Wolf, H; Bässler, U; Spiess, R; Kittmann, R
2001-11-01
The extremely slow return movements observed in stick insects (phasmids) after imposed changes in posture are termed catalepsy. In the literature, catalepsy is treated as a behavioural component of the twig mimesis observed in walking stick insects. It is produced by the high gain of the velocity-sensitive component of the relevant joint control systems and by the non-linear dependency of its time constant on movement velocity. The high gain, in turn, causes the system to work close to instability, and this may have driven the evolution of gain control mechanisms. Although these statements represent plausible assumptions, based on correlated occurrence, they remain largely hypothetical like many ideas concerning evolutionary tendencies. To test these hypotheses, we studied catalepsy and the relevant properties of the femur-tibia control system in the middle and hind legs of Prosarthria teretrirostris.cf. Prosarthria teretrirostris is a proscopiid closely related to grasshoppers and locusts. With its slender, green-to-brown body and legs, it shows clear morphological twig mimesis, which has evolved independently of the well-known twig mimesis in stick insects. The animals show clear catalepsy. The main properties of femur-tibia joint control are remarkably similar between proscopiids and stick insects (e.g. the marked sensitivity to movement velocity rather than to joint position and the non-linear dependency of the time constants of response decay on movement velocity), but there are also important differences (habituation and activity-related mechanisms of gain control are absent). Together, these results validate the main concepts that have been developed concerning the neural basis and evolution of catalepsy in stick insects and its relationship to twig mimesis, while demonstrating that ideas on the role of habituation and gain control should be refined.
Natural selection and the predictability of evolution in Timema stick insects.
Nosil, Patrik; Villoutreix, Romain; de Carvalho, Clarissa F; Farkas, Timothy E; Soria-Carrasco, Víctor; Feder, Jeffrey L; Crespi, Bernard J; Gompert, Zach
2018-02-16
Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time ( r 2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection ( r 2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida).
Milani, Liliana; Ghiselli, Fabrizio; Pellecchia, Marco; Scali, Valerio; Passamonti, Marco
2010-08-25
Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well.
Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida)
2010-01-01
Background Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Results Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. Conclusion On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well. PMID:20738851
Maginnis, Tara L
2006-07-22
Major morphological structures are sometimes produced not once, but twice. For example, stick insects routinely shed legs to escape a predator or tangled moult, and these legs are subsequently re-grown. Here, I show that in Sipyloidea sipylus, re-growth of a leg during development causes adults to have disproportionately smaller wings and increases wing loading. These morphological consequences of leg regeneration led to significant reductions in several biologically relevant measures of individual flight performance. This previously unrecognized tradeoff between legs and wings reveals the integrated nature of phasmid phenotypes, and I propose how this tradeoff may have shaped phasmid evolution.
A fundamental approach to the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Eiss, N. S.; Wightman, J. P.
1988-01-01
The aircraft industry is concerned with the increase of drag on planes due to the sticking of insects on critical airfoil areas. The objectives of the present study were to investigate the effects of surface energy and elasticity on the number of insects sticking onto the polymer coatings on a modified aircraft wing and to determine the mechanism by which insects stick onto surfaces during high velocity impact. Analyses including scanning electron microscopy, electron spectroscopy for chemical analysis and contact angle measurements of uncoated and polymer coated aluminum surfaces were performed. A direct relation between the number of insects sticking on a sample and its surface energy was obtained. Since the sticky liquid from a burst open insect will not spread on the low energy surface, it will ball up providing poor adhesion between the insect debris and the surface. The incoming air flow can easily blow off the insect debris and thus reducing the number of insects that remain stuck on the surface. Also a direct relation between the number of insect sticking onto a surface and their modulus of elasticity was obtained.
Consequences of Asexuality in Natural Populations: Insights from Stick Insects.
Bast, Jens; Parker, Darren J; Dumas, Zoé; Jalvingh, Kirsten M; Tran Van, Patrick; Jaron, Kamil S; Figuet, Emeric; Brandt, Alexander; Galtier, Nicolas; Schwander, Tanja
2018-07-01
Recombination is a fundamental process with significant impacts on genome evolution. Predicted consequences of the loss of recombination include a reduced effectiveness of selection, changes in the amount of neutral polymorphisms segregating in populations, and an arrest of GC-biased gene conversion. Although these consequences are empirically well documented for nonrecombining genome portions, it remains largely unknown if they extend to the whole genome scale in asexual organisms. We identify the consequences of asexuality using de novo transcriptomes of five independently derived, obligately asexual lineages of stick insects, and their sexual sister-species. We find strong evidence for higher rates of deleterious mutation accumulation, lower levels of segregating polymorphisms and arrested GC-biased gene conversion in asexuals as compared with sexuals. Taken together, our study conclusively shows that predicted consequences of genome evolution under asexuality can indeed be found in natural populations.
An enigmatic new stick insect from the Philippine Islands (Insecta: Phasmatodea).
Gottardo, Marco; Heller, Philipp
2012-09-01
A new genus and species of stick insect is described and figured from Mount Halcon, on the Philippine island of Mindoro. Conlephasma enigma gen. et sp. n. is a stout, flightless, and apparently ground-dwelling species with vivid integumental colors. When disturbed, specimens spray a defensive secretion from the prothoracic exocrine glands. The systematic position of Conlephasma within Euphasmatodea is unclear. The elongated galealobulus and the trichome area located laterally in the galea, represent unusual apomorphic characters of the maxilla that could indicate affinities with Necrosciinae or Pseudophasmatinae. All tibiae exhibit the anareolate condition. Euplantulae are of two types: those of tarsomeres I-IV feature a nubby microstructure, whilst the one on the ventral side of the pretarsus is smooth. Males are characterized by the presence of a well-developed vomer on the tenth abdominal segment. A distinctive and apomorphic trait of female terminalia is represented by the elongated tenth abdominal tergum. Conlephasma can represent an interesting taxon for studies on the evolution of the stick and leaf insects. Copyright © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Martoni, Francesco; Eickbush, Danna G.; Scavariello, Claudia; Luchetti, Andrea; Mantovani, Barbara
2015-01-01
R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5’ end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s). Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun) as well as a full-length but degenerate element (R2Brdeg). An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements) are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution. PMID:25799008
Shelomi, Matan; Danchin, Etienne G. J.; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick
2016-01-01
Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects’ digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832
Wu, Chen; Twort, Victoria G; Crowhurst, Ross N; Newcomb, Richard D; Buckley, Thomas R
2017-11-16
Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.
Factors affecting the sticking of insects on modified aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Chitsaz-Z, M. R.; Eiss, N. S.; Wightman, J. P.
1987-01-01
Past studies have shown that the surface energy of a polymer coating has an important effect on the sticking of insects to the surface. However, mechanical properties of polymer coatings such as elasticity may also be important. A further study is suggested using polymer coatings of known surface energy and modulus so that a better understanding of the mechanism of the sticking of insects to surfaces can be achieved. As the first step for the study, surface analysis and road tests were performed using elastomers having different energies and different moduli. The number of insects sticking to each elastomer was counted and compared from sample to sample and with a control (aluminum). An average height moment was also calculated and comparisons made between samples.
Tinti, Fausto; Scali, Valerio
1996-06-01
Populations of unisexual organisms are often assumed to be genetically invariant (clones) and destined to a short existence on an evolutionary timescale. Unisexual organisms are most often obligate parthenogens and, by definition, ought to be completely isolated reproductively from related bisexual organisms. The assumption of complete reproductive isolation between amphimictic ancestors and thelytokous hybrids is common to most hypotheses on the evolution of sex and its adaptive significance. Stick insects of the genus Bacillus however provide evidence for reproductive interactions between allodiploid parthenogens and their ancestors, because pure species progeny (androgenetics) and triploid descendants are produced. These findings demonstrate that, through androgenesis, offspring of parthenogenetic hybrid females can contribute specimens of both sexes to the fathering species when fertilized by syntopic ancestral males and the parthenogenetic egg of strictly clonal females, when fertilized, allows a third genome to be added to the allodiploid chromosome set. These triploid genomes promote further genetic diversification and evolution of the unisexual populations through the formation of new clones by recombination during the changed maturation mode of allotriploid eggs. All this argues for much more complex breeding systems and evolutionary pathways than are usually assumed for hybrid unisexual organisms. © 1996 The Society for the Study of Evolution.
A fundamental approach to the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Eiss, N. S., Jr.; Wightman, J. P.
1983-01-01
The sticking of insect residues to aircraft wings is investigated. The major topics of this review are: Experimentally tested methods, testing techniques, the effect of surface roughness height on aerodynamic drag, materials tested and, the adhesive properties of insect body fluids are reviewed.
A fundamental study of the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Eiss, N. S., Jr.; Wightman, J. P.; Gilliam, D. R.; Siochi, E. J.
1985-01-01
The aircraft industry has long been concerned with the increase of drag on airplanes due to fouling of the wings by insects. The present research studied the effects of surface energy and surface roughness on the phenomenon of insect sticking. Aluminum plates of different roughnesses were coated with thin films of polymers with varying surface energies. The coated plates were attached to a custom jig and mounted on top of an automobile for insect collection. Contact angle measurements, X-ray photoelectron spectroscopy and specular reflectance infrared spectroscopy were used to characterize the surface before and after the insect impact experiments. Scanning electron microscopy showed the topography of insect residues on the exposed plates. Moments were calculated in order to find a correlation between the parameters studied and the amount of bugs collected on the plates. An effect of surface energy on the sticking of insect residues was demonstrated.
Factors affecting the sticking of insects on modified aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Chitsaz-Z, M. R.; Eiss, N. S.; Wightman, J. P.
1988-01-01
Previous work showed that the total number of insects sticking to an aluminum surface was reduced by coating the aluminum surface with elastomers. Due to a large number of possible experimental errors, no correlation between the modulus of elasticity, the elastomer, and the total number of insects sticking to a given elastomer was obtained. One of the errors assumed to be introduced during the road test is a variable insect flux so the number of insects striking one surface might be different from that striking another sample. To eliminate this source of error, the road test used to collect insects was simulated in a laboratory by development of an insect impacting technique using a pipe and high pressure compressed air. The insects are accelerated by a compressed air gun to high velocities and are then impacted with a stationary target on which the sample is mounted. The velocity of an object exiting from the pipe was determined and further improvement of the technique was achieved to obtain a uniform air velocity distribution.
STICK INSECT CHEMICAL DEFENSES: POTENTIAL FOR USEFUL CHEMISTRY (ORDER PHASMATODEA)
USDA-ARS?s Scientific Manuscript database
Insects make up the most numerous and diverse group of organisms on the planet, yet make up one of the least explored groups of organisms in natural products research (Dossey, A. T., Nat. Prod Rep. 2010, 27, 1737–1757). For about five years our stick insect chemical defense research has led to sever...
Büschges, A; Wolf, H
1995-05-01
1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.
Strauß, Johannes; Lakes-Harlan, Reinhard
2013-11-01
The subgenual organ is a scolopidial sense organ located in the tibia of many insects. In this study the neuroanatomy of the subgenual organ complex of stick insects is clarified for two species, Carausius morosus and Siyploidea sipylus. Neuronal tracing shows a subgenual organ complex that consists of a subgenual organ and a distal organ. There are no differences in neuroanatomy between the three thoracic leg pairs, and the sensory structures are highly similar in both species. A comparison of the neuroanatomy with other orthopteroid insects highlights two features unique in Phasmatodea. The subgenual organ contains a set of densely arranged sensory neurons in the anterior-ventral part of the organ, and a distal organ with 16-17 scolopidial sensilla in C. morosus and 20-22 scolopidial sensilla in S. sipylus. The somata of sensory neurons in the distal organ are organized in a linear array extending distally into the tibia, with only a few exceptions of closely associated neurons. The stick insect sense organs show a case of an elaborate scolopidial sense organ that evolved in addition to the subgenual organ. The neuroanatomy of stick insects is compared to that studied in other orthopteroid taxa (cockroaches, locusts, crickets, tettigoniids). The comparison of sensory structures indicates that elaborate scolopidial organs have evolved repeatedly among orthopteroids. The distal organ in stick insects has the highest number of sensory neurons known for distal organs so far. Copyright © 2013 Wiley Periodicals, Inc.
Factors affecting the sticking of insects on modified aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Chan, R.; Eiss, N. S.; Pingali, U.; Wightman, J. P.
1988-01-01
The adhesion of insects to aircraft wings is studied. Insects were collected in road tests in past studies and a large experimental error was introduced caused by the variability of insect flux. The presence of such errors has been detected by studying the insect distribution across an aluminum-strip covered half-cylinder mounted on the top of a car. After a nonuniform insect distribution (insect flux) was found from three road tests, a new arrangement of samples was developed. The feasibility of coating aircraft wing surfaces with polymers to reduce the number of insects sticking onto the surfaces was studied using fluorocarbon elastomers, styrene butadiene rubbers, and Teflon.
Labonte, David; Federle, Walter
2013-01-01
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal “heel” pads (euplantulae) and a pre-tarsal “toe” pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised “friction pads” that produce traction when pressed against the substrate, while arolia are “true” adhesive pads that stick to the substrate when activated by pulling forces. PMID:24349156
Wu, Chen; Crowhurst, Ross N; Dennis, Alice B; Twort, Victoria G; Liu, Shanlin; Newcomb, Richard D; Ross, Howard A; Buckley, Thomas R
2016-01-01
Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.
Mantziaris, Charalampos; Bockemühl, Till; Holmes, Philip; Borgmann, Anke; Daun, Silvia; Büschges, Ansgar
2017-10-01
To efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons. NEW & NOTEWORTHY Maintaining functional interleg coordination is vitally important as animals locomote through changing environments. The relative importance of central mechanisms vs. sensory feedback in this process is not well understood. We analyzed coordination among the neural networks generating leg movements in stick insect preparations lacking phasic sensory feedback. Under these conditions, the networks governing different legs were only weakly coupled. In stick insect, central connections alone are thus insufficient to produce the leg coordination observed behaviorally. Copyright © 2017 the American Physiological Society.
von Twickel, Arndt; Büschges, Ansgar; Pasemann, Frank
2011-02-01
This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287-300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.
Aguiar, António M. F.; Pombo, Dora Aguin; Gonçalves, Ysabel M.
2014-01-01
Abstract Two species of stick insects are currently known to be present in the Macaronesian archipelagos: Clonopsis gallica (Charpentier) (Phasmatodea: Bacillidae) on the Canary Islands and in the Azores and Carausius morosus (Sinéty) (Phasmatidae) in the Azores. Here, we provide the first reliable records of the presence and distribution of C. gallica and C. morosus on Madeira Island. Egg and adult stages are briefly described along with some notes on the life history of these species in captivity. Data on islandwide distribution are based on specimens donated by the public in response to an article published in a daily newspaper. This method of data collection raised great popular interest in stick insects. The role of newspapers as a means of communicating awareness in biodiversity issues is discussed. PMID:25373196
Extreme convergence in egg-laying strategy across insect orders
Goldberg, Julia; Bresseel, Joachim; Constant, Jerome; Kneubühler, Bruno; Leubner, Fanny; Michalik, Peter; Bradler, Sven
2015-01-01
The eggs of stick and leaf insects (Phasmatodea) bear strong resemblance to plant seeds and are commonly dispersed by females dropping them to the litter. Here we report a novel egg-deposition mode for Phasmatodea performed by an undescribed Vietnamese species of the enigmatic subfamily Korinninae that produces a complex egg case (ootheca), containing numerous eggs in a highly ordered arrangement. This novel egg-deposition mode is most reminiscent of egg cases produced by members of unrelated insect orders, e.g. by praying mantises (Mantodea) and tortoise beetles (Coleoptera: Cassidinae). Ootheca production constitutes a striking convergence and major transition in reproductive strategy among stick insects, viz. a shift from dispersal of individual eggs to elaborate egg concentration. Adaptive advantages of ootheca formation on arboreal substrate are likely related to protection against parasitoids and desiccation and to allocation of specific host plants. Our phylogenetic analysis of nuclear (28S, H3) and mitochondrial (COI, COII) genes recovered Korinninae as a subordinate taxon among the species-rich Necrosciinae with Asceles as sister taxon, thus suggesting that placement of single eggs on leaves by host plant specialists might be the evolutionary precursor of ootheca formation within stick insects. PMID:25592976
Aguiar, António M F; Pombo, Dora Aguin; Gonçalves, Ysabel M
2014-04-10
Two species of stick insects are currently known to be present in the Macaronesian archipelagos: Clonopsis gallica (Charpentier) (Phasmatodea: Bacillidae) on the Canary Islands and in the Azores and Carausius morosus (Sinéty) (Phasmatidae) in the Azores. Here, we provide the first reliable records of the presence and distribution of C. gallica and C. morosus on Madeira Island. Egg and adult stages are briefly described along with some notes on the life history of these species in captivity. Data on islandwide distribution are based on specimens donated by the public in response to an article published in a daily newspaper. This method of data collection raised great popular interest in stick insects. The role of newspapers as a means of communicating awareness in biodiversity issues is discussed. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior
Wedmann, Sonja; Bradler, Sven; Rust, Jes
2007-01-01
Stick and leaf insects (insect order Phasmatodea) are represented primarily by twig-imitating slender forms. Only a small percentage (≈1%) of extant phasmids belong to the leaf insects (Phylliinae), which exhibit an extreme form of morphological and behavioral leaf mimicry. Fossils of phasmid insects are extremely rare worldwide. Here we report the first fossil leaf insect, Eophyllium messelensis gen. et sp. nov., from 47-million-year-old deposits at Messel in Germany. The new specimen, a male, is exquisitely preserved and displays the same foliaceous appearance as extant male leaf insects. Clearly, an advanced form of extant angiosperm leaf mimicry had already evolved early in the Eocene. We infer that this trait was combined with a special behavior, catalepsy or “adaptive stillness,” enabling Eophyllium to deceive visually oriented predators. Potential predators reported from the Eocene are birds, early primates, and bats. The combination of primitive and derived characters revealed by Eophyllium allows the determination of its exact phylogenetic position and illuminates the evolution of leaf mimicry for this insect group. It provides direct evidence that Phylliinae originated at least 47 Mya. Eophyllium enlarges the known geographical range of Phylliinae, currently restricted to southeast Asia, which is apparently a relict distribution. This fossil leaf insect bears considerable resemblance to extant individuals in size and cryptic morphology, indicating minimal change in 47 million years. This absence of evolutionary change is an outstanding example of morphological and, probably, behavioral stasis. PMID:17197423
INSECTS AND THEIR CHEMICAL WEAPONRY: GREAT POTENTIAL AND NEW DISCOVERIES FROM THE ORDER PHASMATODEA
USDA-ARS?s Scientific Manuscript database
With over 1,000,000 species of insects known, Class Insecta (Phyllum Arthropoda), the largest and most diverse group of organisms, is one of the least explored in natural product drug discovery (Dossey, A. T., Nat. Prod Rep. 2010, 27, 1737–1757). Over the past five our research stick insect chemical...
Louis F. Wilson
1964-01-01
The walkingstick, Diapheromera femorata (Say), is a defoliator of deciduous trees in North America. Because of its shape, this insect is also commonly called the stickbug, specter, stick insect, prairie alligator, devil's horse, witch's horse, devil's darning needle, thick- thighed walkingstick, or northern walkingstick, depending on locality.
2016-01-01
Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608
Positive selection in glycolysis among Australasian stick insects
2013-01-01
Background The glycolytic pathway is central to cellular energy production. Selection on individual enzymes within glycolysis, particularly phosphoglucose isomerase (Pgi), has been associated with metabolic performance in numerous organisms. Nonetheless, how whole energy-producing pathways evolve to allow organisms to thrive in different environments and adopt new lifestyles remains little explored. The Lanceocercata radiation of Australasian stick insects includes transitions from tropical to temperate climates, lowland to alpine habitats, and winged to wingless forms. This permits a broad investigation to determine which steps within glycolysis and what sites within enzymes are the targets of positive selection. To address these questions we obtained transcript sequences from seven core glycolysis enzymes, including two Pgi paralogues, from 29 Lanceocercata species. Results Using maximum likelihood methods a signature of positive selection was inferred in two core glycolysis enzymes. Pgi and Glyceraldehyde 3-phosphate dehydrogenase (Gaphd) genes both encode enzymes linking glycolysis to the pentose phosphate pathway. Positive selection among Pgi paralogues and orthologues predominately targets amino acids with residues exposed to the protein’s surface, where changes in physical properties may alter enzyme performance. Conclusion Our results suggest that, for Lancerocercata stick insects, adaptation to new stressful lifestyles requires a balance between maintaining cellular energy production, efficiently exploiting different energy storage pools and compensating for stress-induced oxidative damage. PMID:24079656
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity
NASA Astrophysics Data System (ADS)
Mujagic, Samir; Krause, André F.; Dürr, Volker
2007-04-01
Like many flightless, obligatory walking insects, the stick insect Carausius morosus makes intensive use of active antennal movements for tactile near range exploration and orientation. The antennal joints of C. morosus have a peculiar oblique and non-orthogonal joint axis arrangement. Moreover, this arrangement is known to differ from that in crickets (Ensifera), locusts (Caelifera) and cockroaches (Blattodea), all of which have an orthogonal joint axis arrangement. Our hypothesis was that the situation found in C. morosus represents an important evolutionary trait of the order of stick and leaf insects (Phasmatodea). If this was true, it should be common to other species of the Phasmatodea. The objective of this comparative study was to resolve this question. We have measured the joint axis orientation of the head scape and scape pedicel joints along with other parameters that affect the tactile efficiency of the antenna. The obtained result was a complete kinematic description of the antenna. This was used to determine the size and location of kinematic out-of-reach zones, which are indicators of tactile acuity. We show that the oblique and non-orthogonal arrangement is common to eight species from six sub-families indicating that it is a synapomorphic character of the Euphasmatodea. This character can improve tactile acuity compared to the situation in crickets, locusts and cockroaches. Finally, because molecular data of a recent study indicate that the Phasmatodea may have evolved as flightless, obligatory walkers, we argue that the antennal joint axis arrangement of the Euphasmatodea reflects an evolutionary adaptation to tactile near range exploration during terrestrial locomotion.
Bian, L; Yang, P X; Yao, Y J; Luo, Z X; Cai, X M; Chen, Z M
2016-02-03
Two thrips species-the yellow tea thrips (Scirtothrips dorsalis Hood) and the stick tea thrips (Dendrothrips minowai Priesner)-are serious pests affecting tea plants in southern China. Although the stick tea thrips is primarily restricted to southern China, the yellow tea thrips is gradually proliferating worldwide. Colored sticky card traps may be useful for monitoring and capturing these species, but a systematic analysis has not been conducted to identify the most effective trap color, height, and orientation. We performed indoor experiments using an orthogonal experimental design, as well as field tests in tea gardens, to identify the color most attractive to the two thrips species. Field tests were then conducted using color-optimized traps-lawngreen (RGB: 124, 252, 0) for yellow thrips and lime (RGB: 0, 255, 0) for stick tea thrips-to determine the most effective trap height and orientation. The greatest numbers of both yellow and stick tea thrips were captured on traps positioned 0-20 cm above the tea canopy in an east-west orientation. We also evaluated the performance of the color-optimized sticky card traps compared with commercially available yellow ones. Significantly more yellow and stick tea thrips and fewer natural enemies were captured on the color-optimized traps than on commercial ones. Although additional research is needed to explain the responses of the two different species and to increase trap effectiveness, our findings should assist in the control of these harmful insects. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mechanisms of fluid production in smooth adhesive pads of insects
Dirks, Jan-Henning; Federle, Walter
2011-01-01
Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone. PMID:21208970
Labonte, David; Williams, John A.; Federle, Walter
2014-01-01
Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580
Holtmann, Matthias; Dorn, August
2009-02-01
Stick insects (Carausius morosus) develop pseudotumors in aging adults. Pseudotumor formation starts at the M2 midgut region where an accumulation of stomatogastric nerve terminals is observed. Pseudotumors arise from dying columnar cells whose basal parts form an "amorphous substance" at the basement membrane whereas the apical parts, including the nucleus, are expelled into the gut lumen. The "amorphous substance" is ensheathed by hemocytes. These nodules, which do not melanize, characterize the phenotype of the pseudotumors. With age, cell death and pseudotumor infestation increases. It is shown that the maintenance of midgut tissue homoeostasis is disturbed and becomes more serious with growing pseudotumor incidence. The increased death rate of differentiated columnar cells is no longer compensated by the proliferation of regenerative cells, i.e., intestinal stem cells, in the midgut nidi. The appearance of "holes" in the intestinal wall is evidently a causative factor of premature death. Extirpation of the hypocerebral ganglion in young adults of the stick insect (before the onset of spontaneous pseudotumor formation) provokes the apoptosis of a large number of columnar cells within 24 h and the formation of pseudotumors that are histologically identical with spontaneous ones. We conclude that the stomatogastric nervous system plays a decisive role in the regulatory mechanism maintaining midgut tissue homeostasis. The possibility of experimentally manipulating the regulatory system provides a valuable tool for the exploration of extrinsic factors involved into the feedback circuitry of tissue homeostasis. The fact that comparable pseudotumors were observed in a number of orthopteromorphan species, where they could also be induced by the interruption of the stomatogastric nervous system, indicates that its role in tissue homoeostasis may be widespread in insects and possibly represent a general principle. (c) 2008 Wiley-Liss, Inc.
Scientists train honeybees to detect explosives
None
2017-12-09
Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue)
Scientists train honeybees to detect explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-03-21
Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue)
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Short articles on a demonstration of enzyme action, models of mammalian circulatory systems, measuring the height of trees, the ecology of the African amphibian Xenopus under natural conditions in England, experiments with liverwort gemmae, investigations using stick insects, and a culture medium for Paramecium bursaria. (AL)
Active tactile sampling by an insect in a step-climbing paradigm
Krause, André F.; Dürr, Volker
2012-01-01
Many insects actively explore their near-range environment with their antennae. Stick insects (Carausius morosus) rhythmically move their antennae during walking and respond to antennal touch by repetitive tactile sampling of the object. Despite its relevance for spatial orientation, neither the spatial sampling patterns nor the kinematics of antennation behavior in insects are understood. Here we investigate unrestrained bilateral sampling movements during climbing of steps. The main objectives are: (1) How does the antennal contact pattern relate to particular object features? (2) How are the antennal joints coordinated during bilateral tactile sampling? We conducted motion capture experiments on freely climbing insects, using steps of different height. Tactile sampling was analyzed at the level of antennal joint angles. Moreover, we analyzed contact patterns on the surfaces of both the obstacle and the antenna itself. Before the first contact, both antennae move in a broad, mostly elliptical exploratory pattern. After touching the obstacle, the pattern switches to a narrower and faster movement, caused by higher cycle frequencies and lower cycle amplitudes in all joints. Contact events were divided into wall- and edge-contacts. Wall contacts occurred mostly with the distal third of the flagellum, which is flexible, whereas edge contacts often occurred proximally, where the flagellum is stiff. The movement of both antennae was found to be coordinated, exhibiting bilateral coupling of functionally analogous joints [e.g., left head-scape (HS) joint with right scape-pedicel (SP) joint] throughout tactile sampling. In comparison, bilateral coupling between homologous joints (e.g., both HS joints) was significantly weaker. Moreover, inter-joint coupling was significantly weaker during the contact episode than before. In summary, stick insects show contact-induced changes in frequency, amplitude and inter-joint coordination during tactile sampling of climbed obstacles. PMID:22754513
A fundamental approach to the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Eiss, N. S., Jr.; Wightman, J. P.; Gilliam, D. R.; Siochi, E. J.
1984-01-01
A proposed testing scheme is described for obtaining data on the effects of surface roughness and surface energy on insect adhesion. The road test apparatus is discussed as well as surface preparation techniques. Uncoated and polymer coated metal substrates were analyzed by SEM/ESCA/IRS before and following collision with insects. Critical surface tensions of unexposed Nyebar and poly sulfone coatings were 10 and 33 dynes/cm, respectively, as determined from contact angles. A total of 95% of insect residues collected belong to order Diptera. Significantly less insect debris was detected on the coated plates as compared to the uncoated plates. Minimal contamination at the 5 nm level of both coated and uncoated plates occurs even after hours of exposure to road conditions as determined by ESCA analysis. The presence of nitrogen detected by ESCA on exposed plates is unequivocal evidence for insect residues left on plates.
Evolution of a new sense for wind in flying phasmids? Afferents and interneurons
NASA Astrophysics Data System (ADS)
Hustert, Reinhold; Klug, Rebecca
2009-12-01
The evolution of winged stick insects (phasmids) from secondarily wingless ancestors was proposed in recent studies. We explored the cuticle of flying phasmids for wind sensors that could be involved in their flight control, comparable to those known for locusts. Surprisingly, wind-sensitive hairs (wsH) occur on the palps of mouthparts and on the antennae of the winged phasmid Sipyloidea sipylus which can fly in tethered position only when air currents blow over the mouthparts. The present study describes the morphology and major functional properties of these “new” wsH with soft and bulging hair bases which are different from the beaker-like hair bases of the wsH on the cerci of phasmids and the wsH described in other insects. The most sensitive wsH of antennae and palps respond with phasic-tonic afferents to air currents exceeding 0.2 ms-1. The fields of wsH on one side of the animal respond mainly to ventral, lateral, and frontal wind on the ipsilateral side of the head. Afferent inputs from the wsH converge but also diverge to a group of specific interneurons at their branches in the suboesophageal ganglion and can send their integrated input from wsH fields of the palps and antennae to the thoracic central nervous system. Response types of individual wsH-interneurons are either phasic or phasic-tonic to air puffs or constant air currents and also, the receptive fields of individual interneurons differ. We conclude that the “new” wsH system and its interneurons mainly serve to maintain flight activity in airborne phasmids and also, the “new” wsH must have emerged together with the integrating interneurons during the evolution from wingless to the recent winged forms of phasmids.
The diversity of stick insects (phasmatodea) on Gunung Jerai, Kedah
NASA Astrophysics Data System (ADS)
Rabihah, I.; Lailatul-Nadhirah, A.; Azman, S.
2018-04-01
A total of 14 stick insects species from 11 genera under 4 families (Aschiphasmatidae: one species in one genus; Heteronemiidae, 10 species in 7 genera; Phasmatidae: two species in two genera; Bacillidae: one species in one genus) was recorded for Gunung Jerai, Kedah. This was based on 86 individuals obtained through five sampling occasions in December 2016 until April 2017, by active searching using high intensity LED torch lights at three sampling locations down the trails starting at (L1: 1130m; L2: 800m; L3: 230m) that were selected based on altitudes. The most common and abundant species in L1 is Abrosoma festinatum Brock & Seow-Choen. Lopaphus iolas (Westwood) appeared as the most common and abundant species in L2, represented by 5 individuals which covers 31.25 % of the total collected specimen in that area. In L3, Lopaphus iolas (Westwood) is also appeared as the most abundant species represented by 6 individuals or 54.54 %. Shannon's Species Diversity Index (H') in L2 was the highest (H'=1.836) followed by L3 (H'=1.295) and L1 (H'=1.264), and the evenness index in L2 was the highest (E= 0.7843), followed by L3 (E= 0.7229), and L1 (E= 0.4424). Margalef Species Richness Index in L2 was the highest (R'=2.525), followed by L1 (R'=1.717) and L3 (R'=1.668). It can be summarized that L2 at the altitude 800m appear as the best sampling site for stick insects species in Gunung Jerai, Kedah with the highest value of species diversity and richness index.
Gottardo, Marco; Vallotto, Davide
2014-04-01
External morphological features of adult males are described in the stick insect Hermarchus leytensis from the Philippines, a species belonging to the little-known euphasmatodean lineage Stephanacridini. Mouthparts are characterized by some likely specialized features: (1) a dentate dorsal cutting edge on the mandibles; (2) distinct differences in size and shape between the galeae; (3) absence of an apical field of trichomes on the galeae; and (4) lacinial setae not protruding from the mesal margin, which features three bearing-like protuberances. The latter character state represents a very unusual condition, not known in other phasmatodeans or even in polyneopteran insects. A distinctive characteristic of attachment devices is that each euplantula is divided into two separated pads with a smooth microstructure, as it also occurs in some members of the clade Schizodecema. Male terminalia exhibit character states previously unknown in Stephanacridini, including (1) a symmetrical type of vomer and (2) claspers equipped with ∼ 70 very minute ventral teeth on each thorn pad. Potential implications for the systematic placement of H. leytensis are discussed. The results also underline the importance of microanatomical investigations as source of substantial characters for future analyses on phasmatodean systematics. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Recently we discovered that the defensive spray of Asceles glaber, a stick insect native to Thailand, contains two spiroketals (major: 2(S)-(-)-(E,E)-2- methyl-1,7-dioxaspiro[5.5]undecane and minor: 2-ethyl-1,6-dioxaspiro[4.5]decane) and glucose. In this report we: 1) illustrate the identification o...
Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang
2014-01-01
Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects. PMID:24918926
Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang
2014-01-01
Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing, Bettina; Cruse, Holk
2004-03-01
In a complex environment, animals are challenged by various types of obstacles. This requires the controller of their walking system to be highly flexible. In this study, stick insects were presented with large gaps to cross in order to observe how locomotion can be adapted to challenging environmental situations. Different approaches were used to investigate the sequence of gap-crossing behaviour. A detailed video analysis revealed that gap-crossing behaviour resembles modified walking behaviour with additional step types. The walking sequence is interrupted by an interval of exploration, in which the insect probes the gap space with its antennae and front legs. When reaching the gap, loss of contact of an antenna with the ground does not elicit any observable reactions. In contrast, an initial front leg step into the gap that often follows antennal 'non-contact' evokes slowing down of stance velocity. An ablation experiment showed that the far edge of the gap is detected by tactile antennal stimulation rather than by vision. Initial contact of an antenna or front leg with the far edge of the gap represents a 'point of no return', after which gap crossing is always successfully completed. Finally, flow chart diagrams of the gap-crossing sequence were constructed based on an ethogram of single elements of behaviour. Comparing flow charts for two gap sizes revealed differences in the frequency and succession of these elements, especially during the first part of the sequence.
Strauß, Johannes; Stritih, Nataša; Lakes-Harlan, Reinhard
2014-01-01
Comparative studies of the organization of nervous systems and sensory organs can reveal their evolution and specific adaptations. In the forelegs of some Ensifera (including crickets and tettigoniids), tympanal hearing organs are located in close proximity to the mechanosensitive subgenual organ (SGO). In the present study, the SGO complex in the non-hearing cave cricket Troglophilus neglectus (Rhaphidophoridae) is investigated for the neuronal innervation pattern and for organs homologous to the hearing organs in related taxa. We analyse the innervation pattern of the sensory organs (SGO and intermediate organ (IO)) and its variability between individuals. In T. neglectus, the IO consists of two major groups of closely associated sensilla with different positions. While the distal-most sensilla superficially resemble tettigoniid auditory sensilla in location and orientation, the sensory innervation does not show these two groups to be distinct organs. Though variability in the number of sensory nerve branches occurs, usually either organ is supplied by a single nerve branch. Hence, no sensory elements clearly homologous to the auditory organ are evident. In contrast to other non-hearing Ensifera, the cave cricket sensory structures are relatively simple, consistent with a plesiomorphic organization resembling sensory innervation in grasshoppers and stick insects. PMID:26064547
Engineered Surfaces for Mitigation of Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.
2013-01-01
Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.
Evolutionary genetics of insect innate immunity.
Viljakainen, Lumi
2015-11-01
Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. © The Author 2015. Published by Oxford University Press.
Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects.
Stolz, Konrad; von Bredow, Christoph-Rüdiger; von Bredow, Yvette M; Lakes-Harlan, Reinhard; Trenczek, Tina E; Strauß, Johannes
2015-01-01
Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland. Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments. The gland size correlates to the size of a neuron soma in the suboesophageal ganglion, which likely controls gland contraction. In P. schultei, the innervation pattern appears simplified to the anterior suboesophageal nerve. Hence, some evolutionary changes are notable in a conserved neuronal network.
An endoparasitoid Cretaceous fly and the evolution of parasitoidism.
Zhang, Qingqing; Zhang, Junfeng; Feng, Yitao; Zhang, Haichun; Wang, Bo
2016-02-01
Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.
An endoparasitoid Cretaceous fly and the evolution of parasitoidism
NASA Astrophysics Data System (ADS)
Zhang, Qingqing; Zhang, Junfeng; Feng, Yitao; Zhang, Haichun; Wang, Bo
2016-02-01
Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.
Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia
2012-12-15
The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.
Scavariello, Claudia; Luchetti, Andrea; Martoni, Francesco; Bonandin, Livia; Mantovani, Barbara
2017-02-06
Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.
The evolution of plant-insect mutualisms.
Bronstein, Judith L; Alarcón, Ruben; Geber, Monica
2006-01-01
Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.
NASA Astrophysics Data System (ADS)
Im, Kyungjae; Elsworth, Derek; Marone, Chris; Leeman, John
2017-12-01
Interseismic frictional healing is an essential process in the seismic cycle. Observations of both natural and laboratory earthquakes demonstrate that the magnitude of stress drop scales with the logarithm of recurrence time, which is a cornerstone of the rate and state friction (RSF) laws. However, the origin of this log linear behavior and short time "cutoff" for small recurrence intervals remains poorly understood. Here we use RSF laws to demonstrate that the back-projected time of null-healing intrinsically scales with the initial frictional state θi. We explore this behavior and its implications for (1) the short-term cutoff time of frictional healing and (2) the connection between healing rates derived from stick-slip sliding versus slide-hold-slide tests. We use a novel, continuous solution of RSF for a one-dimensional spring-slider system with inertia. The numerical solution continuously traces frictional state evolution (and healing) and shows that stick-slip cutoff time also scales with frictional state at the conclusion of the dynamic slip process θi (=Dc/Vpeak). This numerical investigation on the origins of stick-slip response is verified by comparing laboratory data for a range of peak slip velocities. Slower slip motions yield lesser magnitude of friction drop at a given time due to higher frictional state at the end of each slip event. Our results provide insight on the origin of log linear stick-slip evolution and suggest an approach to estimating the critical slip distance on faults that exhibit gradual accelerations, such as for slow earthquakes.
Pauli, Thomas; Vedder, Lucia; Dowling, Daniel; Petersen, Malte; Meusemann, Karen; Donath, Alexander; Peters, Ralph S; Podsiadlowski, Lars; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Heger, Peter; Wiehe, Thomas; Hering, Lars; Mayer, Georg; Misof, Bernhard; Niehuis, Oliver
2016-11-03
Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods.
The evolution of parental care in insects: A test of current hypotheses.
Gilbert, James D J; Manica, Andrea
2015-05-01
Which sex should care for offspring is a fundamental question in evolution. Invertebrates, and insects in particular, show some of the most diverse kinds of parental care of all animals, but to date there has been no broad comparative study of the evolution of parental care in this group. Here, we test existing hypotheses of insect parental care evolution using a literature-compiled phylogeny of over 2000 species. To address substantial uncertainty in the insect phylogeny, we use a brute force approach based on multiple random resolutions of uncertain nodes. The main transitions were between no care (the probable ancestral state) and female care. Male care evolved exclusively from no care, supporting models where mating opportunity costs for caring males are reduced-for example, by caring for multiple broods-but rejecting the "enhanced fecundity" hypothesis that male care is favored because it allows females to avoid care costs. Biparental care largely arose by males joining caring females, and was more labile in Holometabola than in Hemimetabola. Insect care evolution most closely resembled amphibian care in general trajectory. Integrating these findings with the wealth of life history and ecological data in insects will allow testing of a rich vein of existing hypotheses. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill, John C; Wilson, Rachel I
2016-10-24
The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces
NASA Astrophysics Data System (ADS)
Liu, Ming; Chen, Xiao-Peng
2017-08-01
We present a numerical study of a moving contact line (CL) crossing the intersecting region of hydrophilic and hydrophobic patterns on a solid wall using lattice Boltzmann methods (LBMs). To capture the interface between the two phases properly, we applied a phase field model coupled with the LBM. The evolutions of the CL velocity, dynamic contact angle, and apparent contact angle are analyzed for the so-called "stick" and "slip" processes. In the two processes, the evolution of the quantities follows different rules shortly after the initial quick transition, which is probably caused by finite interfacial thickness or non-equilibrium effects. For the stick process, the CL is almost fixed and energy is extracted from the main flow to rebuild the meniscus' profile. The evolution of the meniscus is mainly governed by mass conservation. The CL is depinned after the apparent contact angle surpasses the dynamic one, which implies that the interfacial segment in the vicinity of contact line is bended. For the slip process, the quantities evolve with features of relaxation. In the microscopic scale, the velocity of the CL depends on the balance between unbalanced Young's capillary force and viscous drag. To predict the apparent contact angle evolution, a model following the dynamics of an overdamped spring-mass system is proposed. Our results also show that the capillary flows in a channel with heterogeneous wall can be described generally with the Poiseuille flow superimposed by the above transient one.
Continuous evolution of B. thuringiensis toxins overcomes insect resistance
Badran, Ahmed H.; Guzov, Victor M.; Huai, Qing; Kemp, Melissa M.; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M.; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H.; Wang, Ping; Malvar, Thomas; Liu, David R.
2016-01-01
The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. We developed a phage-assisted continuous evolution (PACE) selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively targeted by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (Kd = 11–41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome Bt toxin resistance in insects and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects. PMID:27120167
Evolution of SUMO Function and Chain Formation in Insects.
Ureña, Enric; Pirone, Lucia; Chafino, Silvia; Pérez, Coralia; Sutherland, James D; Lang, Valérie; Rodriguez, Manuel S; Lopitz-Otsoa, Fernando; Blanco, Francisco J; Barrio, Rosa; Martín, David
2016-02-01
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The evolution of parental care in insects: A test of current hypotheses
Gilbert, James D J; Manica, Andrea
2015-01-01
Which sex should care for offspring is a fundamental question in evolution. Invertebrates, and insects in particular, show some of the most diverse kinds of parental care of all animals, but to date there has been no broad comparative study of the evolution of parental care in this group. Here, we test existing hypotheses of insect parental care evolution using a literature-compiled phylogeny of over 2000 species. To address substantial uncertainty in the insect phylogeny, we use a brute force approach based on multiple random resolutions of uncertain nodes. The main transitions were between no care (the probable ancestral state) and female care. Male care evolved exclusively from no care, supporting models where mating opportunity costs for caring males are reduced—for example, by caring for multiple broods—but rejecting the “enhanced fecundity” hypothesis that male care is favored because it allows females to avoid care costs. Biparental care largely arose by males joining caring females, and was more labile in Holometabola than in Hemimetabola. Insect care evolution most closely resembled amphibian care in general trajectory. Integrating these findings with the wealth of life history and ecological data in insects will allow testing of a rich vein of existing hypotheses. PMID:25825047
Plant reproductive organs and the origin of terrestrial insects
Georgy V. Stadnitsky
1991-01-01
It is widely believed that plants facilitated the evolution of terrestrial insects (Southwood 1973). However, the mechanisms by which this evolution occurred are not yet fully understood. I therefore propose a hypothesis about one possible mode of formation of terrestrial insects and fauna. The soil, warm shallow lagoons, tidal zones, and accumulations of detritus are...
Hox3/zen and the evolution of extraembryonic epithelia in insects.
Schmidt-Ott, Urs; Rafiqi, Ab Matteen; Lemke, Steffen
2010-01-01
Insects have undergone dramatic evolutionary changes in extraembryonic development, which correlate with changes in the expression of the class-3 Hox gene zen. Here, we review the evolution of this gene in insects and point out how changes in zen expression may have affected extraembryonic development at the morphological and the genetic level.
Rapid detection of semenogelin by one-step immunochromatographic assay for semen identification.
Sato, Itaru; Kojima, Koichiro; Yamasaki, Tadashi; Yoshida, Kaoru; Yoshiike, Miki; Takano, Shoichi; Mukai, Toshiji; Iwamoto, Teruaki
2004-04-01
To identify semen in forensic samples, we developed an analytical system for one-step immunoassay that has been constructed using the concept of immunochromatography and can identify semenogelin (Sg), which originates in the seminal vesicles. The system employed monoclonal antibody (mAb) and polyclonal antibody (pAb) against recombinant Sg-II (63 kDa), which has been synthesized in insect cells using baculovirus. The two antibodies bound with the seminal plasma motility inhibitor (SPMI; 14 kDa) as a final fragment peptide of Sg. The test stick is based on the sandwich technique using the above antibodies. When serial dilutions of seminal plasma were analyzed using this test stick, the intensity of a clear immunoreactive signal peaked at 2000-fold dilution. Thereafter, the signals decreased slowly but still persisted up to 400,000-fold dilution. The Sg antigen was undetectable in saliva, urine, breast milk, serum or vaginal secretions. Also, the test stick shown did not react with animal semen samples, such as those from horses, dogs, swine and bulls. When semen samples, diluted 100,000-fold from 100 men were tested, the Sg antigenic activity was detectable in all samples. In addition, the specificity and sensitivity of the test stick for identification of semen were demonstrated by comparative forensic studies. We conclude that this immunoassay method is a useful confirmatory test for the identification of semen. The immunochromatographic system for forensic testing or research use will become available commercially soon.
Vallotto, Davide; Bresseel, Joachim; Heitzmann, Thierry; Gottardo, Marco
2016-01-01
Abstract A new stick insect of the genus Orthomeria Kirby, 1904 (Phasmatodea, Aschiphasmatidae) is described from the Philippines. Orthomeria (Orthomeria) kangi sp. n. is readily distinguished from all other congeners by the distinctive blood red colouration of the costal region of the hind wings. Major features of the external morphology of adults, eggs, and first-instar nymphs are illustrated. Locomotory attachment pads are of the smooth type with irregular microgrooves on the contact surface. An unusual condition of male terminalia is the absence of tergal thorn pads on segment 10. The male clasping organs are represented by an elongated vomer terminating in a prominent spine, and by incurved cerci featuring a bilobed apex equipped with a sharp blade-like ridge. Intraspecific variation in body colouration and hind wing length occurs in females. The new species lives at 400-650 m elevation in the surroundings of the Sablang and Tuba regions, in the Benguet Province of Luzon island. Host plants include Ficus spp. (Moraceae), and Pipturus spp. and Leucosyke spp. (Urticaceae). Observations on the mating and defensive behaviour are presented. Orthomeria (Orthomeria) catadromus (Westwood, 1859) is recognised as a junior synonym of Orthomeria (Orthomeria) pandora (Westwood, 1859), syn. n. A lectotype is designated for both species. Finally, an updated identification key to the species of the subgenus Orthomeria is provided. PMID:27006604
Vallotto, Davide; Bresseel, Joachim; Heitzmann, Thierry; Gottardo, Marco
2016-01-01
A new stick insect of the genus Orthomeria Kirby, 1904 (Phasmatodea, Aschiphasmatidae) is described from the Philippines. Orthomeria (Orthomeria) kangi sp. n. is readily distinguished from all other congeners by the distinctive blood red colouration of the costal region of the hind wings. Major features of the external morphology of adults, eggs, and first-instar nymphs are illustrated. Locomotory attachment pads are of the smooth type with irregular microgrooves on the contact surface. An unusual condition of male terminalia is the absence of tergal thorn pads on segment 10. The male clasping organs are represented by an elongated vomer terminating in a prominent spine, and by incurved cerci featuring a bilobed apex equipped with a sharp blade-like ridge. Intraspecific variation in body colouration and hind wing length occurs in females. The new species lives at 400-650 m elevation in the surroundings of the Sablang and Tuba regions, in the Benguet Province of Luzon island. Host plants include Ficus spp. (Moraceae), and Pipturus spp. and Leucosyke spp. (Urticaceae). Observations on the mating and defensive behaviour are presented. Orthomeria (Orthomeria) catadromus (Westwood, 1859) is recognised as a junior synonym of Orthomeria (Orthomeria) pandora (Westwood, 1859), syn. n. A lectotype is designated for both species. Finally, an updated identification key to the species of the subgenus Orthomeria is provided.
A load-based mechanism for inter-leg coordination in insects
2017-01-01
Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals. PMID:29187626
Stick-slip friction and ageing in Velcro®
NASA Astrophysics Data System (ADS)
Mariani, Lisa; Angiolillo, Paul
2014-03-01
The mesoscopic hook and loop system of Velcro® provides a model of stick-slip friction that exhibits behavior reminiscent of results seen in nanoscale model systems. The friction is linearly dependent on contact area and independent of driving velocity. Morever, there is a power law dependence of the friction on loading, with exponent between 1/4 and 1/3. Furthermore, the evolution of stick-slip to more smooth sliding, as controlled by contact area, is also noted. These transition predictions follow power law profiles, as well, with respect to increasing contact area. Thus, the hook-and-loop system shows to be a good mesoscale model system of stick-slip friction and provides a link between nanoscale and macroscale friction. Through an investigation into the ageing of the hooks in the system, the data suggests that the hooks age during the shearing regime and take a characteristic time to return to initial attachment strength. Additionally, there does not appear to be a significant affect of ageing on the kinetic friction experienced by the system.
Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro
NASA Astrophysics Data System (ADS)
Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul
2013-03-01
The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.
Massive horizontal transfer of transposable elements in insects
Peccoud, Jean; Loiseau, Vincent; Cordaux, Richard
2017-01-01
Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution. PMID:28416702
Sucena, Élio; Vanderberghe, Koen; Zhurov, Vladimir; Grbić, Miodrag
2014-01-01
Germband size in insects has played a central role in our understanding of insect patterning mechanisms and their evolution. The polarity of evolutionary change in insect patterning has been viewed so far as the unidirectional shift from the ancestral short germband patterning of basal hemimetabolous insects to the long germband patterning observed in most modern Holometabola. However, some orders of holometabolic insects display both short and long germband development, though the absence of a clear phylogenetic context does not permit definite conclusions on the polarity of change. Derived hymenoptera, that is, bees and wasps, represent a classical textbook example of long germband development. Yet, in some wasps putative short germband development has been described correlating with lifestyle changes, namely with evolution of endoparasitism and polyembryony. To address the potential reversion from long to short germband, we focused on the family Braconidae, which displays ancestral long germband development, and examined the derived polyembryonic braconid Macrocentrus cingulum. Using SEM analysis of M. cingulum embryogenesis coupled with analyses of embryonic patterning markers, we show that this wasp evolved short germband embryogenesis secondarily, in a way that is reminiscent of embryogenesis in the beetle Tribolium castaneum. This work shows that the evolution of germband size in insects is a reversible process that may correlate with other life-history traits and suggests broader implications on the mechanisms and evolvability of insect development. © 2014 Wiley Periodicals, Inc.
Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias
2017-10-01
Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.
Evolution of DNA Methylation across Insects.
Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J
2017-03-01
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Neutral and selection-driven decay of sexual traits in asexual stick insects
Schwander, Tanja; Crespi, Bernard J.; Gries, Regine; Gries, Gerhard
2013-01-01
Environmental shifts and lifestyle changes may result in formerly adaptive traits becoming non-functional or maladaptive. The subsequent decay of such traits highlights the importance of natural selection for adaptations, yet its causes have rarely been investigated. To study the fate of formerly adaptive traits after lifestyle changes, we evaluated sexual traits in five independently derived asexual lineages, including traits that are specific to males and therefore not exposed to selection. At least four of the asexual lineages retained the capacity to produce males that display normal courtship behaviours and are able to fertilize eggs of females from related sexual species. The maintenance of male traits may stem from pleiotropy, or from these traits only regressing via drift, which may require millions of years to generate phenotypic effects. By contrast, we found parallel decay of sexual traits in females. Asexual females produced altered airborne and contact signals, had modified sperm storage organs, and lost the ability to fertilize their eggs, impeding reversals to sexual reproduction. Female sexual traits were decayed even in recently derived asexuals, suggesting that trait changes following the evolution of asexuality, when they occur, proceed rapidly and are driven by selective processes rather than drift. PMID:23782880
Wing serial homologs and the origin and evolution of the insect wing.
Ohde, Takahiro; Yaginuma, Toshinobu; Niimi, Teruyuki
2014-04-01
The origin and evolution of insect wings has been the subject of extensive debate. The issue has remained controversial largely because of the absence of definitive fossil evidence or direct developmental evidence of homology between wings and a putative wing origin. Recent identification of wing serial homologs (WSHs) has provided researchers with a potential strategy for identifying WSHs in other species. Future comparative developmental analyses between wings and WSHs may clarify the important steps underlying the evolution of insect wings. Copyright © 2013 The Authors. Published by Elsevier GmbH.. All rights reserved.
Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B
2015-10-01
A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. © 2015 The Author(s).
Age and size at maturity: a quantitative review of diet-induced reaction norms in insects.
Teder, Tiit; Vellau, Helen; Tammaru, Toomas
2014-11-01
Optimality models predict that diet-induced bivariate reaction norms for age and size at maturity can have diverse shapes, with the slope varying from negative to positive. To evaluate these predictions, we perform a quantitative review of relevant data, using a literature-derived database of body sizes and development times for over 200 insect species. We show that bivariate reaction norms with a negative slope prevail in nearly all taxonomic and ecological categories of insects as well as in some other ectotherm taxa with comparable life histories (arachnids and amphibians). In insects, positive slopes are largely limited to species, which feed on discrete resource items, parasitoids in particular. By contrast, with virtually no meaningful exceptions, herbivorous and predatory insects display reaction norms with a negative slope. This is consistent with the idea that predictable resource depletion, a scenario selecting for positively sloped reaction norms, is not frequent for these insects. Another source of such selection-a positive correlation between resource levels and juvenile mortality rates-should similarly be rare among insects. Positive slopes can also be predicted by models which integrate life-history evolution and population dynamics. As bottom-up regulation is not common in most insect groups, such models may not be most appropriate for insects. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Evolution of DNA Methylation across Insects
Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.
2017-01-01
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279
Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes
Mitterboeck, T. Fatima; Liu, Shanlin; Adamowicz, Sarah J.; Fu, Jinzhong; Zhang, Rui; Song, Wenhui; Meusemann, Karen
2017-01-01
Abstract The evolution of powered flight is a major innovation that has facilitated the success of insects. Previously, studies of birds, bats, and insects have detected molecular signatures of differing selection regimes in energy-related genes associated with flight evolution and/or loss. Here, using DNA sequences from more than 1000 nuclear and mitochondrial protein-coding genes obtained from insect transcriptomes, we conduct a broader exploration of which gene categories display positive and relaxed selection at the origin of flight as well as with multiple independent losses of flight. We detected a number of categories of nuclear genes more often under positive selection in the lineage leading to the winged insects (Pterygota), related to catabolic processes such as proteases, as well as splicing-related genes. Flight loss was associated with relaxed selection signatures in splicing genes, mirroring the results for flight evolution. Similar to previous studies of flight loss in various animal taxa, we observed consistently higher nonsynonymous-to-synonymous substitution ratios in mitochondrial genes of flightless lineages, indicative of relaxed selection in energy-related genes. While oxidative phosphorylation genes were not detected as being under selection with the origin of flight specifically, they were most often detected as being under positive selection in holometabolous (complete metamorphosis) insects as compared with other insect lineages. This study supports some convergence in gene-specific selection pressures associated with flight ability, and the exploratory analysis provided some new insights into gene categories potentially associated with the gain and loss of flight in insects. PMID:29020740
Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes.
Mitterboeck, T Fatima; Liu, Shanlin; Adamowicz, Sarah J; Fu, Jinzhong; Zhang, Rui; Song, Wenhui; Meusemann, Karen; Zhou, Xin
2017-10-01
The evolution of powered flight is a major innovation that has facilitated the success of insects. Previously, studies of birds, bats, and insects have detected molecular signatures of differing selection regimes in energy-related genes associated with flight evolution and/or loss. Here, using DNA sequences from more than 1000 nuclear and mitochondrial protein-coding genes obtained from insect transcriptomes, we conduct a broader exploration of which gene categories display positive and relaxed selection at the origin of flight as well as with multiple independent losses of flight. We detected a number of categories of nuclear genes more often under positive selection in the lineage leading to the winged insects (Pterygota), related to catabolic processes such as proteases, as well as splicing-related genes. Flight loss was associated with relaxed selection signatures in splicing genes, mirroring the results for flight evolution. Similar to previous studies of flight loss in various animal taxa, we observed consistently higher nonsynonymous-to-synonymous substitution ratios in mitochondrial genes of flightless lineages, indicative of relaxed selection in energy-related genes. While oxidative phosphorylation genes were not detected as being under selection with the origin of flight specifically, they were most often detected as being under positive selection in holometabolous (complete metamorphosis) insects as compared with other insect lineages. This study supports some convergence in gene-specific selection pressures associated with flight ability, and the exploratory analysis provided some new insights into gene categories potentially associated with the gain and loss of flight in insects. © The Authors 2017. Published by Oxford University Press.
Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects.
Dowling, Daniel; Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Niehuis, Oliver
2016-12-01
RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Brand, Philipp; Lin, Wei; Johnson, Brian R.
2018-01-01
Plant cell wall components are the most abundant macromolecules on Earth. The study of the breakdown of these molecules is thus a central question in biology. Surprisingly, plant cell wall breakdown by herbivores is relatively poorly understood, as nearly all early work focused on the mechanisms used by symbiotic microbes to breakdown plant cell walls in insects such as termites. Recently, however, it has been shown that many organisms make endogenous cellulases. Insects, and other arthropods, in particular have been shown to express a variety of plant cell wall degrading enzymes in many gene families with the ability to break down all the major components of the plant cell wall. Here we report the genome of a walking stick, Medauroidea extradentata, an obligate herbivore that makes uses of endogenously produced plant cell wall degrading enzymes. We present a draft of the 3.3Gbp genome along with an official gene set that contains a diversity of plant cell wall degrading enzymes. We show that at least one of the major families of plant cell wall degrading enzymes, the pectinases, have undergone a striking lineage-specific gene family expansion in the Phasmatodea. This genome will be a useful resource for comparative evolutionary studies with herbivores in many other clades and will help elucidate the mechanisms by which metazoans breakdown plant cell wall components. PMID:29588379
Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface
Wu, Jiang; Wang, Zhiming M.; Li, Alvason Z.; Benamara, Mourad; Li, Shibin; Salamo, Gregory J.
2011-01-01
In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems. PMID:21673965
[Origin and evolution of the thunder-fire moxibustion therapy].
Xue, Hao; Zhang, Jianbin; Chen, Renshou
2018-04-12
Through analyzing the origin and evolution of the thunder-fire moxibustion therapy, the mysteries and misunderstandings of it were revealed. As a result, a more objective and comprehensive recognition of this ancient therapy was displayed to the people nowadays. The thunder-fire moxibustion therapy maybe originate from the Taoism magic arts before the Yuan Dynasty and became matured in the middle of the Ming Dynasty. Two categories were divided during the long-term evolution in the history. In one category, the peach twig was taken as the moxa material rather than moxa stick and the incantation of Taoism remained. Regarding the other category, the herbal medicine was mixed in the moxa stick and the herbal composition was relatively specified. The incantation was removed. The moxibustion in the first category vanished at the end of the Ming Dynasty. The latter one kept on development from the middle of the Ming Dynasty through the modern times. Additionally, the herbal composition of moxa material has been modified; the indication enlarged and the operation improved. This therapy is still developed and applied by many doctors at the present times.
From the Cover: Environmental and biotic controls on the evolutionary history of insect body size
NASA Astrophysics Data System (ADS)
Clapham, Matthew E.; Karr, Jered A.
2012-07-01
Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.
Coconut leaf bioactivity toward generalist maize insect pests
USDA-ARS?s Scientific Manuscript database
Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...
ScaleNet: A literature-based model of scale insect biology and systematics
USDA-ARS?s Scientific Manuscript database
Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found in all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis, and plant-insect i...
Genetics, development and composition of the insect head--a beetle's view.
Posnien, Nico; Schinko, Johannes B; Kittelmann, Sebastian; Bucher, Gregor
2010-11-01
Many questions regarding evolution and ontogeny of the insect head remain open. Likewise, the genetic basis of insect head development is poorly understood. Recently, the investigation of gene expression data and the analysis of patterning gene function have revived interest in insect head development. Here, we argue that the red flour beetle Tribolium castaneum is a well suited model organism to spearhead research with respect to the genetic control of insect head development. We review recent molecular data and discuss its bearing on early development and morphogenesis of the head. We present a novel hypothesis on the ontogenetic origin of insect head sutures and review recent insights into the question on the origin of the labrum. Further, we argue that the study of developmental genes may identify the elusive anterior non-segmental region and present some evidence in favor of its existence. With respect to the question of evolution of patterning we show that the head Anlagen of the fruit fly Drosophila melanogaster and Tribolium differ considerably and we review profound differences of their genetic regulation. Finally, we discuss which insect model species might help us to answer the open questions concerning the genetic regulation of head development and its evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nonadaptive radiation: Pervasive diet specialization by drift in scale insects?
Hardy, Nate B; Peterson, Daniel A; Normark, Benjamin B
2016-10-01
At least half of metazoan species are herbivorous insects. Why are they so diverse? Most herbivorous insects feed on few plant species, and adaptive host specialization is often invoked to explain their diversification. Nevertheless, it is possible that the narrow host ranges of many herbivorous insects are nonadaptive. Here, we test predictions of this hypothesis with comparative phylogenetic analyses of scale insects, a group for which there appear to be few host-use trade-offs that would select against polyphagy, and for which passive wind-dispersal should make host specificity costly. We infer a strong positive relationship between host range and diversification rate, and a marked asymmetry in cladogenetic changes in diet breadth. These results are consonant with a system of pervasive nonadaptive host specialization in which small, drift- and extinction-prone populations are frequently isolated from persistent and polyphagous source populations. They also contrast with the negative relationship between diet breadth and taxonomic diversification that has been estimated in butterflies, a disparity that likely stems from differences in the average costs and benefits of host specificity and generalism in scale insects versus butterflies. Our results indicate the potential for nonadaptive processes to be important to diet-breadth evolution and taxonomic diversification across herbivorous insects. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.
Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J
2016-04-01
This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.
Evolution: oskar reveals missing link in co-optive evolution.
Abouheif, Ehab
2013-01-07
The oskar gene is critical for germ plasm formation and reproduction in higher insects. A recent study reports that oskar has more ancient roots than previously thought, indicating it was co-opted for its reproductive role in higher insects. Copyright © 2013 Elsevier Ltd. All rights reserved.
The ecology and evolution of gall-forming insects.
Peter W. Price; William J. Mattson; Yuri N. Baranchikov
1994-01-01
This international proceedings focuses on the biology, ecology, and evolution of gall-forming insects and their uniquely specialized relationships with their host plants. The individual contributions range in scope from detailed descriptive to profoundly theoretical, synthetic studies. One underlying theme of the proceedings is the important contribution of knowledge...
Birnbaum, Stephanie S L; Rinker, David C; Gerardo, Nicole M; Abbot, Patrick
2017-12-01
Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths. © 2017 John Wiley & Sons Ltd.
Insect herbivores drive real-time ecological and evolutionary change in plant populations.
Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka
2012-10-05
Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.
Social immunity and the evolution of group living in insects.
Meunier, Joël
2015-05-26
The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Atmospheric oxygen level and the evolution of insect body size.
Harrison, Jon F; Kaiser, Alexander; VandenBrooks, John M
2010-07-07
Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO(2), suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO(2) on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.
ERIC Educational Resources Information Center
Hanson, Chad
2010-01-01
This article presents the author's response to "Evolution, Biology, and Society: A Conversation for the 21st-Century Sociology Classroom" by Richard Machalek and Michael Martin. Their work serves as a reminder that the discipline is diverse and dynamic. The author appreciates the effort to urge sociology teachers to include genetic concepts in…
Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi
2018-01-01
Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory feedback contributes to generation of insect-like ipsilateral interlimb coordination during hexapod locomotion. PMID:29489831
Wu, Wenlan; Li, Zhongjie; Ma, Yibao
2017-06-01
Insect selective excitatory β-type sodium channel neurotoxins from scorpion venom (β-NaScTxs) are composed of about 70-76 amino acid residues and share a common scaffold stabilized by four unique disulfide bonds. The phylogenetic analysis of these toxins was hindered by limited sequence data. In our recent study, two new insect selective excitatory β-NaScTxs, LmIT and ImIT, were isolated from Lychas mucronatus and Isometrus maculatus, respectively. With the sequences previously reported, we examined the adaptive molecular evolution of insect selective excitatory β-NaScTxs by estimating the nonsynonymous-to-synonymous rate ratio (ω=d N /d S ). The results revealed 12 positively selected sites in the genes of insect selective excitatory β-NaScTxs. Moreover, these positively selected sites match well with the sites important for interacting with sodium channels, as demonstrated in previous mutagenesis study. These results reveal that adaptive evolution after gene duplication is one of the most important genetic mechanisms of scorpion neurotoxin diversification. Copyright © 2017 Elsevier Inc. All rights reserved.
Population genomics of eusocial insects: the costs of a vertebrate-like effective population size.
Romiguier, J; Lourenco, J; Gayral, P; Faivre, N; Weinert, L A; Ravel, S; Ballenghien, M; Cahais, V; Bernard, A; Loire, E; Keller, L; Galtier, N
2014-03-01
The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Force encoding in stick insect legs delineates a reference frame for motor control
Schmitz, Josef; Chaudhry, Sumaiya; Büschges, Ansgar
2012-01-01
The regulation of forces is integral to motor control. However, it is unclear how information from sense organs that detect forces at individual muscles or joints is incorporated into a frame of reference for motor control. Campaniform sensilla are receptors that monitor forces by cuticular strains. We studied how loads and muscle forces are encoded by trochanteral campaniform sensilla in stick insects. Forces were applied to the middle leg to emulate loading and/or muscle contractions. Selective sensory ablations limited activities recorded in the main leg nerve to specific receptor groups. The trochanteral campaniform sensilla consist of four discrete groups. We found that the dorsal groups (Groups 3 and 4) encoded force increases and decreases in the plane of movement of the coxo-trochanteral joint. Group 3 receptors discharged to increases in dorsal loading and decreases in ventral load. Group 4 showed the reverse directional sensitivities. Vigorous, directional responses also occurred to contractions of the trochanteral depressor muscle and to forces applied at the muscle insertion. All sensory discharges encoded the amplitude and rate of loading or muscle force. Stimulation of the receptors produced reflex effects in the depressor motoneurons that could reverse in sign during active movements. These data, in conjunction with findings of previous studies, support a model in which the trochanteral receptors function as an array that can detect forces in all directions relative to the intrinsic plane of leg movement. The array could provide requisite information about forces and simplify the control and adaptation of posture and walking. PMID:22673329
DiCaprio, Ralph A; Wolf, Harald; Büschges, Ansgar
2002-11-01
Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from +/-5 to +/-30 degrees ). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca(2+) with Ba(2+) in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca(2+)-dependent processes.
NASA Astrophysics Data System (ADS)
Massip, Florian; Arndt, Peter F.
2013-04-01
Recently, an enrichment of identical matching sequences has been found in many eukaryotic genomes. Their length distribution exhibits a power law tail raising the question of what evolutionary mechanism or functional constraints would be able to shape this distribution. Here we introduce a simple and evolutionarily neutral model, which involves only point mutations and segmental duplications, and produces the same statistical features as observed for genomic data. Further, we extend a mathematical model for random stick breaking to analytically show that the exponent of the power law tail is -3 and universal as it does not depend on the microscopic details of the model.
Harpur, Brock A; Kent, Clement F; Molodtsova, Daria; Lebon, Jonathan M D; Alqarni, Abdulaziz S; Owayss, Ayman A; Zayed, Amro
2014-02-18
Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.
Harpur, Brock A.; Kent, Clement F.; Molodtsova, Daria; Lebon, Jonathan M. D.; Alqarni, Abdulaziz S.; Owayss, Ayman A.; Zayed, Amro
2014-01-01
Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees. PMID:24488971
Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems.
Brevik, Kristian; Lindström, Leena; McKay, Stephanie D; Chen, Yolanda H
2018-04-01
Although pesticides are a major selective force in driving the evolution of insect pests, the evolutionary processes that give rise to insecticide resistance remain poorly understood. Insecticide resistance has been widely observed to increase with frequent and intense insecticide exposure, but can be lost following the relaxation of insecticide use. One possible but rarely explored explanation is that insecticide resistance may be associated with epigenetic modifications, which influence the patterning of gene expression without changing underlying DNA sequence. Epigenetic modifications such as DNA methylation, histone modifications, and small RNAs have been observed to be heritable in arthropods, but their role in the context of rapid evolution of insecticide resistance remain poorly understood. Here, we discuss evidence supporting how: firstly, insecticide-induced effects can be transgenerationally inherited; secondly, epigenetic modifications are heritable; and thirdly, epigenetic modifications are responsive to pesticide and xenobiotic stress. Therefore, pesticides may drive the evolution of resistance via epigenetic processes. Moreover, insect pests primed by pesticides may be more tolerant of other stress, further enhancing their success in adapting to agroecosystems. Resolving the role of epigenetic modifications in the rapid evolution of insect pests has the potential to lead to new approaches for integrated pest management as well as improve our understanding of how anthropogenic stress may drive the evolution of insect pests. Copyright © 2018 Elsevier Inc. All rights reserved.
Sensorimotor Integration of Antennal Positioning in Flying Insects
2015-02-23
eclectic approach is necessary for a deeper understanding of the physics and biology of insect flight, its role in evolution and its influence upon ecology ...Sane, in preparation; Saxena, Natesan and Sane, in preparation) Natural history of plant -insect interactions in the oleander hawk moth, Daphnis...distances. We are interested in the following broad questions relating migration to insect- plant interactions : 1. How do small insects, with a limited fuel
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo
2017-06-01
We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.
NASA Astrophysics Data System (ADS)
Lee, G. M.; McGee, P. A.; Oldroyd, B. P.
2013-03-01
The queens of many eusocial insect species are polyandrous. The evolution of polyandry from ancestral monoandry is intriguing because polyandry undermines the kin-selected benefits of high intracolonial relatedness that are understood to have been central to the evolution of eusociality. An accumulating body of evidence suggests that polyandry evolved from monoandry in part because genetically diverse colonies better resist infection by pathogens. However, a core assumption of the "parasite-pathogen hypothesis", that there is variation in virulence among strains of pathogens, remains largely untested in vivo. Here, we demonstrate variation in virulence among isolates of Ascosphaera apis, the causative organism of chalkbrood disease in its honey bee ( Apis mellifera) host. More importantly, we show a pathogen-host genotypic interaction for resistance and pathogenicity. Our findings therefore support the parasite-parasite hypothesis as a factor in the evolution of polyandry among eusocial insects.
Suppressing Resistance to Bt Cotton with Sterile Insect Releases
USDA-ARS?s Scientific Manuscript database
Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) are grown widely to control pests, but evolution of insect resistance can reduce their efficacy. The predominant strategy for delaying insect resistance to Bt crops requires refuges of non-Bt host plants to provide s...
Roles of insect midgut cadherin in Bt intoxication and resistance
USDA-ARS?s Scientific Manuscript database
Genetically engineered crops producing Bacillus thuringiensis (Bt) proteins for insect control target major insect pests. Bt crops have improved yield and reduced risks associated with conventional insecticides; however, the evolution of resistance to Bt toxins by target pests threatens the long-ter...
Social insects: from selfish genes to self organisation and beyond.
Boomsma, Jacobus J; Franks, Nigel R
2006-06-01
Selfish gene and self-organisation approaches have revolutionised the study of social insects and have provided unparalleled insights into the highly sophisticated nature of insect social evolution. Here, we briefly review the core programs and interfaces with communication and recognition studies that characterise these fields today, and offer an interdisciplinary future perspective for the study of social insect evolutionary biology.
Nutritional contributions of insects to primate diets: implications for primate evolution.
Rothman, Jessica M; Raubenheimer, David; Bryer, Margaret A H; Takahashi, Maressa; Gilbert, Christopher C
2014-06-01
Insects and other invertebrates form a portion of many living and extinct primate diets. We review the nutritional profiles of insects in comparison with other dietary items, and discuss insect nutrients in relation to the nutritional needs of living primates. We find that insects are incorporated into some primate diets as staple foods whereby they are the majority of food intake. They can also be incorporated as complements to other foods in the diet, providing protein in a diet otherwise dominated by gums and/or fruits, or be incorporated as supplements to likely provide an essential nutrient that is not available in the typical diet. During times when they are very abundant, such as in insect outbreaks, insects can serve as replacements to the usual foods eaten by primates. Nutritionally, insects are high in protein and fat compared with typical dietary items like fruit and vegetation. However, insects are small in size and for larger primates (>1 kg) it is usually nutritionally profitable only to consume insects when they are available in large quantities. In small quantities, they may serve to provide important vitamins and fatty acids typically unavailable in primate diets. In a brief analysis, we found that soft-bodied insects are higher in fat though similar in chitin and protein than hard-bodied insects. In the fossil record, primates can be defined as soft- or hard-bodied insect feeders based on dental morphology. The differences in the nutritional composition of insects may have implications for understanding early primate evolution and ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Welsford, Megan R; Hobbhahn, Nina; Midgley, Jeremy J; Johnson, Steven D
2016-01-01
Transitions between animal and wind pollination have occurred in many lineages and have been linked to various floral modifications, but these have seldom been assessed in a phylogenetic framework. In the dioecious genus Leucadendron (Proteaceae), transitions from insect to wind pollination have occurred at least four times. Using analyses that controlled for relatedness among Leucadendron species, we investigated how these transitions shaped the evolution of floral structural and signaling traits, including the degree of sexual dimorphism in these traits. Pollen grains of wind-pollinated species were found to be smaller, more numerous, and dispersed more efficiently in wind than were those of insect-pollinated species. Wind-pollinated species also exhibited a reduction in spectral contrast between showy subtending leaves and background foliage, reduced volatile emissions, and a greater degree of sexual dimorphism in color and scent. Uniovulate flowers and inflorescence condensation are conserved ancestral features in Leucadendron and likely served as exaptations in shifts to wind pollination. These results offer insights into the key modifications of male and female floral traits involved in transitions between insect and wind pollination. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Effects of temporal variation in temperature and density dependence on insect population dynamics
USDA-ARS?s Scientific Manuscript database
Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...
Metabolome analysis of food-chain between plants and insects
USDA-ARS?s Scientific Manuscript database
Evolution has shown the co-dependency of host plants-predators (insects), especially inevitable dependency of predators on plant biomass for securing their energy sources. In this respect, it had been believed that NAD+ source used for major energy producing pathway in insects is a glycerol-3-phosph...
NASA Astrophysics Data System (ADS)
Grimaldi, David; Engel, Michael S.
2005-05-01
This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the Division of Entomology at the University of Kansas; assistant curator at the Natural History Museum, University of Kansas; research associate of the American Museum of Natural History; and fellow of the Linnean Society of London. Engel has visited numerous countries for entomological and paleontological studies, doing most of his fieldwork in Central Asia, Asia Minor, and the Western Hemisphere.
Inertial and stick-slip regimes of unstable adhesive tape peeling.
Dalbe, Marie-Julie; Villey, Richard; Ciccotti, Matteo; Santucci, Stéphane; Cortet, Pierre-Philippe; Vanel, Loïc
2016-05-18
We present an experimental characterization of the detachment front unstable dynamics observed during the peeling of pressure sensitive adhesives. We use an experimental set-up specifically designed to control the peeling angle θ and the peeled tape length L, while peeling an adhesive tape from a flat substrate at a constant driving velocity V. High-speed imaging allows us to report the evolution of the period and amplitude of the front oscillations, as well as the relative durations of their fast and slow phases, as a function of the control parameters V, L and θ. Our study shows that, as the driving velocity or the peeling angle increases, the oscillations of the peeling front progressively evolve from genuine "stick-slip" oscillations, made of alternating long stick phases and very brief slip phases, to sinusoidal oscillations of amplitude twice the peeling velocity. We propose a model which, taking into account the peeling angle-dependent kinetic energy cost to accelerate and decelerate the peeled tape, explains the transition from the "stick-slip" to the "inertial" regime of the dynamical instability. Using independent direct measurements of the effective fracture energy of the adhesive-substrate joint, we show that our model quantitatively accounts for the two regimes of the unstable dynamics.
Multilevel selection and social evolution of insect societies
NASA Astrophysics Data System (ADS)
Korb, Judith; Heinze, Jürgen
How sterile, altruistic worker castes have evolved in social insects and how they are maintained have long been central topics in evolutionary biology. With the advance of kin selection theory, insect societies, in particular those of haplodiploid bees, ants, and wasps, have become highly suitable model systems for investigating the details of social evolution and recently also how within-group conflicts are resolved. Because insect societies typically do not consist of clones, conflicts among nestmates arise, for example about the partitioning of reproduction and the allocation of resources towards male and female sexuals. Variation in relatedness among group members therefore appears to have a profound influence on the social structure of groups. However, insect societies appear to be remarkably robust against such variation: division of labor and task allocation are often organized in more or less the same way in societies with high as in those with very low nestmate relatedness. To explain the discrepancy between predictions from kin structure and empirical data, it was suggested that constraints-such as the lack of power or information-prevent individuals from pursuing their own selfish interests. Applying a multilevel selection approach shows that these constraints are in fact group-level adaptation preventing or resolving intracolonial conflict. The mechanisms of conflict resolution in insect societies are similar to those at other levels in the biological hierarchy (e.g., in the genome or multicellular organisms): alignment of interests, fair lottery, and social control. Insect societies can thus be regarded as a level of selection with novelties that provide benefits beyond the scope of a solitary life. Therefore, relatedness is less important for the maintenance of insect societies, although it played a fundamental role in their evolution.
Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects.
Glastad, Karl M; Goodisman, Michael A D; Yi, Soojin V; Hunt, Brendan G
2015-12-04
Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution. Copyright © 2016 Glastad et al.
Standage, Daniel S; Berens, Ali J; Glastad, Karl M; Severin, Andrew J; Brendel, Volker P; Toth, Amy L
2016-04-01
Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these -omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative -omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Insect herbivory and plant adaptation in an early successional community.
Agrawal, Anurag A; Hastings, Amy P; Fines, Daniel M; Bogdanowicz, Steve; Huber, Meret
2018-05-01
To address the role of insect herbivores in adaptation of plant populations and the persistence of selection through succession, we manipulated herbivory in a long-term field experiment. We suppressed insects in half of 16 plots over nine years and examined the genotypic structure and chemical defense of common dandelion (Taraxacum officinale), a naturally colonizing perennial apomictic plant. Insect suppression doubled dandelion abundance in the first few years, but had negligible effects thereafter. Using microsatellite DNA markers, we genotyped >2500 plants and demonstrate that insect suppression altered the genotypic composition of plots in both sampling years. Phenotypic and genotypic estimates of defensive terpenes and phenolics from the field plots allowed us to infer phenotypic plasticity and the response of dandelion populations to insect-mediated natural selection. The effects of insect suppression on plant chemistry were, indeed, driven both by plasticity and plant genotypic identity. In particular, di-phenolic inositol esters were more abundant in plots exposed to herbivory (due to the genotypic composition of the plots) and were also induced in response to herbivory. This field experiment thus demonstrates evolutionary sorting of plant genotypes in response to insect herbivores that was in same direction as the plastic defensive response within genotypes. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Body side-specific control of motor activity during turning in a walking animal
Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar
2016-01-01
Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731
Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.
Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario
2013-01-01
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S.; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H.; Garrouste, Romain; Krogmann, Lars; dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S.; Bourgoin, Thierry; Nel, André
2016-01-01
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors. PMID:26961785
NASA Astrophysics Data System (ADS)
Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S.; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H.; Garrouste, Romain; Krogmann, Lars; Dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S.; Bourgoin, Thierry; Nel, André
2016-03-01
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H; Garrouste, Romain; Krogmann, Lars; Dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S; Bourgoin, Thierry; Nel, André
2016-03-10
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
Homologization of the flight musculature of zygoptera (insecta: odonata) and neoptera (insecta).
Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas
2013-01-01
Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship.
Homologization of the Flight Musculature of Zygoptera (Insecta: Odonata) and Neoptera (Insecta)
Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas
2013-01-01
Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship. PMID:23457479
Kupferschmied, Peter; Péchy-Tarr, Maria; Imperiali, Nicola; Maurhofer, Monika; Keel, Christoph
2014-01-01
Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity. PMID:24586167
The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata.
Rehan, Sandra M; Glastad, Karl M; Lawson, Sarah P; Hunt, Brendan G
2016-05-13
Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Experimental Characterization of Wings for a Hawkmoth-Sized Micro Air Vehicle
2014-03-27
131 viii List of Figures Figure Page 2.1 Mechanization of Hawkmoth Thorax . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Different Insect ...Wing Created by O’Hara . . . . . . . . . . . . . . . . 21 2.15 Evolution of FEA Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1...biological counterparts, birds and insects . Ellington [17] illustrates the differences between these two mechanisms. Insects generally fly under laminar flow
The evolution of dorsal-ventral patterning mechanisms in insects.
Lynch, Jeremy A; Roth, Siegfried
2011-01-15
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Suzuki, Yuichiro; Truman, James W; Riddiford, Lynn M
2008-02-01
The evolution of complete metamorphosis in insects is a key innovation that has led to the successful diversification of holometabolous insects, yet the origin of the pupa remains an enigma. Here, we analyzed the expression of the pupal specifier gene broad (br), and the effect on br of isoform-specific, double-stranded RNA-mediated silencing, in a basal holometabolous insect, the beetle Tribolium castaneum. All five isoforms are weakly expressed during the penultimate instar and highly expressed during the prepupal period of the final instar. Application of hydroprene, a juvenile hormone analog, during the penultimate instar caused a repeat of the penultimate br expression patterns, and the formation of supernumerary larvae. Use of dsRNA against the br core region, or against a pair of either the br-Z2 or br-Z3 isoform with the br-Z1 or br-Z4 isoform, produced mobile animals with well-differentiated adult-like appendages, but which retained larval-like urogomphi and epidermis. Disruption of either the br-Z2 or the br-Z3 isoform caused the formation of shorter wings. Disruption of both br-Z1 and br-Z4 caused the appearance of pupal traits in the adults, but disruption of br-Z5 had no morphological effect. Our findings show that the br isoform functions are broadly conserved within the Holometabola and suggest that evolution of br isoform expression may have played an important role in the evolution of the pupa in holometabolous insects.
Göpfert, Martin C; Hennig, R Matthias
2016-01-01
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Behavioral Immunity in Insects
de Roode, Jacobus C.; Lefèvre, Thierry
2012-01-01
Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629
Lawson, Sarah P; Sigle, Leah T; Lind, Abigail L; Legan, Andrew W; Mezzanotte, Jessica N; Honegger, Hans-Willi; Abbot, Patrick
2017-08-01
Some animals express a form of eusociality known as "fortress defense," in which defense rather than brood care is the primary social act. Aphids are small plant-feeding insects, but like termites, some species express division of labor and castes of aggressive juvenile "soldiers." What is the functional basis of fortress defense eusociality in aphids? Previous work showed that the acquisition of venoms might be a key innovation in aphid social evolution. We show that the lethality of aphid soldiers derives in part from the induction of exaggerated immune responses in insects they attack. Comparisons between closely related social and nonsocial species identified a number of secreted effector molecules that are candidates for immune modulation, including a convergently recruited protease described in unrelated aphid species with venom-like functions. These results suggest that aphids are capable of antagonizing conserved features of the insect immune response, and provide new insights into the mechanisms underlying the evolution of fortress defense eusociality in aphids. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Optic Glomeruli: Biological Circuits that Compute Target Identity
2013-11-01
vitripennis. Insect Mol. Biol. Suppl. 1:121-36. Strausfeld NJ. 2012. Arthropod Brains. Evolution , Functional Elegance and Historical Significance. Harvard...Neuroscience and Center for Insect Science University of Arizona Tucson, AZ 85721 Contract No. FA8651-10-1-0001 November 2013 FINAL REPORT...PERFORMING ORGANIZATION REPORT NUMBER Department of Neuroscience and Center for Insect Science University of Arizona Tucson, AZ 85721
The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata
Rehan, Sandra M.; Glastad, Karl M.; Lawson, Sarah P.; Hunt, Brendan G.
2016-01-01
Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata. This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. PMID:27048475
Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T
2012-12-01
Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.
Identification, distribution and molecular evolution of the pacifastin gene family in Metazoa
Breugelmans, Bert; Simonet, Gert; van Hoef, Vincent; Van Soest, Sofie; Broeck, Jozef Vanden
2009-01-01
Background Members of the pacifastin family are serine peptidase inhibitors, most of which are produced as multi domain precursor proteins. Structural and biochemical characteristics of insect pacifastin-like peptides have been studied intensively, but only one inhibitor has been functionally characterised. Recent sequencing projects of metazoan genomes have created an unprecedented opportunity to explore the distribution, evolution and functional diversification of pacifastin genes in the animal kingdom. Results A large scale in silico data mining search led to the identification of 83 pacifastin members with 284 inhibitor domains, distributed over 55 species from three metazoan phyla. In contrast to previous assumptions, members of this family were also found in other phyla than Arthropoda, including the sister phylum Onychophora and the 'primitive', non-bilaterian Placozoa. In Arthropoda, pacifastin members were found to be distributed among insect families of nearly all insect orders and for the first time also among crustacean species other than crayfish and the Chinese mitten crab. Contrary to precursors from Crustacea, the majority of insect pacifastin members contain dibasic cleavage sites, indicative for posttranslational processing into numerous inhibitor peptides. Whereas some insect species have lost the pacifastin gene, others were found to have several (often clustered) paralogous genes. Amino acids corresponding to the reactive site or involved in the folding of the inhibitor domain were analysed as a basis for the biochemical properties. Conclusion The absence of the pacifastin gene in some insect genomes and the extensive gene expansion in other insects are indicative for the rapid (adaptive) evolution of this gene family. In addition, differential processing mechanisms and a high variability in the reactive site residues and the inner core interactions contribute to a broad functional diversification of inhibitor peptides, indicating wide ranging roles in different physiological processes. Based on the observation of a pacifastin gene in Placozoa, it can be hypothesized that the ancestral pacifastin gene has occurred before the divergence of bilaterian animals. However, considering differences in gene structure between the placozoan and other pacifastin genes and the existence of a 'pacifastin gene gap' between Placozoa and Onychophora/Arthropoda, it cannot be excluded that the pacifastin signature originated twice by convergent evolution. PMID:19435517
The evolution of resistance to two-toxin pyramid transgenic crops.
Ives, Anthony R; Glaum, Paul R; Ziebarth, Nicolas L; Andow, David A
2011-03-01
Pyramid transgenic crops that express two Bacillus thuringiensis (Bt) toxins hold great potential for reducing insect damage and slowing the evolution of resistance to the toxins. Here, we analyzed a suite of models for pyramid Bt crops to illustrate factors that should be considered when implementing the high dose-refuge strategy for resistance management; this strategy involves the high expression of toxins in Bt plants and use of non-Bt plants as refuges. Although resistance evolution to pyramid Bt varieties should in general be slower, resistance to pyramid Bt varieties is nonetheless driven by the same evolutionary processes as single Bt-toxin varieties. The main advantage of pyramid varieties is the low survival of insects heterozygous for resistance alleles. We show that there are two modes of resistance evolution. When populations of purely susceptible insects persist, leading to density dependence, the speed of resistance evolution changes slowly with the proportion of refuges. However, once the proportion of non-Bt plants crosses the threshold below which a susceptible population cannot persist, the speed of resistance evolution increases rapidly. This suggests that adaptive management be used to guarantee persistence of susceptible populations. We compared the use of seed mixtures in which Bt and non-Bt plants are sown in the same fields to the use of spatial refuges. As found for single Bt varieties, seed mixtures can speed resistance evolution if larvae move among plants. Devising optimal management plans for deploying spatial refuges is difficult because they depend on crop rotation patterns, whether males or females have limited dispersal, and other characteristics. Nonetheless, the effects of spatial refuges on resistance evolution can be understood by considering the three mechanisms determining the rate of resistance evolution: the force of selection (the proportion of insects killed by Bt), assortative mating (deviations of the proportion of heterozygotes from Hardy-Weinberg equilibrium at the total population level), and male mating success (when males carrying resistance alleles find fewer mates). Of these three, assortative mating is often the least important, even though this mechanism is the most frequently cited explanation for the efficacy of the high dose-refuge strategy.
Structure and Evolution of Insect Sperm: New Interpretations in the Age of Phylogenomics.
Dallai, Romano; Gottardo, Marco; Beutel, Rolf Georg
2016-01-01
This comprehensive review of the structure of sperm in all orders of insects evaluates phylogenetic implications, with the background of a phylogeny based on transcriptomes. Sperm characters strongly support several major branches of the phylogeny of insects-for instance, Cercophora, Dicondylia, and Psocodea-and also different infraordinal groups. Some closely related taxa, such as Trichoptera and Lepidoptera (Amphiesmenoptera), differ greatly in sperm structure. Sperm characters are very conservative in some groups (Heteroptera, Odonata) but highly variable in others, including Zoraptera, a small and morphologically uniform group with a tremendously accelerated rate of sperm evolution. Unusual patterns such as sperm dimorphism, the formation of bundles, or aflagellate and immotile sperm have evolved independently in several groups.
Debris-carrying camouflage among diverse lineages of Cretaceous insects.
Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes
2016-06-01
Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.
Cooperative breeding and monogamy in mammalian societies
Lukas, Dieter; Clutton-Brock, Tim
2012-01-01
Comparative studies of social insects and birds show that the evolution of cooperative and eusocial breeding systems has been confined to species where females mate completely or almost exclusively with a single male, indicating that high levels of average kinship between group members are necessary for the evolution of reproductive altruism. In this paper, we show that in mammals, the evolution of cooperative breeding has been restricted to socially monogamous species which currently represent 5 per cent of all mammalian species. Since extra-pair paternity is relatively uncommon in socially monogamous and cooperatively breeding mammals, our analyses support the suggestion that high levels of average kinship between group members have played an important role in the evolution of cooperative breeding in non-human mammals, as well as in birds and insects. PMID:22279167
2011-01-01
Background Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. Results To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS) replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC), larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Conclusion Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of enhanced resistance, insect larvae tend to have evolved increased tolerance of the fungal competitor. Future studies should examine whether sensitivity to allelopathic microbial metabolites drives a trade-off between resistance and tolerance in insect external defense. PMID:21756302
Trienens, Monika; Rohlfs, Marko
2011-07-14
Fungal secondary metabolites have been suggested to function as chemical defenses against insect antagonists, i.e. predators and competitors. Because insects and fungi often compete for dead organic material, insects may achieve protection against fungi by reducing sensitivity to fungal chemicals. This, in turn, may lead to increased resistance allowing insects better to suppress the spread of antagonistic but non-pathogenic microbes in their habitat. However, it remains controversial whether fungal toxins serve as a chemical shield that selects for insects that are less sensitive to toxins, and hence favors the evolution of insect resistance against microbial competitors. To examine the relationship between the ability to survive competition with toxic fungi, sensitivity to fungal toxins and resistance, we created fungal-selected (FS) replicated insect lines by exposing Drosophila melanogaster larvae to the fungal competitor Aspergillus nidulans over 26 insect generations. Compared to unselected control lines (UC), larvae from the FS lines had higher survival rates in the presence of A. nidulans indicating selection for increased protection against the fungal antagonist. In line with our expectation, FS lines were less susceptible to the A. nidulans mycotoxin Sterigmatocystin. Of particular interest is that evolved protection against A. nidulans and Sterigmatocytin was not correlated with increased insect survival in the presence of other fungi and mycotoxins. We found no evidence that FS lines were better at suppressing the expansion of fungal colonies but observed a trend towards a less detrimental effect of FS larvae on fungal growth. Antagonistic but non-pathogenic fungi favor insect variants better protected against the fungal chemical arsenal. This highlights the often proposed but experimentally underexplored importance of secondary metabolites in driving animal-fungus interactions. Instead of enhanced resistance, insect larvae tend to have evolved increased tolerance of the fungal competitor. Future studies should examine whether sensitivity to allelopathic microbial metabolites drives a trade-off between resistance and tolerance in insect external defense.
Major Hurdles for the Evolution of Sociality.
Korb, Judith; Heinze, Jürgen
2016-01-01
Why do most animals live solitarily, while complex social life is restricted to a few cooperatively breeding vertebrates and social insects? Here, we synthesize concepts and theories in social evolution and discuss its underlying ecological causes. Social evolution can be partitioned into (a) formation of stable social groups, (b) evolution of helping, and (c) transition to a new evolutionary level. Stable social groups rarely evolve due to competition over food and/or reproduction. Food competition is overcome in social insects with central-place foraging or bonanza-type food resources, whereas competition over reproduction commonly occurs because staying individuals are rarely sterile. Hence, the evolution of helping is shaped by direct and indirect fitness options and helping is only altruism if it reduces the helper's direct fitness. The helper's capability to gain direct fitness also creates within-colony conflict. This prevents transition to a new evolutionary level.
Crowder, David W; Carrière, Yves
2009-12-07
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.
Mallott, E K; Malhi, R S; Garber, P A
2015-03-01
The genus Saguinus represents a successful radiation of over 20 species of small-bodied New World monkeys. Studies of the tamarin diet indicate that insects and small vertebrates account for ∼16-45% of total feeding and foraging time, and represent an important source of lipids, protein, and metabolizable energy. Although tamarins are reported to commonly consume large-bodied insects such as grasshoppers and walking sticks (Orthoptera), little is known concerning the degree to which smaller or less easily identifiable arthropod prey comprises an important component of their diet. To better understand tamarin arthropod feeding behavior, fecal samples from 20 wild Bolivian saddleback tamarins (members of five groups) were collected over a 3 week period in June 2012, and analyzed for the presence of arthropod DNA. DNA was extracted using a Qiagen stool extraction kit, and universal insect primers were created and used to amplify a ∼280 bp section of the COI mitochondrial gene. Amplicons were sequenced on the Roche 454 sequencing platform using high-throughput sequencing techniques. An analysis of these samples indicated the presence of 43 taxa of arthropods including 10 orders, 15 families, and 12 identified genera. Many of these taxa had not been previously identified in the tamarin diet. These results highlight molecular analysis of fecal DNA as an important research tool for identifying anthropod feeding patterns in primates, and reveal broad diversity in the taxa, foraging microhabitats, and size of arthropods consumed by tamarin monkeys. © 2014 Wiley Periodicals, Inc.
Ruffner, Beat; Péchy-Tarr, Maria; Höfte, Monica; Bloemberg, Guido; Grunder, Jürg; Keel, Christoph; Maurhofer, Monika
2015-08-16
Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
The evolution of floral scent and insect chemical communication.
Schiestl, Florian P
2010-05-01
Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.
DOSSEY, AARON T.; WHITAKER, JOHN M.; DANCEL, MARIA CRISTINA A.; VANDER MEER, ROBERT K.; BERNIER, ULRICH R.; GOTTARDO, MARCO; ROUSH, WILLIAM R.
2012-01-01
Insects are the largest and most diverse group of organisms on earth, with over 1,000,000 species identified to date. Stick insects (“walkingsticks” or “phasmids”, Order Phasmatodea) are well known for and name derived from their uncanny stereotypical use of camouflage as a primary line of defense from predation. However, many species also possess a potent chemical defense spray. Recently we discovered that the defensive spray of Asceles glaber contains spiroketals (confirmed major component: (2S,6R)-(−)(E)-2-methyl-1,7-dioxaspiro[5.5]undecane and tentative minor component: 2-ethyl-1,6-dioxaspiro[4.5]decane) and glucose. In this paper we 1) illustrate the identification of spiroketals and glucose in the defense spray of A. glaber using Nuclear Magnetic Resonance (NMR), Gas Chromatography/Mass Spectrometry (GC/MS), and comparison with a synthetic reference sample, 2) provide the elucidation of the absolute configuration of the major spiroketal in that defense spray and 3) demonstrate the effect of this compound and its enantiomer on both fire ants (Solenopsis invicta) and mosquitoes (Aedes aegypti). PMID:22976590
Innovative Flow Control Concepts for Drag Reduction
NASA Technical Reports Server (NTRS)
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs. The ERA systems analysis studies performed by NASA indicated that AFC-enhanced vertical tail could produce approximately 0.9% drag reduction for a large twin aisle aircraft and IAM coatings could enable approximately 1.2% drag reduction recovery for a potential total drag reduction of approximately 3.3% for a single aisle aircraft with a natural laminar flow (NLF) wing design.
Insect-Plant Relationships in Ecological Teaching.
ERIC Educational Resources Information Center
Fry, G. L. A.; Wratten, S. D.
1979-01-01
Discusses the current theories concerning the evolution of insect-plant relationships. Offers several experiments based on recent publications in this field, concerning relationships between herbivore number and plants' successional status, geographical range, geological history, and stage of growth, and also experiments on the chemical basis of…
Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms.
Jürgens, Andreas; Wee, Suk-Ling; Shuttleworth, Adam; Johnson, Steven D
2013-09-01
Floral mimicry of decaying plant or animal material has evolved in many plant lineages and exploits, for the purpose of pollination, insects seeking oviposition sites. Existing studies suggest that volatile signals play a particularly important role in these mimicry systems. Here, we present the first large-scale phylogenetically informed study of patterns of evolution in the volatile emissions of plants that mimic insect oviposition sites. Multivariate analyses showed strong convergent evolution, represented by distinct clusters in chemical phenotype space of plants that mimic animal carrion, decaying plant material, herbivore dung and omnivore/carnivore faeces respectively. These plants deploy universal infochemicals that serve as indicators for the main nutrients utilised by saprophagous, coprophagous and necrophagous insects. The emission of oligosulphide-dominated volatile blends very similar to those emitted by carrion has evolved independently in at least five plant families (Annonaceae, Apocynaceae, Araceae, Orchidaceae and Rafflesiaceae) and characterises plants associated mainly with pollination by necrophagous flies and beetles. © 2013 John Wiley & Sons Ltd/CNRS.
Miyakawa, Hitoshi; Toyota, Kenji; Hirakawa, Ikumi; Ogino, Yukiko; Miyagawa, Shinichi; Oda, Shigeto; Tatarazako, Norihisa; Miura, Toru; Colbourne, John K; Iguchi, Taisen
2013-01-01
Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptor's responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.
Tripp, Erin A; Manos, Paul S
2008-07-01
Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.
Resistance to genetic insect control: Modelling the effects of space.
Watkinson-Powell, Benjamin; Alphey, Nina
2017-01-21
Genetic insect control, such as self-limiting RIDL 2 (Release of Insects Carrying a Dominant Lethal) technology, is a development of the sterile insect technique which is proposed to suppress wild populations of a number of major agricultural and public health insect pests. This is achieved by mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic construct, which causes death in progeny when inherited. The released genetically engineered ('GE') insects compete for mates with wild individuals, resulting in population suppression. A previous study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-dependent population genetic and population dynamic approach. This found that proliferation of resistance is possible but can be diluted by the introgression of susceptible alleles from the released homozygous-susceptible GE males. We develop this approach within a spatial context by modelling the spread of a lethal construct and resistance trait, and the effect on population control, in a two deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an increased or decreased evolution of resistance in both the target and non-target demes, depending on the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles for the target deme through dispersal. This can in turn have a major impact on the effectiveness of insect population control. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Schachat, Sandra R.; Labandeira, Conrad C.
2015-04-01
A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.
Hypothesis testing in evolutionary developmental biology: a case study from insect wings.
Jockusch, E L; Ober, K A
2004-01-01
Developmental data have the potential to give novel insights into morphological evolution. Because developmental data are time-consuming to obtain, support for hypotheses often rests on data from only a few distantly related species. Similarities between these distantly related species are parsimoniously inferred to represent ancestral aspects of development. However, with limited taxon sampling, ancestral similarities in developmental patterning can be difficult to distinguish from similarities that result from convergent co-option of developmental networks, which appears to be common in developmental evolution. Using a case study from insect wings, we discuss how these competing explanations for similarity can be evaluated. Two kinds of developmental data have recently been used to support the hypothesis that insect wings evolved by modification of limb branches that were present in ancestral arthropods. This support rests on the assumption that aspects of wing development in Drosophila, including similarities to crustacean epipod patterning, are ancestral for winged insects. Testing this assumption requires comparisons of wing development in Drosophila and other winged insects. Here we review data that bear on this assumption, including new data on the functions of wingless and decapentaplegic during appendage allocation in the red flour beetle Tribolium castaneum.
Population genomics of divergence among extreme and intermediate color forms in a polymorphic insect
USDA-ARS?s Scientific Manuscript database
Geographic variation in insect coloration is among the most intriguing examples of rapid phenotypic evolution and provides ideal opportunities to study the mechanisms of phenotypic change and diversification in closely related lineages. The bumble bee Bombus bifarius comprises two geographically dis...
Phylogeny, evolution, and classification of gall wasps: the plot thickens
USDA-ARS?s Scientific Manuscript database
Gall wasps (Cynipidae) represent the most spectacular radiation of gall-inducing insects. In addition to true gall formers, gall wasps also include phytophagous inquilines, which live inside the galls induced by gall wasps or other insects. Here we present the first comprehensive molecular and total...
A depauperate immune repertoire precedes evolution of sociality in bees
USDA-ARS?s Scientific Manuscript database
Sociality has many rewards, but it can also be dangerous, as high population density and low genetic diversity, common in many social insects, is ideal for parasite transmission. Social insects may therefore be expected to have evolved a specialised immune arsenal to guard against this threat. Surpr...
Espino, L; Way, M O; Wilson, L T
2008-02-01
Commercial rice, Oryza sativa L., fields in southeastern Texas were sampled during 2003 and 2004, and visual samples were compared with sweep net samples. Fields were sampled at different stages of panicle development, times of day, and by different operators. Significant differences were found between perimeter and within field sweep net samples, indicating that samples taken 9 m from the field margin overestimate within field Oebalus pugnax (F.) (Hemiptera: Pentatomidae) populations. Time of day did not significantly affect the number of O. pugnax caught with the sweep net; however, there was a trend to capture more insects during morning than afternoon. For all sampling methods evaluated during this study, O. pugnax was found to have an aggregated spatial pattern at most densities. When comparing sweep net with visual sampling methods, one sweep of the "long stick" and two sweeps of the "sweep stick" correlated well with the sweep net (r2 = 0.639 and r2 = 0.815, respectively). This relationship was not affected by time of day of sampling, stage of panicle development, type of planting or operator. Relative cost-reliability, which incorporates probability of adoption, indicates the visual methods are more cost-reliable than the sweep net for sampling O.
2011-01-01
Background The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. Results Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. Conclusions Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general. PMID:21489230
The Discovery of "Jelly Bellicus"
ERIC Educational Resources Information Center
Tieman, Deborah; Haxer, Gary
2007-01-01
To most students entering today's biology classes, evolution is something that occurred long ago, and is therefore irrelevant to their lives. Examples of evolution that are important concerns in the modern world, such as the resistance of insects to pesticides and antibiotic resistance, do not match students' concept of evolution. In this article,…
Mesquita, Rafael D.; Vionette-Amaral, Raquel J.; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A.; Minx, Patrick; Spieth, John; Carvalho, A. Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q.; Ribeiro, Jose M. C.; Sorgine, Marcos H. F.; Waterhouse, Robert M.; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R.; Araujo, Helena M.; Aravind, L.; Atella, Georgia C.; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R.; Braz, Gloria R. C.; Calderón-Fernández, Gustavo; Carareto, Claudia M. A.; Christensen, Mikkel B.; Costa, Igor R.; Costa, Samara G.; Dansa, Marilvia; Daumas-Filho, Carlos R. O.; De-Paula, Iron F.; Dias, Felipe A.; Dimopoulos, George; Emrich, Scott J.; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D.; da Fonseca, Rodrigo N.; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A.; Gandara, Ana Caroline; Garcia, Eloi S.; Genta, Fernando A.; Giraldo-Calderón, Gloria I.; Gomes, Bruno; Gondim, Katia C.; Granzotto, Adriana; Guarneri, Alessandra A.; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S. T.; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M. Patricia; Koerich, Leonardo B.; Lange, Angela B.; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G.; Lazoski, Cristiano; Lazzari, Claudio R.; Lopes, Raphael R.; Lorenzo, Marcelo G.; Lugon, Magda D.; Marcet, Paula L.; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G.; Nouzova, Marcela; Nunes, Rodrigo D.; Oliveira, Raquel L. L.; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O.; Pascual, Agustina; Pavan, Marcio G.; Pedrini, Nicolás; Peixoto, Alexandre A.; Pereira, Marcos H.; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M.; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S.; Silva-Cardoso, Livia; Silva-Neto, Mario A. C.; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L.; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M. C.; Ursic-Bedoya, Raul; Venancio, Thiago M.; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C.; Wilson, Richard K.; Huebner, Erwin; Dotson, Ellen M.; Oliveira, Pedro L.
2015-01-01
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods. PMID:26627243
Harpur, Brock A; Zayed, Amro
2013-07-01
The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.
Mesquita, Rafael D; Vionette-Amaral, Raquel J; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A; Minx, Patrick; Spieth, John; Carvalho, A Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q; Ribeiro, Jose M C; Sorgine, Marcos H F; Waterhouse, Robert M; Montague, Michael J; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R; Araujo, Helena M; Araujo, Ricardo N; Aravind, L; Atella, Georgia C; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R; Braz, Gloria R C; Calderón-Fernández, Gustavo; Carareto, Claudia M A; Christensen, Mikkel B; Costa, Igor R; Costa, Samara G; Dansa, Marilvia; Daumas-Filho, Carlos R O; De-Paula, Iron F; Dias, Felipe A; Dimopoulos, George; Emrich, Scott J; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D; da Fonseca, Rodrigo N; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A; Gandara, Ana Caroline; Garcia, Eloi S; Genta, Fernando A; Giraldo-Calderón, Gloria I; Gomes, Bruno; Gondim, Katia C; Granzotto, Adriana; Guarneri, Alessandra A; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S T; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M Patricia; Koerich, Leonardo B; Lange, Angela B; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G; Lazoski, Cristiano; Lazzari, Claudio R; Lopes, Raphael R; Lorenzo, Marcelo G; Lugon, Magda D; Majerowicz, David; Marcet, Paula L; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Melo, Ana C A; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G; Nouzova, Marcela; Nunes, Rodrigo D; Oliveira, Raquel L L; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O; Pascual, Agustina; Pavan, Marcio G; Pedrini, Nicolás; Peixoto, Alexandre A; Pereira, Marcos H; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S; Silva-Cardoso, Livia; Silva-Neto, Mario A C; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M C; Ursic-Bedoya, Raul; Venancio, Thiago M; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C; Wilson, Richard K; Huebner, Erwin; Dotson, Ellen M; Oliveira, Pedro L
2015-12-01
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Rapid evolution in insect pests: the importance of space and time in population genomics studies.
Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D
2018-04-01
Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.
Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults
Scuderi, Marco M.; Carpenter, Brett M.; Johnson, Paul A.; ...
2015-10-22
Pore fluids influence many aspects of tectonic faulting including frictional strength aseismic creep and effective stress during the seismic cycle. But, the role of pore fluid pressure during earthquake nucleation and dynamic rupture remains poorly understood. Here we report on the evolution of pore fluid pressure and porosity during laboratory stick-slip events as an analog for the seismic cycle. We sheared layers of simulated fault gouge consisting of glass beads in a double-direct shear configuration under true triaxial stresses using drained and undrained fluid conditions and effective normal stress of 5–10 MPa. Shear stress was applied via a constant displacementmore » rate, which we varied in velocity step tests from 0.1 to 30 µm/s. Here, we observe net pore pressure increases, or compaction, during dynamic failure and pore pressure decreases, or dilation, during the interseismic period, depending on fluid boundary conditions. In some cases, a brief period of dilation is attendant with the onset of dynamic stick slip. Our data show that time-dependent strengthening and dynamic stress drop increase with effective normal stress and vary with fluid conditions. For undrained conditions, dilation and preseismic slip are directly related to pore fluid depressurization; they increase with effective normal stress and recurrence time. Microstructural observations confirm the role of water-activated contact growth and shear-driven elastoplastic processes at grain junctions. These results indicate that physicochemical processes acting at grain junctions together with fluid pressure changes dictate stick-slip stress drop and interseismic creep rates and thus play a key role in earthquake nucleation and rupture propagation.« less
Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics.
Vertacnik, Kim L; Linnen, Catherine R
2017-02-01
Adaptation to different host taxa is a key driver of insect diversification. Herbivorous insects are classic models for ecological and evolutionary research, but it is recent advances in sequencing, statistics, and molecular technologies that have cleared the way for investigations into the proximate genetic mechanisms underlying host shifts. In this review, we discuss how genome-scale data are revealing-at resolutions previously unimaginable-the genetic architecture of host-use traits, the causal loci underlying host shifts, and the predictability of host-use evolution. Collectively, these studies are providing novel insights into longstanding questions about host-use evolution. On the basis of this synthesis, we suggest that different host-use traits are likely to differ in their genetic architecture (number of causal loci and the nature of their genetic correlations) and genetic predictability (extent of gene or mutation reuse), indicating that any conclusions about the causes and consequences of host-use evolution will depend heavily on which host-use traits are investigated. To draw robust conclusions and identify general patterns in host-use evolution, we argue that investigation of diverse host-use traits and identification of causal genes and mutations should be the top priorities for future studies on the evolutionary genetics of host shifts. © 2017 New York Academy of Sciences.
DNA methylation in insects: on the brink of the epigenomic era.
Glastad, K M; Hunt, Brendan G; Yi, S V; Goodisman, M A D
2011-10-01
DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Experimental evolution of insect immune memory versus pathogen resistance.
Khan, Imroze; Prakash, Arun; Agashe, Deepa
2017-12-20
Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms. © 2017 The Author(s).
The age for the fossil-bearing Tabbowa beds in Sri Lanka
NASA Astrophysics Data System (ADS)
Chang, S. C.; Dassanayake, S.; Wang, J.
2014-12-01
Well-preserved terrestrial fossils, mainly including conifers, cycads and ferns, were discovered from the Tabbowa beds in northwestern Sri Lanka. The high diversity and abundance of plants and insects from these Jurassic sediments provide a unique window to understand floral evolution and plant-insect co-evolution in the Mesozoic. For example, unearthed fossils from the Tabbowa beds indicate that leaf feeding and dwelling insects played a significant role in the Jurassic ecosystem. For another example, feeding and chewing marks on leaves allow studying insect behavior and paleo-ecology. Additionally, the recent discoveries of Otozamites latiphyllus and Otozamites tabbowensis from these sediments provide evidence that Bennettitales, an extinct order of seed plants, widely spread in the Gondwana during the Jurassic period. Although most fossils are yet to be well studied, and only few of the fossil occurrences have been published in western journals, plant fossils from the Tabbowa beds have great potential for substantially increasing our knowledge of Jurassic terrestrial ecosystems. The fossil-bearing Tabbowa beds are mainly composed of sandstone, siltstone, and mudstone with occasional thin bands of nodular limestone. Until now, radio-isotopic age determinations for the fossil-rich Tabbowa beds are lacking. In this study, we investigate the geological and geochronological setting of this area by dating detrital zircons from the Tabbowa beds. The age data will allow testing several hypotheses regarding the plant evolution, the basin development of this region.
Himmelsbach, Markus; Weth, Agnes; Böhme, Christine; Schwarz, Martin; Bräunig, Peter; Baumgartner, Werner
2016-01-01
ABSTRACT Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo. PMID:26863940
Biologically-inspired hexapod robot design and simulation
NASA Technical Reports Server (NTRS)
Espenschied, Kenneth S.; Quinn, Roger D.
1994-01-01
The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.
Leubner, Fanny; Hörnschemeyer, Thomas; Bradler, Sven
2016-02-18
Secondary winglessness is a common phenomenon found among neopteran insects. With an estimated age of at least 140 million years, the cave crickets (Rhaphidophoridae) form the oldest exclusively wingless lineage within the long-horned grasshoppers (Ensifera). With respect to their morphology, cave crickets are generally considered to represent a `primitive' group of Ensifera, for which no apomorphic character has been reported so far. We present the first detailed investigation and description of the thoracic skeletal and muscular anatomy of the East Mediterranean cave cricket Troglophilus neglectus (Ensifera: Rhaphidophoridae). T. neglectus possesses sternopleural muscles that are not yet reported from other neopteran insects. Cave crickets in general exhibit some unique features with respect to their thoracic skeletal anatomy: an externally reduced prospinasternum, a narrow median sclerite situated between the meso- and metathorax, a star-shaped prospina, and a triramous metafurca. The thoracic muscle equipment of T. neglectus compared to that of the bush cricket Conocephalus maculatus (Ensifera: Tettigoniidae) and the house cricket Acheta domesticus (Ensifera: Gryllidae) reveals a number of potentially synapomorphic characters between these lineages. Based on the observed morphology we favor a closer relationship of Rhaphidophoridae to Tettigoniidae rather than to Gryllidae. In addition, the comparison of the thoracic morphology of T. neglectus to that of other wingless Polyneoptera allows reliable conclusions about anatomical adaptations correlated with secondary winglessness. The anatomy in apterous Ensifera, viz. the reduction of discrete direct and indirect flight muscles as well as the strengthening of specific leg muscles, largely resembles the condition found in wingless stick insects (Euphasmatodea), but is strikingly different from that of other related wingless insects, e.g. heel walkers (Mantophasmatodea), ice crawlers (Grylloblattodea), and certain grasshoppers (Caelifera). The composition of direct flight muscles largely follows similar patterns in winged respectively wingless species within major polyneopteran lineages, but it is highly heterogeneous between those lineages.
USDA-ARS?s Scientific Manuscript database
Cellular automata (CA) is a powerful tool in modeling the evolution of macroscopic scale phenomena as it couples time, space, and variable together while remaining in a simplified form. However, such application has remained challenging in landscape-level chronic forest insect epidemics due to the h...
USDA-ARS?s Scientific Manuscript database
The development of insect resistance to pesticides and biological toxins expressed by genetically modified crop plants is a serious threat to sustainable agricultural production. One of the central goals of insect resistance management (IRM) is to understand the evolution and adaptation of pest inse...
Chemical signaling and insect attraction is a conserved trait in yeasts.
Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure
2018-03-01
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
Engel, Michael S
2015-10-05
It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Workshop on Molecular Evolution
NASA Technical Reports Server (NTRS)
Cummings, Michael P.
2004-01-01
Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.
NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Sakagami, Masa-aki; Tanaka, Hidekazu, E-mail: satoshi.okuzumi@ax2.ecs.kyoto-u.ac.j
2009-12-20
Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dustmore » aggregates on the basis of our N-body experiments on aggregate collisions. As the first step, we focus on 'hit-and-stick' collisions, which involve neither compression nor fragmentation of aggregates. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae for the aerodynamical and collisional cross sections. Our collision model is thus more realistic than a previous model of Ormel et al. based on the classical aggregation limits only. Simple coagulation simulations using the extended Smoluchowski method show that our collision model explains the fractal dimensions of porous aggregates observed in a full N-body simulation and a laboratory experiment. By contrast, similar simulations using the collision model of Ormel et al. result in much less porous aggregates, meaning that this model underestimates the porosity increase upon unequal-sized collisions. Besides, we discover that aggregates at the high-mass end of the distribution can have a considerably small aerodynamical cross section per unit mass compared with aggregates of lower masses. This occurs when aggregates drift under uniform acceleration (e.g., gravity) and their collision is induced by the difference in their terminal velocities. We point out an important implication of this discovery for dust growth in protoplanetary disks.« less
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le
2017-06-01
The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling
2017-01-01
Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351
Evolution of the Insect Desaturase Gene Family with an Emphasis on Social Hymenoptera
Helmkampf, Martin; Cash, Elizabeth; Gadau, Jürgen
2015-01-01
Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes. PMID:25425561
Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success.
Sobral, Mar; Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo
2016-01-01
Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock.
Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success
Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo
2016-01-01
Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock. PMID:27014509
Horizontal transmission of the insect symbiont Rickettsia is plant-mediated
Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Katzir, Nurit; Portnoy, Vitaly; Belausov, Eduard; Hunter, Martha S.; Zchori-Fein, Einat
2012-01-01
Bacteria in the genus Rickettsia, best known as vertebrate pathogens vectored by blood-feeding arthropods, can also be found in phytophagous insects. The presence of closely related bacterial symbionts in evolutionarily distant arthropod hosts presupposes a means of horizontal transmission, but no mechanism for this transmission has been described. Using a combination of experiments with live insects, molecular analyses and microscopy, we found that Rickettsia were transferred from an insect host (the whitefly Bemisia tabaci) to a plant, moved inside the phloem, and could be acquired by other whiteflies. In one experiment, Rickettsia was transferred from the whitefly host to leaves of cotton, basil and black nightshade, where the bacteria were restricted to the phloem cells of the plant. In another experiment, Rickettsia-free adult whiteflies, physically segregated but sharing a cotton leaf with Rickettsia-plus individuals, acquired the Rickettsia at a high rate. Plants can serve as a reservoir for horizontal transmission of Rickettsia, a mechanism which may explain the occurrence of phylogenetically similar symbionts among unrelated phytophagous insect species. This plant-mediated transmission route may also exist in other insect–symbiont systems and, since symbionts may play a critical role in the ecology and evolution of their hosts, serve as an immediate and powerful tool for accelerated evolution. PMID:22113034
Schachat, Sandra R; Labandeira, Conrad C
2015-04-01
A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.
NASA Astrophysics Data System (ADS)
Zhuo, Y. Q.; Liu, P.; Guo, Y.; Ji, Y.; Ma, J.
2017-12-01
Premonitory fault slip, which begins with quasistatic propagation followed by quasidynamic propagation, may be a key clue bridging the "stick" state and "slip" state of a fault. More attentions have been paid for a long time to the temporal resolution of measurement than the spatial resolution, leading to the incomplete interpretation for the spatial evolution of premonitory slip, particularly during the quasistatic phase. In the present study, measurement of the quasistatic propagation of premonitory slip is achieved at an ultrahigh spatial resolution via a digital image correlation method. Multiple premonitory slip zones are observed and found to be controlled spatially by the fault contact heterogeneity, particularly the strong contact patches that prevent the propagation of premonitory slip and accumulate strain. As a result, premonitory slip is accelerated within constrained week contact spaces and consequently triggers the breakout of quasidynamic propagation. The results provide new insights into the quasistatic propagation of premonitory slip and may offer new interpretations for the earthquake nucleation process. This work is fund by the National Natural Science Foundation of China (Grant No. 41572181), the Basic Scientific Funding of Chinese National Nonprofit Institutes (Grant No. IGCEA1415, IGCEA1525), and the Early-Stage Work of Key Breakthrough Plan in Seismology from China Earthquake Administration.
Leveraging Human Insights by Combining Multi-Objective Optimization with Interactive Evolution
2015-03-26
application, a program that used human selections to guide the evolution of insect -like images. He was able to demonstrate that humans provide key insights...LEVERAGING HUMAN INSIGHTS BY COMBINING MULTI-OBJECTIVE OPTIMIZATION WITH INTERACTIVE EVOLUTION THESIS Joshua R. Christman, Second Lieutenant, USAF...COMBINING MULTI-OBJECTIVE OPTIMIZATION WITH INTERACTIVE EVOLUTION THESIS Presented to the Faculty Department of Electrical and Computer Engineering
Puentes, A; Johnson, M T J
2016-01-01
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Zhang, Ziyan; He, Kate S.; Li, Bo
2015-01-01
Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides. PMID:26407176
Mondal, N K; Bhaumik, R; Das, C R; Aditya, P; Datta, J K; Banerjee, A; Das, K
2013-09-01
The objective of the present study was to access the pollutant generated from bio-fuels like bamboo sticks, cow dung, paddy straw, carbon dust cake, gobar gas, jute stick, and mustard stick and synthetic fuel like LPG during cooking in rural villages of Burdwan, West Bengal, India and its fluctuation in living room. The average SO2 released from the fuels was found in the following order: bamboo stick > cow dung > paddy straw > carbon cake > gobar gas > jute stick > LPG > mustard stick; NO2 emission was in the following order : mustard stick > carbon dust cake > paddy straw > cow dung cake > LPG, jute stick > gobar gas > bamboo stick > and SPM was obtained in the following sequence: cow dung cake > bamboo stick > carbon dust cake > gobar gas > LPG > mustard stick > paddy straw > jute stick, respectively. The highest living room to kitchen room (L/K) ratio of SO2, NO, and SPM was found in LPG, gobar gas, jute stick respectively in 2009 and followed by bamboo stick > paddy straw > jute stick > cow dung cake, respectively in 2010. Results of this study suggest that different fuels released different amount of air pollutants, but more extensive study is needed to confirm the relationship between fuels and released air pollutants.
Scientists Train Honeybees to Detect Explosives
None
2018-01-16
Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.
Scientists Train Honeybees to Detect Explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-03-21
Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those thatmore » present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.« less
Insects as alternative hosts for phytopathogenic bacteria.
Nadarasah, Geetanchaly; Stavrinides, John
2011-05-01
Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops.
Hackett, Sean C; Bonsall, Michael B
2016-10-01
The evolution of resistance to pesticides by insect pests is a significant challenge for sustainable agriculture. For transgenic crops expressing Bacillus thuringiensis (Bt), crystalline (Cry) toxins resistance evolution may be delayed by the high-dose/refuge strategy in which a non-toxic refuge is planted to promote the survival of susceptible insects. The high-dose/refuge strategy may interact with fitness costs associated with resistance alleles to further delay resistance. However, while a diverse range of fitness costs are reported in the field, they are typically represented as a fixed reduction in survival or viability which is insensitive to ecological conditions such as competition. Furthermore, the potential dynamic consequences of restricting susceptible insects to a refuge which represents only a fraction of the available space have rarely been considered.We present a generalized discrete time model which utilizes dynamic programming methods to derive the optimal management decisions for the control of a theoretical insect pest population exposed to Bt crops. We consider three genotypes (susceptible homozygotes, resistant homozygotes and heterozygotes) and implement fitness costs of resistance to Bt toxins as either a decrease in the relative competitive ability of resistant insects or as a penalty on fecundity. Model analysis is repeated and contrasted for two types of density dependence: uniform density dependence which operates equally across the landscape and heterogeneous density dependence where the intensity of competition scales inversely with patch size and is determined separately for the refuge and Bt crop.When the planting of Bt is decided optimally, fitness costs to fecundity allow for the planting of larger areas of Bt crops than equivalent fitness costs that reduce the competitive ability of resistant insects.Heterogeneous competition only influenced model predictions when the proportional area of Bt planted in each season was decided optimally and resistance was not recessive. Synthesis and applications . The high-dose/refuge strategy alone is insufficient to preserve susceptibility to transgenic Bacillus thuringiensis (Bt) crops in the long term when constraints upon the evolution of resistance are not insurmountable. Fitness costs may enhance the delaying effect of the refuge, but the extent to which they do so depends upon how the cost is realized biologically. Fitness costs which apply independently of other variables may be more beneficial to resistance management than costs which are only visible to selection under a limited range of ecological conditions.
Molecular evolution of the major chemosensory gene families in insects.
Sánchez-Gracia, A; Vieira, F G; Rozas, J
2009-09-01
Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.
Waller, John T; Svensson, Erik I
2017-09-01
We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, Dassia
2014-01-21
Stick-spectrum expressions for electronic two-dimensional (2D) photon-echo (PE) signal of a generic multi-level system are presented and employed to interrelate oscillations in individual peaks of 2D PE signal and the underlying properties (eigenstates and coherent dynamics) of excitonic or vibronic systems. When focusing on the identification of the origin of oscillations in the rephasing part of 2D PE it is found, in particular, that multiple frequencies in the evolution of the individual peaks do not necessarily directly reflect the underlying system dynamics. They may originate from the excited-state absorption contribution to the signal, or arise due to multi-level vibrational structuremore » of the electronic ground state, and represent a superposition of system frequencies, while the latter may evolve independently. The analytical stick-spectrum predictions are verified and illustrated by numerical calculations of 2D PE signals of an excitonic trimer and of a displaced harmonic oscillator with unequal vibrational frequencies in the two electronic states. The excitonic trimer is the smallest excitonic oligomer where excited-state absorption may represent a superposition of excited-state coherences and significantly influence the phase of the observed oscillations. The displaced oscillator is used to distinguish between the frequencies of the ground-state and of the excited-state manifolds, and to demonstrate how the location of a cross peak in 2D pattern of the PE signal “predetermines” its oscillatory behavior. Although the considered models are kept as simple as possible for clarity, the stick-spectrum analysis provides a solid general basis for interpretation of oscillatory signatures in electronic 2D PE signals of much more complex systems with multi-level character of the electronic states.« less
Evolution of Parasitism in Insect-transmitted Plant Nematodes
Giblin-Davis, R. M.; Davies, K. A.; Morris, K.; Thomas, W. K.
2003-01-01
Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear. PMID:19265987
Novel Insights into Insect-Microbe Interactions—Role of Epigenomics and Small RNAs
Kim, Dohyup; Thairu, Margaret W.; Hansen, Allison K.
2016-01-01
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory “dark matter” such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes. PMID:27540386
16 CFR 1507.10 - Rockets with sticks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...
16 CFR 1507.10 - Rockets with sticks.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...
16 CFR 1507.10 - Rockets with sticks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...
16 CFR 1507.10 - Rockets with sticks.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...
Metabolic interdependence of obligate intracellular bacteria and their insect hosts.
Zientz, Evelyn; Dandekar, Thomas; Gross, Roy
2004-12-01
Mutualistic associations of obligate intracellular bacteria and insects have attracted much interest in the past few years due to the evolutionary consequences for their genome structure. However, much less attention has been paid to the metabolic ramifications for these endosymbiotic microorganisms, which have to compete with but also to adapt to another metabolism--that of the host cell. This review attempts to provide insights into the complex physiological interactions and the evolution of metabolic pathways of several mutualistic bacteria of aphids, ants, and tsetse flies and their insect hosts.
ScaleNet: a literature-based model of scale insect biology and systematics
García Morales, Mayrolin; Denno, Barbara D.; Miller, Douglass R.; Miller, Gary L.; Ben-Dov, Yair; Hardy, Nate B.
2016-01-01
Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found on all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis and plant-insect interactions. ScaleNet was launched in 1995 to provide insect identifiers, pest managers, insect systematists, evolutionary biologists and ecologists efficient access to information about scale insect biological diversity. It provides comprehensive information on scale insects taken directly from the primary literature. Currently, it draws from 23 477 articles and describes the systematics and biology of 8194 valid species. For 20 years, ScaleNet ran on the same software platform. That platform is no longer viable. Here, we present a new, open-source implementation of ScaleNet. We have normalized the data model, begun the process of correcting invalid data, upgraded the user interface, and added online administrative tools. These improvements make ScaleNet easier to use and maintain and make the ScaleNet data more accurate and extendable. Database URL: http://scalenet.info PMID:26861659
Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press.
van den Tillaar, Roland; Saeterbakken, Atle Hole
2013-01-01
The aim of the study was to examine the sticking region and concomitant neuromuscular activation of the prime movers during six-repetition maximum (RM) bench pressing. We hypothesised that both peak velocities would decrease and that the electromyography (EMG) of the prime movers (deltoid, major pectoralis and triceps) would increase during the pre-sticking and sticking region during the six repetitions due to fatigue. Thirteen resistance-trained males (age 22.8 ± 2.2 years, stature 1.82 ± 0.06 m, body mass 83.4 ± 7.6 kg) performed 6-RM bench presses. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, and triceps brachii during the pre-, sticking and post-sticking region of each repetition in a 6-RM bench press were analysed. For both the sticking as the post-sticking region, the time increased significantly from the first to the sixth repetition. Vertical barbell height at the start of sticking region was lower, while the height at the end of the sticking region and post-sticking region did not change during the six repetitions. It was concluded that in 6-RM bench pressing performance, the sticking region is a poor mechanical force region due to the unchanged barbell height at the end of the sticking region. Furthermore, when fatigue occurs, the pectoralis and the deltoid muscles are responsible for surpassing the sticking region as indicated by their increased activity during the pre- and sticking region during the six-repetitions bench press.
Effects of stick design features on perceptions of characteristics of cigarettes.
Borland, Ron; Savvas, Steven
2013-09-01
To examine the extent (if any) that cigarette stick dimension, tipping paper design and other decorative design/branding have on Australian smokers' perceptions of those cigarettes. An internet survey of 160 young Australian adult ever-smokers who were shown computer images of three sets of cigarette sticks--five sticks of different lengths and diameters (set A), five sticks with different tipping paper design (set B) and four sticks of different decorative design (set C). Branding was a between-subjects randomised condition for set C. For each set, respondents ranked sticks on most and least attractive, highest and lowest quality and strongest and weakest taste. Cigarette sticks were perceived as different on attractiveness, quality and strength of taste. Standard stick length/diameter was perceived as the most attractive and highest quality stick, with men more inclined to rate a slim stick as less attractive. A stick with a cork-patterned tipping paper and a gold band was seen as most attractive, of highest quality and strongest in taste compared to other tipping designs. Branded sticks were seen as more attractive, higher in quality and stronger tasting than non-branded designs, regardless of brand, although the effects were stronger for a prestige compared with a budget brand. Characteristics of the cigarette stick affect smokers' perceptions of the attributes of those cigarettes and thus are a potential means by which product differentiation can occur. A comprehensive policy to eliminate promotional aspects of cigarette design and packaging needs to include rules about stick design.
Sexual bias in probe tool manufacture and use by wild bearded capuchin monkeys.
Falótico, Tiago; Ottoni, Eduardo B
2014-10-01
Here we examine data from a two-year research on the use of sticks as probes by two groups of wild capuchin monkeys (Sapajus libidinosus) in Serra da Capivara National Park (PI), Brazil. The use of sticks as probes is not usually observed among wild tufted capuchin (Sapajus spp.) populations, having been reported as a customary behavior only in SCNP groups. Probe tools are used to access small prey (insects or lizards) in rock cracks or tree trunks, or honey from wasps' nests, and also to poke toads and poisonous snakes. Probe use is, so far, the only known case in which wild capuchins modify objects used as tools: branches are trimmed off, and tips, thinned. Tool preparation episodes involved up to four modification steps. Contrary to the stone tools used to crack hard nuts, probe tools don't present any weight constraint for use by females, but there is nevertheless a strong male bias (97%) in the occurrence of probe tool use. There are also no diet biases that could explain this difference. Although males hunt more often than females, the latter main prey items are lizards, which are also the main targets of probe tool use. One possibility is that females may have fewer social opportunities to learn about probe tools. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of hiking stick use on lateral stability while balancing with and without a load.
Jacobson, B H; Caldwell, B; Kulling, F A
1997-08-01
To compare hiking stick use on lateral stability while balancing with or without a load (15-kg internal frame backpack) under conditions of no stick, 1 stick, and 2 sticks for six trials 15 volunteers ages 19 to 23 years (M = 21.7 yr.) were tested six separate times on a stability platform. During randomly ordered, 1-min. trials, the length of time (sec.) the subject maintained balance (+/-10 degrees of horizontal) and the number of deviations beyond 10 degrees were recorded simultaneously. Backpack and hiking sticks were individually adjusted for each subject. A 2 x 3 repeated factor analysis of variance indicated that subjects balanced significantly longer both with and without a load while using 2 hiking sticks than 1 or 0 sticks. Significantly fewer deviations beyond 10 degrees were found when subjects were without a load and using 1 or 2 sticks versus when they used none, and no significant difference in the number of deviations were found between 1 and 2 hiking sticks. When subjects were equipped with a load, significantly improved balance was found only between the 2 sticks and no sticks. Balance was significantly enhanced by using hiking sticks, and two sticks were more effective than one while carrying a load. An increase in maintenance of static balance may reduce the possibility of falling and injury while standing on loose alpine terrain.
Phoretic Carrying Capacity of Flying Southern Pine Beetles (Coleoptera: Scolytidae)
John C. Moser
1976-01-01
Mites do not have wings, but in their course of evolution many species have developed an association with insects, using them as a vehicle of distribution. Occasionally they cover the host so completely that the insect cannot fly. The literature is replete with these observations. Except for a single speculation (Fronk 1947), there are no reports as to how many mites...
Raul de la Mata; Sharon Hood; Anna Sala
2017-01-01
Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important...
USDA-ARS?s Scientific Manuscript database
Insect sex pheromones (SPs) are central to mate-finding behavior, and play an essential role in the survival and reproduction of organisms. Understanding the roles, biosynthetic pathways, and evolution of insect chemical communication systems has been an exciting challenge for biologists. Compared w...
USDA-ARS?s Scientific Manuscript database
Crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage a number of insect pests. The evolution of Bt resistance diminishes the capacity of Bt crops to manage insect pests. Fitness costs of Bt resistance occur in the absence of Bt toxins when i...
Dias, Renata O; Via, Allegra; Brandão, Marcelo M; Tramontano, Anna; Silva-Filho, Marcio C
2015-03-01
Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic L-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera. Copyright © 2015 Elsevier Ltd. All rights reserved.
Relatedness and the fraternal major transitions.
Queller, D C
2000-01-01
Many of the major transitions in evolution involved the coalescence of independent lower-level units into a higher organismal level. This paper examines the role of kinship, focusing on the transitions to multicellularity in animals and to coloniality in insects. In both, kin selection based on high relatedness permitted cooperation and a reproductive division of labour. The higher relatedness of haplodiploid females to their sisters than to their offspring might not have been crucial in the origin of insect societies, and the transition to multicellularity shows that such special relationships are not required. When multicellular forms develop from a single cell, selfish conflict is minimal because each selfish mutant obtains only one generation of within-individual advantage in a chimaera. Conditionally expressed traits are particularly immune to within-individual selfishness because such mutations are rarely expressed in chimaeras. Such conditionally expressed altruism genes lead easily to the evolution of the soma, and the germ line might simply be what is left over. In most social insects, differences in relatedness ensure that there will be potential conflicts. Power asymmetries sometimes lead to such decisive settlements of conflicts that social insect colonies can be considered to be fully organismal. PMID:11127911
McGrew, William C
2014-06-01
The role of invertebrates in the evolution of human diet has been under-studied by comparison with vertebrates and plants. This persists despite substantial knowledge of the importance of the 'other faunivory', especially insect-eating, in the daily lives of non-human primates and traditional human societies, especially hunters and gatherers. Most primates concentrate on two phyla, Mollusca and Arthropoda, but of the latter's classes, insects (especially five orders: Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Orthoptera) are paramount. An insect product, bees' honey, is particularly important, and its collection shows a reversal of the usual sexual division of labor. Human entomophagy involves advanced technology (fire, containers) and sometimes domestication. Insectivory provides comparable calorific and nutritional benefits to carnivory, but with different costs. Much insectivory in hominoids entails elementary technology used in extractive foraging, such as termite fishing by chimpanzees. Elucidating insectivory in the fossil and paleontological record is challenging, but at least nine avenues are available: remains, lithics, residues, DNA, coprolites, dental microwear, stable isotopes, osteology, and depictions. All are in play, but some have been more successful so far than others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Diversity, evolution and medical applications of insect antimicrobial peptides
Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged
2016-01-01
Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160593
The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees.
Brand, Philipp; Ramírez, Santiago R
2017-08-01
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
An insect-like mushroom body in a crustacean brain
Wolff, Gabriella Hannah; Thoen, Hanne Halkinrud; Marshall, Justin; Sayre, Marcel E
2017-01-01
Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. PMID:28949916
Yoshinaga, Naoko; Abe, Hiroaki; Morita, Sayo; Yoshida, Tetsuya; Aboshi, Takako; Fukui, Masao; Tumlinson, James H.; Mori, Naoki
2013-01-01
Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way. PMID:24744735
Bennett, Gordon M.; Moran, Nancy A.
2013-01-01
Many insects rely on bacterial symbionts with tiny genomes specialized for provisioning nutrients lacking in host diets. Xylem sap and phloem sap are both deficient as insect diets, but differ dramatically in nutrient content, potentially affecting symbiont genome evolution. For sap-feeding insects, sequenced symbiont genomes are available only for phloem-feeding examples from the suborder Sternorrhyncha and xylem-feeding examples from the suborder Auchenorrhyncha, confounding comparisons. We sequenced genomes of the obligate symbionts, Sulcia muelleri and Nasuia deltocephalinicola, of the phloem-feeding pest insect, Macrosteles quadrilineatus (Auchenorrhyncha: Cicadellidae). Our results reveal that Nasuia-ALF has the smallest bacterial genome yet sequenced (112 kb), and that the Sulcia-ALF genome (190 kb) is smaller than that of Sulcia in other insect lineages. Together, these symbionts retain the capability to synthesize the 10 essential amino acids, as observed for several symbiont pairs from xylem-feeding Auchenorrhyncha. Nasuia retains genes enabling synthesis of two amino acids, DNA replication, transcription, and translation. Both symbionts have lost genes underlying ATP synthesis through oxidative phosphorylation, possibly as a consequence of the enriched sugar content of phloem. Shared genomic features, including reassignment of the UGA codon from Stop to tryptophan, and phylogenetic results suggest that Nasuia-ALF is most closely related to Zinderia, the betaproteobacterial symbiont of spittlebugs. Thus, Nasuia/Zinderia and Sulcia likely represent ancient associates that have co-resided in hosts since the divergence of leafhoppers and spittlebugs >200 Ma, and possibly since the origin of the Auchenorrhyncha, >260 Ma. PMID:23918810
Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle
Yanay, Chava; Morpurgo, Noa; Linial, Michal
2008-01-01
Background The molecular components in synapses that are essential to the life cycle of synaptic vesicles are well characterized. Nonetheless, many aspects of synaptic processes, in particular how they relate to complex behaviour, remain elusive. The genomes of flies, mosquitoes, the honeybee and the beetle are now fully sequenced and span an evolutionary breadth of about 350 million years; this provides a unique opportunity to conduct a comparative genomics study of the synapse. Results We compiled a list of 120 gene prototypes that comprise the core of presynaptic structures in insects. Insects lack several scaffolding proteins in the active zone, such as bassoon and piccollo, and the most abundant protein in the mammalian synaptic vesicle, namely synaptophysin. The pattern of evolution of synaptic protein complexes is analyzed. According to this analysis, the components of presynaptic complexes as well as proteins that take part in organelle biogenesis are tightly coordinated. Most synaptic proteins are involved in rich protein interaction networks. Overall, the number of interacting proteins and the degrees of sequence conservation between human and insects are closely correlated. Such a correlation holds for exocytotic but not for endocytotic proteins. Conclusion This comparative study of human with insects sheds light on the composition and assembly of protein complexes in the synapse. Specifically, the nature of the protein interaction graphs differentiate exocytotic from endocytotic proteins and suggest unique evolutionary constraints for each set. General principles in the design of proteins of the presynaptic site can be inferred from a comparative study of human and insect genomes. PMID:18257909
Insects as a Nitrogen Source for Plants
Behie, Scott W.; Bidochka, Michael J.
2013-01-01
Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427
Gene duplication and the evolution of phenotypic diversity in insect societies.
Chau, Linh M; Goodisman, Michael A D
2017-12-01
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola
Provataris, Panagiotis; Meusemann, Karen; Niehuis, Oliver; Grath, Sonja; Misof, Bernhard
2018-01-01
Abstract It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects. PMID:29697817
1956-10-12
A photo of the control stick used on the Iron Cross Attitude Simulator. Although it resembled today's desktop computer flight sticks, its operation was different. As with a standard control stick, moving it back and forth raised and lowered the nose resulting in changes in pitch. Moving the stick to the right or left raised or lowered the wing, resulted in changes in roll. This control stick had a third axis, not found in standard control sticks. Twisting the stick to the right or left caused the airplane's nose to move horizontally in the same direction, resulting in changes in yaw.
Conserved domains and SINE diversity during animal evolution.
Luchetti, Andrea; Mantovani, Barbara
2013-10-01
Eukaryotic genomes harbour a number of mobile genetic elements (MGEs); moving from one genomic location to another, they are known to impact on the host genome. Short interspersed elements (SINEs) are well-represented, non-autonomous retroelements and they are likely the most diversified MGEs. In some instances, sequence domains conserved across unrelated SINEs have been identified; remarkably, one of these, called Nin, has been conserved since the Radiata-Bilateria splitting. Here we report on two new domains: Inv, derived from Nin, identified in insects and in deuterostomes, and Pln, restricted to polyneopteran insects. The identification of Inv and Pln sequences allowed us to retrieve new SINEs, two in insects and one in a hemichordate. The diverse structural combination of the different domains in different SINE families, during metazoan evolution, offers a clearer view of SINE diversity and their frequent de novo emergence through module exchange, possibly underlying the high evolutionary success of SINEs. © 2013 Elsevier Inc. All rights reserved.
Gilbertson, Robert L; Batuman, Ozgur; Webster, Craig G; Adkins, Scott
2015-11-01
Emergence of insect-transmitted plant viruses over the past 10-20 years has been disproportionately driven by two so-called supervectors: the whitefly, Bemisia tabaci, and the Western flower thrips, Frankliniella occidentalis. High rates of reproduction and dispersal, extreme polyphagy, and development of insecticide resistance, together with human activities, have made these insects global pests. These supervectors transmit a diversity of plant viruses by different mechanisms and mediate virus emergence through local evolution, host shifts, mixed infections, and global spread. Associated virus evolution involves reassortment, recombination, and component capture. Emergence of B. tabaci-transmitted geminiviruses (begomoviruses), ipomoviruses, and torradoviruses has led to global disease outbreaks as well as multiple paradigm shifts. Similarly, F. occidentalis has mediated tospovirus host shifts and global dissemination and the emergence of pollen-transmitted ilarviruses. The plant virus-supervector interaction offers exciting opportunities for basic research and global implementation of generalized disease management strategies to reduce economic and environmental impacts.
Alain Roques
1991-01-01
Patchy and ephemeral resources, such as the cones of conifers, can be very useful in the study of plant-insect relationships. Studies of such relationships in forest entomology are typically complicated by the spatial and temporal characteristics of the host plants, which occur over vast areas and have lifespans of decades or even centuries. The reproductive structures...
Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori
2010-01-01
Background Carboxyl/cholinesterases (CCEs) have pivotal roles in dietary detoxification, pheromone or hormone degradation and neurodevelopment. The recent completion of genome projects in various insect species has led to the identification of multiple CCEs with unknown functions. Here, we analyzed the phylogeny, expression and genomic distribution of 69 putative CCEs in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Results A phylogenetic tree of CCEs in B. mori and other lepidopteran species was constructed. The expression pattern of each B. mori CCE was also investigated by a search of an expressed sequence tag (EST) database, and the relationship between phylogeny and expression was analyzed. A large number of B. mori CCEs were identified from a midgut EST library. CCEs expressed in the midgut formed a cluster in the phylogenetic tree that included not only B. mori genes but also those of other lepidopteran species. The silkworm, and possibly also other lepidopteran species, has a large number of CCEs, and this might be a consequence of the large cluster of midgut CCEs. Investigation of intron-exon organization in B. mori CCEs revealed that their positions and splicing site phases were strongly conserved. Several B. mori CCEs, including juvenile hormone esterase, not only showed clustering in the phylogenetic tree but were also closely located on silkworm chromosomes. We investigated the phylogeny and microsynteny of neuroligins in detail, among many CCEs. Interestingly, we found the evolution of this gene appeared not to be conserved between B. mori and other insect orders. Conclusions We analyzed 69 putative CCEs from B. mori. Comparison of these CCEs with other lepidopteran CCEs indicated that they had conserved expression and function in this insect order. The analyses showed that CCEs were unevenly distributed across the genome of B. mori and suggested that neuroligins may have a distinct evolutionary history from other insect order. It is possible that such an uneven genomic distribution and a unique neuroligin evolution are shared with other lepidopteran insects. Our genomic analysis has provided novel information on the CCEs of the silkworm, which will be of value to understanding the biology, physiology and evolution of insect CCEs. PMID:20546589
Cunningham, Christopher B; Ji, Lexiang; Wiberg, R Axel W; Shelton, Jennifer; McKinney, Elizabeth C; Parker, Darren J; Meagher, Richard B; Benowitz, Kyle M; Roy-Zokan, Eileen M; Ritchie, Michael G; Brown, Susan J; Schmitz, Robert J; Moore, Allen J
2015-10-09
Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene models more strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insect groups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, does N. vespilloides have DNA methylation? We found strong evidence for an active DNA methylation system. The distribution of methylation was similar to other insects with exons having the most methylated CpGs. Methylation status appears highly conserved; 85% of the methylated genes in N. vespilloides are also methylated in the hymentopteran Nasonia vitripennis. The addition of this genome adds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questions about the potential role of methylation in social behavior. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Linz, David M; Tomoyasu, Yoshinori
2015-01-01
The amazing array of diversity among insect wings offers a powerful opportunity to study the mechanisms guiding morphological evolution. Studies in Drosophila (the fruit fly) have identified dozens of genes important for wing development. These genes are often called candidate genes, serving as an ideal starting point to study wing development in other insects. However, we also need to explore beyond the candidate genes to gain a more comprehensive view of insect wing evolution. As a first step away from the traditional candidate genes, we utilized Tribolium (the red flour beetle) as a model and assessed the potential involvement of a group of developmental toolkit genes (embryonic patterning genes) in beetle wing development. We hypothesized that the highly pleiotropic nature of these developmental genes would increase the likelihood of finding novel wing genes in Tribolium. Through the RNA interference screening, we found that Tc-cactus has a less characterized (but potentially evolutionarily conserved) role in wing development. We also found that the odd-skipped family genes are essential for the formation of the thoracic pleural plates, including the recently discovered wing serial homologs in Tribolium. In addition, we obtained several novel insights into the function of these developmental genes, such as the involvement of mille-pattes and Tc-odd-paired in metamorphosis. Despite these findings, no gene we examined was found to have novel wing-related roles unique in Tribolium. These results suggest a relatively conserved nature of developmental toolkit genes and highlight the limited degree to which these genes are co-opted during insect wing evolution.
Deconstructing Superorganisms and Societies to Address Big Questions in Biology.
Kennedy, Patrick; Baron, Gemma; Qiu, Bitao; Freitak, Dalial; Helanterä, Heikki; Hunt, Edmund R; Manfredini, Fabio; O'Shea-Wheller, Thomas; Patalano, Solenn; Pull, Christopher D; Sasaki, Takao; Taylor, Daisy; Wyatt, Christopher D R; Sumner, Seirian
2017-11-01
Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tetreau, Guillaume; Dittmer, Neal T; Cao, Xiaolong; Agrawal, Sinu; Chen, Yun-Ru; Muthukrishnan, Subbaratnam; Haobo, Jiang; Blissard, Gary W; Kanost, Michael R; Wang, Ping
2015-07-01
In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Qi-Lin; Zhang, Li; Zhao, Tian-Xuan; Wang, Juan; Zhu, Qian-Hua; Chen, Jun-Yuan; Yuan, Ming-Long
2017-04-30
The adaptive evolution of animals to high-elevation environments has been extensively studied in vertebrates, while few studies have focused on insects. Gynaephora species (Lepidoptera: Lymantriinae) are endemic to the Qinghai-Tibetan Plateau (QTP) and represent an important insect pest of alpine meadows. Here, we present a detailed comparative analysis of the mitochondrial genomes (mitogenomes) of two Gynaephora species inhabiting different high-elevation environments: G. alpherakii and G. menyuanensis. The results indicated that the general mitogenomic features (genome size, nucleotide composition, codon usage and secondary structures of tRNAs) were well conserved between the two species. All of mitochondrial protein-coding genes were evolving under purifying selection, suggesting that selection constraints may play a role in ensuring adequate energy production. However, a number of substitutions and indels were identified that altered the protein conformations of ATP8 and NAD1, which may be the result of adaptive evolution of the two Gynaephora species to different high-elevation environments. Levels of gene expression for nine mitochondrial genes in nine different developmental stages were significantly suppressed in G. alpherakii, which lives at the higher elevation (~4800m above sea level), suggesting that gene expression patterns could be modulated by atmospheric oxygen content and environmental temperature. These results enhance our understanding of the genetic bases for the adaptive evolution of insects endemic to the QTP. Copyright © 2017 Elsevier B.V. All rights reserved.
The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees
Ramírez, Santiago R.
2017-01-01
Abstract Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. PMID:28854688
Getahun, Merid N; Thoma, Michael; Lavista-Llanos, Sofia; Keesey, Ian; Fandino, Richard A; Knaden, Markus; Wicher, Dieter; Olsson, Shannon B; Hansson, Bill S
2016-11-01
Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects. © 2016. Published by The Company of Biologists Ltd.
Uncontrolled Stability in Freely Flying Insects
NASA Astrophysics Data System (ADS)
Melfi, James, Jr.; Wang, Z. Jane
2015-11-01
One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.
Insect anaphylaxis: where are we? The stinging facts 2012.
Tracy, James M; Khan, Fatima S; Demain, Jeffrey G
2012-08-01
Insect allergy remains an important cause of morbidity and mortality in the United States. In 2011, the third iteration of the stinging insect hypersensitivity practice parameter was published, the first being published in 1999 and the second in 2004. Since the 2004 edition, our understanding of insect hypersensitivity has continued to expand and has been incorporated into the 2011 edition. This work will review the relevant changes in the management of insect hypersensitivity occurring since 2004 and present our current understanding of the insect hypersensitivity diagnosis and management. Since the 2004 commissioning by the Joint Task Force (JTF) on Practice Parameters of 'Stinging insect hypersensitivity: a practice parameter update', there have been important contributions to our understanding of insect allergy. These contributions were incorporated into the 2011 iteration. Similar efforts were made by the European Allergy Asthma and Clinical Immunology Interest Group in 2005 and most recently in 2011 by the British Society of Allergy and Clinical Immunology. Our understanding of insect allergy, including the natural history, epidemiology, diagnostic testing, and risk factors, has greatly expanded. This evolution of knowledge should provide improved long-term management of stinging insect hypersensitivity. This review will focus primarily on the changes between the 2004 and 2011 stinging insect practice parameter commissioned by the JTF on Practice Parameters, but will, where appropriate, highlight the differences between working groups.
Paul, Shubhajit; Taylor, Lisa J; Murphy, Brendan; Krzyzaniak, Joseph F; Dawson, Neil; Mullarney, Matthew P; Meenan, Paul; Sun, Changquan Calvin
2017-04-15
Punch sticking is a frequently occurring problem that challenges successful tablet manufacturing. A mechanistic understanding of the punch sticking phenomenon facilitates the design of effective strategies to solve punch sticking problems of a drug. The first step in this effort is to identify process parameters and particle properties that can profoundly affect sticking performance. This work was aimed at elucidating the key material properties and compaction parameters that influence punch sticking by statistically analyzing punch sticking data of 24 chemically diverse compounds obtained using a set of tooling with removable upper punch tip. Partial least square (PLS) analysis of the data revealed that particle surface area and tablet tensile strength are the most significant factors attributed to punch sticking. Die-wall pressure, ejection force, and take-off force also correlate with sticking, but to a lesser extent. Copyright © 2017 Elsevier B.V. All rights reserved.
Dahan, Romain A; Duncan, Rebecca P; Wilson, Alex C C; Dávalos, Liliana M
2015-03-25
Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial endosymbionts for essential amino acids present at low abundances in their phloem-based diet. This obligate dependency has been proposed to explain why multiple amino acid transporter genes are maintained in the genomes of the insect hosts. We implemented phylogenetic comparative methods to test whether amino acid transporters have proliferated in sternorrhynchan genomes at rates grater than expected by chance. By applying a series of methods to reconcile gene and species trees, inferring the size of gene families in ancestral lineages, and simulating the null process of birth and death in multi-gene families, we uncovered a 10-fold increase in duplication rate in the AAAP family of amino acid transporters within Sternorrhyncha. This gene family expansion was unmatched in other closely related clades lacking endosymbionts that provide essential amino acids. Our findings support the influence of obligate endosymbioses on host genome evolution by both inferring significant expansions of gene families involved in symbiotic interactions, and discovering increases in the rate of duplication associated with multiple emergences of obligate symbiosis in Sternorrhyncha.
Optimizing pyramided transgenic Bt crops for sustainable pest management.
Carrière, Yves; Crickmore, Neil; Tabashnik, Bruce E
2015-02-01
Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.
What Can Plasticity Contribute to Insect Responses to Climate Change?
Sgrò, Carla M; Terblanche, John S; Hoffmann, Ary A
2016-01-01
Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.
Quorum Sensing Attenuates Virulence in Sodalis praecaptivus.
Enomoto, Shinichiro; Chari, Abhishek; Clayton, Adam Larsen; Dale, Colin
2017-05-10
Sodalis praecaptivus is a close relative and putative environmental progenitor of the widely distributed, insect-associated, Sodalis-allied symbionts. Here we show that mutant strains of S. praecaptivus that lack genetic components of a quorum-sensing (QS) apparatus have a rapid and potent killing phenotype following microinjection into an insect host. Transcriptomic and genetic analyses indicate that insect killing occurs as a consequence of virulence factors, including insecticidal toxins and enzymes that degrade the insect integument, which are normally repressed by QS at high infection densities. This method of regulation suggests that virulence factors are only utilized in early infection to initiate the insect-bacterial association. Once bacteria reach sufficient density in host tissues, the QS circuit represses expression of these harmful genes, facilitating a long-lasting and benign association. We discuss the implications of the functionality of this QS system in the context of establishment and evolution of mutualistic relationships involving these bacteria. Published by Elsevier Inc.
ScaleNet: a literature-based model of scale insect biology and systematics.
García Morales, Mayrolin; Denno, Barbara D; Miller, Douglass R; Miller, Gary L; Ben-Dov, Yair; Hardy, Nate B
2016-01-01
Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found on all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis and plant-insect interactions. ScaleNet was launched in 1995 to provide insect identifiers, pest managers, insect systematists, evolutionary biologists and ecologists efficient access to information about scale insect biological diversity. It provides comprehensive information on scale insects taken directly from the primary literature. Currently, it draws from 23,477 articles and describes the systematics and biology of 8194 valid species. For 20 years, ScaleNet ran on the same software platform. That platform is no longer viable. Here, we present a new, open-source implementation of ScaleNet. We have normalized the data model, begun the process of correcting invalid data, upgraded the user interface, and added online administrative tools. These improvements make ScaleNet easier to use and maintain and make the ScaleNet data more accurate and extendable. Database URL: http://scalenet.info. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.
Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)
Wang, Yan-hui; Engel, Michael S.; Rafael, José A.; Wu, Hao-yang; Rédei, Dávid; Xie, Qiang; Wang, Gang; Liu, Xiao-guang; Bu, Wen-jun
2016-01-01
Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. PMID:27958352
NASA Astrophysics Data System (ADS)
Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological development and evolution.
Vernós, I; Carratalá, M; González-Jurado, J; Valverde, J R; Calleja, M; Domingo, A; Vinós, J; Cervera, M; Marco, R
1989-01-01
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.
16 CFR § 1507.10 - Rockets with sticks.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Rockets with sticks. § 1507.10 Section Â... REGULATIONS FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such...
Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation.
Sanahuja, Solange; Upadhyay, Rutuja; Briesen, Heiko; Chen, Jianshe
2017-08-01
"Oral" tribology has become a new paradigm in food texture studies to understand complex texture attributes, such as creaminess, oiliness, and astringency, which could not be successfully characterized by traditional texture analysis nor by rheology. Stick-slip effects resulting from intermittent sliding motion during kinetic friction of oral mucosa could constitute an additional determining factor of sensory perception where traditional friction coefficient values and their Stribeck regimes fail in predicting different lubricant (food bolus and saliva) behaviors. It was hypothesized that the observed jagged behavior of most sliding force curves are due to stick-slip effects and depend on test velocity, normal load, surface roughness as well as lubricant type. Therefore, different measurement set-ups were investigated: sliding velocities from 0.01 to 40 mm/s, loads of 0.5 and 2.5 N as well as a smooth and a textured silicone contact surface. Moreover, dry contact measurements were compared to model food systems, such as water, oil, and oil-in-water emulsions. Spectral analysis permitted to extract the distribution of stick-slip magnitudes for specific wave numbers, characterizing the occurrence of jagged force peaks per unit sliding distance, similar to frequencies per unit time. The spectral features were affected by all the above mentioned tested factors. Stick-slip created vibration frequencies in the range of those detected by oral mechanoreceptors (0.3-400 Hz). The study thus provides a new insight into the use of tribology in food psychophysics. Dynamic spectral analysis has been applied for the first time to the force-displacement curves in "oral" tribology. Analyzing the stick-slip phenomenon in the dynamic friction provides new information that is generally overlooked or confused with machine noise and which may help to understand friction-related sensory attributes. This approach allows us to differentiate samples that have similar friction coefficient, but are perceived differently in the mouth. The next step of our research will be to combine spectral attributes, such as the magnitudes of specific wave number bands and possibly their evolution during sliding, together with friction coefficient and viscosity values of foods with sensory results. The highest potential lies in predicting smoothness in opposition to roughness of a surface, such as a rough tongue when eating astringent or dry foods, or of particles when eating grainy foods. The effects of food ingredients at the nano to macroscales can then be used to optimize a specific lubrication behavior. © 2017 Wiley Periodicals, Inc.
Morpurgo, Giorgio; Babudri, Nora; Fioretti, Bernard; Catacuzzeno, Luigi
2010-12-01
The role of haplodiploidy in the evolution of eusocial insects and why in Hymenoptera males do not perform any work is presently unknown. We show here that within-colony conflict caused by the coexistence of individuals of the same caste expressing the same character in different ways can be fundamental in the evolution of social characters in species that have already reached the eusocial condition. Mosaic colonies, composed by individuals expressing either the wild-type or a mutant phenotype, inevitably occurs during the evolution of advantageous social traits in insects. We simulated the evolution of an advantageous social trait increasing colony fitness in haplodiploid and diplodiploid species considering all possible conditions, i.e. dominance/recessivity of the allele determining the new social character, sex of the castes, and influence of mosaicism on the colony fitness. When mosaicism lowered colony fitness below that of the colony homogeneous for the wild type allele, the fixation of an advantageous social character was possible only in haplodiploids with female castes. When mosaicism caused smaller reductions in colony fitness, reaching frequencies of 90% was much faster in haplodiploids with female castes and dominant mutations. Our results suggest that the evolution of social characters is easier in haplodiploid than in diplodiploid species, provided that workers are females.
The genetic basis of a plant–insect coevolutionary key innovation
Wheat, Christopher W.; Vogel, Heiko; Wittstock, Ute; Braby, Michael F.; Underwood, Dessie; Mitchell-Olds, Thomas
2007-01-01
Ehrlich and Raven formally introduced the concept of stepwise coevolution using butterfly and angiosperm interactions in an attempt to account for the impressive biological diversity of these groups. However, many biologists currently envision butterflies evolving 50 to 30 million years (Myr) after the major angiosperm radiation and thus reject coevolutionary origins of butterfly biodiversity. The unresolved central tenet of Ehrlich and Raven's theory is that evolution of plant chemical defenses is followed closely by biochemical adaptation in insect herbivores, and that newly evolved detoxification mechanisms result in adaptive radiation of herbivore lineages. Using one of their original butterfly-host plant systems, the Pieridae, we identify a pierid glucosinolate detoxification mechanism, nitrile-specifier protein (NSP), as a key innovation. Larval NSP activity matches the distribution of glucosinolate in their host plants. Moreover, by using five different temporal estimates, NSP seems to have evolved shortly after the evolution of the host plant group (Brassicales) (≈10 Myr). An adaptive radiation of these glucosinolate-feeding Pierinae followed, resulting in significantly elevated species numbers compared with related clades. Mechanistic understanding in its proper historical context documents more ancient and dynamic plant–insect interactions than previously envisioned. Moreover, these mechanistic insights provide the tools for detailed molecular studies of coevolution from both the plant and insect perspectives. PMID:18077380
Computational biomechanics changes our view on insect head evolution.
Blanke, Alexander; Watson, Peter J; Holbrey, Richard; Fagan, Michael J
2017-02-08
Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution. © 2017 The Author(s).
Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.
Blackburn, Laura M; Ott, Swidbert R; Matheson, Tom; Burrows, Malcolm; Rogers, Stephen M
2010-08-01
Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
2015-01-01
After a long history of applying the sterile insect technique to suppress populations of disease vectors and agricultural pests, there is growing interest in using genetic engineering both to improve old methods and to enable new methods. The two goals of interventions are to suppress populations, possibly eradicating a species altogether, or to abolish the vector’s competence to transmit a parasite. New methods enabled by genetic engineering include the use of selfish genes toward either goal as well as a variety of killer-rescue systems that could be used for vector competence reduction. This article reviews old and new methods with an emphasis on the potential for evolution of resistance to these strategies. Established methods of population suppression did not obviously face a problem from resistance evolution, but newer technologies might. Resistance to these newer interventions will often be mechanism-specific, and while it is too early to know where resistance evolution will become a problem, it is at least possible to propose properties of interventions that will be more or less effective in blocking resistance evolution. PMID:26160736
Made for Each Other: Ascomycete Yeasts and Insects.
Blackwell, Meredith
2017-06-01
Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.
Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.
Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong
2014-02-01
Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Cho, Bo-Keun; Aghazadeh, Fereydoun; Al-Qaisi, Saif
2012-01-01
The purpose of this study was to determine the effects of video-game experience and flight-stick position on flying performance. The study divided participants into 2 groups; center- and side-stick groups, which were further divided into high and low level of video-game experience subgroups. The experiment consisted of 7 sessions of simulated flying, and in the last session, the flight stick controller was switched to the other position. Flight performance was measured in terms of the deviation of heading, altitude, and airspeed from their respective requirements. Participants with high experience in video games performed significantly better (p < .001) than the low-experienced group. Also, participants performed significantly better (p < .001) with the center-stick than the side-stick. When the side-stick controller was switched to the center-stick position, performance scores continued to increase (0.78 %). However, after switching from a center- to a side-stick controller, performance scores decreased (4.8%).
Freud and history before 1905: from defending to questioning the theory of a glorious past.
Cotti, Patricia
2008-01-01
By sticking closely to Freud's use of the German term Geschichte (history, story) between 1894 and 1905, I will reveal two conceptions of history. The first one, the theory of the glorious past and its archaeological metaphor, which accompanied and sustained the seduction theory of cultural history. I will define how this change was determined by an evolution in Freud's conceptions of childhood prehistory and original history. I will also question how the history problem interfered with Freud's auto-analysis.
Mann, Krin S; Dietzgen, Ralf G
2014-08-01
Rhabdoviruses are taxonomically classified in the family Rhabdoviridae, order Mononegavirales. As a group, rhabdoviruses can infect plants, invertebrates and vertebrates. Plant cyto- and nucleorhabdoviruses infect a wide variety of species across both monocot and dicot families, including agriculturally important crops such as lettuce, wheat, barley, rice, maize, potato and tomato. Plant rhabdoviruses are transmitted by and replicate in hemipteran insects such as aphids (Aphididae), leafhoppers (Cicadellidae), or planthoppers (Delphacidae). These specific interactions between plants, viruses and insects offer new insights into host adaptation and molecular virus evolution. This review explores recent advances as well as knowledge gaps in understanding of replication, RNA silencing suppression and movement of plant rhabdoviruses with respect to both plant and insect hosts.
New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.
Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta
2016-01-01
The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer
2017-01-01
Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT) has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations. PMID:28961177
Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh
2014-09-01
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The Middle Triassic insect radiation revealed by isotopic age and iconic fossils from NW China
NASA Astrophysics Data System (ADS)
Zheng, Daran; Chang, Su-Chin; Wang, He; Fang, Yan; Wang, Jun; Feng, Chongqing; Xie, Guwei; Jarzembowski, Edmund A.; Zhang, Haichun; Wang, Bo
2017-04-01
Following the end-Permian mass extinction, the Triassic represented an important period witnessing the recovery and radiation of marine and terrestrial ecosystems. Terrestrial plants and vertebrates have been widely investigated; however the insects, the most diverse organisms on earth, remain enigmatic due to the rarity of Early-Middle Triassic fossils. Here we report new fossils from a Ladinian deposit dated at 238-237 Ma and a Carnian deposit in northwestern China, including the earliest definite caddisfly cases (Trichoptera) and water boatmen (Hemiptera), diverse polyphagan beetles (Coleoptera) and scorpionflies (Mecoptera). Our findings suggest that the Holometabola, comprising the majority of modern-day insect species, experienced an extraordinary diversification in the Middle Triassic and was already been dominant in some Middle and Late Triassic insect faunas, after the extinction of several ecologically dominant, Paleozoic insect groups in the latest Permian and earliest Triassic. This turnover is perhaps related to notable episodes of extreme warming and drying, leading to the eventual demise of coal-swamp ecosystems, evidenced by floral turnover during this interval. The forest revival during the Middle Triassic probably stimulated the rapid radiation and evolution of insects including some key aquatic lineages which built new associations that persist to the present day. Our results provide not only new insights into the early evolution of insect diversity and ecology, but also robust evidence for the view that the Triassic is the "Dawn of the Modern World". Besides, LA-ICP-MS U-Pb dating initially gave a late Ladinian age for the Tongchuan entomnfauna after the results: 237.41 ± 0.91 Ma and 238 ± 0.97 Ma. The age is in agreement with that of the marine Ladinian-Carnian boundary, representing a novel age constraint for the terrestrial strata near this boundary. This age can provide a calibration for marine and terrestrial correlation near Ladinian-Carnian boundary, and also for the correlation of the contemporaneous biotas.
Comparison of Single-Stick and Double-Stick Techniques for Percutaneous Nephrostomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funaki, Brian, E-mail: bfunaki@midway.uchicago.edu; Vatakencherry, Geogi
2004-01-15
We compared single- and double-stick techniques of percutaneous nephrostomy insertion by retrospectively reviewing 140 percutaneous nephrostomy procedures in 101 patients. All procedures were performed by residents or fellows with direct attending supervision. Either the single-stick or double-stick technique was used based solely on personal attending preference. There were no significant differences in groups in terms of age, sex, or degree of hydronephrosis. In the single-stick technique, the kidney was punctured with sonographic guidance and the tract was serially dilated to accept an 8.5 Fr. nephrostomy catheter. In the double-stick technique, the kidney was punctured with sonographic guidance and a mixturemore » of air and contrast were injected into the collecting system. The affected side was then elevated and a posterior calyx was punctured using fluoroscopic guidance. Both groups were compared in terms of complications and early tube dysfunction using the chi-squared test. All procedures were successful without immediate complications. Bleeding requiring transfusion occurred in 4.7% (4/86) procedures in the single stick group and 3.7% (2/54) in the double stick group (p-value not significant). None of these patients required further interventions for bleeding. Tube dysfunction leading to premature tube exchange occurred in 3.5% (3/86) of catheters in the single stick group and 3.7% (2/54) of catheters in the double- stick group (p-value not significant). We found no significant difference between the single and double- stick methods of percutaneous nephrostomy in terms of success rates, complications, or tube function. We believe that the single-stick method should be adopted as the insertion technique of choice.« less
Whittington, Emma; Forsythe, Desiree; Borziak, Kirill; Karr, Timothy L; Walters, James R; Dorus, Steve
2017-12-02
Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph.
Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor
NASA Astrophysics Data System (ADS)
Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen
2016-11-01
Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.
Stick-weaving: Innovative Behavior in Tamarins
Snowdon, Charles T.; Roskos, Thomas R.
2017-01-01
Some captive cotton-top tamarins spontaneously weave sticks in the mesh of their enclosures so that the stick is lodged between two mesh openings. Sticks are broken from natural branches placed in the enclosures and often modified by biting them in the center before weaving through the mesh. To investigate this further we systematically surveyed all animals in our colony and found that all successful stick weaving tamarins were descendants from only two of the 16 breeding groups contributing to the colony membership at the time of surveying or were the mates of these descendants, suggesting stick-weaving is a socially learned behavior. Successful stick-weavers were presented with pipe cleaners, soda straws and wooden dowels to see if they would generalize stick-weaving to novel objects. Seven of 10 animals successfully wove with straws or pipe cleaners showing that they could generalize the behavior to objects that were physically different but had the same affordances as the sticks. Data from a father-daughter pair suggest a form of coaching. Innovative behavior is needed for the emergence of culture with subsequent social transmission. Although innovative behavior in primates is mainly associated with foraging and is more likely to occur among males, stick-weaving has no obvious reward and appeared equally in both sexes. Stick-weaving behavior and its probable social transmission across generations suggest the possibility of cultural traditions emerging in this species. PMID:28277719
Co-evolution of insect proteases and plant protease inhibitors.
Jongsma, Maarten A; Beekwilder, Jules
2011-08-01
Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.
Porcelli, Damiano; Barsanti, Paolo; Pesole, Graziano; Caggese, Corrado
2007-01-01
Background When orthologous sequences from species distributed throughout an optimal range of divergence times are available, comparative genomics is a powerful tool to address problems such as the identification of the forces that shape gene structure during evolution, although the functional constraints involved may vary in different genes and lineages. Results We identified and annotated in the MitoComp2 dataset the orthologs of 68 nuclear genes controlling oxidative phosphorylation in 11 Drosophilidae species and in five non-Drosophilidae insects, and compared them with each other and with their counterparts in three vertebrates (Fugu rubripes, Danio rerio and Homo sapiens) and in the cnidarian Nematostella vectensis, taking into account conservation of gene structure and regulatory motifs, and preservation of gene paralogs in the genome. Comparative analysis indicates that the ancestral insect OXPHOS genes were intron rich and that extensive intron loss and lineage-specific intron gain occurred during evolution. Comparison with vertebrates and cnidarians also shows that many OXPHOS gene introns predate the cnidarian/Bilateria evolutionary split. The nuclear respiratory gene element (NRG) has played a key role in the evolution of the insect OXPHOS genes; it is constantly conserved in the OXPHOS orthologs of all the insect species examined, while their duplicates either completely lack the element or possess only relics of the motif. Conclusion Our observations reinforce the notion that the common ancestor of most animal phyla had intron-rich gene, and suggest that changes in the pattern of expression of the gene facilitate the fixation of duplications in the genome and the development of novel genetic functions. PMID:18315839
Flower Constancy, Insect Psychology, and Plant Evolution
NASA Astrophysics Data System (ADS)
Chittka, Lars; Thomson, James D.; Waser, Nickolas M.
Individuals of some species of pollinating insects tend to restrict their visits to only a few of the available plant species, in the process bypassing valuable food sources. The question of why this flower constancy exists is a rich and important one with implications for the organization of natural communities of plants, floral evolution, and our understanding of the learning processes involved in finding food. Some scientists have assumed that flower constancy is adaptive per se. Others argued that constancy occurs because memory capacity for floral features in insects is limited, but attempts to identify the limitations often remained rather simplistic. We elucidate now different sensory and motor memories from natural foraging tasks are stored and retrieved, using concepts from modern learning science and visual search, and conclude that flower constancy is likely to have multiple causes. Possible constraints favoring constancy are interference sensitivity of short-term memory, and temporal limitations on retrieving information from long-term memory as rapidly as from short-term memory, but further empirical evidence is needed to substantiate these possibilities. In addition, retrieving memories may be slower and more prone to errors when there are several options than when an insect copes with only a single task. In addition to memory limitations, we also point out alternative explanations for flower constancy. We then consider the way in which floral parameters, such as interplant distances, nectar rewards, flower morphology, and floral color (as seen through bees' eyes) affect constancy. Finally, we discuss the implications of pollinator constancy for plant evolution. To date there is no evidence that flowers have diverged to favor constancy, although the appropriate tests may not have yet been conducted. However, there is good evidence against the notion that pollinator constancy is involved in speciation or maintenance of plant species integrity.
The "sticking period" in a maximum bench press.
van den Tillaar, Roland; Ettema, Gertjan
2010-03-01
The purpose of this study was to examine muscle activity and three-dimensional kinematics in the ascending phase of a successful one-repetition maximum attempt in bench press for 12 recreational weight-training athletes, with special attention to the sticking period. The sticking period was defined as the first period of deceleration of the upward movement (i.e. from the highest barbell velocity until the first local lowest barbell velocity). All participants showed a sticking period during the upward movement that started about 0.2 s after the initial upward movement, and lasted about 0.9 s. Electromyography revealed that the muscle activity of the prime movers changed significantly from the pre-sticking to the sticking and post-sticking periods. A possible mechanism for the existence of the sticking period is the diminishing potentiation of the contractile elements during the upward movement together with the limited activity of the pectoral and deltoid muscles during this period.
Use of habitat odour by host-seeking insects.
Webster, Ben; Cardé, Ring T
2017-05-01
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.
The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes
2013-01-01
Background Taxa that harbor natural phenotypic variation are ideal for ecological genomic approaches aimed at understanding how the interplay between genetic and environmental factors can lead to the evolution of complex traits. Lasioglossum albipes is a polymorphic halictid bee that expresses variation in social behavior among populations, and common-garden experiments have suggested that this variation is likely to have a genetic component. Results We present the L. albipes genome assembly to characterize the genetic and ecological factors associated with the evolution of social behavior. The de novo assembly is comparable to other published social insect genomes, with an N50 scaffold length of 602 kb. Gene families unique to L. albipes are associated with integrin-mediated signaling and DNA-binding domains, and several appear to be expanded in this species, including the glutathione-s-transferases and the inositol monophosphatases. L. albipes has an intact DNA methylation system, and in silico analyses suggest that methylation occurs primarily in exons. Comparisons to other insect genomes indicate that genes associated with metabolism and nucleotide binding undergo accelerated evolution in the halictid lineage. Whole-genome resequencing data from one solitary and one social L. albipes female identify six genes that appear to be rapidly diverging between social forms, including a putative odorant receptor and a cuticular protein. Conclusions L. albipes represents a novel genetic model system for understanding the evolution of social behavior. It represents the first published genome sequence of a primitively social insect, thereby facilitating comparative genomic studies across the Hymenoptera as a whole. PMID:24359881
Farris, Sarah M
2013-01-01
Large, complex higher brain centers have evolved many times independently within the vertebrates, but the selective pressures driving these acquisitions have been difficult to pinpoint. It is well established that sensory brain centers become larger and more structurally complex to accommodate processing of a particularly important sensory modality. When higher brain centers such as the cerebral cortex become greatly expanded in a particular lineage, it is likely to support the coordination and execution of more complex behaviors, such as those that require flexibility, learning, and social interaction, in response to selective pressures that made these new behaviors advantageous. Vertebrate studies have established a link between complex behaviors, particularly those associated with sociality, and evolutionary expansions of telencephalic higher brain centers. Enlarged higher brain centers have convergently evolved in groups such as the insects, in which multimodal integration and learning and memory centers called the mushroom bodies have become greatly elaborated in at least four independent lineages. Is it possible that similar selective pressures acting on equivalent behavioral outputs drove the evolution of large higher brain centers in all bilaterians? Sociality has greatly impacted brain evolution in vertebrates such as primates, but it has not been a major driver of higher brain center enlargement in insects. However, feeding behaviors requiring flexibility and learning are associated with large higher brain centers in both phyla. Selection for the ability to support behavioral flexibility appears to be a common thread underlying the evolution of large higher brain centers, but the precise nature of these computations and behaviors may vary. © 2013 S. Karger AG, Basel.
Khadjeh, Sara; Turetzek, Natascha; Pechmann, Matthias; Schwager, Evelyn E; Wimmer, Ernst A; Damen, Wim G M; Prpic, Nikola-Michael
2012-03-27
Evolution often results in morphologically similar solutions in different organisms, a phenomenon known as convergence. However, there is little knowledge of the processes that lead to convergence at the genetic level. The genes of the Hox cluster control morphology in animals. They may also be central to the convergence of morphological traits, but whether morphological similarities also require similar changes in Hox gene function is disputed. In arthropods, body subdivision into a region with locomotory appendages ("thorax") and a region with reduced appendages ("abdomen") has evolved convergently in several groups, e.g., spiders and insects. In insects, legs develop in the expression domain of the Hox gene Antennapedia (Antp), whereas the Hox genes Ultrabithorax (Ubx) and abdominal-A mediate leg repression in the abdomen. Here, we show that, unlike Antp in insects, the Antp gene in the spider Achaearanea tepidariorum represses legs in the first segment of the abdomen (opisthosoma), and that Antp and Ubx are redundant in the following segment. The down-regulation of Antp in A. tepidariorum leads to a striking 10-legged phenotype. We present evidence from ectopic expression of the spider Antp gene in Drosophila embryos and imaginal tissue that this unique function of Antp is not due to changes in the Antp protein, but likely due to divergent evolution of cofactors, Hox collaborators or target genes in spiders and flies. Our results illustrate an interesting example of convergent evolution of abdominal leg repression in arthropods by altering the role of distinct Hox genes at different levels of their action.
Modeling of combustion processes of stick propellants via combined Eulerian-Lagrangian approach
NASA Technical Reports Server (NTRS)
Kuo, K. K.; Hsieh, K. C.; Athavale, M. M.
1988-01-01
This research is motivated by the improved ballistic performance of large-caliber guns using stick propellant charges. A comprehensive theoretical model for predicting the flame spreading, combustion, and grain deformation phenomena of long, unslotted stick propellants is presented. The formulation is based upon a combined Eulerian-Lagrangian approach to simulate special characteristics of the two phase combustion process in a cartridge loaded with a bundle of sticks. The model considers five separate regions consisting of the internal perforation, the solid phase, the external interstitial gas phase, and two lumped parameter regions at either end of the stick bundle. For the external gas phase region, a set of transient one-dimensional fluid-dynamic equations using the Eulerian approach is obtained; governing equations for the stick propellants are formulated using the Lagrangian approach. The motion of a representative stick is derived by considering the forces acting on the entire propellant stick. The instantaneous temperature and stress fields in the stick propellant are modeled by considering the transient axisymmetric heat conduction equation and dynamic structural analysis.
Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs
Garwood, Russell; Ross, Andrew; Sotty, Daniel; Chabard, Dominique; Charbonnier, Sylvain; Sutton, Mark; Withers, Philip J.
2012-01-01
Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One–Anebos phrixos gen. et sp. nov.–is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles’ palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work. PMID:23049858
Growth properties of protoplanetary dust in a long-term microgravity experiment
NASA Astrophysics Data System (ADS)
Brisset, Julie; Kothe, Stefan; Weidling, Rene; Heisselmann, Daniel; Blum, Juergen
2014-11-01
In the very first steps of the formation of a new planetary system, dust agglomerates and grows inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. As part of a series of microgravity experiments aiming at the investigation of the transitions between sticking, bouncing and fragmentation of colliding dust aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was designed, built and operated both at the drop tower in Bremen (August 2011) and on the REXUS 12 suborbital rocket (March 2012). The SPACE experiment allowed for the observation of collisions between aggregates of sizes of a few 100 µm that were composed of SiO2, a commonly used protoplanetary dust analog material. At velocities below 10 cm/s, clusters composed of a high number of aggregates (more than 10^4) formed and grew to sizes of up to 5 mm. The analysis of these collisions delivered valuable input to a current dust collision model, which maps the outcome of collisions depending on the aggregate sizes and their relative velocities. The sticking probability of sub-mm-sized dust aggregates could directly be measured during the suborbital rocket flight, over a velocity range covering the transition between the sticking and bouncing regimes. In addition, the evolution of clusters formed from sub-mm-sized aggregates during the different experiments could be observed and some of their intrinsic properties derived. The measured characteristics were the cluster fractal dimensions, the tensile strength of their outer aggregate layer and the effective surface energy of their constituents. Threshold energies for cluster restructuring and fragmentation could also be determined. All these cluster properties are important input parameters for molecular dynamics or numerical simulations investigating the behavior of macroscopic clusters (>1 mm in size) in protoplanetary disks.
Trivedi, Pankaj; Trivedi, Chanda; Grinyer, Jasmine; Anderson, Ian C; Singh, Brajesh K
2016-01-01
Plant health and productivity is strongly influenced by their intimate interaction with deleterious and beneficial organisms, including microbes, and insects. Of the various plant diseases, insect-vectored diseases are of particular interest, including those caused by obligate parasites affecting plant phloem such as Candidatus ( Ca .) Phytoplasma species and several species of Ca. Liberibacter. Recent studies on plant-microbe and plant-insect interactions of these pathogens have demonstrated that plant-microbe-insect interactions have far reaching consequences for the functioning and evolution of the organisms involved. These interactions take place within complex pathosystems and are shaped by a myriad of biotic and abiotic factors. However, our current understanding of these processes and their implications for the establishment and spread of insect-borne diseases remains limited. This article highlights the molecular, ecological, and evolutionary aspects of interactions among insects, plants, and their associated microbial communities with a focus on insect vectored and phloem-limited pathogens belonging to Ca. Phytoplasma and Ca. Liberibacter species. We propose that innovative and interdisciplinary research aimed at linking scales from the cellular to the community level will be vital for increasing our understanding of the mechanisms underpinning plant-insect-microbe interactions. Examination of such interactions could lead us to applied solutions for sustainable disease and pest management.
The evolution of the Gutenberg-Richter, b-value, throughout periodic and aperiodic stick-slip cycles
NASA Astrophysics Data System (ADS)
Bolton, D. C.; Riviere, J.; Marone, C.; Johnson, P. A.
2017-12-01
The Gutenberg-Richter earthquake size statistic, b value, is a useful proxy for documenting the state of stress on a fault and understanding precursory phenomena preceding dynamic failure. It has been shown that the b value varies systematically as a function of position within the seismic cycle. Frictional studies on intact rock samples with saw-cut faults have shown that b value decreases continuously preceding failure. For intact rock samples, the spatiotemporal changes in b value are thought to be related to the evolution of asperities and micro-cracks. However, few studies have shown how b value evolves spatially and temporally for fault zones containing gouge and wear materials. We hypothesize that the micromechanical mechanisms acting within fault gouge, such as creation and destruction of force chains, grain rolling, sliding, jamming and fracturing play an important role in the evolution of b value and that they may have distinct signatures during periodic and aperiodic cycles of stick-slip frictional motion. We report results from experiments conducted on simulated fault gouge using a biaxial deformation apparatus in a double-direct shear configuration. Acoustic emissions (AEs) are recorded at 4 MHz from 36 P-polarized piezoelectric transducers, which are embedded in steel blocks located adjacent to the fault zone. We compute the frequency-magnitude distribution of detected AEs using a moving window in events where each window is overlapped by 75%. We report on the evolution of b value as a function of normal stress and gouge layer thickness. For periodic slip events, b value reaches a maximum value immediately after a slip event and decreases continuously until the next failure. Aperiodic slip events show similar trends in b-value initially, however unlike periodic slip events, b value reaches a steady state value before failure occurs. In addition, for periodic slip events the magnitude of the change in b value scales inversely with gouge layer thickness. Ongoing work is focused on correcting for attenuation and geometric spreading within the gouge layer in order to identify the mechanisms responsible for the evolution of b during the seismic cycle. In addition, we plan to characterize the spatial evolution of b values through periodic and aperiodic slip events.
Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus.
Birkan, Michael; Schaeper, Nina D; Chipman, Ariel D
2011-01-01
The process of head development in insects utilizes a set of widely conserved genes, but this process and its evolution are not well understood. Recent data from Tribolium castaneum have provided a baseline for an understanding of insect head development. However, work on a wider range of insect species, including members of the hemimetabolous orders, is needed in order to draw general conclusions about the evolution of head differentiation and regionalization. We have cloned and studied the expression and function of a number of candidate genes for head development in the hemipteran Oncopeltus fasciatus. These include orthodenticle, empty spiracles, collier, cap 'n' collar, and crocodile. The expression patterns of these genes show a broad conservation relative to Tribolium, as well as differences from Drosophila indicating that Tribolium + Oncopeltus represent a more ancestral pattern. In addition, our data provide a blastodermal fate map for different head regions in later developmental stages and supply us with a "roadmap" for future studies on head development in this species. © 2011 Wiley Periodicals, Inc.
Rates and patterns of molecular evolution in freshwater versus terrestrial insects.
Mitterboeck, T Fatima; Fu, Jinzhong; Adamowicz, Sarah J
2016-11-01
Insect lineages have crossed between terrestrial and aquatic habitats many times, for both immature and adult life stages. We explore patterns in molecular evolutionary rates between 42 sister pairs of related terrestrial and freshwater insect clades using publicly available protein-coding DNA sequence data from the orders Coleoptera, Diptera, Lepidoptera, Hemiptera, Mecoptera, Trichoptera, and Neuroptera. We furthermore test for habitat-associated convergent molecular evolution in the cytochrome c oxidase subunit I (COI) gene in general and at a particular amino acid site previously reported to exhibit habitat-linked convergence within an aquatic beetle group. While ratios of nonsynonymous-to-synonymous substitutions across available loci were higher in terrestrial than freshwater-associated taxa in 26 of 42 lineage pairs, a stronger trend was observed (20 of 31, p binomial = 0.15, p Wilcoxon = 0.017) when examining only terrestrial-aquatic pairs including fully aquatic taxa. We did not observe any widespread changes at particular amino acid sites in COI associated with habitat shifts, although there may be general differences in selection regime linked to habitat.
Pollen limitation of reproductive effort in willows.
Fox, John F
1992-05-01
Pollen limitation of seed set differs from resource limitation in its implications for the evolution of floral traits. Willow flowers attract insects, but also abundantly produce wind-dispersed pollen. I demonstrated pollen limitation in single branches bearing 2-4 inflorescences (catkins) in a field experiment with five species by artificially increasing or decreasing the pollen load. Because the responses by single branches might be explained by diversion of resources to better-pollinated branches within a plant, a second experiment with one species tested both pollen limitation of whole plants and the autonomy of catkins. Seed set of single willow catkins is unaffected by experimental alterations of seed set in other catkins on the same plant. Hand-pollination of single catkins and of whole plants increased seed set to the same degree, suggesting there is little or no competition for resources between catkins only 5-10 cm apart. Thus, seed set in willows appears to be pollen limited, favoring insect pollination and the evolution of entomophilous traits. The data support previous views that willows have a dual pollination system utilizing wind and insects.
General trends of chromosomal evolution in Aphidococca (Insecta, Homoptera, Aphidinea + Coccinea)
Gavrilov-Zimin, Ilya A.; Stekolshchikov, Andrey V.; Gautam, D.C.
2015-01-01
Abstract Parallel trends of chromosomal evolution in Aphidococca are discussed, based on the catalogue of chromosomal numbers and genetic systems of scale insects by Gavrilov (2007) and the new catalogue for aphids provided in the present paper. To date chromosome numbers have been reported for 482 species of scale insects and for 1039 species of aphids, thus respectively comprising about 6% and 24% of the total number of species. Such characters as low modal numbers of chromosomes, heterochromatinization of part of chromosomes, production of only two sperm instead of four from each primary spermatocyte, physiological sex determination, "larval" meiosis, wide distribution of parthenogenesis and chromosomal races are considered as a result of homologous parallel changes of the initial genotype of Aphidococca ancestors. From a cytogenetic point of view, these characters separate Aphidococca from all other groups of Paraneoptera insects and in this sense can be considered as additional taxonomic characters. In contrast to available paleontological data the authors doubt that Coccinea with their very diverse (and partly primitive) genetic systems may have originated later then Aphidinea with their very specialised and unified genetic system. PMID:26312130
Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.
Planqué, R; Powell, S; Franks, N R; van den Berg, J B
2016-11-01
Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Page, Robert E; Scheiner, Ricarda; Erber, Joachim; Amdam, Gro V
2006-01-01
How does complex social behavior evolve? What are the developmental building blocks of division of labor and specialization, the hallmarks of insect societies? Studies have revealed the developmental origins in the evolution of division of labor and specialization in foraging worker honeybees, the hallmarks of complex insect societies. Selective breeding for a single social trait, the amount of surplus pollen stored in the nest (pollen hoarding) revealed a phenotypic architecture of correlated traits at multiple levels of biological organization in facultatively sterile female worker honeybees. Verification of this phenotypic architecture in "wild-type" bees provided strong support for a "pollen foraging syndrome" that involves increased senso-motor responses, motor activity, associative learning, reproductive status, and rates of behavioral development, as well as foraging behavior. This set of traits guided further research into reproductive regulatory systems that were co-opted by natural selection during the evolution of social behavior. Division of labor, characterized by changes in the tasks performed by bees, as they age, is controlled by hormones linked to ovary development. Foraging specialization on nectar and pollen results also from different reproductive states of bees where nectar foragers engage in pre-reproductive behavior, foraging for nectar for self-maintenance, while pollen foragers perform foraging tasks associated with reproduction and maternal care, collecting protein.
The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors
Peñalva-Arana, D Carolina; Lynch, Michael; Robertson, Hugh M
2009-01-01
Background Chemoreception is vitally important for all animals, yet little is known about the genetics of chemoreception in aquatic organisms. The keystone species Daphnia pulex, a well known crustacean, is the first aquatic invertebrate to have its genome sequenced. This has allowed us the initial investigation of chemoreceptor genes in an aquatic invertebrate, and to begin the study of chemoreceptor evolution across the arthropod phylum. Results We describe 58 Grs (gustatory receptors), belonging to the insect chemoreceptor superfamily, which were identified bioinformatically in the draft genome of the crustacean waterflea Daphnia pulex. No genes encoding proteins similar to the insect odorant receptors (Ors) were identified. These 58 Grs form 3 distinctive subfamilies of 37, 12, and 5 genes, as well as a highly divergent singleton (Gr58). In addition, Grs55–57 share distinctive amino acid motifs and cluster with the sugar receptors of insects, and may illuminate the origin of this distinctive subfamily. ESTs, tiling array, and PCR amplification results support 34 predicted gene models, and preliminary expression data comparing the sexes indicates potential female-biased expression for some genes. Conclusion This repertoire of 58 chemoreceptors presumably mediates the many chemoperception abilities of waterfleas. While it is always possible that the entire Or gene lineage was lost at some point in the history of Daphnia pulex, we think it more likely that the insect Or lineage is indeed a relatively recently expanded gene lineage concomitant with the evolution of terrestriality in the insects or their hexapod ancestors. PMID:19383158
The effects of juvenile hormone on Lasius niger reproduction.
Pamminger, T; Buttstedt, A; Norman, V; Schierhorn, A; Botías, C; Jones, J C; Basley, K; Hughes, W O H
2016-12-01
Reproduction has been shown to be costly for survival in a wide diversity of taxa. The resulting trade-off, termed the reproduction-survival trade-off, is thought to be one of the most fundamental forces of life-history evolution. In insects the pleiotropic effect of juvenile hormone (JH), antagonistically regulating reproduction and pathogen resistance, is suggested to underlie this phenomenon. In contrast to the majority of insects, reproductive individuals in many eusocial insects defy this trade-off and live both long and prosper. By remodelling the gonadotropic effects of JH in reproductive regulation, the queens of the long-lived black garden ant Lasius niger (living up to 27 years), have circumvented the reproduction-survival trade off enabling them to maximize both reproduction and pathogen resistance simultaneously. In this study we measure fertility, vitellogenin gene expression and protein levels after experimental manipulation of hormone levels. We use these measurements to investigate the mechanistic basis of endocrinological role remodelling in reproduction and determine how JH suppresses reproduction in this species, rather then stimulating it, like in the majority of insects. We find that JH likely inhibits three key aspects of reproduction both during vitellogenesis and oogenesis, including two previously unknown mechanisms. In addition, we document that juvenile hormone, as in the majority of insects, has retained some stimulatory function in regulating vitellogenin expression. We discuss the evolutionary consequences of this complex regulatory architecture of reproduction in L. niger, which might enable the evolution of similar reproductive phenotypes by alternate regulatory pathways, and the surprising flexibility regulatory role of juvenile hormone in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new paradigm for human stick balancing: a suspended not an inverted pendulum.
Lee, Kwee-Yum; O'Dwyer, Nicholas; Halaki, Mark; Smith, Richard
2012-09-01
We studied 14 skilled subjects balancing a stick (a television antenna, 52 cm, 34 g) on their middle fingertip. Comprehensive three-dimensional analyses revealed that the movement of the finger was 1.75 times that of the stick tip, such that the balanced stick behaved more like a normal noninverted pendulum than the inverted pendulum common to engineering models for stick balancing using motors. The average relation between the torque applied to the stick and its angle of deviation from the vertical was highly linear, consistent with simple harmonic motion. We observed clearly greater rotational movement of the stick in the anteroposterior plane than the mediolateral plane. Despite this magnitude difference, the duration of stick oscillatory cycles was very similar in both planes, again consistent with simple harmonic motion. The control parameter in balancing was the ratio of active torque applied to the stick relative to gravitational torque. It determined both the pivot point and oscillatory cycle period of the pendulum. The pivot point was located at the radius of gyration (about the centre of mass) of the stick from its centre of mass, showing that the subjects attuned to the gravitational dynamics and mass distribution of the stick. Hence, the key to controlling instability here was mastery of the physics of the unstable object. The radius of gyration may--similar to centre of mass--contribute to the kinesthesis of rotating limb segments and control of their gravitational dynamics.
Fang, Lu; Shen, Bin; Irwin, David M; Zhang, Shuyi
2014-10-01
Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.
Identification and characterization of insect-specific proteins by genome data analysis
Zhang, Guojie; Wang, Hongsheng; Shi, Junjie; Wang, Xiaoling; Zheng, Hongkun; Wong, Gane Ka-Shu; Clark, Terry; Wang, Wen; Wang, Jun; Kang, Le
2007-01-01
Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts) Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts). ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through experiments reported in the literature, supporting the accuracy of our approach. PMID:17407609
Weathering effects on fuel moisture sticks: corrections and recommendations.
Donald A. Haines; John S. Frost
1978-01-01
Describes response to weathering of 100-gram (1/2-inch) fuel moisture sticks over 6-month fire season in the Northeast. Presents a chart for correcting weathered-stick values and gives replacement recommendations for those sticks used in the National Fire Danger Rating System.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
NASA Astrophysics Data System (ADS)
Boucher, Jean-Philippe; Clanet, Christophe; Quéré, David; Chevy, Frédéric
2017-08-01
The cobra wave is a popular physical phenomenon arising from the explosion of a metastable grillage made of popsicle sticks. The sticks are expelled from the mesh by releasing the elastic energy stored during the weaving of the structure. Here we analyze both experimentally and theoretically the propagation of the wave front depending on the properties of the sticks and the pattern of the mesh. We show that its velocity and its shape are directly related to the recoil imparted to the structure by the expelled sticks. Finally, we show that the cobra wave can only exist for a narrow range of parameters constrained by gravity and rupture of the sticks.
Khila, Abderrahman; Abouheif, Ehab; Rowe, Locke
2014-08-01
Invasion of new ecological habitats is often associated with lineage diversification, yet the genetic changes underlying invasions and radiations are poorly understood. Over 200 million years ago, the semi-aquatic insects invaded water surface from a common terrestrial ancestor and diversified to exploit a wide array of niches. Here, we uncover the changes in regulation and function of the gene Ultrabithorax associated with both the invasion of water surface and the subsequent diversification of the group. In the common ancestor of the semi-aquatic insects, a novel deployment of Ubx protein in the mid-legs increased their length, thereby enhancing their role in water surface walking. In derived lineages that specialize in rowing on the open water, additional changes in the timing of Ubx expression further elongated the mid-legs thereby facilitating their function as oars. In addition, Ubx protein function was selectively reversed to shorten specific rear-leg segments, thereby enabling their function as rudders. These changes in Ubx have generated distinct niche-specialized morphologies that account for the remarkable diversification of the semi-aquatic insects. Therefore, changes in the regulation and function of a key developmental gene may facilitate both the morphological change necessary to transition to novel habitats and fuel subsequent morphological diversification. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F
Peter Koch
1974-01-01
Sharply toothed aluminum kiln sticks pressed into 2 by 4's cut from veneer cores, with a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...
Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F
P. Koch
1974-01-01
Sharply toothed luminum kiln sticks pressed into 2 by 4's cut from veneer cores, willi a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...
Proboscis extension reflex platform for volatiles and semi-volatiles detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wingo, Robert M.; McCabe, Kirsten J.; Haarmann, Timothy K.
The present invention provides an apparatus for the detection of volatile and semi-volatile chemicals using the olfactory abilities of honey bees that are trained to respond to the presence of a specific chemical in a sample of gas with the proboscis extension reflex (PER). In particular, the geometry and arrangement of the parts of the apparatus are such that the amount of surface area in contact with the sample of gas prior to its introduction to the bees is minimized to improve the detection of particular volatile and semi-volatile that have a tendency to "stick" to contacting surfaces, especially certainmore » chemicals associated with explosives and narcotics. According to another aspect of the present invention, a pre-concentrating means is incorporated with the device to effectively increase the concentration of "sticky" chemicals presented to the insects.« less
Gottardo, Marco
2011-07-01
Based on characters of both sexes, a new genus and species of the basal euphasmatodean lineage Aschiphasmatidae is described and figured from the Philippines. Dallaiphasma eximius gen. et sp. n. displays interesting features for the group, including: a cone-shaped vertex, which is notably raised above the pronotum; the tibial area apicalis represented by a depressed membranous posterior lateral region, and a strongly sclerotized central apical region; the euplantulae consisting of smooth-type attachment pads; the pretarsal claws pectination reduced to minute denticulations; and the well-differentiated boundary between the metanotum and the first abdominal tergum. The phylogenetic information content of the new findings is discussed. Furthermore, as a result of this study, the Aschiphasmatidae are newly recorded from Mindoro island, and now include five genera and six species of the Philippines. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Velonà, A; Brock, P D; Hasenpusch, J; Mantovani, B
2015-05-18
The barcoding approach was applied to analyze 16 Australian morphospecies of the order Phasmida, with the aim to test if it could be suitable as a tool for phasmid species identification and if its discrimination power would allow uncovering of cryptic diversity. Both goals were reached. Eighty-two specimens representing twelve morphospecies (Sipyloidea sp. A, Candovia annulata, Candovia sp. A, Candovia sp. B, Candovia sp. C, Denhama austrocarinata, Xeroderus kirbii, Parapodacanthus hasenpuschorum, Tropidoderus childrenii, Cigarrophasma tessellatum, Acrophylla wuelfingi, Eurycantha calcarata) were correctly recovered as clades through the molecular approach, their sequences forming monophyletic and well-supported clusters. In four instances, Neighbor-Joining tree and barcoding gap analyses supported either a specific (Austrocarausius mercurius, Anchiale briareus) or a subspecific (Anchiale austrotessulata, Extatosoma tiaratum) level of divergence within the analyzed morphospecies. The lack of an appropriate database of homologous coxI sequences prevented more detailed identification of undescribed taxa.
Kikuchi, Yoshitomo; Hosokawa, Takahiro; Nikoh, Naruo; Meng, Xian-Ying; Kamagata, Yoichi; Fukatsu, Takema
2009-01-01
Background Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. Results Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host lineages. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. Conclusion Comprehensive studies of the acanthosomatid bacterial symbiosis provide new insights into the genomic evolution of extracellular symbiotic bacteria: host-symbiont co-speciation and drastic genome reduction can occur not only in endocellular symbiotic associations but also in extracellular ones. We suggest that many more such cases might be discovered in future surveys. PMID:19146674
Gray Wolf (Canis lupus) death by stick impalement
Barber-Meyer, Shannon; Schmidt, Lori; Mech, L. David
2017-01-01
Although Canis lupus L. (Gray Wolf) individuals are sometimes impaled by sticks, we could find no documentation of natural impalement by sticks as a cause of death for wild Wolves. Here we report on a wild Gray Wolf from northeastern Minnesota that died due to stick puncture of its thorax and abdomen.
Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator
NASA Technical Reports Server (NTRS)
Mayer, Jann; Cox, Timothy H.
2003-01-01
A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.
NASA Astrophysics Data System (ADS)
Won, Hong-In; Chung, Jintai
2018-04-01
This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.
Quality changes of fresh-cut kohlrabi sticks under modified atmosphere packaging.
Escalona, V H; Aguayo, E; Artés, F
2007-06-01
The aim of this study was to determine the effect of different gas compositions on quality attributes and shelf life of kohlrabi sticks stored in modified atmosphere up to 14 d at 0 degrees C. Two commercial films were tested: oriented polypropylene (OPP) and amide-polyethylene (amide-PE). As a control, a microperforated OPP film was used. In order to study the changes in metabolic activity by minimal processing, the respiration rate and ethylene production at 0 degrees C were monitored for both intact stems and sticks. Changes in color, chemical parameters, sugars and organic acid contents, and sensorial quality of kohlrabi sticks were evaluated. An initial ethylene production of sticks was 13-fold higher than that of intact stems; meanwhile CO(2) production was 2-fold higher. However after 4 d of storage, a similar respiration rate for stems and sticks was found. Also the ethylene production of sticks and stems was steady around 15 to 20 nL/kg(/)h after 10 d. Kohlrabi sticks showed a little change in chemical parameters and very low weight losses during cold storage. Sticks under an equilibrium atmosphere of 7 kPa O(2) and 9 kPa CO(2) at 0 degrees C reached by amide-PE kept an acceptable sensorial quality for 14 d.
Russell, Robyn J; Scott, Colin; Jackson, Colin J; Pandey, Rinku; Pandey, Gunjan; Taylor, Matthew C; Coppin, Christopher W; Liu, Jian-Wei; Oakeshott, John G
2011-01-01
Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from ‘promiscuous’ activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments. PMID:25567970
Fossil evidence for key innovations in the evolution of insect diversity.
Nicholson, David B; Ross, Andrew J; Mayhew, Peter J
2014-10-22
Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Stick-slip friction and wear of articular joints
Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.
2013-01-01
Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687
The eukaryotic genome is structurally and functionally more like a social insect colony than a book.
Qiu, Guo-Hua; Yang, Xiaoyan; Zheng, Xintian; Huang, Cuiqin
2017-11-01
Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.
[What gene and chromosomes say about the origin and evolution of insects and other arthropods].
Lukhtanov, V A; Kuznetsova, V G
2010-09-01
At the turn of the 21st century, the use of molecular and molecular cytogenetic methods led to revolutionary advances in systematics of insects and other arthropods. Analysis of nuclear and mitochondrial genes, as well as investigation of structural rearrangements in the mitochondrial chromosome convincingly supported the Pancrustacea hypothesis, according to which insects originated directly from crustaceans, whereas myriapods are not closely related to them. The presence of the specific telomeric motif TTAGG confirmed the monophyletic origin of arthropods (Arthropoda) and the assignment of tongue worms (Pentastomida) to this type. Several different types of telomeric sequences have been found within the class of insects. Investigation of the molecular organization of these sequences may shed light on the relationships between the orders Diptera, Siphonaptera, and Mecoptera and on the origin of such enigmatic groups as the orders Strepsiptera, Zoraptera and suborder Coleorrhyncha.
Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective
NASA Astrophysics Data System (ADS)
Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian
2018-05-01
Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.
Trivedi, Pankaj; Trivedi, Chanda; Grinyer, Jasmine; Anderson, Ian C.; Singh, Brajesh K.
2016-01-01
Plant health and productivity is strongly influenced by their intimate interaction with deleterious and beneficial organisms, including microbes, and insects. Of the various plant diseases, insect-vectored diseases are of particular interest, including those caused by obligate parasites affecting plant phloem such as Candidatus (Ca.) Phytoplasma species and several species of Ca. Liberibacter. Recent studies on plant–microbe and plant–insect interactions of these pathogens have demonstrated that plant–microbe–insect interactions have far reaching consequences for the functioning and evolution of the organisms involved. These interactions take place within complex pathosystems and are shaped by a myriad of biotic and abiotic factors. However, our current understanding of these processes and their implications for the establishment and spread of insect-borne diseases remains limited. This article highlights the molecular, ecological, and evolutionary aspects of interactions among insects, plants, and their associated microbial communities with a focus on insect vectored and phloem-limited pathogens belonging to Ca. Phytoplasma and Ca. Liberibacter species. We propose that innovative and interdisciplinary research aimed at linking scales from the cellular to the community level will be vital for increasing our understanding of the mechanisms underpinning plant–insect–microbe interactions. Examination of such interactions could lead us to applied solutions for sustainable disease and pest management. PMID:27746788
Division of labour and the evolution of multicellularity
Ispolatov, Iaroslav; Ackermann, Martin; Doebeli, Michael
2012-01-01
Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level owing to mechanisms present in unicellular ancestors and does not require any genetic predisposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modelled as evolution of a hereditary parameter: the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily owing to the fitness advantage generated by the division of labour between cells in an aggregate. PMID:22158952
Ureña, Enric; Chafino, Silvia; Manjón, Cristina; Franch-Marro, Xavier; Martín, David
2016-01-01
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis. PMID:27135810
Repeated learning makes cultural evolution unique
Strimling, Pontus; Enquist, Magnus; Eriksson, Kimmo
2009-01-01
Although genetic information is acquired only once, cultural information can be both abandoned and reacquired during an individual's lifetime. Therefore, cultural evolution will be determined not only by cultural traits' ability to spread but also by how good they are at sticking with an individual; however, the evolutionary consequences of this aspect of culture have not previously been explored. Here we show that repeated learning and multiple characteristics of cultural traits make cultural evolution unique, allowing dynamical phenomena we can recognize as specifically cultural, such as traits that both spread quickly and disappear quickly. Importantly, the analysis of our model also yields a theoretical objection to the popular suggestion that biological and cultural evolution can be understood in similar terms. We find that the possibility to predict long-term cultural evolution by some success index, analogous to biological fitness, depends on whether individuals have few or many opportunities to learn. If learning opportunities are few, we find that the existence of a success index may be logically impossible, rendering notions of “cultural fitness” meaningless. On the other hand, if individuals can learn many times, we find a success index that works, regardless of whether the transmission pattern is vertical, oblique, or horizontal. PMID:19666615
Glow Sticks: Spectra and Color Mixing
NASA Astrophysics Data System (ADS)
Birriel, Jennifer; Birriel, Ignacio
2014-10-01
Glow sticks are a popular Halloween staple familiar to most of our students. The production of light via a chemical reaction is called "chemiluminescence," and glow sticks are often used as demonstrations and experiments in the chemistry classroom to study reaction rates as a function of temperature.1-3 A black light can be used to illuminate glow sticks that have not been cracked or those that are "dead" in order to demonstrate fluorescence in liquid chemicals.4 In this article, we present the use of glow sticks as an inexpensive demonstration of spectra and color addition.
Flower evolution of alpine forbs in the open top chambers (OTCs) from the Qinghai-Tibet Plateau.
Zhang, Chan; Wang, Lin-Lin; Yang, Yong-Ping; Duan, Yuan-Wen
2015-05-22
Effects of global changes on biodiversity have been paid more and more attention world widely, and the open top chambers (OTCs) are the most common tools to study the effects of climatic warming on plant diversity. However, it remains unclear how flowers evolve under environmental changes, which could help us to understand the changes of plant diversity in the OTCs. We compared the insect diversity and pollen:ovule (P/O) ratio of eight outcrossing species with different life histories inside and outside the OTCs on the Qinghai-Tibet Plateau, to examine the effects induced by OTCs on the evolution of floral traits. In the OTCs, P/O ratio decreased in annuals, but increased in perennials, indicating an overall trend toward selfing in annuals. We found that the insect diversity differed significantly inside and outside the OTCS, with decreases of dipteran insects and bees. We concluded that changes of P/O ratio in the studied plant species might result from pollination failure, which might be the results of mismatch between flowering time and pollinator activities. We also suggested annuals might be in a more extinction risk than perennials in OTCs, if strong inbreeding depression occurs in these annual outcrossing plants.
Costs and benefits of sublethal Drosophila C virus infection.
Gupta, V; Stewart, C O; Rund, S S C; Monteith, K; Vale, P F
2017-07-01
Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
C Smith, Katherine; Washington, Carmen; Welding, Kevin; Kroart, Laura; Osho, Adami; Cohen, Joanna E
2017-01-01
Background The current cigarette market is heavily focused on low-income and middle-income countries. Branding of tobacco products is key to establishing and maintaining a customer base. Greater restrictions on marketing and advertising of tobacco products create an incentive for companies to focus more on branding via the product itself. We consider how tobacco sticks are used for communicative purposes in 14 low-income and middle-income countries with extensive tobacco markets. Methods In 2013, we collected and coded 3232 cigarette and kretek packs that were purchased from vendors in diverse neighbourhoods in 44 cities across the 14 low-income and middle-income countries with the greatest number of smokers. A single stick from each pack was assessed for branding, decorative and communicative elements using a common coding framework. Stick communication variables included brand name, brand image/logo, brand descriptor, colour and design carried through from pack, ‘capsule cigarette’ symbol, and embellishment of filter end. Results Communication and branding on the stick is essentially ubiquitous (99.75%); 97% of sticks include explicit branding (brand name or logo present). Colour is commonly carried through from the pack (95%), and some sticks (13%) include decorative elements matching the pack. Decorative elements can be found anywhere on the stick, including the filter tip (8%), and ‘convertible’ cigarettes include a symbol to show where to push. Conclusions Cigarette sticks are clearly valuable ‘real estate’ that tobacco companies are using for communicative purposes. Across all countries and brands, the stick communicates branding via text, colour and imagery. PMID:27534777
Sticking of Molecules on Nonporous Amorphous Water Ice
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Vidali, Gianfranco
2016-05-01
Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on nonporous amorphous solid water. The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King-Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas-grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.
STICKING OF MOLECULES ON NONPOROUS AMORPHOUS WATER ICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiao; Vidali, Gianfranco; Acharyya, Kinsuk, E-mail: gvidali@syr.edu
2016-05-20
Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H{sub 2}, D{sub 2}, N{sub 2}, O{sub 2}, CO, CH{sub 4}, and CO{sub 2} on nonporous amorphous solid water. The sticking coefficient was measured over a widemore » range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King–Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas–grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.« less
Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR
Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A.; Lanzotti, Virginia
2015-01-01
Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643
21 CFR 102.45 - Fish sticks or portions made from minced fish.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Fish sticks or portions made from minced fish. 102... for Specific Nonstandardized Foods § 102.45 Fish sticks or portions made from minced fish. (a) The common or usual name of the food product that resembles and is of the same composition as fish sticks or...
21 CFR 102.45 - Fish sticks or portions made from minced fish.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Fish sticks or portions made from minced fish. 102... for Specific Nonstandardized Foods § 102.45 Fish sticks or portions made from minced fish. (a) The common or usual name of the food product that resembles and is of the same composition as fish sticks or...
21 CFR 102.45 - Fish sticks or portions made from minced fish.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Fish sticks or portions made from minced fish. 102... for Specific Nonstandardized Foods § 102.45 Fish sticks or portions made from minced fish. (a) The common or usual name of the food product that resembles and is of the same composition as fish sticks or...
21 CFR 102.45 - Fish sticks or portions made from minced fish.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Fish sticks or portions made from minced fish. 102... for Specific Nonstandardized Foods § 102.45 Fish sticks or portions made from minced fish. (a) The common or usual name of the food product that resembles and is of the same composition as fish sticks or...
Standard Methodology for Assessment of Range of Motion While Wearing Body Armor
2013-09-30
8 Figure 14: Meter stick (with close up...the tester to place against the measurement scale. A variety of rulers, meter sticks (Figure 14), and T square rulers (Figure 15) were used as well...All rulers and meter sticks had cm and mm marks on them. Figure 12: 20 cm block Figure 13: Measuring block Figure 14: Meter stick
Function and evolution of sex determination mechanisms, genes and pathways in insects
Gempe, Tanja; Beye, Martin
2011-01-01
Animals have evolved a bewildering diversity of mechanisms to determine the two sexes. Studies of sex determination genes – their history and function – in non-model insects and Drosophila have allowed us to begin to understand the generation of sex determination diversity. One common theme from these studies is that evolved mechanisms produce activities in either males or females to control a shared gene switch that regulates sexual development. Only a few small-scale changes in existing and duplicated genes are sufficient to generate large differences in sex determination systems. This review summarises recent findings in insects, surveys evidence of how and why sex determination mechanisms can change rapidly and suggests fruitful areas of future research. PMID:21110346
Genome Studies on Nematophagous and Entomogenous Fungi in China
Zhang, Weiwei; Cheng, Xiaoli; Liu, Xingzhong; Xiang, Meichun
2016-01-01
The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. PMID:29376926
The existence of a sticking region in free weight squats.
van den Tillaar, Roland; Andersen, Vidar; Saeterbakken, Atle Hole
2014-09-29
The aim of this study was to investigate the existence of the sticking region in two legged free weight squats. Fifteen resistance-training males (age 24 ± 4 years, body mass 82 ± 11 kg, body height 179 ± 6 cm) with 6 ± 3 years of resistance-training experience performed 6-RM in free weight squats. The last repetition was analyzed for the existence of a sticking region. Only in 10 out of 15 participants a sticking region was observed. The observed sticking region was much shorter than in the bench press. Furthermore, rectus femoris decreased the EMG activity in contrast to increased EMG activity in biceps femoris around the sticking and surrounding region. No significant change in EMG activity was found for the lateral and medial vastus muscles. It is suggested that a combination of these muscle activity changes could be one of the causes of the existence of the sticking region in free weight squats.
The Existence of a Sticking Region in Free Weight Squats
van den Tillaar, Roland; Andersen, Vidar; Saeterbakken, Atle Hole
2014-01-01
The aim of this study was to investigate the existence of the sticking region in two legged free weight squats. Fifteen resistance-training males (age 24 ± 4 years, body mass 82 ± 11 kg, body height 179 ± 6 cm) with 6 ± 3 years of resistance-training experience performed 6-RM in free weight squats. The last repetition was analyzed for the existence of a sticking region. Only in 10 out of 15 participants a sticking region was observed. The observed sticking region was much shorter than in the bench press. Furthermore, rectus femoris decreased the EMG activity in contrast to increased EMG activity in biceps femoris around the sticking and surrounding region. No significant change in EMG activity was found for the lateral and medial vastus muscles. It is suggested that a combination of these muscle activity changes could be one of the causes of the existence of the sticking region in free weight squats. PMID:25414740
Whitaker, Charles N.; Zimmermann, Richard E.
1989-01-01
A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.
Forêt, Sylvain; Maleszka, Ryszard
2006-11-01
The remarkable olfactory power of insect species is thought to be generated by a combinatorial action of two large protein families, G protein-coupled olfactory receptors (ORs) and odorant binding proteins (OBPs). In olfactory sensilla, OBPs deliver hydrophobic airborne molecules to ORs, but their expression in nonolfactory tissues suggests that they also may function as general carriers in other developmental and physiological processes. Here we used bioinformatic and experimental approaches to characterize the OBP-like gene family in a highly social insect, the Western honey bee. Comparison with other insects shows that the honey bee has the smallest set of these genes, consisting of only 21 OBPs. This number stands in stark contrast to the more than 70 OBPs in Anopheles gambiae and 51 in Drosophila melanogaster. In the honey bee as in the two dipterans, these genes are organized in clusters. We show that the evolution of their structure involved frequent intron losses. We describe a monophyletic subfamily of OBPs where the diversification of some amino acids appears to have been accelerated by positive selection. Expression profiling under a wide range of conditions shows that in the honey bee only nine OBPs are antenna-specific. The remaining genes are expressed either ubiquitously or are tightly regulated in specialized tissues or during development. These findings support the view that OBPs are not restricted to olfaction and are likely to be involved in broader physiological functions.
Patterns of conservation and change in honey bee developmental genes
Dearden, Peter K.; Wilson, Megan J.; Sablan, Lisha; Osborne, Peter W.; Havler, Melanie; McNaughton, Euan; Kimura, Kiyoshi; Milshina, Natalia V.; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Brown, Susan J.; Elsik, Christine G.; Holland, Peter W.H.; Kadowaki, Tatsuhiko; Beye, Martin
2006-01-01
The current insect genome sequencing projects provide an opportunity to extend studies of the evolution of developmental genes and pathways in insects. In this paper we examine the conservation and divergence of genes and developmental processes between Drosophila and the honey bee; two holometabolous insects whose lineages separated ∼300 million years ago, by comparing the presence or absence of 308 Drosophila developmental genes in the honey bee. Through examination of the presence or absence of genes involved in conserved pathways (cell signaling, axis formation, segmentation and homeobox transcription factors), we find that the vast majority of genes are conserved. Some genes involved in these processes are, however, missing in the honey bee. We have also examined the orthology of Drosophila genes involved in processes that differ between the honey bee and Drosophila. Many of these genes are preserved in the honey bee despite the process in which they act in Drosophila being different or absent in the honey bee. Many of the missing genes in both situations appear to have arisen recently in the Drosophila lineage, have single known functions in Drosophila, and act early in developmental pathways, while those that are preserved have pleiotropic functions. An evolutionary interpretation of these data is that either genes with multiple functions in a common ancestor are more likely to be preserved in both insect lineages, or genes that are preserved throughout evolution are more likely to co-opt additional functions. PMID:17065607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macevicz, S.C.
1979-05-09
This thesis attempts to explain the evolution of certain features of social insect colony population structure by the use of optimization models. Two areas are examined in detail. First, the optimal reproductive strategies of annual eusocial insects are considered. A model is constructed for the growth of workers and reproductives as a function of the resources allocated to each. Next the allocation schedule is computed which yields the maximum number of reproductives by season's end. The results indicate that if there is constant return to scale for allocated resources the optimal strategy is to invest in colony growth until approximatelymore » one generation before season's end, whereupon worker production ceases and reproductive effort is switched entirely to producing queens and males. Furthermore, the results indicate that if there is decreasing return to scale for allocated resources then simultaneous production of workers and reproductives is possible. The model is used to explain the colony demography of two species of wasp, Polistes fuscatus and Vespa orientalis. Colonies of these insects undergo a sudden switch from the production of workers to the production of reproductives. The second area examined concerns optimal forager size distributions for monomorphic ant colonies. A model is constructed that describes the colony's energetic profit as a function which depends on the size distribution of food resources as well as forager efficiency, metabolic costs, and manufacturing costs.« less
A Carboniferous insect gall: insight into early ecologic history of the Holometabola.
Labandeira, C C; Phillips, T L
1996-01-01
Although the prevalence or even occurrence of insect herbivory during the Late Carboniferous (Pennsylvanian) has been questioned, we present the earliest-known ecologic evidence showing that by Late Pennsylvanian times (302 million years ago) a larva of the Holometabola was galling the internal tissue of Psaronius tree-fern fronds. Several diagnostic cellular and histological features of these petiole galls have been preserved in exquisite detail, including an excavated axial lumen filled with fecal pellets and comminuted frass, plant-produced response tissue surrounding the lumen, and specificity by the larval herbivore for a particular host species and tissue type. Whereas most suggestions over-whelmingly support the evolution of such intimate and reciprocal plant-insect interactions 175 million years later, we provide documentation that before the demise of Pennsylvanian age coal-swamp forests, a highly stereotyped life cycle was already established between an insect that was consuming internal plant tissue and a vascular plant host responding to that herbivory. This and related discoveries of insect herbivore consumption of Psaronius tissues indicate that modern-style herbivores were established in Late Pennsylvanian coal-swamp forests. Images Fig. 1 PMID:11607697
Oppenheim, Sara J; Baker, Richard H; Simon, Sabrina; DeSalle, Rob
2015-04-01
Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile. © 2014 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.
Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?
Longdon, Ben; Jiggins, Francis M
2012-10-07
Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.
Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?
Longdon, Ben; Jiggins, Francis M.
2012-01-01
Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects. PMID:22859592
The function of small RNAs in plant biotic stress response.
Huang, Juan; Yang, Meiling; Zhang, Xiaoming
2016-04-01
Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control. © 2016 Institute of Botany, Chinese Academy of Sciences.
What serial homologs can tell us about the origin of insect wings
2017-01-01
Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings. PMID:28357056
Genetics and evolution of triatomines: from phylogeny to vector control
Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E
2012-01-01
Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436
Tetrahedra and Their Nets: Mathematical and Pedagogical Implications
ERIC Educational Resources Information Center
Mussa, Derege Haileselassie
2013-01-01
If one has three sticks (lengths), when can you make a triangle with the sticks? As long as any two of the lengths sum to a value strictly larger than the third length one can make a triangle. Perhaps surprisingly, if one is given 6 sticks (lengths) there is no simple way of telling if one can build a tetrahedron with the sticks. In fact, even…
C Smith, Katherine; Washington, Carmen; Welding, Kevin; Kroart, Laura; Osho, Adami; Cohen, Joanna E
2016-09-01
The current cigarette market is heavily focused on low-income and middle-income countries. Branding of tobacco products is key to establishing and maintaining a customer base. Greater restrictions on marketing and advertising of tobacco products create an incentive for companies to focus more on branding via the product itself. We consider how tobacco sticks are used for communicative purposes in 14 low-income and middle-income countries with extensive tobacco markets. In 2013, we collected and coded 3232 cigarette and kretek packs that were purchased from vendors in diverse neighbourhoods in 44 cities across the 14 low-income and middle-income countries with the greatest number of smokers. A single stick from each pack was assessed for branding, decorative and communicative elements using a common coding framework. Stick communication variables included brand name, brand image/logo, brand descriptor, colour and design carried through from pack, 'capsule cigarette' symbol, and embellishment of filter end. Communication and branding on the stick is essentially ubiquitous (99.75%); 97% of sticks include explicit branding (brand name or logo present). Colour is commonly carried through from the pack (95%), and some sticks (13%) include decorative elements matching the pack. Decorative elements can be found anywhere on the stick, including the filter tip (8%), and 'convertible' cigarettes include a symbol to show where to push. Cigarette sticks are clearly valuable 'real estate' that tobacco companies are using for communicative purposes. Across all countries and brands, the stick communicates branding via text, colour and imagery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
2009-01-01
Background Insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play an important role in chemical communication of insects. Gene discovery of these proteins is a time-consuming task. In recent years, expressed sequence tags (ESTs) of many insect species have accumulated, thus providing a useful resource for gene discovery. Results We have developed a computational pipeline to identify OBP and CSP genes from insect ESTs. In total, 752,841 insect ESTs were examined from 54 species covering eight Orders of Insecta. From these ESTs, 142 OBPs and 177 CSPs were identified, of which 117 OBPs and 129 CSPs are new. The complete open reading frames (ORFs) of 88 OBPs and 123 CSPs were obtained by electronic elongation. We randomly chose 26 OBPs from eight species of insects, and 21 CSPs from four species for RT-PCR validation. Twenty two OBPs and 16 CSPs were confirmed by RT-PCR, proving the efficiency and reliability of the algorithm. Together with all family members obtained from the NCBI (OBPs) or the UniProtKB (CSPs), 850 OBPs and 237 CSPs were analyzed for their structural characteristics and evolutionary relationship. Conclusions A large number of new OBPs and CSPs were found, providing the basis for deeper understanding of these proteins. In addition, the conserved motif and evolutionary analysis provide some new insights into the evolution of insect OBPs and CSPs. Motif pattern fine-tune the functions of OBPs and CSPs, leading to the minor difference in binding sex pheromone or plant volatiles in different insect Orders. PMID:20034407
Linking Insects with Crustacea: Physiology of the Pancrustacea: An Introduction to the Symposium.
Tamone, Sherry L; Harrison, Jon F
2015-11-01
Insects and crustaceans represent critical, dominant animal groups (by biomass and species number) in terrestrial and aquatic systems, respectively. Insects (hexapods) and crustaceans are historically grouped under separate taxonomic classes within the Phylum Arthropoda, and the research communities studying hexapods and crustaceans are quite distinct. More recently, the hexapods have been shown to be evolutionarily derived from basal crustaceans, and the clade Pancrustacea recognizes this relationship. This recent evolutionary perspective, and the fact that the Society for Integrative and Comparative Biology has strong communities in both invertebrate biology and insect physiology, provides the motivation for this symposium. Speakers in this symposium were selected because of their expertise in a particular field of insect or crustacean physiology, and paired in such a way as to provide a comparative view of the state of the current research in their respective fields. Presenters discussed what aspects of the physiological system are clearly conserved across insects and crustaceans and how cross-talk between researchers utilizing insects and crustaceans can fertilize understanding of such conserved systems. Speakers were also asked to identify strategies that would enable improved understanding of the evolution of physiological systems of the terrestrial insects from the aquatic crustaceans. The following collection of articles describes multiple recent advances in our understanding of Pancrustacean physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.
Blackmon, Heath; Ross, Laura; Bachtrog, Doris
2017-01-01
Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dissuasive cigarette sticks: the next step in standardised ('plain') packaging?
Hoek, Janet; Gendall, Philip; Eckert, Christine; Louviere, Jordan
2016-11-01
Standardised (or 'plain') packaging has reduced the appeal of smoking by removing imagery that smokers use to affiliate themselves with the brand they smoke. We examined whether changing the appearance of cigarette sticks could further denormalise smoking and enhance the negative impact of standardised packaging. We conducted an online study of 313 New Zealand smokers who comprised a Best-Worst Choice experiment and a rating task. The Best-Worst experiment used a 2×3×3×6 orthogonal design to test the following attributes: on-pack warning message, branding level, warning size and stick appearance. We identified three segments whose members' choice patterns were strongly influenced by the stick design, warning theme and size, and warning theme, respectively. Each of the dissuasive sticks tested was less preferred and rated as less appealing than the most common stick in use; a 'minutes of life lost' stick was the most aversive of the stimuli tested. Dissuasive sticks could enhance the effect of standardised packaging, particularly among older smokers who are often more heavily addicted and resistant to change. Countries introducing standardised packaging legislation should take the opportunity to denormalise the appearance of cigarette sticks, in addition to removing external tobacco branding from packs and increasing the warning size. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop
2015-01-01
Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.
Silva, Kathleen M; Gross, Thomas J; Silva, Francisco J
2015-03-01
In two experiments, we examined the effect of modifications to the features of a stick-and-tube problem on the stick lengths that adult humans used to solve the problem. In Experiment 1, we examined whether people's tool preferences for retrieving an out-of-reach object in a tube might more closely resemble those reported with laboratory crows if people could modify a single stick to an ideal length to solve the problem. Contrary to when adult humans have selected a tool from a set of ten sticks, asking people to modify a single stick to retrieve an object did not generally result in a stick whose length was related to the object's distance. Consistent with the prior research, though, the working length of the stick was related to the object's distance. In Experiment 2, we examined the effect of increasing the scale of the stick-and-tube problem on people's tool preferences. Increasing the scale of the task influenced people to select relatively shorter tools than had selected in previous studies. Although the causal structures of the tasks used in the two experiments were identical, their results were not. This underscores the necessity of studying physical cognition in relation to a particular causal structure by using a variety of tasks and methods.
Ito, Manabu; Aoki, Shigeru; Uchiyama, Jumpei; Yamato, Keisuke
2018-04-20
Sticking is a common observation in the scale-up stage on the punch tip using a commercial tableting machine. The difference in the total compression time between a laboratory and a commercial tableting machine is considered one of the main root causes of scale up issues in the tableting processes. The proposed Size Adjusted for Scale-up (SAS) punch can be used to adjust the consolidation and dwell times for commercial tableting machine. As a result, the sticking phenomenon is able to be replicated at the pilot scale stage. As reported in this paper, the quantification of sticking was measured using a 3D laser scanning microscope to check the tablet surface. It was shown that the sticking area decreased with the addition of magnesium stearate in the formulation, but the sticking depth was not affected by the additional amount of magnesium stearate. It is proposed that use of a 3D laser scanning microscope can be applied to evaluate sticking as a process analytical technology (PAT) tool and so sticking can be monitored continuously without stopping the machine. Copyright © 2018. Published by Elsevier Inc.
The effects of grip width on sticking region in bench press.
Gomo, Olav; Van Den Tillaar, Roland
2016-01-01
The aim of this study was to examine the occurrence of the sticking region by examining how three different grip widths affect the sticking region in powerlifters' bench press performance. It was hypothesised that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width, indicating a poor mechanical region for vertical force production at these joint angles. Twelve male experienced powerlifters (age 27.7 ± 8.8 years, mass 91.9 ± 15.4 kg) were tested in one repetition maximum (1-RM) bench press with a narrow, medium and wide grip. Joint kinematics, timing, bar position and velocity were measured with a 3D motion capture system. All participants showed a clear sticking region with all three grip widths, but this sticking region was not found to occur at the same joint angles in all three grip widths, thereby rejecting the hypothesis that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width. It is suggested that, due to the differences in moment arm of the barbell about the elbow joint in the sticking region, there still might be a poor mechanical region for total force production that is joint angle-specific.
Five rules for the evolution of cooperation.
Nowak, Martin A
2006-12-08
Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.
Five Rules for the Evolution of Cooperation
NASA Astrophysics Data System (ADS)
Nowak, Martin A.
2006-12-01
Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.
Female penis, male vagina, and their correlated evolution in a cave insect.
Yoshizawa, Kazunori; Ferreira, Rodrigo L; Kamimura, Yoshitaka; Lienhard, Charles
2014-05-05
Sex-specific elaborations are common in animals and have attracted the attention of many biologists, including Darwin [1]. It is accepted that sexual selection promotes the evolution of sex-specific elaborations. Due to the faster replenishment rate of gametes, males generally have higher potential reproductive and optimal mating rates than females. Therefore, sexual selection acts strongly on males [2], leading to the rapid evolution and diversification of male genitalia [3]. Male genitalia are sometimes used as devices for coercive holding of females as a result of sexual conflict over mating [4, 5]. In contrast, female genitalia are usually simple. Here we report the reversal of intromittent organs in the insect genus Neotrogla (Psocodea: Prionoglarididae) from Brazilian caves. Females have a highly elaborate, penis-like structure, the gynosome, while males lack an intromittent organ. The gynosome has species-specific elaborations, such as numerous spines that fit species-specific pouches in the simple male genital chamber. During prolonged copulation (~40-70 hr), a large and potentially nutritious ejaculate is transferred from the male via the gynosome. The correlated genital evolution in Neotrogla is probably driven by reversed sexual selection with females competing for seminal gifts. Nothing similar is known among sex-role reversed animals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics.
Bybee, Seth; Córdoba-Aguilar, Alex; Duryea, M Catherine; Futahashi, Ryo; Hansson, Bengt; Lorenzo-Carballa, M Olalla; Schilder, Ruud; Stoks, Robby; Suvorov, Anton; Svensson, Erik I; Swaegers, Janne; Takahashi, Yuma; Watts, Phillip C; Wellenreuther, Maren
2016-01-01
Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.
The alternative Pharaoh approach: stingless bees mummify beetle parasites alive
NASA Astrophysics Data System (ADS)
Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter
2010-03-01
Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.
2018-02-01
The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .
Sexual selection expedites the evolution of pesticide resistance.
Jacomb, Frances; Marsh, Jason; Holman, Luke
2016-12-01
The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied. Here, we examine this question using experimental evolution in the pest insect Tribolium castaneum. The experimental removal of sexual selection slowed the evolution of resistance in populations treated with pyrethroid pesticide, and also reduced the rate at which resistance was lost from pesticide-free populations. These results suggest that selection arising from variance in mating and fertilization success can augment natural selection on pesticide resistance, meaning that sexual selection should be considered when designing strategies to limit the evolution of pesticide resistance. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Percolation in insect nest networks: Evidence for optimal wiring
NASA Astrophysics Data System (ADS)
Valverde, Sergi; Corominas-Murtra, Bernat; Perna, Andrea; Kuntz, Pascale; Theraulaz, Guy; Solé, Ricard V.
2009-06-01
Optimization has been shown to be a driving force for the evolution of some biological structures, such as neural maps in the brain or transport networks. Here we show that insect networks also display characteristic traits of optimality. By using a graph representation of the chamber organization of termite nests and a disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary consequences are outlined.
NASA Astrophysics Data System (ADS)
Ma, X.; Elbanna, A. E.; Kothari, K.
2017-12-01
Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear induced dilation and acoustic compaction. We discuss the implications of our results on dynamic triggering, quiescence and strength evolution in gouge filled fault zones.
When sticky fluids don't stick: yield-stress fluid drops on heated surfaces
NASA Astrophysics Data System (ADS)
Blackwell, Brendan; Wu, Alex; Ewoldt, Randy
2016-11-01
Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact; this sticky behavior motivates several applications of these rheologically-complex materials. Here we describe experiments with aqueous yield stress fluids that are more 'sticky' than water at room temperature (e.g. supporting larger coating thicknesses), but are less 'sticky' at higher temperatures. Specifically, we study the conditions for aqueous yield stress fluids to bounce and slide on heated surfaces when water sticks. Here we present high-speed imaging and color interferometry to observe the thickness of the vapor layer between the drop and the surface during both stick and non-stick events. We use these data to gain insight into the physics behind the phenomenon of the yield-stress fluids bouncing and sliding, rather than sticking, on hot surfaces.
Convergent bacterial microbiotas in the fungal agricultural systems of insects
Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; ...
2014-11-18
The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less
Release of genetically engineered insects: a framework to identify potential ecological effects
David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A
2013-01-01
Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955
Insect Phylogenomics: Exploring the Source of Incongruence Using New Transcriptomic Data
Simon, Sabrina; Narechania, Apurva; DeSalle, Rob; Hadrys, Heike
2012-01-01
The evolution of the diverse insect lineages is one of the most fascinating issues in evolutionary biology. Despite extensive research in this area, the resolution of insect phylogeny especially of interordinal relationships has turned out to be still a great challenge. One of the challenges for insect systematics is the radiation of the polyneopteran lineages with several contradictory and/or unresolved relationships. Here, we provide the first transcriptomic data for three enigmatic polyneopteran orders (Dermaptera, Plecoptera, and Zoraptera) to clarify one of the most debated issues among higher insect systematics. We applied different approaches to generate 3 data sets comprising 78 species and 1,579 clusters of orthologous genes. Using these three matrices, we explored several key mechanistic problems of phylogenetic reconstruction including missing data, matrix selection, gene and taxa number/choice, and the biological function of the genes. Based on the first phylogenomic approach including these three ambiguous polyneopteran orders, we provide here conclusive support for monophyletic Polyneoptera, contesting the hypothesis of Zoraptera + Paraneoptera and Plecoptera + remaining Neoptera. In addition, we employ various approaches to evaluate data quality and highlight problematic nodes within the Insect Tree that still exist despite our phylogenomic approach. We further show how the support for these nodes or alternative hypotheses might depend on the taxon- and/or gene-sampling. PMID:23175716
Convergent bacterial microbiotas in the fungal agricultural systems of insects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.
The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less
Insect-specific viruses and their potential impact on arbovirus transmission
Vasilakis, Nikos; Tesh, Robert B.
2015-01-01
Arthropod-borne viruses (arboviruses) are the causative agents of significant morbidity and mortality among humans and animals globally. In the last few years, the widespread adoption of next generation sequencing and metagenomics has led to a new era of virus discovery, where many novel viruses have been documented, exhibiting a restricted host-range in mosquitoes. They represent a wide-range of insect-specific viruses within the families of Bunyaviridae, Flaviviridae, Mesoniviridae, Reoviridae, Rhabdoviridae, Togaviridae, and the newly recognized taxon of Negeviruses. Collectively, their discovery has opened new vistas about the extent of viral diversity and evolution, their influence on vector competence and ability of their insect hosts to transmit human pathogens (e.g. arboviruses), and their potential development as biological control agents or novel vaccine platforms. PMID:26322695
Corpse Management in Social Insects
Sun, Qian; Zhou, Xuguo
2013-01-01
Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed. PMID:23569436
Early evolution and ecology of camouflage in insects
Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S.
2012-01-01
Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant–insect interaction. PMID:23236135
Dekel, Amir; Pitts, Ronald J.; Yakir, Esther; Bohbot, Jonathan D.
2016-01-01
Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role. Here, we show that TaOR8 is a functional ortholog of its counterparts in blood-feeding mosquitoes displaying selectivity towards the (R)-enantiomer of octenol and susceptibility to the insect repellent DEET. These findings suggest that while the function of OR8 has been maintained throughout mosquito evolution, the context in which this receptor is operating has diverged in blood and nectar-feeding mosquitoes. PMID:27849027
Early evolution and ecology of camouflage in insects.
Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S
2012-12-26
Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant-insect interaction.
2009-09-03
coefficients are set to a value of 0.3. The stick/slip critical shear stress level is defined using a modified Coulomb friction law. Within this law, there...Modified Johnson Cook Model Equivalent Plastic Strain a P M,htgnert S d lei Y 1 2 3 4 5 6 7 420 440 460 480 500 520 540 560 Original Johnson Cook Model...Lett., 2005, 59, 3315–3318. 7 Thomas, W. M. and Nicholas, E. D. Friction stir welding for the transportation industries. Mater. Des ., 1997, 18, 269
Babbucci, Massimiliano; Basso, Andrea; Scupola, Antonio; Patarnello, Tomaso; Negrisolo, Enrico
2014-01-01
Insect mitochondrial genomes (mtDNA) are usually double helical and circular molecules containing 37 genes that are encoded on both strands. The arrangement of the genes is not constant for all species, and produces distinct gene orders (GOs) that have proven to be diagnostic in defining clades at different taxonomic levels. In general, it is believed that distinct taxa have a very low chance of sharing identically arranged GOs. However, examples of identical, homoplastic local rearrangements occurring in distinct taxa do exist. In this study, we sequenced the complete mtDNAs of the ants Formica fusca and Myrmica scabrinodis (Formicidae, Hymenoptera) and compared their GOs with those of other Insecta. The GO of F. fusca was found to be identical to the GO of Dytrisia (the largest clade of Lepidoptera). This finding is the first documented case of an identical GO shared by distinct groups of Insecta, and it is the oldest known event of GO convergent evolution in animals. Both Hymenoptera and Lepidoptera acquired this GO early in their evolution. Using a phylogenetic approach combined with new bioinformatic tools, the chronological order of the evolutionary events that produced the diversity of the hymenopteran GOs was determined. Additionally, new local homoplastic rearrangements shared by distinct groups of insects were identified. Our study showed that local and global homoplasies affecting the insect GOs are more widespread than previously thought. Homoplastic GOs can still be useful for characterizing the various clades, provided that they are appropriately considered in a phylogenetic and taxonomic context. PMID:25480682
Preslip and cascade processes initiating laboratory stick slip
McLaskey, Gregory C.; Lockner, David A.
2014-01-01
Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M _6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 μs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.
A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits
2011-01-01
Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV) channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa) channels, which suggests that ion channel regulatory partners have evolved distinct lineage-specific characteristics. Conclusions TipE-like genes form a remarkably conserved genomic cluster across all examined insect genomes. This study reveals likely structural and functional constraints on the genomic evolution of insect TipE gene family members maintained in synteny over hundreds of millions of years of evolution. The likely common origin of these NaV channel regulators with BKCa auxiliary subunits highlights the evolutionary plasticity of ion channel regulatory mechanisms. PMID:22098672
Antifungal activity in thrips soldiers suggests a dual role for this caste.
Turnbull, Christine; Caravan, Holly; Chapman, Thomas; Nipperess, David; Dennison, Siobhan; Schwarz, Michael; Beattie, Andrew
2012-08-23
The social insect soldier is perhaps the most widely known caste, because it often exhibits spectacular weapons, such as highly enlarged jaws or reinforced appendages, which are used to defend the colony against enemies ranging in size from wasps to anteaters. We examined the function of the enlarged forelimbs of soldiers (both male and female) of the eusocial, gall-inhabiting insect Kladothrips intermedius, and discovered that they have little impact on their ability to repel the specialized invading thrips Koptothrips species. While the efficacy of the enlarged forelimb appears equivocal, we show that soldiers secrete strong antifungal compounds capable of controlling the specialized insect fungal pathogen, Cordyceps bassiana. Our data suggest that these thrips soldiers have evolved in response to selection by both macro- and micro-organisms. While it is unknown whether specialized fungal pathogens have been major selective agents in the evolution of the soldier caste in general, they were probably present when sociality first evolved and may have been the primordial enemies of social insects.
Blended Refuge and Insect Resistance Management for Insecticidal Corn
Crespo, Andre L B; Pan, Zaiqi; Crain, Philip R; Thompson, Stephen D; Pilcher, Clinton D; Sethi, Amit
2018-01-01
Abstract In this review, we evaluate the intentional mixing or blending of insecticidal seed with refuge seed for managing resistance by insects to insecticidal corn (Zea mays). We first describe the pest biology and farming practices that will contribute to weighing trade-offs between using block refuges and blended refuges. Case studies are presented to demonstrate how the trade-offs will differ in different systems. We compare biological aspects of several abstract models to guide the reader through the history of modeling, which has played a key role in the promotion or denigration of blending in various scientific debates about insect resistance management for insecticidal crops. We conclude that the use of blended refuge should be considered on a case-by-case basis after evaluation of insect biology, environment, and farmer behavior. For Diabrotica virgifera virgifera, Ostrinia nubilalis, and Helicoverpa zea in the United States, blended refuge provides similar, if not longer, delays in the evolution of resistance compared to separate block refuges. PMID:29220481
Underwater flight by the planktonic sea butterfly.
Murphy, David W; Adhikari, Deepak; Webster, Donald R; Yen, Jeannette
2016-02-01
In a remarkable example of convergent evolution, we show that the zooplanktonic sea butterfly Limacina helicina 'flies' underwater in the same way that very small insects fly in the air. Both sea butterflies and flying insects stroke their wings in a characteristic figure-of-eight pattern to produce lift, and both generate extra lift by peeling their wings apart at the beginning of the power stroke (the well-known Weis-Fogh 'clap-and-fling' mechanism). It is highly surprising to find a zooplankter 'mimicking' insect flight as almost all zooplankton swim in this intermediate Reynolds number range (Re=10-100) by using their appendages as paddles rather than wings. The sea butterfly is also unique in that it accomplishes its insect-like figure-of-eight wing stroke by extreme rotation of its body (what we call 'hyper-pitching'), a paradigm that has implications for micro aerial vehicle (MAV) design. No other animal, to our knowledge, pitches to this extent under normal locomotion. © 2016. Published by The Company of Biologists Ltd.
Oppenheim, Sara J; Baker, Richard H; Simon, Sabrina; DeSalle, Rob
2015-01-01
Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile. PMID:25524309
Nunes, Marcio R.T.; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C.; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P.; Carvalho, Valeria L.; da Silva, Sandro Patroca; Cardoso, Jedson F.; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G.; Widen, Steven G.; Vasconcelos, Pedro F.C.; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B.
2017-01-01
The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. PMID:28193550
Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B
2017-04-01
The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.
A molecular concept of caste in insect societies.
Sumner, Seirian; Bell, Emily; Taylor, Daisy
2018-02-01
The term 'caste' is used to describe the division of reproductive labour that defines eusocial insect societies. The definition of 'caste' has been debated over the last 50 years, specifically with respect to the simplest insect societies; this raises the question of whether a simple categorisation of social behaviour by reproductive state alone is helpful. Gene-level analyses of behaviours of individuals in hymenopteran social insect societies now provide a new empirical base-line for defining caste and understanding the evolution and maintenance of a reproductive division of labour. We review this literature to identify a set of potential molecular signatures that, combined with behavioural, morphological and physiological data, help define caste more precisely; these signatures vary with the type of society, and are likely to be influenced by ecology, life-history, and stage in the colony cycle. We conclude that genomic approaches provide us with additional ways to help quantify and categorise caste, and behaviour in general. Copyright © 2017 Elsevier Inc. All rights reserved.
Planetesimal formation by sweep-up coagulation
NASA Astrophysics Data System (ADS)
Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.
2013-07-01
The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.
Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo
2010-04-01
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
Physics of the mechanical toy Gee-Haw Whammy Diddle.
Marek, Martin; Badin, Matej; Plesch, Martin
2018-02-27
Gee-Haw Whammy Diddle is a seemingly simple mechanical toy consisting of a wooden stick and a second stick that is made up of a series of notches with a propeller at its end. When the wooden stick is pulled over the notches, the propeller starts to rotate. Despite its simplicity, physical principles governing the motion of the stick and the propeller are rather complicated and interesting. Here we provide a thorough analysis of the system and parameters influencing the motion. We show that contrary to the results published on this topic so far, neither elliptic motion of the stick nor frequency synchronization is needed for starting a stable motion of the propeller.
The impact of wood ice cream sticks' origin on the aroma of exposed ice cream mixes.
Jiamyangyuen, S; Delwiche, J F; Harper, W J
2002-02-01
The effect of volatile compounds in white birch sticks obtained from four different geographical locations on the aroma of ice cream mix was investigated. Sensory evaluation, (specifically, a series of warmed-up paired comparisons) was conducted on stick-exposed ice cream mixes to determine whether aroma differences in those mixes could be detected. Batches of ice cream mix were exposed to the sticks and aged for 6 d at 4 degrees C and then assessed by the panelists by pairwise comparison. Findings suggest that differences in aroma of mixes that have been exposed to white birch sticks from four different geographical origins can be distinguished perceptually.
Effect of operation parameters on the slagging near swirl coal burner throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changfu You; Yong Zhou
2006-10-15
Fluid flow, heat transfer, coal combustion, and slagging processes had been numerically simulated near a swirl burner throat. The effect of the ratio distribution of each burner air, their swirling numbers, and the coal character on the slagging process had been analyzed. The computation results indicate that the maximal sticking-particle numbers occur at the uppermost waterwall, while the sticking-particle number at neither waterwall near the swirl burner outlet is very small. The swirling number has a significant effect on the number of the sticking particle. The sticking-particle number increases rapidly with the increment of the outer secondary air and themore » primary air-swirling numbers, respectively, because it can strengthen the flow entrainment ability to carry more particles to the waterwall. The inner secondary air has a complicated influence on the slagging process. When the inner secondary air-swirling number is about middle intensive degree (about 0.9), the sticking-particle number reaches maximum. If the inner secondary air-swirling number continues increasing, then the coal particles will combust completely and reduce the particle concentration, thus decrease the sticking-particle number. The ratio of each air has a slight influence on the sticking-particle number relative to the swirling number. The coal particles with small mean diameter combust completely, which can reduce the sticking-particle number. 13 refs., 16 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Volk, Kathryn; Murray-Clay, Ruth; Gladman, Brett; Lawler, Samantha; Yu, Tze Yeung Mathew; Alexandersen, Mike; Bannister, Michele; Chen, Ying-Yung; Dawson, Rebekah; Greenstreet, Sarah; Gwyn, Stephen; Kavelaars, J. J.; Lin, Hsing Wen; Lykawka, Patryk; Petit, Jean-Marc
2018-04-01
We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptune's distant 9:1 mean motion resonance at semimajor axis a≈130 au. Both objects are securely resonant on 10 Myr timescales, with one securely in the 9:1 resonance's leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These two objects are the largest semimajor axis objects known with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust population estimate for a resonance beyond 100 au. The detection of these two objects implies a population in the 9:1 resonance of 1.1×104 objects with Hr<8.66 (D > 100 km) on similar orbits, with 95% confidence range of ∼0.4‑3×104. Integrations over 4 Gyr of an ensemble of clones chosen from within the orbit fit uncertainties for these objects reveal that they both have median resonance occupation timescales of ∼1 Gyr. These timescales are consistent with the hypothesis that these two objects originate in the scattering population but became transiently stuck to Neptune's 9:1 resonance within the last ∼1 Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000--5000 objects with Hr<8.66 this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper belt's dynamical history.
NASA Astrophysics Data System (ADS)
Volk, Kathryn; Murray-Clay, Ruth A.; Gladman, Brett J.; Lawler, Samantha M.; Yu, Tze Yeung Mathew; Alexandersen, Mike; Bannister, Michele T.; Chen, Ying-Tung; Dawson, Rebekah I.; Greenstreet, Sarah; Gwyn, Stephen D. J.; Kavelaars, J. J.; Lin, Hsing Wen; Lykawka, Patryk Sofia; Petit, Jean-Marc
2018-06-01
We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptune’s distant 9:1 mean motion resonance at semimajor axis a ≈ 130 au. Both objects are securely resonant on 10 Myr timescales, with one securely in the 9:1 resonance’s leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These objects are the largest semimajor axis objects with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust resonance population estimate beyond 100 au. The detection of these objects implies a 9:1 resonance population of 1.1 × 104 objects with H r < 8.66 (D ≳ 100 km) on similar orbits (95% confidence range of ∼(0.4–3) × 104). Integrations over 4 Gyr of an ensemble of clones spanning these objects’ orbit-fit uncertainties reveal that they both have median resonance occupation timescales of ∼1 Gyr. These timescales are consistent with the hypothesis that these objects originate in the scattering population but became transiently stuck to Neptune’s 9:1 resonance within the last ∼1 Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000–4500 objects with H r < 8.66 this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper Belt’s dynamical history.
Curzi, Matías J; Zavala, Jorge A; Spencer, Joseph L; Seufferheld, Manfredo J
2012-01-01
Western corn rootworm (Diabrotica virgifera) (WCR) depends on the continuous availability of corn. Broad adoption of annual crop rotation between corn (Zea mays) and nonhost soybean (Glycine max) exploited WCR biology to provide excellent WCR control, but this practice dramatically reduced landscape heterogeneity in East-central Illinois and imposed intense selection pressure. This selection resulted in behavioral changes and “rotation-resistant” (RR) WCR adults. Although soybeans are well defended against Coleopteran insects by cysteine protease inhibitors, RR-WCR feed on soybean foliage and remain long enough to deposit eggs that will hatch the following spring and larvae will feed on roots of planted corn. Other than documenting changes in insect mobility and egg laying behavior, 15 years of research have failed to identify any diagnostic differences between wild-type (WT)- and RR-WCR or a mechanism that allows for prolonged RR-WCR feeding and survival in soybean fields. We documented differences in behavior, physiology, digestive protease activity (threefold to fourfold increases), and protease gene expression in the gut of RR-WCR adults. Our data suggest that higher constitutive activity levels of cathepsin L are part of the mechanism that enables populations of WCR to circumvent soybean defenses, and thus, crop rotation. These new insights into the mechanism of WCR tolerance of soybean herbivory transcend the issue of RR-WCR diagnostics and management to link changes in insect gut proteolytic activity and behavior with landscape heterogeneity. The RR-WCR illustrates how agro-ecological factors can affect the evolution of insects in human-altered ecosystems. PMID:22957201
Hosokawa, Takahiro; Nikoh, Naruo; Koga, Ryuichi; Satô, Masahiko; Tanahashi, Masahiko; Meng, Xian-Ying; Fukatsu, Takema
2012-01-01
Bat flies of the family Nycteribiidae are known for their extreme morphological and physiological traits specialized for ectoparasitic blood-feeding lifestyle on bats, including lack of wings, reduced head and eyes, adenotrophic viviparity with a highly developed uterus and milk glands, as well as association with endosymbiotic bacteria. We investigated Japanese nycteribiid bat flies representing 4 genera, 8 species and 27 populations for their bacterial endosymbionts. From all the nycteribiid species examined, a distinct clade of gammaproteobacteria was consistently detected, which was allied to endosymbionts of other insects such as Riesia spp. of primate lice and Arsenophonus spp. of diverse insects. In adult insects, the endosymbiont was localized in specific bacteriocytes in the abdomen, suggesting an intimate host–symbiont association. In adult females, the endosymbiont was also found in the cavity of milk gland tubules, which suggests uterine vertical transmission of the endosymbiont to larvae through milk gland secretion. In adult females of Penicillidia jenynsii, we discovered a previously unknown type of symbiotic organ in the Nycteribiidae: a pair of large bacteriomes located inside the swellings on the fifth abdominal ventral plate. The endosymbiont genes consistently exhibited adenine/thymine biased nucleotide compositions and accelerated rates of molecular evolution. The endosymbiont genome was estimated to be highly reduced, ∼0.76 Mb in size. The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, indicating strict vertical transmission and host–symbiont co-speciation in the evolutionary course of the Nycteribiidae. The designation ‘Candidatus Aschnera chinzeii' is proposed for the endosymbiont clade. PMID:21938025
Simola, Daniel F.; Wissler, Lothar; Donahue, Greg; Waterhouse, Robert M.; Helmkampf, Martin; Roux, Julien; Nygaard, Sanne; Glastad, Karl M.; Hagen, Darren E.; Viljakainen, Lumi; Reese, Justin T.; Hunt, Brendan G.; Graur, Dan; Elhaik, Eran; Kriventseva, Evgenia V.; Wen, Jiayu; Parker, Brian J.; Cash, Elizabeth; Privman, Eyal; Childers, Christopher P.; Muñoz-Torres, Monica C.; Boomsma, Jacobus J.; Bornberg-Bauer, Erich; Currie, Cameron R.; Elsik, Christine G.; Suen, Garret; Goodisman, Michael A.D.; Keller, Laurent; Liebig, Jürgen; Rawls, Alan; Reinberg, Danny; Smith, Chris D.; Smith, Chris R.; Tsutsui, Neil; Wurm, Yannick; Zdobnov, Evgeny M.; Berger, Shelley L.; Gadau, Jürgen
2013-01-01
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor–binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the “socio-genomes” of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations. PMID:23636946
Papanicolaou, Alexie; Schetelig, Marc F; Arensburger, Peter; Atkinson, Peter W; Benoit, Joshua B; Bourtzis, Kostas; Castañera, Pedro; Cavanaugh, John P; Chao, Hsu; Childers, Christopher; Curril, Ingrid; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Dugan, Shannon; Friedrich, Markus; Gasperi, Giuliano; Geib, Scott; Georgakilas, Georgios; Gibbs, Richard A; Giers, Sarah D; Gomulski, Ludvik M; González-Guzmán, Miguel; Guillem-Amat, Ana; Han, Yi; Hatzigeorgiou, Artemis G; Hernández-Crespo, Pedro; Hughes, Daniel S T; Jones, Jeffery W; Karagkouni, Dimitra; Koskinioti, Panagiota; Lee, Sandra L; Malacrida, Anna R; Manni, Mosè; Mathiopoulos, Kostas; Meccariello, Angela; Munoz-Torres, Monica; Murali, Shwetha C; Murphy, Terence D; Muzny, Donna M; Oberhofer, Georg; Ortego, Félix; Paraskevopoulou, Maria D; Poelchau, Monica; Qu, Jiaxin; Reczko, Martin; Robertson, Hugh M; Rosendale, Andrew J; Rosselot, Andrew E; Saccone, Giuseppe; Salvemini, Marco; Savini, Grazia; Schreiner, Patrick; Scolari, Francesca; Siciliano, Paolo; Sim, Sheina B; Tsiamis, George; Ureña, Enric; Vlachos, Ioannis S; Werren, John H; Wimmer, Ernst A; Worley, Kim C; Zacharopoulou, Antigone; Richards, Stephen; Handler, Alfred M
2016-09-22
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.
Evolution of insect wings and development - new details from Palaeozoic nymphs.
Haug, Joachim T; Haug, Carolin; Garwood, Russell J
2016-02-01
The nymphal stages of Palaeozoic insects differ significantly in morphology from those of their modern counterparts. Morphological details for some previously reported species have recently been called into question. Palaeozoic insect nymphs are important, however - their study could provide key insights into the evolution of wings, and complete metamorphosis. Here we review past work on these topics and juvenile insects in the fossil record, and then present both novel and previously described nymphs, documented using new imaging methods. Our results demonstrate that some Carboniferous nymphs - those of Palaeodictyopteroidea - possessed movable wing pads and appear to have been able to perform simple flapping flight. It remains unclear whether this feature is ancestral for Pterygota or an autapomorphy of Palaeodictyopteroidea. Further characters of nymphal development which were probably in the ground pattern of Pterygota can be reconstructed. Wing development was very gradual (archimetaboly). Wing pads did not protrude from the tergum postero-laterally as in most modern nymphs, but laterally, and had well-developed venation. The modern orientation of wing pads and the delay of wing development into later developmental stages (condensation) appears to have evolved several times independently within Pterygota: in Ephemeroptera, Odonatoptera, Eumetabola, and probably several times within Polyneoptera. Selective pressure appears to have favoured a more pronounced metamorphosis between the last nymphal and adult stage, ultimately reducing exploitation competition between the two. We caution, however, that the results presented herein remain preliminary, and the reconstructed evolutionary scenario contains gaps and uncertainties. Additional comparative data need to be collected. The present study is thus seen as a starting point for this enterprise. © 2014 Cambridge Philosophical Society.
Valero-Jiménez, Claudio A; van Kan, Jan A L; Koenraadt, Constantianus J M; Zwaan, Bas J; Schoustra, Sijmen E
2017-06-01
Entomopathogenic fungi such as Beauveria bassiana are currently considered as a potential control agent for malaria mosquitoes. The success of such strategies depends among others on the efficacy of the fungus to kill its hosts. As B. bassiana can use various resources for growth and reproduction, increasing the dependency on mosquitoes as a nutritional source may be instrumental for reaching this goal. Passage of entomopathogenic fungi through an insect host has been shown to increase its virulence. We evaluated the virulence, fungal outgrowth, mycelial growth rate, and sporulation rate of two B. bassiana isolates (Bb1520 and Bb8028) that underwent 10 consecutive selection cycles through malaria mosquitoes ( Anopheles coluzzii ) using an experimental evolution approach. This cycling resulted in an altered capacity of evolved B. Bassiana lineages to grow on different substrates while maintaining the ability to kill insects. Notably, however, there were no significant changes in virulence or speed of outgrowth when comparing the evolved lineages against their unevolved ancestors. These results suggest that fungal growth and sporulation evolved through successive and exclusive use of an insect host as a nutritional resource. We discuss the results in light of biocontrol and provide suggestions to increase fungal virulence.
Kleeberg, Isabelle
2017-01-01
Chemical communication is central for the formation and maintenance of insect societies. Generally, social insects only allow nest-mates into their colony, which are recognized by their cuticular hydrocarbons (CHCs). Social parasites, which exploit insect societies, are selected to circumvent host recognition. Here, we studied whether chemical strategies to reduce recognition evolved convergently in slavemaking ants, and whether they extend to workers, queens and males alike. We studied CHCs of three social parasites and their related hosts to investigate whether the parasitic lifestyle selects for specific chemical traits that reduce host recognition. Slavemaker profiles were characterized by shorter-chained hydrocarbons and a shift from methyl-branched alkanes to n-alkanes, presumably to reduce recognition cue quantity. These shifts were consistent across independent origins of slavery and were found in isolated ants and those emerging in their mother colony. Lifestyle influenced profiles of workers most profoundly, with little effect on virgin queen profiles. We detected an across-species caste signal, with workers, for which nest-mate recognition is particularly important, carrying more and longer-chained hydrocarbons and males exhibiting a larger fraction of n-alkanes. This comprehensive study of CHCs across castes and species reveals how lifestyle-specific selection can result in convergent evolution of chemical phenotypes. PMID:28298345
Flower evolution of alpine forbs in the open top chambers (OTCs) from the Qinghai-Tibet Plateau
Zhang, Chan; Wang, Lin-Lin; Yang, Yong-Ping; Duan, Yuan-Wen
2015-01-01
Effects of global changes on biodiversity have been paid more and more attention world widely, and the open top chambers (OTCs) are the most common tools to study the effects of climatic warming on plant diversity. However, it remains unclear how flowers evolve under environmental changes, which could help us to understand the changes of plant diversity in the OTCs. We compared the insect diversity and pollen:ovule (P/O) ratio of eight outcrossing species with different life histories inside and outside the OTCs on the Qinghai-Tibet Plateau, to examine the effects induced by OTCs on the evolution of floral traits. In the OTCs, P/O ratio decreased in annuals, but increased in perennials, indicating an overall trend toward selfing in annuals. We found that the insect diversity differed significantly inside and outside the OTCS, with decreases of dipteran insects and bees. We concluded that changes of P/O ratio in the studied plant species might result from pollination failure, which might be the results of mismatch between flowering time and pollinator activities. We also suggested annuals might be in a more extinction risk than perennials in OTCs, if strong inbreeding depression occurs in these annual outcrossing plants. PMID:25998558
Pollination systems involving floral mimicry of fruit: aspects of their ecology and evolution.
Goodrich, Katherine R; Jürgens, Andreas
2018-01-01
Floral mimicry of nonfloral resources is found across many angiosperm families, with mimicry of varied models including carrion, dung, fungi, insects and fruit. These systems provide excellent models to investigate the role of visual and olfactory cues for the ecology and evolution of plant-animal interactions. Interestingly, floral mimicry of fruit is least documented in the literature, although ripe or rotting fruits play an important role as a food or brood site in many insect groups such as Diptera, Hymenoptera and Coleoptera, and frugivorous vertebrates such as bats and birds. In ecosystems where fruit represents a frequent, reliable resource (e.g. tropical forests), this form of floral mimicry could represent a common mimicry class with specialization possible along multiple axes such as fruit of different species, stages of ripeness and microbial colonization. In this review, we summarize current research on floral mimicry of fruit. We place this review in the context of floral mimicry of a broader spectrum of nonfloral resources, and we discuss conceptual frameworks of mimicry vs generalized food deception or pre-existing sensory bias. Finally, we briefly review the specificity and complexity of fruit-insect ecological interactions, and we summarize important considerations and questions for moving forward in this field. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Shin, Sung Joon; Lee, Ji-Ho; Lee, Jae Hyup
2017-07-01
A prospective, within-patient, left-right comparative study. To evaluate the efficacy of hydroxyapatite (HA) stick augmentation method by comparing the insertional torque of the pedicle screw in osteoporotic and nonosteoporotic patients. Unsatisfactory clinical outcomes after spine surgery in osteoporotic patients are related to pedicle screw loosening or pull-outs. HA, as a bone graft extender, has a possibility to enhance the fixation strength at the bone-screw interface. From November 2009 to December 2010, among patients who required bilateral pedicle screw fixation for lumbar spine surgery, 22 patients were enrolled, who recieved unilateral HA stick augmentation and completed intraoperative insertional torque measurement of each pedicle screws. On the basis of preoperative evaluation of bone mineral density, patients with osteoporosis had 2 HA sticks inserted unilaterally, and 1 stick for patients without osteoporosis. Pedicle screw loosening and pull-outs were assessed using 12-month postoperative CT scans and follow-up radiographs. Clinical evaluation was done preoperatively and at 1 year postoperatively, based on Visual Analog Scale score, Oswestry Disability Index, and Short Form-36 Health Survey. Regardless of bone mineral density, the average torque value of all pedicle screws with HA stick insertion (HA stick inserted group) was significantly higher than that of all pedicle screws without HA insertion (control group) (P<0.0001). Same results were seen in the HA stick inserted subgroups and the control subgroups within both of the osteoporosis group (P=0.009) and the nonosteoporosis group (P=0.0004). There was no statistically significant difference of the rate of pedicle screw loosening in between the HA stick inserted group and the control group. Clinical evaluation also showed no statistically significant difference in between patients with loosening and those without. The enhancement of initial pedicle screw fixation strength in osteoporotic patients can be achieved by HA stick augmentation.
Characterization of cosmetic sticks at Xiaohe Cemetery in early Bronze Age Xinjiang, China
NASA Astrophysics Data System (ADS)
Mai, Huijuan; Yang, Yimin; Abuduresule, Idelisi; Li, Wenying; Hu, Xingjun; Wang, Changsui
2016-01-01
Cosmetics have been studied for a long time in the society and culture research, and its consumption is regarded as a cultural symbol of human society. This paper focuses on the analysis of the red cosmetic sticks, found in Xiaohe Cemetery (1980-1450BC), Xinjiang, China. The structure of the red cosmetic sticks was disclosed by SR-μCT scanning (Synchrotron Radiation Micro-computed Tomography), while the chemical components were characterized by FTIR (Fourier Transform Infrared Spectroscopy), Raman Spectroscopy and Proteomics. The results suggested that the cosmetic sticks were made from the cattle heart and covered with a layer of hematite powders as the pigment. Given the numerous red painted relics in Xiaohe Cemetery, this kind of cosmetic sticks might be used as a primitive form of crayon for makeup and painting. The usage of cattle hearts as cosmetic sticks is firstly reported up to our knowledge, which not only reveals the varied utilizations of cattle in Xiaohe Cemetery but also shows the distinctive religious function. Furthermore, these red cosmetic sticks were usually buried with women, implying that the woman may be the painter and play a special role in religious activities.
Stick balancing, falls and Dragon-Kings
NASA Astrophysics Data System (ADS)
Cabrera, J. L.; Milton, J. G.
2012-05-01
The extent to which the occurrence of falls, the dominant feature of human attempts to balance a stick at their fingertip, can be predicted is examined in the context of the "Dragon-King" hypothesis. For skilled stick balancers, fluctuations in the controlled variable, namely the vertical displacement angle θ, exhibit power law behaviors. When stick balancing is made less stable by either decreasing the length of the stick or by requiring the subject to balance the stick on the surface of a table tennis racket, systematic departures from the power law behaviors are observed in the range of large θ. This observation raises the possibility that the presence of departures from the power law in the large length scale region, possibly Dragon-Kings, may identify situations in which the occurrence of a fall is more imminent. However, whether or not Dragon-Kings are observed, there is a Weibull-type survival function for stick falling. The possibility that increased risk of falling can, at least to some extent, be predicted from fluctuations in the controlled variable before the event occurs has important implications for the development of preventative strategies for the management of phenomena ranging from earthquakes to epileptic seizures to falls in the elderly.
Characterization of cosmetic sticks at Xiaohe Cemetery in early Bronze Age Xinjiang, China
Mai, Huijuan; Yang, Yimin; Abuduresule, Idelisi; Li, Wenying; Hu, Xingjun; Wang, Changsui
2016-01-01
Cosmetics have been studied for a long time in the society and culture research, and its consumption is regarded as a cultural symbol of human society. This paper focuses on the analysis of the red cosmetic sticks, found in Xiaohe Cemetery (1980–1450BC), Xinjiang, China. The structure of the red cosmetic sticks was disclosed by SR-μCT scanning (Synchrotron Radiation Micro-computed Tomography), while the chemical components were characterized by FTIR (Fourier Transform Infrared Spectroscopy), Raman Spectroscopy and Proteomics. The results suggested that the cosmetic sticks were made from the cattle heart and covered with a layer of hematite powders as the pigment. Given the numerous red painted relics in Xiaohe Cemetery, this kind of cosmetic sticks might be used as a primitive form of crayon for makeup and painting. The usage of cattle hearts as cosmetic sticks is firstly reported up to our knowledge, which not only reveals the varied utilizations of cattle in Xiaohe Cemetery but also shows the distinctive religious function. Furthermore, these red cosmetic sticks were usually buried with women, implying that the woman may be the painter and play a special role in religious activities. PMID:26820435
Characterization of cosmetic sticks at Xiaohe Cemetery in early Bronze Age Xinjiang, China.
Mai, Huijuan; Yang, Yimin; Abuduresule, Idelisi; Li, Wenying; Hu, Xingjun; Wang, Changsui
2016-01-28
Cosmetics have been studied for a long time in the society and culture research, and its consumption is regarded as a cultural symbol of human society. This paper focuses on the analysis of the red cosmetic sticks, found in Xiaohe Cemetery (1980-1450BC), Xinjiang, China. The structure of the red cosmetic sticks was disclosed by SR-μCT scanning (Synchrotron Radiation Micro-computed Tomography), while the chemical components were characterized by FTIR (Fourier Transform Infrared Spectroscopy), Raman Spectroscopy and Proteomics. The results suggested that the cosmetic sticks were made from the cattle heart and covered with a layer of hematite powders as the pigment. Given the numerous red painted relics in Xiaohe Cemetery, this kind of cosmetic sticks might be used as a primitive form of crayon for makeup and painting. The usage of cattle hearts as cosmetic sticks is firstly reported up to our knowledge, which not only reveals the varied utilizations of cattle in Xiaohe Cemetery but also shows the distinctive religious function. Furthermore, these red cosmetic sticks were usually buried with women, implying that the woman may be the painter and play a special role in religious activities.
Pincebourde, Sylvain; Casas, Jérôme
2016-01-01
Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors the evolution of cold-tolerant gallers, which do not perform well at high temperatures, and (ii) normoxia (ambient O2 level) in mines allows miners to develop at high temperatures. Little is known, however, about physiological and morphological adaptations to hypoxia and hypercarbia in endophagous insects. Endophagy strongly constrains the diffusion processes with cascading consequences on the evolutionary ecology of endophagous insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Insect flight on fluid interfaces: a chaotic interfacial oscillator
NASA Astrophysics Data System (ADS)
Mukundarajan, Haripriya; Prakash, Manu
2013-11-01
Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.
Ahn, Tae-Ho; Kim, Hong-gi; Ryou, Jae-Suk
2016-01-01
This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency. PMID:28773776
Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi.
Mondo, Stephen J; Salvioli, Alessandra; Bonfante, Paola; Morton, Joseph B; Pawlowska, Teresa E
2016-09-01
Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 × 10(-9) substitutions per site per year and effective population size at 1.44 × 10(8) Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide dN/dS values and distribution patterns. We found that these dN/dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Convergent bacterial microbiotas in the fungal agricultural systems of insects.
Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R
2014-11-18
The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota. Copyright © 2014 Aylward et al.
Anatomy of an adaptive radiation: Blepharoneura fruit flies
USDA-ARS?s Scientific Manuscript database
Insect herbivores have often been linked to the ecological theory of adaptive radiation, which postulates that divergent selection on phenotypes in different habitats or environments results in the evolution of reproductive barriers between populations and subsequent speciation. An expected result o...
Sanjuan, Tatiana; Tabima, Javier; Restrepo, Silvia; Læssøe, Thomas; Spatafora, Joseph W; Franco-Molano, Ana Esperanza
2014-01-01
In the Amazon the only described species of Cordyceps sensu stricto (Hypocreales, Cordycipitaceae) that parasitize insects of Orthopterida (orders Orthoptera and Phasmida) are Cordyceps locustiphila and C. uleana. However, the type specimens for both taxa have been lost and the concepts of these species are uncertain. To achieve a more comprehensive understanding of the systematics of these species, collections of Cordyceps from the Amazon regions of Colombia, Ecuador and Guyana were subjected to morphological, ecological and molecular phylogenetic studies. Phylogenetic analyses were conducted on partial sequences of SSU, LSU, TEF, RPB1 and RPB2 nuclear loci. Two new species are proposed including C. diapheromeriphila, a parasite of Phasmida, and C. acridophila, a parasite of the superfamily Acridomorpha (Orthoptera), which is broadly distributed across the Amazon. For C. locustiphila a lectotypification and an epitypification are made. Cordyceps locustiphila is host specific with Colpolopha (Acridomorpha: Romaleidae), and its distribution coincides with that of its host. The phylogenetic placement of these three species was resolved with strong support in the Beauveria clade of Cordyceps s. str. (Cordycipitaceae). This relationship and the morphological similarity of their yellow stromata with known teleomorphs of the clade, suggest that the holomorphs of these species may include Beauveria or Beauveria-like anamorphs. The varying host specificity of the beauverioid Cordyceps species suggest the potential importance of identifying the natural host taxon before future consideration of strains for use in biological control of pest locusts.
Fusion characteristics of volcanic ash relevant to aviation hazards
NASA Astrophysics Data System (ADS)
Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.
2014-04-01
The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.
Control at stability's edge minimizes energetic costs: expert stick balancing
Meyer, Ryan; Zhvanetsky, Max; Ridge, Sarah; Insperger, Tamás
2016-01-01
Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a ° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum–cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures. PMID:27278361
Incentivizing wellness in the workplace: sticks (not carrots) send stigmatizing signals.
Tannenbaum, David; Valasek, Chad J; Knowles, Eric D; Ditto, Peter H
2013-08-01
Companies often provide incentives for employees to maintain healthy lifestyles. These incentives can take the form of either discounted premiums for healthy-weight employees ("carrot" policies) or increased premiums for overweight employees ("stick" policies). In the three studies reported here, we demonstrated that even when stick and carrot policies are formally equivalent, they do not necessarily convey the same information to employees. Stick but not carrot policies were viewed as reflecting negative company attitudes toward overweight employees (Study 1a) and were evaluated especially negatively by overweight participants (Study 1b). This was true even when overweight employees paid less money under the stick than under the carrot policy. When acting as policymakers (Study 2), participants with high levels of implicit overweight bias were especially likely to choose stick policies-often on the grounds that such policies were cost-effective-even when doing so was more costly to the company. Policymakers should realize that the framing of incentive programs can convey tacit, and sometimes stigmatizing, messages.
Transport of Escherichia coli in 25 m quartz sand columns
NASA Astrophysics Data System (ADS)
Lutterodt, G.; Foppen, J. W. A.; Maksoud, A.; Uhlenbrook, S.
2011-01-01
To help improve the prediction of bacteria travel distances in aquifers laboratory experiments were conducted to measure the distant dependent sticking efficiencies of two low attaching Escherichia coli strains (UCFL-94 and UCFL-131). The experimental set up consisted of a 25 m long helical column with a diameter of 3.2 cm packed with 99.1% pure-quartz sand saturated with a solution of magnesium sulfate and calcium chloride. Bacteria mass breakthrough at sampling distances ranging from 6 to 25.65 m were observed to quantify bacteria attachment over total transport distances ( αL) and sticking efficiencies at large intra-column segments ( αi) (> 5 m). Fractions of cells retained ( Fi) in a column segment as a function of αi were fitted with a power-law distribution from which the minimum sticking efficiency defined as the sticking efficiency of 0.001% bacteria fraction of the total input mass retained that results in a 5 log removal were extrapolated. Low values of αL in the order 10 - 4 and 10 - 3 were obtained for UCFL-94 and UCFL-131 respectively, while αi-values ranged between 10 - 6 to 10 - 3 for UCFL-94 and 10 - 5 to 10 - 4 for UCFL-131. In addition, both αL and αi reduced with increasing transport distance, and high coefficients of determination (0.99) were obtained for power-law distributions of αi for the two strains. Minimum sticking efficiencies extrapolated were 10 - 7 and 10 - 8 for UCFL-94 and UCFL-131, respectively. Fractions of cells exiting the column were 0.19 and 0.87 for UCFL-94 and UCL-131, respectively. We concluded that environmentally realistic sticking efficiency values in the order of 10 - 4 and 10 - 3 and much lower sticking efficiencies in the order 10 - 5 are measurable in the laboratory, Also power-law distributions in sticking efficiencies commonly observed for limited intra-column distances (< 2 m) are applicable at large transport distances(> 6 m) in columns packed with quartz grains. High fractions of bacteria populations may possess the so-called minimum sticking efficiency, thus expressing their ability to be transported over distances longer than what might be predicted using measured sticking efficiencies from experiments with both short (< 1 m) and long columns (> 25 m). Also variable values of sticking efficiencies within and among the strains show heterogeneities possibly due to variations in cell surface characteristics of the strains. The low sticking efficiency values measured express the importance of the long columns used in the experiments and the lower values of extrapolated minimum sticking efficiencies makes the method a valuable tool in delineating protection areas in real-world scenarios.
[Main evolution lines of plant parasitic nematodes of the order Aphelenchida siddiqi, 1980].
Ryss, A Iu
2007-01-01
Phylogenic models for each aphelenchid family and phylogeny of the order Aphelenchida as a whole were developed on the base of detailed comparative morphological and bionomical analysis of the order. Bionomical and morphological characters having a phylogenetic significance were selected. Classification proposed by Hunt, 1993 was used as the starting-point of the study. Life cycles and their evolution in Aphelenchida were analyzed on the base of phylogenetic trees. It is concluded, that aphelenchid ancestors combined mycophagy, plant parasitic, and partly predaceous feeding. Relations of the primitive Aphelenchida with their symbionts developed from the spots of the fungal organic matter decomposition in the "nema- tode-fungi" associations, followed by a transition to the temporary endoparasitic habit omitting ectoparasitism. With a complication of the nematodes' life cycles, the insect vector (detritophagous or pollinator) transformed into the real insect host of the parasitic nematode in the 2-host life cycle (with the plant and insect hosts) or in the obligate 1-host entomoparasitic life cycle of the aphelenchid nematodes. Specialization of the aphelenchid life cycles to insect vectors followed two main ways. In the first way, the resistant to unfavorable environmental conditions nematode juveniles, known already for the primitive aphelenchids transformed into dispersal juveniles, and later into parasitic juveniles. In the second evolution line the dispersal function were laid on inseminated but non-gravid (not egg-producing) females. Both above-mentioned trends of parasitic specialization were arisen independently in different phylogenetic lines of the Aphelenchida. In each line of the parasitic development in different nematode families, the highly specialized ectoparasites, as well as endoparasites on insects, were formed. In the evolution of life cycle of parasitic nematodes, a tendency to decrease the body size took place. The function of dispersion shifted to more junior juvenile stage (the first line of specialization), or body sizes of non-gravid females and males copulated with the latter become smaller (second specialization line, till the development of dwarf males and location of the males and small inseminated non-gravid females in the uterus of gravid nematode female). The hypothetic fundamental model of the parasitic cycles' specialization in the order Aphelenchida was developed, basing on the comparison of known life cycles in different phylogenetic lines within aphelenchid families. The conception of the geographic origin and historic dispersal of the order Aphelenchida was proposed. The origin of the superfamily Aphelenchoidoidea and order Aphelenchida as a whole probably took place in eastern areas of Gondwana (parts of which are recently Hindustan, Indo-Malaya, Australia and Antarctica), presumably in the Devonian period. When the Gondwana and Laurasia paleocontinents were joined into Pangea in Carbon period, aphelenchids dispersed in the Laurasian part of Pangea. Endemism of the advanced entomophilic ectoparasitic Acugutturidae indicates on the secondary hotbed of speciation in Caribbean area. Development of the anhydrobiotic adaptations in the Aphelenchida promoted their successful invasion in the cold regions of Holarctic. Another important adaptations was the transformation of the initially resistant nematode life cycle phase into the dispersal phases vectored by insects.
De Zaeytijd, Jeroen; Van Damme, Els J. M.
2017-01-01
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper. PMID:28353660
Aardema, Matthew L; Andolfatto, Peter
2016-08-01
Many distantly related insect species are specialized feeders of cardenolide-containing host plants such as milkweed (Asclepias spp.). Previous studies have revealed frequent, parallel substitution of a functionally important amino acid substitution (N122H) in the alpha subunit of Na(+) ,K(+) -ATPase in a number of these species. This substitution facilitates the ability of these insects to feed on their toxic hosts and sequester cardenolides for their own use in defense. Among milkweed butterflies of the genus Danaus, the previously established phylogeny for this group suggests that N122H arose independently and fixed in two distinct lineages. We reevaluate this conclusion by examining Danaus phylogenetic relationships using >400 orthologous gene sequences assembled from transcriptome data. Our results indicate that the three Danaus species known to harbor the N122H substitution are more closely related than previously thought, consistent with a single, common origin for N122H. However, we also find evidence of both incomplete lineage sorting and post-speciation genetic exchange among these butterfly species, raising the possibility of collateral evolution of cardenolide-insensitivity in this species group. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments
NASA Astrophysics Data System (ADS)
Hermsen, Rutger; Hwa, Terence
2010-12-01
We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.
Five rules for the evolution of cooperation
Nowak, Martin A.
2011-01-01
Cooperation is needed for evolution to construct new levels of organization. The emergence of genomes, cells, multi-cellular organisms, social insects and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity and group selection. For each mechanism, a simple rule is derived which specifies whether natural selection can lead to cooperation. PMID:17158317
Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects.
de Jager, Marinus L; Ellis, Allan G
2014-01-01
Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism. The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years. Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph. The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is potentially determined by insect community composition and abundance at each site, highlighting the importance of community context in the evolution of floral phenotypes.
Molecular Evolution of Ultraspiracle Protein (USP/RXR) in Insects
Hult, Ekaterina F.; Tobe, Stephen S.; Chang, Belinda S. W.
2011-01-01
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d N/d S), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d S is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand. PMID:21901121
Strauß, Johannes; Stritih, Nataša
2017-01-01
Animals' adaptations to cave habitats generally include elaboration of extraoptic senses, and in insects the receptor structures located on the legs are supposed to become more prominent in response to constant darkness. The receptors for detecting substrate vibrations are often highly sensitive scolopidial sensilla localized within the legs or the body. For troglobitic insects the evolutionary changes in vibroreceptor organs have not been studied. Since rock is an extremely unfavorable medium for vibration transmission, selection on vibration receptors may be weakened in caves, and these sensory organs may undergo regressive evolution. We investigated the anatomy of the most elaborate internal vibration detection system in orthopteroid insects, the scolopidial subgenual organ complex in the cave cricket Dolichopoda araneiformis (Orthoptera: Ensifera: Rhaphidophoridae). This is a suitable model species which shows high levels of adaptation to cave life in terms of both phenotypic and life cycle characteristics. We compared our data with data on the anatomy and physiology of the subgenual organ complex from the related troglophilic species Troglophilus neglectus. In D. araneiformis, the subgenual organ complex contains three scolopidial organs: the subgenual organ, the intermediate organ, and the accessory organ. The presence of individual organs and their innervation pattern are identical to those found in T. neglectus, while the subgenual organ and the accessory organ of D. araneiformis contain about 50% fewer scolopidial sensilla than in T. neglectus. This suggests neuronal regression of these organs in D. araneiformis, which may reflect a relaxed selection pressure for vibration detection in caves. At the same time, a high level of overall neuroanatomical conservation of the intermediate organ in this species suggests persistence of the selection pressure maintaining this particular organ. While regressive evolution of chordotonal organs has been documented for insect auditory organs, this study shows for the first time that internal vibroreceptors can also be affected. © 2017 S. Karger AG, Basel.
He, Jing-song; Yang, Qing; Huang, Wei-jia; Hu, Xiao-rong
2014-04-01
To evaluate the effect of moxa-stick suffumigation in the hematology and hematopoietic stem cell transplantation (HSCT) wards with luminar flow. The plate exposure method was used to measure the effect of air-disinfection of moxa-stick suffumigation in hematology and HSCT wards. The yearly average qualified rates of air sampling in HSCT wards were evaluated from 2007 to 2010. To further investigate the disinfecting effect of moxa-stick suffumigation, the colony counts of common pathogens (including Staphylcoccus aureus and Pseudomonas aeruginosa) before and after moxa-stick suffumigation were compared. The mean air quality rates of the HSCT wards with class 100 laminar flow were all above 90.0% (91.2%-96.2%) from 2007 to 2010. Moxa-stick suffumigation effectively decreased the presence of bacteria in the hematology ward's air (P<0.01). The most notable effect was the drastic reduction in the colony counts of Staphylococcus aureus and Pseudomonas aeruginosa on the blood plates exposed to air treated with moxa-stick suffumigation (77.1±52.9 cfu/m(2) vs 196.1±87.5 cfu/m(2), P<0.01; and 100.2±35.3 cfu/m(2) vs 371.5±35.3 cfu/m(2), P<0.01). Moxa-stick suffumigation proved to be a reliable and effective airdisinfection method for hematology and HSCT wards, and hence, it should be employed extensively.
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.
2016-11-01
Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.
Brochosomes protect leafhoppers (Insecta, Hemiptera, Cicadellidae) from sticky exudates
Rakitov, Roman; Gorb, Stanislav N.
2013-01-01
Leafhoppers (Insecta, Hemiptera, Cicadellidae) actively coat their integuments with buckyball-shaped submicron proteinaceous secretory particles, called brochosomes. Here, we demonstrate that brochosomal coats, recently shown to be superhydrophobic, act as non-stick coatings and protect leafhoppers from contamination with their own sticky exudates—filtered plant sap. We exposed 137 wings of Alnetoidia alneti (Dahlbom), from half of which brochosomes were removed, to the rain of exudates under a colony of live A. alneti. One hundred and fifty-two droplets became stuck to the bared wings and only three to the intact wings. Inspection of the wings with a scanning electron microscope confirmed that the droplets that had hit the intact wings had rolled or bounced off the brochosomal coats. This is the first experimental study that tested a biological function of the brochosomal coats of leafhopper integuments. We argue that the production of brochosomes in leafhoppers and production of epidermal wax blooms in other sap-sucking hemipterans are alternative solutions, both serving to protect these insects from entrapment by their exudates. PMID:23904586
Use of biomimetic hexagonal surface texture in friction against lubricated skin.
Tsipenyuk, Alexey; Varenberg, Michael
2014-05-06
Smooth contact pads that evolved in insects, amphibians and mammals to enhance the attachment abilities of the animals' feet are often dressed with surface micropatterns of different shapes that act in the presence of a fluid secretion. One of the most striking surface patterns observed in contact pads of these animals is based on a hexagonal texture, which is recognized as a friction-oriented feature capable of suppressing both stick-slip and hydroplaning while enabling friction tuning. Here, we compare this design of natural friction surfaces to textures developed for working in similar conditions in disposable safety razors. When slid against lubricated human skin, the hexagonal surface texture is capable of generating about twice the friction of its technical competitors, which is related to it being much more effective at channelling of the lubricant fluid out of the contact zone. The draining channel shape and contact area fraction are found to be the most important geometrical parameters governing the fluid drainage rate.
Improving Classroom Behavior: The Carrot and the Stick.
ERIC Educational Resources Information Center
Talent, Barbara K.; Busch, Suzanne G.
A set of practical behavior change techniques for improving young children's classroom behavior are briefly discussed. Techniques are classified and discussed under two general categories: those that reduce frequency of behaviors ("sticks") and those that increase their frequency ("carrots"). Included under "sticks" are techniques such as ignoring…
Convergent evolution of complex brains and high intelligence
Roth, Gerhard
2015-01-01
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042
Insect-specific viruses and their potential impact on arbovirus transmission.
Vasilakis, Nikos; Tesh, Robert B
2015-12-01
Arthropod-borne viruses (arboviruses) are the causative agents of significant morbidity and mortality among humans and animals globally. In the past few years, the widespread adoption of next generation sequencing and metagenomics has led to a new era of virus discovery, where many novel viruses have been documented, exhibiting a restricted host-range in mosquitoes. They represent a wide-range of insect-specific viruses within the families of Bunyaviridae, Flaviviridae, Mesoniviridae, Reoviridae, Rhabdoviridae, Togaviridae, and the newly recognized taxon of Negeviruses. Collectively, their discovery has opened new vistas about the extent of viral diversity and evolution, their influence on vector competence and ability of their insect hosts to transmit human pathogens (e.g. arboviruses), and their potential development as biological control agents or novel vaccine platforms. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Li, De-E.; Hong, You-Li; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia; Gao, Kun; Zhou, Hong-Zhang; Wu, Zi-Yu
2013-07-01
A penetrating view of the three-dimensional nanostructure of female spermatheca and male flagellum in the species Aleochara verna is obtained with 100-nm resolution using a hard X-ray microscope, which provides a fast noninvasive imaging technology for insect morphology. Through introducing Zernike phase contrast and heavy metal staining, images taken at 8 keV displayed sufficient contrast for observing nanoscale fine structures, such as the spermatheca cochleate duct and the subapex of the flagellum, which have some implications for the study of the sperm transfer process and genital evolution in insects. This work shows that both the spatial resolution and the contrast characteristic of hard X-ray microscopy are quite promising for insect morphology studies and, particularly, provide an attractive alternative to the destructive techniques used for investigating internal soft tissues.
Genetic diversity promotes homeostasis in insect colonies.
Oldroyd, Benjamin P; Fewell, Jennifer H
2007-08-01
Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.
2008-01-01
and insect- pollinated plants in Britain and the Netherlands . Science , 313 , 351 – 354 . Belkin , J.N . ( 1962 ) The Mosquitoes of the South...monitoring of biodiversity change . Trends in Ecology and Evolution , 21 , 123 – 129 . Qu , F.-Y. & Qian , G.-Z. ( 1989 ) Faunistic...Trends in Ecology and Evolution , 18 , 306 – 314 . Weir , J.T. & Schluter , D . ( 2007 ) The latitudinal gradient in recent spe- ciation and
A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing
Ache, Jan M.; Dürr, Volker
2015-01-01
Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs ‘coding-space’ because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility of the framework for modelling a complete descending neural pathway. PMID:26158851
Heers, Ashley M; Dial, Kenneth P
2015-02-01
Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton
USDA-ARS?s Scientific Manuscript database
Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing tw...
Social Evolution: Uneasy Lies the Head.
Bourke, Andrew F G
2015-11-16
Inclusive fitness theory explains why workers in insect societies sometimes kill their queen. As the theory predicts, workers in a wasp species are more likely to act matricidally when more highly related to potential worker offspring. Copyright © 2015 Elsevier Ltd. All rights reserved.
THE EVOLUTION OF RESISTANCE TO PLANT INCORPORATED PROTECTANTS BY TARGETED INSECT PESTS
Genetically modified (GM) crops, also known as transgenic crops, offer potential economic, environmental, and human health benefits. Balanced against these potential benefits are several possible liabilities, one of which is environmental harm. The EPA must fulfill its mandate to...
Note: Versatile sample stick for neutron scattering experiments in high electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne
2014-02-15
We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.
Vail, III, William Banning; Momii, Steven Thomas
1998-01-01
Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the "slip" portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical "station-to-station logging tool" may be modified to be a "continuous logging tool", where "continuous" means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool.
Vail, W.B. III; Momii, S.T.
1998-02-10
Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the ``slip`` portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical ``station-to-station logging tool`` may be modified to be a ``continuous logging tool,`` where ``continuous`` means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool. 12 figs.
NASA Astrophysics Data System (ADS)
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Mostafa, M. G.; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip
2017-01-01
Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability. PMID:28961203
A novel tool for the prediction of tablet sticking during high speed compaction.
Abdel-Hamid, Sameh; Betz, Gabriele
2012-01-01
During tableting, capping is a problem of cohesion while sticking is a problem of adhesion. Sticking is a multi-composite problem; causes are either material or machine related. Nowadays, detecting such a problem is a pre-requisite in the early stages of development. The aim of our study was to investigate sticking by radial die-wall pressure monitoring guided by compaction simulation. This was done by using the highly sticking drug; Mefenamic acid (MA) at different drug loadings with different fillers compacted at different pressures and speeds. By increasing MA loading, we found that viscoelastic fillers showed high residual radial pressure after compaction while plastic/brittle fillers showed high radial pressure during compaction, p < 0.05. Visually, plastic/brittle fillers showed greater tendencies for adhesion to punches than viscoelastic fillers while the later showed higher tendencies for adhesion to the die-wall. This was confirmed by higher values of axial stress transmission for plastic/brittle than viscoelastic fillers (higher punch surface/powder interaction), and higher residual die-wall and ejection forces for viscoelastic than plastic/brittle fillers, p < 0.05. Take-off force was not a useful tool to estimate sticking due to cohesive failure of the compacts. Radial die-wall pressure monitoring is suggested as a robust tool to predict sticking.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-19
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-01-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908
Kompf, Justin; Arandjelović, Ognjen
2017-04-01
Since it was first observed, and especially so in recent years, the phenomenon of the so-called "sticking point" in resistance training has attracted a substantial amount of sports and exercise science research. Broadly speaking, the sticking point is understood as the position in the range of motion of a lift at which a disproportionately large increase in the difficulty associated with continuing the lift is experienced. Hence the sticking point is inherently the performance bottleneck, and is also associated with an increased chance of exercise form deterioration or breakdown. Understanding the aspects of lifting performance which should be analysed in order to pinpoint the cause of a specific sticking point and therefore devise an effective training strategy to overcome it is of pervasive importance to strength practitioners, and is conducive to injury avoidance and continued progress. In this paper, we survey a range of physiological and biomechanical mechanisms which contribute to the development of sticking points, and then, led by this insight, review and analyse the findings of the existing observational research on the occurrence of sticking points in three ubiquitous exercises: the bench press, the squat, and the deadlift. The findings of our analysis should be used to inform future research and current resistance training practice.
Radiative corrections to quantum sticking on graphene
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Clougherty, Dennis P.
2017-07-01
We study the sticking rate of atomic hydrogen to suspended graphene using four different methods that include contributions from processes with multiphonon emission. We compare the numerical results of the sticking rate obtained by: (i) the loop expansion of the atom self-energy; (ii) the noncrossing approximation (NCA); (iii) the independent boson model approximation (IBMA); and (iv) a leading-order soft-phonon resummation method (SPR). The loop expansion reveals an infrared problem, analogous to the infamous infrared problem in QED. The two-loop contribution to the sticking rate gives a result that tends to diverge for large membranes. The latter three methods remedy this infrared problem and give results that are finite in the limit of an infinite membrane. We find that for micromembranes (sizes ranging 100 nm to 10 μ m ), the latter three methods give results that are in good agreement with each other and yield sticking rates that are mildly suppressed relative to the lowest-order golden rule rate. Lastly, we find that the SPR sticking rate decreases slowly to zero with increasing membrane size, while both the NCA and IBMA rates tend to a nonzero constant in this limit. Thus, approximations to the sticking rate can be sensitive to the effects of soft-phonon emission for large membranes.
NASA Astrophysics Data System (ADS)
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
NASA Astrophysics Data System (ADS)
Mittal, Rajni; Jain, Deepika; Sharma, Manoj K.
2017-12-01
The dynamical cluster decay model (DCM) is employed to explore the relative effect of sticking (IS) and non-sticking (INS) limits of moment of inertia (MOI) in the decay of hot and rotating 214,216Rn* compound nuclei, formed in 16,18O + 198Pt reactions. Beside this, the nuclear deformation effects i.e. quadrupole β2 (static and dynamic) and higher order static deformations up to hexadecapole (β4) are duly incorporated and studied within DCM. The influence of both 'INS/IS' addressing rotational energy component and 'deformations' is gauged through the barrier characteristics, preformation factor and barrier lowering effects. The experimentally given ER and ff data is addressed by optimizing the neck-length ΔR, that strongly depends on the limiting angular momentum, which in turn depends on the sticking or non-sticking limits of interaction. In addition to this, the influence of increase in energy and neutron number is probed in reference to ER survival probability of Rn compound nucleus. Finally, the ff cross-sections of 214,216Rn* nuclei are predicted within sticking limit of moment of inertia as the same seems to be more suitable for such decay paths.
Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.
Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B
2016-12-01
A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.
Lovett, Brian; St Leger, Raymond J
2017-03-01
Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as Metarhizium spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.
Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes.
Kilner, Rebecca M; Langmore, Naomi E
2011-11-01
Avian parents and social insect colonies are victimized by interspecific brood parasites-cheats that procure costly care for their dependent offspring by leaving them in another species' nursery. Birds and insects defend themselves from attack by brood parasites; their defences in turn select counter-strategies in the parasite, thus setting in motion antagonistic co-evolution between the two parties. Despite their considerable taxonomic disparity, here we show striking parallels in the way that co-evolution between brood parasites and their hosts proceeds in insects and birds. First, we identify five types of co-evolutionary arms race from the empirical literature, which are common to both systems. These are: (a) directional co-evolution of weaponry and armoury; (b) furtiveness in the parasite countered by strategies in the host to expose the parasite; (c) specialist parasites mimicking hosts who escape by diversifying their genetic signatures; (d) generalist parasites mimicking hosts who escape by favouring signatures that force specialization in the parasite; and (e) parasites using crypsis to evade recognition by hosts who then simplify their signatures to make the parasite more detectable. Arms races a and c are well characterized in the theoretical literature on co-evolution, but the other types have received little or no formal theoretical attention. Empirical work suggests that hosts are doomed to lose arms races b and e to the parasite, in the sense that parasites typically evade host defences and successfully parasitize the nest. Nevertheless hosts may win when the co-evolutionary trajectory follows arms race a, c or d. Next, we show that there are four common outcomes of the co-evolutionary arms race for hosts. These are: (1) successful resistance; (2) the evolution of defence portfolios (or multiple lines of resistance); (3) acceptance of the parasite; and (4) tolerance of the parasite. The particular outcome is not determined by the type of preceding arms race but depends more on whether hosts or parasites control the co-evolutionary trajectory: tolerance is an outcome that parasites inflict on hosts, whereas the other three outcomes are more dependent on properties intrinsic to the host species. Finally, our review highlights considerable interspecific variation in the complexity and depth of host defence portfolios. Whether this variation is adaptive or merely reflects evolutionary lag is unclear. We propose an adaptive explanation, which centres on the relative strength of two opposing processes: strategy-facilitation, in which one line of host defence promotes the evolution of another form of resistance, and strategy-blocking, in which one line of defence may relax selection on another so completely that it causes it to decay. We suggest that when strategy-facilitation outweighs strategy-blocking, hosts will possess complex defence portfolios and we identify selective conditions in which this is likely to be the case. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
More than two decades of research on insect neuropeptide GPCRs: an overview
Caers, Jelle; Verlinden, Heleen; Zels, Sven; Vandersmissen, Hans Peter; Vuerinckx, Kristel; Schoofs, Liliane
2012-01-01
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years. PMID:23226142
Rubin, Elad B; Shemesh, Yair; Cohen, Mira; Elgavish, Sharona; Robertson, Hugh M; Bloch, Guy
2006-11-01
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Changes in base composition bias of nuclear and mitochondrial genes in lice (Insecta: Psocodea).
Yoshizawa, Kazunori; Johnson, Kevin P
2013-12-01
While it is well known that changes in the general processes of molecular evolution have occurred on a variety of timescales, the mechanisms underlying these changes are less well understood. Parasitic lice ("Phthiraptera") and their close relatives (infraorder Nanopsocetae of the insect order Psocodea) are a group of insects well known for their unusual features of molecular evolution. We examined changes in base composition across parasitic lice and bark lice. We identified substantial differences in percent GC content between the clade comprising parasitic lice plus closely related bark lice (=Nanopsocetae) versus all other bark lice. These changes occurred for both nuclear and mitochondrial protein coding and ribosomal RNA genes, often in the same direction. To evaluate whether correlations in base composition change also occurred within lineages, we used phylogenetically controlled comparisons, and in this case few significant correlations were identified. Examining more constrained sites (first/second codon positions and rRNA) revealed that, in comparison to the other bark lice, the GC content of parasitic lice and close relatives tended towards 50 % either up from less than 50 % GC or down from greater than 50 % GC. In contrast, less constrained sites (third codon positions) in both nuclear and mitochondrial genes showed less of a consistent change of base composition in parasitic lice and very close relatives. We conclude that relaxed selection on this group of insects is a potential explanation of the change in base composition for both mitochondrial and nuclear genes, which could lead to nucleotide frequencies closer to random expectation (i.e., 50 % GC) in the absence of any mutation bias. Evidence suggests this relaxed selection arose once in the non-parasitic common ancestor of Phthiraptera + Nanopsocetae and is not directly related to the evolution of the parasitism in lice.
Brand, Philipp; Ramírez, Santiago R; Leese, Florian; Quezada-Euan, J Javier G; Tollrian, Ralph; Eltz, Thomas
2015-08-28
Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems.
Toenshoff, Elena R; Gruber, Daniela; Horn, Matthias
2012-05-01
The Adelgidae (Insecta: Hemiptera), a small group of insects, are known as severe pests on various conifers of the northern hemisphere. Despite of this, little is known about their bacteriocyte-associated endosymbionts, which are generally important for the biology and ecology of plant sap-sucking insects. Here, we investigated the adelgid species complexes Adelges laricis/tardus, Adelges abietis/viridis and Adelges cooleyi/coweni, identified based on their coI and ef1alpha genes. Each of these insect groups harboured two phylogenetically different bacteriocyte-associated symbionts belonging to the Betaproteobacteria and the Gammaproteobacteria, respectively, as inferred from phylogenetic analyses of 16S rRNA gene sequences and demonstrated by fluorescence in situ hybridization. The betaproteobacterial symbionts of all three adelgid complexes ('Candidatus Vallotia tarda', 'Candidatus Vallotia virida' and 'Candidatus Vallotia cooleyia') share a common ancestor and show a phylogeny congruent with that of their respective hosts. Similarly, there is evidence for co-evolution between the gammaproteobacterial symbionts ('Candidatus Profftia tarda', 'Candidatus Profftia virida') and A. laricis/tardus and A. abietis/viridis. In contrast, the gammaproteobacterial symbiont of A. cooleyi/coweni ('Candidatus Gillettellia cooleyia') is different from that of the other two adelgids but shows a moderate relationship to the symbiont 'Candidatus Ecksteinia adelgidicola' of A. nordmannianae/piceae. All symbionts were present in all adelgid populations and life stages analysed, suggesting vertical transmission from mother to offspring. In sharp contrast to their sister group, the aphids, adelgids do not consistently contain a single obligate (primary) symbiont but have acquired phylogenetically different bacterial symbionts during their evolution, which included multiple infections and symbiont replacement. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Strauß, Johannes; Lakes-Harlan, Reinhard
2009-01-01
Audition in insects is of polyphyletic origin. Tympanal ears derived from proprioceptive or vibratory receptor organs, but many questions of the evolution of insect auditory systems are still open. Despite the rather typical bauplan of the insect body, e.g., with a fixed number of segments, tympanal ears evolved at very different places, but only ensiferans have ears at the foreleg tibia, located in the tibial organ. The homology and monophyly of ensiferan ears is controversial, and no precursor organ was unambiguously identified for auditory receptors. The latter can only be identified by comparative study of recent atympanate taxa. These atympanate taxa are poorly investigated. In this paper, we report the neuroanatomy of the tibial organ of Comicus calcaris (Irish 1986), an atympanate Schizodactylid (splay-footed cricket). This representative of a Gondwana relict group has a tripartite sensory organ, homologous to tettigoniid ears. A comparison with morphology-based cladistic phylogeny indicates that the tripartite neuronal organization present in the majority of Tettigonioidea presumably preceded evolution of a hearing sense in the Tettigonioidea. Furthermore, the absence of a tripartite organ in Grylloidea argues against a monophyletic origin and homology of the cricket and katydid ears. The tracheal attachment of sensory neurons typical for ears of Tettigonioidea is present in C. calcaris and may have facilitated cooption for auditory function. The functional auditory organ was presumably formed in evolution by successive non-neural modifications of trachea and tympana. This first investigation of the neuroanatomy of Schizodactylidae suggests a non-auditory chordotonal organ as the precursor for auditory receptors of related tympanate taxa and adds evidence for the phylogenetic position of the group.
Higuchi, Nozomu; Kohno, Keigo; Kadowaki, Tatsuhiko
2009-05-07
Gene gain and subsequent retention or loss during evolution may be one of the underlying mechanisms involved in generating the diversity of metazoan nervous systems. However, the causal relationships acting therein have not been studied extensively. We identified the gene PsGEF (protostome-specific GEF), which is present in all the sequenced genomes of insects and limpet but absent in those of sea anemones, deuterostomes, and nematodes. In Drosophila melanogaster, PsGEF encodes a short version of a protein with the C2 and PDZ domains, as well as a long version with the C2, PDZ, and RhoGEF domains through alternative splicing. Intriguingly, the exons encoding the RhoGEF domain are specifically deleted in the Daphnia pulex genome, suggesting that Daphnia PsGEF contains only the C2 and PDZ domains. Thus, the distribution of PsGEF containing the C2, PDZ, and RhoGEF domains among metazoans appears to coincide with the presence of mushroom bodies. Mushroom bodies are prominent neuropils involved in the processing of multiple sensory inputs as well as associative learning in the insect, platyhelminth, and annelid brains. In the adult Drosophila brain, PsGEF is expressed in mushroom bodies, antennal lobe, and optic lobe, where it is necessary for the correct axon branch formation of alpha/beta neurons in mushroom bodies. PsGEF genetically interacts with Rac1 but not other Rho family members, and the RhoGEF domain of PsGEF induces actin polymerization in the membrane, thus resulting in the membrane ruffling that is observed in cultured cells with activated forms of Rac. The specific acquisition of PsGEF by the last common ancestor of protostomes followed by its retention or loss in specific animal species during evolution demonstrates that there are some structural and/or functional features common between insect and lophotrochozoan nervous systems (for example, mushroom bodies), which are absent in all deuterostomes and cnidarians. PsGEF is therefore one of genes associated with the diversity of metazoan nervous systems.
Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees.
Harpur, Brock A; Dey, Alivia; Albert, Jennifer R; Patel, Sani; Hines, Heather M; Hasselmann, Martin; Packer, Laurence; Zayed, Amro
2017-09-01
Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Effects of skin-to-skin contact on autonomic pain responses in preterm infants.
Cong, Xiaomei; Cusson, Regina M; Walsh, Stephen; Hussain, Naveed; Ludington-Hoe, Susan M; Zhang, Di
2012-07-01
The purpose of this randomized crossover trial was to determine the effects on autonomic responses in preterm infants of longer Kangaroo Care (30 minutes, KC30) and shorter KC (15 minutes, KC15) before and throughout heel stick compared with incubator care (IC). Beat-to-beat heart rate (HR) and spectral power analysis of heart rate variability, low frequency power (LF), high frequency power (HF), and LF/HF ratio were measured in 26 infants. HR changes from Baseline to Heel Stick were significantly less in KC30 and KC15 than in IC, and more infants had HR decrease in IC than in 2 KC conditions. In IC, LF and HF significantly increased from Baseline to Heel Stick and dropped from Heel Stick to Recovery; in 2 KC conditions, no changes across study phases were found. During Heel Stick, LF and HF were significantly higher in IC than in KC30. In all 3 conditions, LF/HF ratio decreased from Baseline to Heel Stick and increased to Recovery; no differences were found between IC and two KC conditions. Both longer and shorter KC before and throughout heel stick can stabilize HR response in preterm infants, and longer KC significantly affected infants' sympathetic and parasympathetic responses during heel stick compared with incubator care. This study showed that KC has a significant effect on reducing autonomic pain responses in preterm infants. The findings support that KC is a safe and effective pain intervention in the neonatal intensive care unit. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.
Prior leg massage decreases pain responses to heel stick in preterm babies.
Jain, Sunil; Kumar, Praveen; McMillan, Douglas D
2006-09-01
Leg massage could inhibit the transmission of pain by 'closing the gate' or by activating the endogenous opioid pathway to decrease nociceptive transmission of pain associated with heel stick. The aim of this study is to determine the effects of massage therapy prior to heel stick on responses assessed by the Neonatal Infant Pain Scale (NIPS) (primary outcome), heart rate, respiratory rate and oxygen saturation (secondary outcomes) in infants who required a heel stick for blood sampling. This randomised, double-blind, crossover trial with infants from 1 to 7 days post birth excluded those with prior surgery, septicaemia, current assisted ventilation or an analgesic within 48 h. After informed consent, 13 infants received a 2-min massage of the ipsilateral leg prior to heel stick on the first study sampling and no massage on the next sampling 2-7 days later and 10 infants had the reverse order. The bedside nurse, blinded to the intervention, measured NIPS, heart rate, respiratory rate, and oxygen saturation prior to massage, after massage, and 5 min after heel stick. Serum cortisol was measured with the blood sampling. In 23 infants (birthweight 795-2507 g), there were no adverse physiologic effects of massage. After heel stick, NIPS (P < 0.001) and heart rate (P = 0.03) were increased in the no-massage group compared with the massage group. Respiratory rate, oxygen saturation and serum cortisol were not significantly different. Gentle massage of the leg prior to heel stick is safe and decreases pain responses in preterm infants.
Glow Sticks: Spectra and Color Mixing
ERIC Educational Resources Information Center
Birriel, Jennifer; Birriel, Ignacio
2014-01-01
Glow sticks are a popular Halloween staple familiar to most of our students. The production of light via a chemical reaction is called "chemiluminescence," and glow sticks are often used as demonstrations and experiments in the chemistry classroom to study reaction rates as a function of temperature. A black light can be used to…
Low-Profile, Dual-Wavelength, Dual-Polarized Antenna
NASA Technical Reports Server (NTRS)
Carswell, James R.
2010-01-01
A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.
Development of flow-through and dip-stick immunoassays for screening of sulfonamide residues.
Zhang, Hongyan; Zhang, Yan; Wang, Shuo
2008-08-20
Two formats of membrane-based competitive enzyme immunoassays (flow-through and dip-stick) have been developed for the screening of sulfonamide residues in pig muscle and milk. Membrane was coated with anti-sulfonamide antibody and a sulfonamide hapten D2-horseradish peroxidase (HRP) conjugant was used as the labeled antigen for competitive assay of sulfonamides. Visual detection limits of the flow-through or dip-stick assay were 1-5 microg L(-1) or 1-10 microg L(-1) in buffer for seven sulfonamides, respectively. Assay validation was performed using samples spiked with single sulfonamide, spiked samples were tested using the developed strip assays and results were compared with those obtained by a validated high-performance liquid chromatograph (HPLC) method. Results showed that the two strip assays were correlated well with HPLC, respectively. With assay times of 5 min (flow-through) and 15 min (dip-stick), these rapid tests could offer simple, rapid and cost-effective on-site screening tools to detect sulfonamides in pig muscle (flow-through or dip-stick) or milk (only dip-stick).
USDA-ARS?s Scientific Manuscript database
Phytoplasmas possess the smallest genomes known among plant pathogens. Yet, these biotrophic microbes exist as obligate parasites and pathogens of both plants and insects. After their evolutionary divergence from an acholeplasmalike ancestor and emergence as a discrete clade, phytoplasmas ev...
Bono, Jeremy M.; Crespi, Bernard J.
2015-01-01
Facultative joint colony founding by social insects provides opportunities to analyze the roles of genetic and ecological factors in the evolution of cooperation. Although cooperative nesting is observed in range of social insect taxa, the most detailed studies of this behavior have been conducted with Hymenoptera (ants, bees, and wasps). Here, we show that foundress associations in the haplodiploid social thrips Dunatothrips aneurae (Insecta: Thysanoptera) are most often comprised of close relatives (sisters), though groups with unrelated foundresses are also found. Associations among relatives appear to be facilitated by limited female dispersal, which results in viscous population structure. In addition, we found that per capita productivity declined with increasing group size, sex ratios were female-biased, and some female offspring apparently remained in their natal domicile for some time following eclosion. D. aneurae thus exhibits a suite of similarities with eusocial Hymenoptera, providing evidence for the convergent evolution of associated social and life-history traits in Hymenoptera and Thysanoptera. PMID:26279604
The evolutionary landscape of intergenic trans-splicing events in insects
Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan
2015-01-01
To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696
Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles.
Farrell, B D
2001-03-01
The insects that feed on the related plant families Apocynaceae and Asclepiadaceae (here collectively termed "milkweeds") comprise a "component community" of highly specialized, distinctive lineages of species that frequently sequester toxic cardiac glycosides from their host plants for defense against predators and are thus often aposematic, advertising their consequent unpalatability. Such sets of specialized lineages provide opportunities for comparative studies of the rate of adaptation, diversification, and habitat-related effects on molecular evolution. The cerambycid genus Tetraopes is the most diverse of the new world milkweed herbivores and the species are generally host specific, being restricted to single, different species of Asclepias, more often so than most other milkweed insects. Previous work revealed correspondence between the phylogeny of these beetles and that of their hosts. The present study provides analyses of near-complete DNA sequences for Tetraopes and relatives that are used to establish a molecular clock and temporal framework for Tetraopes evolution with their milkweed hosts. Copyright 2001 Academic Press.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.
2013-01-01
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology. PMID:23818858
O'Neal, Matthew E; Varenhorst, Adam J; Kaiser, Matthew C
2018-04-01
Preventing rapid evolution of herbivores to plant traits that confer resistance is an area of active research for applied entomologists. The subfield of insect resistance management (IRM) uses elements of population genetics and ecology to prevent increases in the frequency of virulent (i.e. resistant) sub-populations of an insect pest. Efforts to delay such an increase include using highly lethal toxins (i.e., a high dose), combining multiple resistance traits in one cultivar (i.e., pyramids), and using susceptible plants (i.e. a refuge) within or near plantings of the resistant crop. Even if fully implemented, theoretical models suggest that IRM plans for asexually-reproducing insects (e.g. aphids) cannot limit the frequency of resistance to provide sustainable use of a pest-resistant cultivar. We discuss how feeding by conspecifics aphids induces susceptibility such that a "within plant" refuge is created, allowing both virulent and avirulent (i.e. susceptible) populations to persist. We use the soybean aphid (Aphis glycines Matsumura), and the rapid occurrence of virulence in the US to resistant cultivars of soybean (Glycine max). We describe how feeding by A. glycines on soybeans alters the quality of the plant as a host. These systemic changes to the plants' physiology allow avirulent A. glycines to thrive on resistant cultivars. We explore how the induction of susceptibility by a herbivore can slow an increase in the frequency of virulent populations to resistant host plants. We suggest that a within plant refuge, combined with standard IRM practices, can allow for sustainable use of plant resistance to asexually-reproducing insect pests. Published by Elsevier Inc.
Matsuoka, Yuji; Bando, Tetsuya; Watanabe, Takahito; Ishimaru, Yoshiyasu; Noji, Sumihare; Popadić, Aleksandar; Mito, Taro
2015-01-01
In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes. PMID:25948756
What do bonobos (Pan paniscus) understand about physical contact?
Helme, Anne E; Call, Josep; Clayton, Nicola S; Emery, Nathan J
2006-08-01
The present study aimed to test what bonobos (Pan paniscus) understand about contact. The task consisted of a clear horizontal tube containing a piece of food and a stick with a disk attached. The bonobos chose which side to push or pull the stick for the disk to contact the food and make it accessible. There were 9 variations in tube design, which differed in the positions of the stick, disk, and food. All 5 bonobos passed at least 1 configuration. A recent study (A. E. Helme, N. S. Clayton, & N. J. Emery, 2006) found that rooks could learn only tube configurations that provided an asymmetrical stick cue, whereas bonobos did not demonstrate an understanding of contact but showed more individual variation, attending to the positions of the food, disk, and stick. ((c) 2006 APA, all rights reserved).
Ratcliffe, John M.; Elemans, Coen P. H.; Jakobsen, Lasse; Surlykke, Annemarie
2013-01-01
Since the discovery of echolocation in bats, the final phase of an attack on a flying insect, the ‘terminal buzz’, has proved enigmatic. During the buzz, bats increase information update rates by producing vocalizations up to 220 times s−1. The buzz's ubiquity in hawking and trawling bats implies its importance for hunting success. Superfast muscles, previously unknown in mammals, are responsible for the extreme vocalization rate. Some bats produce a second phase—buzz II—defined by a large drop in the fundamental frequency (F0) of their calls. By doing so, bats broaden their acoustic field of view and should thereby reduce the likelihood of insect escape. We make the case that the buzz was a critical adaptation for capturing night-flying insects, and suggest that the drop in F0 during buzz II requires novel, unidentified laryngeal mechanisms in order to counteract increasing muscle tension. Furthermore, we propose that buzz II represents a countermeasure against the evasive flight of eared prey in the evolutionary arms-race that saw the independent evolution of bat-detecting ears in various groups of night-flying insects. PMID:23302868
Baudier, Kaitlin M.; Kaschock-Marenda, Simon D.; Patel, Nirali; Diangelus, Katherine L.; O'Donnell, Sean; Marenda, Daniel R.
2014-01-01
Insecticides have a variety of commercial applications including urban pest control, agricultural use to increase crop yields, and prevention of proliferation of insect-borne diseases. Many pesticides in current use are synthetic molecules such as organochlorine and organophosphate compounds. Some synthetic insecticides suffer drawbacks including high production costs, concern over environmental sustainability, harmful effects on human health, targeting non-intended insect species, and the evolution of resistance among insect populations. Thus, there is a large worldwide need and demand for environmentally safe and effective insecticides. Here we show that Erythritol, a non-nutritive sugar alcohol, was toxic to the fruit fly Drosophila melanogaster. Ingested erythritol decreased fruit fly longevity in a dose-dependent manner, and erythritol was ingested by flies that had free access to control (sucrose) foods in choice and CAFE studies. Erythritol was US FDA approved in 2001 and is used as a food additive in the United States. Our results demonstrate, for the first time, that erythritol may be used as a novel, environmentally sustainable and human safe approach for insect pest control. PMID:24896294
Baudier, Kaitlin M; Kaschock-Marenda, Simon D; Patel, Nirali; Diangelus, Katherine L; O'Donnell, Sean; Marenda, Daniel R
2014-01-01
Insecticides have a variety of commercial applications including urban pest control, agricultural use to increase crop yields, and prevention of proliferation of insect-borne diseases. Many pesticides in current use are synthetic molecules such as organochlorine and organophosphate compounds. Some synthetic insecticides suffer drawbacks including high production costs, concern over environmental sustainability, harmful effects on human health, targeting non-intended insect species, and the evolution of resistance among insect populations. Thus, there is a large worldwide need and demand for environmentally safe and effective insecticides. Here we show that Erythritol, a non-nutritive sugar alcohol, was toxic to the fruit fly Drosophila melanogaster. Ingested erythritol decreased fruit fly longevity in a dose-dependent manner, and erythritol was ingested by flies that had free access to control (sucrose) foods in choice and CAFE studies. Erythritol was US FDA approved in 2001 and is used as a food additive in the United States. Our results demonstrate, for the first time, that erythritol may be used as a novel, environmentally sustainable and human safe approach for insect pest control.
Gutiérrez-Cabrera, A E; Córdoba-Aguilar, A; Zenteno, E; Lowenberger, C; Espinoza, B
2016-06-01
The peritrophic matrix is a chitin-protein structure that envelops the food bolus in the midgut of the majority of insects, but is absent in some groups which have, instead, an unusual extra-cellular lipoprotein membrane named the perimicrovillar membrane. The presence of the perimicrovillar membrane (PMM) allows these insects to exploit restricted ecological niches during all life stages. It is found only in some members of the superorder Paraneoptera and many of these species are of medical and economic importance. In this review we present an overview of the midgut and the digestive system of insects with an emphasis on the order Paraneoptera and differences found across phylogenetic groups. We discuss the importance of the PMM in Hemiptera and the apparent conservation of this structure among hemipteran groups, suggesting that the basic mechanism of PMM production is the same for different hemipteran species. We propose that the PMM is intimately involved in the interaction with parasites and as such should be a target for biological and chemical control of hemipteran insects of economic and medical importance.
Mixture and odorant processing in the olfactory systems of insects: a comparative perspective.
Clifford, Marie R; Riffell, Jeffrey A
2013-11-01
Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.
Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System
Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca
2017-01-01
In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138
Finding the Fertile Phase: Low-Cost Luteinizing Hormone Sticks Versus Electronic Fertility Monitor.
Barron, Mary Lee; Vanderkolk, Kaitlin; Raviele, Kathleen
To investigate if generic Wondfo ovulation sticks (WLH) are sufficiently sensitive to the luteinizing hormone (LH) surge in urine when used with the Marquette Fertility Algorithm. The electronic hormonal fertility monitor (EHFM) is highly accurate in detecting the LH surge but cost of the monitor and the accompanying test sticks has increased over the last several years. The EHFM is sensitive to detect the LH surge at 20 milli-international units per milliliter (mIU/mL); the WLH sticks are slightly less sensitive at 25 mIU/mL. A convenience sample of women using the Marquette Method of Natural Family Planning with the EHFM to avoid pregnancy were recruited (N = 54). Each participant used the EHFM every morning after cycle day 6 and tested morning and evening urine with the WLH stick until the day following detection of the LH surge on the EHFM. Forty-two women provided 219 cycles. Frequency of LH surge detection was 182/219 (83.1%) for EHFM and 203/219 (92.7%) for WLH sticks. Agreement between the EHFM and the WLH on the day of the LH surge was 97.7%. High fertility readings providing a warning of peak fertility at least 5 days before peak was 67% for the WLH; the EHFM was 47.7%. Paired sample correlations for high fertility was .174 (p = .014) and paired sample differences t was -4.729 (p = .000). The WLH stick is sufficiently sensitive to use in place of the EFHM for determining peak fertility and with the Marquette Fertility algorithm. Even with minimal use, WLH sticks cost about half the price of the monitor strips and provide more flexibility of use. Cost differences increase with the number of sticks used per cycle. Further research with a larger sample is needed to verify results.
The vacuolar protein sorting genes in insects: A comparative genome view.
Li, Zhaofei; Blissard, Gary
2015-07-01
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface
Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...
2017-10-23
Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less
Wurdack, Mareike; Polidori, Carlo; Keller, Alexander; Feldhaar, Heike; Schmitt, Thomas
2017-11-01
The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood-care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene-dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood-care strategy, Coleoptera-hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Self-organisation and communication in groups of simulated and physical robots.
Trianni, Vito; Dorigo, Marco
2006-09-01
In social insects, both self-organisation and communication play a crucial role for the accomplishment of many tasks at a collective level. Communication is performed with different modalities, which can be roughly classified into three classes: indirect (stigmergic) communication, direct interactions and direct communication. The use of stigmergic communication is predominant in social insects (e.g. the pheromone trails in ants), where, however, direct interactions (e.g. antennation in ants) and direct communication (e.g. the waggle dance in honey bees) can also be observed. Taking inspiration from insect societies, we present an experimental study of self-organising behaviours for a group of robots, which exploit communication to coordinate their activities. In particular, the robots are placed in an arena presenting holes and open borders, which they should avoid while moving coordinately. Artificial evolution is responsible for the synthesis in a simulated environment of the robot's neural controllers, which are subsequently tested on physical robots. We study different communication strategies among the robots: no direct communication, handcrafted signalling and a completely evolved approach. We show that the latter is the most efficient, suggesting that artificial evolution can produce behaviours that are more adaptive than those obtained with conventional design methodologies. Moreover, we show that the evolved controllers produce a self-organising system that is robust enough to be tested on physical robots, notwithstanding the huge gap between simulation and reality.
A depauperate immune repertoire precedes evolution of sociality in bees.
Barribeau, Seth M; Sadd, Ben M; du Plessis, Louis; Brown, Mark J F; Buechel, Severine D; Cappelle, Kaat; Carolan, James C; Christiaens, Olivier; Colgan, Thomas J; Erler, Silvio; Evans, Jay; Helbing, Sophie; Karaus, Elke; Lattorff, H Michael G; Marxer, Monika; Meeus, Ivan; Näpflin, Kathrin; Niu, Jinzhi; Schmid-Hempel, Regula; Smagghe, Guy; Waterhouse, Robert M; Yu, Na; Zdobnov, Evgeny M; Schmid-Hempel, Paul
2015-04-24
Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman's principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.
Saenko, S V; Jerónimo, M A; Beldade, P
2012-06-01
Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration.