THE JUNTA DE ENERGIA NUCLEAR (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Camara, S.N.

    1958-10-01

    The Spanish experimental swimming pool reactor is constructed on the grounds of the Ciudad Universitaria de Madrid. A general layout of the reactor building and its annexes is given, and the reactor building itself is described. The construction of the reactor building and the characteristics of the annex building are discussed. (J.S.R.)

  17. PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.L.

    1961-02-01

    BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less

  18. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain results and guide the operation with this fast strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  20. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    DOE PAGES

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; ...

    2015-06-18

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. Themore » particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.« less

  1. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  2. Fail-safe reactivity compensation method for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on themore » constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.« less

  3. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  4. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  5. Extension of the TRANSURANUS burnup model to heavy water reactor conditions

    NASA Astrophysics Data System (ADS)

    Lassmann, K.; Walker, C. T.; van de Laar, J.

    1998-06-01

    The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.

  6. METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED

    DOEpatents

    Levey, R.P. Jr.; Fowler, A.H.

    1961-12-12

    A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)

  7. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less

  8. Aerosol reactor production of uniform submicron powders

    NASA Technical Reports Server (NTRS)

    Flagan, Richard C. (Inventor); Wu, Jin J. (Inventor)

    1991-01-01

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  9. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide.

    PubMed

    Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W

    2014-04-01

    The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Control console replacement at the WPI Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  11. Aerosol reactor production of uniform submicron powders

    DOEpatents

    Flagan, Richard C.; Wu, Jin J.

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  12. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  13. Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor.

    PubMed

    Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi

    Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.

  14. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    NASA Astrophysics Data System (ADS)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  15. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiawati, Nina, E-mail: nina-widiawati28@yahoo.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uraniummore » fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.« less

  16. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  17. 10 CFR 2.102 - Administrative review of application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of...) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office... Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance...

  18. 10 CFR 2.102 - Administrative review of application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of...) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office... Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance...

  19. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  20. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-06-10

    scale pressurized water reactors suitable for destroyer-sized vessels or for alternative nuclear power systems using thorium liquid salt technology...or to design a new reactor type potentially using a thorium liquid salt reactor developed for maritime use. The committee recommends an increase of...either using a pressurized water reactor or a thorium liquid salt reactor . (Page 158) Senate The Senate Armed Services Committee, in its report

  1. Reactor monitoring using antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  2. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  3. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Colston, Jr, Billy W.

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  4. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The paper summarizes the results obtained in an exploratory evaluation of ceramics for automobile thermal reactors. Candidate ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance, lasting 1100 hours in engine dynamometer tests and for more than 38,600 kilimeters (24,000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  5. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The results obtained in an exploratory evaluation of ceramics for automobile thermal reactors are summarized. Candidate ceramic materials were evaluated in several reactor designs by using both engine-dynamometer and vehicle road tests. Silicon carbide contained in a corrugated-metal support structure exhibited the best performance, lasting 1100 hr in engine-dynamometer tests and more than 38,600 km (24000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as those containing silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  6. On Study of Application of Micro-reactor in Chemistry and Chemical Field

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2018-02-01

    Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.

  7. The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.

    2009-09-15

    The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

  8. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  9. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.

    PubMed

    Sundberg, Carina; Al-Soud, Waleed A; Larsson, Madeleine; Alm, Erik; Yekta, Sepehr S; Svensson, Bo H; Sørensen, Søren J; Karlsson, Anna

    2013-09-01

    The microbial community of 21 full-scale biogas reactors was examined using 454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (six mesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilic and four thermophilic) codigesting (CD) various combinations of wastes from slaughterhouses, restaurants, households, etc. The pyrosequencing generated more than 160,000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria and Archaea. The bacterial community was always both more abundant and more diverse than the archaeal community. At the phylum level, the foremost populations in the SS reactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, and Euryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The main bacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected in the SS, but not in the CD reactors. Their absence suggests that methane formation from acetate takes place mainly via syntrophic acetate oxidation in the CD reactors. A principal component analysis of the communities at genus level revealed three clusters: SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), and thermophilic CD reactors. Thus, the microbial composition was mainly governed by the substrate differences and the process temperature. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-05

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Enhanced biodegradation of hexachlorocyclohexane in upflow anaerobic sludge blanket reactor using methanol as an electron donor.

    PubMed

    Bhatt, Praveena; Kumar, M Suresh; Mudliar, Sandeep; Chakrabarti, Tapan

    2008-05-01

    Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, E. T.; Williams, M. M. R.; Angelo, P. L.

    Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W'smore » proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)« less

  13. Consumption of the electric power inside silent discharge reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehia, Ashraf, E-mail: yehia30161@yahoo.com

    An experimental study was made in this paper to investigate the relation between the places of the dielectric barriers, which cover the surfaces of the electrodes in the coaxial cylindrical reactors, and the rate of change of the electric power that is consumed in forming silent discharges. Therefore, silent discharges have been formed inside three coaxial cylindrical reactors. The dielectric barriers in these reactors were pasted on both the internal surface of the outer electrode in the first reactor and the external surface of the inner electrode in the second reactor as well as the surfaces of the two electrodesmore » in the third reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at normal temperature and pressure, in parallel with the application of a sinusoidal ac voltage between the electrodes of the reactor. The electric power consumed in forming the silent discharges inside the three reactors was measured as a function of the ac peak voltage. The validity of the experimental results was investigated by applying Manley's equation on the same discharge conditions. The results have shown that the rate of consumption of the electric power relative to the ac peak voltage per unit width of the discharge gap improves by a ratio of either 26.8% or 80% or 128% depending on the places of the dielectric barriers that cover the surfaces of the electrodes inside the three reactors.« less

  14. Reactor Operations Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M.M.

    1989-01-01

    The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less

  15. A brief history of design studies on innovative nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USAmore » and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.« less

  16. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 75 FR 21046 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the... on Reactor Safeguards (ACRS) will hold a meeting on May 6-8, 2010, 11545 Rockville Pike, Rockville....: Boiling Water Reactor (BWR) Owners Group (BWROG) Topical Report NEDC-33347P, ``Containment Overpressure...

  18. Thermionic reactors for space nuclear power

    NASA Technical Reports Server (NTRS)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  19. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  20. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

Top