Sample records for stilling basins

  1. USBR Type III and Type IV stilling basin and rock apron associated with stepped chutes

    USDA-ARS?s Scientific Manuscript database

    Stilling basins are commonly used as energy dissipators for structural chutes. Classical research conducted by scientists of the U. S. Bureau of Reclamation (USBR) led to the development of design criteria for a variety of stilling basin configurations as the outlet works for smooth chutes, but lit...

  2. Stilling basin design and operation for water quality.

    DOT National Transportation Integrated Search

    2007-04-30

    Many construction projects involve the need to pump turbid water from borrow pits or : other excavations into stilling basins or sediment bags prior to discharge. The design and : operation of these basins needs to be optimized to provide the best wa...

  3. CFD Analysis of different types of single basin solar stills

    NASA Astrophysics Data System (ADS)

    Maheswari, C. Uma; Meenakshi Reddy, R.

    2018-03-01

    The current work deals with the numerical and experimental analysis of a solar still of single basin with improved models of stepped, finned, PCM (Phase modification Materials) instrumentation in single slope. The work is additionally extended to double slope solar still of single basin and also the performances were compared with one another. The one slope basin inclinations were compared for 15° and 20°. From the investigations it had been ascertained that single slope with 20° and PCM instrumentation has given the upper productivity compared to different sorts.

  4. Stilling basin design and operation for water quality : field testing, final report.

    DOT National Transportation Integrated Search

    2008-06-15

    Many construction projects involve the need to pump turbid water from borrow pits or other excavations into stilling : basins or sediment bags prior to discharge. The design and operation of these basins needs to be optimized to : provide the best wa...

  5. 3D numerical simulation of flow field with incompletely flaring gate pier in large unit discharge and deep tail water project

    NASA Astrophysics Data System (ADS)

    Zhao, Zhou; Junxing, Wang

    2018-06-01

    Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ɛ turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.

  6. 9. VIEW OF THE PRESSURE CULVERT STILLING BASIN, LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF THE PRESSURE CULVERT STILLING BASIN, LOOKING NORTH. NOTE THE LEVEE TO THE RIGHT. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  7. Performance analysis of a solar still coupled with evacuated heat pipes

    NASA Astrophysics Data System (ADS)

    Pramod, B. V. N.; Prudhvi Raj, J.; Krishnan, S. S. Hari; Kotebavi, Vinod

    2018-02-01

    In developing countries the need for better quality drinking water is increasing steadily. We can overcome this need by using solar energy for desalination purpose. This process includes fabrication and analysis of a pyramid type solar still coupled with evacuated heat pipes. This experiment using evacuated heat pipes are carried in mainly three modes namely 1) Still alone 2) Using heat pipe with evacuated tubes 3)Using evacuated heat pipe. For this work single basin pyramid type solar still with 1m2 basin area is fabricated. Black stones and Black paint are utilised in solar still to increase evaporation rate of water in basin. The heat pipe’s evaporator section is placed inside evacuated tube and the heat pipe’s condenser section is connected directly to the pyramid type solar still’s lower portion. The output of distillate water from still with evacuated heat pipe is found to be 40% more than the still using only evacuated tubes.

  8. Impact-Basin Formation on Mercury: Current Observations and Outstanding Questions

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Head, J. W.; Fassett, C. I.

    2018-05-01

    Mercury provides an important laboratory for understanding impact-basin formation on planetary bodies. MESSENGER observations improved our understanding, but much is still unknown about the formation and evolution of basin features.

  9. Optimization of Water Output by Experimental Analysis on Passive Solar Still

    NASA Astrophysics Data System (ADS)

    Parekh, Winners; Patel, Mrugen; Patel, Nikunj; Prajapati, Jaimin; Patel, Maitrik

    2018-02-01

    This paper presents experimental analysis obtained using the single slope passive solar still. The experiments were conducted in Ahmedabad (23°03’ N, 72°40’ E) using a passive solar still with different water depths and basin materials. Salt was added to study the effect of salinity of water on solar distillation. An extra clear glass is used as cover plate as it transmits 91% light into solar still. Rubber plate and Styrofoam were used as insulating material. So, the productivity of solar still was determined by increasing the temperature of water in the basin and glass temperature.

  10. Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin.

    PubMed

    Yan, Hexiang; Lipeme Kouyi, Gislain; Gonzalez-Merchan, Carolina; Becouze-Lareure, Céline; Sebastian, Christel; Barraud, Sylvie; Bertrand-Krajewski, Jean-Luc

    2014-04-01

    Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.

  11. Design of Deflectors for Little Goose Spillway, Snake River, Oregon: A Physical Model Study

    DTIC Science & Technology

    2017-06-01

    model of the spillway. Four different deflector designs were compared relative to flow conditions in the stilling basin and tailrace area of the...performance in a 1:40-scale section model of the spillway. Four different deflector designs were compared relative to flow conditions in the stilling basin and...ER D C/ CH L TR -1 7- 10 Dissolved Gas Abatement Studies Design of Deflectors for Little Goose Spillway, Snake River, Oregon A

  12. Water security evaluation in Yellow River basin

    NASA Astrophysics Data System (ADS)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  13. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  14. Modeling Study of Winter Ozone Pollution in Uintah Basin: A Case Study of January 15-31 in 2013 Using WRF-CAMx.

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Tran, H. N. Q.; Mansfield, M. L.; Lyman, S. N.

    2014-12-01

    Since elevated ozone concentrations (>75ppb) were first detected in Uintah Basin in 2009, winter ozone pollution in Uintah Basin (Eastern Utah) has drawn researchers' attention in this region. Joint research efforts among several research groups have been undertaken to study this topic (UBOS, 2012; 2013; 2014); yet this phenomenon is still not completely understood. For example, modeling studies still face problems such as errors in emission inventories and inappropriate meteorological and chemical modeling parameterizations for winter conditions in the Uintah Basin. In this study, the SMOKE-WRF-CAMx model platform (grid resolution of 1.3km) was used to simulate ozone formation in the basin during Jan 15-31 in 2013 to compare the impacts of current bottom-up versus top-down emission inventories on modeled ozone concentrations. Different VOC emission profiles for oil and gas emissions that have been applied in various studies were also examined in CAMx and compared with available monitoring data to determine the representative profile for future studies.

  15. DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Yamada, Y.; Matsuoka, T.

    2005-12-01

    The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.

  16. Coalbed-methane production in the Appalachian basin: Chapter G.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the northern, central, and southern Appalachian basin coal regions, which extend almost continuously from Pennsylvania southward to Alabama. Most commercial CBM production in the Appalachian basin is from three structural subbasins: (1) the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; (2) the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and (3) part of the Black Warrior basin in Alabama. The cumulative CBM production in the Dunkard basin through 2005 was 17 billion cubic feet (BCF), the production in the Pocahontas basin through 2006 was 754 BCF, and the production in the part of the Black Warrior basin in Alabama through 2007 was 2.008 TCF. CBM development may be regarded as mature in Alabama, where annual production from 1998 through 2007 was relatively constant and ranged from 112 to 121 BCF. An opportunity still exists for additional growth in the Pocahontas basin. In 2005, annual CBM production in the Pocahontas basin in Virginia and West Virginia was 85 BCF. In addition, opportunities are emerging for producing the large, diffuse CBM resources in the Dunkard basin as additional wells are drilled and technology improves.

  17. Hydrological response to timber harvest in northern Idaho: Implications for channel scour and persistence of salmonids

    Treesearch

    Daniele Tonina; Charles H. Luce; Bruce Rieman; John M. Buffington; Peter Goodwin; Stephen R. Clayton; Shawkat Md. Ali; Jeffrey J. Barry; Charles Berenbrock

    2008-01-01

    The potential for forest harvest to increase snowmelt rates in maritime snow climates is well recognized. However, questions still exist about the magnitude of peak flow increases in basins larger than 10 km2 and the geomorphic and biological consequences of these changes. In this study, we used observations from two nearly adjacent small basins...

  18. Closure of the R Reactor Disassembly Basin at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W.E.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.« less

  19. Intercomparison of numerical simulations, satellite altimetry and glider observations in the Algerian Basin during fall 2014 and 2015: focus on a SARAL/AltiKa track

    NASA Astrophysics Data System (ADS)

    Aulicino, Giuseppe; Cotroneo, Yuri; Ruiz, Simon; Sanchez Roman, Antonio; Pascual, Ananda; Fusco, Giannetta; Tintoré, Joaquin; Budillon, Giorgio

    2017-04-01

    The Algerian Basin is a key-place for the study of the general circulation of the Western Mediterranean Sea and its role in reaction to climate change. The presence of both fresh Atlantic waters and more saline resident Mediterranean ones characterizes the basin with an intense inflow/outflow regime and complex circulation patterns. Very energetic mesoscale structures, that evolve from meander of the Algerian Current to isolated cyclonic and anti-cyclonic eddies, dominate the area with marked repercussions on the biological activity. Despite their remarkable importance, this region and its variability are still poorly known and basin-wide high resolution knowledge of its mesoscale and sub-mesoscale features is still incomplete. The monitoring of such complex processes requires a synergic approach that involves integrated observing systems. In recent years, several studies proved the advantages of the combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimeters. In this context, we present the first results of a new integrated oceanographic observing system built up in the Algerian Basin during fall 2014 and 2015, aiming at advancing our knowledge on its main features. The study was realized through the analysis of glider high resolutions three-dimensional observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) monitoring line, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. The achieved results confirm that glider derived dynamic height and SARAL/AltiKa absolute dynamic topography present similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Generally, the maximum discrepancies are located nearby the Balearic Islands and the Algerian Coast, but it is important to remark that the correlation coefficients seem to mostly depend on the synopticity between in situ and satellite measurements. Still, this study confirm that the numerical simulations derived from the analyzed CMEMS products agree well with the high resolution glider measurements and provide valuable information for multiplatform observatories that strongly complement in situ and remote sensed observations.

  20. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  1. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J.B.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.« less

  2. Crustal structure of the Ionian basin and eastern Sicily margin : results from a wide angle seismic survey and implication for the crustal nature and origin of the basin, and the recent tear fault location

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Moretti, M.

    2017-12-01

    In the Ionian Sea (Central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust and lithosphere of the subducting plate remain debated and could represent the last remnants of the Neo-Tethys ocean. The rifting mechanism that produced the Ionian basin are also still under discussion with the Malta escarpment representing a possible remnant of this opening. At present, this subduction is still retreating to the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian Basin. In order to accommodate slab roll-back, a major lateral slab tear fault is required. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the Eastern-Sicily margin and the Malta Escarpment by presenting two wide-angle velocity profiles crossing these structures roughly orthogonally. The data used for the forward velocity modeling were acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened in between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  3. Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track

    NASA Astrophysics Data System (ADS)

    Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sánchez Román, A.; Pascual, A.; Fusco, G.; Tintoré, J.; Budillon, G.

    2018-03-01

    The Algerian Basin is a key component of the general circulation in the Western Mediterranean Sea. The presence of both fresh Atlantic water and more saline Mediterranean water gives the basin an intense inflow/outflow regime and complex circulation patterns. Energetic mesoscale structures that evolve from meanders of the Algerian Current into isolated cyclonic and anticyclonic eddies dominate the area, with marked repercussions on biological activity. Despite its remarkable importance, this region and its variability are still poorly known and basin-wide knowledge of its meso- and submesoscale features is still incomplete. Studying such complex processes requires a synergistic approach that involves integrated observing systems. In recent years, several studies have demonstrated the advantages of combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimetry. In this context, we present results of an observational program conducted in the Algerian Basin during fall 2014 and 2015 that aimed to advance our knowledge of its main features. The study was carried out through analysis of high resolution glider observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) chokepoint, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. Results show that glider-derived dynamic height and SARAL/AltiKa absolute dynamic topography have similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Even though larger discrepancies are observed near the Balearic and Algerian coasts, correlation coefficients between glider and satellite observations seem mostly to be affected by reduced synopticity between the measurements. Glider observations acquired during the four surveys reveal the presence of several water masses of Atlantic and Mediterranean origin (i.e., AW and LIW at different modification levels) with marked seasonal variability.

  4. Regional view of a Trans-African Drainage System.

    PubMed

    Abdelkareem, Mohamed; El-Baz, Farouk

    2015-05-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa.

  5. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  6. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  7. Friction melt distribution in a multi-ring impact basin.

    PubMed

    Spray, J G; Thompson, L M

    1995-01-12

    It is generally accepted that multi-ring basins are the consequence of very large impacts, but the mechanism by which they form is still a matter of contention. Most of what is currently known about multi-ring basins is based on remote studies of the Moon and, to a lesser extent, Mars and Mercury. But at least two multi-ring impact basins have been recognized on Earth--the Sudbury (Canada) and Vredefort (South Africa) impact structures--providing an opportunity to study their properties directly. Here we describe the distribution of friction melt (pseudotachylyte) in the floor of the Sudbury impact basin. Although the veins and dykes of pseudotachylyte decrease in both thickness and frequency of occurrence towards the basin periphery, the greatest volumes of friction melt appear to define four rings around the central impact melt sheet. Field evidence indicates that the rings originated as zones of large displacement, which facilitated localized frictional melting of the basin floor during the modification (collapse) stage of the cratering process. By analogy, we argue that the rings of other multi-ring impact basins are also likely to be the remnants of such large-displacement fault zones.

  8. The South China - Indochina collision: a perspective from sedimentary basins analysis

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Peyrotty, Giovan

    2017-04-01

    Sedimentary basins, through the sedimentary successions and the nature of the deposits, reflect the geology of the area from which the sediments were derived and thus provide valuable record of hinterland tectonism. As the collision between the South China and the Indochina blocks (i.e., the Indosinian orogeny) is still the object of a number of controversies regarding, for instance, its timing and the polarity of the subduction, the sedimentary basins associated with this mountain belt are likely to provide clues to reconstruct its geodynamic evolution. However, both the Sam Nua Basin (located to the south of the inner zones of the Indosinian orogeny and the Song Ma ophiolites) and the Song Da Basin (located to the north of the inner zones), northern Vietnam, are still lacking important information regarding the depositional environments and the ages of the main formations that they contain. Using sedimentological and dating analyses (foraminifers biostratigraphy and U-Pb dating on detrital zircon), we provide a new stratigraphic framework for these basins and propose a geodynamic evolution of the present-day northern Vietnam. During the Early Triassic, the Sam Nua Basin was mainly supplied by volcaniclastic sediments originating from an active volcanic activity. Geochemical investigations, combined with sedimentological and structural analyses, support an arc-related setting for this magmatism. This magmatic arc resulted from the subduction of a south dipping oceanic slab that once separated the South China from the Indochina blocks. During the Middle to the Late Triassic, the Sam Nua Basin underwent erosion that lead to the formation of a major unconformity, termed the Indosinian unconformity. This unconformity is interpreted to result from the erosion of the Indosinian mountain belt, built after the continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, the Sam Nua Basin experienced the deposition of very coarse material, emplaced under continental setting and representing the product of the erosion of the Indosinian mountain belt. To the North, the Song Da Basin is characterized by strongly diachronous deposits over a basal unconformity developed at the expense of volcanic and volcaniclastic deposits related to the Emeishan Large Igneous Province. The sedimentary succession indicates a foreland setting during the Early to the Middle Triassic, which contrasts with the commonly assumed rift setting for these sediments. Thus, the Song Da Basin documents the formation of the Indosinian thrust belt, located immediately to the South of the basin.

  9. Variability of the Arctic Basin Oceanographic Fields

    DTIC Science & Technology

    1996-02-01

    the model a very sophisticated turbulence closure scheme. 9. Imitation of the CO2 doubling We parameterized the " greenhouse " effect by changing the...of the Arctic Ocean. A more realistic model of the Arctic Ocean circulation was obtained, and an estimation of the impact of the greenhouse effect on... greenhouse effect is in freshening of the upper Arctic Basin. Although some shortcomings of the model still exist (an unrealistic high coefficient of

  10. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J.B.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environm ental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.« less

  11. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    NASA Astrophysics Data System (ADS)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  12. Alpine inversion of the North African margin and delamination of its continental lithosphere

    NASA Astrophysics Data System (ADS)

    Roure, FrançOis; Casero, Piero; Addoum, Belkacem

    2012-06-01

    This paper aims at summarizing the current extent and architecture of the former Mesozoic passive margin of North Africa from North Algeria in the west up to the Ionian-Calabrian arc and adjacent Mediterranean Ridge in the east. Despite that most paleogeographic models consider that the Eastern Mediterranean Basin as a whole is still underlain by remnants of the Permo-Triassic or a younger Cretaceous Tethyan-Mesogean ocean, the strong similarities documented here in structural styles and timing of inversion between the Saharan Atlas, Sicilian Channel and the Ionian abyssal plain evidence that this portion of the Eastern Mediterranean Basin still belongs to the distal portion of the North African continental margin. A rim of Tethyan ophiolitic units can be also traced more or less continuously from Turkey and Cyprus in the east, in onshore Crete, in the Pindos in Greece and Mirdita in Albania, as well as in the Western Alps, Corsica and the Southern Apennines in the west, supporting the hypothesis that both the Apulia/Adriatic domain and the Eastern Mediterranean Basin still belong to the former southern continental margin of the Tethys. Because there is no clear evidence of crustal-scale fault offsetting the Moho, but more likely a continuous yet folded Moho extending between the foreland and the hinterland beneath the Mediterranean arcs, we propose here a new model of delamination of the continental lithosphere for the Apennines and the Aegean arcs. In this model, only the mantle lithosphere of Apulia and the Eastern Mediterranean is still locally subducted and recycled in the asthenosphere, most if not all the northern portion of the African crust and coeval Moho being currently decoupled from its former, currently delaminated and subducted mantle lithosphere.

  13. Wall of Rheasilvia

    NASA Image and Video Library

    2012-03-21

    This still from an animation made from data obtained by NASA Dawn spacecraft shows the topography of a portion of the wall and interior of the Rheasilvia impact basin in asteroid Vesta south-polar region.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGettigan, C.K.; Hunt, D.G.

    Colombia, where petroleum development began in 1908, is still yielding giant and supergiant discoveries. Recent successes result from improvements in exploration technology, in infrastructure, and in terms of participation offered by the Colombian government. Colombia has 13 sedimentary basins covering an area of 700,000 sq km out of a total country area of 1,350,000 sq km, including the continental shelf. This article highlights four of the seven basins currently productive in Colombia, providing an overview of geology and recent exploration activity.

  15. Flood risk analysis and adaptive strategy in context of uncertainties: a case study of Nhieu Loc Thi Nghe Basin, Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Ho, Long-Phi; Chau, Nguyen-Xuan-Quang; Nguyen, Hong-Quan

    2013-04-01

    The Nhieu Loc - Thi Nghe basin is the most important administrative and business area of Ho Chi Minh City. Due to system complexity of the basin such as the increasing trend of rainfall intensity, (tidal) water level and land subsidence, the simulation of hydrological, hydraulic variables for flooding prediction seems rather not adequate in practical projects. The basin is still highly vulnerable despite of multi-million USD investment for urban drainage improvement projects since the last decade. In this paper, an integrated system analysis in both spatial and temporal aspects based on statistical, GIS and modelling approaches has been conducted in order to: (1) Analyse risks before and after projects, (2) Foresee water-related risk under uncertainties of unfavourable driving factors and (3) Develop a sustainable flood risk management strategy for the basin. The results show that given the framework of risk analysis and adaptive strategy, certain urban developing plans in the basin must be carefully revised and/or checked in order to reduce the highly unexpected loss in the future

  16. U.S. Geological Survey National Water Census: Colorado River Basin Geographic Focus Area Study

    USGS Publications Warehouse

    Bruce, Breton W.; Clow, David W.; Maupin, Molly A.; Miller, Matthew P.; Senay, Gabriel B.; Sexstone, Graham A.; Susong, David D.

    2015-12-01

    The Colorado River Basin (CRB) and the Delaware and Apalachicola-Chattahoochee-Flint (ACF) River Basins were selected by the Department of the Interior for the first round of FASs because of the perceived water shortages in the basins and potential conflicts over water supply and allocations. After gathering input from numerous stakeholders in the CRB, the USGS determined that surface­-water resources in the basin were already being closely monitored and that the most important scientific contribution could be made by helping to improve estimates of four water­-budget components: evapotranspiration losses, snowpack hydrodynamics, water­-use information, and the relative importance of groundwater discharge in supporting streamflow across the basin. The purpose of this fact sheet is to provide a brief summary of the CRB FAS results as the study nears completion. Although some project results are still in the later stages of review and publication, this fact sheet provides an overall description of the work completed and cites the publications in which additional information can be found.

  17. Viet Nam -- attractive plays in a new geological province

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canh, T.; Ha, D.V.; Carstens, H.

    1994-03-14

    Vietnam Oil and Gas Corp. (Petrovietnam) has, through 1993 and since the Vietnamese government first declared its new open door policy more than 6 years ago, issued 27 production sharing contracts to Asian, Australian, European, and North American companies. The most prospective part of Viet Nam's shallow water acreage is now being explored intensely. This acreage is concentrated in the Nam Con Son basin, the Cuu Long basin (previously known as the Mekong basin), the Malay-Thochusia basin (all off southern Viet Nam) and the Quang Ngai graben, the Song Hong basin, and the Red River delta (all off northern Vietmore » Nam). With 6.3 million metric tons of crude oil pumped in 1993 from White Tiger (Bach Ho) field, and with Dragon (Rong) and Big Bear (Dai Hung) fields soon to be brought on stream, offshore Viet Nam is considered to be very attractive by the international oil industry, and the country's potential is still far from being fully appraised. The paper describes the exploration history of Viet Nam, sedimentary basins, play types, source rocks, and terms and conditions of licensing.« less

  18. Late movement of basin-edge lobate scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J.; Anand, M.

    2017-05-01

    Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size-frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∼north-south at low latitudes and ∼east-west at higher latitudes. However, reassessing these landforms' orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated.

  19. The Hack's law applied to young volcanic basin: the Tahiti case

    NASA Astrophysics Data System (ADS)

    Ye, F.; Sichoix, L.; Barriot, J.; Serafini, J.

    2010-12-01

    We study the channel morphology over the Tahiti island from the Hack’s law perspective. The Hack’s law is an empirical power relationship between basin drainage area and the length of its main channel. It had also been shown that drainage area becomes more elongate with increasing basin size. For typical continental basins, the exponent value lies between 0.47 for basins larger than 260,000 km2 and 0.7 for those spanning less than 20,720 km2 (Muller, 1973). In Tahiti, we extracted 27 principal basins ranging from 7 km2 to 90 km2 from a Digital Terrain Model of the island with a 5 m-resolution. We demonstrate that the Hack’s law still apply for such small basins (correlation coefficient R2=0.7) with an exponent value being approximately 0.5. It appears that the exponent value is influenced by the local geomorphic condition, and does not follow the previous study results (the exponent value decreases with increasing drainage area.) Our exponent value matches the result found w.r.t. debris-flow basins of China for drainage areas less than 100 km2 (Li et al., 2008). Otherwise, the young volcanic basins of Tahiti do not become longer and narrower with increasing basin size (R2=0.1). Besides, there is no correlation between the basin area and the basin convexity (R2=0). This means that there is no statistical change in basin shape with basin size. We present also the drainage area-slope relationship with respect to sediment or transport-limited processes. Key words: Hack’s law, channel morphology, DTM

  20. Upper mantle heterogeneity: Comparisons of regions south of Australia with Philippine Basin

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The nature of mass anomalies that occur beneath the regions of negative residual depth anomalies were identified. Residual geoid anomalies with negative residual depth anomalies are identified in the Philippine Basin (negative) and in the region south of Australia (positive and negative). In the latter region the geoid anomalies are eastward and the depth anomaly is northeast. It is suggested that the negative depth anomaly and the compensating mass excess in the uppermost mantle developed in the Eocene as the lithosphere of the west Philippine basin formed. Heating of the deeper upper mantle which causes slow surface wave velocities and negative gravity and geoid anomalies may be a younger phenomenon which is still in progress.

  1. Trocara virus: a newly recognized Alphavirus (Togaviridae) isolated from mosquitoes in the Amazon Basin.

    PubMed

    Travassos da Rosa, A P; Turell, M J; Watts, D M; Powers, A M; Vasconcelos, P F; Jones, J W; Klein, T A; Dohm, D J; Shope, R E; Degallier, N; Popov, V L; Russell, K L; Weaver, S C; Guzman, H; Calampa, C; Brault, A C; Lemon, A P; Tesh, R B

    2001-01-01

    This report describes Trocara virus, a newly recognized member of the genus Alphavirus, that has been isolated from Aedes serratus mosquitoes collected at two widely separated sites in the Amazon Basin. Biological, antigenic and genetic characteristics of the new virus are given. Results of these studies indicate that Trocara virus is the first member of a newly discovered antigenic complex within the family Togaviridae genus Alphavirus. The public health and veterinary importance of Trocara virus is still unknown.

  2. A report from Lake Tahoe: Observation from an ideal platform for adaptive management

    Treesearch

    Dennis D. Murphy; Patricia N. Manley

    2009-01-01

    The Lake Tahoe basin is in environmenal distress. The lake is still one of the world’s most transparent bodies of water, but its fabled clarity has declined by half since discovery of the high-mountain lake basin by explorers a century and a half ago. At that time, incredibly, objects could be observed on the lake’s bottom a hundred feet down. Two-thirds of the lake’s...

  3. Temperature, Geochemistry, and Gravity Data of the Tularosa Basin

    DOE Data Explorer

    Nash, Greg

    2017-06-16

    This submission contains multiple excel spreadsheets and associated written reports. The datasets area are representative of shallow temperature, geochemistry, and other well logging observations made across WSMR (white sands missile range); located to the west of the Tularosa Basin but still within the study area. Written reports accompany some of the datasets, and they provide ample description of the methodology and results obtained from these studies. Gravity data is also included, as point data in a shapefile, along with a written report describing that particular study.

  4. A glacier runoff extension to the Precipitation Runoff Modeling System

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Viger, Roland

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  5. Design flood hydrograph estimation procedure for small and fully-ungauged basins

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Petroselli, A.

    2013-12-01

    The Rational Formula is the most applied equation in practical hydrology due to its simplicity and the effective compromise between theory and data availability. Although the Rational Formula is affected by several drawbacks, it is reliable and surprisingly accurate considering the paucity of input information. However, after more than a century, the recent computational, theoretical, and large-scale monitoring progresses compel us to try to suggest a more advanced yet still empirical procedure for estimating peak discharge in small and ungauged basins. In this contribution an alternative empirical procedure (named EBA4SUB - Event Based Approach for Small and Ungauged Basins) based on the common modelling steps: design hyetograph, rainfall excess, and rainfall-runoff transformation, is described. The proposed approach, accurately adapted for the fully-ungauged basin condition, provides a potentially better estimation of the peak discharge, a design hydrograph shape, and, most importantly, reduces the subjectivity of the hydrologist in its application.

  6. The geologic history of the Moon

    USGS Publications Warehouse

    Wilhelms, Don E.; with sections by McCauley, John F.; Trask, Newell J.

    1987-01-01

    More than two decades of study have established the major features of lunar geologic style and history. The most numerous and significant landforms belong to a size-morphology series of simple craters, complex craters, and ringed basins that were formed by impacts. Each crater and basin is the source of primary ejecta and secondary craters that, collectively, cover the entire terra. The largest impacts thinned, weakened, and redistributed feldspathic terracrustal material averaging about 75 km in thickness. Relatively small volumes of basalt, generated by partial remelting of mantle material, were erupted through the thin subbasin and subcrater crust to form the maria that cover 16 percent of the lunar surface. Tectonism has modified the various stratigraphic deposits relatively little; most structures are confined to basins and large craters. This general geologic style, basically simple though complex in detail, has persisted longer than 4 aeons (1 aeon = 109 yr). Impacts began to leave a visible record about 4.2 aeons ago, after the crust and mantle had differentiated and the crust had solidified. At least 30 basins and 100 times that many craters larger than 30 km in diameter were formed before a massive impact created the Nectaris basin about 3.92 aeons ago. Impacts continued during the ensuing Nectarian Period at a lesser rate, whereas volcanism left more traces than during pre-Nectarian time. The latest basin-forming impacts created the giant and still-conspicuous Imbrium and Orientale basins during the Early Imbrian Epoch, between 3.85 and 3.80 aeons ago. The rate of crater-forming impacts continued to decline during the Imbrian Period. Beginning in the Late Imbrian Epoch, mare-basalt flows remained exposed because they were no longer obscured by many large impacts. The Eratosthenian Period (3.2-1.1 aeons ago) and the Copernican Period (1.1 aeons ago to present) were times of lesser volcanism and a still lower, probably constant impact rate. Copernican impacts created craters whose surfaces have remained brighter and topographically crisper than those of the more ancient lunar features.

  7. Spatial distribution and output characteristics of nonpoint source pollution in the Dongjiang River basin in south China

    NASA Astrophysics Data System (ADS)

    Rong, Q. Q.; Su, M. R.; Yang, Z. F.; Cai, Y. P.; Yue, W. C.; Dang, Z.

    2018-02-01

    In this research, the Dongjiang River basin was taken as the study area to analyze the spatial distribution and output characteristics of nonpoint source pollution, based on the export coefficient model. The results showed that the annual total nitrogen and phosphorus (i.e. TN and TP) loads from the Dongjiang River basin were 67916114.6 and 7215279.707 kg, respectively. Residents, forestland and pig were the main contributors for the TN load in the Dongjiang River basin, while residents, forestland and rainfed croplands were the three largest contributors for the TP load. The NPS pollution had a significant spatial variation in this area. The pollution loads overall decreased from the northeast to the southwest part of the basin. Also, the pollution loads from the gentle slope area were larger than those from steep slope areas. Among the ten tributary watersheds in the Dongjiang River basin, the TN and TP loads from the Hanxi River watershed were the largest. On the contrary, the Gongzhuang River watershed contributed least to the total pollution loads of the Dongjiang River basin. For the average pollution load intensities, Hanxi River watershed was still the largest. However, the smallest average TN and TP load intensities were in the Xinfeng River watershed.

  8. On identifying relationships between the flood scaling exponent and basin attributes.

    PubMed

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  9. Investigation of lunar crustal structure and isostasy

    NASA Technical Reports Server (NTRS)

    Thurber, Clifford H.

    1987-01-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.

  10. Review of the epidemiology of cervical cancer in the Pacific Basin.

    PubMed

    Lee, H P; Cuello, C; Singh, K

    1982-01-01

    Cervical cancer, despite its declining incidence in the developed countries, is still an important cancer in the less-developed world. The mortality and incidence trends for some of the countries in the Pacific Basin are presented. Among the high-risk communities and populations are Colombia (Cali), New Zealand (Maoris), El Paso, Texas (Latin Americans), California (blacks), Hawaii (Hawaiians), Singapore (Chinese and Indians), Hong Kong, Philippines (Manila), New Caledonia (Melanesians), Alaska (American Indians), Fiji. The major risk factors are summarized, with age at first coitus as the key factor; some doubts are expressed about the validity of multiple sexual partners and circumcision of male partners as risk factors. The likely role of herpesvirus is still being studied, and the possible increase in incidence of cervical cancer among younger women could be attributed to greater sexual promiscuity in that group. Some suggestions for future research are made.

  11. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  12. To Tip or Not to Tip: The Case of the Congo Basin Rainforest Realm

    NASA Astrophysics Data System (ADS)

    Pietsch, S.; Bednar, J. E.; Fath, B. D.; Winter, P. A.

    2017-12-01

    The future response of the Congo basin rainforest, the second largest tropical carbon reservoir, to climate change is still under debate. Different Climate projections exist stating increase and decrease in rainfall and different changes in rainfall patterns. Within this study we assess all options of climate change possibilities to define the climatic thresholds of Congo basin rainforest stability and assess the limiting conditions for rainforest persistence. We use field data from 199 research plots from the Western Congo basin to calibrate and validate a complex BioGeoChemistry model (BGC-MAN) and assess model performance against an array of possible future climates. Next, we analyze the reasons for the occurrence of tipping points, their spatial and temporal probability of occurrence, will present effects of hysteresis and derive probabilistic spatial-temporal resilience landscapes for the region. Additionally, we will analyze attractors of forest growth dynamics and assess common linear measures for early warning signals of sudden shifts in system dynamics for their robustness in the context of the Congo Basin case, and introduce the correlation integral as a nonlinear measure of risk assessment.

  13. Structural styles of the paradox basin: Something to consider in a basin dominated by stratigraphic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, G.M.

    1993-08-01

    The Paradox basin has produced a considerable amount of oil and gas from Pennsylvanian and Mississippian reservoirs. Most of the production has been from stratigraphic traps associated with subtle rejuvenated basement structures. Only the Blanding sub-basin and west flank of the salt anticlines (Lisbon Valley to Salt Wash fields) have been explored in sufficient quantity to classify as the mature parts of the basin, and even in these areas, new fields are currently being discovered. The majority of the basin still remains an exploration frontier. Certainly, structural and stratigraphic conditions analogous to those in the proven areas exist in muchmore » of these underexplored parts of the Paradox basin, but the potential for new and different types of hydrocarbon traps should not be overlooked. Structural styles present in the Paradox basin range from high-angle reverse, to normal, to inverted, which records different periods of crustal shortening and extension. To provide a full appreciation of the variety and complexities of structural styles in the Paradox basin and their influence on the orientation and distribution of different stratigraphic mechanisms, comparisons are made in the following areas: the Uncompahgre frontal fault zone, salt anticlines, Cane Creek anticline, Nequoia arch, Blanding basin, and Hogback monocline. To demonstrate the episodic nature of tectonism throughout the entire Phanerozoic Era, potential and proven hydrocarbon trapping styles are illustrated in strata ranging from Devonian to Late Pennsylvanian age. In particular, the Pennsylvanian Paradox evaporites and equivalent shelf carbonates and siliciclastics provide an excellent example of chronostratigraphic and glacioeustatic relationships. Due to the proven prolific nature of these Pennsylvanian reservoirs, the interrelationships of structure to stratigraphy in the Blanding basin and along the Cane Creek anticline will be emphasized.« less

  14. Large Sanjiang basin groups outside of the Songliao Basin Meso-Senozoic Tectonic-sediment evolution and hydrocarbon accumulation

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.

    2015-12-01

    The basis geological problem is still the bottleneck of the exploration work of the lager Sanjiang basin groups. In general terms, the problems are including the prototype basins and basin forming mechanism of two aspects. In this paper, using the field geological survey and investigation, logging data analysis, seismic data interpretation technical means large Sanjiang basin groups and basin forming mechanism of the prototype are discussed. Main draw the following conclusions: 1. Sanjiang region group-level formation can be completely contrasted. 2. Tension faults, compressive faults, shear structure composition and structure combination of four kinds of compound fracture are mainly developed In the study area. The direction of their distribution can be divided into SN, EW, NNE, NEE, NNW, NWW to other groups of fracture. 3. Large Sanjiang basin has the SN and the EW two main directions of tectonic evolution. Cenozoic basins in Sanjiang region in group formation located the two tectonic domains of ancient Paleo-Asian Ocean and the Pacific Interchange. 4. Large Sanjiang basin has experienced in the late Mesozoic tectonic evolution of two-stage and nine times. The first stage, developmental stage basement, they are ① Since the Mesozoic era and before the Jurassic; ② Early Jurassic period; The second stage, cap stage of development, they are ③ Late Jurassic depression developmental stages of compression; ④ Early Cretaceous rifting stage; ⑤ depression in mid-Early Cretaceous period; ⑥ tensile Early Cretaceous rifting stage; ⑦ inversion of Late Cretaceous tectonic compression stage; ⑧ Paleogene - Neogene; ⑨ After recently Ji Baoquan Sedimentary Ridge. 5. Large Sanjiang basin group is actually a residual basin structure, and Can be divided into left - superimposed (Founder, Tangyuan depression, Hulin Basin), residual - inherited type (Sanjiang basin), residual - reformed (Jixi, Boli, Hegang basin). there are two developed depression and the mechanism of rifting. 6. Sanjiang Basin Suibin Depression, Tangyuan depression, Jixi Cretaceous Tangyuan and Fangzheng rift is the key for further exploration. Yishu graben is a large core of Sanjiang region to find oil, and Paleogene basin is the focus of the external layer system exploration.

  15. Hydraulic Design of Stepped Spillways Workshop

    USDA-ARS?s Scientific Manuscript database

    Stepped chutes and spillways are commonly used for routing discharges during flood events. In addition, stepped chutes are used for overtopping protection of earthen embankments. Stepped spillways provide significant energy dissipation due to its stepped feature; as a result, the stilling basin as...

  16. Hydraulic jump stilling basins

    USDA-ARS?s Scientific Manuscript database

    An outlet works is a combination of structures and equipment required for the safe operation and control of water released from a reservoir to serve various purposes like regulating stream flow and water quality; releasing floodwater; and/or providing irrigation, municipal, or industrial water. Out...

  17. New features of the Moon revealed and identified by CLTM-s01

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Ping, Jinsong; Su, Xiaoli; Shu, Rong; Tang, Geshi

    2009-12-01

    Previous analyses showed a clear asymmetry in the topography, geological material distribution, and crustal thickness between the nearside and farside of the Moon. Lunar detecting data, such as topography and gravity, have made it possible to interpret this hemisphere dichotomy. The high-resolution lunar topographic model CLTM-s01 has revealed that there still exist four unknown features, namely, quasi-impact basin Sternfeld-Lewis (20°S, 232°E), confirmed impact basin Fitzgerald-Jackson (25°N, 191°E), crater Wugang (13°N, 189°E) and volcanic deposited highland Yutu (14°N, 308°E). Furthermore, we analyzed and identified about eleven large-scale impact basins that have been proposed since 1994, and classified them according to their circular characteristics.

  18. Investigation of lunar crustal structure and isostasy. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurber, C.H.

    1987-07-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less

  19. Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirmani, K.U.; Elhaj, F.

    1988-08-01

    The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less

  20. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Person, M. A.

    2008-12-01

    The hydrodynamic consequences of a glaciation/deglaciation cycle within an intercratonic sedimentary basin on subsurface transport processes is assessed using numerical models. In our analysis we consider the effects of mechanical ice sheet loading, permafrost formation, variable density fluids, and lithospheric flexure on solute/isotope transport, groundwater residence times, and transient hydraulic head distributions. The simulations are intended to apply, in a generic sense, to intercratonic sedimentary basins that would have been near the southern limit of the Laurentide Ice Sheet during the last glacial maximum (˜20 ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid flow and recharge rates are strongly elevated during glaciation as compared to nonglacial periods. Furthermore, our results illustrate that steady state hydrodynamic conditions in these basins are probably never reached during a 32.5 ka cycle of advance and retreat of a wet-based ice sheet. Present-day hydrogeological conditions across formerly glaciated areas are likely to still reflect the impact of the last glaciation and associated processes that ended locally more than 10 ka B.P. Our results reveal characteristic spatial patterns of underpressure and overpressure that occur in aquitards and aquifers, respectively, as a result of recent glaciation. The calculated emplacement of low salinity, isotopically light glacial meltwater along basin margins is roughly consistent with observations from formerly glaciated basins in North America. The modeling presented in this study will help to improve the management of groundwater resources in formerly glaciated basins as well as to evaluate the viability on geological timescales of nuclear waste repositories located at high latitudes.

  1. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    PubMed

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  2. Multilayered aquifer modeling in the coastal sedimentary basin of Togo

    NASA Astrophysics Data System (ADS)

    Gnazou, M. D. T.; Sabi, B. E.; Lavalade, J. L.; Schwartz, J.; Akakpo, W.; Tozo, A.

    2017-01-01

    This work is a follow up to the hydrogeological synthesis done in 2012 on the coastal sedimentary basin of Togo. That synthesis notably emphasized the lack of piezometric monitoring in the last thirty years. This has kept us from learning about the dynamics and evolution of the resource in the context of rapidly increasing demand. We are therefore presenting a model for understanding flows, and its main objectives are to provide an initial management tool that should evolve with time as new data (piezometric monitoring, pumping tests, etc.) become available, and to determine what new information can be obtained that will help policy makers to manage the resource better. The results of steady state flow calibration have shown that the aquifer of the Continental Terminal overexploited in the West, can still be exploited in the East of the basin, the Maastrichtian on the whole basin. On the other hand, exploitation of Paleocene aquifers should be done with care.

  3. High resolution seismic stratigraphy and sedimentological signature of the Late Quaternary deposits in the northern Western Basin (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Corradi, N.; Finocchiaro, F.; Ivaldi, R.; Melis, R.; Pittà, A.

    2003-04-01

    The northern Western Basin is a sector of the continental shelf of the Western Ross Sea that is considered to be the natural northward extension of the Drygalski Basin by many authors. The literature provides a general model of the evolution of the basin and the recent papers propose a seismic stratigraphy for the post-Miocene sedimentation. However, the sedimentary processes during the Late Quaternary and, in particular, the Last Glacial Maximum (LGM) are still little understood (Brambati et al., 2001). In this paper we present the preliminary results of the very high-resolution seismic surveys (Sub Bottom Profiler, Huntec Deep Tow Boomer and Sparker) and their calibration with the sediment samples collected during the three Marine Geology Campaigns of the PNRA (XIII, XIV and XVII), with the scientific objective of the research to investigate the role of the East Antarctic Ice Sheet (EAIS) in the morphogenesis and deposition of the Late Quaternary sedimentary series.

  4. Decentralized and cost-effective solar water purification system for remote communities

    NASA Astrophysics Data System (ADS)

    Abd-ur-Rehman, Hafiz M.; Shakir, Sehar; Atta-ur-Razaq; Saqib, Hamza; Tahir, Saad

    2018-05-01

    In this study, a modified stepped solar still is proposed for water desalination. The overall objective of this work is to develop and test the proposed still design to identify the productivity enhancement as compared to conventional basin type solar still. The proposed design takes the advantage of its stepped configuration that allows the water stream to maintain a minimum desirable water column height and the water flow through the stages under the force of gravity. A minimum water depth in the still results in a higher rate of evaporation. The still is also incorporated with Fresnel lens to increase the water temperature that eventually increases the rate of water evaporation. Another important aspect of this design is the incorporation of phase-change-material (PCM) to increase the operational hours of the solar still. Consequently, daily productivity of fresh water is increased.

  5. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  6. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable

    PubMed Central

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848

  7. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    PubMed

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-08-02

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

  8. The Pomona-Rincon Road and Its Place in the Regional Transportation Network

    DTIC Science & Technology

    1989-10-19

    on American soil by diverting north of Pilot Knob (near Yuma in Imperial County) to Indian Wells, near Indio. This proved impossible, due to desert...Overland Mail, and then the Fort Yuma to Los Angeles Road. Portions of this route are still extant in the Prado Basin south of Euclid Avenue. The Serrano...Emigrant Trail. It became the route of the Butterfield Overland Mail, and then the Fort Yuma to Los Angeles Road. Portions of this route are still extant in

  9. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    NASA Astrophysics Data System (ADS)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases are present in the Faroe-Shetland Basin, but are not recognisable in the Vøring Basin. (iv) Based on seismic data only, a Permian/Triassic rift phase can be suggested for the Vøring Basin, but the evidence for an equivalent rift phase in the Faroe-Shetland Basin is inconclusive. The present study demonstrates that basins developing above a complex mosaic of basement terrains accreted during orogenic phases can exhibit significant differences in their architecture. The origin of these differences may be considered to be a result of inherited pre-existing large-scale structures (e.g. pre-existing fault blocks) and/or a non-uniform crustal thickness prior to rifting.

  10. The effect of size and composition on structural transitions in monometallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rossi, Kevin; Pavan, Luca; Soon, YeeYeen; Baletto, Francesca

    2018-02-01

    Predicting the morphological stability of nanoparticles is an essential step towards the accurate modelling of their chemophysical properties. Here we investigate solid-solid transitions in monometallic clusters of 0.5-2.0 nm diameter at finite temperatures and we report the complex dependence of the rearrangement mechanism on the nanoparticle's composition and size. The concerted Lipscomb's Diamond-Square-Diamond mechanisms which connects the decahedral or the cuboctahedral to the icosahedral basins, take place only below a material dependent critical size above which surface diffusion prevails and leads to low-symmetry and defected shapes still belonging to the initial basin.

  11. Summary appraisals of the Nation's ground-water resources; Missouri Basin region

    USGS Publications Warehouse

    Taylor, O. James

    1978-01-01

    Comprehensive water-management planning in the Missouri Basin Region will require periodic or continuing inventory of precipitation, streamflow, surface-water storage, and ground water. Water demands for irrigation, industrial, public supply, and rural use are increasing rapidly. Reliance on ground-water supplies is increasing even though in many areas the ground water is still mostly undeveloped. Optimal use of water supplies will require the establishment of realistic goals and carefully conceived water-management plans, each of which will necessarily be based on an adequate baseline of hydrologic data and knowledge of the highly variable hydrologic systems in the region.

  12. Late Alpine to recent thick-skinned tectonics of the central Swiss Molasse Basin, Canton of Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Mock, Samuel; Allenbach, Robin; Wehrens, Philip; Reynolds, Lance; Kurmann-Matzenauer, Eva; Michael, Salomè; Herwegh, Marco

    2017-04-01

    The Swiss Molasse Basin (SMB) forms part of the North Alpine Foreland Basin. It is a typical peripheral foreland basin, which developed in Paleogene and Neogene times in response to flexural bending of the European lithosphere induced by the orogenic loading of the advancing Alpine thrust wedge. The tectonics of the SMB and the role of Paleozoic and Mesozoic structures are still poorly understood. It is widely accepted that during the main deformation phase of the Jura fold-and-thrust belt, the SMB was riding piggy-back above a major detachment horizon situated within Triassic evaporites. In recent years it has been observed that the Jura fold-and-thrust belt is today deforming in a thick-skinned tectonic style. As for the western and central SMB, most authors still argue in favor of a classical foreland type, thin-skinned style of deformation. Based on the geological 3D modeling of seismic interpretations, we present new insights into the structural configuration of the central SMB. Revised and new interpretations of 2D reflection seismic data from the 1960s to the 1980s reveal a major strike-slip fault zone affecting not only the Mesozoic and Cenozoic cover, but also the crystalline basement beneath. The fault zone reactivated late Paleozoic synsedimentary normal faults bounding a Permo-Carboniferous trough. Basement-involved thrusting observed in the southern part of the SMB seems to be controlled by the presence of slightly inverted Permo-Carboniferous troughs as well. These observations, combined with a compiled structural map and the distribution of recent earthquake hypocenters suggest a late stage, NNW-SSE directed, compressional thick-skinned and strike-slip dominated tectonic activity of the central SMB, post-dating the main deformation phase of the Jura fold-and-thrust belt. This still ongoing deformation might be related to the slab rollback of the European plate and the associated lower crustal delamination as recently suggested by Singer et al. (2014). References: Singer, J., Diehl, T., Husen, S., Kissling, E., Duretz, T., 2014. Alpine lithosphere slab rollback causing lower crustal seismicity in northern foreland. Earth Planet. Sci. Lett. 397, 42-56. doi:10.1016/j.epsl.2014.04.002

  13. 27. A DOWNSTREAM VIEW FROM THE LOWER END OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. A DOWNSTREAM VIEW FROM THE LOWER END OF THE OUTLET CONDUIT, SHOWING STILLING BASIN BAFFLE PIERS.... Volume XVII, No. 17, November 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  14. Habitat and co-occurrence of native and invasive crayfish in the Pacific Northwest, USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; McCreary, Brome

    2013-01-01

    Biological invasions can have dramatic effects on freshwater ecosystems and introduced crayfish can be particularly impacting. We document crayfish distribution in three large hydrographic basins (Rogue, Umpqua, Willamette/Columbia) in the Pacific Northwest USA. We used occupancy analyses to investigate habitat relationships and evidence for displacement of native Pacifastacus leniusculus (Dana, 1852) by two invaders. We found invasive Procambarus clarkii (Girard, 1852), in 51 of 283 sites and in all three hydrographic basins. We found invasive Orconectes n. neglectus (Faxon, 1885) at 68% of sites in the Rogue basin and provide first documentation of their broad distribution in the Umpqua basin. We found P. clarkii in both lentic and lotic habitats, and it was positively associated with manmade sites. P. leniusculus was positively associated with lotic habitats and negatively related to manmade sites. In the Rogue and Umpqua basins, O. n. neglectus and P. leniusculus were similar in their habitat associations. We did not find a negative relationship in site occupancy between O. n. neglectus and P. leniusculus. Our data suggest that P. clarkii has potential to locally displace P. leniusculus. There is still time for preventive measures to limit the spread of the invasive crayfish in this region.

  15. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  16. N(50) Crater Retention Ages for an Expanded Inventory of Lunar Basins: Evidence for an Early Heavy Bombardment and a Late Heavy Bombardment?

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Burgess, Emily

    2012-01-01

    LOLA topography and LOLA-derived crustal thickness data provide evidence for a population of impact basins on the Moon that is likely a factor 2 larger than the classical lists based on photogeology. Frey (2012) determined N(50) crater retention ages (CRAs) for 83 candidate basins > 300 km in diameter by counting LOLA-identified craters superimposed over the whole area of the basins. For some basins identified in topography or model crustal thickness it is not possible to unambiguously identify the crater rim as is traditionally done. Also, Quasi-Circular Depressions (QCDs) > 50 km in diameter are recognizable in the mare-filled centers of many basins. Even though these are not apparent in image data, they likely represent buried impact craters superimposed on the basin floor prior to mare infilling and so should be counted in determining the age of the basin. Including these as well as the entire area of the basins improves the statistics, though the error bars are still large when using only craters > 50 km in diameter. The distribution of N(50) CRAs had two distinct peaks which did not depend on whether the basins were named (based on photogeology) or recognized first in topography or crustal thickness data. It also did not depend on basin diameters (both larger and smaller basins made up both peaks) and both peaks persisted even when weaker candidates were excluded. Burgess (2012, unpublished data) redid the counts for 85 basins but improved on the earlier effort by adjusting the counting area where basins overlap. The two peak distribution of N(50) ages was confirmed, with a younger peak at N(50) 40-50 and an older peak at N(50) 80-90 (craters > 50 km diameter per million square km). We suggest this could represent two distinct populations of impactors on the Moon: one producing an Early Heavy Bombardment (EHB) that predates Nectaris and the second responsible for the more widely recognized Late Heavy Bombardment (LHB).

  17. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States

    USGS Publications Warehouse

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S.; Herbert, Timothy; Andreasen, Dyke

    2012-01-01

    The water cycle in the western U.S. changed dramatically over glacial cycles. In the last 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation is hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  18. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States.

    PubMed

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S; Herbert, Timothy; Andreasen, Dyke

    2012-09-28

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  19. 'Frankie the Frog': the total transformation of a river basin as 'totalitarian' technology (Spain, 1946-1961).

    PubMed

    Camprubí, Lino

    2012-03-01

    After the Spanish Civil War (1936-1939), Francisco Franco's emphasis on dam building became so intense that it is still today associated with his dictatorial rule. Rather than being purely a personal obsession, however, this intensive period of reservoir construction was the result of the influential political role played by engineers from the early years of the regime. During the years 1946-1961 some of these engineers undertook the 'total transformation' of the Noguera Ribagorzana river basin in the Catalonian Pyrenees. But this explicitly 'totalitarian' project encountered important limitations posed both by competing state agencies and by the basin's geology. Analysing the efforts of these engineers allows for new understandings of the Francoist regime and of the place of science, technology, and the landscape within it. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ichthyofauna of Ceará-Mirim River basin, Rio Grande do Norte State, northeastern Brazil

    PubMed Central

    da Costa, Nathalia Kaluana Rodrigues; de Paiva, Roney Emanuel Costa; da Silva, Márcio Joaquim; Ramos, Telton Pedro Anselmo; Lima, Sergio Maia Queiroz

    2017-01-01

    Abstract Ichthyological studies in coastal basins of the Mid-Northeastern Caatinga ecoregion were first conducted in the early 20th century, including collections from the Ceará-Mirim River basin, in northeastern Brazil. Besides a few systematics and ecological studies, the knowledge on fishes from this watershed is still considered partial and restricted to the freshwater portion. Thus, the objective of this paper was to conduct a comprehensive ichthyological survey of the entire Ceará-Mirim River basin, from the headwaters to the estuarine area. Fish surveys were conducted from 2011 to 2016 using varied fishing gear, resulting in the record of 63 native species (24 freshwater, 15 estuarine, and 24 marine species) and two introduced species. Four species are putatively endemic to the ecoregion, and 48 consist of new records for the basin. According to the Brazilian’s threatened fish list, three species are currently classified as ‘vulnerable’ (Megalops atlanticus, Hippocampus reidi and Mycteroperca bonaci), four as ‘near threatened’ (Kryptolebias hermaphroditus, Dormitator maculatus, Lutjanus sygnagris and L. jocu) and three as ‘data deficient’ (Cheirodon jaguaribensis, Mugil curema and Sphoeroides testudineus). The Ceará-Mirim River basin does not have any protected areas and has been suffering multiple anthropogenic impacts, however the "Centro Tecnológico de Aquicultura" (Aquaculture Technological Center) of the Universidade Federal do Rio Grande do Norte (CTA/UFRN) at the lower portion of the basin may help in the conservation of the estuarine and estuarine fish species. PMID:29302231

  1. Monitoring Land Cover Change in the Lake Superior Basin

    EPA Science Inventory

    Lake Superior is the largest freshwater lake in the world by area and the third largest by volume. It is also the most pristine of the Great Lakes (Lake Superior Lakewide Management Plan 2006). Even still, Lake Superior is not without its threats ranging from chemical contamina...

  2. Geologic framework of the offshore region adjacent to Delaware

    USGS Publications Warehouse

    Benson, R.N.; Roberts, J.H.

    1989-01-01

    Several multichannel, common depth point (CDP) seismic reflection profiles concentrated in the area of the entrance to Delaware Bay provide a tie between the known onshore geology of the Coastal Plain of Delaware and the offshore geology of the Baltimore Canyon Trough. The data provide a basis for understanding the geologic framework and petroleum resource potential of the area immediately offshore Delaware. Our research has focused on buried early Mesozoic rift basins and their geologic history. Assuming that the buried basins are analogous to the exposed Newark Supergroup basins of Late Triassic-Early Jurassic age, the most likely possibility for occurrence of hydrocarbon source beds in the area of the landward margin of the Baltimore Canyon Trough is presumed to be lacustrine, organic-rich shales probably present in the basins. Although buried basins mapped offshore Delaware are within reach of drilling, no holes have been drilled to date; therefore, direct knowledge of source, reservoir, and sealing beds is absent. Buried rift basins offshore Delaware show axial trends ranging from NW-SE to NNE-SSW. Seismic reflection profiles are too widely spaced to delineate basin boundaries accurately. Isopleths of two-way travel time representing basin fill suggest that, structurally, the basins are grabens and half-grabens. As shown on seismic reflection profiles, bounding faults of the basins intersect or merge with low-angle fault surfaces that cut the pre-Mesozoic basement. The rift basins appear to have formed by Mesozoic extension that resulted in reverse motion on reactivated basement thrust faults that originated from compressional tectonics during the Paleozoic. Computer-plotted structure contour maps derived from analysis of seismic reflection profiles provide information on the burial history of the rift basins. The postrift unconformity bevels the rift basins and, in the offshore area mapped, ranges from 2000 to 12,000 m below present sea level. The oldest postrift sediments that cover the more deeply buried rift basins are estimated to be of Middle Jurassic age (Bajocian-Bathonian), the probable time of opening of the Atlantic Ocean basin and onset of continental drift about 175-180 m.y. ago. By late Oxfordian-early Kimmeridgian time, the less deeply buried basins nearshore Delaware had been covered. A time-temperature index of maturity plot of one of the basins indicates that only dry gas would be present in reservoirs in synrift rocks buried by more than 6000 m of postrift sediments and in the oldest (Bathonian?-Callovian?) postrift rocks. Less deeply buried synrift rocks landward of the basin modeled might still be within the oil generation window. ?? 1989.

  3. Carrying capacity of water resources in Bandung Basin

    NASA Astrophysics Data System (ADS)

    Marganingrum, D.

    2018-02-01

    The concept of carrying capacity is widely used in various sectors as a management tool for sustainable development processes. This idea has also been applied in watershed or basin scale. Bandung Basin is the upstream of Citarum watershed known as one of the national strategic areas. This area has developed into a metropolitan area loaded with various environmental problems. Therefore, research that is related to environmental carrying capacity in this area becomes a strategic issue. However, research on environmental carrying capacity that has been done in this area is still partial either in water balance terminology, land suitability, ecological footprint, or balance of supply and demand of resources. This paper describes the application of the concept of integrated environmental carrying capacity in order to overcome the increasing complexity and dynamic environmental problems. The sector that becomes the focus of attention is the issue of water resources. The approach method to be carried out is to combine the concept of maximum balance and system dynamics. The dynamics of the proposed system is the ecological dynamics and population that cannot be separated from one another as a unity of the Bandung Basin ecosystem.

  4. National Dam Safety Program. Still Lake Dam (Inventory Number N.Y. 1266), Long Island Basin, Westchester County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-05

    Location The dam is located in Ossining , Westchester County, New York. The dam is located approximately four miles north- east of the City of... Ossining . c. Size Classification The dam has a structural height of 16 feet and a reservoir storage capacity of 150 acre-feet. The dam is clas- sified as...President of the Association is Mr. Barry Shainman, Adams Road, Ossining , New York, 10562, Telephone No. (914) 762-118C. f. Purpose Still Lake Dam

  5. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  6. Influence of the Onion Creek salt diapir on the late Cenozoic history of Fisher Valley, southeastern Utah.

    USGS Publications Warehouse

    Colman, Steven M.

    1983-01-01

    Apparently, several pulses of salt flowed into the diapir between about 2-3 and 0.25Myr ago, and the diapir may still be active. The rising salt diapir impeded the flow of ancestral Fisher Creek, causing deposition of more than 125m of basin-fill sediments, and eventually diverted the creek down Cottonwood graben to the Dolores River about 0.25Myr ago. Onion Creek has eroded headward from the Colorado River, through both the diapir and the basin-fill sediments, and is about to capture Fisher Creek, restoring the original drainage course. -from Author

  7. Computer-Aided Structural Engineering (CASE) Project. CBASIN--Structural Design of Saint Anthony Falls Stilling Basins According to Corps of Engineers Criteria for Hydraulic Structures. Computer Program X0098

    DTIC Science & Technology

    1989-08-01

    was entered as 1 in line four. Its values are entered under the following prompting message: UNIT WGT UNIT WGT LAT SOIL COEF DEPTH WIDTH MOIST...basins, tuese thick- A67 54 1 16 Hsi/2 : \\l 2 7 >- 9 >- 0x HSl/2 L 3 U- HSV /2 ( \\ i ^\\^ (J-HSl)/2 ! ^ I TYPE(A) i 6 N/2 : 1 2...program uses working stress analysis in accordance with Corps of Engineers EM 1110- 1 -2101, "Working Stresses." C METHODS D. EQUIPMENT DETAILS

  8. Tectonic Evolution of the Northern Venezuela Margin and the Onset of the Lesser Antilles Subduction Zone

    NASA Astrophysics Data System (ADS)

    Zitter, T.; Rangin, C.

    2013-05-01

    The Lesser Antilles active island arc marks the eastern boundary of the Caribbean plate, where the Atlantic oceanic crust is subducted. Geodynamic history of the Grenada and Tobago basins, accepted as both the back arc and fore arc basins respectively for this convergent zone, is the key for a better understanding of the Antilles arc subduction onset. Still, recent studies propose that these two basins formed as a single paleogene depocenter. Analysis of industrial and academical seismic profiling supports this hypothesis, and shows these basins are two half-graben filled by 15 kilometers of cenozoic sediments. The seismic profiles across these basins, and particularly the Geodinos Bolivar seismic profiles, indicate that the Antilles magmatic arc develops in the midst of the previously-extended Grenada-Tobago basin from Miocene time to present. The pre-cenozoic basement of the Grenada-Tobago basin can be traced from the Aves ridge to the Tobago Island where cretaceous meta-volcanic rocks are cropping out. Therefore, this large basin extension has been initiated in early Paleocene time during stretching or subsidence of the great cretaceous Caribbean arc and long time before the onset of the lesser Antilles volcanic arc. The question arises for the mechanism responsible of this intra-plate extension. The Tobago Ridge consists of the backstop of the Barbados prism. The innermost wedge is particularly well imaged on seismic data along the Darien Ridge, where the isopach paleogene sediments are jointly deformed in latest Oligocene. This deformation is starved with the early miocene piggy-back basin. Hence, we conclude the innermost wedge in contact with the butresss is late Oligocene in age and can be considered as the onset of the subduction along the Antilles arc. These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  9. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    NASA Astrophysics Data System (ADS)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may similarly be applied to the seismic interpretation of the natural complex salt structures.

  10. Concerns about irrigation efficiency as an adaptation measure to cope with droughts and climate change in semi-arid basins

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Henriquez, L.; Melo, O.

    2016-12-01

    As expected in the late 1960s, the Paloma reservoir was built in the Limari basin in the semi-arid region in central Chile with the premise that climate conditions of the past, including the recurrence of dry and wet periods, were going to repeat in the future. That was in fact the case for almost 30 years after the reservoir was built. During this period water supplies from the reservoir were reliable and irrigation efficiency was improved with the result of irrigated land in the basin increasing four times especially with high value-permanent-water-consumption crops (fruits, orchards). Since 2003, during a mega-drought that has affected large proportions of central Chile, inflows to the Paloma reservoir have never again equaled or surpassed average historic flows. The refill of the reservoir, an event that happened every 3-4 years has not occurred in the last 13 years. And the capacity of the basin to accommodate to such a drastic reduction in water availability is no longer present because of the already large "efficient" and permanent use of water. The results in terms of agriculture losses and runoff at the outlet of the basin have been dramatic. Some 400 kms. south of the Limari basin, with higher precipitation levels but still in the semi-arid region in Chile is located the Maipo basin home to the 6 million people city of Santiago and around 250,000 has of irrigated land. Irrigation efficiency is also improving in this basin with savings being used mostly to supply drinking water supply shortages via transfer of water rights. Considering costly infrastructure alternatives, adaptation to climate change projections in this basin will likely extend the improvements in irrigation efficiency most likely affecting downstream environmental uses and reducing overall resilience of the basin to cope with droughts.

  11. Thermal regime of the Great Basin and its implications for enhanced geothermal systems and off-grid power

    USGS Publications Warehouse

    Sass, John H.; Walters, Mark A.

    1999-01-01

    The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.

  12. Evapotranspiration seasonality across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  13. Deep structure of Porcupine Basin and nature of the Porcupine Median Ridge from seismic refraction tomography

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  14. Preliminary petroleum resource estimates for Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingston, J.

    1986-05-01

    Of about 44 sedimentary basins along the 2900 mi east-west extent of Indonesia, 13 basins are believed to contain practically all of Indonesia's future petroleum resources. Western Indonesia, underlain by the Asian (Sunda) continental block, comprises the Sumatra-Java archipelago, the island of Kalimantan, and the intervening Sunda Shelf. This area contains almost all of the Indonesian petroleum reserves, and its exploration has reached early maturity. The reserves are concentrated in the five larger inner-arc basins of the archipelago and in the three rifted basins of the Kalimantan-Sunda Shelf area. Eastern Indonesia is essentially Irian Jaya (western New Guinea) and themore » adjoining shelf. The north edge of the Australian-New Guinea continental block has been successively rifted, compressed, and wrenched along its northern boundary with the Pacific plate. Exploration of the three major basins in this tectonic zone is still in an early stage. Preliminary most-likely estimates of the undiscovered recoverable petroleum resources of Indonesia are approximately 7 billion bbl of oil and 70 tcf of gas (in addition to an estimated 70 tcf of discovered gas not yet assigned to reserves). More than 90% of the undiscovered petroleum resources are in western Indonesia, but the best chances for unknown giant discoveries may be in the frontier Irian Jaya of eastern Indonesia.« less

  15. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.

  16. Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal

    NASA Astrophysics Data System (ADS)

    Phethean, Jordan J. J.; Kalnins, Lara M.; van Hunen, Jeroen; Biffi, Paolo G.; Davies, Richard J.; McCaffrey, Ken J. W.

    2016-12-01

    Accurate reconstructions of the dispersal of supercontinent blocks are essential for testing continental breakup models. Here, we provide a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana. The model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies. Vertical gravity gradient and free-air gravity anomaly maps also enable the detection of extinct mid-ocean ridge segments, which can be directly compared to several previous ocean magnetic anomaly interpretations of the Western Somali Basin. The best matching interpretations have basin symmetry around the M0 anomaly; these are then used to temporally constrain our plate tectonic reconstruction. The reconstruction supports a tight fit for Gondwana fragments prior to breakup, and predicts that the continent-ocean transform margin lies along the Rovuma Basin, not along the Davie Fracture Zone (DFZ) as commonly thought. According to our reconstruction, the DFZ represents a major ocean-ocean fracture zone formed by the coalescence of several smaller fracture zones during evolving plate motions as Madagascar drifted southwards, and offshore Tanzania is an obliquely rifted, rather than transform, margin. New seismic reflection evidence for oceanic crust inboard of the DFZ strongly supports these conclusions. Our results provide important new constraints on the still enigmatic driving mechanism of continental rifting, the nature of the lithosphere in the Western Somali Basin, and its resource potential.

  17. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  18. Messinian post-evaporitic paleogeography of the Po Plain-Adriatic region by 3D numerical modeling: implications for the Central Mediterranean desiccation during the MSC

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Garcia-Castellanos, Daniel; Di Giulio, Andrea; Fantoni, Roberto; Ghielmi, Manlio; Sternai, Pietro; Toscani, Giovanni

    2017-04-01

    In the last decades the Messinian Salinity Crisis (MSC) has been the topic of a number of studies, in particular in onshore areas, as they offer a unique opportunity to analyze the controlling factors and the geological consequences of the estimated 1.5 km sea-level drop. During the MSC, the geometry of western and eastern sides of the Mediterranean basin was similar to the present day basin while, important changes took place in the central portion as a consequence of the (still ongoing) tectonic activity of the Apennine domain. Recent high-resolution 2D seismo-stratigraphic and 1D backstripping analysis by Eni E&P group described a step-wise sea-level lowering during evaporitic and post-evaporitic MSC phases in the Po Plain-Northern Adriatic foreland (PPAF), with a sea-level drop not exceeding 900 m. Thanks to a dense grid of 2D seismic profiles, integrated with ca. 200 well logs (confidential data, courtesy of ENI E&P), a 3D reconstruction of the entire northern PPAF basin geometry and the facies distribution during the Latest Messinian time has been carried out. In this study, we performed a 3D backstripping and lithospheric scale uplift calculations of the northern PPAF basin testing the 800-900m of sea-level draw down. The resulted restored Latest Messinian paleotopography (corresponding to the bottom Pliocene in the most of the study area) and related shoreline position, strongly fit with the recentmost continental/marine facies distribution maps. The latest Messinian morphology shows deep marine basins persisting during the entire MSC period, filled by clastic turbiditic sediments and a wide emerged area along the Southern Alps margin and Friulian-Venetian basin. A 3D reconstruction of the Latest Messinian surface shows peculiar river incisions along the Southern Alps margin; these V-shape canyons perfectly fit with the present day fluvial network, dating back the drainage origin at least at the Messinian acme. Moreover, if in a well-constrained marginal region (i.e PPAF) of the Mediterranean basin a lower sea-level drop is recorded, the heterogeneous Adriatic morphology controlled the connection/isolation with the rest of the Mediterranean water body, and previous models can still be locally valid. During Messinian time the central Mediterranean was characterized by the Adriatic basin made by an almost undeformed foreland margin to the east, by the Apennine chain and emerged/shallow carbonate platforms to the west. In this view the alternation of deep and shallow basins, the consequent basement vertical motions due to different sediment loading and the sea-level fall are all factors that played fundamental roles during MSC, possibly isolating marine portions that experienced different sea-level variation and facies deposition due to a local runoff/evaporation equilibrium.

  19. Succession of the ecosystems of the Aral Sea during its transition from oligohaline to polyhaline water body

    NASA Astrophysics Data System (ADS)

    Mirabdullayev, Iskandar M.; Joldasova, Iliya M.; Mustafaeva, Zuri A.; Kazakhbaev, Saparbay; Lyubimova, Svetlana A.; Tashmukhamedov, Bekdjan A.

    2004-06-01

    During 22 field trips from 1990 to 2002 (mainly the western basin of the Large Aral) data on salinity, phytoplankton, zooplankton, zoobenthos and fish fauna have been collected. In 2002, the salinity of the western basin reached 75 ppt, while that in the eastern basin, 150 ppt. In 1999-2002, 159 species of planktonic algae have been recorded. This is approximately twice as low as recorded before. The diversity of Cyanophyta, Pyrrhophyta and Chlorophyta in particular has dropped in the past few years. As before, currently Bacillariophyta is the most diverse plankton. However, the composition of dominants has changed. Once previously dominant species, Actinocyclus ehrenbergii, vanished from the plankton of the Aral Sea and was replaced by such diatoms as Amphora coffeaformis, A. coffeaformis var. acutiuscula and Synedra tabulata var. parva. Since 1970s, a gradual decrease in the diversity of zooplankton has been taking place. Since 1997, the formerly dominant Calanipeda aquaedulcis vanished, which apparently was the reason for the emergence of Moina salina and Artemia parthenogenetica. Since 2000, artemia has been dominant in the plankton of the Aral Sea, constituting 99% of the zooplankton biomass. In the 1970-1980s, a rapid decrease in the biodiversity of the zoobenthos was observed. In the 1990s, most aboriginal and introduced species became extinct. Currently, the bivalve mollusk Syndosmya segmentum, the ostracod Cyprideis torosa and larvae of the dipteran Chironomus salinarius can still be recorded in the western basin. In the eastern basin no benthos is observed. By 1998, in the Large Aral, only five fish species survived: baltic herring Clupea harengus membras, flounder Platichthys flesus luscus, atherine Atherina boyeri caspia and bullheads Neogobius fluviatilis and Potamoschistus caucasicus. Since 2002, only flounder and atherina have been recorded in the western basin of the Large Aral. No fish have been recorded in the eastern part of the Aral Sea in 2002. With increasing salinity and transition of the Aral Sea from an oligohaline to a polyhaline water body, its biota is becoming drastically poorer. Almost all local species became extinct in the Aral; however, some still survive (including some endemics) in some lakes around the Aral Sea. In the near future, artemia will be the only animal in the Aral Sea.

  20. Analysis of the Los Angeles Basin ground subsidence with InSAR data by independent component analysis approach

    NASA Astrophysics Data System (ADS)

    Xu, B.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) has the advantages of high spatial resolution which enable measure line of sight (LOS) surface displacements with nearly complete spatial continuity and a satellite's perspective that permits large areas view of Earth's surface quickly and efficiently. However, using InSAR to observe long wavelength and small magnitude deformation signals is still significantly limited by various unmodeled errors sources i.e. atmospheric delays, orbit induced errors, Digital Elevation Model (DEM) errors. Independent component analysis (ICA) is a probabilistic method for separating linear mixed signals generated by different underlying physical processes.The signal sources which form the interferograms are statistically independent both in space and in time, thus, they can be separated by ICA approach.The seismic behavior in the Los Angeles Basin is active and the basin has experienced numerous moderate to large earthquakes since the early Pliocene. Hence, understanding the seismotectonic deformation in the Los Angeles Basin is important for analyzing seismic behavior. Compare with the tectonic deformations, nontectonic deformations due to groundwater and oil extraction may be mainly responsible for the surface deformation in the Los Angeles basin. Using the small baseline subset (SBAS) InSAR method, we extracted the surface deformation time series in the Los Angeles basin with a time span of 7 years (September 27, 2003-September 25,2010). Then, we successfully separate the atmospheric noise from InSAR time series and detect different processes caused by different mechanisms.

  1. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2001-01-01

    Regional extension of a brittle overburden and underlying salt causes differential loading that is thought to initiate the rise of reactive diapirs below and through regions of thin overburden. We present a modern example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe was formed during the Quaternary due to basin transtension and subsidence. Using newly released seismic data that are correlated to several deep wells, we determine the size of the diapir to be 13 x 10 km. its maximum depth 7.2 km. and its roof 125 m below the surface. From seismic stratigraphy, we infer that the diapir started rising during the early to middle Pleistocene as this section of the basin underwater rapid subsidence and significant extension of the overburden. During the middle to late Pleistocene, the diapir pierced through the extensionally thinned overburden, as indicated by rim synclines, which attest to rapid salt withdrawal from the surrounding regions. Slight positive topography above the diapir and shallow folded horizons indicate that it is still rising intermittently. The smaller Sedom diapir, exposed along the western bounding fault of the basin is presently rising and forms a 200 m-high ridge. Its initiation is explained by localized E-W extension due monoclinal draping over the edge of a rapidly subsiding basin during the early to middle Pleistocene, and its continued rise by lateral squeezing due to continued rotation of the Amazyahu diagonal fault. 

  2. New seismic observation on the lithosphere and slab subduction beneath the Indo-Myanmar block: Implications for continent oblique subduction and transition to oceanic slab subduction

    NASA Astrophysics Data System (ADS)

    Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.

    2017-12-01

    The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).

  3. The impact of inter-annual rainfall variability on food production in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Siderius, Christian; Biemans, Hester; van Walsum, Paul; hellegers, Petra; van Ierland, Ekko; Kabat, Pavel

    2014-05-01

    Rainfall variability is expected to increase in the coming decades as the world warms. Especially in regions already water stressed, a higher rainfall variability will jeopardize food security. Recently, the impact of inter-annual rainfall variability has received increasing attention in regional to global analysis on water availability and food security. But the description of the dynamics behind it is still incomplete in most models. Contemporary land surface and hydrological models used for such analyses describe variability in production primarily as a function of yield, a process driven by biophysical parameters, thereby neglecting yearly variations in cropped area, a process driven largely by management decisions. Agricultural statistics for northern India show that the latter process could explain up to 40% of the observed inter-annual variation in food production in various states. We added a simple dynamic land use decision module to a land surface model (LPJmL) and analyzed to what extent this improved the estimation of variability in food production. Using this improved modelling framework we then assessed if and at which scale rainfall variability affects meeting the food self-sufficiency threshold. Early results for the Ganges Basin indicate that, while on basin level variability in crop production is still relatively low, several districts and states are highly affected (RSTD > 50%). Such insight can contribute to better recommendations on the most effective measures, at the most appropriate scale, to buffer variability in food production.

  4. Identifying glacial influences on sedimentation in tectonically-active, mass flow dominated arc basins with reference to the Neoproterozoic Gaskiers glaciation (c. 580 Ma) of the Avalonian-Cadomian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Carto, Shannon L.; Eyles, Nick

    2012-06-01

    Neoproterozoic 'Avalonian-Cadomian' volcanic arc basins once lay peripheral to Gondwana and are now found around the North Atlantic Ocean in New England, Atlantic Canada and northwestern Europe as 'peri-Gondwanan terranes.' Their thick (up to 9 km) marine fills are dominated by turbidites, debrites (diamictites and variably graded conglomerates), slumps and olistostromes recording the dominance of mass flow processes in arc basins oversupplied with volcaniclastic sediment. Several diamictite horizons in these basins were identified as glacial tillites more than one hundred years ago on the basis of poor textural sorting, and the lack of any understanding of mass flow processes. An association with thin-bedded turbidite facies, then interpreted as glaciolacustrine varvites, was seen as evidence for widespread glacial conditions which is still the basis today of a near global 'Gaskiers glaciation' at c. 580 Ma, despite classic sedimentological work which shows that the 'tillites' and 'varvites' of these basins are deep marine sediment gravity flow deposits. Only in two basins (Gaskiers Formation, Avalon Peninsula in Newfoundland, and the Konnarock Formation of Virginia) is a distal and regionally-restricted glacial influence on marine sedimentation identified from ice-rafted, striated dropstones in turbidites but terrestrial 'ice-contact' facies are absent. As revealed in this study, terrestrial glacial facies may not have survived frequent volcanic activity such as seen today on glaciated active plate margin volcanoes such as Mount Rainier in Washington USA, and Cotopaxi Volcano in Ecuador where primary glacial sediment is frequently reworked by lahars, pyroclastic flows, debris avalanches and outburst floods. The weight of evidence presented in this study indicates that ice covers during the Gaskiers glaciation were not widespread across the Avalonian-Cadomian back arc basins; the deep marine Grenada Basin (Caribbean Sea) filled with turbidites, debrites (lahars) and debris avalanches from the adjacent Lesser Antilles Arc is identified here as a modern analogue for these ancient basins.

  5. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rockmore » in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.« less

  6. Using Remote Sensing to Determine Timing of High Altitude Grass Hay Growth Stages

    NASA Astrophysics Data System (ADS)

    Mefford, B.

    2015-12-01

    Remote sensing has become the standard for collecting data to determine potential irrigation consumptive use in Wyoming for the Green River Basin. The Green River Basin within Wyoming is around 10.8 million acres, located in south western Wyoming and is a sub-basin of the Colorado River Basin. Grass hay is the main crop grown in the basin. The majority of the hay is grown at elevations 7,000 feet above mean sea level. Daily potential irrigation consumptive use is calculated for the basin during the growing season (May 1st to September 30th). To determine potential irrigation consumptive use crop coefficients, reference evapotranspiration (ET) and effective precipitation are required. Currently crop coefficients are the hardest to determine as most research on crop coefficients are based at lower elevations. Values for crop coefficients for grass hay still apply to high altitude grass hay, but the hay grows at a much slower rate than low elevation grass hay. To be able to more accurately determine the timing of the growth stages of hay in this basin, time-lapse cameras were installed at two different irrigated hay fields in the basin for the 2015 growing season and took pictures automatically once a day at 1 P.M.. Both of the fields also contained a permanent research grade weather station. Imagery obtained from these cameras was used as indicators of timing of the major growth stages of the hay and the length of days between the stages. A crop coefficient value was applied every day in the growing season based on the results from the imagery. Daily potential ET was calculated using the crop coefficients and the data from the on-site weather stations. The final result was potential irrigation induced crop consumptive use for each site. Using remote sensing provided necessary information that normally would be applied arbitrarily in determining irrigation induced consumptive use in the Green River Basin.

  7. Ar-40 to Ar-39 dating of pseudotachylites from the Witwatersrand basin, South Africa, with implications for the formation of the Vredefort Dome

    NASA Technical Reports Server (NTRS)

    Trieloff, M.; Kunz, J.; Jessberger, E. K.; Reimold, W. U.; Boer, R. H.; Jackson, M. C.

    1992-01-01

    The formation of the Vredefort Dome, a structure in excess of 100 km in diameter and located in the approximate center of the Witwatersrand basin, is still the subject of lively geological controversy. It is widely accepted that its formation seems to have taken place in a single sudden event, herein referred to as the Vredefort event, accompanied by the release of gigantic amounts of energy. It is debated, however, whether this central event was an internal one, i.e., a cryptoexplosion triggered by volcanic or tectonic processes, or the impact of an extraterrestrial body. The results of this debate are presented.

  8. Preliminary bathymetry of Aialik Bay and Neoglacial changes of Aialik and Pederson glaciers, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Aialik Bay, Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of a deep basin enclosed by a terminal-moraine shoal. A much smaller basin, into which Aialik Glacier discharges icebergs, is located west of two islands and a submarine ridge. Comparison of 1978 soundings with U.S. Coast and Geodetic Survey (now National Oceanic and Atmospheric Administration) data obtained in 1912 shows shoaling of about 64 feet in the deepest part of the small basin nearest the glacier and of about 40 feet in the large basin. The time of retreat of Aialik Glacier from the moraine bar is unknown; a faint ' trimline ' is still visible in the forest on the east side of the fiord, and a carbon-14 date suggests the retreat could have taken place as recently as 1800. The time of Aialik Glcier 's neoglacial advance to the moraine is unknown. Pederson Glacier, which terminates in part in a tidal lagoon or lake, has retreated about 0.90 mile from a moraine judged by Grant and Higgins to have been in contact with the ice about 1896. (USGS)

  9. The external Rif of Morocco and its hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jobidon, G.; Dakki, M.

    1993-09-01

    The Rif domain is a structurally complex area consisting of nappes and thrust sheets caused by the collision of the Eurasian and African plates during the Tertiary period. The structural complexity decreases southwardly. Autochthonous members are found only along the southern and southwestern periphery, while the northern units are autochthonous (internal Rif and mesorif). Recently acquired geophysical and geochemical data provide an improved understanding of the area and put the hydrocarbon potential of the prerif (south Rif) and the Rharb basin (southern foreland basin) in a new exploration perspective. The Rharb basin has a Cretaceous-to-Tertiary sedimentary evolution, with its maximummore » subsidence occurring during the Tortonian-to-Messinian with the emplacement of a thick olistrostrome (prerif nappe). Biogenic gas is found in the neritic postnappe Tortonian sediments, while a prenappe Cretaceous play now appears as a strong hydrocarbon potential. The Prerif Rides, which are separated from the Gharb basin by the northeast-southwest Sidi-Fili fault trend, are the structural consequence of salt tectonics within the Alpine compression system. Oil production occurred in thrusted Jurassic carbonates and fractured metamorphic Paleozoic rocks. The hydrocarbon potential of newly defined prospects in this area are still untapped.« less

  10. Structural elements of the Sulu Sea, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinz, K.; Block, M.; Kudrass, H.R.

    1994-07-01

    The structure and tectonic history of the Sulu Sea are described on the basis of seismic reflection data combined with the findings of onshore and offshore geological studies, and the results of ODP Leg 124 drilling. Closing of a hypothetical Mesozoic proto-South China Sea associated with the formation of oceanic crustal splinters in the late Eocene followed by southward subduction and, in turn, progressive collision of the north Palawan continental terrane with the micro-continental Borneo plate since the middle Miocene, resulted in the formation of the structurally complex Sulu-Borneo collision belt. The latter comprises north Sabah, southern and central Palawan,more » and the northwest Sulu basin. Fracturing of the Borneo micro-continental plate into the Sulu and Cagayan ridges initiated the opening of the southeast Sulu basin during the late Oligocene through the early Miocene. Collision of the north Palawan continental terrane with Cagayan Ridge in the late early Miocene and oblique collision of these blocks with the central Philippines resulted in the still ongoing closing of the southeast Sulu basin since the middle or late Miocene. Closing of the southeast Sulu basin began with the formation of an oceanic crustal slab.« less

  11. Predicting future land cover change and its impact on streamflow and sediment load in a trans-boundary river basin

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Hao; Ning, Shaowei; Hiroshi, Ishidaira

    2018-06-01

    Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM). In addition, future leaf area index (LAI) is simulated by ecological model (Biome-BGC) based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.

  12. Behaviour and Locomotor Activity of a Migratory Catostomid during Fishway Passage

    PubMed Central

    Silva, Ana T.; Hatry, Charles; Thiem, Jason D.; Gutowsky, Lee F. G.; Hatin, Daniel; Zhu, David Z.; W. Dawson, Jeffery; Katopodis, Christos; J. Cooke, Steven

    2015-01-01

    Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum) during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration) to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations. PMID:25853245

  13. Coordinating Mitigation Strategies for Meeting In-Stream Flow Requirements in the Skagit River Basin, WA

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.

    2016-12-01

    In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.

  14. Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting

    NASA Astrophysics Data System (ADS)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Martos, Raquel; Roca, Eduard; Blanpied, Christian

    2016-07-01

    Based on field work and seismic reflection data, we investigate the Cenozoic tectono-sedimentary evolution offshore and onshore Ibiza allowing the proposal of a new tectonic agenda for the region and its integration in the geodynamic history of the West Mediterranean. The late Oligocene-early Miocene rifting event, which characterizes the Valencia Trough and the Algerian Basin, located north and south of the study area respectively, is also present in Ibiza and particularly well-expressed in the northern part of the island. Among these two rifted basins initiated in the frame of the European Cenozoic Rift System, the Valencia Trough failed rapidly while the Algerian Basin evolved after as a back-arc basin related to the subduction of the Alpine-Maghrebian Tethys. The subsequent middle Miocene compressional deformation was localized by the previous extensional faults, which were either inverted or passively translated depending on their initial orientation. Despite the lateral continuity between the External Betics and the Balearic Promontory, it appears from restored maps that this tectonic event cannot be directly related to the Betic orogen, but results from compressive stresses transmitted through the Algerian Basin. A still active back-arc asthenospheric rise likely explains the stiff behavior of this basin, which has remained poorly deformed up to recent time. During the late Miocene a new extensional episode reworked the southern part of the Balearic Promontory. It is suggested that this extensional deformation developed in a trans-tensional context related to the westward translation of the Alboran Domain and the coeval right-lateral strike-slip movement along the Emile Baudot Escarpment bounding the Algerian Basin to the north.

  15. Spatial Distribution of Ozone Precursors in the Uinta Basin

    NASA Astrophysics Data System (ADS)

    Mangum, C. D.; Lyman, S. N.

    2012-12-01

    Wintertime ozone mixing ratios in the Uinta Basin of Utah exceeding the EPA National Ambient Air Quality Standards measured during 2010 and 2011 led to a large campaign carried out in 2012 that included a study of the spatial distribution of ozone precursors in the Basin. In this study, speciated hydrocarbon mixing ratios (compounds with 6-11 carbon atoms) were measure at 10 sites around the Uinta Basin with Radiello passive samplers, and NO2, NO, and NOx (NO2 + NO) mixing ratios were measured at 16 sites with Ogawa passive sampler and active sampling instruments. Analysis of the Radiello passive samplers was carried out by CS2 desorption and analyzed on a Shimadzu QP-2010 GCMS. Analysis of the Ogawa passive samplers was done via 18.2 megohm water extraction and analyzed with a Dionex ICS-3000 ion chromatography system. February average hydrocarbon mixing ratios were highest in the area of maximum gas production (64.5 ppb as C3), lower in areas of oil production (24.3-30.0 ppb as C3), and lowest in urban areas and on the Basin rim (1.7-17.0 ppb as C3). February average for NOx was highest in the most densely populated urban area, Vernal (11.2 ppb), lower in in the area of maximum gas production (6.1 ppb), and lower still in areas of oil production and on the Basin Rim (0.6-2.7 ppb). Hydrocarbon speciation showed significant differences in spatial distribution around the Basin. Higher mixing ratios of toluene and other aromatics were much more prevalent in gas producing areas than oil producing areas. Similar mixing ratios of straight-chain alkane were observed in both areas. Higher mixing ratios of cycloalkanes were slightly more prevalent in gas producing than oil producing areas.

  16. Quaternary deformation in the central Neuquén basin (35°-37°S), Argentina: evidences for active strain partitioning.

    NASA Astrophysics Data System (ADS)

    Niviere, B.; Backé, G.

    2006-12-01

    The tectonic evolution of the Central Andes is a consequence of the relative convergence between the Nazca and the South American plates. The Neuquén basin is located in the southernmost part of the Central Andes, between latitudes 32°S and 40°S. The present day geometry of the basin has been inherited from different compressive pulses, separated by times of relative tectonic quiescence since the late Cretaceous. The complex tectonic evolution of the area has often been explained by changes in the geometry of the subducted plate. The last broad scale tectonic event in the Neuquén basin is the Miocene compressive stage referred to as the Quechua phase. The tectonic evolution of the outer part of the Neuquén Basin from the late Miocene onwards is still a matter of debate. For instance, strain partitioning has been described in the inner part of the basin, which corresponds to the modern arc area close to the Chile Argentina border. The strain regime in the foreland between 35°S and 37°S is more uncertain. Extensional tectonic features have been described in different areas of the basin, leading to the formulation of a possible orogenic collapse in response to the steepening of the oceanic slab that followed a late Miocene shallow subduction. This model accounts for the occurrence of large Pleistocene to Quaternary back-arc volcanism in the Neuquén basin. However, field structural data and borehole breakout analysis strongly support on-going compression in the basin. Our study is based on the morphostructural analysis of remote sensing data (satellite and digital elevation model images) complemented by field work. Here we show that strike-slip faulting and localized extension in the outer zone of the basin is coeval with active thrusting and folding. This can be explained by strain partitioning or segmentation processes due to the oblique convergence between the Nazca and the South American plates.

  17. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.

  18. Adventures in holistic ecosystem modelling: the cumberland basin ecosystem model

    NASA Astrophysics Data System (ADS)

    Gordon, D. C.; Keizer, P. D.; Daborn, G. R.; Schwinghamer, P.; Silvert, W. L.

    A holistic ecosystem model has been developed for the Cumberland Basin, a turbid macrotidal estuary at the head of Canada's Bay of Fundy. The model was constructed as a group exercise involving several dozen scientists. Philosophy of approach and methods were patterned after the BOEDE Ems-Dollard modelling project. The model is one-dimensional, has 3 compartments and 3 boundaries, and is composed of 3 separate submodels (physical, pelagic and benthic). The 28 biological state variables cover the complete estuarine ecosystem and represent broad functional groups of organisms based on trophic relationships. Although still under development and not yet validated, the model has been verified and has reached the stage where most state variables provide reasonable output. The modelling process has stimulated interdisciplinary discussion, identified important data gaps and produced a quantitative tool which can be used to examine ecological hypotheses and determine critical environmental processes. As a result, Canadian scientists have a much better understanding of the Cumberland Basin ecosystem and are better able to provide competent advice on environmental management.

  19. Metal contamination and fractionation in sediments from the lower basin of the Vale do Ribeira (SE, Brazil).

    PubMed

    Bonnail, Estefanía; Buruaem, Lucas M; Morais, Lucas G; Abessa, Denis M S; Sarmiento, Aguasanta M; DelValls, T Ángel

    2017-06-01

    The sediment quality of Ribeira de Iguape River is affected by former Pb extraction mining. Some studies affirm the restoration status of the basin, however, mobility of metals and its associated risk is still questioned. This study integrates the metal concentrations in the lower part of the basin with different contamination source to determine the existence of risks associated with the mobile fractions of the geochemical matrix. Despite concentrations of metals were low and the environmental risk factor values were negative, our results indicated that As, Mn, Pb, and V were present in the most labile forms. The multivariate analysis conducted using metal concentrations, environmental risk factor values and speciation suggested that any risk would be associated with the labile fractions of the analyzed elements, especially for Pb. The station from Registro was stressed by Co, Pb and Zn; with Pb under the reactive fraction that could be associated with high mobility and potential bioavailability.

  20. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin

    PubMed Central

    Sithithaworn, Paiboon; Andrews, Ross H.; Van De, Nguyen; Wongsaroj, Thitima; Sinuon, Muth; Odermatt, Peter; Nawa, Yukifumi; Liang, Song; Brindley, Paul J.; Sripa, Banchob

    2013-01-01

    This review highlights the current status and control of liver fluke infections in the Mekong Basin countries where Opisthorchis and Clonorchis are highly endemic. Updated data on prevalence and distribution have been summarized from presentations in the “96 Years of Opisthorchiasis. International Congress of Liver Flukes”. It is disturbing that despite treatment and control programs have been in place for decades, all countries of the Lower Mekong Basin are still highly endemic with O. viverrini and/or C. sinensis as well as alarmingly high levels of CCA incidence. A common pattern that is emerging in each country is the difference in transmission of O. viverrini between lowlands which have high prevalence versus highlands which have low prevalence. This seems to be associated with wetlands, flooding patterns and human movement and settlement. A more concerted effort from all community, educational, public health and government sectors is necessary to successfully combat this fatal liver disease of the poor. PMID:21893213

  1. Status and distribution of the West Indian manatee, Trichechus manatus manatus, in Colombia

    USGS Publications Warehouse

    Montoya-Ospina, R. A.; Caicedo-Herrera, D.; Millan-Sanchez, S. L.; Mignucci-Giannoni, A. A.; Lefebvre, L.W.

    2001-01-01

    Historical and recent information on the status and distribution of West Indian manatee, Trichechus manatus manatus, in Colombia was reviewed. Opportunistic and systematic interviews were also conducted. Historical information suggested that the distribution of manatees had been reduced in the Caribbean basin. Manatees can be found in the Atrato, Sinu??, San Jorge, Cauca, Cesar and Magdalena rivers and the Cie??naga Grande de Santa Marta marsh in the Caribbean basin, and in the Meta River in the Orinoco basin. The Magdalena riparian system provides the largest area of suitable habitat, which also has the highest frequency of captures. Most animals (81.20%) were killed for sale or to share meat in a subsistence base. Hunting is apparently increasing but capture with nets still represents the species' major direct threat. Habitat destruction occurs in all areas. International and national laws protect the species, however, funding is inadequate for effective enforcement of present laws. ?? 2001 Published by Elsevier Science Ltd. All rights reserved.

  2. Vast geologic basins attract Indonesian oil exploration. Pt. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeparjadi, R.A.; Slocum, R.C.

    1973-10-01

    This concluding article of a 3-part series describes key geologic features that make Indonesia's S. and E. Kalimantan, Irian Jaya, and S. China Sea areas prime targets for continuing oil and gas exploration. Thick sedimentary basins in E. Kalimantan contain Indonesia'a largest offshore oilfield and other important developments. New reef discoveries in Irian Jaya highlight an extensive exploration effort. Continued drilling in the huge S. China Sea is assured by near commercial shows in recent wildcats. While many thousands of square miles still do not claim a significant discovery, proven successes such as Kalimantan's Attaka field (Indonesia's largest offshore producer)more » and Irian Jaya's new 23,600 bopd Kasim 3 well provide ample incentive for intensive oil searches. Near commercial recoveries of both gas and oil in Indonesia's huge S. China Sea and the recent testing of a 6,000 bopd oil well in nearby Malaysian waters spur interest in the area's W. Natuna and Miri-Seria sedimentary basins.« less

  3. The Messinian Salinity Crisis: what can we expect from drilling the perched basins from the Balearic Promontory?

    NASA Astrophysics Data System (ADS)

    Johanna, Lofi; Angelo, Camerlenghi; Agnès, Maillard; Diana, Ochoa

    2015-04-01

    In spite of 40 years of multi-disciplinary research conducted on the Messinian Salinity Crisis (MSC) event, modalities, timing, causes, chronology and consequence at local and planetary scale of this event are still not yet fully understood, and the MSC event remains one of the longest-living controversies in Earth Science. A key factor for the controversy is certainly the lack of a complete record of the MSC deposits preserved in the deepest Mediterranean basins. Anywhere else, on the continental shelves and slopes, the MSC mostly generated a sedimentary/time lag corresponding to a widespread erosional surface. Correlations with the depositional units locally preserved onshore are thus complex, preventing the construction of a coherent scenario linking the outcropping MSC evaporites, the erosion on the margins, and the deposition of clastics and evaporites in the abyssal plains. Recent works based on seismic profile interpretations and conducted on the Balearic promontory allowed to evidence a series of small perched basins presently lying in different water depths stepped from the coast line down to the deep basin. These topographic lows trapped sedimentary series up to 500m thick, interpreted as MSC in age (Maillard et al., 2014; Mocnik et al., 2014; Driussi et al., in press). In the most proximal basins, these deposits have been drilled and logged for industriel purposes and consist of gypsum beds interbedded with marls. Ochoa et al. (submitted) demonstrated that these MSC deposits correlate with the Primary Lower Gypsum sequence deposited in marginal settings before the drawdown phase (Lugli et al., 2010) and that are now observed onshore in tectonically active areas. The basins located in more distal locations also contain MSC deposits (including <200m thick salt layers) but these have not been drilled. The relative age and chronology of the MSC deposits from one basin to another thus still need to be defined. The Balearic Promontory is probably the only place in the Mediterranean area potentially bearing some records of the MSC event that have been accumulated and preserved at various water depths in which post/Messinian tectonic deformation is low. A complete shallow-to-deep transect of sites across these stepped basins, provides a unique opportunity to quantify the amplitude of the Messinian draw-down and to test the hypotheses of a stratified water column and of a diachronous/synchronous onset and end of the salinity crisis. In order to address these persistent open questions, we propose to drill, core and log a shallow-to-deep transect on the Balearic Promontory as part of a daughter proposal (DREAM proposal) of a Multi-phase IODP Drilling Project entitled "Uncovering A Salt Giant" (857-MDP, coord. A. Camerlenghi). The DREAM Team: A. Giovanni, H. Christian, G. deLangeGert, R. Flecker, D. Garcia-Castellanos, Z. Gvirtzman, W. Krijgsman, S. Lugli, MakowskyItzik, M. Vinicio, T. McGenity, G. Panieri, M. Rabineau, M. Roveri, F.J. Sierro, N. Waldman.

  4. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaledmore » to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.« less

  6. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of flooded seasonal and semi-permanent wetlands in San Joaquin and Tulare Basins during fall-winter. The main objective of this research is to provide decision-support for achieving waterbird conservation goals in the valley and to inform CVJV's regional conservation planning.

  7. Dynamics of thin-skinned fold and thrust belts with a tilted detachment

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.; Epard, Jean-Luc

    2014-05-01

    The formation of the Jura fold and thrust belt is linked to the Alpine orogeny. However, it is still a matter of debate why the Jura was formed tens of kilometres far away from the active deformation front while the Molasse basin that lies in between remained mostly undeformed. Progressive thickening of the Molasse basin due to its infill with sediments, and the existence of a tilted potential detachment level at the Triassic evaporitic units, have been pushed forward as the main causes for the detachment of the Molasse basin and the consequent jump of the deformation front from the Alpine front to the position of the Jura at around 22 Ma or later (e.g Willett and Schlunegger, 2010). In order to better understand the dynamics of a thin-skinned fold and thrust belt with a tilted detachment we have performed systematic forward numerical simulations with the 2D thermo-mechanical finite element code MILAMIN_VEP. The modelled setup consists of a tilted detachment, overlain by a sedimentary cover of constant thickness and a wedge shaped basin infill that makes the initial surface slope of the system to be zero. In this study we have tested the importance of the following factors in the dynamics of such a fold and thrust belt evolution: 1) the applied boundary conditions 2) the angle of a uniformly tilted detachment 3) the end displacement of a curved detachment with a flexural foreland basin profile. The implications of the studied factors are discussed for the case of the Jura-Molasse system. Acknowledgements Funding was provided by the European Research Council under the European Community's Seventh Framework program (FP7/2007-2013) ERC Grant agreement #258830. References Willett, S.D. and Schlunegger, F. 2010, The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Research 22, 623-639, doi: 10.1111/j.1365-2117.2009.00435.x

  8. Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics

    NASA Astrophysics Data System (ADS)

    Pan, J.; Huang, F.; He, L.; Wu, Q.

    2015-12-01

    The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.

  9. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  10. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.

    PubMed

    Lucke, Terry; Nichols, Peter W B

    2015-12-01

    This study evaluated the pollution removal and hydrologic performance of five, 10-year old street-side bioretention systems. The bioretention basins were subjected to a series of simulated rainfall events using synthetic stormwater. Four different pollution concentrations were tested on three of the bioretention basins. The four concentrations tested were: A) no pollution; B) typical Australian urban pollutant loads; C) double the typical pollution loads, and; D) five times the typical pollution loads. Tests were also undertaken to determine the levels of contaminant and heavy metals build-up that occurred in the filter media over the 10 year operational life of the bioretention systems. Although highly variable, the overall hydrological performance of the basins was found to be positive, with all basins attenuating flows, reducing both peak flow rates and total outflow volumes. Total suspended solids removal performance was variable for all tests and no correlation was found between performance and dosage. Total nitrogen (TN) removal was positive for Tests B, C and D. However, the TN removal results for Test A were found to be negative. Total phosphorus (TP) was the only pollutant to be effectively removed from all basins for all four synthetic stormwater tests. The study bioretention basins were found to export pollutants during tests where no pollutants were added to the simulated inflow water (Test A). Heavy metal and hydrocarbon testing undertaken on the bioretention systems found that the pollution levels of the filter media were still within acceptable limits after 10 years in operation. This field study has shown bioretention basin pollution removal performance to be highly variable and dependant on a range of factors including inflow pollution concentrations, filter media, construction methods and environmental factors. Further research is required in order to fully understand the potential stormwater management benefits of these systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  12. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    USGS Publications Warehouse

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured from hydrocarbon generation as they form, and this overpressuring is probably responsible for driving out most of the water. Sandstone permeabilities are low, in part because of diagenesis caused by highly reactive water given off during the early stages of coalification. Coals within these basin-centered deposits commonly have high gas contents and produce little water, but they generally occur at depths greater than 5000 ft and have low permeabilities. Significant uplift and removal of overburden has occurred throughout the Rocky Mountain region since the end of the Eocene, and much of this erosion occurred after regional uplift began about 10 Ma. The removal of overburden generally causes methane saturation levels in coals to decrease, and thus a significant drop in pressure is required to initiate methane production. The most successful coalbed methane production in the Rocky Mountain region occurs in areas where gas contents were increased by post-Eocene thermal events and/or the generation of late-stage biogenic gas. Methane-generating bacteria were apparently reintroduced into the coals in some areas after uplift and erosion, and subsequent changes in pressure and temperature, allowed surface waters to rewater the coals. Groundwater may also help open up cleat systems making coals more permeable to methane. If water production is excessive, however, the economics of producing methane are impacted by the cost of water disposal.The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 to 1981 m from coal of lignite to low volatile bituminous rank. Despite more than two decades of exploration for coalbed methane in Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Sources of coalbed gases can be early biogenic, formed during the main stages of coa

  13. Sedimentary structure and tectonic setting of the abyssal basins adjoining the southeast part of the Ontong Java Plateau, western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Shimizu, S.; Masato, N.; Miura, S.; Suetsugu, D.

    2017-12-01

    Ontong Java Plateau(OJP) in the western Pacific Ocean is one of the largest oceanic plateau in the world. Radioactive ages of drilling samples indicate that the most part of the OJP was emplaced about 122 Ma (Mahoney et al., 1993). Taylor (2006) proposed that the OJP formed as a single large volcanic province together with the Manihiki and Hikurangi plateaus. OJP is surrounding by East Mariana, Pigafetta, Nauru, Ellice, Stewart, and Lyra basins. The East Mariana and Pigafetta basins were formed at the Pacific-Izanagi ridge and the Nauru basin was formed at Pacific-Phoenix ridges (Nakanishi et al., 1992). The tectonic history of the Ellice, Stewart, and Lyra basins is still unknown because of lack of magnetic anomaly lineations. Tectonic setting during the OJP formation is thus a matter of controversy. To expose the tectonic setting of the Ellice, Stewart, and Lyra basins, we conducted the Multi-Channel Seismic (MCS) survey in the basins during the research cruise by R/V Mirai of JAMSTEC in 2014. We present our preliminary results of the MCS survey in the Stewart basin(SB) and Ellice Basin(EB). After the regular data processing, we compared the seismic facies of MCS profile with DSDP Site 288 and ODP Site 1184 to assign ages to seismic reflectors. Our processing exposed several remarkable structures in the basins. The graben structures deformed only the igneous basement in the northwestern and northeastern and southwestern margins of the SB. This suggests the graben structures were formed before sedimentary layer deposited. Taylor (2006) proposed that the basin was formed by the NW-SE rifting during the separation of OJP and Manihiki Plateau around 120 Ma. Neal (1997) proposed that the NE-SW rifting formed the basin around 80 Ma. Our study supports the rifting model proposed by Neal et al. (1997) because the displacement of graben in northeastern and southwestern margins of the SB is larger than that in northwestern of the SB. We found several igneous diapirs in the SB and EB. Several diapirs intrude into Oligocene sediments, implying that the volcanism occurred after the formation of the basins. On the southern edge of SB is the outer rise called Stewart Arch (Phinney et al., 1999). We identified normal faults near the Stewart Arch. Those faults caused by the plate bending owing to the subduction of the Pacific plate.

  14. Folding mechanism of β-hairpin trpzip2: heterogeneity, transition state and folding pathways.

    PubMed

    Xiao, Yi; Chen, Changjun; He, Yi

    2009-06-22

    We review the studies on the folding mechanism of the beta-hairpin tryptophan zipper 2 (trpzip2) and present some additional computational results to refine the picture of folding heterogeneity and pathways. We show that trpzip2 can have a two-state or a multi-state folding pattern, depending on whether it folds within the native basin or through local state basins on the high-dimensional free energy surface; Trpzip2 can fold along different pathways according to the packing order of tryptophan pairs. We also point out some important problems related to the folding mechanism of trpzip2 that still need clarification, e.g., a wide distribution of the computed conformations for the transition state ensemble.

  15. Map showing depth to bedrock of the Tacoma and part of the Centralia 30' x 60' quadrangles, Washington

    USGS Publications Warehouse

    Buchanan-Banks, Jane M.; Collins, Donley S.

    1994-01-01

    The heavily populated Puget Sound region in the State of Washington has experienced moderate to large earthquakes in the recent past (Nuttli, 1952; Mullineaux and others, 1967). Maps showing thickness of unconsolidated sedimentary deposits are useful aids in delineating areas where damage to engineered structures can result from increased shaking resulting from these earthquakes. Basins containing thick deposits of unconsolidated materials can amplify earthquakes waves and cause far more damage to structures than the same waves passing through bedrock (Singh and others, 1988; Algermissen and others, 1985). Configurations of deep sedimentary basins can also cause reflection and magnification of earthquake waves in ways still not fully understood and presently under investigation (Frankel and Vidale, 1992).

  16. Feedbacks of sedimentation on crustal heat flow - New insights from the Vøring Basin, Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Theissen, S.; Ruepke, L. H.

    2009-04-01

    Information on the nature and origin of rift basins is preserved in the presently observed stratigraphy. Basin modeling aims at recovering this information with the goal of quantifying a basin's structural and thermal evolution. Decompaction and backstripping analysis is a classic and still popular approach to basin reconstruction [Steckler and Watts, 1978]. The total and tectonic subsidences, as well as sedimentation rates are calculated by the consecutive decompaction and removal of individual layers. The thermal history has to be computed separately using forward thermal models. An alternative is coupled forward modeling, where the structural and thermal history is computed simultaneously. A key difference between these reconstruction methods is that feedbacks of sedimentation on crustal heat flow are often neglected in backstripping methods. In this work we use the coupled basin modeling approach presented by Rüpke et al. [2008] to quantify some of the feedbacks between sedimentation and heat flow and to explore the differences between both reconstruction approaches in a case study from the Vøring Basin, Norwegian Sea. In a series of synthetic model runs we have reviewed the effects of sedimentation on basement heat flow. These example calculations clearly confirm the well-known blanketing effect of sedimentation and show that it is largest for high sedimentation rates. Recovery of sedimentation rates from the stratigraphy is, however, not straightforward. Decompaction-based methods may systematically underestimate sedimentation rates as sediment thickness is assumed to not change/thin during stretching. We present a new method for computing sedimentation rates based on forward modeling and demonstrate the differences between both methods in terms of rates and thermal feedbacks in a reconstruction of the Vøring basin (Euromargin transect 2). We find that sedimentation rates are systematically higher in forward models and heat flow is clearly depressed during times of high sedimentation. In addition, computed subsidence curves can differ significantly between backtripping and forward modeling methods. This shows that integrated basin modeling is important for improved reconstructions of sedimentary basins and passive margins. Rupke, L. H., et al. (2008), Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study, AAPG Bulletin, 92(3), 309-326. Steckler, M. S., and A. B. Watts (1978), SUBSIDENCE OF ATLANTIC-TYPE CONTINENTAL-MARGIN OFF NEW-YORK, Earth and Planetary Science Letters, 41(1), 1-13.

  17. Evolution of the Grenada and Tobago basins and the onset of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Zitter, T. A. C.; Rangin, C.

    2012-04-01

    The Lesser Antilles active island arc marks the eastern boundary of the Caribbean plate, where the Atlantic oceanic crust is subducted. Geodynamic history of the Grenada and Tobago basins, accepted as both the back arc and fore arc basins respectively for this convergent zone, is the key for a better understanding of the Antilles arc subduction onset. Still, recent studies propose that these two basins formed as a single paleogene depocenter. Analysis of industrial and academical seismic profiling supports this hypothesis, and shows these basins are two half-graben filled by 15 kilometers of cenozoic sediments. The seismic profiles across these basins, and particularly the Geodinos Bolivar seismic profiles, indicate that the Antilles magmatic arc develops in the midst of the previously-extended Grenada-Tobago basin from Miocene time to present. The pre-cenozoic basement of the Grenada-Tobago basin can be traced from the Aves ridge to the Tobago Island where cretaceous meta-volcanic rocks are cropping out. Therefore, this large basin extension has been initiated in early Paleocene time during stretching or subsidence of the great cretaceous Caribbean arc and long time before the onset of the lesser Antilles volcanic arc. The question arises for the mechanism responsible of this intra-plate extension. The Tobago Ridge consists of the backstop of the Barbados prism. The innermost wedge is particularly well imaged on seismic data along the Darien Ridge, where the isopach paleogene sediments are jointly deformed in latest Oligocene. This deformation is starved with the early miocene piggy-back basin. Hence, we conclude the innermost wedge in contact with the butresss is late Oligocene in age and can be considered as the onset of the subduction along the Antilles arc. This 30 Ma subduction onset is also supported by the 750 km long Atlantic slab, imaged in tomography, indicating this subduction was active with constant velocity of 2.5 km/yr. Consequently, another mechanism, than the Atlantic subduction, has to be invoked for the formation of the Grenada-Tobago depocenter prior to 30 Ma. These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  18. Hydrogeologic Framework of the Upper Santa Cruz Basin (Arizona and Sonora) using Well Logs, Geologic Mapping, Gravity, Magnetics, and Electromagnetics

    NASA Astrophysics Data System (ADS)

    Callegary, J. B.; Page, W. R.; Megdal, S.; Gray, F.; Scott, C. A.; Berry, M.; Rangel, M.; Oroz Ramos, L.; Menges, C. M.; Jones, A.

    2011-12-01

    In 2006, the U.S. Congress passed the U.S.-Mexico Transboundary Aquifer Assessment Act which provides a framework for study of aquifers shared by the United States and Mexico. The aquifer of the Upper Santa Cruz Basin was chosen as one of four priority aquifers for several reasons, including water scarcity, a population greater than 300,000, groundwater as the sole source of water for human use, and a riparian corridor that is of regional significance for migratory birds and other animals. Several new mines are also being proposed for this area which may affect water quality and availability. To date, a number of studies have been carried out by a binational team composed of the U.S. Geological Survey, the Mexican National Water Commission, and the Universities of Arizona and Sonora. Construction of a cross-border hydrogeologic framework model of the basin between Amado, Arizona and its southern boundary in Sonora is currently a high priority. The relatively narrow Santa Cruz valley is a structural basin that did not experience the same degree of late Cenozoic lateral extension and consequent deepening as found in other basin-and-range alluvial basins, such as the Tucson basin, where basin depth exceeds 3000 meters. This implies that storage may be much less than that found in other basin-and-range aquifers. To investigate the geometry of the basin and facies changes within the alluvium, a database of over one thousand well logs has been developed, geologic mapping and transient electromagnetic (TEM) surveys have been carried out, and information from previous electromagnetic, magnetic, and gravity studies is being incorporated into the hydrogeologic framework. Initial geophysical surveys and analyses have focused on the portion of the basin west of Nogales, Arizona, because it supplies approximately 50% of that city's water. Previous gravity and magnetic modeling indicate that this area is a narrow, fault-controlled half graben. Preliminary modeling of airborne and ground-based transient electromagnetic surveys corroborates earlier conclusions from the gravity modeling that depth to bedrock is greater than 500 meters in some locations. Results from other portions of the study area including Mexico are still being evaluated and incorporated into the three-dimensional hydrologic framework which will ultimately be used to construct a groundwater flow model.

  19. 77 FR 26001 - Qualified Hydro 15, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... have trash racks added. The existing 1,800-foot-long concrete-lined outlet tunnel would be lined with... bifurcation chamber and concrete gatehouse in the stilling basin that would provide flow to the penstock and... be filed electronically via the Internet. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the...

  20. Whittier Narrows Flood Control Basin Historic Resources Survey,

    DTIC Science & Technology

    1976-10-15

    crops; other spots yielded lettuce, cauliflower , and cabbage. Still other farm areas were devoted to growing flowers for seed. In a few places, where...gicai search’ing cculd begin o-n n p;, ears t rci., L-. evaidence now available) to be the, probabl e crigin a]- it <’ f 3e 1-1 i sion, as indicated

  1. Range extension of Myotis midastactus​ (Chiroptera, Vespertilionidae) to Paraguay

    PubMed Central

    Idárraga, Liu; Wilson, Don Ellis

    2015-01-01

    Abstract Background Myotis midastactus Moratelli and Wilson, 2014 (Vespertilionidae, Myotinae) was described from the Myotis simus Thomas, 1901 complex based on collections from the Bolivian Savannah. New information Four vouchers previously assigned to M. simus from the Alto Chaco in Paraguay (West of the Paraguay River) are reassigned here to M. midastactus. These specimens extend the geographic distribution of M. midastactus 1200 km southward, and constitute the first evidence of the species in the country. Based on other material from the Brazilian Pantanal and Cerrado, Central Paraguay and north-eastern Argentina, we also discuss the identity of simus-like populations south of the Amazon Basin. The status of these populations is still unclear, but the little evidence we have at hand indicates that these populations may represent another taxon—M. guaycuru Proença, 1943; whereas M. simus seems to be restricted to the Amazon basin. This hypothesis is still very speculative and requires further investigation. With the assignment of material from Alto Chaco to M. midastactus, seven species of Myotis are confirmed for Paraguay: M. albescens, M. lavali, M. levis, M. midastactus, M. nigricans, M. riparius, and M. ruber. PMID:26379462

  2. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin – A New Type of Cryptoendolithic Fungi

    PubMed Central

    Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E.; Norbäck Ivarsson, Lena

    2015-01-01

    Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773

  3. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may also lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.

  4. Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J. M.; Davey, F. J.; Clayton, R. W.

    2010-08-01

    Extension during the middle Cenozoic (43-26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deformational event took place close to the cessation of seafloor spreading in the Adare Basin (˜24 Ma). It reactivated a few normal faults and initiated the formation of the Adare Trough. A prominent pulse of rifting in the early Miocene (˜17 Ma) resulted in normal faulting that initiated tilted blocks. The overall trend of structures was NE-SW, linking the event with the activity outside the basin. It resulted in major uplift of the Adare Trough and marks the last extensional phase of the Adare Basin. Recent volcanic vents (Pliocene to present day) tend to align with the early Miocene structures and the on-land Hallett volcanic province. This latest phase of tectonic activity also involves near-vertical normal faulting (still active in places) with negligible horizontal consequences. The early Miocene extensional event found within the Adare Basin does not require a change in the relative motion between East and West Antarctica. However, the lack of subsequent rifting within the Adare Basin coupled with the formation of the Terror Rift and an on-land and subice extension within the WARS require a pronounced change in the kinematics of the rift. These observations indicate that extension increased southward, therefore suggesting that a major change in relative plate motion took place in the middle Miocene. The late Miocene pole of rotation might have been located north of the Adare Basin, with opposite opening sign compared to the Eocene-Oligocene pole.

  5. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  6. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.

    2017-12-01

    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  7. Setting the baseline before geothermal exploration begins: the search of microseismic activity in the Geneva Basin, Western Switzerland

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Martin, François

    2017-04-01

    Switzerland is moving towards the development of renewable energies. Following this trend, SIG (Services Industriels de Genève) and the Canton of Geneva is investing in the exploration of geothermal energy. Before the exploration takes place it is crucial to understand the rate of seismic activity in the region and its relationship with the existing faults. Historical and instrumental times suggest the presence of active faults in the region but to date little is known about the seismic activity in the Geneva Basin. Tectonic maps show the presence of major faults crossing the basin and recent seismic events indicate that such systems are still active on a regional scale. However, available data indicate infrequent and dispersed activity. This can be partially due to the small number of permanent stations in the area. To understand where micro-seismic activity may be located around and within the Geneva Basin we have deployed a temporary network composed of 20 broadband stations. With the densification of the network it could be possible to capture and localise small magnitude seismic events (i.e. M less than 1). Here we present the preliminary results obtained during the first months of the temporary network deployment.

  8. Flood Inundation Modelling in the Kuantan River Basin using 1D-2D Flood Modeller coupled with ASTER-GDEM

    NASA Astrophysics Data System (ADS)

    Ng, Z. F.; Gisen, J. I.; Akbari, A.

    2018-03-01

    Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.

  9. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  10. Near-Infrared Lymphatic Mapping of the Recurrent Laryngeal Nerve Nodes in T1 Esophageal Cancer.

    PubMed

    Park, Seong Yong; Suh, Jee Won; Kim, Dae Joon; Park, Jun Chul; Kim, Eun Hye; Lee, Chang Young; Lee, Jin Gu; Paik, Hyo Chae; Chung, Kyoung Young

    2018-06-01

    It is still unclear that dissection of recurrent laryngeal nerve nodes is mandatory in patients with cT1 middle or lower thoracic esophageal squamous cell carcinoma when the nodes are negative in preoperative staging workup. We aimed to evaluate the feasibility of near-infrared image-guided lymphatic mapping of bilateral recurrent laryngeal nerve nodes. The day before operation, we injected indocyanine green (ICG) into the submucosal layer by endoscopy. At the time of upper mediastinal dissection, ICG-stained basins were identified along the bilateral recurrent laryngeal nerves and retrieved under guidance of the Firefly system. After the operation, remnant ICG-unstained basins were dissected from the specimen to assess the presence of metastasis. Of 29 patients enrolled, ICG-stained basins could be identified in 25 patients (86.2%), and 6 of them (24.0%) had nodal metastasis; 4 in the right recurrent laryngeal nerve chain, 1 in the left recurrent laryngeal nerve chain, and 1 in both recurrent laryngeal nerve chains. On pathologic examination of 345 recurrent laryngeal nerve nodes, two metastatic nodes were identified in ICG-unstained basins along the left recurrent laryngeal nerve in a patient who had lymph node metastases in ICG-stained basins along both recurrent laryngeal nerves. Negative predictive value in detection of nodal metastasis was 100% for the right recurrent laryngeal nerve chain and 98.2% for the left recurrent laryngeal nerve chain. Real-time assessment of recurrent laryngeal nerve nodes with near-infrared image was technically feasible, and we could detect lymphatic basins that most likely have nodal metastasis. Our technique might be useful in determining the optimal extent of lymphadenectomy. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  12. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    PubMed

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  13. Mega-Impacts on Mars: Implications for the Late Heavy Bombardment in the Inner Solar System, and the Early Evolution of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Frey, Herbert

    2012-01-01

    There are about 30 very large impact basins on Mars, > 1000 km in diameter, most of which are revealed by their topographic and/or crustal thickness signatures. Crater retention ages and model absolute ages suggest these all formed in a relatively short time (100-200 million years?), perhaps during a "Late Heavy Bombardment" (LHB) caused by the evolution of the orbits of the giant planets. This so-called "Nice Model" of planetary formation may explain the LHB on the Moon at about 3.9 billion years ago and would have produced a similar bombardment throughout the inner solar system. The formation of 30 very large impact basins would have had catastrophic environmental consequences for Mars, which were further complicated by the demise of the global magnetic field at about the same time. If there are no very large basins on Mars older than the 30 we see and the LHB really lasted everywhere only a short time, there may have been a relatively longer time (400 million years?) during which Mars and the Earth suffered no major impact trauma and during which conditions on both worlds may have been far more habitable than during the LHB. However, if the formation of the Mars crustal dichotomy was due to an even larger giant impact that predated the very large basins, all record of this earlier and possibly more clement time on Mars may have been erased. Ages of the smaller but still very large basins can be used to approximately date the giant impact (if it occurred). Even the very large basins appear to have reset the crater retention ages of the entire crust of Mars and may have by themselves erased any record of an earlier time.

  14. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbonmore » production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.« less

  15. Microgravity

    NASA Image and Video Library

    2001-05-02

    Students from DuPont Manual High School in Louisville, Kentucky participated in a video-teleconference during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  16. Modern carbonate mound systems

    NASA Astrophysics Data System (ADS)

    Henriet, J. P.; Dullo, C.

    2003-04-01

    Carbonate mounds are prominent features throughout the geological record. In many hydrocarbon provinces, they form prime reservoir structures. But recent investigations have increasingly reported occurrences of large mound clusters at the surface of the seabed, or buried at shallow depth on modern ocean margins, and in particular in basins rich in hydrocarbons. Such exciting new observations along the West-European margin are promising for elucidating the setting and environment of modern carbonate mounds, but at the same time they confront us with puzzling or sometimes contradictory observations in the quest for their genesis. Spectacular cold-water coral communities have colonized such mounds, but convincing arguments for recognizing them as prime builders are still lacking. The geological record provides ample evidence of microbial mediation in mound build-up and stabilisation, but as long as mound drilling is lacking, we have no opportunity to verify the role of such processes and identify the key actors in the earliest stage of onset and development of modern mounds. Some evidence from the past record and from present very-high resolution observations in the shallow seabed suggest an initial control by fluid venting, and fluid migration pathways have been imaged or are tentatively reconstructed by modelling in the concerned basins, but the ultimate link in the shallow subsurface seems still to elude a large part of our efforts. Surface sampling and analyses of both corals and surface sediments have largely failed in giving any conclusive evidence of present-day or recent venting in the considered basins. But on the other hand, applying rigourously the interpretational keys derived from e.g. Porcupine Seabight settings off NW Ireland on brand new prospective settings e.g. on the Moroccan margin have resulted in the discovery of totally new mound settings, in the middle of a field of giant, active mud volcanoes. Keys are apparently working, but we still do not understand how or why. We are no doubt facing complex systems at the interface between the Biosphere and the Geosphere, owing their genesis and spectacular growth to a complex woven of internal and external controls, feedback and process relay processes.

  17. Palaeoredox conditions and sequence stratigraphy of the Cretaceous storm-dominated, mixed siliciclastic-carbonate ramp in the Eastern Cordillera Basin (Colombia): Evidence from sedimentary geochemical proxies and facies analysis

    NASA Astrophysics Data System (ADS)

    Rivera, Huber A.; Le Roux, Jacobus P.; Sánchez, L. Katherine; Mariño-Martínez, Jorge E.; Salazar, Christian; Barragán, J. Carolina

    2018-10-01

    The Cretaceous black shales of Colombia are among the most important successions in the north of South America and have attracted the attention of many geoscientists and exploration companies over the last few decades, because of their high hydrocarbon potential and the presence of emerald deposits. However, many uncertainties still remain with regard to their tectonic setting, sequence stratigraphy, depositional environments, palaeoxygenation conditions, and organic matter preservation. In order to develop a more integrated picture of these different processes and conditions, we conducted a detailed sedimentological, inorganic geochemical (U, V, Ni, Zn, Mn, Fe, Ti, Mo, Cu, Cr, Cd, Ba) and sequence stratigraphic analysis of the Cretaceous black shales in the Magdalena-Tablazo Sub-Basin (Eastern Cordillera Basin) of Colombia. Eleven lithofacies and five lithofacies associations of a storm-dominated, siliciclastic-carbonate ramp were identified, which range from basin to shallow inner ramp environments. These facies were grouped into six third-order stratigraphic sequences showing high-order cycles of marine transgression with constrained regressive pulses during the late Valanginian to early Coniacian. The black shales succession represents deposition under anoxic bottom water with some intervals representing dysoxic-suboxic conditions. The evolution of the sedimentary environments and their palaeoxygenation history reflect tectonic and eustatic sea-level controls that 1) produced a variable orientation and position of the coastline throughout the Cretaceous; 2) conditioned the low-gradient ramp geometry (<0.3°) and 3) modified the oxygenation conditions in the Magdalena-Tablazo Sub-Basin. An improved understanding of the sedimentary setting during deposition of the Cretaceous black shales in the Magdalena-Tablazo Sub-Basin assists in highlighting the interplay between the mechanism of sedimentation and continuum anoxic conditions prevailing in a basin, as well the important role of nutrient input from continental runoff as a trigger of high productivity and extended anoxia conditions.

  18. Geology and hydrocarbon potential of the Oued Mya Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1992-01-01

    The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less

  19. A Collaborative Effort Between Caribbean States for Tsunami Numerical Modeling: Case Study CaribeWave15

    NASA Astrophysics Data System (ADS)

    Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor

    2018-04-01

    Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring countries, are critical to assess tsunami hazard and increase preparedness within the countries.

  20. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  1. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    NASA Astrophysics Data System (ADS)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.

  2. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  3. A Collaborative Effort Between Caribbean States for Tsunami Numerical Modeling: Case Study CaribeWave15

    NASA Astrophysics Data System (ADS)

    Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor

    2017-10-01

    Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring countries, are critical to assess tsunami hazard and increase preparedness within the countries.

  4. Cichlid Fishes in the Angolan Headwaters Region: Molecular Evidence of the Ichthyofaunal Contact between the Cuanza and Okavango-Zambezi Systems

    PubMed Central

    Musilová, Zuzana; Kalous, Lukáš; Petrtýl, Miloslav; Chaloupková, Petra

    2013-01-01

    The headwaters of five large African river basins flow through the Bié Plateau in Angola and still remain faunistically largely unexplored. We investigated fish fauna from the Cuanza and Okavango-Zambezi river systems from central Angola. We reconstructed molecular phylogenies of the most common cichlid species from the region, Tilapia sparrmanii and Serranochromis macrocephalus, using both mitochondrial and nuclear markers. We found evidence for ichthyofaunal contact and gene flow between the Cuanza and Okavango-Zambezi watersheds in the Bié Plateau in central Angola. Waterfalls and rapids also appeared to restrict genetic exchange among populations within the Cuanza basin. Further, we found that the Angolan Serranochromis cichlid fishes represent a monophyletic lineage with respect to other haplochromines, including the serranochromines from the Congo and Zambezi rivers. This study represents an important initial step in a biodiversity survey of this extremely poorly explored region, as well as giving further understanding to species distributions and gene flow both between and within river basins. PMID:23724120

  5. The Tethys Rifting of the Valencia Trough Basin

    NASA Astrophysics Data System (ADS)

    Viñas, Marina; Ranero, César R.; Cameselle, Alejandra L.

    2017-04-01

    The western Mediterranean submarine realm is composed of several basin inferred to be formed by a common geodynamic process: upper plate extension during slab rollback of a retreating subduction zone. Although the time evolution of the geometry of the trenches is debated, all models assume that basins opened sequentially from NW (Gulf of Lions) towards the SE (Ligurian-Provençal and later Tyrrhenian basins) and SW (Valencia Trough and later Algerian-South Balearic and Alboran Basin) as trenches migrated. Basin opening history is key to reconstruct kinematics of slab retreat preferred in each model. However, the deep structure of basins is inadequately known due to the paucity of modern wide-angle and multichannel reflection seismic studies across entire systems, and absence of deep drilling in the deep-water regions of the basins, as a result, much of the opening evolution is inferred from indirect evidence. In the Valencia Trough Basin (VTB), drilling and vintage seismic data provide good knowledge of the shallow geology of the basin. However, crustal-scale information across the entire VTB has been limited to two studies (Figure 1): One in the late 80's (Valsis experiment) with three Expanded Spread Profiles that yielded local 1D velocity/depth models used to constrain 2D gravity modeling, and a few multichannel seismic profiles along the Iberian shelf and across segments of the basin. A second study in the early 90's (ESCI experiment) collected a low-resolution deep-penetration multichannel seismic reflection profile across the basin and a coincident wide-angle seismic line with numerous land stations in Iberia but a handful of widely-spaced Ocean Bottom Seismometers. In the absence of modern detailed crustal structure, the origin and evolution of the VTB is still debated. Industry multichannel seismic reflection profiles cover the SW segment of the VTB. This is a region where the basin sea floor is comparatively shallower and has numerous industry wells reaching deep into the sediment sequence, which provides an unprecedented view of the tectonic structure and distribution of synrift deposits across the entire basin, from the Iberian to the North Balearic margin (Figure 2). Here we first show that the seismic records provide full crustal-scale information. Later we discuss the tectonic and sedimentary structure that supports that crustal stretching and basin formation of the VTB occurred fundamentally during the Mesozoic times by strike-slip tectonics and not during Tertiary times by back-arc extension. We show that the current sea floor morphological configuration giving rise to the so-called Valencia Trough does not represent the changes in crystalline basement thickness related to rifting, but fundamentally a product of sediment dynamics, particularly by the development during post-Messinian times of the Ebro-river delta. Our results are significant to understand Tethyan rifting and need to be considered for plate kinematic reconstructions of the western Mediterranean.

  6. A Brief Summary of the Geomorphic Evidence for an Active Surface Hydrologic Cycle in Mars' Past

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    2000-01-01

    Because Mars is just over half the Earth's diameter (about 6800 km), it does not exhibit global tectonism on a scale comparable to Earth and Venus. But because it is still a large body compared to Mercury and the moon, it has had an atmosphere and climate over the history of the solar system. This is why Mars has been able to retain surfaces produced both through volcanic and climatic processes that are intermediate in age between volcanic surfaces on the moon and Mercury and both types of surfaces on Venus and Earth. For the purposes of this discussion, this has important implications about the origins and evolution of topographic depressions that potentially may have contained lakes. Tectonism is probably the most important process on Earth for producing closed depressions on the continents, and is clearly responsible for maintenance of the ocean basins through geologic time. This is probably also true for depressions in the highland terrains and lowland plains of Venus. On Mars, however, tectonism appears limited to relatively small amounts of regional extension, compression, and vertical motion largely due to crustal loading of the two major volcanic provinces - Tharsis and Elysium Impact craters and large impact basins (including all or parts of the northern plains) are clearly more important sites for potential lake basins on Mars, though they were likely more important on Earth, and Venus as well, during the period of heavy meteorite bombardment throughout the solar system prior to 3.5 Ga. Comparisons of the relative importance of other formative processes on Mars with those on Earth are less obvious, and some may be quite speculative, since our understanding of the early Martian environment is still rather limited. Additional information is contained in the original extended abstract.

  7. Modeling effects of secondary tidal basins on estuarine morphodynamics

    NASA Astrophysics Data System (ADS)

    Nnafie, Abdel; Van Oyen, Tomas; De Maerschalck, Bart

    2017-04-01

    Many estuaries are situated in very densely populated areas with high economic activities that often conflict with their ecological values. For centuries, geometry and bathymetry of estuaries have been drastically modified trough engineering works such as embanking, sand extraction, channel deepening, land reclamations, etc. It is generally recognized that these works may increase the tidal range (e.g., Scheldt, Ems, Elbe) and turbidity (e.g., Loire, Ems) in estuaries [cf. Kerner, 2007; Wang et al., 2009; Winterwerp and Wang, 2013; Van Maren et al., 2015b,a]. In recent years, construction of secondary basins (also called retention basins) has gained increasing popularity among coastal managers to reduce tidal range and turbidity [Donner et al., 2012]. Previous studies have shown that location, geometry and number of secondary basins have a significant impact on tidal characteristics and sediment transport [Alebregtse and de Swart, 2014; Roos and Schuttelaars, 2015]. However, knowledge on how these secondary basins affect the morphodynamic development of estuaries on long time scales (order decades to centuries) is still lacking. The specific objectives of this study are twofold. First, to investigate effects of secondary basins on the long-term morphodynamic evolution of estuaries. In particular, effects of the presence of such a basin on the morphodynamic evolution of the main channel in the estuary and the physics underlying channel migration will be examined. For this, the Western Scheldt estuary (situated in the Netherlands) is used as a case study, which used to consist of multiple secondary tidal basins that were located at different positions in the estuary, and which have been gradually closed off between 1800 and 1968. Second, to systematically quantify sensitivity of model results to location, geometry, and to number of secondary basins. To this end, the state-of-the- art numerical model Delft3D is used, which has been successfully applied to morphodynamic modeling of estuaries and other coastal systems [cf. Hibma et al., 2003; Van der Wegen and Roelvink 2008; Dissanayake et al., 2012; Eelkema et al., 2013; Ridderinkhof et al., 2014]. With this contribution it will be shown that the presence of secondary basins causes, among other things, local migration of the main channel in the vicinity of the basin, and it decreases the overall depth of the channel network. These results agree well with findings from an observational study on historical morphological development of the Western Scheldt estuary. References available upon request

  8. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.

  9. Water-Level and land-subsidence studies in the Mojave River and Morongo groundwater basins

    USGS Publications Warehouse

    Stamos, Christina L.; Glockhoff, Carolyn S.; McPherson, Kelly R.; Julich, Raymond J.

    2007-01-01

    What's New! Water-level data, contours, and meta data for spring 2008 are included in Version 2.0 of SIR 2007-5097 (http://ca.water.usgs.gov/mojave/wl_studies/wl2008.html). All the original data are still available on the web site. Introduction Since 1992, the U.S. Geological Survey (USGS), in cooperation with the Mojave Water Agency (MWA), has constructed a series of regional water-table maps for intermittent years in a continuing effort to monitor groundwater conditions in the Mojave River and Morongo groundwater basins. The previously published data, which were used to construct these maps, can be accessed on the interactive map. The associated reports describing the groundwater conditions for the Mojave River groundwater basin for 1992 (Stamos and Predmore, 1995), the Morongo groundwater basin for 1994 (Trayler and Koczot, 1995), and for both groundwater basins for 1996 (Mendez and Christensen, 1997); for 1998 (Smith and Pimentel, 2000), for 2000 (Smith, 2002), for 2002 (Smith and others, 2004), for 2004 (Stamos and others, 2004), and for 2006 (Stamos and others, 2007) can be accessed using this web site. Spatially detailed maps of interferometric synthetic aperture radar (InSAR) methods were used to characterize land subsidence associated with groundwater-level declines during various intervals of time between 1992 and 1999 in the Mojave River and Morongo groundwater basins (Sneed and others, 2003). Concerns related to the potential for new or renewed land subsidence in the basins resulted in a cooperative study between the MWA and the USGS in 2006. InSAR data were developed to determine the location, extent, and magnitude of vertical land-surface changes in the Mojave River and Morongo groundwater basins for time intervals ranging from about 35 days to 14 months between 1999 and 2000 and between 2003 and 2004. (interactive Google map) The results from many future land-subsidence studies, which are scheduled about every 10 years, will be available on this website. Mapping of water-level contours, water-level change and numerous InSAR images were combined in an interactive map. This interactive map may be customized to your needs and viewed at a scale that is appropriate for the data.

  10. Liquid Elevations and Topographic Constraints of Titan's Lacustrine Basins at the end of Cassini: Hydrology and Formation

    NASA Astrophysics Data System (ADS)

    Hayes, A. G., Jr.; Birch, S.; Corlies, P.; Poggiali, V.; Dietrich, W. E.; Howard, A. D.; Kirk, R. L.; Mastrogiuseppe, M.; Malaska, M.; Moore, J. M.; Mitchell, K. L.

    2017-12-01

    The topographic information provided by Cassini RADAR Altimetry, SAR Topography, and stereo photogrammetry has opened new doors for Titan research by allowing the quantitative analysis of morphologic form as well as relative measurements of liquid elevation. Herein, we investigate the relative elevation of liquid bodies and the three-dimensional morphology of Titan's lacustrine basins in order to provide observables that will constrain connectivity and plausible formation mechanisms. Using delay-Dopler processed altimetry measurements we show that the liquid elevations of Titan's Mare are the same to within measurement error, consistent with an equipotential surface. The liquid elevation of several smaller lakes, however, are found to be several hundreds above this sea level, suggesting that they exist in isolated or perched basins. Within a given topographic basin, the floor elevations of empty lakes are typically higher than the local liquid elevation, suggesting either the presence of an impermeable boundary or local subsurface connectivity. Basins with floors closer to the local phreatic surface appear brighter to both nadir and off-nadir microwave observations than those that are more elevated, indicating a potential change in composition. The majority of Titan's lakes reside in sharp edged depressions whose planform curvature suggests expansion through uniform scarp retreat. Many, but not all, of these basins exhibit flat floors and hundred-meter scale steep-sided raised rims that present a challenge to formation models. Raised rims are found on 57% of all the lakes in our study, including for all lakes >500 km2 in area. With super-resolution altimetry profiles, the raised rims can also be correlated directly with SAR image data, allowing for the identification of raised rims on other lakes, even when they lack topographic data coverage.. The basins are often topographically closed with no evidence for inflow or flow channels at the 300 m resolution of Cassini SAR images. The implications of these observations will be discussed in the context of common basin formation models. We conclude that sublimation and dissolution mechanisms can best match the observed constraints, but that challenges still exist in their implementation.

  11. Geologic map of the northern White Hills, Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.

    2017-07-10

    IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.

  12. a Matlab Toolbox for Basin Scale Fluid Flow Modeling Applied to Hydrology and Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Alcanie, M.; Lupi, M.; Carrier, A.

    2017-12-01

    Recent boosts in the development of geothermal energy were fostered by the latest oil crises and by the need of reducing CO2 emissions generated by the combustion of fossil fuels. Various numerical codes (e.g. FEHM, CSMP++, HYDROTHERM, TOUGH) have thus been implemented for the simulation and quantification of fluid flow in the upper crust. One possible limitation of such codes is the limited accessibility and the complex structure of the simulators. For this reason, we began to develop a Hydrothermal Fluid Flow Matlab library as part of MRST (Matlab Reservoir Simulation Toolbox). MRST is designed for the simulation of oil and gas problems including carbon capture storage. However, a geothermal module is still missing. We selected the Geneva Basin as a natural laboratory because of the large amount of data available in the region. The Geneva Basin has been intensely investigated in the past with exploration wells, active seismic and gravity surveys. In addition, the energy strategy of Switzerland promotes the development of geothermal energy that lead to recent geophysical prospections. Previous and ongoing projects have shown the geothermal potential of the Geneva Basin but a consistent fluid flow model assessing the deep circulation in the region is yet to be defined. The first step of the study was to create the basin-scale static model. We integrated available active seismic, gravity inversions and borehole data to describe the principal geologic and tectonic features of the Geneva Basin. Petrophysical parameters were obtained from available and widespread well logs. This required adapting MRST to standard text format file imports and outline a new methodology for quick static model creation in an open source environment. We implemented several basin-scale fluid flow models to test the effects of petrophysical properties on the circulation dynamics of deep fluids in the Geneva Basin. Preliminary results allow the identification of preferential fluid flow pathways, which are critical information to define geothermal exploitation locations. The next step will be the implementation of the equation of state for pure water, CO2 - H2O and H2O - CH4 fluid mixtures.

  13. Similarity in Evolutionary Histories of Eocene Sediments from Subathu and Cambay Basins: Geochemical and Palaeontological Studies

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Halder, K.; Sarkar, S.

    2017-12-01

    A systematic comparative study of microfaunal assemblage and representative geochemical elements from two Cenozoic basins of India, Mangrol-Valia Lignite Mine section (21°30'52''N:73°12'20.5''E) of Cambay Shale Formation, western India and Jigni section (33°14'45"N:74°22'0"E) from Subathu Formation in northern India was undertaken to infer the paleoenvironment, palaeobathymetry and paleoclimate of these successions. Despite a gamut of work already carried out in these two basins, the sedimentary successions still await a correlative-detailed process-based facies, geochemical characterization and paleoenvironmental analysis. With a view to fulfill this gap, the present work was carried out by studying bulk rock XRD, XRF, clay mineralogy and analyzing calcareous microfossil foraminifera from samples at equivalent depth of these two basins which are situated thousands of kilometers apart and in different tectonic settings. The faunal assemblage of Eocene sediments of Mangrol-Valia section is indicative of shallow marine and inner shelf deposition with medium oxygen supply, while that of the Jigni section suggests primarily a shallow marine condition, which gradually changes to open marine condition with time. It is pertinent to note that the two basins of Cenozoic India started their lithosuccession with coal bearing strata. Well preserved pectin aragonite shells also indicate that primarily these two basins experienced low energy lagoonal environment. The fossil assemblage in both basins also suggests a tropical moist to terrestrial lowland environment. Geochemical analysis shows that the Mangrol-Valia section mineralogically comprises of kaolinite, siderite, quartz, smectite and kaolinite with higher abundance throughout the succession indicating chemical weathering of Deccan basement and high erosional environment. Calcite is the main constituent of Jigni section that indicates intracratonic rift settings. Medium to high quartz content and other detrital elements may support increased erosional power, manifested as a quantitative increase in detrital flux for both the basins. So the geochemical and paleontological studies of Subathu and Cambay Shale Formations reveal similar evolutionary history in spite of their different tectonic scenario.

  14. The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Wiegand, Bettina A.; Carroll, Alan R.; Chamberlain, C. Page

    2008-11-01

    Using multiple isotope systems, we examine the complex effects of drainage reorganization in the Laramide Foreland in the context of stable isotope paleoaltimetry. Strontium, oxygen and carbon isotopic data from lacustrine carbonates formed in the southwestern Uinta Basin, Utah between the Late Cretaceous and late Middle Eocene reveal a two stage expansion in the drainage basin of Lake Uinta beginning at ~ 53 Ma culminating in the Mahogany highstand at 48.6 Ma. A marked increase in 87Sr/ 86Sr ratios of samples from the Main Body of the Green River Formation is interpreted as the result of water overflowing the Greater Green River Basin in Wyoming and entering Lake Uinta from the east via the Piceance Creek Basin of northwestern Colorado. This large new source of water caused a rapid expansion of Lake Uinta and was accompanied by a significant and rapid increase in the O isotope record of carbonate samples by ~ 6‰. The periodic overspilling of Lake Gosiute probably became continuous at ~ 49 Ma, when the lake captured low- δ18O water from the Challis and Absaroka Volcanic Fields to the north. However, evaporation in the Greater Green River and Piceance Creek Basins meant that the waters entering Lake Uinta were still enriched in 18O. By ~ 46 Ma, inflows from the Greater Green River Basin ceased, resulting in a lowstand of Lake Uinta and the deposition of bedded evaporites in the Saline Facies of the Green River Formation. We thus show that basin development and lake hydrology in the Laramide foreland were characterized by large-scale changes in Cordilleran drainage patterns, capable of confounding paleoaltimetry studies premised on too few isotopic systems, samples or localities. In the case of the North American Cordillera of the Paleogene, we further demonstrate the likelihood that (1) topographic evolution of distal source areas strongly influenced the isotopic records of intraforeland basins and (2) a pattern of drainage integration between the hinterland and foreland may correlate in space and time with the southward sweep of hinterland magmatism.

  15. Modeling of meteorology, tracer transport and chemistry for the Uintah Basin Winter Ozone Studies 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.

    2013-12-01

    The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the basin. The model is then used diagnostically to assess first-order sensitivities of basin-wide ozone to NOx or VOC emissions, and how they depend on the environmental differences between the winters of 2012 and 2013.

  16. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes

    NASA Astrophysics Data System (ADS)

    Panchal, Hitesh; Awasthi, Anuradha

    2017-06-01

    In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.

  17. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  18. Growth faults and salt tectonics in Houston diapir province: relative timing and exploration significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, T.E.

    1983-09-01

    Oil and gas accumulation in Gulf Coast Tertiary strata is contolled mainly by regional growth faults and by salt-related structures. Salt forms the most prominent set of structures in the Houston diapir province of southeast Texas. Recent work in three study areas shows that the Tertiary growth-fault trends, so well displayed along strike to the south-west, continue through this salt basin as well, but they have been deformed by later salt movement. In the Katy area, seismic data disclose early (pre-Wilcox) salt pillows downdip of the Cretaceous reef trend. Salt stocks were injected upward from the pillows during Clayborne deposition,more » and were flanked by deep withdrawal basins and turtle structures. In Brazoria County, a major lower Frio growth-fault trend affecting the Houston delta system, was deformed by later salt domes, by a salt-withdrawal basin, and by a possible turtle structure at Chocolate Bayou. A productive geopressured aquifer exists in the salt-withdrawal basin bounded by the previously formed growth faults. In Jefferson County, in contrast, salt-tectonic activity and growth faulting appear to have been coeval. Early salt-cored ridges continued to rise throughout Frio deposition; growth faults occur both updip and downdip. Hydrocarbons accumulated over the salt domes in growth-fault anticlines and in stratigraphic traps. Recognition that shelf-margin growth faulting preceded the development of the present pattern of domes and basins has important implications for hydrocarbon exploration. Growth faults may be migration paths for hydrocarbons; furthermore, early formed traps, distorted by salt movement, may still be found to contain hydrocarbons.« less

  19. Karez (qanat) irrigation in the Helmand River Basin, Afghanistan: a vanishing indigenous legacy

    NASA Astrophysics Data System (ADS)

    Goes, B. J. M.; Parajuli, U. N.; Haq, Mohammad; Wardlaw, R. B.

    2017-03-01

    A karez is a gently sloping tunnel into a hillside with a series of vertical shafts. At the upstream end, the karez depresses the water table such that groundwater enters the tunnel. Farmers all over Afghanistan have built and managed karezes for centuries using indigenous knowledge. This report focuses on karezes in the Helmand River Basin in southern Afghanistan, and describes the location of karezes in relation to geology, technological and managerial aspects of karez irrigation, and their current status. Karez irrigation has declined in recent decades due to the following: a prolonged reduction in precipitation, increase in number of boreholes that lower the water table below the karez tunnel, breakdown in community-based management, and reduced maintenance. Systematic field measurements are a challenge in the Helmand Basin due to security constraints. The current condition and management of the karezes have been assessed through short field visits and structured focus-group discussions with karez farmers and staff from provincial departments. The surveys indicate that over half of the karezes in the Helmand Basin have gone dry. Furthermore, the flow in karezes that are still operational has also declined significantly. The report demonstrates the value of using data from the US National Centres for Environmental Prediction (NCEP) Reanalysis 1 project, to estimate historic precipitation for various karez zones in this data-poor basin. Strategies for rehabilitating karezes are discussed. Rehabilitation is financially expensive in comparison to drilling new boreholes, but karezes are part of the national heritage of Afghanistan and can facilitate social cohesion.

  20. Iberian-Europe convergence: evolution of the Cretaceous and Eocene basins in Pyrenees and Provence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, J.; Ducassel, L.; Guieu, G.

    1988-08-01

    During Cretaceous time the geodynamic evolution of Northern and Western Pyrenean basins was related to scissors-shaped rifting which evolved as a passive margin filled by thick flysch deposits. In Provence, the carbonate platform was marked since the late Albian by the arrival of significant detrital flows originated from an uplifted Paleozoic block situated in the Gulf of Lion. In Provence the northward migration of the basin from Cenomanian to Eocene and Oligocene indicates the growing of the Gulf of Lion-South Provence crustal uplift and its northward displacement. The Cretaceous opening of the western Pyrenean, Parentis, and Bay of Biscay basinsmore » is synchronous with the first stages of compression in the Gulf of Lion. These features are induced by the rotation of Iberia. During the Eocene the compression, resulting from the Iberian-Europe convergence, affected nearly the whole Pyrenean-Provencal area. In the southern part of the Pyrenees east of the Pamplona fault, the successive dislocations of carbonate platforms, migration of reefs, and filling of foreland basins became the signature of the intracontinental subduction of Iberia. The transform fault pattern, still well preserved in spite of the Eocene compression, prevents any important strike-slip movement between Europe and Iberia, especially along the so-called North Pyrenean fault zone, which shows several discontinuities in the western part of Pyrenees. The final evolution of Gulf of Lion crustal uplift generated a gliding of its cover (Provence overthrusts) and, during Oligocene, the opening of the Ligurian-Provencal basin by a propagating rift process.« less

  1. Drowned reefs and antecedent karst topography, Au'au channel, S.E. Hawaiian Islands

    USGS Publications Warehouse

    Grigg, R.W.; Grossman, E.E.; Earle, S.A.; Gittings, S.R.; Lott, D.; McDonough, J.

    2002-01-01

    During the last glacial maximum (LGM), about 21,000 years ago, the Hawaiian Islands of Maui, Lanai, and Molokai were interconnected by limestone bridges, creating a super-island known as Maui-Nui. Approximately 120 m of sea-level rise during the Holocene Transgression flooded, and then drowned, these bridges separating the islands by inter-island channels. A new multibeam high-resolution bathymetric survey of the channels between the islands, coupled with observations and video-transects utilizing DeepWorker-2000 submersibles, has revealed the existence of numerous drowned reef features including concentric solution basins, solution ridges (rims), sand and sediment plains, and conical-shaped reef pinnacles. The concentric basins contain flat lagoon-like bottoms that are rimmed by steep-sided limestone walls. Undercut notches rim the basins at several depths, marking either sea-level still stands or paleo-lake levels. All of the solution basins shallower than 120 m were subaerial at the LGM, and at one stage or another may have been shallow shoreline lakes. Today, about 70 drowned reef pinnacles are scattered across the Maui-Lanai underwater bridge and all are situated in wave-sheltered positions. Most drowned during the interval between 14,000 and 10,000 years ago when sea-level rise averaged 15 mm/year. Virtually all of the surficial topography in the Au'au Channel today is a product of karst processes accentuated by marginal reef growth during the Holocene. Both the submerged basins and the drowned reefs represent an archive of sea-level and climate history in Hawaii during the late Quaternary.

  2. Integrative assessment of sediment quality in lower basin affected by former mining in Brazil.

    PubMed

    Bonnail, Estefanía; Buruaem, Lucas M; Morais, Lucas G; Araujo, Giuliana S; Abessa, Denis M S; Sarmiento, Aguasanta M; Ángel DelValls, T

    2017-06-13

    The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.

  3. Permian-triassic paleogeography and stratigraphy of the west Netherlands basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speksnijder, A.

    1993-09-01

    During the Permian, the present West Netherlands basin (WNB) was situated at the southernmost margin of the southern Permian basin (SPB). The thickness of Rotilegende sandstones therefore is very much reduced in the WNB. The relatively thin deposits of the Fringe Zechstein in the WNB, however, also contrast strongly in sedimentary facies with thick evaporite/carbonate alternations in the main SPB to the north, although the classic cyclicity of Zechstein deposition still can be recognized. The Fringe Zechstein sediments are mainly siliciclastic and interfinger with both carbonates and anhydrites toward the evaporite basin. End members are thin clay layers that constitutemore » potential seals to underlying Rotliegende reservoirs and relatively thick sandstones (over 100 m net sand) in the western part of the WNB. Nevertheless, favorable reservoir/seal configurations in the Fringe Zechstein seem to be sparse because only minor hydrocarbon occurrences have been proven in the area to date. The situation is dramatically different for the Triassic in the WNB. The [open quotes]Bunter[close quotes] gas play comprises thick Fringe Buntsandstein sandstones (up to 250 m), vertically sealed by carbonates and anhydritic clays of the Muschelkalk and Keuper formations. The Bunter sandstones are largely of the same age as the classic Volpriehausen, Detfurth, and Hardegsen alluvial sand/shale alternations recognized elsewhere, but the upper onlapping transgressive sands and silts correlate with evaporitic clays of the Roet basin to the north. A total volume of 65 x 10[sup 9]m[sup 3] of gas has so far been found in the Triassic Bunter sandstones of the WNB.« less

  4. Petroleum geology and resource assessment of the Timan-Pechora Basin, USSR, and the adjacent Barents-northern Kara shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmishek, G.

    1982-06-01

    The regions discussed contain thick sequences of sedimentary rocks ranging in age from early Paleozoic to Late Cretaceous and, occasionally, Cenozoic. Over 50 oil and gas fields, including two giants, are found in the Timan-Pechora Basin. The Barents-northern Kara shelf is still in the earliest stage of exploration. This report considers (1) tectonic regionalization of the Timan-Pechora Basin and major structures in each region; (2) facies characteristics of the sedimentary cover and the history of geological development; (3) the main hydrogeological features; (4) producing regions of each basin and the major oil and gas fields; (5) specificity of oil-gas generationmore » and formation of fields; and (6) geology and conditions for expected productivity of the Barents-northern Kara shelf. Initial recoverable petroleum resources of the Timan-Pechora basin are estimated at 0.86 x 10/sup 9/ t (6.4 x 10/sup 9/ bbl) of oil and 1.7 x 10/sup 12/ m/sup 3/ (60 TCF) of gas, of which 0.41 x 10/sup 9/ t (3.0 x 10/sup 9/ bbl) of oil and 1.2 x 10/sup 12/ m/sup 3/ (42 TCF) of gas are yet to be discovered. Potential recoverable resources of the Barents-northern Kara shelf are estimated at 3.2 x 10/sup 9/ t (23.7 x 10/sup 9/ bbl) of oil and 10.2 x 10/sup 12/ m/sup 3/ (360 TCF) of gas.« less

  5. Petroleum prospects of Benue trough, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawachukwu, J.I.

    1985-04-01

    Exploration activities in the Benue trough have been minimal over the years, mainly because of large petroleum deposits found in the adjoining Niger delta and early gas finds in the Anambra basin, south of the Benue trough. The recent increase in exploration activities in the trough has necessitated a reevaluation of the petroleum potentials of the basin. In this study, the time-temperature index (TTI) method was used to evaluate petroleum prospects of the basin. An increase in geothermal gradient resulted in a decrease in depth to the oil window, with the sediments maturing earlier at higher geothermal gradients. At geothermalmore » gradients of 1.5-1.9/sup 0/F/100 ft (2.73.5/sup 0/C/100 m) and maximum TTI values, the Asu River Group and the Eze-Aku Group of sediments are still within the gas-generating stage. The Awgu Shale and the Nkporo Shale are capable of generating gas at geothermal gradients of 2.3-2.7/sup 0/F/100 ft (4.2-4.9/sup 0/C/100 m). The Benue trough is essentially a gas-condensate basin with little oil. Exploration targets in the basin include both the sub-Santonian and superSantonian sediments, with the Eze-Aku Group, Awgu Shale, and Nkporo Shale being more prospective than the stratigraphically lower Asu River Group. In general, the middle Benue trough is considered to be the most prospective area within the trough because depths to the mature zones are moderate (6,600-13,000 ft; 2-4 km). These depths are variable, decreasing northeastward and increasing southwestward toward the Niger delta.« less

  6. Surface Freshwater Storage and Variability in the Amazon Basin from Multi-Satellite Observations, 1993-2007

    NASA Technical Reports Server (NTRS)

    Papa, Fabrice; Frappart, Frederic; Guntner, Andreas; Prigent, Catherine; Aires, Filipe; Getirana, Augusto; Maurer, Raffael

    2013-01-01

    The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatio-temporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of approx. 1200 cu km is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and flood-plains of the Amazon basin was, respectively, approx. 230 (approx. 40%) and 210 (approx. 50%) cu km below the 1993-2007 average. This new 15year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.

  7. Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment.

    PubMed

    Laura, Miserendino M; Adriana, M Kutschker; Cecilia, Brand; La Ludmila, Manna; Cecilia, Prinzio Y Di; Gabriela, Papazian; José, Bava

    2016-06-01

    This work evaluates the consequences of anthropogenic pressures at different sections of a Patagonian mountain river using a set of environmental and biological measures. A map of risk of soil erosion at a basin scale was also produced. The study was conducted at 12 sites along the Percy River system, where physicochemical parameters, riparian ecosystem quality, habitat condition, plants, and macroinvertebrates were investigated. While livestock and wood collection, the dominant activities at upper and mean basin sites resulted in an important loss of the forest cover still the riparian ecosystem remains in a relatively good status of conservation, as do the in-stream habitat conditions and physicochemical features. Besides, most indicators based on macroinvertebrates revealed that both upper and middle basin sections supported similar assemblages, richness, density, and most functional feeding group attributes. Instead, the lower urbanized basin showed increases in conductivity and nutrient values, poor quality in the riparian ecosystem, and habitat condition. According to the multivariate analysis, ammonia level, elevation, current velocity, and habitat conditions had explanatory power on benthos assemblages. Discharge, naturalness of the river channel, flood plain morphology, conservation status, and percent of urban areas were important moderators of plant composition. Finally, although the present land use in the basin would not produce a significant risk of soil erosion, unsustainable practices that promotes the substitution of the forest for shrubs would lead to severe consequences. Mitigation efforts should be directed to protect headwater forest, restore altered riparian ecosystem, and to control the incipient eutrophication process.

  8. Preliminary thermal-maturity map of the Cameo and Fairfield or equivalent coal zone in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Nuccio, Vito F.; Johnson, Ronald C.

    1983-01-01

    This map was prepared in cooperation with the U.S. Department of Energy's Western Gas Sands Project and was constructed to show the thermal maturity of the Upper Cretaceous Mesaverde Formation (or Group) in the Piceance Creek Basin. The ability of a source rock to generate oil and gas is directly related to its kerogen content and thermal maturity; hence, thermal maturity is commonly used as an exploration tool. This publication consists of two parts: a coal rank map for the basinwide Cameo and Fairfield or equivalent coal zone and three cross sections showing the variation in a coal rank for the entire Mesaverde. Structure contours on the map show the top of the Rollins Sandstone Member of the Mesaverde Formation and its equivalent the Trout Creek Sandstone Member of the Iles Formation of the Mesaverde Group, which immediately underlie the Cameo and Fairfield zone. The structure contours show the fairly strong correlation between structure and coal rank in the basin, suggesting that maximum overburden was the key factor in determining the coal ranks. Even in the southern part of the basin where extensive plutonism occurred during the Oligocene, coal ranks still generally follow structure; indicating that the plutons had little affect on the coals. On the cross sections both the top of the Rollins and Trout Creek, and the top of the Mesaverde Formation/Group are shown. A complete analysis of the entire Mesaverde in the basin would require more information than is presently available.

  9. Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment

    NASA Astrophysics Data System (ADS)

    Laura, Miserendino M.; Adriana, M. Kutschker; Cecilia, Brand; La Ludmila, Manna; Cecilia, Prinzio Y. Di; Gabriela, Papazian; José, Bava

    2016-06-01

    This work evaluates the consequences of anthropogenic pressures at different sections of a Patagonian mountain river using a set of environmental and biological measures. A map of risk of soil erosion at a basin scale was also produced. The study was conducted at 12 sites along the Percy River system, where physicochemical parameters, riparian ecosystem quality, habitat condition, plants, and macroinvertebrates were investigated. While livestock and wood collection, the dominant activities at upper and mean basin sites resulted in an important loss of the forest cover still the riparian ecosystem remains in a relatively good status of conservation, as do the in-stream habitat conditions and physicochemical features. Besides, most indicators based on macroinvertebrates revealed that both upper and middle basin sections supported similar assemblages, richness, density, and most functional feeding group attributes. Instead, the lower urbanized basin showed increases in conductivity and nutrient values, poor quality in the riparian ecosystem, and habitat condition. According to the multivariate analysis, ammonia level, elevation, current velocity, and habitat conditions had explanatory power on benthos assemblages. Discharge, naturalness of the river channel, flood plain morphology, conservation status, and percent of urban areas were important moderators of plant composition. Finally, although the present land use in the basin would not produce a significant risk of soil erosion, unsustainable practices that promotes the substitution of the forest for shrubs would lead to severe consequences. Mitigation efforts should be directed to protect headwater forest, restore altered riparian ecosystem, and to control the incipient eutrophication process.

  10. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Treesearch

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  11. Corps of Engineers Hydraulic Design Criteria. Volume I

    DTIC Science & Technology

    1977-01-01

    DESIGN CRITERIA CLASSIFICATION INDEX S000-GENERAL 000 Physical Constants 001 Fluid Properties 010 Open Channel Flow 020 Free Overflow 030 Pressure Flow...Dissipation 113 Erosion below Spillways 120 Chute Spillways 121 Approach Channel 122 Ogee Crests 123 Spillay Chutes S ii124 Spillway Stilling Basins 125...Spillvay Exit Channel Revised 5-59 .. . j1.I.i edCORPS OF ENGINEERS HYDRAULIC DESIGN CRITERIA CLASSIFICATION INDEX (Continued) %. IO0-SPILLWAYS

  12. 3D structure of a complex of transform basins from gravity data, a case study from the central Dead Sea fault

    NASA Astrophysics Data System (ADS)

    Rosenthal, Michal; Schattner, Uri; Ben-Avraham, Zvi

    2017-04-01

    The Kinneret-Bet She'an (KBS) basin complex comprises the Sea of Galilee, Kinarot, and Bet She'an sub-basins. The complex developed at the intersection between two major tectonic boundaries: the Oligo-Miocene Azraq-Sirhan failed rift, that later developed into the southern Galilee basins and Carmel-Gilboa fault system; and the Dead Sea fault (DSF) plate boundary that developed since the Miocene. Despite numerous studies, KBS still remains one of the enigmatic basin complexes. Its structure, stratigraphy and development are vaguely understood - both inside the basin and in correlation with its surroundings. Our study presents a new and comprehensive 3D model for the structure of KBS complex. It is based on all available gravity measurements, adopted from the national gravity database, and new gravity measurements, collected in cooperation with the Geological Survey of Israel and funded by the Ministry of National Infrastructure, Energy and Water Resources. The gravity data were integrated with constraints from boreholes, surface geology, seismic surveys, potential field studies and teleseismic tomography. The dense distribution of gravity data [1] provides suitable coverage for modeling the deep structure in three dimensions. The model details the spatial distribution, depth, thickness and density of the following regional units within the KBS complex and across its surroundings: upper crust, pre-Senonian sediments, Senonian and Cenozoic sediments, Miocene volcanics, Pliocene and Quaternary volcanics. Additional local units include salt, gabbro and pyroclasts. Results indicate that the KBS complex comprises two sub-basins separated by a structural saddle: Kinneret-Kinarot ( 6-7 km deep, 45 km long) and Bet She'an ( 4 km deep, 10 km long) sub-basin. A 500 m thick layer of Miocene volcanics appears across the Bet She'an sub-basin, yet missing from the Kinneret-Kinarot sub-basin. Between the basins Zemah-1 borehole penetrated a salt unit. The model indicates that this unit is a part of a thick (1250 m) dome-shaped, perhaps diapiric, structure. A relatively thin (350 m) salt unit fills the Kinneret-Kinarot sub-basin. Above, a 700 m thick layer of Pliocene volcanics fills the entire KBS complex. These volcanics are uplifted in the Zemah area by 200 m. The Pliocene volcanics dip northward from Zemah towards the center of the Sea of Galilee, and further north the Pliocene volcanics dip southward from Korazim towards the center of the Sea of Galilee. The depth differences exceed 3 km across a distance of 15 km, forming a 11° slope below the younger Quaternary fill of the basin. A low-density, probably pyroclastic, lens is calculated within the uppermost 2 km of the Sea of Galilee fill. Scenarios for the development of the basin are discussed. [1] Rosenthal, M., Segev, A., Rybakov, M., Lyakhovsky, V. and Ben-Avraham, Z. (2015) The deep structure and density distribution of northern Israel and its surroundings. GSI Report No. GSI/12/2015, 33 pages, Jerusalem.

  13. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  14. Detailed petrophysical characterization enhances geological mapping of a buried substratum using aeromagnetic and gravity data; application to the southwestern Paris basin

    NASA Astrophysics Data System (ADS)

    Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Chen, Yan; Reninger, Pierre-Alexandre

    2016-04-01

    Mapping the geometries (structure and lithology) of a buried basement is a key for targeting resources and for improving the regional geological knowledge. The Paris basin is a Mesozoic to Cenozoic intraplate basin set up on a Variscan substratum, which crops out in the surrounding massifs. We focus our study on the southwestern part of the Paris basin at its junction with the Aquitaine basin. This Mezo-Cenozoic cover separates the Armorican Massif and the Massif Central which compose of several litho-tectonic units bounded by crustal-scale shear zones. In spite of several lithological and structural correlations between various domains of the two massifs, their geological connection, hidden below the Paris basin sedimentary cover, is still largely debated. Potential field geophysics have proven effective for mapping buried basin/basement interfaces. In order to enhance the cartographic interpretation of these data, we have set up a detailed petrophysical library (field magnetic susceptibility data and density measurements on rock samples) of the Paleozoic rocks outcropping in the Variscan massifs. The combination of aeromagnetic and gravity data supported by the petrophysical signatures and field/borehole geological information, is carried out to propose a new map of the architecture of the Variscan substratum. The new synthetic map of geophysical signature of the Paris basin basement combines: i) the magnetic anomaly reduced to the pole, ii) the vertical gradient of the Bouguer anomaly and iii) the tilt derivative of the magnetic anomaly reduced to the pole. Based on this information, the Eastern extension of the major shear zones below the sedimentary cover is assessed. The petrophysical signatures were classified in three classes of magnetic susceptibility and density: low, intermediate and high. Basic rocks have high magnetization and density values whereas granite, migmatite and orthogneiss show low magnetization and density values, Proterozoic and Paleozoic sediments, micaschists and metagrauwackes have intermediate to low magnetization and density values. Detailed lithological attribution of geophysical anomalies was achieved separately for each geological sub-domain (in between 2 major structures). This methodology will be generalized at the scale of the entire Paris basin in order to propose a tectonic reconstruction of this segment of the Variscan belt, and provide guides for the exploration of hidden resources.

  15. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1

    USGS Publications Warehouse

    Whitten, J.; Head, J.W.; Staid, M.; Pieters, C.M.; Mustard, J.; Clark, R.; Nettles, J.; Klima, R.L.; Taylor, L.

    2011-01-01

    Moon Mineralogy Mapper (M3) image and spectral reflectance data are combined to analyze mare basalt units in and adjacent to the Orientale multiring impact basin. Models are assessed for the relationships between basin formation and mare basalt emplacement. Mare basalt emplacement on the western nearside limb began prior to the Orientale event as evidenced by the presence of cryptomaria. The earliest post-Orientale-event mare basalt emplacement occurred in the center of the basin (Mare Orientale) and postdated the formation of the Orientale Basin by about 60-100 Ma. Over the next several hundred million years, basalt patches were emplaced first along the base of the Outer Rook ring (Lacus Veris) and then along the base of the Cordillera ring (Lacus Autumni), with some overlap in ages. The latest basalt patches are as young as some of the youngest basalt deposits on the lunar nearside. M3 data show several previously undetected mare patches on the southwestern margins of the basin interior. Regardless, the previously documented increase in mare abundance from the southwest toward the northeast is still prominent. We attribute this to crustal and lithospheric trends moving from the farside to the nearside, with correspondingly shallower density and thermal barriers to basaltic magma ascent and eruption toward the nearside. The wide range of model ages for Orientale mare deposits (3.70-1.66 Ga) mirrors the range of nearside mare ages, indicating that the small amount of mare fill in Orientale is not due to early cessation of mare emplacement but rather to limited volumes of extrusion for each phase during the entire period of nearside mare basalt volcanism. This suggests that nearside and farside source regions may be similar but that other factors, such as thermal and crustal thickness barriers to magma ascent and eruption, may be determining the abundance of surface deposits on the limbs and farside. The sequence, timing, and elevation of mare basalt deposits suggest that regional basin-related stresses exerted control on their distribution. Our analysis clearly shows that Orientale serves as an excellent example of the early stages of the filling of impact basins with mare basalt. Copyright ?? 2011 by the American Geophysical Union.

  16. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of late stage sedimentary basin fill that preserve the slope of the pre-incision piedmonts of the Galiuro Mountains and Santa Teresa Mountains; and (4) the paleo-drainage divide between Aravaipa Creek and Sulphur Springs Valley, approximately 6 km northwest of the modern divide. The pre-incision basin surface sloped from the Sulphur Springs divide (1370 m) to its intersection with the point of integration (1100 m) between Aravaipa Creek and the San Pedro River, 50 km to the northwest. Maximum incision of 450 m occurred in the vicinity of Aravaipa Canyon, and more than 50 cubic kilometers of material have been eroded from Aravaipa Creek basin. Finally, cosmogenic nuclide burial dates for latest stage sedimentary basin fill enable us to constrain the timing of drainage integration and place first-order constraints on paleo-erosion rates.

  17. Structural Features of the Western Taiwan Foreland Basin in the Eastern Taiwan Strait since Late Miocene

    NASA Astrophysics Data System (ADS)

    WANG, J. H.; Liu, C. S.; Chang, J. H.; Yang, E. Y.

    2017-12-01

    The western Taiwan Foreland Basin lies on the eastern part of Taiwan Strait. The structures in this region are dominated by crustal stretch and a series of flexural normal faults have been developed since Late Miocene owing to the flexural of Eurasia Plate. Through deciphering multi-channel seismic data and drilling data, these flexural features are observed in the offshore Changhua coastal area. The flexure normal faults are important features to realize structural activity in the western Taiwan Foreland Basin. Yang et al. (2016) mention that the reactivated normal faults are found north of the Zhushuixi estuary. It should be a significant issue to decipher whether these faults are still active. In this study, we have analyzed all the available seismic reflections profiles in the central part of the Taiwan Strait, and have observed many pre-Pliocene normal faults that are mainly distributed in the middle of the Taiwan Strait to Changyun Rise, and we tentatively suggest that the formation of these faults may be associated with the formation of the foreland basal unconformity. Furthermore, we will map the distribution of these normal faults and examine whether the reactivated normal faults have extended to south of the Zhushuixi estuary. Finally, we discuss the relation between the reactivated normal faults in the Taiwan Strait and those faults onshore. Key words: Multichannel seismic reflection profile, Taiwan Strait, Foreland basin, normal fault.

  18. The organic geochemical characterization: An indication of type of kerogen and maturity of early - Mid Jurassic shale in the Blue Nile formation

    NASA Astrophysics Data System (ADS)

    Shoieba, Monera Adam; Sum, Chow Weng; Abidin, Nor Syazwani Zainal; Bhattachary, Swapan Kumar

    2018-06-01

    The heterogeneity and complexity of shale gas has become clear as the development of unconventional resources have improved. The Blue Nile Basin, is one of the many Mesozoic rift basins in Sudan associated with the Central African Rift System (CARS). It is located in the eastern part of the Republic of Sudan and has been the major focus for shale gas exploration due to the hydrocarbon found in the basin. But so far no success of discovery has been achieved because the shale gas potentiality of the study area is still unknown. The objective of this study is to assess the type of kerogen and maturity of the shale samples from the Blue Nile Formation within the Blue Nile Basin. This was done by employing organic geochemical methods such as pyrolysis gas chromatography (Py-GC) and petrographic analysis such as vitrinite reflectance (Ro%). Ten representative shale samples from TW-1 well in the Blue Nile Formation have been used to assess the quality of the source rock. Pyrolysis GC analysis indicate that all the selected shale samples contain Type II kerogen that produces oil and gas. The Blue Nile Formation possesses vitrinite reflectance (Ro%) of 0.60-0.65%, indicating that the shale samples are mature in the oil window.

  19. Characterizing the utility of the TMPA real-time product for hydrologic predictions over global river basins across scales

    NASA Astrophysics Data System (ADS)

    Gao, H.; Zhang, S.; Nijssen, B.; Zhou, T.; Voisin, N.; Sheffield, J.; Lee, K.; Shukla, S.; Lettenmaier, D. P.

    2017-12-01

    Despite its errors and uncertainties, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time product (TMPA-RT) has been widely used for hydrological monitoring and forecasting due to its timely availability for real-time applications. To evaluate the utility of TMPA-RT in hydrologic predictions, many studies have compared modeled streamflows driven by TMPA-RT against gauge data. However, because of the limited availability of streamflow observations in data sparse regions, there is still a lack of comprehensive comparisons for TMPA-RT based hydrologic predictions at the global scale. Furthermore, it is expected that its skill is less optimal at the subbasin scale than the basin scale. In this study, we evaluate and characterize the utility of the TMPA-RT product over selected global river basins during the period of 1998 to 2015 using the TMPA research product (TMPA-RP) as a reference. The Variable Infiltration Capacity (VIC) model, which was calibrated and validated previously, is adopted to simulate streamflows driven by TMPA-RT and TMPA-RP, respectively. The objective of this study is to analyze the spatial and temporal characteristics of the hydrologic predictions by answering the following questions: (1) How do the precipitation errors associated with the TMPA-RT product transform into streamflow errors with respect to geographical and climatological characteristics? (2) How do streamflow errors vary across scales within a basin?

  20. The Borderlands - A region of physical and cultural diversity: Chapter 2 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Parcher, Jean W.; Papoulias, Diana M.; Woodward, Dennis G.; Durall, Roger A.

    2013-01-01

    The area surrounding the United States–Mexican border is very physically and culturally diverse and cannot be generalized by any single description. To assist in an accurate appraisal and understanding of this remarkable region, the Borderlands team has divided it into eight subareas based on the watershed subareas of the U.S. Geological Survey Border Environmental Health Initiative (http://borderhealth.cr.usgs.gov) (fig. 2–1), the boundaries of which are defined primarily by surface-water drainage basins. The drainage basins directly adjacent to or crossing the international boundary were automatically included in the defined border region, as were those basins that contain unconsolidated aquifers that extend to or cross the international boundary. Also, “protected areas” adjacent to included basins were selectively added to the defined border region. Though some geographic features are entirely within the Borderlands, many features—deserts, mountain ranges, rivers, etc.— extend beyond the region boundaries but are still influential to Borderlands environments (fig. 2–2). In some cases, the authors of the following chapters have made fine adjustments to the Borderlands boundaries, and they have described those alterations where necessary. By describing and studying these subareas individually and comparing them to one another, we can emphasize the physical and cultural diversity that makes the Borderlands such an important geographic area.

  1. Satellite-based Analysis of CO Variability over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Tilmes, S.; Wiedinmyer, C.

    2017-12-01

    Pyrogenic emissions from the Amazon Basin exert significant influence on both climate and air quality but are highly variable from year to year. The ability of models to simulate the impact of biomass burning emissions on downstream atmospheric concentrations depends on (1) the quality of surface flux estimates (i.e., emissions inventories), (2) model dynamics (e.g., horizontal winds, large-scale convection and mixing) and (3) the representation of atmospheric chemical processes. With an atmospheric lifetime of a few months, carbon monoxide (CO) is a commonly used diagnostic for biomass burning. CO products are available from several satellite instruments and allow analyses of CO variability over extended regions such as the Amazon Basin with useful spatial and temporal sampling characteristics. The MOPITT ('Measurements of Pollution in the Troposphere') instrument was launched on the NASA Terra platform near the end of 1999 and is still operational. MOPITT is uniquely capable of measuring tropospheric CO concentrations using both thermal-infrared and near-infrared observations, resulting in the ability to independently retrieve lower- and upper-troposphere CO concentrations. We exploit the 18-year MOPITT record and related datasets to analyze the variability of CO over the Amazon Basin and evaluate simulations performed with the CAM-chem chemical transport model. We demonstrate that observed differences between MOPITT observations and model simulations provide important clues regarding emissions inventories, convective mixing and long-range transport.

  2. Exploring Geochemical Markers of the Anthropocene in River Sediments: Southern New England

    NASA Astrophysics Data System (ADS)

    Tran, J.

    2015-12-01

    The sedimentary record of New England is complex. From glacial till to colonial land use to the industrial revolution, any sediment preserved is intertwined and muddled by humans. Recent studies support the idea that any anthropogenic markers in the sediment record are site specific. Southern New England is marked by a myriad of practices including farming, charcoal kilns, hatting, mill dams, and iron furnaces. While specific markers of the anthropocene have been identified, little work has been done to correlate and quantify these noted markers across multiple basins. Specifically, a combination of x-ray fluorescence (XRF), x-ray diffraction (XRD), and grain size analysis were done on sediment cores taken within Southern New England across various watersheds. We present a combination of geochemical analysis and detrital zircon geochronology in order identify and account for basin differences. This in turn results in a more comprehensive trans-basin understanding of the anthropocene in this region. We observe strong evidence that supports the idea of geochemical markers anthropocene which include an increase in Mercury and Lead content in the sediments. Additionally, in basins where mill dams are present we observe sediment records consistent with flood events and dam degradation. While still fairly novel and understudied, our results provide insight to the much often question topic of the anthropocene in relation to this particular region and the potential pitfalls of doing large scale anthropogenic dating.

  3. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  4. Le 'continental terminal', sa place dans l'évolution géodynamique du bassin sénégalo-mauritanien durant le Cénozoïque

    NASA Astrophysics Data System (ADS)

    Conrad, Georges; Lappartient, Jean-René

    The 'Continental Terminal' in the Senegalo-Mauritanian basin is a Cenozoic and detrital formation, presenting signs of an intense ferralitic alteration with formation of ferruginous concretions and crustings, neo-formation of kaolinite and significant silica movements. Sedimentary structures are generally obliterated by alteration in the formation's summit. However, some fossil layers which have undergone epigenesis by geothite make it possible to establish the sea origin of the eocene and miocene deposits in this 'Continental Terminal'. A better idea of Cenozoic transgressions and regressions can be achieved by a reconstitution of fossil river beds through alterations on the edge of the African continent. The new elements in the 'Continental Terminal' and the Senegalo-Mauritanian Cenozoic paleoclimates are: The 'Continental Terminal' clearly represents an alteration fringe developed at the expense of marine formations (Tessier et al. 1975 Actes 9ème Congr. Int. Sédim., Nice, pp. 207-211), but this concept cannot be generalized to all of the coastal Cenozoic or interior Iullemmeden Nigerian basins. The ferrallitic alterations mostly occurred in the Pliocene period after the sinking of the basin, as in the Miocene margino-littoral facies, and are still highly dominant. The ferruginous crusting can be seen in this period and also during the lower Pleistocene, because of the latitudinal migration of the basin northwards starting from the upper Cretaceous period.

  5. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China.

    PubMed

    Fan, Jing; Tian, Fei; Yang, Yonghui; Han, Shumin; Qiu, Guoyu

    2010-01-01

    Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.

  6. Mitochondrial Genetic Differentiation of Spirlin (Actinopterigii: Cyprinidae) in the South Caspian Sea basin of Iran

    PubMed Central

    Seifali, Mahvash; Arshad, Aziz; Moghaddam, Faezeh Yazdani; Esmaeili, Hamid Reza; Kiabi, Bahram H.; Daud, Siti Khalijah; Aliabadian, Mansour

    2012-01-01

    Background Knowledge about Alburnoides remains lacking relative to many other species, resulting in a lack of a systematic position and taxonomic diagnosis. Basic biological information for Alburnoides has been constructed, and it is necessary to understand further and obtain more information about this species. Its phylogenetic relationships are still debated and no molecular data have been used to study this taxon in Iran. A holistic approach for genetic methods was adopted to analyze possible spirlin population differences at selected centers in the south Caspian Sea basin of Iran. Methods The phylogenetic relationships were determined based on 774 base pairs of the mitochondrial cytochrome b gene of 32 specimens of spirlin from nine locations in the south Caspian Sea drainage basin of Iran. The nucleotide sequences were subjected to phylogenetic analysis using the neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian methods. Results The mitochondrial gene tree largely supports the existence of three major clades. The western populations (clade I) may be considered as Alburnoides eichwaldii, whereas the Talar river populations (clade II) are represented as Alburnoides sp.1 and the eastern populations (clade III) may be distinct taxa of Alburnoides sp.2. Conclusion This molecular evidence supports the hypothesis that A. bipunctatus does not exist in the south Caspian Sea basin of Iran, and that the western and eastern populations are distinct taxa. PMID:22654487

  7. Investigating the causality of changes in the landscape pattern of Lake Urmia basin, Iran using remote sensing and time series analysis.

    PubMed

    Mehrian, Majid Ramezani; Hernandez, Raul Ponce; Yavari, Ahmad Reza; Faryadi, Shahrzad; Salehi, Esmaeil

    2016-08-01

    Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake's water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.

  8. Anomalous δ13C in POC at the chemoautotrophy maximum in the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Scranton, M. I.; Taylor, G. T.; Thunell, R.; Tappa, E.; benitez-Nelson, C. R.; Muller-Karger, F. E.; Lorenzoni, L.; Astor, Y. M.

    2016-02-01

    The Cariaco Basin is the world's largest truly marine, permanently anoxic basin and is located on the continental shelf of Venezuela which experiences strong seasonal upwelling. The CARIACO program has been studying the hydrography, biogeochemistry and properties of sinking flux of the Cariaco Basin since 1995. One of the major puzzles of CARIACO has been the nature of the chemoautotrophic maximum which is seen at depths just below the appearance of hydrogen sulfide ( 250-300 m). The identity and sources of oxidants and reductants to this active microbial community, and the identity of the chemoautotrophic organisms themselves, are still only partially known. Below about 50m (the euphotic zone), δ13C values of suspended particulates range from -23 to -26‰, typical of marine phytoplankton. However we have observed both enrichments (values of up to -16‰) and depletions (values of -28‰) near the redox interface. We had expected to see isotopically light POC in the chemoautotrophy maximum, since DIC δ13C should decrease with depth as organic carbon is remineralized. However both positive and negative isotopic excursions in POC occur at depths where dark carbon fixation is at a maximum, and at or near the transition from micro-oxic to sulfidic water. We postulate that this signal may help to define carbon fixation pathways (and dominant chemoautotrophic populations) in the oxic/sulfidic transition region.

  9. Deformation Mechanism of the Northern Tibetan Plateau as Revealed by Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Zhang, Letian; Wei, Wenbo; Jin, Sheng; Ye, Gaofeng; Xie, Chengliang

    2017-04-01

    As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the northern and northeastern Tibetan Plateau. However, due to its complex evolution history and difficult logistic condition, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin, as well as anticlinorium systems within the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. Based on the analysis results, 2D inversions were performed to produce a preferred model of the lithospheric electrical structure beneath the northern Qaidam Basin. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. All these results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 °C and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin. This conductor extends from the upper crust to the upper mantle, implying vertical coherent deformation of the lithosphere. Melt fraction of this conductive region is estimated to be as high as 10%, which might accommodates a major portion of the thrust deformation on the boundary between the Qaidam Basin and the Qilian Block. (3) Two different end-member deformation mechanisms, namely the decoupling deformation and vertical coherent deformation are both active on the northern margin of the Tibetan Plateau, and both play a significant role in controlling the uplift and expansion of the northern Tibetan Plateau. *This work was funded by National Natural Science Foundation of China (41404060, 41404059).

  10. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity potential could be produced if all planed dams are constructed. The results in this study demonstrate the general idea of future water availability for different purpose in the basin, but uncertainties still exist in the projected future climate and simulated runoff. Optimal operation of existing and proposed reservoirs is also crucial in the context of climate change.

  11. Using a map-based assessment tool for the development of cost-effective WFD river basin action programmes in a changing climate.

    PubMed

    Kaspersen, Bjarke Stoltze; Jacobsen, Torsten Vammen; Butts, Michael Brian; Jensen, Niels H; Boegh, Eva; Seaby, Lauren Paige; Müller, Henrik Gioertz; Kjaer, Tyge

    2016-08-01

    For the 2nd and 3rd river basin management cycles (2015-2027) of the Water Framework Directive (WFD), EU Member States are required to fully integrate climate change into the process of river basin management planning (RBMP). Complying with the main WFD objective of achieving 'good ecological status' in all water bodies in Denmark requires Programmes of Measures (PoMs) to reduce nitrogen (N) pollution from point and diffuse sources. Denmark is among the world's most intensively farmed countries and in spite of thirty years of significant policy actions to reduce diffuse nutrient emissions, there is still a need for further reductions. In addition, the impacts of climate change are projected to lead to a situation where nutrient loads will have to be reduced still further in comparison to current climate conditions. There is an urgent need to address this challenge in WFD action programmes in order to develop robust and cost-effective adaptation strategies for the next WFD RBMP cycles. The aim of this paper is to demonstrate and discuss how a map-based PoMs assessment tool can support the development of adaptive and cost-effective strategies to reduce N losses in the Isefjord and Roskilde Fjord River Basin in the north east of Denmark. The tool facilitates assessments of the application of agri-environmental measures that are targeted towards low retention agricultural areas, where limited or no surface and subsurface N reduction takes place. Effects of climate change on nitrate leaching were evaluated using the dynamic agro-ecosystem model 'Daisy'. Results show that nitrate leaching rates increase by approx. 25% under current management practices. This impact outweighs the expected total N reduction effect of Baseline 2015 and the first RBMP in the case study river basin. The particular PoMs investigated in our study show that WFD N reduction targets can be achieved by targeted land use changes on approx. 4% of the agricultural area under current climate conditions and approx. 9% of the agricultural area, when projected climate change impacts on nitrate leaching rates are included in the assessment. The study highlights the potential of the PoMs assessment tool to assist in evaluation of alternative WFD RBMP scenarios to achieve spatially targeted and cost-effective reductions of N loads at catchment scale in the context of a changing climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Characteristics of Southern California coastal aquifer systems

    USGS Publications Warehouse

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting, litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  13. Agriculture, Rio Sao Francisco, Brazil, South America

    NASA Image and Video Library

    1988-10-03

    The large field patterns in this view of the Rio Sao Francisco basin, Brazil, South America, (11.5S, 43.5W) indicate a commercial agriculture venture; family subsistence farms are much smaller and laid out in different patterns. Land clearing in Brazil has increased at an alarming rate in recent years and preliminary estimates suggest a 25 to 30% increase in deforestation since 1984. The long term impact on the ecological processes are still unknown.

  14. Agriculture, Rio Sao Francisco, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The large field patterns in this view of the Rio Sao Francisco basin, Brazil, South America, (11.5S, 43.5W) indicate a commercial agriculture venture; family subsistence farms are much smaller and laid out in different patterns. Land clearing in Brazil has increased at an alarming rate in recent years and preliminary estimates suggest a 25 to 30% increase in deforestation since 1984. The long term impact on the ecological processes are still unknown.

  15. Microgravity

    NASA Image and Video Library

    2001-05-02

    Sutta Chernubhotta (grade 10) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  16. Circulation in the Mediterranean Sea and consequences on the water quality

    NASA Astrophysics Data System (ADS)

    Millot, C.

    2003-04-01

    Atlantic Water (AW) flows into the Mediterranean Sea (about 10 super(6) m super(3)/s) to compensate for the deficit (about 10 super(5) m super(3)/s) created by evaporation larger than precipitation and river runoff there. Mainly due to the earth's rotation, the current is generally bent to the right, so that AW flows anticlockwise alongslope in both the western and the eastern basins. Meanwhile, it is continuously evaporated and thus made denser. In winter, dry and cold air masses transported by violent northerly winds induce large losses of latent and sensible heat. Hence, AW sinks in some specific regions located in the northern part of the various subbasins. The intermediate and deep waters that are formed in such a way then circulate, still bent to the right by the earth's rotation, before flowing through the various channels and, finally, out from the sea. The Mediterranean Sea is thus a machine that transforms surface oceanic water into saltier (by about 2 psu) cooler (by about 2 °C) and denser (by about 2 kg/m super(3)) waters that will flow and spread at intermediate depths (1000-1200 m) in most of the northern Atlantic. Due to the west-east elongated shape of both basins, and to the specific locations of their openings, AW first flows eastwards in the southern part of each basin. There, the current is markedly unstable and it generates, all year long and a few times per year, 100-200 km anticyclonic eddies that propagate downstream at a few km/day, extend possibly down to the bottom (about 3000 m), and have lifetimes up to 3 years at least. Especially in the eastern basin, similar eddies are induced in specific places by the Etesians, they can propagate then and survive for more than one year. All these eddies strongly interact, either with their parent current of with other eddies, and two eddies can merge. Natural barriers (islands and/or the bathymetry) prevent these eddies from reaching the eastern parts of the basins so that AW there flows northward in a relatively gentle way. In the northern parts of the basins, AW flows westwards, strongly interacting with the process of dense water formation and thus displaying a marked seasonal variability. At intermediate and greater depths, the circulation is less well specified, but it can display a marked variability at seasonal and meso- scales, and it can be much more intense than generally thought. On the whole, consequences on the water quality are that floating materials are transported all around the sea, eventually pushed southwards by the dominant winds, but still maintained within the sea. Conversely, all dissolved materials will, some time, be flushed out of the sea. At basin scale, sewage effluents released along the southern coasts will generally be entrained either alongslope (in one direction or the other) or seaward, before eventually coming back. Effluents from the eastern and northern coasts will generally be entrained alongslope downstream.

  17. Introduction to special section: China shale gas and shale oil plays

    USGS Publications Warehouse

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.

  18. Poecilia vivipara Bloch & Schneider, 1801 (Cyprinodontiformes, Poeciliidae), a guppy in an oceanic archipelago: from where did it come?

    PubMed

    Berbel-Filho, Waldir Miron; Barros-Neto, Luciano Freitas; Dias, Ricardo Marques; Mendes, Liana Figueiredo; Figueiredo, Carlos Augusto Assumpção; Torres, Rodrigo Augusto; Lima, Sergio Maia Queiroz

    2018-01-01

    Poecilia vivipara , a small euryhaline guppy is reported at the Maceió River micro-basin in the Fernando de Noronha oceanic archipelago, northeast Brazil. However, the origin (human-mediated or natural dispersal) of this insular population is still controversial. The present study investigates how this population is phylogenetically related to the surrounding continental populations using the cytochrome oxidase I mitochondrial gene from eleven river basins in South America. Our phylogenetic reconstruction showed a clear geographical distribution arrangement of P. vivipara lineages. The Fernando de Noronha haplotype fell within the 'north' clade, closely related to a shared haplotype between the Paraíba do Norte and Potengi basins; the geographically closest continental drainages. Our phylogenetic reconstruction also showed highly divergent lineages, suggesting that P. vivipara may represent a species complex along its wide distribution. Regarding to the insular population, P. vivipara may have been intentionally introduced to the archipelago for the purpose of mosquito larvae control during the occupation of a U.S. military base following World War II. However, given the euryhaline capacity of P. vivipara , a potential scenario of natural (passive or active) dispersal cannot be ruled out.

  19. Poecilia vivipara Bloch & Schneider, 1801 (Cyprinodontiformes, Poeciliidae), a guppy in an oceanic archipelago: from where did it come?

    PubMed Central

    Berbel-Filho, Waldir Miron; Barros-Neto, Luciano Freitas; Dias, Ricardo Marques; Mendes, Liana Figueiredo; Figueiredo, Carlos Augusto Assumpção; Torres, Rodrigo Augusto; Lima, Sergio Maia Queiroz

    2018-01-01

    Abstract Poecilia vivipara, a small euryhaline guppy is reported at the Maceió River micro-basin in the Fernando de Noronha oceanic archipelago, northeast Brazil. However, the origin (human-mediated or natural dispersal) of this insular population is still controversial. The present study investigates how this population is phylogenetically related to the surrounding continental populations using the cytochrome oxidase I mitochondrial gene from eleven river basins in South America. Our phylogenetic reconstruction showed a clear geographical distribution arrangement of P. vivipara lineages. The Fernando de Noronha haplotype fell within the 'north' clade, closely related to a shared haplotype between the Paraíba do Norte and Potengi basins; the geographically closest continental drainages. Our phylogenetic reconstruction also showed highly divergent lineages, suggesting that P. vivipara may represent a species complex along its wide distribution. Regarding to the insular population, P. vivipara may have been intentionally introduced to the archipelago for the purpose of mosquito larvae control during the occupation of a U.S. military base following World War II. However, given the euryhaline capacity of P. vivipara, a potential scenario of natural (passive or active) dispersal cannot be ruled out. PMID:29674897

  20. Age determinations and Earth-based multispectral observations of lunar light plains

    NASA Technical Reports Server (NTRS)

    Koehler, U.; Jaumann, R.; Neukum, G.

    1993-01-01

    The history of light plains still remains doubtful, but there are good arguments - mainly obtained by age determinations and supported by multispectral observations - for an endogenic (magmatic) instead of an (exclusively) impact related origin. Light plains are characterized by smooth areas with an albedo lower than the surrounding highlands (12 - 13 percent), but significantly higher than maria (5 - 6 percent). Before Apollo 16 a volcanic source has been supposed, but analysis of returned samples (highly brecciated and metamorphosed rocks) favored an impact ejecta related origin. Among the currently discussed models are formation by ejecta sedimentation from multi-ringed basins, formation by secondary and tertiary cratering action of ballistically ejected material during the formation of multi-ringed basins, in situ formation by impact melt of large events, and premare (crypto-) volcanism basalts covered by a thin ejecta cover; younger impacts penetrated the ejecta surface to create the dark haloed craters. To find arguments in favor or against these ideas the chronology of light plains is of major importance. Obviously a genetic relationship between the evolution of light plains and the basin forming impacts can be possible only if the events of emplacement features happened simultaneously.

  1. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional development of geophysical models offer hope for reconciling the field data with our understanding of earth rheology. ?? 1995.

  2. How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers

    NASA Astrophysics Data System (ADS)

    Munia, Hafsa Ahmed; Guillaume, Joseph H. A.; Mirumachi, Naho; Wada, Yoshihide; Kummu, Matti

    2018-05-01

    Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status - i.e. they are not yet dependent on upstream water to avoid stress - but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning of management practices in transboundary basins.

  3. Thermohaline Staircases in the Amundsen Basin: possible disruption by shear and mixing.

    NASA Astrophysics Data System (ADS)

    Guthrie, J.; Fer, I.; Morison, J.

    2016-02-01

    As part of the 2013 and 2014 Field Seasons of the North Pole Environmental Observatory in the Amundsen Basin of the Arctic Ocean, two temperature microstructure experiments were performed. A Rockland Scientific Microrider with FP07 fast response thermistors was attached to a Conductivity-Temperature-Depth unit (SBE 19+ in 2013, SBE 911 in 2014). From a heated hut, the instrument package was lowered through a 30" hole in the sea ice at a speed of 25 cm s-1 with a motorized winch. The 2013 data set was characterized by an extensive thermohaline staircase, indicative of the diffusive convective type of double diffusion (DDC), from 150-250 m depths. The staircase was absent in the upper part of that depth range in 2014, even though an analysis of density ratio, Rρ, still shows high susceptibility to DDC. In the depth range of interest, survey averaged Rρ = 3 in 2013 and Rρ = 3.3 in 2014, indicating that hydrographic differences might not be the cause of staircase disappearance. We propose that increased upper ocean shear and turbulent mixing, possibly associated with strong wind events, caused disruption of the staircase in 2014. Average thermal diffusivity, KT, between 70 - 120 m is elevated in 2014, 7 x 10-6 m2s-1, compared to 2013, 2 x 10-6 m2s-1. Also, finescale shear variance between 70-200 m calculated from eXpendable Current Profilers in 2014 is nearly 3 times as high when compared to 2013. Despite increased turbulence over the staircase region in 2014, heat fluxes are remarkably consistent between the surveys. Even though they have been previously reported and the basin has favorable stratification, DDC staircases are less prevalent in the Amundsen Basin when compared to the Canada Basin. Possible reasons behind the lack of an omnipresent thermohaline staircase in the Amundsen Basin will be discussed.

  4. Investigations of young (< 2.94 Ma) Hadar Formation deposits and their implication for basin development in southern Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    DiMaggio, E.; Arrowsmith, R.; Campisano, C. J.; Johnson, R. A.; Deino, A. L.; Warren, M.; Fisseha, S.; Cohen, A. S.

    2014-12-01

    Sedimentary deposits in Pliocene extensional rift basins in the Afar Depression, Ethiopia chronicle the evolution and paleoenvironmental context of early humans. In the lower Awash Valley, the long-studied Hadar Basin still lacks constraints on basin development during the onset and termination of Hadar Formation (~3.8 - 2.94 Ma) sedimentation. Here we present new mapping and analysis of tephra deposits from a 26 meter-thick section of sediments exposed in the central Ledi-Geraru project area at Gulfaytu, including 20 m of sediments and tephras conformably overlying a 2.94 Ma tephra marker bed (BKT-2U) that previously served as the uppermost dated tephra of the Hadar Formation. Within the overlying 20 meters of primarily lacustrine strata, we identified eight post-BKT-2U tuffs; four were suitable for geochemical characterization, and one yielded an 40Ar/39Ar age of 2.931 ± 0.034 Ma. Based on regional sedimentation rates and the tephra 40Ar/39Ar age, we infer that the newly mapped Hadar Formation at Gulfaytu represents ca. 20 kyr of post-BKT-2 sedimentation. An erosional surface marked by a conglomerate truncates the strata at Gulfaytu, and shows similarities to the well-documented Busidima unconformity surface to the southwest, suggesting that structural changes after 2.93 Ma also affected basin conditions in central Ledi-Geraru. Furthermore, subsurface geophysical investigations support a model whereby deposition rates and the stratigraphic thickness of paleo-Lake Hadar sediments are greatest in the central Ledi-Geraru, ~20 km northeast of the well-exposed lacustrine-dominated sediments of the Hadar Formation. In addition to preserving a record of post-BKT-2 strata, the central Ledi Geraru hosts the thickest subsurface lacustrine sedimentary record within the Hadar Basin hitherto described, making central Ledi-Geraru an ideal location for collecting a continuous core by the Hominin Sites and Paleolakes Drilling Project (HSPDP).

  5. New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters

    NASA Astrophysics Data System (ADS)

    Arantes, Renata C. M.; Loiola, Livia L.

    2014-01-01

    The knowledge of octocorals occurring in Brazilian deep waters is still lacking, with only a few studies conducted so far, most of which focused on large-scale marine habitats characterization. Primnoidae are common and characteristic of seamounts and deepwater coral banks, often providing habitat for other marine species. Although primnoids occur in all ocean basins, only Primnoella and Plumarella species were recorded along the Brazilian coast before this study. Primnoid specimens were obtained through dredging and remotely operated vehicles (ROV) sampling, collected by research projects conducted off the Brazilian coast, between 15 and 34°S. Taxonomic assessment resulted in 5 new records of Primnoidae genera in Brazil: Calyptrophora, Candidella, Dasystenella, Narella and Thouarella. The occurrences of Narella-off Salvador and Vitória, and in Campos Basin (935-1700 m), and Calyptrophora-in Campos Basin (1059-1152 m), are herein reported for the first time in the South Atlantic. Calyptrophora microdentata was previously known in Lesser Antilles, New England and Corner Rise Seamounts, between 686 and 2310 m. Candidella imbricata geographical distribution includes Western and Eastern Atlantic (514-2063 m and 815-2139 m, respectively), being registered herein in Campos Basin, between 1059 and 1605 m. Dasystenella acanthina collected off Rio Grande do Sul state (810 m) and occurs also off Argentina and Southern Ocean, between 150 and 5087 m. Plumarella diadema, which type locality is off São Sebastião, Brazil, has its geographical range extended northwards, occurring in Campos Basin (650 m). Thouarella koellikeri previously known for Patagonia and Antartic Peninsula, is registered for the off Brazil for the first time, in Campos Basin and off São Sebastião (609-659 m). There is a lot of work yet to be done in terms of taxonomic knowledge of Brazilian deep-sea octocorals. Research projects focusing on the investigations, including ROV sampling, of other geographical regions and depth ranges along Brazilian coast will certainly reveal other new octocorals occurrences and species.

  6. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.

  7. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961-2009)

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Wada, Yoshihide

    2016-01-01

    The Yellow River Basin (YRB), the second largest river basin of China, has experienced a booming agriculture over the past decades. But data on variability of and trends in water consumption, pollution and scarcity in the YRB are lacking. We estimate, for the first time, the inter- and intra-annual water footprint (WF) of crop production in the YRB for the period 1961-2009 and the variation of monthly scarcity of blue water (ground and surface water) for 1978-2009, by comparing the blue WF of agriculture, industry and households in the basin to the maximum sustainable level. Results show that the average overall green (from rainfall) and blue (from irrigation) WFs of crops in the period 2001-2009 were 14% and 37% larger, respectively, than in the period 1961-1970. The annual nitrogen- and phosphorus-related grey WFs (water required to assimilate pollutants) of crop production grew by factors of 24 and 36, respectively. The green-blue WF per ton of crop reduced significantly due to improved crop yields, while the grey WF increased because of the growing application of fertilizers. The ratio of blue to green WF increased during the study period resulting from the expansion of irrigated agriculture. In the period 1978-2009, the annual total blue WFs related to agriculture, industry and households varied between 19% and 52% of the basin's natural runoff. The blue WF in the YRB generally peaks around May-July, two months earlier than natural peak runoff. On average, the YRB faced moderate to severe blue water scarcity during seven months (January-July) per year. Even in the wettest month in a wet year, about half of the area of the YRB still suffered severe blue water scarcity, especially in the basin's northern part.

  8. Tool to address green roof widespread implementation effect in flood characteristics for water management planning

    NASA Astrophysics Data System (ADS)

    Tassi, R.; Lorenzini, F.; Allasia, D. G.

    2015-06-01

    In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR) are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall-runoff model based on the modified Curve Number (CN) and SCS Triangular Unit Hydrograph (TUH) methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature) with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers) showed that the widespread use of GRs reduced peak flows (volumes) around 57% (48%) at source and 38% (32%) at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR) to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.

  9. An integrated workflow to assess the remaining potential of mature hydrocarbon basins: a case study from Northwest Germany (Upper Jurassic/Lower Cretaceous, Lower Saxony Basin)

    NASA Astrophysics Data System (ADS)

    Seyfang, Björn; Aigner, Thomas; Munsterman, Dirk K.; Irmen, Anton

    2017-04-01

    Mature hydrocarbon provinces require a high level of geological understanding in order to extend the lives of producing fields, to replace reserves through smaller targets and to reduce the risks of exploring for more and more subtle hydrocarbon traps. Despite a large number of existing wells in the area studied in this paper, the depositional environments and the stratigraphic architecture were still poorly known. In order to improve the geological understanding, we propose a workflow to assess the remaining reservoir potential of mature hydrocarbon areas, integrating cores, cuttings, well-logs, biostratigraphy and seismic data. This workflow was developed for and is exemplified with the northwest of the Lower Saxony Basin (LSB), a mature hydrocarbon province in northwest Germany, but can be applied in a similar fashion to other areas. Systematic integration of lithofacies analysis, chrono- and sequence stratigraphy, combined with electrofacies analysis and modern digital methods like neural network-based lithology determination and 3D facies modelling provides a high-resolution understanding of the spatial facies and reservoir architecture in the study area. Despite widely correlatable litho-units in the Upper Jurassic and Lower Cretaceous in the LSB, complex heterogeneous sedimentary systems can be found in the basin's marginal parts. Two new play types were determined in the study area, showing a remaining potential for stratigraphic hydrocarbon traps. The results of this exploration scale study also provide the basis for re-evaluations on a field development scale. On a basin scale, this study may encourage further data acquisition and re-evaluations to discover previously unknown reservoirs.

  10. Research Analysis of temporal and spatial characteristics of eco-environmental vulnerability in the Xianshui River basin based on GIS

    NASA Astrophysics Data System (ADS)

    Yao, Kun; Bai, Lin; Li, Xiao Ju; Wang, Xiao

    2018-05-01

    The Xianshui River basin is an important ecological barrier and water conservation area of Qinghai-Tibet plateau. To master the spatial and temporal differentiation of ecological environment is beneficial to the realization of the protection of regional ecological environment and the development of restoration measures. In this paper, the evaluation index system of ecological environment vulnerability was constructed from topography, climate, soil, land use and social economy. In this study, GIS and information entropy theory are combined to complete the analysis of spatial and temporal variation of vulnerability of ecological environment vulnerability in 2000-2015 years, and the main results are as follows: The ecological vulnerability of the watershed is characterized by the obvious vertical distribution, which is characterized by the gradual increase of the vulnerability of the south to the north. The evaluation results were classified as potential, micro, mild, moderate and severe, with the proportion of each grade being Micro > mild > potential > moderate > severity. The proportion of light and below accounts for more than 80% of the whole area, and the whole basin is at a medium vulnerable level. The change of overall trend indicates that the overall ecological environment of the basin has improved obviously in 15 years. The driving force factor analysis shows that the national environmental protection and restoration project is playing a significant role and plays a major driving role in the obvious improvement of the ecological environment in the basin area. However, there are still a few parts of the region that are deteriorating. This is mainly due to the special natural environment and over exploitation of hydropower resources.

  11. Aerogeophysical evidence for complex subglacial geology below the Rutford drainage basin,WestAntarctica

    NASA Astrophysics Data System (ADS)

    Jones, P.; Ferraccioli, F.; Corr, H.; Smith, A. M.; King, E.; Vaughan, D.

    2003-12-01

    A significant part of the West Antarctic Ice Sheet appears to be imposed upon a complex and still largely unknown continental rift system, perhaps featuring sedimentary basins, thin crust and high heat flow. Subglacial geology has been postulated to strongly modulate the dynamics and stability of the ice sheet itself. Specifically, recent aerogeophysics collected over central West Antarctica at edge of the Whitmore Mountains crustal block show that narrow subglacial rift basins with thick sedimentary infill may control the onsets and lateral margins of ice streams. The British Antarctic Survey flew an aerogeophysical survey during the 2001-02 field season: the main aim was to investigate what factors control the location and dynamics of the onset region of the Rutford Ice stream. Airborne radar, aerogravity and aeromagnetic data were simultaneously collected over the drainage basin of the Rutford Ice Stream. The new bedrock elevation grid for the area shows that the Rutford Ice Stream is constrained by a deep bedrock trough with a N-S to NE-SW trend. The onset region appears however to lie within an E-W bedrock trough at the edge of the Ellsworth Mountains crustal block. Bouguer gravity maps do not reveal typical signatures for a coincident deep rift basin at this location. However, a sharp NE-SW trending gradient, likely separating crustal blocks with contrasting crustal thickness is revealed. Aeromagnetic data image NE-SW trends north of the Rutford Ice Stream. In the onset region, these trends appear to be truncated by a NNW-SSE trend, lying on strike with the Ellsworth Mountains. Hence, the new aerogeophysical data suggests greater complexity in the subglacial geology and structure of an onset region of an ice stream compared to previous investigations.

  12. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    NASA Astrophysics Data System (ADS)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  13. How Population Growth and Land-Use Change Increased Fluvial Dissolved Organic Carbon Fluxes over 130 Years in the Thames Basin (UK)

    NASA Astrophysics Data System (ADS)

    Noacco, V.; Howden, N. J. K.; Wagener, T.; Worrall, F.; Burt, T. P.

    2015-12-01

    This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1884 and 2014. Specifically, we consider how the impacts of land-use change and population growth drive increases in DOC concentrations and fluxes at the basin outlet. Such key factors for the long-term increase in riverine DOC in temperate, mineral-soil catchments are still widely debated. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, we convert SOC losses due to land-use change into DOC loss to surface waters through runoff. Finally, we combine this input of DOC with an export coefficient model that considers catchment drivers for DOC release to the river. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Our work shows that the major driver for DOC increase to the river Thames was the rise in the catchment population, where the increase in urban area was used as a proxy. This highlights the role of sewage effluent in contributing to the rise of fluvial DOC, even though wastewater treatments were in place since the early 1990s. Land-use change had significant but short-term impacts in the increase in DOC, mainly due to massive conversion of permanent grassland into arable land during World War II.

  14. Seismic investigation of an ocean-continent transition zone in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.

    2011-12-01

    Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.

  15. The Future of Water Security in Metropolitan Region of Sao Paulo Through Different Climate Scenarios

    NASA Astrophysics Data System (ADS)

    Gesualdo, G. C.; Oliveira, P. T. S.; Rodrigues, D. B. B.

    2017-12-01

    Achieving a balance between water availability and demand is one of the most pressing environmental challenges in the twenty-first century. This challenge is exacerbated by, climate change, which has already affected the water balance of landscapes globally by intensifying runoff, reducing snowpacks, and shifting precipitation regimes. Understanding these changes is crucial to identifying future water availability and developing sustainable management plans, especially in developing countries. Here, we address the developing country water balance challenge by assessing the influence of climate change on the water availability in the Jaguari basin, Southeastern Brazil. The Jaguari basin is one of the main sources of freshwater for 9 million people in the Metropolitan Region of São Paulo. This region represents about 7% of the Brazil's Gross Domestic Product. The critical importance of the water balance challenge in this area has been highlighted recently when a major drought in southeastern Brazil revealed the vulnerability of current water management systems. Still today, the per capita water availability in the region remains severely limited. To help address this water balance challenge, we use a modeling approach to predict future water vulnerabilities of this region under different climate scenarios. Here, we calibrated and validated a lumped conceptual model using HYMOD to evaluate future scenarios using downscaled climate models resulting from HadGEM2-ES and MIROC5 GCMs forced by RCP4.5 and RCP8.5 scenarios. We also present future directions which include bias correction from long-term weather station data and an empirical uncertainty assessment. Our results provide an important overview of climate change impacts on streamflow and future water availability in the Jaguari basin, which can be used to guide the basin`s water security plans and strategies.

  16. Fault patterns in the Strait of Messina, Southern Italy

    NASA Astrophysics Data System (ADS)

    Fu, L.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Schulten, I.; Cukur, D.; Gross, F.; Bialas, J.

    2013-12-01

    The Strait of Messina is one of the seismically most active areas in the Mediterranean region. The structural and seismotectonic settings of the area are still poorly understood. A number of faults have been identified on new high-resolution 2D seismic data collected in December 2011/January 2012. Most of the faults trending NWW-SEE are high angle (>60°) faults; they are located in the northern (off Calabria) and southern part of the Messina Straits. A number of faults identified in the central part of the Straits along the central channel or on the Calabrian side strike NNE-SSW or NNW-NNE. They dip at intermediate (30°-60°) to low (<30°) angles. The NNW-ward motion of Sicily and the NE-ward motion of Calabria indicate that faults in the strait are transtensional and that the strait is basically an asymmetric pull-apart basin (half-graben) under transtensional condition. This is confirmed by the appearances of negative flower structures, an en-echelon fault zone, and two main depocentres in the northern and central part of the straits, respectively. A fault located close to the Sicilian coast between Taormina and Briga may represent the so called Taormina fault. The existence of this fault is heavily debated in literatures. As the Strait of Messina is a transtensional basin, the Taormina fault should be a surface fault, which may outcrop very close to the Ionian coast off Sicily rather than a blind basement fault as identified on our data. Faults in the north may be the source of the 1908 Messina earthquake, because the area is in an early mature developing stage of a pull-apart basin. The cross-basin faults transecting this part of the basin would increase the slippage and the potential for large-magnitude earthquakes.

  17. First Evaluation of the Climatological Calibration Algorithm in the Real-time TMPA Precipitation Estimates over Two Basins at High and Low Latitudes

    NASA Technical Reports Server (NTRS)

    Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin

    2013-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.

  18. Analytical estimation of annual runoff distribution in ungauged seasonally dry basins based on a first order Taylor expansion of the Fu's equation

    NASA Astrophysics Data System (ADS)

    Caracciolo, D.; Deidda, R.; Viola, F.

    2017-11-01

    The assessment of the mean annual runoff and its interannual variability in a basin is the first and fundamental task for several activities related to water resources management and water quality analysis. The scarcity of observed runoff data is a common problem worldwide so that the runoff estimation in ungauged basins is still an open question. In this context, the main aim of this work is to propose and test a simple tool able to estimate the probability distribution of the annual surface runoff in ungauged river basins in arid and semi-arid areas using a simplified Fu's parameterization of the Budyko's curve at regional scale. Starting from a method recently developed to derive the distribution of annual runoff, under the assumption of negligible inter-annual change in basin water storage, we here generalize the application to any catchment where the parameter of the Fu's curve is known. Specifically, we provide a closed-form expression of the annual runoff distribution as a function of the mean and standard deviation of annual rainfall and potential evapotranspiration, and the Fu's parameter. The proposed method is based on a first order Taylor expansion of the Fu's equation and allows calculating the probability density function of annual runoff in seasonally dry arid and semi-arid geographic context around the world by taking advantage of simple easy-to-find climatic data and the many studies with estimates of the Fu's parameter worldwide. The computational simplicity of the proposed tool makes it a valuable supporting tool in the field of water resources assessment for practitioners, regional agencies and authorities.

  19. a Study of Electrical Structures of Shanchiao Fault in Taiwan Using Audio-Frequency Magnetotelluric (amt) Method

    NASA Astrophysics Data System (ADS)

    Yang, C.; Liu, H.

    2007-12-01

    The Shanchiao normal fault is located in the western edge of Taipei basin in an N-E to S-W direction. Since the fault crosses through the Tertiary basement of Taipei basin, it is classified as an active fault. The overburden of the fault is sediments with a thickness around few tenth meters to several hundred meters. No detailed studies related to the Shanchiao fault in the western side of Taipei Basin are reported. In addition, there are no outcrops which have been found on the surface. This part of fault seems to be a potential source of disaster for the development of western Taipei basin. The audio-frequency magnetotelluric (AMT) method is a technique used to find the vertical resistivity distribution of formation and to characterize a fault structure through the ground surface based measurement. Based on the geological investigation and lithogic information from wells, the AMT data from six soundings at Wugu site, nine soundings at XinZhuang site and eight sounding at GuanDu site were collected on a NE-SW profile, approximately perpendicular to the prospective strike of the Shanchiao fault. AMT data were then inverted for two- dimension resistivity models (sections). The features of all resistivity sections are similar; an apparent drop in resistivity was observed at the position correlates to the western edge of Taipei basin. The predicted location of Shanchiao fault matches was verified by the lithologic sections of boreholes nearby. It indicates that the Shanchiao normal fault may associate with the subsidence of Taipei basin. The basement is clearly detected as a geoelectrical unit having resistivity less than 250 . It has a trend of increasing its depth toward S-E. The uplift of layers in the east of resistivity sections may affect by the XinZhuang thrust fault from the east. As with each site, the calculated resistivity may affect by cultural interference. However, the AMT survey still successfully delineates the positions and features of the Shanchiao fault and western edge of Taipei basin. Keywords¡GCSAMT, RIP, Shanchiao fault

  20. Methane anomalies in the oxygenated upper waters of the central Baltic Sea associated with zooplankton abundance

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Wäge, Janine; Morholz, Volker; Rehder, Gregor; Wasmund, Norbert; Gräwe, Ulf; Labrenz, Matthias; Loick-Wilde, Natalie

    2017-04-01

    Apart from the sediment as the dominant source of methane in the aquatic realm the process of methane production in well-oxygenated waters has received considerable attention during the last years. The paradox of methane accumulation in these relatively shallow waters, commonly termed as "oceanic methane paradox", has been sporadically observed in lakes as well as in marine ecosystems like the Gulf of Mexico, the Black Sea, the Baltic Sea, Arctic waters or above the continental shelf off the coast of Spain and Africa. Even if this phenomenon has been described in the literature over the last decades, the potential sources of shallow methane accumulation are still controversially discussed. We report on methane enrichments that were observed during summer in the upper water column of the Gotland Basin, central Baltic Sea. In the eastern part of the basin methane concentrations just below the thermocline (in about 30 m water depth) varied between 15 and 77 nM, in contrast to the western part of the basin where no methane enrichments could be detected. Stable carbon isotope ratios of methane (delta 13C-CH4 of -67.6‰) clearly indicated its in situ biogenic origin. This is supported by clonal sequences from the depth with high methane concentrations in the eastern Gotland Basin, which cluster with the clade Methanomicrobiacea, a family of methanogenic Archaea. Hydroacoustic observation in combination with plankton net tows displayed a seston enrichment (size >100 micro meter) in a layer between 30-50 m depth. The dominant species in the phytoplankton, Dinophysis norvegica, was concentrated at 10-20 m depth, and showed higher concentrations in the eastern Gotland Basin in comparison with the western part of the basin. In contrast to the western Gotland Basin, the zooplankton community in the eastern part was dominated by the copepod species Temora longicornis. Laboratory incubations of a T. longicornis dominated seston fraction (>100 micro meter) sampled in the depth of the subthermocline methane anomaly showed a clear correlation between seston concentration (i.e. abundance of copepods) and methane production rates.

  1. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.

  2. Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitsky, Alexander; Zavialov, Peter

    2010-05-01

    The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.

  3. Deformation Mechanism on the Northern Margin of the Tibetan Plateau Inferred from Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jin, S.; Wei, W.; Ye, G.; Xie, C.

    2017-12-01

    As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the plateau. However, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. 2D inversions were performed to produce a preferred model of the lithospheric electrical structure. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. These results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 ° and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin extending from the upper crust to upper mantle, implying vertical coherent deformation of the lithosphere. Melt fraction of this conductive region is estimated to be as high as 10%, which might accommodates a major portion of the thrust deformation on the basin boundary. (3) Decoupling deformation and vertical coherent deformation are both active on the northern margin of the Tibetan Plateau, and both play significant roles in controlling the uplift and expansion of the northern Tibetan Plateau. *This work is funded by National Natural Science Foundation of China (41404060, 41404059).

  4. Structural development of the Dieppe-Hampshire Basin (Eastern English Channel): Contribution of new seismic data

    NASA Astrophysics Data System (ADS)

    Jollivet-Castelot, Martin; Gaullier, Virginie; Paquet, Fabien; Chanier, Frank; Thinon, Isabelle; Lasseur, Eric; Averbuch, Olivier

    2017-04-01

    The Dieppe-Hampshire Basin is a Cenozoic basin crossing the eastern English Channel, between SE of England and the French coast. This basin and its borders developed during the Cenozoic, a period of overall tectonic inversion, in response to the opening of the North Atlantic Ocean and Pyrenean-alpine deformation episodes. Both extensional and subsequent compressional deformations within this area involve the reactivation of older major regional structures, inherited from the Variscan Orogeny. However, the detailed structural development of the Dieppe-Hampshire Basin still remains poorly constrained, as well as the detailed stratigraphic framework of Cenozoic series, notably in terms of seismic stratigraphy and sequence stratigraphy. New very high resolution seismic data, acquired during the oceanographic cruise "TREMOR" (R/V "Côtes de la Manche", 2014, 1800 kilometers of Sparker profiles), and bathymetric data from SHOM and UKHO, have allowed to image the sedimentary filling and tectonic structures of the Dieppe-Hampshire Basin and adjacent areas. The interpretation was first focused on a seismic facies analysis that led to evidence numerous unconformities and seismic units ranging from the Upper Cretaceous to the Bartonian (Late Eocene). The interpretation of the seismic profiles also allowed to map precisely many tectonic features, as faults, folds and monoclinal flexures. Thanks to the new data, we especially imaged the complexity of the deformation within the highest tectonized zones of the region, along the Nord-Baie de Seine Basin and offshore the Boulonnais coast with an unprecedented resolution. The expression of the deformation appears to be very different between the Mesozoic and the Cenozoic series, with prevailing folding affecting the Cenozoic strata whereas the Mesozoic series are predominantly faulted. This deformation pattern illustrates two major structural trends, respectively E-W and NW-SE directed, both syn- to post-Bartonian in age. The first one is consistent in age and orientation with a late Pyrenean or early Alpine deformation phase, while the second one appears to have a different origin, in regards to the overall geodynamic framework. We suggest that the major heterogeneities of crustal blocks underlying the basin played an important role on the development and orientations of these deformations. These preliminary results will be improved soon thanks to a new cruise, "TREMOR 2" (2017), which will be focused on the acquisition of new VHR seismic lines, bathymetric data and coring.

  5. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    NASA Astrophysics Data System (ADS)

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr-1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr-1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively novel concept and is highly recommended for soil erosion modelling in other river basins similar to the studied watershed, because of its simple identification of critical areas affected by the soil loss caused by soil erosion.

  6. Geologic support for the putative Borealis basin (Mega-Impact) on Mars

    NASA Astrophysics Data System (ADS)

    Bleamaster, L. F.

    2008-12-01

    A series of recent papers (all in Nature v. 453) using Martian gravity and topography [Andrews-Hanna et al., 2008], 3-D hydrodynamic simulations [Marinova et al., 2008], and 2-D hydrocode models [Nimmo et al., 2008] have eloquently reintroduced the single mega-impact hypothesis for the formation of the Martian hemispheric dichotomy boundary. Although geophysical models often return non-unique solutions, the coalition front presented by these three independent methods to test such a hypothesis lends credibility and demands further evaluation. The central tenet of these works is the proposition that an elliptical basin (long axis 10,600km, ellipticity 1.25) centered at 67N, 208E marks the pre-Tharsis crustal thickness transition and thus the real dichotomy boundary. Evaluation of this new boundary with respect to the geologic record offers new avenues, especially since geologic tests of the mega-impact hypothesis have mostly proved inconclusive because of Mars' multi-stage and multi-process geologic history. Within this survey, a slightly larger ellipse with a long axis of 12,500 km, ellipticity of 1.48, and centered at 65.3N, 250E expands the putative Borealis impact basin (which does not necessarily represent the transient or final impact cavity dimensions, but defines a potential 'affected zone') while maintaining agreement with the original observations with respect to gravity and topography. The 'affected zone' can be defined by basement structure that may become susceptible to later deformation, or it may in fact have been the paleo- topographic expression of the basin. By expanding the overall area (nearly twice the area of the original mega-impact basin proposed by Wilhelms and Squyres in 1984) several geologic features become significant in evaluating the mega-impact story. 1) Valles Marineris is concentric to the putative basin interior and parallels the ellipse margin suggesting that it is the structural manifestation of localized crustal relaxation of the Tharsis volcanic pile over pre-existing basement structure related to Borealis basin subsidence. The present day Valles Marineris may actually represent the 'missing portion' of the original crustal dichotomy trace underneath Tharsis. 2) The 'great faults' (Connerney et al., 2005) that offset the magnetic field pattern radiate from near the center of the putative basin, again suggesting basement structural control related to basin formation. 3) The mysterious Medusa Fossae Formation is completely enclosed within the basin margin and the units' southern contacts fall within 5 km of the same elliptical trace that bisects central Valles Marineris. 4) Chaos regions at the eastern end of Valles Marineris are wholly contained within the basin margin and suggest some kind of marginal control on their locations. 5) Valley network (channel) densities sharply increase outside the basin and are truncated by the Borealis ellipse. Integrating these and other geologic observations (still ongoing) with the newly formulated geophysical methods suggests that a single mega-impact is reemerging as a viable and perhaps preferred mechanism for dichotomy formation.

  7. Bacteria and emerging chemical contaminants in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2007-01-01

    Introduction Since the enactment of the Clean Water Act in 1972, awareness of the quality of the Nation's water has continued to improve. Despite improvements to wastewater-treatment systems and increased regulation on waste discharge, bacterial and chemical contamination is still a problem for many rivers and lakes throughout the United States. Pathogenic microorganism and newly recognized chemical contaminants have been found in waters that are used for drinking water and recreation (Rose and Grimes, 2001; Kolpin and others, 2002). This summary of bacteria and emerging-chemical-contaminant monitoring in the St. Clair River/Lake St. Clair Basin (fig. 1) was initiated by the Lake St. Clair Regional Monitoring Project (LSCRMP) in 2003, in cooperation with the Michigan Department of Environmental Quality (MDEQ), the Counties of Macomb, Oakland, St. Clair, and Wayne, and the U.S. Geological Survey (USGS).

  8. Evaluating the potential for watershed restoration to reduce nutrient loading to Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    McCormick, Paul V.; Campbell, Sharon G.

    2007-01-01

    A literature review of best management practices to reduce nutrient loading was performed to provide information for resource managers in the Klamath Basin, Oregon. Although BMPs have already been implemented in the watershed, some sense of their effectiveness in reducing phosphorus loading and their cost for installation and maintenance is still lacking. This report discusses both causes of nutrient loading and a wide-variety of BMPs used to treat or reduce causal factors. We specifically focused on cattle grazing as the principal land-use and causal factor for nutrient loading in the Klamath Basin above Upper Klamath Lake, Oregon. Several BMP types, including stream corridor fencing, riparian buffer strips and constructed wetlands, seem to have potential for reducing phosphorus loading that may result from cattle grazing. However, no single BMP is likely to be the most effective in all locations or situations.

  9. The excavation stage of basin formation - A qualitative model

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1981-01-01

    One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.

  10. Timing and patterns of basin infilling as documented in Lake Powell during a drought

    USGS Publications Warehouse

    Pratson, Lincoln F.; Hughes-Clarke, John; Anderson, Mark; Gerber, Thomas; Twitchell, David C.; Ferrari, Ronald; Nittrouer, Charles A.; Beaudoin, Jonathan D.; Granet, Jesse; Crockett, John

    2008-01-01

    Between 1999 and 2005, drought in the western United States led to a >44 m fall in the level of Lake Powell (Arizona-Utah), the nation's second-largest reservoir. River discharges to the reservoir were halved, yet the rivers still incised the tops of deltas left exposed along the rim of the reservoir by the lake-level fall. Erosion of the deltas enriched the rivers in sediment such that upon entering the reservoir they discharged plunging subaqueous gravity flows, one of which was imaged acoustically. Repeat bathymetric surveys of the reservoir show that the gravity flows overtopped rockfalls and formed small subaqueous fans, locally raising sediment accumulation rates 10–100-fold. The timing of deep-basin deposition differed regionally across the reservoir with respect to lake-level change. Total mass of sediment transferred from the lake perimeter to its bottom equates to ~22 yr of river input.

  11. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality pollution loads and influencing factors resulted that unsewered population had higher impact on river water quality. For TN, atmospheric N deposition was taking effect. Continuous development of sewerage system and its expansion along with the pace of urbanization could be the pragmatic option to maintain river water quality in Hadano basin. However, influence of agricultural loads and atmospheric N on water quality cannot be denied for the proper water quality management of Hadano basin. It was found that if the proportion of sewered population could be increased from 72% to 86%, corresponding loads of COD and TP could be decreased by about 41% and 45% respectively. As per the development trend of sewerage system in Hadano basin for last 10 years, unsewered population could be reduced to its half by 2014, provided that the expansion of sewerage system continues at same rate. Regarding TN, its proper control is complicated as atmospheric N is propagated to regional and sometimes to global extent. Further study on the relationship between TN and atmospheric N deposition should be conducted for the proper management of TN in the river water.

  12. Hydrological response to timber harvest in northern Idaho: Implications for channel scour and persistence of salmonids

    USGS Publications Warehouse

    Tonina, D.; Luce, C.H.; Rieman, B.; Buffington, J.M.; Goodwin, P.; Clayton, S.R.; Ali, S. Md; Barry, J.J.; Berenbrock, C.

    2008-01-01

    The potential for forest harvest to increase snowmelt rates in maritime snow climates is well recognized. However, questions still exist about the magnitude of peak flow increases in basins larger than 10 km2 and the geomorphic and biological consequences of these changes. In this study, we used observations from two nearly adjacent small basins (13 and 30 km2) in the Coeur d'Alene River basin, one with recent, relatively extensive, timber harvest, and the other with little disturbance in the last 50 years to explore changes in peak flows due to timber harvest and their potential effects on fish. Peak discharge was computed for a specitic rain-on-snow event using a series of physical models that linked predicted values of snowmelt input to a runoff-routing model. Predictions indicate that timber harvest caused a 25% increase in the peak flow of the modelled event and increased the frequency of events of this magnitude from a 9-year recurrence interval to a 3-6-year event. These changes in hydrologic regime, with larger discharges at shorter recurrence intervals, are predicted to increase the depth and frequency of streambed scour, causing up to 15% added mortality of bull trout (Salvelinus confluentus) embryos. Mortality from increased scour, although not catastrophic, may have contributed to the extirpation of this species from the Coeur d'Alene basin, given the widespread timber harvest that occurred in this region. Copyright ?? 2008 John Wiley & Sons, Ltd.

  13. Mutually beneficial and sustainable management of Ethiopian and Egyptian dams in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Habteyes, Befekadu G.; Hasseen El-bardisy, Harb A. E.; Amer, Saud A.; Schneider, Verne R.; Ward, Frank A.

    2015-10-01

    Ongoing pressures from population growth, recurrent drought, climate, urbanization and industrialization in the Nile Basin raise the importance of finding viable measures to adapt to these stresses. Four tributaries of the Eastern Nile Basin contribute to supplies: the Blue Nile (56%), White Nile-Albert (14%), Atbara (15%) and Sobat (15%). Despite much peer reviewed work addressing conflicts on the Nile, none to date has quantitatively examined opportunities for discovering benefit sharing measures that could protect negative impacts on downstream water users resulting from new upstream water storage developments. The contribution of this paper is to examine the potential for mutually beneficial and sustainable benefit sharing measures from the development and operation of the Grand Ethiopian Renaissance Dam while protecting baseline flows to the downstream countries including flows into the Egyptian High Aswan Dam. An integrated approach is formulated to bring the hydrology, economics and institutions of the region into a unified framework for policy analysis. A dynamic optimization model is developed and applied to identify the opportunities for Pareto Improving measures to operate these two dams for the four Eastern Nile Basin countries: Ethiopia, South Sudan, Sudan, and Egypt. Results indicate a possibility for one country to be better off (Ethiopia) and no country to be worse off from a managed operation of these two storage facilities. Still, despite the optimism of our results, considerable diplomatic negotiation among the four riparians will be required to turn potential gains into actual welfare improvements.

  14. Abrasion-Erosion Evaluation of Concrete Mixtures for Stilling Basin Repairs, Kinzua Dam, Pennsylvania.

    DTIC Science & Technology

    1983-09-01

    principal investigator. Mr. Steven A. Ragan prepared the concrete . mixtures; Mr. Dale Glass , Mr. Frank W. Dorsey, and Mr. Roger Buttner con- Vducted the...from the Buffalo Slag Co., Franklinville, New York. This fine aggregate is classified as a glacial sand and is composed primarily of limestone and...LAS SYMBOL NO.. PITT-8 S-1 TYPE OF MATERIAL Fine Aggregate LOCATION; Franklin, NY PRODUCER: Buffalo Slag Co. SAMPLED BY: Pittsburgh District Personnel

  15. Operation and Maintenance Manual, Melvern Lake, Marais des Cygnes River, Kansas. Appendix V. Embankment Criteria and Performance Report.

    DTIC Science & Technology

    1982-08-01

    of Dam Profile and Embankment Section 0-5-1343 Right Abutment 4 Embankment Sections Conduit and Transitions 0-5-1344 5 Embankment Sections Valley and...Cook Construction Company of Jackson, Mississippi. The drilling and grouting for the grout curtain was accomplished by subcontractor, Golden Drilling... Company of Golden, Colorado. The concrete structures for outlet works and stilling basin were done by subcontractor, Bushman Construction Company of

  16. Using benthic macroinvertebrate and fish communities as bioindicators of the Tanshui River basin around the greater Taipei area - multivariate analysis of spatial variation related to levels of water pollution.

    PubMed

    Young, Shuh-Sen; Yang, Hsi-Nan; Huang, Da-Ji; Liu, Su-Miao; Huang, Yueh-Han; Chiang, Chung-Ting; Liu, Jin-Wei

    2014-07-14

    After decades of strict pollution control and municipal sewage treatment, the water quality of the Tanshui River increased significantly after pollution mitigation as indicated by the River Pollution Index (RPI). The pollution level of the estuarine region decreased from severe pollution to mostly moderately impaired. The most polluted waters are presently restricted to a flow track length between 15-35 km relative to the river mouth. From July 2011 to September 2012, four surveys of fish and benthic macroinvertebrates were conducted at 45 sampling sites around the Tanshui River basin. The pollution level of all the study area indicated by the RPI could also be explained by the Family Biotic Index (FBI) and Biotic Index (BI) from the benthic macroinvertebrate community, and the Index of Biotic Integrity (IBI) of the fish community. The result of canonical correlation analysis between aquatic environmental factors and community structure indicated that the community structure was closely related to the level of water pollution. Fish species richness in the estuarine area has increased significantly in recent years. Some catadromous fish and crustaceans could cross the moderate polluted water into the upstream freshwater, and have re-colonized their populations. The benthic macroinvertebrate community relying on the benthic substrate of the estuarine region is still very poor, and the water layer was still moderately polluted.

  17. Investigating the sources and sinks of water of Congo's wetlands

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; O'Loughlin, F.; Alsdorf, D. E.; Durand, M. T.; Beighley, E., II; Calmant, S.; Lee, H.; Santos Da Silva, J.

    2014-12-01

    The Congo is the second largest river basin in the world and indeed there is still a lot to be investigated about the hydrology of this system. This region presents extensive wetlands that may play an important role on the hydrology, carbon and ecological dynamics of the Congo. However, previous studies indicate that these wetlands behave differently from the Amazon, other major rainforest basin, and how water enters and leaves the Cuvette Centrale wetland is still to be quantified. We investigate the sources and sinks of water to the Congo's wetlands. Our analyses range from simple examinations of precipitation and evaporation historical data to remote sensing datasets and 2 D hydrodynamic modelling of Congo wetlands. Early results show that water levels at wetlands are usually higher than adjacent Congo River water levels and amplitude of variation is considerably smaller. Also, floodplain channels are not observed in this region indicating that surface flows are diffusive. Mean annual precipitation range from 1600 to 2000 mm/year, evapotranspiration estimates are approximately 1100 mm/year while some estimates of groundwater recharge indicate values larger than 300 mm/year. These assessments suggest that volumes coming from local water balance could flood the wetlands to depths of only a few centimeters. Preliminary 2D hydrodynamic simulations show that water coming from main rivers produces at upstream areas can flood only a small part of wetland, mainly alongside these rivers.

  18. Spatial modeling of infrastructure resilience to the natural disasters using baseline resilience indicators for communities (BRIC) - Case study: 5 districts/cities of Bandung Basin area

    NASA Astrophysics Data System (ADS)

    Nafishoh, Qoriatun; Riqqi, Akhmad; Meilano, Irwan

    2017-07-01

    The Bandung Basin area has highly susceptible to the natural disasters. Therefore, resilience measurement is useful to find out the capacity of an area in the facing of a natural disaster. Natural disaster resilience can be measured using BRIC (Baseline Resilience Indicators for Communities) model. This model comprises several indicators; includes social, economic, community, institution, infrastructure, and the environment. This research tries to measure resilience to the natural disasters with still focusing on infrastructure resilience measurement by spatial modeling and analyzed the dominant driving factor that contributes to this resilience trend. We generated a spatial modeling by applying a spatial analysis to the infrastructure objects. The infrastructure objects consist of the road, school, and health facilities. Those objects will be given some radius levels that indicate the resilience level by using buffer processing. An area closest to those objects will have high resilience and contrarily. Our result showed that almost all city areas (Bandung and Cimahi City) have high resilience because they have many infrastructure objects. But contrarily with the district areas which are still contained many patterns of low and moderate resilience level. The dominant driving factor of infrastructure resilience in this research area is a road. The areas which are closest to the road have high resilience and farther away from the road will have low resilience.

  19. 300 million years of basin evolution - the thermotectonic history of the Ukrainian Donbas Foldbelt

    NASA Astrophysics Data System (ADS)

    Spiegel, C.; Danisik, M.; Sachsenhofer, R.; Frisch, W.; Privalov, V.

    2009-04-01

    The Ukrainian-Russian Pripyat-Dniepr-Donets Basin is a large intracratonic rift structure formed during the Late Devonian. It is situated at the southern margin of the Precambrian East European Craton, adjacent to the Hercynian Tethyan belt in the Black Sea area and the Alpine Caucasus orogen. With a sediment thickness of more than 20 km, it is one of the deepest sedimentary basins on earth. The eastern part of the Pripyat-Dniepr-Donets Basin - called Donbas foldbelt - is strongly folded and inverted. Proposed models of basin evolution are often controversial and numerous issues are still a matter of speculation, particularly the erosion history and the timing of basin inversion. Basin inversion may have taken place during the Permian related to the Uralian orogeny, or in response to Alpine tectonics during the Late Cretaceous to Early Tertiary. We investigated the low-temperature thermal history of the Donbas Foldbelt and the adjacent Ukrainian shield by a combination of zircon fission track, apatite fission track and apatite (U-Th)/He thermochronology. Although apatite fission track ages of all sedimentary samples were reset shortly after deposition during the Carboniferous, we took advantage of the fact that samples contained kinetically variable apatites, which are sensitive to different temperatures. By using statistic-based component analysis incorporating physical properties of individual grains we identified several distinct age population, ranging from late Permian (~265 Ma) to the Late Cretaceous (70 Ma). We could thus constrain the thermal history of the Donbas Foldbelt and the adjacent basement during a ~300 Myr long time period. The Precambrian crystalline basement of the Ukrainian shield was affected by a Permo-Triassic thermal event associated with magmatic activity, which also strongly heated the sediments of the Donbas Foldbelt. The basement rocks cooled to near-surface conditions during the Early to Middle Triassic and since then was thermally stable. The basin margins started to cool during the Permo-Triassic whereas the central parts were residing or slowly cooling through the apatite partial annealing zone during the Jurassic and most of the Cretaceous and eventually cooled to near-surface conditions around the Cretaceous-Paleogene boundary. Our data show that Permian erosion was lower and Mesozoic erosion larger than generally assumed. Inversion and pop-up of the Donbas Foldbelt occurred in the Cretaceous and not in the Permian as previously thought. This is indicated by overall Cretaceous apatite fission track ages in the central parts of the basin.

  20. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.

  1. Mercury exposure in a high fish eating Bolivian Amazonian population with intense small-scale gold-mining activities.

    PubMed

    Barbieri, Flavia Laura; Cournil, Amandine; Gardon, Jacques

    2009-08-01

    Methylmercury exposure in Amazonian communities through fish consumption has been widely documented in Brazil. There is still a lack of data in other Amazonian countries, which is why we conducted this study in the Bolivian Amazon basin. Simple random sampling was used from a small village located in the lower Beni River, where there is intense gold mining and high fish consumption. All participants were interviewed and hair samples were taken to measure total mercury concentrations. The hair mercury geometric mean in the general population was 3.02 microg/g (CI: 2.69-3.37; range: 0.42-15.65). Age and gender were not directly associated with mercury levels. Fish consumption showed a positive relation and so did occupation, especially small-scale gold mining. Hair mercury levels were lower than those found in Brazilian studies, but still higher than in non-exposed populations. It is necessary to assess mercury exposure in the Amazonian regions where data is still lacking, using a standardized indicator.

  2. Age and Prematurity of the Alps Derived from Topography

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Wagner, T.; Stüwe, K.

    2010-09-01

    The European Alps are one of the best studied mountain ranges on Earth, but yet the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or already decaying, and is there a significant difference between Western and Eastern Alps? Using a new geomorphic parameter we analyze the topography of the Alps and provide one of the first quantitative constraints demonstrating that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment budget data from the surrounding basins we infer that the formation of the present topography began only 5-6 million years ago. Our results question the apparent consensus that the topographic evolution is distributed over much of the Miocene and might give new impulses to the reconstruction of paleoclimate in Central Europe.

  3. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.

  4. Tectonostratigraphic Evolution of the Levant domain since Late Palaeozoic: a Review

    NASA Astrophysics Data System (ADS)

    Barrier, Eric

    2015-04-01

    During the last 270 my, the evolution of the African/Arabian platform and margins in Levant and surroundings is controlled by a succession of regional tectonic events, starting with a rifting period in the late Paleozoic, and ending with the ongoing Arabia-Eurasia collision. The main rifting period initiated in the mid-late Permian and lasted until the early-Jurassic, as a consequence of the Pangea break up. During this period the Anatolian blocks are still attached to southern Pangea, but some of the Palmyra-Levant and East Mediterranean basins were initiating. From the Mid-Late Permian to the Early Triassic the sedimentation is clastic-dominated in the continental platforms and basins. In the Early Mesozoic, with the initiation and development of the Levant and East Mediterranean basins, the sedimentation changed from clastic to carbonate deposition. Widespread Triassic to Liassic sediments accumulated in subsiding basins (Levant, Palmyride, Sinjar) and margins (East Mediterranean Basin). The rifting aborted in the Palmyride Trough and Levant Basin in the early Jurassic, while the East Mediterranean Basin (Mesogea) the oceanic accretion probably developed during the mid-Jurassic. Then, a 60 My-long cycle lasted from the late Jurassic to the Turonian, mainly characterized by the thermal subsidence of main the basins and margins. Only the early Cretaceous is marked by an extensional tectonic event, associated with magmatism, widespread all around the East Mediterranean Basin. This event, together with the early Cretaceous eustatic regressions, originated a major stratigraphic gap with emersions at the top-Jurassic - Neocomian period, and the deposition of thick clastic sequences in grabens. The following Cenomanian - Early Turonian interval is a major transgressive period characterized by the extension of the carbonate platforms on the African platform, and subsidence of the margins. The Senonian is characterized by an increase in water depth, mainly resulting from the opening of NW- to WNW-oriented major Senonian grabens (e.g. the Sirt, Azraq and Euphrates grabens). The main pulse of rifting is Campanian in age. In the northeastern African plate this extensional tectonics is coeval with the obduction of the Neo-Tethyan ophiolites onto the Northern Arabian platform where thick flysch sequences deposited. Within the upper-most Maastrichtian to Paleocene times, some of the basins and margins were inverted, resulting in unconformities in some of the Mesozoic basins. A 1600 km long right lateral strike-slip zone developed in the southern Mesogean margin (Cyrenaica, northern Egypt, Negev). In the Eocene-Oligocene period a sub-meridian extension prevailed in the Levant area pre-dating the Arabia-Anatolia collision. Chalky deposits are widespread in the western Arabian platform, significantly thickening and deepening westward toward the Levant Basin. The Neogene period is dominated by compressive deformations following the closure of Eastern Mesogea, and related to the Arabia/Anatolia collision that initiated at the Oligocene-Miocene boundary. This period is marked by the inversion of the Mesozoic basins in the western Arabian plate (Afrin, Palmyrides, Sinjar) Finally, in the Late Miocene, a regional strike-slip fault system developed, including the Levant Fault, and the eastern and north Anatolian faults in Anatolia.

  5. Tectonic stages in Southern Greater Caucasus and Adjara Trialeti belt in Georgia: new results on timing and structures of inverted basins

    NASA Astrophysics Data System (ADS)

    Candaux, Zoé; Sosson, Marc; Adamia, Shota; Sadradze, Nino; Alania, Victor; Enukidze, Onise; Chabukiani, Alexandre

    2017-04-01

    The Greater Caucasus mountain belt is the result of a long live subduction process and collisions of continental microplates (e.g. Dercourt et al., 1986; Barrier and Vrielynck, 2008). The northward subduction of Tethys beneath Eurasian plate initiated a back-arc basin: the Greater Caucasus basin (e.g. Adamia et al., 1981; Zonenshain and Le Pichon, 1986; Roberston et al., 1996; Stephenson and Schellart, 2010 among others). It took place from Middle Jurassic to Late Cretaceous. First compression stage started at the end of Cretaceous in the Lesser Caucasus (e.g. Rolland et al., 2010; Sosson et al. 2010, 2016) and Palaeocene-early Eocene in Crimean Mountains (northwestern continuation of the Greater Caucasus) (Sheremet et al., 2016). In southern Greater Caucasus (Georgian area) the age of deformation during the beginning of the collision is still a subject of debate: Oligocene-Lower Miocene at the frontal part (e.g. Adamia et al. 2010) or Eocene (Mosar et al., 2010). The deformation continues at Miocene, Pliocene and actual time in Kura and Rioni foreland basins (Forte et al., 2010; 2013; Mosar et al., 2010). The different timing is interpreted to be the result of the Taurides-Anatolides-South Armenian microcontinent collision with Eurasia, followed by the collision with Arabia. During the first collision, during Paleocene-Eocene, the so-called Adjara-Trialeti basin opened north of the volcanic arc. One question is if this local extension affect the timing of compression observed in the Greater Caucasus or not. In Georgia, we investigated new structural analyses, and considered unconformities and growth strata at the frontal part of deformations in Kura and Rioni forelands basins (in front of the Greater Caucasus). Our results evidence different tectonic stages and their timing. In Adjara-Trialeti, Kura and south Rioni basins deformation starts at Middle-Late Miocene. In northern Rioni basin Upper Cretaceous-Lower Paleocene compression is evidenced. The structures observed in the Greater Caucasus, forelands basins (Kura and Rioni basins) and in the Adjara-Trialeti belt are different: some are linked to thin-skinned tectonic deformations while some induces deformation at depth (thick-skinned tectonic). These observations outline the role of the inherited structures within the basement. The normal faults due to the previous extensional stages are reactivated as thrust during collision while detachment levels are observed in deposits not involved in the extensional stages. These observations bring out the importance of the chronology of the different tectonic stages to better understand the tectonic frame and geodynamic processes involved from the Early Cretaceous in this area and the role on the resulting structures.

  6. Microgravity

    NASA Image and Video Library

    2001-05-02

    Students from DuPont Manual High School in Louisville, Kentucky participated in a video-teleconference during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. Education coordinator Twila Schneider (left) of Infinity Technology and NASA materials engineer Chris Cochrane prepare students for the on-line workshop. This image is from a digital still camera; higher resolution is not available.

  7. Microgravity

    NASA Image and Video Library

    2001-05-02

    Suzarne Nichols (12th grade) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. Jie Ma (grade 10, at right) waits her turn to ask a question. This image is from a digital still camera; higher resolution is not available.

  8. Hazard and Operability Study (HAZOP) Rocky Mountain Arsenal, Basin F liquid Incineration, Task IRA 2, Version 3.0.

    DTIC Science & Technology

    1992-07-01

    Meeting F. RMA HAZOP - Action Item Summary * Action Item Summary Report dated March 27, 1992 * Weston Response dated May 15, 1992 * Revised Action...Additionally, many of the items pertained to the Operation and Maintenance Manual, which was still being developed. Based on a review of the Revised ...four separate submittals, dated November 5, 1991; February 2, 1992; and March 20, 1992, and May 15, 1992. g Additionally, review of the Revised Draft

  9. Wet Weather Crater Repair Technologies for Grooved and Smooth Pavements

    DTIC Science & Technology

    2018-04-30

    test area needed for this project, the PCC slab was grooved by using a walk-behind saw equipped with one diamond saw- cutting blade rather than a...tent. Figure 49 shows the rainwater running off the edge of the tent. Figure 49. Tent water runoff from simulated rain. Figure 50 shows the catch...covered with the tarp. These barriers still left the pavement grooving exposed, so water was able to run freely into the basin from the grooves. The

  10. Outlet Works for Cerrillos Dam, Cerrillos River, and Portugues Dam, Portugues River, Puerto Rico; Hydraulic Model Investigation.

    DTIC Science & Technology

    1979-03-01

    Tests were conducted on a 1:24-scale model of the outlet works for the Cerrillos and Portugues Dams located in Puerto Rico. The purpose of the model... Portugues outlet works were designed to provide for river diversion during construction of the dams. When the dams are completed, the flow will be regulated... Portugues . However, the stilling basins were designed for 2500 cfs (Cerrillos) and 1100 cfs ( Portugues ), the bank-full capacities downstream. Therefore

  11. Strategic Requirements for the Army to the Year 2000. Volume VI. East Asia and the Western Pacific Basin.

    DTIC Science & Technology

    1982-11-01

    mainland China - and this appears essential to vital U.S. interests in the Western Pacific, alternative 2) may be our only acceptable course. If so, we...with 26 essentially the same kind of equipment they have today. Still less encouraging is the fact that Soviet technology in this field may have advanced...appears appropriate for its mission, which is essentially one of deterrence. We have already alluded, however, to the possible need for 1) upgrading the

  12. Holocene slip rate along the northern Kongur Shan extensional system: insights on the large pull-apart structure in the NE Pamir

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Chevalier, M.; Liu, D.; Sun, Z.; Pei, J.; Wu, F.; Xu, W.

    2013-12-01

    Located at the northwestern end of the Himalayan-Tibetan orogenic belt, the Kongur Shan extensional system (KES) is a significant tectonic unit in the Chinese Pamir. E-W extension of the KES accommodates deformation due to the India/Asia collision in this area. Cenozoic evolution of the KES has been extensively studied, whereas Late Quaternary deformation along the KES is still poorly constrained. Besides, whether the KES is the northern extension of the Karakorum fault is still debated. Well-preserved normal fault scarps are present all along the KES. Interpretation of satellite images as well as field investigation allowed us to map active normal faults and associated vertically offset geomorphological features along the KES. At one site along the northern Kongur Shan detachment fault, in the eastern Muji basin, a Holocene alluvial fan is vertically offset by the active fault. We measured the vertical displacement of the fan with total station, and collected quartz cobbles for cosmogenic nuclide 10Be dating. Combining the 5-7 m offset and the preliminary surface-exposure ages of ~2.7 ka, we obtain a Holocene vertical slip-rate of 1.8-2.6 mm/yr along the fault. This vertical slip-rate is comparable to the right-lateral horizontal-slip rate along the Muji fault (~4.5 mm/yr, which is the northern end of the KES. Our result is also similar to the Late Quaternary slip-rate derived along the KES around the Muztagh Ata as well as the Tashkurgan normal fault (1-3 mm/yr). Geometry, kinematics, and geomorphology of the KES combined with the compatible slip-rate between the right-lateral strike-slip Muji fault and the Kongur Shan normal fault indicate that the KES may be an elongated pull-apart basin formed between the EW-striking right-lateral strike-slip Muji fault and the NW-SE-striking Karakorum fault. This unique elongated pull-apart structure with long normal fault in the NS direction and relatively short strike-slip fault in the ~EW direction seems to still be in formation, with the Karakorum fault still propagating to the north.

  13. Chronic exposure to coal fly ash causes minimal changes in corticosterone and testosterone concentrations in male southern toads Bufo terrestris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.K.; Mendonca, M.T.

    More than 50% of the electricity in the United States is produced by coal-burning power plants. The byproduct of coal-burning plants is coal fly ash, which contains increased concentrations of trace metals and is disposed of in collection basins. Southern toads (Bufo terrestris) frequently use these basins for reproduction. Male toads were collected in spring 2001 and 2002 from an ash basin and a reference site and divided into four groups: toads collected at the control site and maintained on (1) control substrate and food or (2) ash and contaminated food and toads collected at the ash site and maintainedmore » in (3) control or (4) ash conditions. Blood was collected periodically during 5 months to determine testosterone and corticosterone concentrations. Reference to ash toads exhibited a significant, transient increase in corticosterone at 4 weeks, but neither corticosterone nor testosterone continued to increase beyond this time. In contrast, toads caught and maintained on ash did not exhibit increased corticosterone. Testosterone in these toads appeared to be unrelated to ash exposure. This unexpected lack of a corticosterone response and no effect on testosterone suggests that toads chronically exposed to trace metals can acclimate to a polluted environment, but they may still experience subtle long-term consequences.« less

  14. In transit sentinel node drainage as a prognostic factor for patients with cutaneous melanoma.

    PubMed

    Brandão, Paulo H D M; Bertolli, Eduardo; Doria-Filho, Eduardo; Santos Filho, Ivan D A O; de Macedo, Mariana P; Pinto, Clovis A L; Duprat Neto, João P

    2018-02-26

    Minor basin or in transit node drainage can be found in patients with cutaneous melanoma who undergo sentinel node biopsy. Its clinical impact is still unclear. Our objective is to evaluate clinical outcomes in patients who presented with in transit sentinel node (ITN) drainage. Retrospective analysis of patients who underwent sentinel node biopsy (SNB) in a single Brazilian institution between 2000 and 2015. Our cohort comprised 1223 SNB. There were 64 patients (5.2%) with ITN. Melanoma of the limbs (OR 10.61, P < 0.0001) and acral subtype (OR 3.49, P < 0.0001) were associated with ITN drainage. Among these 64 patients, 14 (21.9%) had a positive SNB. The ITN was positive for metastases in five patients, four in a popliteal basin and one on the trunk. Regarding completion node dissection (CND), two patients had positive non-sentinel nodes (NSN), both in major basins. In patients who developed recurrence, time to recurrence was shorter (mean time 18 vs 31.4 months, P = 0.001) and time to death was shorter (mean time 31.6 vs 40 months, P = 0.039) in those who had ITN drainage. ITN drainage was associated with earlier recurrences and deaths from melanoma. © 2018 Wiley Periodicals, Inc.

  15. Preliminary bathymetry of Blackstone Bay and Neoglacial changes of Blackstone Glaciers, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Blackstone Bay Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of two basins separated by Willard Island and a submarine ridge. Both basins are closed on the north by terminal-moraine bars where Blackstone Glacier and its tributaries terminated as recently as about A.D. 1350; a carbon-14 date of 580 years before present on Badger Point, and old trees farther up the bay, disclose that the glaciers retreated to two narrow inlets at the head of the bay before 1400. The inlets were still glacier-covered until at least 1909. Glaciers in both inlets have continued to retreat; at present they terminate at the head of tidewater, where they discharge small icebergs. Only relatively thin sediments have accumulated in the eastern basin south of the terminal-moraine bar, and most of the bottom is hard and irregular as disclosed by soundings and profiles. The northern part of Blackstone Bay is very deep; at more than 1,100 feet below sea level a large, level accumulation of sediment is present which is presumably as much as 1,000 feet deep and has been accumulating since late Pleistocene glaciers retreated. (USGS)

  16. Geomorphology of the Southern Gulf of California Seafloor

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.

    2004-12-01

    A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.

  17. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  18. Ecological restoration of Xingu Basin headwaters: motivations, engagement, challenges and perspectives

    PubMed Central

    Durigan, Giselda; Guerin, Natalia; da Costa, José Nicola Martorano Neves

    2013-01-01

    Over the past two decades, the headwaters of the Xingu Basin in the Amazon have been subjected to one of the highest deforestation rates in Brazil, with negative effects on both terrestrial and aquatic systems. The environmental consequences of forest land conversion have concerned the indigenous people living downstream, and this was the first motivation for the Y Ikatu Xingu campaign—‘save the good water of the Xingu’. Among the objectives of the initiative was to restore riparian forests on private land across the basin. For a region where the rivers, rainstorms, forest remnants, distances and farms are huge, the challenges were equally large: crossing the biotic and abiotic thresholds of degradation, as well as addressing the lack of technology, know-how, seeds, forest nurseries, trained personnel and roads, and the lack of motivation for restoration. After 6 years, despite the remarkable advances in terms of technical innovation coupled with a broad and effective social involvement, the restored areas represent only a small portion of those aimed for. The still high costs of restoration, the uncertainties of legislation and also the global economy have been strong forces constraining the expansion of restored forests. Additional efforts and strategies are necessary to overcome these barriers. PMID:23610171

  19. Luminescence dating of the Zeketai loess section in the Ili Basin, northwestern China: Methodological considerations

    NASA Astrophysics Data System (ADS)

    Qin, Jintang; Zhou, Liping

    2018-04-01

    Loess deposits in Xinjiang, northwestern China are ideal archives for past environmental changes in the Westerlies-dominated central Asia. Among previous luminescence dating studies of loess in Xinjiang, few have attempted to systematically investigate the methodological aspects. In this study, we report results of a multiple-procedure luminescence dating of the Zeketai loess section in the Ili Basin, central Xinjiang. Optically stimulated luminescence (OSL) and post-infrared infrared stimulated luminescence (pIRIR) signals were used for quartz and polymineral grains of different sizes. The pIRIR ages obtained with two protocols agree well with each other and constrain the loess deposition between 50 ka and 88 ka. The OSL ages of fine-grained quartz are in stratigraphic order and range from 37 ka to 61 ka, but are ∼30% younger than the pIRIR295 ages of both fine and medium grained polyminerals. Although the causes of the discrepancy between the ages derived from different luminescence dating protocols are still to be understood, we stress that the quartz OSL ages of loess in this region are likely to be underestimated, especially for samples older than 40 ka. The polymineral or potassium feldspar pIRIR signal is recommended for dating loess in the Ili Basin, at least as an internal check.

  20. Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2006-03-01

    Morphometric analysis and air photo interpretation highlight geomorphic imprints of large landslides (i.e., affecting ≥1 km2) on hillslopes in the western Southern Alps (WSA), New Zealand. Large landslides attain kilometer-scale runout, affect >50% of total basin relief, and in 70% are slope clearing, and thus relief limiting. Landslide terrain shows lower mean local relief, relief variability, slope angles, steepness, and concavity than surrounding terrain. Measuring mean slope angle smoothes out local landslide morphology, masking any relationship between large landslides and possible threshold hillslopes. Large failures also occurred on low-gradient slopes, indicating persistent low-frequency/high-magnitude hillslope adjustment independent of fluvial bedrock incision. At the basin and hillslope scale, slope-area plots partly constrain the effects of landslides on geomorphic process regimes. Landslide imprints gradually blend with relief characteristics at orogen scale (102 km), while being sensitive to length scales of slope failure, topography, sampling, and digital elevation model resolution. This limits means of automated detection, and underlines the importance of local morphologic contrasts for detecting large landslides in the WSA. Landslide controls on low-order drainage include divide lowering and shifting, formation of headwater basins and hanging valleys, and stream piracy. Volumes typically mobilized, yet still stored in numerous deposits despite high denudation rates, are >107 m3, and theoretically equal to 102 years of basin-wide debris production from historic shallow landslides; lack of absolute ages precludes further estimates. Deposit size and mature forest cover indicate residence times of 101-104 years. On these timescales, large landslides require further attention in landscape evolution models of tectonically active orogens.

  1. Lunar Magnetism.

    NASA Astrophysics Data System (ADS)

    Fuller, M.

    2008-05-01

    Models of lunar magnetism need to explain (1) strong Natural Remanent Magnetization (NRM), as indicated by IRMs normalization in some of the returned Apollo samples with ages from about 3.9Ae to 3.65Ae, (2) magnetic anomalies antipodal to the young basins of a similar age, (3) the absence of major magnetic anomalies over these same basins, (4) the presence of central anomalies over some Nectarian and PreNectarian basins, and finally (5) strong fields with scale lengths of homogeneity of the order of kms, or less, found over the Cayley Formations and similar material. Observations (1), (2) and (4) have frequently been taken to require the presence of a lunar dynamo. However, if there had been a lunar dynamo at this time, why are there so few samples that carry an unequivocal strong NRM appropriate for TRM in the proposed dynamo fields. It is also an uncomfortable coincidence that the dynamo appears to cease to give strong fields close to the end of the time of heavy bombardment. Given these difficulties with the lunar dynamo model, it is worth reexamining other possible explanations of lunar magnetism. The obvious candidate is impact related shock magnetization, which already appears to provide an explanation for the magnetization of 62235, a key sample with strong magnetization. Hood's model accounts for the antipodal anomalies, while the observations at Vredefort may account for the anomalies over central peaks and uplifted ring structures in major basins. The question that remains is whether all of the observed lunar magnetization can be explained by impact related magnetization, or whether a dynamo is still required.

  2. Indications of correlation between gravity measurements and isoseismal maps. A case study of Athens basin (Greece)

    NASA Astrophysics Data System (ADS)

    Dilalos, S.; Alexopoulos, J. D.

    2017-05-01

    In this paper, we discuss the correlation between isoseismal contour maps and gravity residual anomaly maps and how it might contribute to the characterization of vulnerable areas to earthquake damage, especially in urban areas, where the geophysical data collection is difficult. More specifically, we compare a couple of isoseismal maps that have been produced and published after the catastrophic earthquake of 7th September 1999 (5.9R) in Athens, the metropolis of Greece, with the residual map produced from the processing and data reduction of a gravity survey that has been carried out in the Athens basin recently. The geologic and tectonic regime of the Athens basin is quite complicated and it is still being updated with new elements. Basically it is comprised of four different geotectonic units, one of them considered as the autochthon. During the gravity investigation, 807 gravity stations were collected, based on a grid plan with spacing almost 1 km, covering the entire basin and supported by a newly established gravity base network comprised by thirteen bases. Differential DGPS technique was used for the accurate measurement of all the gravity stations and bases coordinates. After the appropriate data reduction and the construction of the Complete Bouguer Anomaly map, we applied FFT filtering in order to remove the regional component and produce the Residual Anomaly Map. The comparison of the Residual Anomaly Map with the isoseismal contours revealed that the areas with the most damage because of the earthquake were located in the areas with the minimum values of the Residual Anomaly Map.

  3. Cretaceous to Tertiary paleogeographic reconstructions of the Alps-Pyrenees linking zone

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Dielforder, Armin; Ford, Mary; Vergés, Jaume

    2017-04-01

    The northwestern Mediterranean subduction systems underwent an important phase of reorganization between Late Cretaceous and Eocene. The mode and timing of this reorganization are still under debate. Great uncertainties mainly derive from the poorly preserved record of the early phases of orogenic evolution in both the Alps and Pyrenees and the distruction of the orogenic system between the Pyrenees and Alps by the Oligo-Miocene opening of the Gulf of Lion due to backarc rifting. Vestiges are nevertheless preserved in the Pyreneo-Provençal fold-and-thrust belt and associated basins in southern France and Corsica-Sardinia. In this work we first review published plate kinematic models for Iberia, Apulia and Europe from 83 Ma, focusing in particular on the restoration of the Corso-Sardinia block using the free software GPlates. Second, we characterize the Upper Cretaceous to Eocene depositional systems at the junction between the Alps, Pyrenees and Apennines, reviewing previous paleogeographic restorations for the Western Alpine and Eastern Pyrenean foreland basins. Last, we compare the kinematic models with reconstructed basin dynamics. We critically assess the implications of newly proposed paleogeographic reconstructions (at 83, 65, 50, 37 and 30 Ma) for the validity of various plate kinematic models. The information derived from the sedimentary basins help to define the mode and timing of the subduction reorganization that occurred between 83 and 30 Ma in the northwestern Mediterranean. This study is part of the Orogen research program funded by Total, the BRGM (Bureau de Recherches Géologiques et Minières), the CNRS (Centre National de la Recherche Scientifique).

  4. An X-ray spectroscopic perspective on Messinian evaporite from Sicily: Sedimentary fabrics, element distributions, and chemical environments of S and Mg

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshihiro; Kuroda, Junichiro; Lugli, Stefano; Tamenori, Yusuke; Ogawa, Nanako O.; Jiménez-Espejo, Francisco J.; Isaji, Yuta; Roveri, Marco; Manzi, Vinicio; Kawahata, Hodaka; Ohkouchi, Naohiko

    2016-04-01

    The Messinian salinity crisis is a dramatic hydrological and biological crisis that occurred in the Mediterranean basin at 5.97-5.33 Ma. The interpretation of the facies and stratigraphic associations of the Messinian salt deposits is still the object of active research because of the absence of modern depositional analogues of comparable scale. In this study, the spatial distributions of Na, Mg, S, O, Si, and Al in a potassic-magnesian salt and a halite layers of Messinian evaporites from the Realmonte mine on Sicily were determined using synchrotron based micro-X-ray fluorescence. The dominant molecular host site of Mg and S obtained by X-ray absorption near edge structure (XANES) is applied to specify the hydrochemistry of hypersaline brines and the presence of diagenetic minerals, thus shedding light on evaporative concentration processes in the Caltanissetta Basin of Sicily. Mg and S K-edge XANES spectra revealed the presence of highly soluble Mg-bearing sulfates. The massive halite layer "unit C," contains less soluble minerals, thus did not exceed the stage of halite crystallization. We infer that as evaporative concentration increased, the density of the brine at the shallow margin of the basin increased as salinity increased to concentrations over 70 times the starting values, creating brines that were oversaturated with Mg-sulfate. Density stratification of the deep basin caused heavy brines to sink to the bottom and become overlain by more dilute brines. We propose lateral advection of dense Mg-sulfate brines that certainly affected marine biota.

  5. The role of topography on catchment‐scale water residence time

    USGS Publications Warehouse

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 = 0.91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.

  6. A modern regional geological analysis of Venezuela - lessons from a major new world oil province on exploration in mature areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, M.; Audemard, F.; Valdes, G.

    1993-09-01

    Venezuela has produced some 44 billion bbl of oil since the early part of the century. As such, it represents one of the world's major oil producers and a mature petroleum province. However, major tracts of Venezuela's sedimentary basins remain underexplored and large discoveries are still being made in new and old reservoir systems. A regional geological analysis of Venezuela, focusing on basin evolution and sequence stratigraphy and incorporating data from the three national oil companies, is presented. The analysis presents a regionally consistent tectonostratigraphic model capable of explaining the evolution of the Mesozoic and Cenozoic basins of Venezuela andmore » placing the major reservoir facies in their regional tectonic and sequence stratigraphic context. Four regional cross sections describe the stratigraphic and structural model. The model recognizes a Jurassic rifting event and inversion, succeeded by an Early Cretaceous passive margin. In western Venezuela, the Early Cretaceous passive subsidence is enhanced locally by extension related to the Colombian active margin. Venezuela experienced a major change in the Campanian with the initial collision of the Caribbean arc, recorded by foreland structuring and widespread stratigraphic changes. From the Campanian onward, the tectonostratigraphic evolution can be modeled in terms of a progressive southeast-directed arc-continent collision and the migration of the associated foredeep and rift basins. Within the tectonic framework, the major sequence stratigraphic units are identified and the reservoir distribution interpreted. This model provides a strong predictive tool to extrapolate reservoir systems into Venezuela's underexplored areas and to readdress its traditional areas.« less

  7. Numerical explorations of R. M. Goodwin's business cycle model.

    PubMed

    Jakimowicz, Aleksander

    2010-01-01

    Goodwin's model, which was formulated in , still attracts economists' attention. The model possesses numerous interesting properties that have been discovered only recently due to the development of the chaos theory and the complexity theory. The first numerical explorations of the model were conducted in the early s by Strotz, McAnulty and Naines (1953). They discovered the coexistence of attractors that are well-known today, two properties of chaotic systems: the sensitive dependence on the initial conditions and the sensitive dependence on parameters. The occurrence of periodic and chaotic attractors is dependent on the value of parameters in a system. In case of certain parametric values fractal basin boundaries exist which results in enormous system sensitivity to external noise. If periodic attractors are placed in the neighborhood of the fractal basin boundaries, then even a low external noise can move the trajectory into the region in which the basin's structure is tangled. This leads to a kind of movement that resembles a chaotic movement on a strange attractor. In Goodwin's model, apart from typical chaotic behavior, there exists yet another kind of complex movements - transient chaotic behavior that is caused by the occurrence of invariant chaotic sets that are not attracting. Such sets are represented by chaotic saddles. Some of the latest observation methods of trajectories lying on invariant chaotic sets that are not attracting are straddle methods. This article provides examples of the basin boundary straddle trajectory and the saddle straddle trajectory. These cases were studied by Lorenz and Nusse (2002). I supplement the results they acquired with calculations of capacity dimension and correlation dimension.

  8. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter

    2018-01-01

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

  9. The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution

    NASA Astrophysics Data System (ADS)

    Feng, Ye; Steinberg, Josh; Reshef, Moshe

    2017-04-01

    The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin. Feng, Y. E., & Reshef, M. (2016). The Eastern Mediterranean Messinian salt-depth imaging and velocity analysis considerations. Petroleum Geoscience, 22(4), 2-19. doi:http://dx.doi.org/10.1144/petgeo2015-088 Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118-131. doi:http://dx.doi.org/10.1016/j.margeo.2016.04.004

  10. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and Ouachita Rivers have floodflow characteristics that differ from those of smaller tributary streams and were treated individually. Regional regression equations are not applicable to these large rivers. The magnitude and frequency of floods along these rivers are based on specific station data. This section is provided in the Appendix and has not been updated since the last Arkansas flood frequency report (1987b), but is included at the request of the cooperator.

  11. Seismic interpretation and thrust tectonics of the Amadeus Basin, central Australia, along the BMR regional seismic line

    NASA Astrophysics Data System (ADS)

    Shaw, Russell D.; Korsch, Russell J.; Wright, C.; Goleby, B. R.

    At the northern margin of the Amadeus Basin the monoclinal upturn (the MacDonnell Homocline) is interpreted to be the result of rotation and limited back-thrusting of the sedimentary sequence in front of a southerly-directed, imbricate basement thrust-wedge. This thrust complex is linked at depth to the crust-cutting Redbank Thrust Zone. In the northern part of the basin immediately to the south, regional seismic reflection profiling across the Missionary Plain shows a sub-horizontal, north-dipping, parautochthonous sedimentary sequence between about 8.5 km and 12.0 km thick. This sedimentary sequence shows upturning only at the northern and southern extremities, and represents an unusual, relatively undeformed region between converging thrust systems. In this intervening region, the crust appears to have been tilted downwards and northwards in response to the upthrusting to the north. Still farther to the south, the vertical uplift of the southern hanging wall of the Gardiner Thrust is about 6 km. Seismic reflection profiling in the region immediately south of the Gardiner Thrust indicates repetition of the sedimentary sequence. At the far end of the profile, in the Kernot Range, an imbricate thrust system fans ahead of a ramp-flat thrust pair. This thrust system (the Kernot Range Thrust System) occurs immediately north of an aeromagnetic domain boundary which marks the southern limit of a central ridge region characterized by thin Palaeozoic sedimentary cover and shallow depths to magnetic basement. A planar seismic event, imaged to a depth of at least 18 km, may correspond to the same boundary and is interpreted as a pre-basin Proterozoic thrust. Overall, the structure in the shallow sedimentary section in the central-southern region of the Amadeus Basin indicates that north-directed thrusting during the Dovonian-Carboniferous Alice Springs Orogeny was thin-skinned. During this orogeny an earlier thrust system, formed during the Petermann Ranges Orogeny and precursor orogenies in the Late Proterozoic, was reactivated with Proterozoic salt deposits localising the decollement zone. The Alice Springs Orogeny also reactivated a major mid Proterozoic province boundary in the basement to the north of the basin, resulting in major thrust movement at the northern basin margin.

  12. Patterns of landscape form in the upper Rhône basin, Central Swiss Alps, predominantly show lithologic controls despite multiple glaciations and variations in rock uplift rates

    NASA Astrophysics Data System (ADS)

    Stutenbecker, L. A.; Costa, A.; Schlunegger, F.

    2015-10-01

    The development of topography is mainly dependent on the interplay of uplift and erosion, which are in term controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables such as anthropogenic impact. While most studies have focused on the role of tectonics and climate on the landscape form and underlying processes, less attention has been paid on exploring the controls of lithology on erosion. The Central European Alps are characterized by a large spatial variability in exposed lithologies and as such offer an ideal laboratory to investigate the lithological controls on erosion and landscape form. Here, we focus on the ca. 5400 km2-large upper Rhône basin situated in the Central Swiss Alps to explore how the lithological architecture of the bedrock conditions the Alpine landscape. To this extent, we extract geomorphological parameters along the channels of ca. 50 tributary basins, whose catchments are located in either granitic basement rocks (External massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles show that all tributary rivers within the Rhône basin are in topographic transient state as testified by mainly convex or concave-convex longitudinal stream channel profiles with several knickpoints of either tectonic or glacial origin. In addition, although the entire Rhône basin shows a strong glacial inheritance (and is still partly glaciated) and some of the highest uplift rates recently measured in the Alps, the river network has responded differently to those perturbations as revealed by the morphometric data. In particular, tributary basins in the Helvetic nappes are the most equilibrated (concave river profiles, overall lower elevations, less steep slope gradients and lowest hypsometric integrals), while the tributaries located in the External massifs are least equilibrated, where streams yield strong convex long profiles, and where the tributary basins have the highest hypsometric integral and reveal the steepest hillslopes. We interpret this pattern to reflect differences in response times of the fluvial erosion in tributary streams towards glacial and tectonic perturbations, where the corresponding lengths strongly depend on the lithology and therefore on the bedrock erodibility.

  13. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    NASA Astrophysics Data System (ADS)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff contributed about 40%, 20% in subsurface while there is about 13% in the base flow. For better understanding and interpretation of the area there is still need of further coherent research and analysis for land use change and future climate change impact in the glaciered alpine catchment of Himalayan region.

  14. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained around 2 mbsf of PC03 core also indicates similar sedimentary process. However, we also obtained large age gap in a thick turbidite layer, indicating remobilization of deeper sediments by landslide. Our results revealed that the studied basin recorded various scales and styles of sediment remobilizations by earthquake shakings.

  15. New insights on the Karoo shale gas potential from borehole KZF-1 (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Campbell, Stuart A.; Götz, Annette E.; Montenari, Michael

    2016-04-01

    A study on world shale reserves conducted by the Energy Information Agency (EIA) in 2013 concluded that there could be as much as 390 Tcf recoverable reserves of shale gas in the southern and south-western parts of the Karoo Basin. This would make it the 8th-largest shale gas resource in the world. However, the true extent and commercial viability is still unknown, due to the lack of exploration drilling and modern 3D seismic. Within the framework of the Karoo Research Initiative (KARIN), two deep boreholes were drilled in the Eastern and Western Cape provinces of South Africa. Here we report on new core material from borehole KZF-1 (Western Cape) which intersected the Permian black shales of the Ecca Group, the Whitehill Formation being the main target formation for future shale gas production. To determine the original source potential for shale gas we investigated the sedimentary environments in which the potential source rocks formed, addressing the research question of how much sedimentary organic matter the shales contained when they originally formed. Palynofacies indicates marginal marine conditions of a stratified basin setting with low marine phytoplankton percentages (acritarchs, prasinophytes), good AOM preservation, high terrestrial input, and a high spores:bisaccates ratio (kerogen type III). Stratigraphically, a deepening-upward trend is observed. Laterally, the basin configuration seems to be much more complex than previously assumed. Furthermore, palynological data confirms the correlation of marine black shales of the Prince Albert and Whitehill formations in the southern and south-western parts of the Karoo Basin with the terrestrial coals of the Vryheid Formation in the north-eastern part of the basin. TOC values (1-6%) classify the Karoo black shales as promising shale gas resources, especially with regard to the high thermal maturity (Ro >3). The recently drilled deep boreholes in the southern and south-western Karoo Basin, the first since the SOEKOR exploration programmes of the 1960's and 1970's, provide new core material to determine the likely current potential for retention of shale gas with regard to the structural and thermal history of the basin. Thus, the KARIN research program will produce a valuable data set for future unconventional gas exploration and production in South Africa.

  16. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the basins west of the Mid-Atlantic Ridge, resulting from interaction of abyssal currents with the bottom, range from ??? 2 ?? 106 tons in the equatorial Guyana Basin to ??? 50 ?? 106 tons in the North American Basin. The total resuspended particulate load in the western basins (111 ?? 106 tons) is almost an order of magnitude greater than that in the basins east of the Mid-Atlantic Ridge (13 ?? 106 tons). The net northward flux of resuspended particles carried in the AABW drops from ??? 8 ?? 106 tons/year between the southern and northern ends of the Brazil Basin and remains ??? 1 ?? 106 tons/year across the Guyana Basin. ?? 1977.

  17. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the stability field of garnet and/or spinel lherzolite, suggesting that the source of these lavas may stem from MORB mixing with an enriched plume (OIB) source. The discovery of these magmatic signatures beneath the North Fiji Basin is important in understanding the heterogeneities of volatiles in the mantle, in addition to linking deeper mantle and subsurface crustal processes.

  18. Palaeogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: palaeotopographic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Chaboureau, A. C.; Guillocheau, F.; Robin, C.; Rohais, S.; Moulin, M.; Aslanian, D.

    2012-04-01

    The tectonic and sedimentary evolution of the Early Cretaceous rift of the central segment of the South Atlantic Ocean is debated. Our objective is to better constraint the timing of its evolution by drawing palaeogeographic and deformation maps. Eight palaeogeographic and deformations maps were drawn from the Berriasian to the Middle-Late Aptian, based on a biostratigraphic (ostracodes and pollens) chart recalibrated on absolute ages (chemostratigraphy, interstratified volcanics, Re-Os dating of the organic matter). The central segment of the South Atlantic is composed of two domains that have a different history in terms of deformation and palaeogeography. The southern domain includes Namibe, Santos and Campos Basins. The northern domain extends from Espirito Santo and North Kwanza Basins, in the South, to Sergipe-Alagoas and North Gabon Basins to the North. Extension started in the northern domain during Late Berriasian (Congo-Camamu Basin to Sergipe-Alagoas-North Gabon Basins) and migrated southward. At that time, the southern domain was not a subsiding domain. This is time of emplacement of the Parana-Etendeka Trapp (Late Hauterivian-Early Barremian). Extension started in this southern domain during Early Barremian. The brittle extensional period is shorter in the South (5-6 Ma, Barremian to base Aptian) than in the North (19 to 20 Myr, Upper Berriasian to Base Aptian). From Late Berriasian to base Aptian, the northern domain evolves from a deep lake with lateral highs to a shallower one, organic-rich with no more highs. The lake migrates southward in two steps, until Valanginian at the border between the northern and southern domains, until Early Barremian, North of Walvis Ridge. The Sag phase is of Middle to Late Aptian age. In the southern domain, the transition between the brittle rift and the sag phase is continuous. In the northern domain, this transition corresponds to a hiatus of Early to Middle Aptian age, possible period of mantle exhumation. Marine influences were clearly occurring since the Early Aptian in the Northern domain and the Campos Basin. They seem sharp, brief flooding coming from the North, i.e. from the Tethys-Central Atlantic, trough a seaway crossing South America from Sao Luis, Parnaiba, Araripe and Almada basins (Arai, 1989). In the absence of data, the importance of those marine flooding during the Middle Aptian in the Santos Basin is still discussed. Keywords: South Atlantic Ocean, Early Cretaceous, Rift, Palaeogeography, Geodynamic

  19. 3D geological modeling of the transboundary basin Berzdof-Radomierzyce in Upper Lusatia (Germany/Poland)

    NASA Astrophysics Data System (ADS)

    Woloszyn, Iwona; Merkel, Broder; Stanek, Klaus

    2015-04-01

    Keywords: Numerical modeling, Paradigm GOCAD, Berzdorf basin (Germany), Radomierzyce basin (Poland), Upper Lusatia. The accuracy of three-dimensional (3D) models depends on their data density and quality. Regions with a complex geology can be a challenge to model, especially if detailed models are required to support a further economic exploitation of a region. In this research, a 3D model was created based on the region's complicated geological condition. The focus area, the Berzdorf - Radomierzyce basin, located in Upper Lusatia on the Polish - German border to the south of the city of Görlitz - Zgorzelec, is such a region. The basin is divided by the volcanic threshold into the western part (Berzdorf basin) and its eastern extension (Radomierzyce basin). The connection between both parts is the so called "lignite bridge". The deposit in the Berzdorf has been exploited from 1830 until 1997. In contrast, the Radomierzyce deposit has never been exploited and is still considered as a prospective deposit for the operating Turów coal mine, which is located only around 15 km from the deposit. To represent the geology of the area a 3D modeling of the transboundary deposit was carried out. Moreover, some strategies to overcome numerical interpolation instability of the geological model with many faults were developed. Due to the large amount of data and its compatibility with other software the 3D geomodeling software Paradigm GOCAD was used. A total number of 10,102 boreholes, 60 cross sections and geological maps converted into digital format - were implemented into the model. The data density of the German part of the area of interest was much higher than the data density of the Polish part. The results demonstrate a good fit between the modeled surfaces and the real geological conditions. This is particularly evident by matching the modeled surfaces to borehole data and geological cross sections. Furthermore, simplification of the model does not decrease the accuracy and the applied techniques lead to a stable and reliable model. The geological model can be used for planning and full-scale mining operations of its eastern part (Radomierzyce). In addition, the detailed geological model can serve as a basis for the hydrogeological and the heat transfer models of the Berzdorf - Radomierzyce basin, in order to identify points were geothermal energy can be best exploited. It can aid towards improving the planned geothermal installations in the region.

  20. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  1. Towards a Better Understanding of the Hydrologic Setting of the Nubian Sandstone Aquifer System: Inferences from Groundwater Flow Models, CL-36 Ages, and GRACE Data

    NASA Astrophysics Data System (ADS)

    Sultan, M.; Mohamed, A.; Yan, E.; Ahmed, E.; Sturchio, N. C.

    2015-12-01

    The Nubian Sandstone Aquifer System (NSAS), one of the largest (area: ~2×106 km2) groundwater systems worldwide, is formed of three major sub-basins: Kufra (Libya, NE Chad and NW Sudan), Dakhla (Egypt), and N. Sudan Platform (Sudan). To determine the mean residence time of water in the aquifer, the connectivity of its sub-basins and the groundwater flow across these sub-basins have to be understood. An integrated approach was adopted to address these issues using: (1) a regional calibrated groundwater flow model that simulates early (>10,000 years) steady-state conditions under wet climatic periods, and later (<10,000 years) transient conditions under arid condition; (2) 36Cl ages, and (3) GRACE solutions. Our findings include: (1) the NSAS was recharged (recharge: plains: 2-7 mm/yr; highlands 10-27 mm/yr) in the previous wet climatic periods on a regional scale, yet its outcrops are still receiving in dry periods appreciable precipitation over the highlands and modest (3.04±1.10 km3/yr) local recharge; (2) a progressive increase in 36Cl groundwater ages were observed along groundwater flow directions and along structures that are sub-parallel to the groundwater flow direction; (3) the NE-SW Pelusium shear zone provides a preferred groundwater flow pathway from the Kufra to the Dakhla sub-basin as evidenced by the relatively high hydraulic conductivities and relatively younger ages of groundwater along the shear zone compared to the groundwater ages in areas surrounding the shear zone; (4) the E-W trending Uweinat-Aswan basement uplift impedes groundwater flow from the N-Sudan Platform sub-basin as evidenced by the difference in groundwater isotopic compositions across the uplift, the depletion in GRACE-derived total water storage north but not south, of the uplift, and groundwater ages that are indicative of autochthonous precipitation and recharge over the Dakhla sub-basin. Our findings provide valuable insights into optimum ways for the utilization of the NSAS.Keywords: NSAS, Groundwater flow model, Ages data, isotopic data

  2. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western Mount Lebanon. A numerical landscape evolution experiment demonstrates the emergence of a similar χ pattern of drainage area disequilibrium in response to progressive distributed shear deformation of river basins with relatively minor drainage network reorganization.

  3. Crustal architecture of an inverted back arc rift basin, Niigata, central Japan

    NASA Astrophysics Data System (ADS)

    Sato, H.; Abe, S.; Kawai, N.; Saito, H.; Kato, N.; Ishiyama, T.; Iwasaki, T.; Kurashimo, E.; Inaba, M.; Van Horne, A.

    2012-04-01

    A back arc rift basin, formed during the Miocene opening of the Japan Sea, now uplifted and exposed in Niigata, central Japan, provides an exceptional opportunity to study a back arc rift formed on a short time scale and in a still active setting for the present day shortening deformation. Due to stress build up before the 2011 Tohoku earthquake (M9), two damaging earthquakes (M6.8) occurred in 2004 and 2007 in this inverted rift basin. Deep seismic profiling was performed along four seismic lines between 2008 and 2011. We used onshore-offshore deep seismic reflection profiling to examine the crustal architecture of the back arc basin, in particular the geometry of the source faults. We further applied refraction tomography analysis to distinguish between previously undifferentiated syn-rift volcanics and pre-rift Mesozoic rock based on P-wave velocity. Our findings indicate that the Miocene rift structure created during the extensional phase regulates the style of deformation and the geometry of the source faults in the current compressional regime. Syn-rift volcanics with a maximum thickness of 6 km filled the fault controlled basins as rifting proceeded. The volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation, including the Teradomari Formation, an over-pressured mudstone in the middle of the section that later became an important shallow detachment layer. Continued compression has caused fault-related fold and wedge thrusting in the post-rift sedimentary strata which are highly deformed by thin-skin style deformation. Since the Pliocene, normal faults created during the rift phase have been reactivated as reverse faults, including a shallow detachment in the Teradomari Formation which forms a complicated shortened deformation structure. Quaternary geomorphology suggests ongoing shortening. Transform faults inherited from the rift stage control the extent of present day reverse source faults and more importantly, earthquake magnitude.

  4. The Vredefort Dome: Review of geology and deformation phenomena and status report on current knowledge and remaining problematics (five years after the cryptoexplosion workshop)

    NASA Technical Reports Server (NTRS)

    Reimold, W. U.

    1992-01-01

    The Vredefort structure located in the center of the Witwatersrand basin in South Africa and the Sudbury structure in Canada are widely considered the two oldest and largest impact structures still evident on Earth. Both structures are very similar in a number of geological aspects (e.g., association with major economic ore deposits, similar ages of ca. 2 Ga, abundant pseudotachylite as well as shatter cone occurrences, overturned collar). However, whereas the geological community generally accepts an impact origin for the Sudbury structure, a number of researchers are still reluctant to accept this for the Vredefort Dome. Therefore, the aim of this review is to present new data, highlight the most obvious shortcomings in the current database, and to summarize the major arguments in the genetic controversy.

  5. Comprehensive amateur coverage of the Mars 2015-2017 apparition from the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Foster, C.

    2017-09-01

    Although there are current, active scientific assets orbiting and on the surface of Mars, comprehensive amateur monitoring of the planet can still add value. With latest technology and improved high resolution imaging techniques, amateurs are still in a position to observe and report in real time on any significant atmospheric activity on the planet. The author was able to follow the 2015-2017 Mars apparition comprehensively from December 2015 through until February 2017. The planet was imaged on 198 nights by the author during this period, and although no major(non-regional) dust storms occurred during the apparition, a number of atmospheric phenomena were noted and imaged. Orographic cloud formations, Northern and southern polar hood development, high latitude weather systems and the changing weather systems and conditions in and around the Hellas basin were observed and recorded.

  6. Satellite altimetry based rating curves throughout the entire Amazon basin

    NASA Astrophysics Data System (ADS)

    Paris, A.; Calmant, S.; Paiva, R. C.; Collischonn, W.; Silva, J. S.; Bonnet, M.; Seyler, F.

    2013-05-01

    The Amazonian basin is the largest hydrological basin all over the world. In the recent past years, the basin has experienced an unusual succession of extreme draughts and floods, which origin is still a matter of debate. Yet, the amount of data available is poor, both over time and space scales, due to factor like basin's size, access difficulty and so on. One of the major locks is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2010. The stage dataset is made of ~800 altimetry series at ENVISAT and JASON-2 virtual stations. Altimetry series span between 2002 and 2010. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are consistent throughout the entire Amazon basin. The rating curve parameters have been computed using a parameter optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best parameters for the rating curve, but also their posterior probability distribution, allowing the determination of a credibility interval for the rating curve. Also is included in the rating curve determination the error over discharges estimates from the MGB-IPH model. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach is more efficient than the determinist one. By using for the parameters prior credible intervals defined by the user, this method provides an estimate of best rating curve estimate without any unlikely parameter, and all sites achieved convergence before reaching the maximum number of model evaluations. Results were assessed trough the Nash Sutcliffe efficiency coefficient, applied both to discharge and logarithm of discharges. Most of the virtual stations had good or very good results, showing values of Ens going from 0.7 to 0.98. However, worse results were found at a few virtual stations, unveiling the necessity of investigating possibilities of segmentation of the rating curve, depending on the stage or the rising or recession limb, but also possible errors in the altimetry series.

  7. The immature thrust belt of the northern front of the Tianshan

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Gumiaux, Charles; Augier, Romain; Chen, Yan; Wang, Qingchen

    2010-05-01

    The modern Tianshan (central Asia), which extends east-west on about 2500 km long with an average of more than 2000 m in altitude, is considered as a direct consequence of the reactivation of a Paleozoic belt due to the India - Asia collision. At first order, the finite structure of this range obviously displays a significant uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. In order to characterize the coupling history of this Cenozoic orogeny with its northern foreland basin (Junggar basin), a detailed structural field work has been carried out on the northern piedmont of Tianshan. From Wusu to Urumqi, on about 250 km long, the thrusting of the Paleozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is remarkably exposed along several river valleys. In contrast, in other sections, the Triassic to Jurassic sedimentary series can be followed from the basin to the range where they unconformably overlie on the Carboniferous basement. These series are only gently folded along the "range front". These features imply that, at regional-scale, the Cenozoic reactivation of the Tianshan has not produced important deformation along its contact with the juxtaposed Junggar basin. The shortening ascribed to the Cenozoic intra-continental collision would either be localized in the range, mostly accommodated by reactivated Paleozoic structures or faults in the basement units, or in the distal parts of the Junggar basin, by folds and faults within the Cenozoic sedimentary series. Alternative hypothesis would be that the Tianshan uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, might be reduced. Such characteristic significantly differs from other well-known orogenic ranges, such as the Canadian Rocky Mountains, the Appalachians, the Pyrenees which display highly folded foreland basins and thrust belts with rather well developed range front structures. This suggests that the Tianshan intra-continental range is rather "young" and still at a primary stage of its orogenic evolution. In other words, its front may be considered as an immature thrust belt. If considering the available tomographic data across the Tianshan, its actual uplift may probably be produced by an asymmetric intracontinental deformation mechanism, i.e. a deeper subduction of the Tarim plate below the Tianshan (to the south), with respect to the one of Junggar plate to the north of the range. Consequently, the Tianshan range offers an excellent natural laboratory to study the processes of the on-going orogeny-foreland basin coupling, ancient structures reactivation as well as initiation and development of range front structures.

  8. Using Benthic Macroinvertebrate and Fish Communities as Bioindicators of the Tanshui River Basin Around the Greater Taipei Area — Multivariate Analysis of Spatial Variation Related to Levels of Water Pollution

    PubMed Central

    Young, Shuh-Sen; Yang, Hsi-Nan; Huang, Da-Ji; Liu, Su-Miao; Huang, Yueh-Han; Chiang, Chung-Ting; Liu, Jin-Wei

    2014-01-01

    After decades of strict pollution control and municipal sewage treatment, the water quality of the Tanshui River increased significantly after pollution mitigation as indicated by the River Pollution Index (RPI). The pollution level of the estuarine region decreased from severe pollution to mostly moderately impaired. The most polluted waters are presently restricted to a flow track length between 15–35 km relative to the river mouth. From July 2011 to September 2012, four surveys of fish and benthic macroinvertebrates were conducted at 45 sampling sites around the Tanshui River basin. The pollution level of all the study area indicated by the RPI could also be explained by the Family Biotic Index (FBI) and Biotic Index (BI) from the benthic macroinvertebrate community, and the Index of Biotic Integrity (IBI) of the fish community. The result of canonical correlation analysis between aquatic environmental factors and community structure indicated that the community structure was closely related to the level of water pollution. Fish species richness in the estuarine area has increased significantly in recent years. Some catadromous fish and crustaceans could cross the moderate polluted water into the upstream freshwater, and have re-colonized their populations. The benthic macroinvertebrate community relying on the benthic substrate of the estuarine region is still very poor, and the water layer was still moderately polluted. PMID:25026081

  9. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  10. Effect of air flow on tubular solar still efficiency.

    PubMed

    Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar

    2013-01-01

    An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.

  11. Hydrological and hydrochemical impact studies in the urbanised Petrusse river basin (Luxembourg)

    NASA Astrophysics Data System (ADS)

    Pfister, L.; Iffly, J.; Guignard, C.; Krein, A.; Matgen, P.; Salvia-Castellvi, M.; van den Bos, R.; Tailliez, C.; Barnich, F.; Hofmmann, L.

    2009-04-01

    On the basis of ancient topographical maps, the growing urbanisation of the Petrusse river basin (42.9 km2) has been documented on 50-year time steps since 1770. While until the 1950's urban areas remained below 10% of total basin area, they are now close to 50%. This rapid change has consisted mainly in a change from cropland into built areas. As a direct consequence of these considerable changes in landuse, the basin presumably has undergone significant modifications of both its hydrological regime and the quality of the flowing surface waters. In the framework of a national monitoring programme, the Petrusse basin has been progressively equipped with 3 recording streamgauges between 1999 and 2003. Several meteorological stations are located in the immediate vicinity of the basin. The hydrological regime revealed by the 15-minute recordings of the streamgauges is very specific to heavily urbanised basins, i.e. characterised by quick reactions to incoming rainfall, as well as very limited contributions from sub-surface and groundwater reservoirs. A conceptual hydrological model has been used to evaluate roughly the impact of the progressive urbanisation of the Petrusse basin since 1770 on the rainfall-runoff relationship. Major changes were found for summer months, with significantly higher peak discharges and increasingly rapid reactions to rainfall events. However, the limitations of the spatial density of rainfall recordings (only 1 rainfall measurement site available between 1854 - 1949) cause severe shortcomings in the accuracy of the incoming rainfall estimations, especially in the case of convective rainfall events. This in turn also considerably reduces the accuracy of the historical rainfall-runoff simulations. Between 2002 and 2004, several monitoring campaigns have been carried out in the Petrusse basin in order to determine the impact of sewer system contributions from the urbanised areas to the water quality within the Petrusse. The investigations have shown a very strong so-called first-flush effect. During dry sequences, numerous deposits on roads and roofs (heavy metals, oils, etc.) accumulate, before being washed away during the first minutes of rainfall events and being ultimately being transported to the Petrusse river via the sewer systems, causing considerable pollution peaks. Current investigations target a reduction of this pollution. The involved volumes of polluted water are of such extent, that they cannot be dealt with by conventional waste water treatment systems. The currently existing rainfall measurement network around the city of Luxembourg has a spatial resolution that is still too low to capture accurately convective rainfall events. A new rainfall measurement approach will soon be tested to estimate spatio-temporal rainfall dynamics with a high resolution above the city of Luxembourg. Based on a combination of conventional raingauges, weather radar and microwave measurements (via cell-phone networks) this approach is supposed to provide data that might ultimately contribute to a real-time management of the first flush pollutions in the Petrusse river basin.

  12. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea.

    PubMed

    Rivetti, Irene; Fraschetti, Simonetta; Lionello, Piero; Zambianchi, Enrico; Boero, Ferdinando

    2014-01-01

    Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945-2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas.

  13. Basin evolution during the transition from continental rifting to subduction: Evidence from the lithofacies and modal petrology of the Jurassic Latady Group, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Willan, Robert C. R.; Hunter, Morag A.

    2005-12-01

    The Jurassic Latady Basin (southern Antarctic Peninsula) developed in a broad rift zone associated with the early stages of Gondwana extension. Early Jurassic sedimentation (˜185 Ma) occurred in small, isolated terrestrial to lacustrine rift basins in the present-day northwest and west and became shallow marine by the early Middle Jurassic. Quantitative modal analysis reveals a high proportion of mature, quartzose sandstone derived from cratonic and quartzose recycled-orogen provenances, most likely in the direction of the Ellsworth-Whitmore Mountains in the Gondwana interior. Sandstones with a more volcanolithic provenance probably represent an influx of sands from a Permian volcanic source in West Antarctica. The Early Jurassic Latady sequence contains abundant volcanic quartz and rhyodacite grains, locally derived from the nearby ignimbrites of the rift-related Mount Poster Formation (˜185 Ma). Between the Middle and Late Jurassic (?160-150 Ma), there was a dramatic change throughout the Latady Basin to higher-energy conditions with marked lateral facies variations. Sandstones contain abundant fresh volcanic detritus and plot in the transitional arc field. Their source was a nearby, active continental margin arc, but there is no outcrop of arc material on the Antarctic Peninsula from this time. A possible source area is preserved on the Thurston Island block to the southwest. However, some fluvial systems still had access to areas of uplifted metamorphic/plutonic basement and quartzose, cratonic sources. Evidence of mixing of fluvial systems from different provenances and the lack of mixing of other fluvial systems suggest a complex topography of variably uplifted fault blocks with fluvial systems constrained in narrow valleys. The change from continental rift- to arc-related sources illustrates the shift from plume- (continental provenances) to continental margin arc-dominated tectonics. Thermal relaxation in the Late Jurassic led to the final phase of deposition in anoxic, deep-water conditions in a sediment-starved marine basin stretching from Ellsworth northward into southern South America.

  14. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics 1166, 143-162.

  15. Revised East-West Antarctic plate motions since the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J.; Damaske, D.

    2010-12-01

    The middle Cenozoic (43-26 Ma) rifting between East and West Antarctica is defined by an episode of ultraslow seafloor spreading in the Adare Basin, located off northwestern Ross Sea. The absence of fracture zones and the lack of sufficient well-located magnetic anomaly picks have resulted in a poorly constrained kinematic model (Cande et al., 2000). Here we utilize the results from a dense aeromagnetic survey (Damaske et al., 2007) collected as part of GANOVEX IX 2005/06 campaign to re-evaluate the kinematics of the West Antarctic rift system since the Middle Eocene. We identify marine magnetic anomalies (anomalies 12o, 13o, 16y, and 18o) along a total of 25,000 km of the GPS navigated magnetic profiles. The continuation of these anomalies into the Northern Basin has allowed us to use the entire N-S length of this dataset in our calculations. A distinct curvature in the orientation of the spreading axis provides a strong constraint on our calculated kinematic models. The results from two- (East-West Antarctica) and three- (Australia-East Antarctica-West Antarctica) plate solutions agree well and create a cluster of rotation axes located south of the rift system, near the South Pole. These solutions reveal that spreading rate and direction, and therefore motion between East and West Antarctica, were steady between the Middle Eocene and Early Oligocene. Our kinematic solutions confirm the results of Davey and De Santis (2005) that the Victoria Land Basin has accommodated ~95 km of extension since the Middle Eocene. This magnetic pattern also provides valuable constraints on the post-spreading deformation of the Adare Basin (Granot et al., 2010). The Adare Basin has accommodated very little extension since the Late Oligocene (<7 km), but motion has probably increased southward. The details of this younger phase of motion are still crudely constrained.

  16. Spatio-temporal drought characteristics of the tropical Paraiba do Sul River Basin and responses to the Mega Drought in 2014-2016

    NASA Astrophysics Data System (ADS)

    Nauditt, Alexandra; Metzke, Daniel; Ribbe, Lars

    2017-04-01

    The Paraiba do Sul River Basin (56.000 km2) supplies water to the Brazilian states Sao Paulo and Rio de Janeiro. Their large metropolitan areas were strongly affected by a Mega drought during the years 2014 and 2015 with severe implications for domestic water supply, the hydropower sector as well as for rural agricultural downstream regions. Longer drought periods are expected to become more frequent in the future. However, drought characteristics, low flow hydrology and the reasons for the recurrent water scarcity in this water abundant tropical region are still poorly understood. In order to separate the impact of human abstractions from hydro-climatic and catchment storage related hydrological drought propagation, we assessed the spatio-temporal distribution of drought severity and duration establishing relationships between SPI, SRI and discharge threshold drought anomalies for all subcatchments of the PdS based on a comprehensive hydro-meteorological data set of the Brazilian National Water Agency ANA. The water allocation model "Water Evaluation and Planning System (WEAP)" was established on a monthly basis for the entire Paraiba do Sul river basin incorporating human modifications of the hydrological system as major (hydropower) reservoirs and their operational rules, water diversions and major abstractions. It simulates reasonable discharges and reservoir levels comparable to the observed values. To evaluate the role of climate variability and drought responses for hydrological drought events, scenarios were developed to simulate discharge and reservoir level the impact of 1. Varying meteorological drought frequencies and durations and 2. Implementing operational rules as a response to drought. Uncertainties related to the drought assessment, modelling, parameter and input data were assessed. The outcome of this study for the first time provides an overview on the heterogeneous spatio-temporal drought characteristics of the Paraiba do Sul river basin and useful tools to support decision making and stakeholders as the River Basin Authority AGEVAP (Water Management Agency for the Paraiba do Sul).

  17. Effects of Soil Moisture Thresholds in Runoff Generation in two nested gauged basins

    NASA Astrophysics Data System (ADS)

    Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.; Margiotta, M. R.; Onorati, B.; Rivelli, A. R.; Sole, A.

    2009-04-01

    Regarding catchment response to intense storm events, while the relevance of antecedent soil moisture conditions is generally recognized, the role and the quantification of runoff thresholds is still uncertain. Among others, Grayson et al. (1997) argue that above a wetness threshold a substantial portion of a small basin acts in unison and contributes to the runoff production. Investigations were conducted through an experimental approach and in particular exploiting the hydrological data monitored on "Fiumarella of Corleto" catchment (Southern Italy). The field instrumentation ensures continuous monitoring of all fundamental hydrological variables: climate forcing, streamflow and soil moisture. The experimental basin is equipped with two water level installations used to measure the hydrological response of the entire basin (with an area of 32 km2) and of a subcatchment of 0.65 km2. The aim of the present research is to better understand the dynamics of soil moisture and the runoff generation during flood events, comparing the data recorded in the transect and the runoff at the two different scales. Particular attention was paid to the influence of the soil moisture content on runoff activation mechanisms. We found that, the threshold value, responsible of runoff activation, is equal or almost to field capacity. In fact, we observed a rapid change in the subcatchment response when the mean soil moisture reaches a value close to the range of variability of the field capacity measured along a monitored transect of the small subcatchment. During dry periods the runoff coefficient is almost zero for each of the events recorded. During wet periods, however, it is rather variable and depends almost only on the total rainfall. Changing from the small scale (0.65 km2) up to the medium scale (represented by the basin of 32 km2) the threshold mechanism in runoff production is less detectable because masked by the increased spatial heterogeneity of the vegetation cover and soil texture.

  18. Global Warming and Mass Mortalities of Benthic Invertebrates in the Mediterranean Sea

    PubMed Central

    Rivetti, Irene; Fraschetti, Simonetta; Lionello, Piero; Zambianchi, Enrico; Boero, Ferdinando

    2014-01-01

    Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945–2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas. PMID:25535973

  19. Lithospheric Structure of the Yamato Basin Inferred from Trans-dimensional Inversion of Receiver Functions

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.

    2017-12-01

    The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.

  20. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi-sensor satellite data and model products on computation of free usable water and associated uncertainty for rainfed agriculture.

  1. Identification of the Low-velocity Zone Beneath the Northern Taiwan by the P-wave Delays Analysis

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Che-Min, L.

    2017-12-01

    Taipei City, the capital of Taiwan, located in northern Taiwan is near to the Tatun volcano group and the Shanchiao fault which is an active fault. This region is a complex tectonic environment. The Tatun volcano group is seen as a dormant volcano. Recently, the location of the magma reservoir of the Tatun volcano was discussed again. However, the volume and the location of the magma reservoir are still unclear. There are several seismic networks operated by different institutions around Taipei and Tatun volcano. In this study, we combined the data of these networks to analysis the P-wave arrival times for clarifying the magma reservoir. The events with hypocenters are deeper than 100 km and the local magnitude (ML) are larger than 4.0 were collected to analysis. Our results show that the stations could be separated into three groups by the slope of the P-wave arrival time. They are distributed at the western of the Basin edge, the Jin-Shan Plain areal and the Taipei Basin, respectively. When the epicenter distance of the different stations is the same, the P-wave arrival time of the stations on the west side of the basin edge will be 0.3 0.5 seconds later than that in the Taipei Basin, and the stations on the Jin-Shan Plain will be 0.1 0.4 seconds later than in the Taipei Basin. The slope of the P-wave arrival time in 3 groups is very different, indicating that the low-velocity zone is existed in shallow crustal beneath of these areas. However, the low-velocity zone can be connected to the magma reservoir of the Tatun volcano group or submarine volcano of Keelung Island or not? It can be discussed the correlation between the magma reservoir and the low-velocity zone by more events collected.

  2. Basin-forming impacts on Mars and the coupled thermal evolution of the interior

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Roberts, J. H.

    2015-12-01

    The youngest of the Noachian giant impact basins on Mars, are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present and that a core dynamo was not operating at the time those basins formed. Shock heating from this sequence of basin-forming impacts modified the pattern of mantle convection. The heating produced by the eight largest impacts (Acidalia, Amazonis, Ares, Chryse, Daedalia, Hellas, Scopolus, and Utopia) penetrates below the core-mantle boundary (CMB). Here, we extend previous workon coupled thermal evolution into 3D, in order to accurately model the spatial relationship between impact basins. At the time of each impact we introduce a temperature perturbation resulting from shock heating into the core and mantle. Stratification of the core occurs very quickly compared to mantle dynamics, and we horizontally average the temperature in the core.We model mantle convection using the 3D finite element code CitcomS, and the thermal evolution of the core using a 1D parameterization.Each impact alters the pattern of mantle dynamics and a significant amount of impact melt is produced in the near surface. However, only the outermost part of the core is affected; the inner core temperature is still adiabatic. Immediately following the impact, the inner core may remain convective. The top of the core will cool by conduction into the deeper core faster than across the CMB, deepening the zone of stable stratification. Further core cooling results in formation of a convecting zone at the top of the core that propagates downwards as the thermal gradient becomes adiabatic at greater depths. Our goal is to obtain a better estimate of the time scale for restoration of post-impact core dynamo activity. Because the disappearance of the magnetic field exposes the early atmosphere to solar wind activity, constraining the history of the dynamo is critical for understanding climate evolution and habitability of the surface.

  3. Cenozoic pulsed compression of Da'an-Dedu Fault Zone in Songliao Basin (NE China) and its implications for earthquake potential: Evidence from seismic data

    NASA Astrophysics Data System (ADS)

    Yu, Zhongyuan; Zhang, Peizhen; Min, Wei; Wei, Qinghai; Zhao, Bin

    2018-01-01

    The Da'an-Dedu Fault Zone (DDFZ) is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Pulsed compression deformation of DDFZ during the Cenozoic implies a complex geodynamic process, and the latest stage of which occurred in the Quaternary directly influences the present seismicity of the interior basin. Although most of the evidence for Quaternary deformation about the Songliao Basin in the past decades was concentrated in marginal faults, all five earthquake swarms with magnitudes over 5.0 along the buried DDFZ with no surface expression during the past 30 years suggest it is a main seismogenic structure with seismic potential, which should deserve more attention of geologists. However, limited by the coverage of the Quaternary sedimentary and absence of strong historic and instrumental earthquakes records (M > 7), the geometric pattern, Quaternary activity and seismic potential of the DDFZ remain poorly understood. Thus, unlike previous geophysical studies focused on crust/mantle velocity structure across the fault and the aim of exploring possible mineral resources in the basin, in this study we have integrated a variety of the latest seismic data and drilling holes from petroleum explorations and shallow-depth seismic reflection profiles, to recognize the Cenozoic pulsed compression deformation of the DDFZ, and to discuss its implication for earthquake potential. The results show that at least four stages of compression deformation have occurred along the DDFZ in the Cenozoic: 65 Ma, 23 Ma, 5.3 Ma, and 1.8 Ma, respectively, although the geodynamic process behind which still in dispute. The results also imply that the tectonic style of the DDFZ fits well with the occurrence of modern seismic swarms. Moderate earthquake potential (M ≤ 7.0) is suggested along the DDFZ.

  4. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  5. Crustal Seismic Structure beneath Portugal (Western Iberia) and the role of Variscan Inheritance

    NASA Astrophysics Data System (ADS)

    Veludo, Idalina; Afonso Dias, Nuno; Fonseca, Paulo; Matias, Luís; Carrilho, Fernando; Haberland, Christian; Villaseñor, Antonio

    2017-04-01

    Mainland Portugal comprises most of the Western portion of the Iberian Peninsula, in a geodynamic setting associated with the Africa-Eurasia plate boundary. The crustal structure in Portugal is the result of a complex assemblage history of continental collision and extension with most of the surface is covered by rocks dating to the Variscan orogeny, the coastal ranges dominated by Mesozoic structures and Mesocenozoic basins covering partially the mainland. The impact and extension of this complex tectonic in the structure of the Iberian Lithosphere is still a matter of discussion, especially in its western part beneath Portugal. The existing knowledge relating the observed surface geology and lithospheric structures is sparse and sometimes incoherent, the relation between shallow and deep structures and their lateral extension still widely undetermined. Some questions still pertinent are the role and influence of the several tectonic units and their contacts in the present tectonic regime and in the stress field observed today, and the relation between the anomalous seismicity and associated crustal deformation rates with the inherited structure from past orogenies. In this study we present the results of a local earthquake tomographic study, performed to image this complex crustal structure down to 20 km depth. The relocation of the onshore seismicity recorded in the period 2000-2014 with the new 3D model allows cleansing some of the alignments and their correlation with some of the main active structures in Portugal enabling for the first time to correlate a large number of tectonic features to the small magnitude seismicity pattern. The seismicity distribution also displays a complex pattern, mainly reflecting the interaction between inherited Variscan structures with more recent fault systems created during the rifting stages of the Atlantic and diapir magmatic intrusions. The complex history of the assemblage of the crust beneath Western Iberia is well-marked in the final models. The arcuate shape of the Ibero-Armorican Arc can be perceived over the general pattern of the Vp and Vp/Vs anomalies and the heterogeneity observed on the surface geology are clearly marked in the tomograms. Other significant features are the low Vp values associated with the Mesocenozoic rocks outcropping in the Lusitanian and Algarve basins, and the low Vp and high Vp/Vs values of the sedimentary cover of the Lower-Tagus and Sado Basin. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  6. A new Miocene baleen whale from the Peruvian desert

    NASA Astrophysics Data System (ADS)

    Marx, Felix G.; Kohno, Naoki

    2016-10-01

    The Pisco-Ica and Sacaco basins of southern Peru are renowned for their abundance of exceptionally preserved fossil cetaceans, several of which retain traces of soft tissue and occasionally even stomach contents. Previous work has mostly focused on odontocetes, with baleen whales currently being restricted to just three described taxa. Here, we report a new Late Miocene rorqual (family Balaenopteridae), Incakujira anillodefuego gen. et sp. nov., based on two exceptionally preserved specimens from the Pisco Formation exposed at Aguada de Lomas, Sacaco Basin, southern Peru. Incakujira overall closely resembles modern balaenopterids, but stands out for its unusually gracile ascending process of the maxilla, as well as a markedly twisted postglenoid process of the squamosal. The latter likely impeded lateral (omega) rotation of the mandible, in stark contrast with the highly flexible craniomandibular joint of extant lunge-feeding rorquals. Overall, Incakujira expands the still meagre Miocene record of balaenopterids and reveals a previously underappreciated degree of complexity in the evolution of their iconic lunge-feeding strategy.

  7. Understanding the Dynamics of the Oxic-Anoxic Interface in the Black Sea

    NASA Astrophysics Data System (ADS)

    Stanev, Emil V.; Poulain, Pierre-Marie; Grayek, Sebastian; Johnson, Kenneth S.; Claustre, Hervé; Murray, James W.

    2018-01-01

    The Black Sea, the largest semienclosed anoxic basin on Earth, can be considered as an excellent natural laboratory for oxic and anoxic biogeochemical processes. The suboxic zone, a thin interface between oxic and anoxic waters, still remains poorly understood because it has been undersampled. This has led to alternative concepts regarding the underlying processes that create it. Existing hypotheses suggest that the interface originates either by isopycnal intrusions that introduce oxygen or the dynamics of manganese redox cycling that are associated with the sinking of particles or chemosynthetic bacteria. Here we reexamine these concepts using high-resolution oxygen, sulfide, nitrate, and particle concentration profiles obtained with sensors deployed on profiling floats. Our results show an extremely stable structure in density space over the entire basin with the exception of areas near the Bosporus plume and in the southern areas dominated by coastal anticyclones. The absence of large-scale horizontal intrusive signatures in the open-sea supports a hypothesis prioritizing the role of biogeochemical processes.

  8. Memory-efficient RNA energy landscape exploration

    PubMed Central

    Mann, Martin; Kucharík, Marcel; Flamm, Christoph; Wolfinger, Michael T.

    2014-01-01

    Motivation: Energy landscapes provide a valuable means for studying the folding dynamics of short RNA molecules in detail by modeling all possible structures and their transitions. Higher abstraction levels based on a macro-state decomposition of the landscape enable the study of larger systems; however, they are still restricted by huge memory requirements of exact approaches. Results: We present a highly parallelizable local enumeration scheme that enables the computation of exact macro-state transition models with highly reduced memory requirements. The approach is evaluated on RNA secondary structure landscapes using a gradient basin definition for macro-states. Furthermore, we demonstrate the need for exact transition models by comparing two barrier-based approaches, and perform a detailed investigation of gradient basins in RNA energy landscapes. Availability and implementation: Source code is part of the C++ Energy Landscape Library available at http://www.bioinf.uni-freiburg.de/Software/. Contact: mmann@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24833804

  9. Folding energy landscape and network dynamics of small globular proteins

    PubMed Central

    Hori, Naoto; Chikenji, George; Berry, R. Stephen; Takada, Shoji

    2009-01-01

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties. PMID:19114654

  10. Folding energy landscape and network dynamics of small globular proteins.

    PubMed

    Hori, Naoto; Chikenji, George; Berry, R Stephen; Takada, Shoji

    2009-01-06

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties.

  11. The Permian Whitehill Formation (Karoo Basin, South Africa): deciphering the complexity and potential of an unconventional gas resource

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.

    2014-05-01

    A key energy policy objective of the South African government is to diversify its energy mix from coal which constitutes 85% of the current mix. Gas will play a key role in the future South African economy with demand coming from electricity generation and gas-to-liquids projects. A study on world shale reserves conducted by the Energy Information Agency (EIA) in 2011 concluded that there could be as much as 485 Tcf recoverable reserves of shale gas in the South African Karoo Basin. However, the true extent and commercial viability is still unknown, due to the lack of exploration drilling and modern 3D seismic. The present study compiles existing data from literature review and new data from outcrop analogue studies on the Permian Whitehill Formation, the main target formation for future shale gas production, including thickness, depth, maturity, TOC, lithologies, sedimentary and organic facies, and dolerite occurrence to provide a first reference dataset for further investigations and resource estimates.

  12. The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    White, Donald Edward; Hutchinson, Roderick A.; Keith, Terry E.C.

    1988-01-01

    Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends from Hebgen Lake, west of the park, to Norris Basin. No local evidence exists at the surface in Norris Basin for the two oldest Yellowstone volcanic caldera cycles (~2.0 and 1.3 m.y.B.P.). The third and youngest cycle formed the Yellowstone caldera, which erupted the 600,000-year-old Lava Creek Tuff. No evidence is preserved of hydrothermal activity near Norris Basin during the first 300,000.years after the caldera collapse. Glaciation probably removed most of the early evidence, but erratics of hot-spring sinter that had been converted diagenetically to extremely hard, resistant chalcedonic sinter are present as cobbles in and on some moraines and till from the last two glacial stages, here correlated with the early and late stages of the Pinedale glaciation <150,000 years B.P.). Indirect evidence for the oldest hydrothermal system at Norris Basin indicates an age probably older than both stages of Pinedale glaciation. Stream deposits consisting mainly of rounded quartz phenocrysts of the Lava Creek Tuff were subaerial, perhaps in part windblown and redeposited by streams. A few small rounded pebbles are interpreted as chalcedonic sinter of a still older cycle. None of these are precisely dated but are unlikely to be more than 150,000 to 200,000 years old. ...Most studies of active hydrothermal areas have noted chemical differences in fluids and alteration products but have given little attention to differences and models to explain evolution in types. This report, in contrast, emphasizes the kinds of changes in vents and their changing chemical types of waters and then provides models for explaining these differences. Norris Basin is probably not an independent volcanic-hydrothermal system. The basin and nearby acid-leached areas (from oxidation of H2S-enriched vapor) are best considered as parts of the same system, extending from Norris Basin to Roaring Mountain and possibly to Mammoth. If so, are they parts of a single large system centered within the Yellowstone caldera, or are Norris Basin and the nearby altered areas both parts of one or more young independent corridor systems confined, at least in the shallow crust, to the Norris-Mammoth Corridor? Tentatively, we favor the latter relation, probably having evolved in the past ~300,000 years. A model for large, long-lived, volcanic-hydrothermal activity is also suggested, involving all of the crust and upper mantle and using much recent geophysical data bearing on crust-mantle interrelations. Our model for large systems is much superior to previous suggestions for explaining continuing hydrothermal activity over hundreds of thousands of years, but is less attractive for the smaller nonhomogenized volcanic system actually favored here for the Norris-Mammoth Corridor.

  13. Managing water with better institutions: Building flexibility, innovation and lessons of best practices

    NASA Astrophysics Data System (ADS)

    Msangi, S.

    2014-12-01

    Changing socio-economic conditions and global environmental change continue to put pressure on critical natural resources necessary for sustaining ecosystems and human well-being - including water. Increasing variability in water availability, deepening droughts and continuing demands and consumptive use have posed problems for resource managers and policy makers in many regions. While in some regions it is still possible to enhance supply, such as in under-exploited water basins in Africa - the majority of the world's heaviest water users are facing situations that call for more demand-side adjustments. This necessitates a change from engineering-focused solutions to more economic ones, especially where the costs of increasing supply (such as through de-salinization) are prohibitively expensive, or have unacceptable consequences for environmental sustainability. Despite many years and decades of studying water resource management problems, there is still too little guidance as to what institutional best-practices should be followed. Water resources tend to touch on a number of areas managed by different government departments and ministries (agriculture, aquaculture & fisheries, industry, natural resources, etc) - but there is still no common understanding of what the best governance arrangements are that lead to improved sectoral performance (however that is measured). Given the continuing efforts to invest in water resources management and development by major multi-lateral organizations such as the World Bank and the African Development Bank - this kind of institutional guidance is critical, if countries are to make the most of these investments. In this presentation, we review a number of cases in which previously supply-side oriented approaches have to be dealt with from the demand side, and why institutional flexibility and innovation is so important. We draw from examples of community-based groundwater management in India, groundwater overdraft management in China and the US, and try and synthesize some key priorities for further research and policy dialogue that are needed to enhance the sustainability of water resources in critical basins.

  14. Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing

    DTIC Science & Technology

    2008-01-01

    exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical

  15. Microgravity

    NASA Image and Video Library

    2001-05-02

    Suzarne Nichols (12th grade) from DuPont Manual High School in Louisville, Kentucky, asks a question of on of the on-line lecturers during the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. NASA materials engineer Chris Cochrane prepare students for the on-line workshop helps two students prepare a drop demonstration. This image is from a digital still camera; higher resolution is not available.

  16. Proceedings of a Hydrology and Hydraulics Workshop (23rd) on Hydrologic Studies in Support of Project Functions Held in Angel Fire, New Mexico on 7-9 August 1990

    DTIC Science & Technology

    1990-01-01

    Pecos River Watershed. Refer to the vicinity map on Plate 1. The source of the Pecos River basin is in the Sangre de Cristo Mountains about 395 miles...resulted in a favorable court decision for the Corps and never actually impacted hydropower or the quantity of water supply storage reallocated...sensing gage. The stage warning gage consists of a telephone alarm dialer mounted in a shelter atop a stilling well which contains float switches

  17. Libya Montes

    NASA Image and Video Library

    2002-11-23

    This image by NASA Mars Odyssey spacecraft shows the rugged cratered highland region of Libya Montes, which forms part of the rim of an ancient impact basin called Isidis. This region of the highlands is fairly dissected with valley networks. There is still debate within the scientific community as to how valley networks themselves form: surface runoff (rainfall/snowmelt) or headward erosion via groundwater sapping. The degree of dissection here in this region suggests surface runoff rather than groundwater sapping. Small dunes are also visible on the floors of some of these channels. http://photojournal.jpl.nasa.gov/catalog/PIA04008

  18. Archaeoastronomy and sacred places in Tenerife (Canary Islands).

    NASA Astrophysics Data System (ADS)

    Jiménez, J. J.; Esteban, C.; Febles, J. V.; Belmonte, J. A.

    For the last few years the authors have been investigating (with work still in progress) several archaeological sites of the indigenous culture of the island of Tenerife, in search of possible astronomical connections, be these of a calendric or religious nature. Of these sites, the authors will concentrate, within their archaeological context, on those containing small channels and carved "basins" (or "hollows") and interpreted as probable cultic sites. The present work constitutes and initial approach to the contrasting of different aspects, such as location, celestial horizon, morphology, the visibility of Mount Teide and burials.

  19. U. S. Army Corps of Engineers Remote Sensing Symposium, 29 - 31 October 1979 Held at Sheraton International Conference Center, Reston, Virginia.

    DTIC Science & Technology

    1979-10-31

    construction is to be carried on in the vicinity. 34 - - -- - Figure 13 - Geologic Interpretation of Part of the Upper Amazon Basin ( Peru ) Figure 14 - Radar...and how to proceed still remains under review. Likely some of you are aware of the concept called the National Oceanic Satellite System. It would serve...radar to emphasize the surface evidence of underground geological phenomena has proved itself of great value. Figure 13 shows an area in the upper Amazon

  20. Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Escobar Wolf, Kaibil; Lins, Lidia; Martínez Arbizu, Pedro; Brandt, Angelika

    2018-02-01

    Despite the increasing sampling effort that occurred in the deep-sea environment during the last decades, knowledge about meiofauna ecology in trenches and Fracture Zones is still scarce. Based on the lack of this information, a longitudinal transect across the Vema Fracture Zone in the North Atlantic was sampled to test whether meiofauna abundances differ between Northeast and Northwest Atlantic basins, separated by the Mid-Atlantic Ridge. Also, for examination of meiofauna depth pattern, the Puerto Rico trench floor, its upper trench slope and the Western North Atlantic abyssal were investigated. In this study, meiofauna communities were dominated by Nematoda (93%) and Copepoda (4%). The highest total abundance of meiofauna was found in the Puerto Rico trench and the lowest in the Western basin. We found significant differences between the Eastern and Western Atlantic basins, which were potentially caused by differences in current regimes. Stronger currents observed in the Western basin possibly led to the coarser sediment grain size observed in this region, and consequently to the lower abundances of the major groups found there. Besides grain size, the total abundance of meiofauna was significantly correlated with total nitrogen, total organic carbon, and water depth. Moreover, our study reveals a trend of increasing abundance of total meiofauna with increasing water depth in the Puerto Rico trench. Also, significant differences between the Western abyssal and the Puerto Rico trench were discovered. Generally, the meiofauna abundance in the investigated area decreased from East to West but increased with increasing water depth in the Puerto Rico trench. Due to funnelling of organic sediments increased food availability towards deeper regions in trenches could occur and promote higher abundance.

  1. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin; ...

    2017-11-08

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  2. Effects of Model Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    NASA Astrophysics Data System (ADS)

    Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin

    2018-01-01

    The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

  3. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGES

    Browning, J. R.; Jonkman, J.; Robertson, A.; ...

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  4. Assessing groundwater recharge mechanisms in the Pampa del Tamarugal Basin of northern Chile's Atacama Desert

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.; Dodd, J. P.; Olson, E. J.; Swanson, S.

    2015-12-01

    The hyper-arid Atacama Desert in northern Chile is one of the driest inhabited places on Earth receiving little to no rain (<5 mm/yr). Within the Tarapacá Region of the Atacama Desert, the Pampa del Tamarugal Aquifer (PTA) is the primary source of water for agriculture, industry, mining, and residential uses. The PTA covers 5,000 km2, and is located in the Pampa del Tamarugal Basin, which is situated between the Andes and the Coastal Cordillera, and is filled with ~1700m of Miocene and younger sediments. The source of recharge for the PTA originates as precipitation in the high Andes, which can receive up to 400 mm/yr of precipitation; however, the mechanisms and magnitude of recharge to the PTA are still poorly understood. Here, we present a regional scale, non-isothermal 2-D numerical groundwater model is developed to analyze the time scales and geological controls on fluid flow paths recharging the PTA. Results from this work suggest that (1) both shallow groundwater flow and deep (>1km) hydrothermal fluid circulation are responsible for recharging the PTA; (2) topography and geothermal gradients are the main driving factors for regional groundwater flow; (3) the Altos de Pica member 4, an ignimbrite layer in the sedimentary basin controls both heat and fluid flow in the western part of the basin, this is evident due to the presence of convection cells and meteoric water upwelling and presenting itself as surface water (salars); and (4) it takes meteoric water 100,000 years to travel from the high Andes to reach Pica and 1,000,000 years for salar formation. In addition, this work provides a theoretical basis for the spatial distribution of highly alkaline surface water bodies, known as salars in the western Atacama Desert.

  5. An assessment of potential hydro-political tensions in transboundary river basins using environmental, political, and economic indicators

    NASA Astrophysics Data System (ADS)

    De Stefano, Lucia; Petersen-Perlman, Jacob; Sproles, Eric; Eynard, James; Wolf, Aaron T.

    2015-04-01

    Globally 286 river basins extend across international borders, covering over 61.9 million km2 of the earth's surface and hosting a total of approximately 2.7 billion people. In these basins, transboundary water resources support an interdependent web of environmental, political, and economic systems that can enhance or destabilize a region. We present an integrated global-scale assessment of transboundary watersheds to identify regions more likely to experience hydro-political tensions over the next decade and beyond based upon environmental, political, and economic indicators. We combine NASA's Gravity Recovery and Climate Experiment (GRACE) measurements of changes in terrestrial water storage with metrics of projected climate change impacts on water variability, the institutional capacity of countries to manage shared water resources, the development of new water infrastructure, per capita gross national income, domestic and international armed conflicts, and recent history of disputes over transboundary waters. The construction of new water-related infrastructure is on-going or planned in many basins worldwide. New water infrastructure is foreseen also in areas where instruments of international cooperation are still absent or limited in scope, e.g. in Southeast Asia, South Asia, Central America, the northern part of the South American continent, and the southern Balkans as well as in different parts of Africa. Moreover, in Central and Eastern Africa, the Middle East, and Central, South and South-East Asia there is a concomitance of several political, environmental and socioeconomic factors that could exacerbate hydropolitical tensions. Our analysis integrates political, economic and environmental metrics and is part of the United Nation's Transboundary Waters Assessment Programme to provide the first global-scale assessment of its type.

  6. Effects of Cryospheric Change on Alpine Hydrology: Combining a Model With Observations in the Upper Reaches of the Hei River, China

    NASA Astrophysics Data System (ADS)

    Chen, R.; Wang, G.; Yang, Y.; Liu, J.; Han, C.; Song, Y.; Liu, Z.; Kang, E.

    2018-04-01

    Cryospheric changes have great effects on alpine hydrology, but these effects are still unclear owing to rare observations and suitable models in the western cold regions of China. Based on long-term field observations in the western cold regions of China, a cryospheric basin hydrological model was proposed to evaluate the cryospheric effects on streamflow in the upper Hei River basin (UHR), and the relationship between the cryosphere and streamflow was further discussed with measured data. The Norwegian Earth System Model outputs were chosen to project future streamflow under scenarios Representative Concentration Pathways (RCP)2.6, RCP4.5, and RCP8.5. The cryospheric basin hydrological model results were well validated by the measured precipitation, streamflow, evapotranspiration, soil temperature, glacier and snow cover area, and the water balance of land cover in the UHR. The moraine-talus region contributed most of the runoff (60%), even though it made up only about 20% of the area. On average, glacier and snow cover, respectively, contributed 3.5% and 25.4% of the fresh water to the streamflow in the UHR between 1960 and 2013. Because of the increased air temperature (2.9°C/54a) and precipitation (69.2 mm/54a) over the past 54 years, glacial and snowmelt runoff increased by 9.8% and 12.1%, respectively. The increase in air temperature brought forward the snowmelt flood peak and increased the winter flow due to permafrost degradation. Glaciers may disappear in the near future because of their small size, but snowmelt would increase due to increases in snowfall in the higher mountainous areas, and the basin runoff would increase slightly in the future.

  7. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  8. Metal Chemical and Isotope Characterisation in the Upper Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Widory, D.; Nigris, R.; Morard, A.; Gassama, N.; Poirier, A.; Bourrain, X.

    2016-12-01

    The Water Framework Directive (WFD) elaborated by the European Commission regulates water resources in the EC based on five years management plans. A new management plan that started in 2016 imposes strict water quality criteria to its member states, including good status thresholds for metallic contaminants. The Loire River, the most important river in France, flows through areas with lithologies naturally containing high metal concentrations in the upper part of its basin. Understanding these metal fluxes into the river is thus a prerequisite to understand their potential impact on the quality of its water in regards to the criteria defined by the WFD. The Massif Central, a residue of the Hercynian chain, is composed of granitic and volcanic rocks. Both its upstream position in the Loire basin and its numerous metal mineralizations made this region a good candidate for characterizing the natural metal geochemical background of its surface waters. To fulfill this objective we focused on the Pb, Cd and Zn chemical and isotope characteristics of selected non-anthropized small watersheds. The investigated small watersheds were selected for supposedly draining a single lithology and undergoing (as far as possible) negligible to no anthropogenic pressure. Results showed that although the high metal potential of the upper part of the Loire River basin has been highly exploited by humans for centuries, metal concentrations during the hydrological cycle are still under the guidelines defined by the WFD. Isotope compositions/ratios are strongly related to the corresponding lithologies along the rivers and help precisely define the local geochemical background that can then be used to identify and quantify any anthropogenic inputs downstream.

  9. Hydrological state of the Large Aral Sea in the fall season of 2013

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter

    2014-05-01

    We report here the results of the latest expedition of the Shirshov Institute to the Aral Sea. The survey encompassed 8 field days in October-November, 2013. Direct measurements of thermohaline characteristics and water currents were conducted in the western basin of the Large Aral Sea during the expedition. Vertical profiles of temperature and salinity were obtained using a CTD profiler at 9 stations, situated on two cross-sections of the western basin. Four mooring stations equipped with current meters, as well as pressure gauges, were deployed for 4-6 days on the slopes of the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. Analysis of the current measurements data along with the meteorological data records demonstrated the current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing. Together with the similar results of more earlier surveys, recently collected data shows that the mean surface circulation of the western basin remains anti-cyclonic under the predominant winds. Character of the interannual variability of salinity values in the Aral Sea water manifested increase in the surface layer during last 5 years. On the other hand, salinity values in the bottom layer appear to be decreased due to ceasing of the influence of the interbasin water exchange since 2010. Water level of the Large Aral Sea is still falling. Assessment of the on-going changes holds promise to help predicting the subsequent state of the Aral Sea region.

  10. Linking Genetic Variation in Adaptive Plant Traits to Climate in Tetraploid and Octoploid Basin Wildrye [Leymus cinereus (Scribn. & Merr.) A. Love] in the Western U.S.

    PubMed

    Johnson, R C; Vance-Borland, Ken

    2016-01-01

    Few studies have assessed how ploidy type within a species affects genetic variation among populations in relation to source climates. Basin wildrye (Leymus cinereus (Scribn. & Merr.) A. Love) is a large bunchgrass common in the intermountain Western U.S. found in both octoploid and tetraploid types. In common gardens at two sites over two years differences in both ploidy type and genetic variation within ploidy were observed in phenology, morphology, and production traits on 57 octoploid and 52 tetraploid basin wildrye from the intermountain Western U.S. (P<0.01). Octoploids had larger leaves, longer culms, and greater crown circumference than tetraploids but the numerical ranges of plant traits and their source climates overlapped between ploidy types. Still, among populations octoploids often had greater genetic variation for traits and occupied more diverse climates than tetraploids. Genetic variation for both ploidy types was linked to source climates in canonical correlation analysis, with the first two variates explaining 70% of the variation. Regression of those canonical variates with seed source climate variables produced models that explained 64% and 38% of the variation, respectively, and were used to map 15 seed zones covering 673,258 km2. Utilization of these seed zones will help ensure restoration with adaptive seed sources for both ploidy types. The link between genetic traits and seed source climates suggests climate driven natural selection and adaptive evolution in basin wildrye. The more diverse climates occupied by octoploids and higher trait variation suggests a higher capacity for ecological differentiation than tetraploids in the intermountain Western U.S.

  11. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  12. Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá-Barrandian Unit, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tasáryová, Zuzana; Janoušek, Vojtěch; Frýda, Jiří

    2018-06-01

    The Silurian volcanic rocks of the Prague Basin represent within-plate, transitional alkali to tholeiitic basalts, which erupted in a continental rift setting through the thick Cadomian crust of the Teplá-Barrandian Unit (Bohemian Massif). Despite the variable, often intense alteration resulting in post-magmatic replacement of the basalt mass due to carbonatization, the geochemical signatures of Silurian basalts are still sufficiently preserved to constrain primary magmatic processes and geotectonic setting. The studied interval of Silurian volcanic activity ranges from Wenlock (Homerian, 431 Ma) to late Ludlow (Gorstian, 425 Ma) with a distinct peak at the Wenlock/Ludlow boundary ( 428 Ma). Trace-element characteristics unambiguously indicate partial melting of a garnet peridotite mantle source. Wenlock basalts are similar to alkaline OIB with depleted radiogenic Nd signature compared to Ludlow basalts, which are rather tholeiitic, EMORB-like with enriched radiogenic Nd signature. The correlation of petrogenetically significant trace-element ratios with Nd isotopic compositions points to a mixing of partial melts of an isotopically heterogeneous, possibly two-component mantle source during the Wenlock-Ludlow melting. Lava eruptions were accompanied by intrusions of doleritic basalt and meimechite sills. The latter represent olivine-rich cumulates of basaltic magmas of probably predominantly Ludlow age. Meimechites with dolerites and, to a lesser extent, some lavas were subject to alteration due to wall-rock-fluid interaction. The trigger for the Wenlock-to-Ludlow (431-425 Ma) extension and related volcanism in the Prague Basin is related to far-field forces, namely slab-pull regime due to progressive closure of the Iapetus Ocean. The main stage of the Baltica-Laurentia collision then caused the Prague Basin rift failure at ca. 425 Ma that has never reached an oceanic stage.

  13. The upper limit of maturity of natural gas generation and its implication for the Yacheng formation in the Qiongdongnan Basin, China

    NASA Astrophysics Data System (ADS)

    Su, Long; Zheng, Jianjing; Chen, Guojun; Zhang, Gongcheng; Guo, Jianming; Xu, Yongchang

    2012-08-01

    Vitrinite reflectance (VR, Ro%) measurements from residual kerogen of pyrolysis experiments were performed on immature Maoming Oil Shale substituted the samples for the gas-prone source rocks of Yacheng formation of the Qiongdongnan Basin in the South China Sea. The work was focused on determination an upper limit of maturity for gas generation (ULMGG) or "the deadline of natural gas generation". Ro values at given temperatures increase with increasing temperature and prolonged heating time, but ΔRo-value, given a definition of the difference of all values for VR related to higher temperature and adjacent lower temperature in open-system non-isothermal experiment at the heating rate of 20 °C/min, is better than VR. And representative examples are presented in this paper. It indicates that the range of natural gas generation for Ro in the main gas generation period is from 0.96% to 2.74%, in which ΔRo is in concordance with the stage for the onset and end of the main gas generation period corresponding to 0.02% up to 0.30% and from 0.30% up to 0.80%, respectively. After the main gas generation period of 0.96-2.74%, the evolution of VR approach to the ULMGG of the whole rock for type II kerogen. It is equal to 4.38% of VR, where the gas generation rates change little with the increase of maturation, ΔRo is the maximum of 0.83% corresponding to VR of 4.38%Ro, and the source rock does not nearly occur in the end process of hydrocarbon gas generation while Ro is over 4.38%. It shows that it is the same the ULMGG from the whole rock for type II kerogen as the method with both comparison and kinetics. By comparing to both the conclusions of pyrolysis experiments and the data of VR from the source rock of Yacheng formation on a series of selected eight wells in the shallow-water continental shelf area, it indicate that the most hydrocarbon source rock is still far from reaching ULMGG from the whole rock for type II kerogen. The source rock of Yacheng formation in the local areas of the deepwater continental slope basin have still preferable natural gas generative potential, especially in the local along the central depression belt (namely the Ledong, Lingshui, Songnan and Baodao sags from southwest to northeast) from the depocenter to both the margin and its adjacent areas. It help to evaluate the resource potential for oil and gas of the hydrocarbon source rock in the deepwater continental slope of the Qiongdongnan Basin or other basins with lower exploration in the northern of the South China Sea and to reduce the risk in exploration.

  14. The southern Tyrrhenian basin: is something changing in its kinematics?

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Piromallo, C.

    2003-04-01

    The Tyrrhenian Sea is unanimously considered an extensional basin opened through trench retreat and back-arc extension during subduction of the Calabrian slab. This subduction is presently active only beneath the southeasternmost part the Tyrrhenian Sea, as testified by seismicity, occuring from crustal depths down to 400 km, along a well defined Wadati-Benioff zone. If we analyze seismicity distribution and earthquakes focal mechanisms available for the southern part of the basin, the present-day situation looks however quite different from the one inferred from the reconstructions of the most recent evolution of the Tyrrhenian domain. Shallow seismicity with magnitude M_w >= 4.5 (for which computation of the moment tensor is certainly feasible), exhibits a clear compressional deformation, active at least since the last 25 years, and is located immediately off-shore all along the northern coast of Sicily --- also the last northern Sicily sequence, started on September 6, 2002, with a M_L=5.6 event, belongs to this activity. Thrust shallow events are clearly confined to the west of the Aeolian Archipelago, while to the east shallow seismicity is more sparse and rare, and concentrated onland. On the contrary, deep and intermediate seismicity is substantially distributed east of the Aeolian Islands, while almost absent west of them. Moreover, historical seismicity reports strong earthquakes related to extensional faults all along the Calabrian Arc, as in the rest of the Apenninic chain. As a sharp boundary to this transition in seismicity characteristics we therefore identify the location of Aeolian volcanic islands. It is well known that this subduction-related island arc grew over pre-existing tectonic features, coeval and related to the opening of the Tyrrhenian basin itself, through which magmatic material found a way to rise and build up the archipelago. The most relevant of these structures is certainly the Tindari-Giardini fault system which, moving southward from the Aeolian Islands, cross-cuts the Patti Gulf, the Etna volcano and joins with the Malta Escarpment. We discuss here seismological data for the region surrounding this important tectonic feature, together with volcanological and tectonic evidences and new results from seismic tomography, to obtain a sketch of the present-day kinematics and to face an interpretation of dynamics. We propose that, after a long period of extension dominating the evolution of the Tyrrhenian basin, at present something is changing, starting from its southwestern boundary. Slab retreat is likely still occurring, confined to the east of the major tectonic discontinuity, the transcurrent Tindari-Giardini-Etna-Malta Escarpment lineament, where a narrow stripe of oceanic lithosphere is still present in the foreland. Contrarily, to the west of this structure, where oceanic lithosphere is totally consumed and the thick, buoyant African shelf prevents further subduction of continental lithosphere, the retreat process has come to an end and large-scale Africa-Europe plate convergence has probably regained over the internal dynamics of the system.

  15. Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil.

    PubMed

    Marques, Marcia; da Costa, Monica F; Mayorga, Maria Irles de O; Pinheiro, Patrícia R

    2004-02-01

    Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.

  16. Composition of Rheasilvia Basin on Asteroid Vesta

    NASA Technical Reports Server (NTRS)

    Ammannito, Eleonora; DeSanctis, Maria Christina; Capaccioni, Fabrizio; Capria, Maria Teresa; Combe, Jean Philippe; Frigeri, Alessandro; Jaumann, Ralf; Longobardo, Andrea; Marchi, Somone; McCord, Thomas B.; hide

    2014-01-01

    The focus of the present study is the compositional analysis of small-scale surface features within the Rheasil-Aa basin on asteroid Vesta. We are using data acquired by the Visible and InfraRed mapping Spectrometer (VIR) on the Dawn mission. Nominal spatial resolution of the data set considered in this study is 70m/px. The portion of Rheasil-Aa basin below 65degS has a howarditic composition, with the higher concentration of diogenitic versus eucritic material in the region between 45deg and 225degE-lon. However, there are several locations, such as craters Tarpeia and Severina and Parentatio Rupes, with lithologic characteristics different from the surroundings regions. Tarpeia crater has a eucritic patch in the west side of the crater, the bottom part ofthe wall and part of the floor. Severina, located in a region of Mg-rich pyroxene, has some diogenitic units on the walls of the crater. Also the Parentatio Rupes has an ob-AOUS diogenitic unit. These units extend for 10-20km, and their location, especially in the case of the two craters, suggests they formed before the cratering events and also before the Rheasil-Aa impact event. The origin of these units is still unclear; however, their characteristics and locations suggests heterogeneity in the composition of the ancient Vestan crust in this particular location of the surface.

  17. The Italian genome reflects the history of Europe and the Mediterranean basin

    PubMed Central

    Fiorito, Giovanni; Di Gaetano, Cornelia; Guarrera, Simonetta; Rosa, Fabio; Feldman, Marcus W; Piazza, Alberto; Matullo, Giuseppe

    2016-01-01

    Recent scientific literature has highlighted the relevance of population genetic studies both for disease association mapping in admixed populations and for understanding the history of human migrations. Deeper insight into the history of the Italian population is critical for understanding the peopling of Europe. Because of its crucial position at the centre of the Mediterranean basin, the Italian peninsula has experienced a complex history of colonization and migration whose genetic signatures are still present in contemporary Italians. In this study, we investigated genomic variation in the Italian population using 2.5 million single-nucleotide polymorphisms in a sample of more than 300 unrelated Italian subjects with well-defined geographical origins. We combined several analytical approaches to interpret genome-wide data on 1272 individuals from European, Middle Eastern, and North African populations. We detected three major ancestral components contributing different proportions across the Italian peninsula, and signatures of continuous gene flow within Italy, which have produced remarkable genetic variability among contemporary Italians. In addition, we have extracted novel details about the Italian population's ancestry, identifying the genetic signatures of major historical events in Europe and the Mediterranean basin from the Neolithic (e.g., peopling of Sardinia) to recent times (e.g., ‘barbarian invasion' of Northern and Central Italy). These results are valuable for further genetic, epidemiological and forensic studies in Italy and in Europe. PMID:26554880

  18. Evolution, distribution, and characteristics of rifting in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; Corti, Giacomo; Sani, Federico; Bonini, Marco; Balestrieri, Maria-Laura; Molin, Paola; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2014-04-01

    Southern Ethiopia is a key region to understand the evolution of the East African rift system, since it is the area of interaction between the main Ethiopian rift (MER) and the Kenyan rift. However, geological data constraining rift evolution in this remote area are still relatively sparse. In this study the timing, distribution, and style of rifting in southern Ethiopia are constrained by new structural, geochronological, and geomorphological data. The border faults in the area are roughly parallel to preexisting basement fabrics and are progressively more oblique with respect to the regional Nubia-Somalia motion proceeding southward. Kinematic indicators along these faults are mainly dip slip, pointing to a progressive rotation of the computed direction of extension toward the south. Radiocarbon data indicate post 30 ka faulting at both western and eastern margins of the MER with limited axial deformation. Similarly, geomorphological data suggest recent fault activity along the western margins of the basins composing the Gofa Province and in the Chew Bahir basin. This supports that interaction between the MER and the Kenyan rift in southern Ethiopia occurs in a 200 km wide zone of ongoing deformation. Fault-related exhumation at ~10-12 Ma in the Gofa Province, as constrained by new apatite fission track data, occurred later than the ~20 Ma basement exhumation of the Chew Bahir basin, thus pointing to a northward propagation of the Kenyan rift-related extension in the area.

  19. Hydrocarbon potential of Upper Devonian black shale, eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, I.M.; Frankie, W.T.; Moody, J.R.

    The gas-producing Upper Devonian black shales of eastern Kentucky represent cycles of organic units alternating with less-organic units that were dominated by an influx of clastics from a northeastern source. This pattern of sedimentation is typical throughout the southern Appalachian basin in areas basinal to, yet still influenced by, the Catskill delta to the northwest. These black shales, which thin westward onto the Cincinnati arch, dip eastward into the Appalachian basin. To evaluate the future gas potential of Devonian shale, a data base has been compiled, consisting of specific geologic and engineering information from 5920 Devonian shale wells in Letcher,more » Knott, Floyd, Martin, and Pike Counties, Kentucky. The first successful gas completion in eastern Kentucky was drilled in Martin County in 1901. Comparison of initial open-flow potential (IP) and long-term production data for these wells demonstrates that higher IP values generally indicate wells of higher production potential. Areas of higher IP are aligned linearly, and these lineaments are interpreted to be related to fracture systems within the Devonian shale. These fractures may be basement influenced. Temperature log analyses indicate that the greatest number of natural gas shows occur in the lower Huron Member of the Ohio Shale. Using both the temperature log to indicate gas shows and the gamma-ray log to determine the producing unit is a workable method for selecting the interval for treatment.« less

  20. Vertical and horizontal fluxes of plutonium and americium in the western Mediterranean and the Strait of Gibraltar.

    PubMed

    León Vintró, L; Mitchell, P I; Condren, O M; Downes, A B; Papucci, C; Delfanti, R

    1999-09-30

    New data on the vertical distributions of plutonium and americium in the waters of the western Mediterranean and the Strait of Gibraltar are examined in terms of the processes governing their delivery to, transport in and removal from the water column within the basin. Residence times for plutonium and americium in surface waters of approximately 15 and approximately 3 years, respectively, are deduced, and it is shown that by the mid 1990s only approximately 35% of the 239,240Pu and approximately 5% of the 241Am deposited as weapons fallout still resided in the water column. Present 239,240Pu inventories in the water column and the underlying sediments are estimated to be approximately 25 TBq and approximately 40 TBq, respectively, which reconcile well with the time-integrated fallout deposition in this zone, taken to be approximately 69 TBq. The data show that there are significant net outward fluxes of plutonium and americium from the basin through the Strait of Gibraltar at the present time. These appear to be compensated by net inward fluxes of similar magnitude through the Strait of Sicily. Thus, the time-integrated fallout deposition in the western basin can be accounted for satisfactorily in terms of present water column and sediment inventories. Enhanced scavenging on the continental shelves, as evidenced by the appreciably higher transuranic concentrations in shelf sediments, supports this contention.

  1. Who has to pay for measures in the field of water management? A proposal for applying the polluter pays principle.

    PubMed

    Grünebaum, Thomas; Schweder, Heinrich; Weyand, Michael

    2009-01-01

    There is no doubt about the fact that the implementation of the European Water Framework Directive (WFD) and the pursuit of its goal of good ecological status will give rise to measures in different fields of water management. However, a conclusive and transparent method of financing these measures is still missing up to now. Measures in the water management sector are no mere end in themselves; instead, they serve specific ends directed at human activities or they serve general environment objectives. Following the integrative approach of the WFD on looking upon river basins as a whole and its requirement to observe the polluter pays principle, all different groups within a river basin should contribute to the costs according to their cost-bearer roles as polluters, stakeholders with vested interests or beneficiaries via relevant yardsticks. In order to quantify the financial expenditure of each cost bearer, a special algorithm was developed and tested in the river basin of a small tributary of the Ruhr River. It was proved to be generally practicable with regard to its handling and the comprehension of the results. Therefore, the application of a cost bearer system based on the polluter-pays principle and thus in correspondence with the WFD's requirements should appear possible in order to finance future measures.

  2. Mooring-based long-term observation of oceanographic condition in the Chukchi Ses and Canada Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Itoh, Motoyo; Nishino, Shigeto; Watanabe, Eiji

    2015-04-01

    Changes of the Arctic Ocean environment are well known as one of the most remarkable evidences of global warming, attracting social and public attentions as well as scientists'. However, to illustrate on-going changes and predict future condition of the Arctic marine environment, we still do not have enough knowledge of Arctic sea ice and marine environment. In particular, lack of observation data in winter, e.g., under sea ice, still remains a key issue for precise understanding of seasonal cycle on oceanographic condition in the Arctic Ocean. Mooring-based observation is one of the most useful methods to collect year-long data in the Arctic Ocean. We have been conducting long-term monitoring using mooring system in the Pacific sector of the Arctic Ocean. Volume, heat, and freshwater fluxes through Barrow Canyon where is a major conduit of Pacific-origin water-masses into the Canada Basin have been observed since 2000. We show from an analysis of the mooring results that volume flux through Barrow Canyon was about 60 % of Bering Strait volume flux. Averaged heat flux ranges from 0.9 to 3.07 TW, which could melt 88,000 to 300,000 km2 of 1m thick ice in the Canada Basin, which likely contributed to sea ice retreat in the Pacific sector of the Arctic Ocean. In winter, we found inter-annual variability in salinity related to coastal polynya activity in the Chukchi Sea. In collaboration with Distributed Biological Observatory (DBO) project, which is one of the tasks of Sustaining Arctic Observing Network (SAON), we also initiated year-long mooring observation in the Hope Valley of the southern Chukchi Sea since 2012. Interestingly, winter oceanographic conditions in the Hope Valley are greatly different between in 2012-2013 and in 2013-2014. We speculate that differences of sea ice freeze-up and coastal polynya activity in the southern Chukchi Sea cause significant difference of winter oceanographic condition. It suggests that recent sea ice reduction in the Pacific sector of the Arctic Ocean presumably influences marine environment not only in summer but also in winter.

  3. Climate induced changes on the hydrology of Mediterranean basins - assessing uncertainties and quantifying risks

    NASA Astrophysics Data System (ADS)

    Ludwig, Ralf

    2014-05-01

    According to current climate projections, the Mediterranean area is at high risk for severe changes in the hydrological budget and extremes. With innovative scientific measures, integrated hydrological modeling and novel field geophysical field monitoring techniques, the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins; GA: 244151) assessed the impacts of climate change on the hydrology in seven basins in the Mediterranean area, in Italy, France, Turkey, Tunisia, Egypt and the Gaza Strip, and quantified uncertainties and risks for the main stakeholders of each test site. Intensive climate model auditing selected four regional climate models, whose data was bias corrected and downscaled to serve as climate forcing for a set of hydrological models in each site. The results of the multi-model hydro-climatic ensemble and socio-economic factor analysis were applied to develop a risk model building upon spatial vulnerability and risk assessment. Findings generally reveal an increasing risk for water resources management in the test sites, yet at different rates and severity in the investigated sectors, with highest impacts likely to occur in the transition months. Most important elements of this research include the following aspects: • Climate change contributes, yet in strong regional variation, to water scarcity in the Mediterranean; other factors, e.g. pollution or poor management practices, are regionally still dominant pressures on water resources. • Rain-fed agriculture needs to adapt to seasonal changes; stable or increasing productivity likely depends on additional irrigation. • Tourism could benefit in shoulder seasons, but may expect income losses in the summer peak season due to increasing heat stress. • Local & regional water managers and water users, lack, as yet, awareness of climate change induced risks; emerging focus areas are supplies of domestic drinking water, irrigation, hydropower and livestock. • Data and knowledge gaps in climate change impact and risk assessment are still widespread and ask for extended and coordinated monitoring programs. In order to discover, visualize and provide access the results of the project, the CLIMB-Portal has been established, serving as a platform for dissemination of project results, including communication and planning for local and regional stakeholders.

  4. Global determination of rating curves in the Amazon basin from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; Paiva, Rodrigo C. D.; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stéphane; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frédérique

    2014-05-01

    The Amazonian basin is the largest hydrological basin all over the world. Over the past few years, it has experienced an unusual succession of extreme droughts and floods, which origin is still a matter of debate. One of the major issues in understanding such events is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2009. The stage dataset is made of ~900 altimetry series at ENVISAT and Jason-2 virtual stations, sampling the stages over more than a hundred of rivers in the basin. Altimetry series span between 2002 and 2011. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are hydrologicaly meaningful throughout the entire Amazon basin. The rating curve parameters have been computed using an optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best value for the parameters together with their posterior probability distribution, allowing the determination of a credibility interval for calculated discharge. Also the error over discharges estimates from the MGB-IPH model is included in the rating curve determination. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach is more efficient than the determinist one. By using for the parameters prior credible intervals defined by the user, this method provides an estimate of best rating curve estimate without any unlikely parameter. Results were assessed trough the Nash Sutcliffe efficiency coefficient. Ens superior to 0.7 is found for most of the 920 virtual stations . From these results we were able to determinate a fully coherent map of river bed height, mean depth and Manning's roughness coefficient, information that can be reused in hydrological modeling. Bad results found at a few virtual stations are also of interest. For some sub-basins in the Andean piemont, the bad result confirms that the model failed to estimate discharges overthere. Other are found at tributary mouths experiencing backwater effects from the Amazon. Considering mean monthly slope at the virtual station in the rating curve equation, we obtain rated discharges much more consistent with modeled and measured ones, showing that it is now possible to obtain a meaningful rating curve in such critical areas.

  5. First images of the crustal structure across the central Algerian margin, off Tipaza (West Algiers) from deep penetrating seismic data: new information to constrain the opening of the Algerian basin

    NASA Astrophysics Data System (ADS)

    Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.

    2011-12-01

    The origin of the Algerian margin remains one of the key questions still unresolved in the Western Mediterranean sea. This is related to the unknown nature and kinematics of this Neogene basin. Whereas the westernmost margin is generally assumed to have been shaped as a STEP-fault (Subduction-Transform Edge Propagator, transcurrent) margin by the westward displacement of the Alboran block, the central Algerian margin is believed to have involved a NW-SE basin opening related to a southward slab rollback. This work sheds insight on this issue, using data acquired in the context of the Algerian-French program SPIRAL (Sismique Profonde et Investigation Régionale en Algérie): a cruise conducted on the 'R/V L'Atalante' in October-November 2009. It has provided 5 new combined onshore-offshore wide-angle seismic profiles and an extensive multi-channel seismic dataset spread along the margin, from Oran to Annaba. In this work, the available structural information on the ~N-S wide-angle transect of Tipaza is presented, where the margin broadens due to the presence of a bathymetric high (the Khayr-Al-Din bank) which is assumed to represent a remaining titled block of the passive margin. Along the transect, 39 OBS and 13 landstations recorded 751 low frequency airgun shots. Travel-time tomography and forward modelling were computed using the software developed by Zelt and Barton (1998) and Zelt and Smith (1992), to obtain the velocity structure in the region. A set of multi-channel seismic reflection profiles including two coincident profiles with the wide-angle data allows a combined interpretation and extend the deep structure in the Bou Ismail Bay. MCS data outline the sedimentary sequence filling the Algerian basin depicting an intensive salt tectonic associated with the Messinan Salinity Crisis and allowing to image locally below the salt layer. The deep penetrating data SPIRAL allow to image the sedimentary sequence in the Algerian basin off Tipaza (West Algiers) and the crustal structure at the continent-ocean boundary. In the Algerian basin off Tipaza, the Moho discontinuity is identified using wide-angle modelling at 11-12 km depth which corresponds in two-way travel-time to 7-8 s. Wide-angle seismic modelling imaged a major thinning of the crust from more of 15 km in the upper margin (KADB) to only 5-6 km in the deep basin. This thinning also marks the rapid transition from a thinned continental crust at the Khayr-al-Din bank to an oceanic crust in the Algerian Basin, revealing a narrow transition zone (20-30 km) between the two domains. This work presents the deep structure of the margin West of Algiers from wide-angle and multichannel seismic data in order to discuss models of opening for the Algerian basin.

  6. Longitudinal Strain in the Forearc of a Rollback-Subduction System Forced to Change Length: Structural evolution of the Crotone Basin in NE Calabria, Southern Italy

    NASA Astrophysics Data System (ADS)

    Reitz, M. A.; Seeber, L.

    2009-12-01

    Calabria is a continental fragment incorporated into a forearc overriding the WNW directed subduction system. This system rolled back toward ESE across the central Mediterranean during the Neogene to form the Tyrrhenian Basin. Riding above the megathrust, forearcs seek a dynamic equilibrium between boundary stresses (drag below and lateral containments) with body stress (gravity acting on the shape of the forearc). Changes in boundary conditions are balanced by changes in the shape. The internal deformation history of the forearc, therefore, is expected to reflect changes in subduction tectonics during the evolution of the arc. We analyzed the structure of the Crotone Basin, located in northeastern Calabria, which is located in the exposed part of the forearc closest to the deformation front and to the Apennines. The main purpose was to compare the successive phases of deformation in the basin to the known evolution of the arc. We found four distinct events from the late Tortonian to the present. A widespread unconformity correlated with the onset of rollback marks a regional foundering with multidirectional normal growth faults. Following this pervasive and deeply rooted extension, the Crotone Basin experiences a period of parallel and distal sedimentation (Ponda clay). These sediments mark a relative long period (~5ma) of remarkable tectonic quiescence, even though subduction-rollback is moving the arc rapidly (3-5cm/yr) to the ESE. In addition, the forearc is shortening by progressive collision with Apulia (the Apennines) and Africa (the Maghrebides) during this time, but our study area is still far from the oblique collisions occurring at the ends of the forearc. The Messinian Salinity Crisis (5.3-6Ma) causes major instabilities in the accretion by loading it with evaporite deposits first and then removing the water load. Landward (westward) thrusting of the accretionary complex correlates with the Messinian in the Crotone basin and elsewhere along eastern Calabria. A characteristic fluvial conglomerate that locally caps the evaporite sequence records this thrusting by a systematic fracturing of the cobbles. After a well-known mid-Pliocene basin-forming extensional event, we find evidence of a basin-wide contractional event affecting the entire Neogene sequence up to the mid-to-late Pliocene. The data show a north-south compression with vergence to the north. This arc-longitudinal shortening may correlate with mid-Pliocene N-S shortening reported in the southern Apennines. Finally, many of these shortening structures are cut or reactivated by a recent (mid-Pleistocene?) faults, that accommodate extension also directed N-S to NW-SE. Our data show a shift from radial to longitudinal tectonics in the Pliocene as the Crotone basin nears the oblique collision with Apulia. Longitudinal forearc shortening may lead to extension in the Pleistocene, as the forearc squeezes through the narrow between Africa (Sicily) and Apulia, and begins lengthening as rollback consumes progressively wider Ionian lithosphere.

  7. A magmatic origin for lunar mascons? New insights from GRAIL gravity and numerical modeling

    NASA Astrophysics Data System (ADS)

    McGovern, P. J.; Zuber, M. T.; Kramer, G. Y.; Powell, K.; Kiefer, W. S.

    2012-12-01

    The origin of the enormous "mascon" gravity anomalies associated with large impact basins on the Moon is still a matter of debate. Here, we apply new insights from extremely high-resolution datasets -- GRAIL mission gravity and Lunar Orbiter Laser Altimeter (LOLA) topography -- to address this question, focusing on the volcanic evolution of the basin settings of mascons. Apollo-era data led to the hypothesis that surface maria deposits accounted for the mascon anomalies in the form of a plug-like body, occupying the central portions of basins like Serenitatis and Imbrium. Analysis of Clementine mission topography and gravity data indicated that substantial anomalies remained after the mare signal at many basins was taken into account. When mapped to the crust-mantle interface these anomalies suggested frozen-in super-isostatic uplift of that interface. However, recent modeling of lithospheric response to super-isostatic loading with a realistic post-impact thermal profile indicates that such uplift should disappear on timescales much shorter than the age of the basins, necessitating a search for a formation mechanism that will allow a mascon anomaly to be sustained to the present day. Given the substantial mare contributions to mascons, such a mechanism should also be consistent with apparent delays between basin-forming impacts and the onset of mare volcanism, as well as the (potentially extended) duration of the latter. One such scenario invokes the intrusive component of the magmatic system that delivered the mare basalts to the surface. The intrusive/extrusive volume ratio ranges from 5-10 in terrestrial settings, suggesting a substantial role for intrusions beneath mare-filled basins (and possibly for sparsely-filled ones as well). Given the complex geometry and margin structure of intrusive complexes observed on Earth, one might expect a hypothesized sill complex beneath lunar basins, emplaced over a potentially broad timescale and subject to local and regional stress and structural inhomogeneities, to have a complex margin structure. GRAIL gravity data reveal evidence for such structures in the form of lobate protrusions from central mascon gravity anomalies seen at north and northeast Serenitatis and south-southwest and east-northeast Imbrium. Further, the close correspondence between the decidedly non-circular southeast boundary of the Imbrium mascon and the thrust faults cutting the surface of Mare Imbrium suggests a connection between the mascon and the much younger surface flows that significantly postdates the impact process itself, consistent with a fault system conforming to the geometry of a subsurface intrusive load. Alternatively, those faults nucleated over an originally irregular impact-produced mascon boundary. Mascon loading creates stress states favorable to magmatic ascent in annular zones surrounding basins. For example, volcanic complexes at the margins of Imbrium and Serenitatis may have been facilitated by this stress state. Further, olivines detected in clearly magmatic settings (both extrusive and intrusive) at the margin of Crisium argue for stress-enhanced volcanic transport of olivine-bearing rocks (cumulates or mantle xenoliths) to the near surface.

  8. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related emissions within the Uintah Basin to be 119,974 tons/yr. Given the large observed variabilities and the uncertainties with extrapolating the derived emission rates across varying pond types and differing climatic conditions, the comparisons are not unreasonable. If the lower, literature emission rates of Thoma (2009) are used the estimated Basin-wide evaporation emissions, the pond emissions would still be approximately 30% of the total emissions compiled by Bar-Ilan et al. (2009). Although the study described herein only represents a single facility and a single set of seasonal conditions, extrapolating these rates can give potential insight into the significance of VOC emissions into the Basin atmosphere from evaporation ponds.

  9. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and sedimentation influences. In contrast, Westphalian D coal beds of western Kentucky accumulated during low differential tectonic accommodation, and therefore tend to be widespread and uniform in characteristics, but exhibit higher sulfur values because they accumulated in seasonally drier paleoclimates that were unfavorable for peat doming. Hence, basin analyses indicate that many differences between the mined coals of Kentucky's two coal fields are related to temporal changes in paleoclimate and tectonic accommodation, rather than solely being a function of marine influences. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary series (up to 3500 m) as a mixed combination of debris flows, internal preserved blocks, and/or compressively-deformed distal allochthonous masses. Transported material have proceeded from the dismantling of the Mesozoic mixed carbonate-siliciclastic platform. They can spread down slope over areas as large as 70000 of km2. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered by the gravitational collapse of the carbonate-siliciclastic platform under its own weight after successive subaerial exposures which were able to generate karstification processes. Seismic interpretation is constrained by a detailed assessment of the Egyptian margin paleogeography supported by wells. This margin segment is briefly compared to the outcropping Apulian margin in Italy.

  11. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin: Processes, genesis, and implications

    NASA Astrophysics Data System (ADS)

    Gong, Chenglin; Wang, Yingmin; Zheng, Rongcai; Hernández-Molina, F. Javier; Li, Yun; Stow, Dorrik; Xu, Qiang; Brackenridge, Rachel E.

    2016-10-01

    Our understanding of reworked turbidites is still in its infancy, and their flow processes and genesis still remain understudied. Core data from the middle Miocene Zhujiang Formation in the Pearl River Mouth Basin allow us to differentiate reworked turbidites, yielding two main contributions. Firstly, reworked turbidites are distinguished from turbidites by the association of traction structures and tidal signatures, which occur in discrete units rather than forming a classic ;Bouma Sequence; for turbidites. Sedimentological characteristics of reworked turbidites proposed here will help to obtain a robust set of diagnostic criteria for the recognition of deep-water non-turbidite deepwater units as reservoirs. Secondly, our results suggest that, in the down-slope direction, classic detritus carried in turbidity flows would synchronously be bidirectionally reworked by internal tides and waves, resulting in tidal signatures seen in the interpreted reworked turbidites. In the along-slope direction, upper parts of dilute turbidity currents would mix vertically with seawater, and muddy fines would be winnowed away by contour currents, whereas lower parts of dilute turbidity currents would probably drop their coarse particles, resulting in traction structures recognized in the documented reworked turbidites. Our work highlights the influence of bottom currents on the development and modification of turbidites and suggests that reworked turbidites were created by the combined action of down-slope transport and reworking and along-slope winnowing and sorting, helping to better understand flow processes and genesis of non-turbidite reservoirs with a great economic interest.

  12. The Role of Slope in the Fill and Spill Process of Linked Submarine Minibasins. Model Validation and Numerical Runs at Laboratory Scale.

    NASA Astrophysics Data System (ADS)

    Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.

    2015-12-01

    Primarily motivated by applications to hydrocarbon exploration, submarine minibasins have been widely studied during recent decades to understand the physical phenomenon that characterizes their fill process. Minibasins were identified in seismic records in the Gulf of Mexico, Angola, Trinidad and Tobago, Ireland, Nigeria and also in outcrops (e.g., Tres Pasos Formation, southern Chile). The filling of minibasis is generally described as the 'fill-and-spill' process, i.e. turbidity currents enter, are reflected on the minibasin flanks, pond and deposit suspended sediment. As the minibasin fills the turbidity current spills on the lowermost zone of the basin flank -spill point - and start filling the next basin downdip. Different versions of this simplified model were used to interpret field and laboratory data but it is still unclear how the minibasin size compared to the magnitude of the turbidity currents, the position of each basin in the system, and the slope of the minibasin system affects the characteristics of the deposit (e.g., geometry, grain size). Here, we conduct a numerical study to investigate how the 'fill-and-spill' model changes with increase in slopes of the minibasin system. First, we validate our numerical results against laboratory experiment performed on two linked minibasins located on a horizontal platform by comparing measured and simulated deposit geometries, suspended sediment concentration profiles and grain sizes. We then perform numerical simulations by increasing the minibasin system slope: deposit and flow characteristics are compared with the case of horizontal platform to identify how the depositional processes change. For the numerical study we used a three-dimensional numerical model of turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspensions. Turbulence is modeled by a buoyancy-modified k-ɛ closure. The numerical model has a deforming bottom boundary, to model the changes in the bed deposit due to erosion and deposition. Preliminary two dimensional simulations show that in the early stages of the fill process the suspended sediment concentration is higher in the first basin than in the second one, the coarse grain sizes are preferentially trapped in the updip basins and the fine sediment fractions spill into downdip basins.

  13. The enigmatic Messinian-Pliocene section of Cuevas del Almanzora (Vera Basin, SE Spain) revisited—erosional features and strontium isotope ages

    NASA Astrophysics Data System (ADS)

    Fortuin, A. R.; Kelling, J. M. D.; Roep, Th. B.

    1995-07-01

    The Cuevas del Almanzora section was, in the late seventies, the focus of a discussion because of alleged continuous marine Messinian to Pliocene sedimentation. However, a discontinuity has been shown to exist in the shape of laminated strata including the late Messinian brackish/ lacustrine "Lago Mare" biofacies. More recently, Benson and Rakic-El Bied (1991) concluded that the section is still one of the best biostratigraphic successions for the western Mediterranean in which to document terminal Miocene events, but that it entirely has an early Messinian age (i.e. it antedates deposition of the main evaporites). This paper presents strontium isotope ages indicating that the "classic" threefold division in an earlier marine Messinian, a "Lago Mare", and a Pliocene interval (sensu Geerlings et al., 1980; Cita et al., 1980) should be maintained. Moreover, the Sr isotopic composition of the euryhaline Cyprideis ostracodes from the "Lago Mare" laminites is similar to those from central Mediterranean basins. This stresses the importance of late Messinian water exchange between the Vera Basin and the then enclosed Mediterranean. It thus refutes the opinion of Benson and Rakic-El Bied (1991) that this interval is a local facies, of no particular stratigraphic importance. A time gap of up to ˜0.8 Ma between the youngest marine strata of the Messinian and the overlying Pliocene provides a maximum timing for the duration of the Messinian salinity crisis during which very little net sedimentation occurred, compared to coeval deposits in, for example, the nearby Nijar and Sorbas basins. In the Cuevas section an inconspicuous, and hitherto overlooked, erosional gap has been observed. This separates the "Lago Mare" marls from the Pliocene marls. More field observations have been made and are discussed in the light of existing interpretations, in order to demonstrate the importance of more widespread erosion in the Vera Basin. Gypsum-containing mass-flow deposits, filling up a late Messinian palaeorelief in the Garrucha area, are shown to be derived from the basin. These probably continue offshore as feeder channels related to a late Messinian sea-level fall. A holistic approach of a key section, thereby not overlooking the regional geology, is a necessary step to be made before far-reaching claims can be made about its interregional significance.

  14. Changes in the fish fauna of the Kissimmee River basin, peninsular Florida: Nonnative additions

    USGS Publications Warehouse

    Nico, L.G.

    2005-01-01

    Recent decades have seen substantial changes in fish assemblages in rivers of peninsular Florida. The most striking change has involved the addition of nonnative fishes, including taxa from Asia, Africa, and Central and South America. I review recent and historical records of fishes occurring in the Kissimmee River basin (7,800 km2), a low-gradient drainage with 47 extant native fishes (one possibly the result of an early transplant), at least 7 foreign fishes (most of which are widely established), and a stocked hybrid. Kissimmee assemblages include fewer marine fishes than the nearby Peace and Caloosahatchee rivers, and fewer introduced foreign fishes than south Florida canals. Fish assemblages of the Kissimmee and other subtropical Florida rivers are dynamic, due to new introductions, range expansions of nonnative fishes already present, and periodic declines in nonnative fish populations during occasional harsh winters. The addition, dispersal, and abundance of nonnative fishes in the basin is linked to many factors, including habitat disturbance, a subtropical climate, and the fact that the basin is centrally located in a region where drainage boundaries are blurred and introductions of foreign fishes commonplace. The first appearance of foreign fishes in the basin coincided with the complete channelization of the Kissimmee River in the 1970s. Although not a causal factor, artificial waterways connecting the upper lakes and channelization of the Kissimmee River have facilitated dispersal. With one possible exception, there have been no basin-wide losses of native fishes. When assessing change in peninsular Florida waters, extinction or extirpation of fishes appears to be a poor measure of impact. No endemic species are known from peninsular Florida (although some endemic subspecies have been noted). Most native freshwater fishes are themselves descended from recent invaders that reached the peninsula from the main continent. These invasions likely were associated with major fluctuations in sea level since the original mid-Oligocene emergence of the Florida Platform. As opportunistic invaders, most native freshwater fishes in peninsular Florida are resilient, widespread, and common. At this early stage, it is not possible to predict the long-term consequences caused by the introduction of foreign fishes. We know a few details about the unusual trophic roles and other aspects of the life histories of certain nonnatives. Still, the ecological outcome may take decades to unfold.

  15. Linking orogen and peripheral foreland basin: conceptual model and application to the Southalpine-Dinaric (Friuli) orocline

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Neubauer, Franz

    2010-05-01

    Surface uplift and rock exhumation within an orogen are generally a consequence of convergence, and can often be linked with subsidence in a peripheral foreland. Since vertical loads act on the entire lithosphere, these processes can, therefore, be considered as plate-scale processes. Here, we propose a conceptual model for this linkage for the Friuli orocline and its surrounding units. The Friuli orocline stretches from the ENE-trending Southern Alps to the SE-trending Dinarides. There, two Neogene stages of convergence and associated deformation can be differentiated: (1) a Mid-Late Miocene phase of increased surface uplift and intra-orogenic subsidence of sedimentary basins reflecting intra-orogenic crustal-scale folding. Depocentres are e.g. the flexural Belluno, Ljubljana and Klagenfurt basins. (2) A second stage of convergence during Late Pliocene-Pleistocene times led to overall surface uplift in the orogen and contemporaneous pronounced subsidence in the peripheral foreland basin (Venetian platform and the northern Adriatic Sea). We propose, that the spatially variable extent of subsidence originates in variably strong orogen-basin coupling, i.e. weak coupling during stage 1 vs. strong coupling during stage 2. This interpretation is based on the apatite fission track age pattern, the distribution of intra-orogenic Neogene sediment basins and subsidence analyses in the foreland basin (Barbieri et al., 2007). Available low-temperature thermochronological data for the Southern Alps and the NW Dinarides are sparse, in contrast to a dense network of primarily apatite fission track ages north of the Periadriatic lineament (e.g. summarized by Luth & Willingshofer, 2008). AFT ages adjacent to the eastern Periadriatic Lineament mainly range from 15 to 25 Ma (Hejl, 1997; Fodor et al., 2008). Detrital studies on Oligocene to Miocene sediments from the Venetian foreland basin yielded dominant age groups clustering roughly around 20 and 30 Ma (Stefani et al., 2008). Bedrock ages from the vicinity of the Valsugana thrust indicate an important exhumational event at about 10 Ma (Zattin et al., 2006). The existing data already hint at decreasing rates of thermal overprint towards the foreland. Basement uplifts partly display AFT ages contemporaneous to subsidence in intra-orogenic basins. Consequently, existing AFT data and their relationships to intervening Neogene basins suggest a Neogene large-wavelength crustal-scale fold structure between the Klagenfurt basin and the Adriatic Sea. The main stage of subsidence in the Venetian-Adriatic foreland is younger and of Late Pliocene-Pleistocene age reflecting the final, still ongoing stage of shortening (Barbieri et al., 2007). In order to further test these observations, we aim at collecting more structural and low-T thermochronological data from the region. First results from the recently started project "AlDi-Adria" will be presented. References Barbieri, C. et al. 2007: Natural subsidence of the Venice area during the last 60 Myr. Basin Res., 19, 105-123. Fodor, L. et al. 2008: Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaric junction: a geochronological and structural study. Swiss J. Geosci., 101 Suppl. 1, S255-S271. Hejl, E. 1997: 'Cold spots' during the Cenozoic evolution of the Eastern Alps: thermochronological interpretation of apatite fission-track data. Tectonophysics, 272, 159-172. Luth S. W. & Willingshofer, E. 2008: Mapping of the Post-Collisional Cooling History of the Eastern Alps. Swiss J. Geosci., 101, 207-223. Stefani, C. 2008: Provenance and Paleogeographic Evolution in a Multi-Source Foreland: The Cenozoic Venetian-Friulian Basin (NE Italy). J. Sediment. Res., 77, 867-887. Zattin, M. et al. 2006: From Middle Jurassic heating to Neogene cooling: The thermochronological evolution of the southern Alps. Tectonophysics, 414, 191-202.

  16. Environmental evolution of the Rio Grande drainage basin and Nasca region (Peru) in 2003-2007 using ENVISAT ASAR and ASTER time series

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Tapete, Deodato; Lasaponara, Rosa; Masini, Nicola

    2013-04-01

    Recent palaeo-environmental studies and remote sensing investigations demonstrated that the Rio Grande drainage basin in Southern Peru is a still evolving landscape, and impacts due to its changes have implications for the preservation of both the natural and cultural features of the Nasca region, well-known for the evidences of the ancient Paracas and Nasca Civilizations, who flourished from the 4th century BC to the 6th century AD. To image the modifications occurred in the last decade, we exploited the entire 4year-long stack of ENVISAT ASAR C-band archive imagery available over the region, which was provided by the European Space Agency (ESA) via the Cat-1 project 11073. The latter supports the activities of the Italian mission of heritage Conservation and Archaeogeophysics (ITACA), which directly involve researchers from the Institute for Archaeological and Monumental Heritage (IBAM) and the Institute of Methodologies for Environmental Analysis (IMAA), National Research Council (CNR) of Italy. With the aim of reconstructing the temporal evolution of the Rio Grande drainage basin and its effects and implications for the heritage of the region, we processed 8 ASAR Image Mode IS2 scenes acquired in descending mode between 04/02/2003 and 15/11/2005 and 5 images in ascending mode between 24/07/2005 and 11/11/2007, and focused on SAR backscattering information, amplitude change detection methods and extraction of ASAR-derived time series of the backscattering coefficient over target areas of interest. The ASAR 2003-2007 analysis was coupled and integrated with NDVI-based soil moisture and vegetation change assessment performed by using ASTER multi-spectral data acquired during the same time frame of the ASAR stacks, on 30/05/2003, 01/06/2004 and 10/06/2007. The research was performed both at the regional scale over the entire Rio Grande drainage basin, with particular focus on its tributaries Rio Ingenio, Rio Nazca and Rio Taruga, and at the local scale over the Nasca Puquios, ancient networks of open trenches and/or subterranean galleries (puquios) which provided and in many case still provide a source of irrigation water. The analyzed area included the large dry hydrographic reticulum lying within the desert south of the Rio Nazca, and both functioning and disused puquios were identified and analyzed within the ASAR and ASTER imagery and their derived products. Among others, we focused on the Santa María, San Carlos and Camotal puquios within the Rio Taruga valley. Multi-temporal observations of agricultural/vegetated areas were highly helpful to understand the environmental scenario, its evolution and mutual interactions with presence and development of ancient civilizations within the river basin. Croplands tend to adapt to water availability and its fluctuations over time, thereby changing very rapidly, and act as a reliable indicator of the presence of groundwater. Both optical and radar image stacks help drawing a clearer picture of the recent and present hydraulic regime of the rivers within the Nasca region. This environmental assessment can also support and provide benefit for archaeological studies, based on the identification of surface indicators which can be correlated to buried cultural features, such as ancient but still functioning puquios. References Lasaponara R., Masini N. 2012. Following the Ancient Nasca Puquios from Space, In: Lasaponara R., Masini N. (Eds) 2012, Satellite Remote Sensing: a new tool for Archaeology, Springer, Verlag Berlin Heidelberg, ISBN 978-90-481-8800-0, pp. 269-290, doi: 10.1007/978-90-481-8801-7_12. Masini N., Lasaponara R., Rizzo E., Orefici G. 2012. Integrated Remote Sensing Approach in Cahuachi (Peru): Studies and Results of the ITACA Mission (2007-2010), In: Lasaponara R., Masini N. (Eds) 2012, Satellite Remote Sensing: a new tool for Archaeology, Springer, Verlag Berlin Heidelberg, ISBN 978-90-481-8800-0, doi: 10.1007/978-90-481-8801-7_14; pp. 307-344.

  17. Using occupancy models to accommodate uncertainty in the interpretation of aerial photograph data: status of beaver in Central Oregon, USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Haggerty, Patricia K.; Urban, Leslie

    2015-01-01

    Beavers (Castor canadensis) influence habitat for many species and pose challenges in developed landscapes. They are increasingly viewed as a cost-efficient means of riparian habitat restoration and water storage. Still, information on their status is rare, particularly in western North America. We used aerial photography to evaluate changes in beaver occupancy between 1942–1968 and 2009 in upper portions of 2 large watersheds in Oregon, USA. We used multiple observers and occupancy modeling to account for bias related to photo quality, observers, and imperfect detection of beaver impoundments. Our analysis suggested a slightly higher rate of beaver occupancy in the upper Deschutes than the upper Klamath basin. We found weak evidence for beaver increases in the west and declines in eastern parts of the study area. Our study presents a method for dealing with observer variation in photo interpretation and provides the first assessment of the extent of beaver influence in 2 basins with major water-use challenges. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Because of the many names used to identify individual coal beds and coal zones in the historic Appalachian basin coal-mining districts, coal bed designations may differ even more than stratigraphic nomenclature. In eastern Kentucky, northwest of the Pine Mountain thrust fault on the Cumberland overthrust sheet, for example, coal beds or coal zones equivalent to the Lower Elkhorn coal zone (within the Pikeville Formation) are identified also as the Eagle coal zone, Pond Creek coal zone, and Blue Gem coal bed (fig. 1). Southeast of the Pine Mountain thrust fault, yet still in Kentucky, equivalent coals in this same interval are known as the Imboden and Rich Mountain. Moreover, this same interval of coal is identified as the Blue Gem coal in Tennessee, the Imboden coal bed or Campbell Creek or Pond Creek coal zones in Virginia, and the Eagle coal zone in West Virginia.

  19. DNA Barcoding in Pencilfishes (Lebiasinidae: Nannostomus) Reveals Cryptic Diversity across the Brazilian Amazon

    PubMed Central

    Benzaquem, Denise Corrêa; Oliveira, Claudio; da Silva Batista, Jaqueline; Zuanon, Jansen; Porto, Jorge Ivan Rebelo

    2015-01-01

    Nannostomus is comprised of 20 species. Popularly known as pencilfishes the vast majority of these species lives in the flooded forests of the Amazon basin and are popular in the ornamental trade. Among the lebiasinids, it is the only genus to have undergone more than one taxonomic revision. Even so, it still possesses poorly defined species. Here, we report the results of an application of DNA barcoding to the identification of pencilfishes and highlight the deeply divergent clades within four nominal species. We surveyed the sequence variation in the mtDNA cytochrome c oxidase subunit I gene among 110 individuals representing 14 nominal species that were collected from several rivers along the Amazon basin. The mean Kimura-2-parameter distances within species and genus were 2% and 19,0%, respectively. The deep lineage divergences detected in N. digrammus, N. trifasciatus, N. unifasciatus and N. eques suggest the existence of hidden diversity in Nannostomus species. For N. digrammus and N. trifasciatus, in particular, the estimated divergences in some lineages were so high that doubt about their conspecific status is raised. PMID:25658694

  20. The basin and range viewed from Borah Peak, Idaho.

    USGS Publications Warehouse

    Stein, R.S.; Bucknam, R.C.

    1985-01-01

    Today, more than a hundred years later, Borah Peak has proved to be among those mountains still rising. During the 28 October 1983 M=7 Borah Peak, Idaho, earthquake, the Lost River Range that Borah Peak caps was lifted 20-30 cm relative to distant points, and was tilted downward away from the range-bounding Lost River fault. The downthrown side of the fault, which subsided as much as 120 cm, was also tilted down toward the fault. The similarity between the earthquake deformation and the cumulative deformation preserved by the dip of strata is striking; it tends to confirm Gilbert's notion that Basin-and-Range topography is built by repeated slip events on normal faults that bound the range. The U.S Geological Survey had just published a preliminary volume of 40 research papers on the Borah Peak earthquake, focusing on the surface faulting, seismology, geodesy, hydrology, and geology of the earthquake and tis setting (Stein and Bucknam 1985). Also included is a field guide to the spectacular earthquake landforms, such as sruface rupture, exploratory trench excavations, sand blows, and landslides. 

  1. Ancient Rivers

    NASA Image and Video Library

    2016-01-14

    Early in Martian history, liquid water energetically carved the surface, forming channel systems that look remarkably similar to river valleys and drainage networks on Earth. Exactly how these channels formed -- by rainfall, snowmelt, or seepage from underground springs -- is often debated. The answer has important ramifications about the early Martian climate. Clues about the source of the water may indicate the shape, layout, and scale of the various tributaries in a channel system. Our image shows an example of just such a water-carved channel. The channel pattern, called "dendritic" because of its tree-like branching, begins at the top of the image and runs down over the rim of an ancient impact basin across the basin floor. The soil surface overlying these channels, and indeed the entire landscape, has been changed and reworked over the intervening millions of years, by the combined actions of wind and ice. Over time, the original channels become muted or even erased. Nevertheless, some characteristics of the smallest tributary channels are still visible at scales seen by HiRISE. http://photojournal.jpl.nasa.gov/catalog/PIA20337

  2. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    USGS Publications Warehouse

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  3. Evaluation of effectiveness of various devices for attenuation of trailing vortices based on model tests in a large towing basin

    NASA Technical Reports Server (NTRS)

    Kirkman, K. L.; Brown, C. E.; Goodman, A.

    1973-01-01

    The effectiveness of various candidate aircraft-wing devices for attenuation of trailing vortices generated by large aircraft is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft using a technique developed at the HYDRONAUTICS Ship Model Basin. Emphasis is on the effects produced by these devices in the far-field (up to 8 kilometers downstream of full-scale generating aircraft) where the unaltered vortex-wakes could still be hazardous to small following aircraft. The evaluation is based primarily on quantitative measurements of the respective vortex velocity distributions made by means of hot-film probe traverses in a transverse plane at selected stations downstream. The effects of these altered wakes on rolling moment induced on a small following aircraft are also studied using a modified lifting-surface theory with a synthesized Gates Learjet as a typical example. Lift and drag measurements concurrently obtained in the model tests are used to appraise the effects of each device investigated on the performance characteristics of the generating aircraft.

  4. [Remote sensing detection of vegetation health status after ecological restoration in soil and water loss region].

    PubMed

    Hu, Xiu Juan; Xu, Han Qiu; Guo, Yan Bin; Zhang, Bo Bo

    2017-01-01

    This paper proposed a vegetation health index (VHI) to rapidly monitor and assess vegetation health status in soil and water loss region based on remote sensing techniques and WorldView-2 imagery. VHI was constructed by three factors, i.e., the normalized mountain vegetation index, the nitrogen reflectance index and the reflectance of the yellow band, through the principal component transformation, in order to avoid the deviation induced by subjective method of weighted summation. The Hetian Basin of Changting County in Fujian Province, China, was taken as a test area to assess the vegetation health status in soil and water loss region using VHI. The results showed that the VHI could detect vegetation health status with a total accuracy of 91%. The vegetation of Hetian Basin in good, moderate and poor health status accounted for 10.1%, 49.2% and 40.7%, respectively. The vegetation of the study area was still under an unhealthy status because the soil was poor and the growth of newly planted vegetation was not good in the soil and water loss region.

  5. Microplastic contamination in Lake Winnipeg, Canada.

    PubMed

    Anderson, Philip J; Warrack, Sarah; Langen, Victoria; Challis, Jonathan K; Hanson, Mark L; Rennie, Michael D

    2017-06-01

    Microplastics are an emerging contaminant of concern in aquatic ecosystems. To better understand microplastic contamination in North American surface waters, we report for the first time densities of microplastics in Lake Winnipeg, the 11th largest freshwater body in the world. Samples taken 2014 to 2016 revealed similar or significantly greater microplastic densities in Lake Winnipeg compared with those reported in the Laurentian Great Lakes. Plastics in the lake were largely of secondary origin, overwhelmingly identified as fibres. We detected significantly greater densities of microplastics in the north basin compared to the south basin of the lake in 2014, but not in 2015 or 2016. Mean lake-wide densities across all years were comparable and not statistically different. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that 23% of isolated particles on average were not plastic. While the ecological impact of microplastics on aquatic ecosystems is still largely unknown, our study contributes to the growing evidence that microplastic contamination is widespread even around sparsely-populated freshwater ecosystems, and provides a baseline for future study and risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  7. [Epidemiological trends for malaria in the cities of the upper Paraguay River basin, Mato Grosso do Sul, Brazil 1990-1996].

    PubMed

    Matsumoto, W K; Vicente, M G; Silva, M A; de Castro, L L

    1998-01-01

    Through the Regional Office of the Brazilian National Health Foundation in the State of Mato Grosso do Sul, we obtained numerical data on malaria for the upper Paraguay basin (UPB): 159 cases in 1990, 126 in 1991, 135 in 1992, 61 in 1993, 143 in 1994, 41 in 1995, and 20 in 1996, the majority of which were imported cases. There were no autochthonous cases in 1990, and since 1991 the rates of over 15% dropped to around 1.60%. Imported cases, corresponding to 0. 63% in 1990, increased in 1991 and 1992 to some 1.50%, and to 3.28% in 1993. Induced cases were recorded only in 1991 and 1992 (less than 1%). Most cases were between 16 and 45 years of age. There was a predominance of Plasmodium vivax in the thick blood smears. Although autochthonous cases of malaria are not the majority, the disease is still an important public health problem in the UPB in the presence of the Anopheles (N.) darlingi vector and human migration into the region.

  8. Projecting the potential evapotranspiration by coupling different formulations and input data reliabilities: The possible uncertainty source for climate change impacts on hydrological regime

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Li, Changni; Xing, Wanqiu; Fu, Jianyu

    2017-12-01

    Representing atmospheric evaporating capability for a hypothetical reference surface, potential evapotranspiration (PET) determines the upper limit of actual evapotranspiration and is an important input to hydrological models. Due that present climate models do not give direct estimates of PET when simulating the hydrological response to future climate change, the PET must be estimated first and is subject to the uncertainty on account of many existing formulae and different input data reliabilities. Using four different PET estimation approaches, i.e., the more physically Penman (PN) equation with less reliable input variables, more empirical radiation-based Priestley-Taylor (PT) equation with relatively dependable downscaled data, the most simply temperature-based Hamon (HM) equation with the most reliable downscaled variable, and downscaling PET directly by the statistical downscaling model, this paper investigated the differences of runoff projection caused by the alternative PET methods by a well calibrated abcd monthly hydrological model. Three catchments, i.e., the Luanhe River Basin, the Source Region of the Yellow River and the Ganjiang River Basin, representing a large climatic diversity were chosen as examples to illustrate this issue. The results indicated that although similar monthly patterns of PET over the period 2021-2050 for each catchment were provided by the four methods, the magnitudes of PET were still slightly different, especially for spring and summer months in the Luanhe River Basin and the Source Region of the Yellow River with relatively dry climate feature. The apparent discrepancy in magnitude of change in future runoff and even the diverse change direction for summer months in the Luanhe River Basin and spring months in the Source Region of the Yellow River indicated that the PET method related uncertainty occurred, especially in the Luanhe River Basin and the Source Region of the Yellow River with smaller aridity index. Moreover, the possible reason of discrepancies in uncertainty between three catchments was quantitatively discussed by the contribution analysis based on climatic elasticity method. This study can provide beneficial reference to comprehensively understand the impacts of climate change on hydrological regime and thus improve the regional strategy for future water resource management.

  9. Persistent organic pollutants in wetlands of the Mekong Basin

    USGS Publications Warehouse

    Triet, Tran; Barzen, Jeb Anthony; Choowaew, Sansanee; Engels, Jon Michael; Ni, Duong Van; Mai, Nguyen Anh; Inkhavilay, Khamla; Soben, Kim; Sethik, Rath; Gomotean, Bhuvadol; Thuyen, Le Xuan; Kyi, Aung; Du, Nguyen Huy; Nordheim, Richard; Lam, Ho Si Tung; Moore, Dorn M.; Wilson, Scott

    2013-01-01

    In this study, the presence and concentration of persistent organic pollutants (POP) were assessed in surface sediments collected from a wide variety of wetlands located throughout the Mekong Basin in Myanmar, Lao People’s Democratic Republic (PDR), Thailand, Cambodia, and Vietnam. Of the 39 POPs tested in 531 sediment samples, dichlorodiphenyltrichloroethane (DDT) and its metabolites endosulfan, hexachlorobenzene (HCB), and endrin were most commonly detected. Even though DDT was banned in the 1990s, some use of DDT may still be occurring in the Mekong Basin. The amount of metabolites for DDT—dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)—found, however, suggests that use of DDT is on the decline throughout the region. HCB and endrin were found distributed broadly throughout the Mekong Basin but not in high amounts. The concentration and distribution of endosulfan and its metabolites represent a serious problem requiring further study and management action. While the total loading of POPs in wetland sediments of the Mekong Basin was generally low, hotspot sites occurred where concentrations exceeded established ecological risk thresholds. For example, wetlands of the open, dry dipterocarp forest of northern Cambodia and Vietnam as well as wetlands in the Mekong Delta of Vietnam contained high concentrations of some POPs. High concentrations of POPs were detected in some wetlands important for biodiversity conservation. Hotspots identified in wetlands such as the Tonle Sap not only had concentrations of DDT and DDE that exceeded Canadian and U.S. benchmarks, but fauna sampled in the area also showed high degrees of bioaccumulation of the same substances. Further and more extensive attention to monitoring POP presence in water birds, fish, and other aquatic organisms is warranted because of the bioaccumulation of these chemicals at higher levels in the food chain. This study represents a collaboration of eight universities from five countries in the Mekong Region (Myanmar, Lao PDR, Thailand, Cambodia and Vietnam) and four universities and research institutions from the United States. Funding for the study came from the Lower Mekong Initiative, U.S. Department of State.

  10. Global fluvial sediment retention by registered dam systems

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.

    2003-04-01

    A framework for estimating global-scale impacts from reservoir construction on riverine sediment transport to the ocean is presented. Framework results depict a large, global-scale, and growing impact from anthropogenic impoundment. This study analyzes data on 633 of the world’s largest reservoirs (LRs) (>= 0.5 km^3 maximum storage) and uses statistical inference to assess the impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude x longitude) resolution. A residence time change BoxBox_R) for otherwise free-flowing river water is determined locally at each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. More than 40% of global river discharge is intercepted locally by the LRs analyzed and a significant proportion (≈ 70%) of this discharge maintains a sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local trapping efficiency of 80% or more. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs (n ≈ 45,000) is conservatively placed at 4 to 5 Gt yr-1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments (n ≈ 800,000). From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.

  11. Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic

    NASA Astrophysics Data System (ADS)

    Gage, John D.

    2004-07-01

    High diversity in macrobenthos in the deep sea still lacks satisfactory explanation, even if this richness may not be exceptional compared to that in coastal soft sediments. Explanations have assumed a highly ecologically interactive, saturated local community with co-existence controlled by either niche heterogeneity, or spatio-temporal heterogeneity embodying disturbance. All have failed to provide convincing support. Local/regional scale biodiversity relationships support the idea of local richness in macrobenthos being predominantly dependent on the larger, rather local scale. Local-scale ecological interactions seem unlikely to have overriding importance in co-existence of species in the deep sea, even for relatively abundant, 'core' species with wide distributions. Variety in observed larger-scale pattern and the strong inter-regional pattern, particularly in the poorly known southern hemisphere, seem to have a pluralistic causation. These include regional-scale barriers and extinctions (e.g., Arctic), and ongoing adaptive zone re-colonisation (e.g., Mediterranean), along with other historical constraints on speciation and migration of species caused by changes in ocean and ocean-basin geometry. At the global scale lack of knowledge of the Antarctic deep sea, for example, blocks coherent understanding of latitudinal species diversity gradients. We need to reconcile emerging understanding of large-scale historical variability in the deep-sea environment—with massive extinctions among microfossil indicators as recently as the Pliocene—to results from cladistic studies indicating ancient lineages, such as asellote isopods, that have evolved entirely within the deep sea. The degree to which the great age, diversity, and high degree of endemism in Antarctic shelf benthos might have enriched biodiversity in the adjacent deep seas basins remains unclear. Basin confluence with the Atlantic, Indian and Pacific Oceans may have encouraged northwards dispersion of species from and into the deep Antarctic basins so that any regional identity is superficial. Interpretation of the Antarctic deep sea as a diversity pump for global deep-sea biodiversity may simply reflect re-colonisation, via basin confluence, of northern hemisphere areas impoverished by the consequences of rapid environmental change during the Quaternary.

  12. Link between Neogene and modern sedimentary environments in the Zagros foreland basin

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Simpson, Guy; Bahroudi, Abbas

    2010-05-01

    The Zagros mountain belt, with a length of 1800 km, is located in the south of Iran and was produced by collision between the Arabian plate and the Iran micro plate some time in the early Tertiary. After collision, the Zagros carbonate-dominated sedimentary basin has been replaced by a largely clastic system. The Neogene Zagros foreland basin comprises four main depositional environments which reflect the progressive southward migration of the deformation front with time. The oldest unit - the Gachsaran formation - is clastic in the northern part of the basin, but is dominated by evaporates in southern part, being deposited in a supratidal Sabkha-type environment. Overlying the Gachsaran is the Mishan formation, which is characterized by the Guri limestone member at the base, overlain by marine green marls. The thickness of the Guri member increases dramatically towards the southeast. The next youngest unit is the Aghajari Formation which consists of well sorted lenticular sandstone bodies in a red silty-mudstone. This formation is interpreted as representing the floodplain of dominantly meandering rivers. Finally, the Bakhtiari formation consists of mainly coarse-grained gravel sheets which are interpreted to represent braided river deposits. Each of these Neogene depositional environments has a modern day equivalent. For example, the braided rivers presently active in the Zagros mountains are modern analogues of the Bakhtiari. In the downstream direction, these braided rivers become meandering systems, which are equivalents of the Aghajari. Eventually, the meandering rivers meet the Persian gulf which is the site of the ‘modern day' Mishan shallow marine marls. Finally, the modern carbonate system on the southern margin of Persian Gulf represents the Guri member paleo-environment, behind which Sabkha-type deposits similar to the Gachsaran are presently being deposited. One important implication of this link between the Neogene foreland basin deposits and the modern environments is that all formation boundaries are strongly diachronous. Thus, for example, although the Mishan is Burdigalian-Messinian in regions where it is currently undergoing subaerial erosion in the Fars zone, it is presumably still forming today in the modern Persian gulf foredeep.

  13. Chronology of the Early Toarcian environmental crisis in the Lorraine Sub-Basin (NE Paris Basin)

    NASA Astrophysics Data System (ADS)

    Ruebsam, Wolfgang; Münzberger, Petra; Schwark, Lorenz

    2014-10-01

    Early Toarcian (Jurassic; ∼183 Ma) sediments recorded profound environmental changes, including mass extinction, global warming, marine transgression as well as widespread bottom water anoxia and organic matter accumulation on the Western Tethyan shelf. Enhanced organic matter accumulation was accompanied by a positive carbon isotope excursion (CIE) in pelagic carbonate, which marks the Toarcian Oceanic Anoxic Event. These environmental changes were accompanied by a major perturbation of the global carbon cycle, expressed by negative CIE, interrupting the positive trend. The duration of the carbon cycle perturbation is still debated, with estimates for the negative CIE range from ∼200 to ∼600 kyr. Here we present ultra high-resolution (<1 kyr) measurements of magnetic susceptibility and sediment color from a marine section located in the Lorraine Sub-Basin (NE Paris Basin) documenting Milankovitch-controlled fluctuations in depositional conditions that occurred superimposed onto the overall sea level evolution. Differences in the wavelength of the sedimentary cycles indicate variable sediment accumulation rates that mainly resulted from rapid sea level fluctuations. The most pronounced sea level rise that took place within the uppermost tenuicostatum zone resulted in a strong condensation of the basal Schistes Carton formation. Strong condensation can explain the discrepancy between durations previously calculated for the CIE placed at this stratigraphic interval. Our data support durations of ∼900 kyr and ∼600 kyr for the positive and negative CIE, respectively. The cyclostratigraphy-based timescale further proposes a duration of >555 kyr for the tenuicostatum zone and 1310 kyr for the serpentinum zone. The durations of the elegantulum and falciferum subzones can be estimated to ∼790 kyr and ∼520 kyr, respectively. A change in the orbital response from eccentricity- to obliquity-forcing, evident from other locations, is well-expressed in the Lorraine Sub-Basin and occurred within the CIE interval. The strong impact of the obliquity component in post-event deposits hints to processes most effective at high latitudes, such as the waxing and waning of polar ice. Paleogeographic features of the Western Tethyan shelf supported the tele-connection of higher to lower latitude processes via water exchange through the Viking Corridor.

  14. Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar Craton, south Indian shield: Possible geodynamical implications

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Chandrakala, K.; Vasanthi, A.; Kumar, K. Satish

    2018-05-01

    The time-bound crustal evolution and subsequent deformation of the Cuddapah basin, Nellore Schist Belt and Eastern Ghats terrain of Eastern Dharwar Craton, which have undergone sustained geodynamic upheavals since almost 2.0 billion years, remain enigmatic. An attempt is made here to integrate newly available potential field data and other geophysical anomalies with deep seismic structure, to examine the generative mechanism of major crustal features, associated with this sector. Our study indicates that the initial extent of the Cuddapah basin sedimentation may have been much larger, extending by almost 50-60 km west of Tadipatri during Paleoproterozoic period, which subsequently shrank due to massive erosion following thermal uplift, caused by SW Cuddapah mantle plume. Below this region, crust is still quite warm with Moho temperatures exceeding 500 °C. Similarly, Nallamalai Fold Belt rocks, bounded by two major faults and extremely low gravity, may have occupied a large terrain in western Cuddapah basin also, before their abrasion. No geophysical signatures of thrusting are presently seen below this region, and thus it could not be an alien terrain either. In contrast, Nellore Schist Belt is associated with strikingly high positive gravity, possibly caused by a conspicuous horst structure and up dipping mafic crustal layers underneath, that resulted due to India-east Antarctica collision after the cessation of prolonged subduction (1.6-0.95 Ga). Further, the crustal seismic and gravity signatures would confirm presence of a totally distinct geological terrain east of the Cuddapah basin, but the trace of Eastern Ghats Belt is all together missing. Instead, all the geophysical signatures, point out to presence of a Proterozoic sedimentary terrain, east of Nellore Schist Belt. It is likely that the extent of Prorerozoic sedimentation was much larger than thought today. In addition, presence of a seismically detected Gondwana basin over Nellore Schist Belt, apart from some recently discovered similar subsurface Gondwana occurrences in intracratonic parts, would indicate that Dharwar Craton was rifting even during Gondwana period, thereby challenging the long held view of cratonic stability.

  15. Possible Strain Partitioning Between the Kumano Forearc Basin and the Slope of the Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.

    2008-12-01

    A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.

  16. Lithospheric structure of an incipient rift basin: Results from receiver function analysis of Bransfield Strait, NW Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Lee, Stephen J.; Lees, Jonathan M.; Shore, Michael J.

    2018-06-01

    Bransfield Basin (BB), located northwest of the Antarctic Peninsula (AP) and southeast of the South Shetland Islands (SSI), is the most active section of the Antarctic continental margin. The region has long been (50 Ma) a convergent plate boundary where the Phoenix plate was subducting beneath the Antarctic Plate and is characterized by long-lived arc magmatism and accretion. However, the collision of the Antarctic-Phoenix spreading center with the subduction front near SSI (ca. 4 Ma) gave way to the opening of slab windows and dramatic decrease in the subduction rate of the Phoenix plate beneath AP and SSI. Consequently, the Phoenix slab began to rollback slowly along the South Shetland Trench (SST), giving way to slow extension in the back-arc region and rifting along the BB. Although there is consensus on the factors that control the current deformation and extension of the BB, the origin of the BB and the tectonic configuration of the basin are still unclear. Most of the controversy stems from uncertainties regarding the crustal thickness of the BB. Hence, we computed teleseismic receiver functions for 10 broadband stations in the region that belong to existing permanent and temporary deployments in order obtain robust constraints on the lithospheric structure and crustal thickness of the BB, as well as the AP and SSI. Our results indicate that the crust is thinning from 30 km to 26 km from the AP towards the South Shetland trench and Central BB showing the asymmetrical character of the rift basin. The crustal thickness and Vp/Vs variations are less pronounced along the AP but very significant across the SSB indicating the lithospheric scale segmentation of the South Shetland Block (SSB) and the incipient rift basin under the control of the opening of slab window and the roll-back of stalled Phoenix slab. High Vp/Vs ratios (∼1.9) beneath BB and SSI, agree well with the nascent rift character of BB, the presence of a steep Phoenix slab and consequently a wider mantle wedge characterized by the presence of underplating partial melts beneath SSI and BB.

  17. Sea level reconstructions and non-marine sedimentation at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael

    2016-04-01

    The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo rift area. Regional sea-level fall associated with this rift produced erosional and reworking features similar to those occur at the Triassic-Jurassic boundary in the European basins, Iran and Afghanistan. The tectonic correlation with the European basins and sedimentological evidences for the globally present Jurassic-Triassic boundary in the Salt Range of Pakistan encourage a detail work in this regard.

  18. IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere

    NASA Astrophysics Data System (ADS)

    Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the

    2015-12-01

    The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization and zonation of the predominant biogeochemical processes. Quantification of microbial cells in the sediments yielded some of the highest cell densities yet recorded by scientific drilling.

  19. Folding and fracturing of rock adjacent to salt diapirs

    NASA Astrophysics Data System (ADS)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides of diapirs, have very little internal deformation. Instead, what faults are present around diapirs are related to drape folding (radial and diapir-parallel faults) or regional tectonics (extensional, contractional, strike-slip, and salt-evacuation faults).

  20. Application of Geographic Information System (GIS) to Model the Hydrocarbon Migration: Case Study from North-East Malay Basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Rudini; Nasir Matori, Abd; Talib, Jasmi Ab; Balogun, Abdul-Lateef

    2018-03-01

    The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS). Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM) was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.

  1. Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes.

    PubMed

    Hägg, Hanna Eriksson; Lyon, Steve W; Wällstedt, Teresia; Mörth, Carl-Magnus; Claremar, Björn; Humborg, Christoph

    2014-04-01

    Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.

  2. Leaiid conchostracans from the uppermost Permian strata of the Paraná Basin, Brazil: Chronostratigraphic and paleobiogeographic implications

    NASA Astrophysics Data System (ADS)

    Ferreira-Oliveira, Luis Gustavo; Rohn, Rosemarie

    2010-03-01

    Conchostracan fossils are abundant and relatively diversified in the Rio do Rasto Formation (Passa Dois Group, Paraná Basin, southern Brazil), but leaiids (' Leaia pruvosti' [Reed, F.R.C., 1929. Novos Phyllopodos Fósseis do Brasil. Boletim do Serviço Geológico e Mineralógico do Brasil 34, 2-16]) were previously found at only one locality of the formation in the northern Santa Catarina State. New specimens of the Family Leaiidae, collected from two outcrops in central Paraná State near the top of the formation, stimulated a revision of related taxa. Both the new and the previously known leaiids are herein assigned to Hemicycloleaia mitchelli [Etheridge Jr., R., 1892. On Leaia mitchelli Etheridge. Proceedings of the Linnean Society of New South Wales 7, 307-310] based on the presence of three carinae and subovate shape. This species was originally recorded in the upper Tatarian (Wuchiapingian, Late Permian) of Sydney Basin, eastern Australia and therefore corroborates the interpretation that the leaiid bearing strata of the Rio do Rasto Formation cannot be younger than Permian. H. mitchelli possibly was one of the most widespread, eurytopic and conservative Late Paleozoic conchostracans of Gondwana (although records from Africa, India and Antarctica must still be confirmed) and it was also found in the Tatarian of Russia. The sudden disappearance of leaiids after their apparent success is consistent with the hypothesis about the biotic crisis around the Permo-Triassic boundary.

  3. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  4. The western Qaidam Basin as a potential Martian environmental analogue: An overview

    NASA Astrophysics Data System (ADS)

    Anglés, Angélica; Li, Yiliang

    2017-05-01

    The early Martian environment is interpreted as warmer and wetter, before a significant change in its global climatic conditions irreversibly led to the current hyperarid environments. This transition is one of the most intriguing processes of Martian history. The extreme climatic change is preserved in the salt deposits, desiccated landscapes, and geomorphological structures that were shaped by the evaporation of water. However, until a manned journey to Mars is feasible, many Martian materials, morphological structures, and much of its evolutionary history will continue to be poorly understood. In this regard, searching and investigating Martian analogues are still meaningful. To find an Earth environment with a whole set of Martian structures distributed at a scale comparable to Mars is even more important to test landing crafts and provide optimized working parameters for rovers. The western Qaidam Basin in North Tibetan Plateau is such a Martian analogue. The area harbors one of the most extreme hyperarid environments on Earth and contains a series of ancient lakes that evaporated at different evolutionary stages during the rise of the Tibetan Plateau. Large quantities of salts and geomorphological features formed during the transition of warmer-and-wet to colder-and-dry conditions provide unique references to study the modern Martian surface and interpret the orbital data. We present numerous similarities and results of investigations that suggest the Qaidam Basin as a potential analogue to study modern geomorphic processes on Mars, and suggest that this is an essential site to test future Mars sample return missions.

  5. Women's reproductive rights in the Amazon basin of Ecuador: challenges for transforming policy into practice.

    PubMed

    Goicolea, Isabel; San Sebastián, Miguel; Wulff, Marianne

    2008-01-01

    Despite advances made by Ecuador in developing policies on reproductive and sexual rights, implementation, and oversight remain a challenge, affecting in particular those living in the Amazon basin. This paper reports on an evaluation of sexual and reproductive health and rights (SRHR) in Orellana, Ecuador, the basis of which was the Health Rights of Women Assessment Instrument, which was altered to focus on government obligations, the reality of access and utilization of services, and the inequities and implementation challenges between the two. A community-based cross-sectional survey conducted in 2006 served to document the current status of SRHR Local female field workers interviewed 2025 women on three areas of womens reproductive health: delivery care, family planning, and pregnancy among adolescent girls age 10-19. The results suggest a reality more dismal than that of the official information for the area. Skilled delivery care, modern contraceptive use, and wanted pregnancies were conspicuously lower among indigenous women living in rural areas. Access to reproductive health services varied between rural and urban women. These significant differences in care--amongst others documented--raise concerns over the utility of national-level data for addressing inequities. The gaps evident in the validity of available information for monitoring policies and programs, and between national policy and action reveal that much still needs to be done to realize SRHR for women in the Amazon basin, and that current accountability mechanisms are inadequate.

  6. Intense Mixing and Recirculations of Intermediate and Deep Water in the Northwest Argentine Basin

    NASA Astrophysics Data System (ADS)

    Valla, D.; Piola, A. R.

    2016-02-01

    The sources of the South Atlantic upper and intermediate waters that form the upper layer flow needed to maintain mass balance due the export of North Atlantic Deep Water from the North Atlantic are still under debate. The "cold path" scheme postulates that intermediate waters are injected into the South Atlantic from the Pacific through the Drake Passage, advected north by the Malvinas Current up to the Brazil/Malvinas Confluence (BMC) and circulated around the basin following the path of the subtropical gyre. We report high-quality hydrographic observations collected in the South Atlantic western boundary at 34.5 °S during 7 hydrographic cruises as part of the SAMOC project. We focus on the flow and characteristics of Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The water mass analysis indicates the presence of "young" (fresh and highly oxygenated) varieties of AAIW (S<34.2, O2>6 ml·l-1) which must be derived from south of the SAMOC array. This suggests an alternative pathway for intermediate waters that involves a short circuit beneath the BMC. Simultaneous full-depth velocity measurements using lowered acoustic Doppler current profilers confirm this hypothesis. The flow direction across the SAMOC array in the UCDW range inferred from dissolved oxygen measurements also indicate the presence of UCDW (O2<4.2 ml·l-1) derived from farther south. However, the wider range of oxygen concentrations suggests strong recirculations of both water masses within the northwestern Argentine Basin.

  7. Evidence of synsedimentary microbial activity and iron deposition in ferruginous crusts of the Late Cenomanian Utrillas Formation (Iberian Basin, central Spain)

    NASA Astrophysics Data System (ADS)

    García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel

    2018-02-01

    Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.

  8. Sediment transport dynamics in response to large-scale human intervention

    NASA Astrophysics Data System (ADS)

    Eelkema, Menno; Wang, Zheng Bing

    2010-05-01

    SEDIMENT TRANSPORT DYNAMICS IN RESPONSE TO LARGE-SCALE HUMAN INTERVENTION M. Eelkema and Z.B. Wang The Eastern Scheldt basin in the southwestern part of the Netherlands is an elongated tidal basin of approximately 50 km in length with an average tidal range of roughly 3 meters at the inlet. Before 1969 A.D., this basin was also connected to two more tidal basins to the north through several narrow, yet deep channels. These connections were closed off with dams in the nineteen sixties in response to the catastrophic flooding in 1953. In the inlet of the Eastern Scheldt a storm-surge barrier was built in order to safeguard against flooding during storms while retaining a part of the tidal influence inside the basin during normal conditions. This barrier was finalized in 1986. The construction of the back-barrier dams in 1965 and 1969 had a significant impact on the tidal hydrodynamics and sediment transport (Van den Berg, 1986). The effects of these interventions were still ongoing when the hydrodynamic regime was altered again by the construction of the storm-surge barrier between 1983 and 1986. This research aims to describe the hydrodynamic and morphodynamic evolution of the Eastern Scheldt between 1953 and 1983, before construction of the storm-surge barrier had started. An analysis is made of the manner in which the back-barrier dams changed the tidal flow through the basin, and how these altered hydrodynamics influenced the sediment transport and morphology. This analysis consists first of all of a description of the observed hydrodynamical and bathymetrical changes. Second, these observations are used as input for a process-based hydrodynamic model (Delft3D), which is applied in order to gain more insight into the changes in sediment transport patterns. The model is used to simulate the situations before and after the closures of the connections between the Eastern Scheldt and the basins north of it In the decades before 1965, the Eastern Scheldt exported large quantities of sediment towards sea through its inlet. This export was estimated to be roughly 2 to 3 million m3 per year, and was observable as deepening channels inside the basin, and a growing ebb-tidal delta. The implementation of the dams caused a significant increase in tidal prism, while at the same time they stopped the residual flow of water from the Eastern Scheldt towards the northern basins. The increase in tidal prism was observable in the response of bathymetry; the rates of channel deepening and ebb-tidal delta growth both increased. Analysis of tidal flow measurements and model output show a persistent trend for sediment transport towards and out of the Eastern Scheldt's inlet. This export is caused by both the strong ebb-directed asymmetry in the tidal flow as well as higher sediment concentrations during ebb. The construction of the back-barrier dams only amplified this export by cutting off the residual import of flow and by causing the basin to be out of equilibrium even more than it apparently already was. References Van den Berg, J.H., 1986. Aspects of Sediment- and Morphodynamics of Subtidal Deposits of the Oosterschelde (the Netherlands). Rijkswaterstaat Communications, no. 43/1986, The Hague.

  9. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1991.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1990-09-01

    The Columbia River Basin Fish and Wildlife Program (Program) was developed by the Northwest Power Planning Council (Council) in accordance with Public Law 96-501, the Pacific Northwest Electric Power Planning and Conservation Act (Act). The purpose of the Program is to guide the Bonneville Power Administration (BPA) and other Federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife of the Columbia River Basin. The Act explicitly gives BPA the authority and responsibility to use the BPA fund for these ends, to the extent that fish and wildlife are affected by the development and operationmore » of hydroelectric generation in the Columbia River Basin. The Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan (AIWP) presents BPA's draft plans for implementing the Program during Fiscal Year (FY) 1991. The AIWP reflects the primary goals of the Council's Action Plan (Section 1400 of the Program): to provide a solid, timely, and focused basis for budgeting and planning. In addition, the AIWP provides a means to judge the progress and the success of Program implementation. The AIWP is based on the outline developed by the Policy Review Group (PRG) during Step 1 of the annual cycle of the Implementation Planning Process (IPP), which is described in Section III. This AIWP has been organized and written to meet the specific needs of Program Items 10.1-10.3. The AIWP includes schedules with key milestones for 1 and beyond, and addresses the Action Items assigned to BPA in Section 1400 of the 1987 Program and in subsequent amendments. All Program projects discussed in the AIWP are listed in Tables 1 and 2 according to their status as of September 1, 1990. Table 1 (pp. 3-14) lists completed, ongoing, and deferred projects. Table 2 (pp. 15-17) lists FY 1991 new-start projects. ''Ongoing'' status indicates that the project started in FY 1990 or before and that it is expected to continue through part or all of FY 1991. ''Deferred'' means that BPA implementation has been postponed to FY 1992 or later. ''Completed'' indicates completion during FY 1990. ''New'' denotes projects planned for BPA implementation in FY 1991. However, several of these new projects were still under review by the Policy Review Group as the FY 1991 AIWP went to press. The new projects still under review have been noted in Table 2 and in the text of the AIWP. A number of projects are expected to begin in late FY 1990 and have been listed in Table 1 of the Draft AIWP as ''Projected FY '90 Starts,'' based on their projected start dates. Several other projects are expected to end in late FY 1990. These projects have been listed in Table 1 as ''Projected FY '90 Completions,'' based on their projected completion dates. Section VIII describes BPA's non-Program, internal support projects. These projects were not subject to review by the PRG and have been included in the AIWP to help the PRG and the public to better understand what BPA is doing.« less

  10. Coupling between tectonics and surface processes in the Congo Basin: Cretaceous-Cenozoic sedimentation and erosion triggered by climatic and tectonic factors

    NASA Astrophysics Data System (ADS)

    de Putter, Thierry; Mees, Florias; Bayon, Germain; Ruffet, Gilles; Smith, Thierry; Delvaux, Damien

    2017-04-01

    Cretaceous to Recent evolution of the Congo Basin in Central Africa is still poorly documented although its history over the last 75 Myr has potentially recorded global and major regional events, including the Paleocene-Eocene Thermal Maximum at 56 Ma and the Miocene aperture of the Western branch of the East African Rift System along its eastern border at 25 Ma. Available data for associated off-shore deposits show that in parallel, the Congo River delta experienced a starvation period during the Mid- to Late Cretaceous and Paleogene, with endorheic lacustrine to desert environments in the upstream basin, followed by a period marked by high rates of drainage and sediment supply in the Neogene. Here, we combine new observations on the recent tectonic evolution with newly obtained 39Ar-40Ar ages for cryptomelane from Katanga (Kasekelesa) and Kasaï (Mt Mwatshimwa) and the preliminary results of the Landana condensed section ( 45 m) Paleogene-Neogene sequence. The maximum burial in the Congo Basin is estimated at 80 Ma and was followed by the removal of at least 900-1500 m of sediments (Sachse et al., 2012). Soon after the 39Ar-40Ar ages reveal that a major (Campanian or older) surface formed in the Kasai and Katanga before 76 Ma, followed by at least two younger Eocene denudation episodes, during the Lutetian ( 45 Ma) and the Priabonian ( 35 Ma) and more Mio-Pliocene denudation surfaces during the Mio-Pliocene (De Putter et al., 2016). The older surface likely belongs to the subcontinental 'African Surface' that had previously not been identified for Central Africa. During this long-lasting erosional history of the central part of the Congo Basin, the Landana section along the Atlantic coast recorded a condensed ( 45 m) sequence of Paleogene-Neogene sediments. The first 25m are shallow marine carbonates with little detrital input, recording slightly increasing weathering from the Danian to the Lutetian (Bayon et al., 2016). Whether this section had a physical connection with the inland basin at the time is not known. Simultaneously, a 150 m thick eolian sand accumulation (Kalahari Group s.l.) is assumed to have been deposited in the south-western margin of the Congo Basin. The strong silicification at the top of the Lutetian beds of the Landana section indicates a major discontinuity, which would correspond to the Lutetian denudation surface in Katanga. After this hiatus, sedimentation recorded by the Landana section changes sharply to coarse-grained siliciclastics, through a likely (re-established?) connection with the inland basin. A major change in sediment source is confirmed by ɛNd, whereas isotopic proxies of weathering (ɛHf, 30Si) document a major decrease in weathering intensity. The sharp increase in sediment discharge is attributed to uplift along the southern and eastern margins of the Congo Basin, preceding the opening of the East African Rift in the Oligocene. Bayon et al., 2016. Goldschmidt Conf. 2016, abstract book, 181 De Putter et al., 2015. Ore Geol. Rev. 71, 350-362 Sachse, V.F, Delvaux, D. and Littke, R., 2012. AAPG bulletin, 96(2), 277-300.

  11. A new perspective on soil erosion: exploring a thermodynamic approach in a small area of the River Inn catchment

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike; Zehe, Erwin

    2016-04-01

    Soil erosion modeling has always struggled with compensating for the difference in time and spatial scale between model, data and the actual processes involved. This is especially the case with non-event based long-term models based on the Universal Soil Loss Equation (USLE), yet USLE based soil erosion models are among the most common and widely used for they have rather low data requirements and can be applied to large areas. But the majority of mass from soil erosion is eroded within short periods of times during heavy rain events, often within minutes or hours. Advancements of the USLE (eg. the Modified Universal Soil Loss Equation, MUSLE) allow for a daily time step, but still apply the same empirical methods derived from the USLE. And to improve the actual quantification of sediment input into rivers soil erosion models are often combined with a Sediment Delivery Ratio (SDR) to get results within the range of measurements. This is still a viable approach for many applications, yet it leaves much to be desired in terms of understanding and reproducing the processes behind soil erosion and sediment input into rivers. That's why, instead of refining and retuning the existing methods, we explore a more comprehensive, physically consistent description on soil erosion. The idea is to describe soil erosion as a dissipative process (Kleidon et al., 2013) and test it in a small sub-basin of the River Inn catchment area in the pre-Alpine foothills. We then compare the results to sediment load measurements from the sub-basin and discuss the advantages and issues with the application of such an approach.

  12. Quantifying Sediment Transport in a Premontane Transitional Cloud Forest

    NASA Astrophysics Data System (ADS)

    Waring, E. R.; Brumbelow, J. K.

    2013-12-01

    Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.

  13. The Mesozoic palaeo-relief and immature front belt of northern Tianshan

    NASA Astrophysics Data System (ADS)

    Chen, K.; Gumiaux, C.; Augier, R.; Chen, Y.; Wang, Q.

    2012-04-01

    The modern Tianshan (central Asia) extends east-west on about 2500 km long with an average of more than 2000 m in altitude. At first order, the finite structure of this range obviously displays a crust-scale 'pop-up' of Palaeozoic rocks surrounded by two Cenozoic foreland basins. Up to now, this range is regarded as a direct consequence of the Neogene to recent reactivation of a Palaeozoic belt due to the India - Asia collision. This study focuses on the structure of the northern front area of Tianshan and is mainly based on field structural works. In particular, relationships in between sedimentary cover and basement units allow discussing the tectonic and morphological evolution of the northern Tianshan during Mesozoic and Cenozoic times. The study area is about 250 km long, from Wusu to Urumqi, along the northern piedmont of the Tianshan. Continental sedimentary series of the basin as well as structure of the cover/basement interface can well be observed along several incised valleys. Sedimentological observations argue for a limited transport distance for Lower and Uppermost Jurassic deposits that are preserved within intra-mountainous basins or within the foreland basin, along the range front. Moreover, some of the studied geological sections show that Triassic to Jurassic sedimentary series can be continuously followed from the basin to the range where they unconformably overlie the Carboniferous basement. Such onlap type structures of the Jurassic series, on top of the Palaeozoic rock units, can also be observed at more local-scale (~a few 100 m). At different scales, our observations thus clearly evidence i) the existence of a substantial relief during Mesozoic times and ii) very limited deformation, after Mesozoic, along some segments of the northern range front. Yet, thrusting of the Palaeozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is also well exposed along some other river valleys. As a consequence, the northern front of Tianshan displays as very uncylindrical with rapid lateral transitions from one type to the other. This study shows that the Cenozoic reactivation of the Tianshan range has not yielded important deformation along its contact with the juxtaposed Junggar basin, into the studied segment. Besides, the topography of the current northern Tianshan area can not be considered as the unique consequence of Cenozoic reactivation. Finally, from a compilation of structural field observations with available seismic geophysical data, regional cross sections show only moderate shortening in the deformed belt of the northern piedmont of Tianshan. Structure of the fold-and-thrust belt looks controlled by several basement thrusts faults separating rigid blocks. This study suggests that the northern front of the intra-continental Tianshan range may be considered as an immature thrust belt and is still at an early developing stage of its orogenic evolution.

  14. Use of Water-Quality Indicators and Environmental Tracers to Determine the Fate and Transport of Recycled Water in Angeles County, California

    USGS Publications Warehouse

    Anders, Robert A.; Schroeder, Roy A.

    2003-01-01

    Tertiary-treated municipal wastewater (recycled water) has been used to replenish the Central Basin in Los Angeles County for over 40 years. Therefore, this area provides an excellent location to investigate (1) the fate and transport of wastewater constituents as they travel from the point of recharge to points of withdrawal, and (2) the long-term effects that artificial recharge using recycled water has on the quality of the ground-water basin. The U.S. Geological Survey has been conducting such investigations in this area for about 10 years, beginning in 1992. For this investigation, a variety of inorganic, organic, and isotopic constituents were analyzed in samples from 23 production wells within 500 feet of the San Gabriel and Rio Hondo Coastal Basin Spreading Grounds, and tritium/helium-3, chlorofluorocarbons, dissolved gases, and nitrogen isotopes were analyzed in five multiple-well monitoring sites along a 10-mile flow path extending from just upgradient of the spreading grounds southward through the Central Basin. Spearman rank-order correlation coefficients and level of significance calculated for about 40 water-quality indicators and several physical features show significant correlations between numerous inorganic and organic constituents that indicate the presence of wastewater. On the basis of a simple two-member mixing model, chloride, boron, ultraviolet absorbance at 254 nanometers, and excitation-emission fluorescence yielded the most reasonable estimates of wastewater percentages in the production wells. Tritium/helium-3 age determinations indicated that samples of ground water tested range in age from less than 2 to more than 50 years. Chloride and boron concentrations, along with tritium/helium-3 age determinations, indicate more rapid recharge and (or) displacement of pre-existing ground water at the San Gabriel Coastal Basin Spreading Grounds than at the Rio Hondo Coastal Basin Spreading Grounds. Nitrogen-15 enrichment of the ground-water nitrate and dissolved nitrogen indicates that denitrification, an important process for the removal of nitrate at the shallower depths beneath the spreading grounds, continues to occur at distances of several miles from the spreading grounds and over a period of many years. Analysis of dissolved gases shows that areas that contain recycled water have no detectable methane, whereas methane is present in the native ground water older than 50 years. The absence of methane in the younger ground water suggests that artificial recharge using recycled water has the desirable effect of increasing slightly the redox potential of the ground-water basin. Finally, measured chlorofluorocarbon concentrations and tritium/helium-3 age determinations indicate that chlorofluorocarbon concentrations are markedly elevated above atmosphere-water equilibrium in ground water older than about 20 years but still young enough to contain recycled water.

  15. Utica Shale Energy and Environment Laboratory (USEEL)

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2017-12-01

    Despite the rapid growth of the UOG industry in the Appalachian Basin of Pennsylvania and neighboring states, there are still fundamental concerns regarding the environmentally sound and cost efficient extraction of this unique asset. To address these concerns, Ohio State University has established the Department of Energy-funded Utica Shale Energy and Environment Laboratory, a dedicated research program where scientists from the university will work with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), academia, industry, and regulatory partners, to measure and monitor reservoir response to UOG development and any associated environmental concerns. The USEEL site will be located in Greene County, Pennsylvania, in the heart of the deep Utica-Pt. Pleasant Shale play of the Appalachian Basin. The USEEL project team will characterize and quantify the gas-producing attributes of one of the deepest portions of the Utica-Pt. Pleasant formations in the Appalachian Basin via a multi-disciplinary collaboration that leverages state-of-the-art capabilities in geochemistry, core assessment, well design and logging, 3-D and micro-seismic, DTS and DAS fiber optics, and reservoir modelling. Fracture and rock strength analyses will be complemented by a comprehensive suite of geophysical and geochemical logs, water and chip samples, and cores (pressure sidewall and whole core) to evaluate fluids, mineral alteration, microbes, pore structure, and hydrocarbon formation and alteration in the shale pore space. Located on an existing Marcellus drill pads in southwestern Pennsylvania, USEEL will provide an unprecedented opportunity to evaluate the economic and environmental effects of Marcellus pad expansion on the integrity of near-by existing production wells, ground disruption and slope stability, and ultimate efforts to conduct site reclamation. Combined with the overall goal of an improved understanding of the Utica-Pt. Pleasant system, USEEL findings will decrease the number of drill pads and improve the efficacy of UOG development across the Appalachian Basin.

  16. Which biopsy method is more suitable between a basin dissection and pick-up biopsy for sentinel nodes in laparoscopic sentinel-node navigation surgery (LSNNS) for gastric cancer?

    PubMed

    Lee, Young-Joon; Ha, Woo-Song; Park, Soon-Tae; Choi, Sang-Kyung; Hong, Soon-Chan; Park, Jung-Woo

    2008-06-01

    Sentinel-node navigation surgery (SNNS) for breast cancer and melanoma has been accepted as a reasonable oncologic surgery worldwide. On the other hand, in gastric cancers that do metastasize well to the lymph node, the use of SNNS has been approached with care and performed in only limited cases. Some obstacles still have to be overcome, such as the shortcomings of SN tracers and the technical limitations of laparoscopic SN detection. The aims of this study were to determine whether laparoscopic SNNS is possible, and which biopsy method is more suitable for SN tracers, in gastric cancer, preoperatively diagnosed as < or =T2 and with < or =4-cm-sized lesions. Between January 2005 and October 2006, 92 consecutive patients that underwent LSNNS, using a combined indocyanine green and (99m)Tc-labeled tin colloid technique, were prospectively studied. SNs were laparoscopically removed by using two biopsy methods: a basin dissection and pick-up method, with the results of these two SN biopsy methods then compared with the final diagnosis obtained from a permanent section. With the pick-up method, SNs were identified in 23 of 42 patients (54.8%); however, with basin dissection, the detection rate was 96% (48 of 50 patients). The average number of SNs detected by the two methods were 2.1 (range, 0-4) and 3.5 (range, 1-7), respectively. The sensitivities of the two methods were 66% (4/6) and 85.7% (12/14), with specificities of 100% (17/17) and 100% (34/34), respectively. In gastric cancer, it was possible to perform LSNNS. At this moment, we believe the laparoscopic basin dissection technique with a dual-tracer injection, followed by SN detection on the back table, will be a reasonable procedure for gastric cancer, owing to the shortcomings related to the dye and radioisotope, the so-called "stained lymphatic duct only" and "shine-through phenomenon."

  17. Holocene deformation offshore Ventura basin, CA, constrained by new high-resolution geophysical data

    NASA Astrophysics Data System (ADS)

    Perea, H.; Ucarkus, G.; Driscoll, N. W.; Kent, G. M.; Levy, Y.; Rockwell, T. K.

    2017-12-01

    The Transverse Ranges (Southern California, USA) accommodate the contraction resulting from a regional restraining bend in the San Andreas Fault to form a thrust-and-fold belt system. The southern boundary of this system corresponds to the E-W trending Ventura basin, which is filled by more than 5 km of Pleistocene sediment and is shortening at about 10 mm/yr as inferred from geodetic data. Although the different thrust and folds are fairly well known in the onshore areas of the basin, there is still uncertainty about their continuation in the offshore. The analysis of new high-resolution (SIO CHIRP) and existing (USGS sparker and chirp) seismic data has allowed us to characterize better the active geological structures in the offshore. In the dataset, we have identified different latest Quaternary seismostratigraphic units and horizons, with the most regionally recognized being a transgressive surface (LGTS) associated to the Last Glacial maximum and subsequent sea level rise. A series of E-W regional folds related to thrust faults have deformed the LGTS producing highs and depressions. The correlation of these structures between profiles shows that they are elongated and parallel between them and continue to the coastline. In addition, considering their trend and kinematics, we have been able to tie them with the main onshore active thrusts and folds. Above the LGTS we have identified progradational and agradational units that are related to global sea level rise, which exhibit less deformation (folding and faulting) than the lower units and horizons. However, we have recognized some specific fold growth sequences above LGTS associated with the activity of different thrust-related anticlines. Accordingly, we have identified between 3 and 5 tectonic deformation events (e.g., earthquakes) associated to thrust fault activity. These results may help us to determine the deformation history for the offshore Ventura basin and the potentiality of the thrust faults that may be tsunamigenic, and compare our observations to the onshore results.

  18. Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea.

    PubMed

    Thieu, Vincent; Garnier, Josette; Billen, Gilles

    2010-02-15

    The Seine, Somme, and Scheldt Rivers (France, Belgium, and Netherlands) are the major delivering rivers flowing into the continental coastal zone of the Southern Bight of the North Sea, an area regularly affected by eutrophication problems. In the present work, the Seneque-Riverstrahler model was implemented in a multi-regional case study in order to test several planned mitigation measures aimed at limiting stream nutrient contamination and restoring balanced nutrient ratios at the coastal zone. This modeling approach, which is spatially distributed at the basin scale, allows assessing the impact of any change in human activities, which widely differ over the three basins. Here, we define realistic scenarios based on currently proposed measures to reduce point and non-point sources, such as the upgrading of wastewater treatment, the introduction of catch crops, and the development of extensive farming. An analysis of the current situation showed that a 47-72% reduction in P point-source emissions within the three basins could be reached if the intended P treatment was generalized to the largest treatment plants. However, only an overall 14-23% reduction in N could be achieved at the outlet of the three basins, by combining improved wastewater treatment and land use with management measures aimed at regulating agricultural practices. Nonetheless, in spite of these efforts, N will still be exported in large excess with respect to the equilibrium defined by the Redfield ratios, even in the most optimistic hypothesis describing the long-term response of groundwater nitrate concentrations. A comprehensive assessment of these mitigation measures supports the need for additional reductions of nutrient losses from agriculture to control harmful algae development. It also stresses the relevance of this mechanistic approach, in which nutrient transfers from land to sea can be calculated, as an integrated strategy to test policy recommendations.

  19. Role of the Alboran Sea volcanic arc choking the Mediterranean to the Messinian salinity crisis and foundering biota diversification in North Africa and Southeast Iberia

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Ranero, Cesar R.; Grevemer, Ingo

    2016-04-01

    The Mediterranean Sea desiccated ~5.96 million years ago when it became isolated from the world oceans during the Messinian salinity crisis. This event permitted the exchange of terrestrial biota between Africa and Iberia contributing to the present rich biodiversity of the Mediterranean region. The cause chocking the Mediterranean has been proposed to be tectonic uplift and dynamic topography but the driving mechanism still remains debated. We present a new wide-angle seismic profile that provides a detailed image of the thickness and seismic velocity distribution of the crust in the eastern Alboran basin. The velocity model shows a characteristic structure of a subduction-related volcanic arc with a high-velocity lower crust and a 16-18 km total-thickness igneous crust that magmatic accreted mostly between ~10-6 Ma across the eastern Alboran basin. Estimation of the isostatically corrected depth of the arc crust taking into account the original thermal structure and sediment-loading subsidence since 6 Ma places a large area of the eastern Alboran basin above sea level at the time. This estimation is supported by geophysical data showing subaereal erosional unconformities for that time. This model may explain several up-to-now-disputed features of the Messinian salinity crisis, including: the progressive isolation of the Mediterranean since 7.1 Ma with the disappearance of open marine taxa, the existence of evaporites mostly to the east of the volcanic arc, the evidence that the Gibraltar straits were not a land bridge offered by continuous Messinian open marine sediments at ODP site 976 in the western Alboran basin, the importance of southeastern Iberia and North Africa as centres of biota diversification since before the salinity crisis, and patterns of speciation irradiating from SE Iberia and the eastern Rif in some taxons.

  20. Understanding the Miocene-Pliocene - The Mediterranean Point of View

    NASA Astrophysics Data System (ADS)

    Simon, D.; Marzocchi, A.; Lunt, D. J.; Flecker, R.; Hilgen, F. J.; Meijer, P. T.

    2015-12-01

    During the Miocene-Pliocene the Mediterranean region experienced major changes in paleogeography. Today, its only connection to the global ocean is the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitive to climatic and tectonic related phenomena than the global ocean: Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean alternates in composition and colour. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea: About 6% of the salt in the global ocean got deposited in the Mediterranean Region, forming an approximately 2km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33Ma). Before (and also after) the MSC, the sedimentary record demonstrates "marl dominated" alternations with variations in organic content (e.g. higher organic content = sapropel). During the MSC these change to mainly "evaporite (e.g. gypsum or halite) dominated" alternations, but also to brackish Black Sea-type of deposits towards the end of the crisis. Due to its relative short geological time span, the period before, during and after the MSC is ideal to study these extreme changes in sedimentation. We are investigating these couplings and evolutions in a box/budget model. With such a model we can study the responses to basin water exchange dynamics under the effect of different regional and global climatic and tectonic forcings, to predict the evolution of basin properties (e.g. salinity). By doing so we can isolate certain climatic and tectonic effects, to better understand their individual contribution, their interaction, but also the consequences due to their coupling. Keywords: Mediterranean Sea, Climate, Coupling, Evolution, Messinian Salinity Crisis, Modeling, Strait of Gibraltar, GCM

  1. Utilizing Time Domain Reflectometry on monitoring bedload in a mountain stream

    NASA Astrophysics Data System (ADS)

    Miyata, S.; Fujita, M.

    2015-12-01

    Understanding bedload transport processes in steep mountain streams is essential for disaster mitigation as well as predicting reservoir capacity and restoration of river ecosystem. Despite various monitoring methods proposed previously, precise bedload monitoring in steep streams still remains difficulty. This study aimed to develop a bedload monitoring system by continuous measurement of thickness and porosity of sediment under water that can be applicable to retention basins and pools in steep streams. When a probe of TDR (Time Domain Reflectometry) measurement system is inserted as to penetrate two adjacent layers with different dielectric constants, analysis of TDR waveform enables us to determine position of the layer boundary and ratio of materials in the layer. Methodology of analyzing observed TDR waveforms were established based on results of a series of column experiment, in which a single TDR probe with length of 40 cm was installed in a column filled with water and, then, sand was supplied gradually. Flume experiment was performed to apply the TDR system on monitoring sediment volume under flowing water conditions. Eight probes with lengths of 27 cm were distributed equally in a model retention basin (i.e., container), into which water and bedload were flowed from a connected flume. The model retention basin was weighed by a load cell and the sediment volume was calculated. A semi-automatic waveform analysis was developed to calculate continuously thicknesses and porosities of the sediment at the eight probes. Relative errors of sediment volume and bedload (=time differential of the volume) were 13 % at maximum, suggesting that the TDR system proposed in this study with multiple probes is applicable to bedload monitoring in retention basins of steep streams. Combination of this system and other indirect bedload monitoring method (e.g., geophone) potentially make a breakthrough for understanding sediment transport processes in steep mountain streams.

  2. Radioactivity in the environment; a case study of the Puerco and Little Colorado River basins, Arizona and New Mexico

    USGS Publications Warehouse

    Wirt, Laurie

    1994-01-01

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.

  3. Upscaling

    NASA Astrophysics Data System (ADS)

    Vandenbulcke, Luc; Barth, Alexander

    2017-04-01

    In the present European operational oceanography context, global and basin-scale models are run daily at different Monitoring and Forecasting Centers from the Copernicus Marine component (CMEMS). Regional forecasting centers, which run outside of CMEMS, then use these forecasts as initial conditions and/or boundary conditions for high-resolution or coastal forecasts. However, these improved simulations are lost to the basin-scale models (i.e. there is no feedback). Therefore, some potential improvements inside (and even outside) the areas covered by regional models are lost, and the risk for discrepancy between basin-scale and regional model remains high. The objective of this study is to simulate two-way nesting by extracting pseudo-observations from the regional models and assimilating them in the basin-scale models. The proposed method is called "upscaling". A ensemble of 100 one-way nested NEMO models of the Mediterranean Sea (Med) (1/16°) and the North-Western Med (1/80°) is implemented to simulate the period 2014-2015. Each member has perturbed initial conditions, atmospheric forcing fields and river discharge data. The Med model uses climatological Rhone river data, while the nested model uses measured daily discharges. The error of the pseudo-observations can be estimated by analyzing the ensemble of nested models. The pseudo-observations are then assimilated in the parent model by means of an Ensemble Kalman Filter. The experiments show that the proposed method improves different processes in the Med model, such as the position of the Northern Current and its incursion (or not) on the Gulf of Lions, the cold water mass on the shelf, and the position of the Rhone river plume. Regarding areas where no operational regional models exist, (some variables of) the parent model can still be improved by relating some resolved parameters to statistical properties of a higher-resolution simulation. This is the topic of a complementary study also presented at the EGU 2017 (Barth et al).

  4. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Ralf, Jaumann; Russell, C. T.; Raymond, C. A.; Pieters, C. M.; Yingst, R. A.; Williams, D. A.; Buczkowski, D. L.; Schenk, P.; Denevi, B.; Krohn, K.; Stephan, K.; Roatsch, T.; Preusker, F.; Otto, K.; Mest, S. C.; Ammannito, E.; Blewett, D.; Carsenty, U.; DeSanctis, C. M.; Garry, W.; Hiesinger, H.; Keller, H. U.; Kersten, E.; Marchi, S.; Matz, K. D.; McCord, T. B.; McSween, H. Y.; Mottola, S.; Nathues, A.; Neukum, G.; O'Brien, D. P.; Schmedemann, N.; Scully, J. E. C.; Sykes, M. V.; Zuber, M. T.

    2012-10-01

    The Dawn spacecraft has collected over 28,000 images and a wealth of spectral data providing nearly complete coverage of Vesta’s surface with multiple views. These data enable analysis of Vesta’s diverse geology including impact craters of all sizes and unusual shapes, a variety of ejecta blankets, large troughs extending around the equatorial region, impact basins, enigmatic dark material, and considerable evidence for mass wasting and surface alteration features (1). Two large impact basins, Veneneia (400km) underlying the larger Rheasilvia basin (500km) dominate the south pole (1,2). Rheasilvia exhibits a huge central peak, with total relief of -22km to 19km, and steep scarps with mass wasting features. Vesta’s global tectonic patterns (two distinct sets of large troughs almost parallel to the equator) strongly correlate with the locations of the two south polar impact basins, and were likely created by their formation (1,3). Numerous unusual asymmetric impact craters and ejecta indicate the strong role of topographic slope in cratering processes on Vesta (1). Such very steep topographic slopes are near to the angle of repose; slope failures make resurfacing due to impacts and their associated gravitational slumping and seismic effects an important geologic process on Vesta (1). Outcrops in crater walls indicate reworked crustal material and impact melt in combination with clusters of pits that show thermal surface processes (4). Relatively dark material of still unknown origin is intermixed in the regolith layers and partially excavated by younger impacts yielding dark outcrops, rays and ejecta (1,5). Finally, Vesta’s surface is younger than expected (6). (1) Jaumann, et al., 2012, Science 336, 687-690; (2) Schenk et al., 2012, Science 336, 964-967; (3) Buczkowski, et al., 2012, GRL, submitted; (4) Denevi, et al., 2012, Science, submitted; (5) McCord, et al., 2012, Nature, submitted; (6) Marchi, et al., 2012, Science 336, 690-694.

  5. Estimation of erosion and sedimentation yield in the Ucayali river basin, a Peruvian tributary of the Amazon River, using ground and satellite methods

    NASA Astrophysics Data System (ADS)

    Santini, William; Martinez, Jean-Michel; Guyot, Jean-Loup; Espinoza, Raul; Vauchel, Philippe; Lavado, Waldo

    2014-05-01

    Since 2003, the works of HYBAM observatory (www.ore-hybam.org) has allowed to quantify with accuracy, precision and over a long period Amazon's main rivers discharges and sediments loads. In Peru, a network of 8 stations is regularly gauged and managed in association with the national meteorological and Hydrological service (SENAMHI), the UNALM (National Agrological University of La Molina) and the National Water Agency (ANA). Nevertheless, some current processes of erosion and sedimentation in the foreland basins are still little known, both in volumes and in localization. The sedimentary contributions of Andean tributaries could be there considerable, masking a very strong sedimentation in subsidence zones localized between the control points of the HYBAM's network. The development of spatial techniques such as the Altimetry and reflectance measurement allows us today to complete the ground's network: HYBAM's works have allowed establishing a relation between surface concentration and reflectance in Amazonian rivers (Martinez et al., 2009, Espinoza et al., 2012) and reconstituting water levels series (Calmant et al., 2006, 2008). If the difficulty of calibration of these techniques increases towards the upstream, their use can allow a first characterization of the tributaries contributions and sedimentation zones. At world level, erosion and sedimentation yields in the upper Ucayali are exceptional, favored by a marked seasonality in this region (Espinoza et al., 2009, Lavado, 2010, Pépin et al., 2010) and the presence of cells of extreme precipitation ("Hotspots") (Johnson et al., 1976, Espinoza et al, 2009a). The upper Ucayali drainage basin is a Piggyback where the River run with a low slope, parallel to the Andean range, deposing by gravity hundred millions a year of sands, silts and clays. In this work, we thus propose an estimation of sedimentation and erosion yield in the Ucayali river basin using ground and satellite methods.

  6. Compressional reactivation of hyperextended domains on a rifted margin: a requirement for a reappraisal of traditional restoration procedures?

    NASA Astrophysics Data System (ADS)

    Cadenas Martínez, P.; Fernandez Viejo, G.; Pulgar, J. A.

    2017-12-01

    The North Iberian margin is an inverted hyperextended rifted margin that preserves the initial stages of compressional reactivation. Rift inheritance conditioned in a determinant way the contractional reactivation. The underthrusting of the hyperextended distal domains beneath the platform and the formation of an accretionary wedge at the toe of the slope focused most of the compression. The underthrusting gave place to the formation of a crustal root and the uplifting of the Cantabrian Mountains onshore. Meanwhile, the main rift basins within the continental platform were slightly inverted. Plate kinematic reconstructions and palinspatic restorations have provided different shortening values. Thereby, the amount of shortening linked with the Cenozoic compression is still unclear and a matter of debate on this area.In this work, we present a full cross-section at the central part of the North Iberian margin developed from the restoration of a high quality depth migrated seismic profile running from the continental platform to the Biscay abyssal plain. A shortening calculation gives an estimate of about 1 km within the Asturian Basin, in the continental platform, while in the accretionary wedge at the bottom of the slope, shortening values ranges between 12 km and 15 km. The limited values estimated within the Asturian Basin support the mild inversion observed within this basin, which preserves most of the extensional imprint. Within the abyssal plain, shortening values differ from previous estimations and cannot account for a high amount of compression in the upper crust. Deformation of the hyperextended crust and the exhumed mantle domains inherited from the rifting processes would have accommodated most of the compression. Restoration of these domains seems to be the key to decipher the structure and the tectonic evolution of the reactivated rifted margin but cannot be solved accurately using traditional restoration methods. This leads to a reappraisal of the traditional way of restoring compressional belt transects and particularly, when previous hyperextended domains within the rifted margins are involved.

  7. How are the wetlands over tropical basins impacted by the extreme hydrological events?

    NASA Astrophysics Data System (ADS)

    Al-Bitar, A.; Parrens, M.; Frappart, F.; Papa, F.; Kerr, Y. H.; Cretaux, J. F.; Wigneron, J. P.

    2016-12-01

    Wetlands play a crucial role in tropical basins and still many questions remain unanswered on how extreme events (like El-Nino) impacts them. Answering these questions is challenging as monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. Several microwave based products have been elaborated to monitor these surfaces (Papa et al. 2010). In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA to derive water storage maps at relatively high (7days) temporal frequency. The area of interest concerns the Amazon, Congo and GBH basins A first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS mission at coarse resolution (25 km x 25 km) and 7-days frequency. An initial investigation of the use of the SMAP mission for the same purpose will be also presented. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from SWAPS. It is then combined to the altimetric data to derive water storage maps. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets, ground water storage change from GRACE and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong influence of EL-Nino on the time shift of the different components showing that the hydrological regime of wetlands is highly impacted by these extreme events. This can have dramatic impacts on the ecosystem as the wetlands are vulnerable with a high biodiversity.

  8. Dynamics of nitrogen in subtropical wetland and its uptake and storage by Pistia stratiotes.

    PubMed

    Irfan, Sufia; Shardendu

    2009-11-01

    The paper describes the dynamics of nitrogen in different components (water, soil and plants) of Kabar wetland situated in Begusarai district of Bihar. Contents of nitrogen in the natural components were determined and were compared with the rate of uptake and accumulation under the experimental conditions. Physico-chemical characteristics of natural water and of test basins were quite similar. The trend of seasonal variation of NO3(-)-N in water and total N in soil and P. stratiotes tissue was almost similar but content of nitrogen differed significantly in the different components. The accumulation of nitrogen in the tissues of P. stratiotes was 5 to 15 fold higher than the concentration of nitrogen in the water and 2 to 3 fold higher than the nitrogen content measured in the soil. Maximum accumulation of nitrogen in P. stratiotes was 15.25 mg g(-1) when the concentration of NO3(-)-N in water was 0.86 mg l(-1). Under experimental conditions six different nitrogen concentrations were supplied and determined the uptake and accumulation of nitrogen in P. stratiotes. Maximum uptake and accumulation was 82.87 g m(-2) at the end of 60 days after starting the experiment but still the rate of accumulation was in rising trend. In another part of experiment no nitrogen was left in the basins of low concentrations (0.5 and 5 mg N l(-1)) at the end of 60 days of experiment but at higher concentrations (50 and 65 mg N l(-1)) significant amount of N was left in the test basin. The biomass enhancement was parallel with nitrogen supply till 15 mg N l(-1). This was opposite to the relationship between the nitrogen accumulation in the tissues and nitrogen supply in the experimental basins. Though, potassium was added as an essential growth nutrient but its accumulation was 95g m(-2) at 5 mg l(-1).

  9. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann, M., Riggs, R.S., 1996. Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet. Sci. Lett. 144, 9-19. Thomas, J.D., Bralower, T.J., Jones, E.C., 2003. Neodymium isotopic reconstruction of late Paleocene-early Eocene thermohaline circulation. Earth Planet. Sci. Lett. 209, 309-322.

  10. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    NASA Astrophysics Data System (ADS)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage basins (spacing and elongation ratio, circularity index and shape factor) of different parts in the fore and back-limb of the anticlines demonstrate that the basins have a low maturity and that fold growth is still highly active. Most importantly, the results of this geomorphological investigations demonstrates that the subcylindrical folds have developed from several non-cylindrical embryonic folds, which have merged during progressive fold growth.

  11. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    NASA Astrophysics Data System (ADS)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity location varies as depth changes. Associated with previous geochemistry studies, we propose an on-going asthenosphere upwelling near Datong volcanic field. Overall, the shear wave velocity structures between north and south part of the FWR is different,and imply the different rifting mechanisms between the two sides of FWR.

  12. What are the controls on mountain snowmelt and runoff around the globe?

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2017-12-01

    The Anthropocene has seen a marked expulsion of mass from mountain glaciers to oceans and earlier snowmelt that evacuates the mountains earlier in the year. The loss of ice mass and snow cover is often attributed to increasing temperatures. However, process studies across the last two decades indicate that acceleration of melt by dust/black carbon (BC) may dominate in some regions. Process studies with detailed energy balance measurements around the globe are relatively sparse but strongly suggestive of the impact of dust and BC. Mesoscale and global scale modeling have recently taken on radiative transfer modeling of snow albedo that accounts for changes in grain size and dust/BC concentrations and optical properties. However, our understanding of metamorphism and changes in grain growth still has considerable range of uncertainty that, when passed through radiative transfer modeling, far exceeds in magnitude the at-surface greenhouse gas forcing of 3 W m-2. Likewise, it is a rare study that provides the quantitative knowledge of seasonal variation of dust and BC concentrations, let alone the range of optical properties. Therefore, the energy balance of snow in mountains around the globe is poorly understood and our capacity to model past, present, and future hydrologic responses is relatively weak. Atop the energy balance uncertainties, we also still do not know the spatio-temporal distributions of snow water equivalent in mountain basins around the globe. With the advent of the NASA Airborne Snow Observatory in 2013, we entered a new era of understanding mountain basin SWE. ASO uses scanning lidar, imaging spectrometer, and physical modeling to map distributions across basins in California, Colorado, and the Swiss Alps. The program is expanding in these and other regions for water management. However, in the science realm, in addition to providing the capacity to understand distributed SWE and its change, ASO is also pathfinding through the NASA Snow Experiment (SnowEx) for a spaceborne snow depth and SWE mission that can provide the global perspective we need. The next few decades hold enormous potential to quantify mountain snow pack and to constrain physically-based climate models to allow us to answer the title question here and where the cryosphere-water cycles are heading.

  13. Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fabbi, Simone; Santantonio, Massimo

    2012-12-01

    The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then buried by base-of-escarpment proximal turbidites, forming a bypass wedge. Such a contact would be imaged along a seismic section as an unconformity, suggestive of shut-off of the local carbonate factory and onlap by pelagic mud. The composition of the turbidites, however, at least initially duplicates that of the clinoforms, indicating that the footwall top was still productive, yet the mechanisms of sediment shedding into the basin had changed due to the modifications of submarine topography induced by synsedimentary tectonics.

  14. Comparative Assessment of a New Hydrological Modelling Approach for Prediction of Runoff in Gauged and Ungauged Basins, and Climate Change Impacts Assessment: A Case Study from Benin.

    NASA Astrophysics Data System (ADS)

    GABA, C. O. U.; Alamou, E.; Afouda, A.; Diekkrüger, B.

    2016-12-01

    Assessing water resources is still an important challenge especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we investigate a new modelling approach based on the Physics Principle of Least Action which was first applied to the Bétérou catchment in Benin and gave very good results. The study presents new hypotheses to go further in the model development with a view of widening its application. The improved version of the model MODHYPMA was applied to sixteen (16) subcatchments in Bénin, West Africa. Its performance was compared to two well-known lumped conceptual models, the GR4J and HBV models. The model was successfully calibrated and validated and showed a good performance in most catchments. The analysis revealed that the three models have similar performance and timing errors. But in contrary to other models, MODHYMA is subject to a less loss of performance from calibration to validation. In order to evaluate the usefulness of our model for the prediction of runoff in ungauged basins, model parameters were estimated from the physical catchments characteristics. We relied on statistical methods applied on calibrated model parameters to deduce relationships between parameters and physical catchments characteristics. These relationships were further tested and validated on gauged basins that were considered ungauged. This regionalization was also performed for GR4J model.We obtained NSE values greater than 0.7 for MODHYPMA while the NSE values for GR4J were inferior to 0.5. In the presented study, the effects of climate change on water resources in the Ouémé catchment at the outlet of Savè (about 23 500 km2) are quantified. The output of a regional climate model was used as input to the hydrological models.Computed within the GLOWA-IMPETUS project, the future climate projections (describing a rainfall reduction of up to 15%) are derived from the regional climate model REMO driven by the global ECHAM model.The results reveal a significant decrease in future water resources (of -66% to -53% for MODHYPMA and of -59% to -46% for GR4J) for the IPCC climate scenarios A1B and B1.

  15. Annual budget of Gd and related Rare Earth Elements in a river basin heavily disturbed by anthropogenic activities.

    NASA Astrophysics Data System (ADS)

    Hissler, Christophe; Stille, Peter; Guignard, Cédric; François Iffly, Jean; Pfister, Laurent

    2014-05-01

    The real environmental impact of micropollutants in river systems can be difficult to assess, essentially due to uncertainties in the estimation of the relative significance of both anthropogenic and natural sources. The natural geochemical background is characterized by important variations at global, regional or local scales. Moreover, elements currently considered to be undisturbed by human activities and used as tracers of continental crust derived material have become more and more involved in industrial or agricultural processes. The global production of lanthanides (REE), used in industry, medicine and agriculture, for instance, has increased exponentially from a few tons in 1950 to projected 185 kt in 2015. Consequently, these new anthropogenic contributions impact the natural cycle of the REE. Gd and related REE are now worldwide recognized as emergent micropollutants in river systems. Nevertheless, there is still a gap concerning their temporal dynamics in rivers and especially the quantification of both the anthropogenic and natural contributions in surface water. The acquisition of such quantitative information is of primordial interest because elements from both origins may present different bioavailability and toxicity levels. Working at the river basin scale allows for quantifying micropollutant fluxes. For this reason, we monitored water quality and discharge of the Alzette River (Luxembourg, Europe) over two complete hydrological cycles (2010-2013). The substantial contamination, is principally due to the steel industry in the basin, which has been active from 1875 until now, and to the related increase of urban areas. The particulate and dissolved fractions of river water were monitored using a multitracer approach (standard parameters for water quality including REE concentrations, Pb, Sr, Nd radiogenic isotopes) with two sampling setups (bi-weekly and flood event based sampling). This extensive sampling design allowed quantifying the annual budget of the REE in the particulate and dissolved fractions of the river water and the waste water treatment plant effluents. Enrichments in Gd have been observed for the dissolved fraction of the water during low water levels. This enrichment has not been detected in the surrounding soils of the basin and can be related to the effluents of the waste water treatment plants, which control the REE chemistry of the dissolved fraction during the low water period. When flood events occur, the Gd anomaly progressively disappears and gives way to the chemical signature of the basin soils. The REE and intense hydrological monitoring we performed at the same time allowed for the annual quantification of the anthropogenic vs. natural REE fluxes in the river water of this heavily polluted basin.

  16. Heat flow anomalies on the Western Mediterranean margins: first results from the WestMedFlux-2016 cruise

    NASA Astrophysics Data System (ADS)

    Poort, Jeffrey; Lucazeau, Francis; Le Gal, Virginie; Rabineau, Marina; Dal Cin, Michela; Bouzid, Abderrezak; Palomino, Desirée; Leroux, Estelle; Akhmanov, Grigory; Battani, Anne; Bachir, Roza Si; Khlystov, Oleg; Koptev, Aleksandre

    2017-04-01

    While there is now a large consensus that Western Mediterranean basins developed in a Miocene back-arc setting due to slab roll-back and that some of its domains are floored by oceanic crust, there is still a lot of speculation on the configuration, nature and evolution of its margins and the ocean-continent transitions (OCT). A thick Messinian layer of evaporites in the deep basin obscures deep seismic reflectors, and only recently seismic refraction and wide-angle studies revealed a confident picture of basement configuration. In order to further constrain models of crustal structure and margin evolution, heat flow is one of the key parameters needed. Recent heat flow studies on other margins have shown the existence of a persistent thermal anomaly under rifted margins that urges to reconsider the classical models of its evolution. The young age of OCT and ceased oceanic formation in the Western Mediterranean make it an interesting test case for a thermo-mechanical study of its margins. The presence of halokinetic structuring and salt diapirs urges the need of close spaced heat flow measurement to evaluate heat refraction and advective heat transfer by fluid migration. During the WestMedFlux cruise on the research vessel L'Atalante, we collected a total of 150 new heat flow measurement (123 in pogo mode, 27 with a sediment corer) in the deep basin of the Western Mediterranean where heat flow data were sparse. Preliminary analysis of the heat flow data confirms two regional trends: in the southern Provencal basin an overall increase from west to east (from about 60 mW/m2 at the Golf of Lion towards 75 mW/m2 at the West-Sardinia margin), while in the northern part of the Algero-Balearic basin heat flow increases from east to west (from about 80 to 100 mW/m2). On this regional trends, several local anomalies are clearly differentiated. In the deep oceanic basin, strong anomalies seem to be merely associated to salt diapiric structures. On the OCT and on the rifted continent, both strongly reduced and elevated heat flow are observed and suggest other heat sink and sources. We will discuss on the different processes that might have affected the surface heat flow (e.g., bottom water currents, slope instabilities and focused fluid migrations) and try to link the large scale heat flow patterns with crustal nature, structuring of the margins and mantle dynamics.

  17. Exploring the Geomorphology of the Amazon's Planalto with Imaging Radar: Understanding the Origins of the Modern Amazon Basin

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Azarderakhsh, M.; Cracraft, J.

    2013-12-01

    Amazonia is Earth's most iconic center of biological diversity and endemism and, owing to its contributions to global systems ecology, is arguably Earth's most important terrestrial biome . Amazonia includes a vast landscape of mostly lowland rainforest found in Brazil, Peru, Colombia, Ecuador, Bolivia, and Venezuela. It harbors the world's highest species diversity, the largest fresh-water ecosystem in the world, and contributes substantially to shaping the Earth's atmospheric gasses and oceans and consequently its climate. Despite this global importance, we still have an incomplete understanding of how this biodiversity-rich biome developed over time. Knowing its history is crucially important for understanding how the short and long-term effects of biodiversity loss and climate change will impact the region, and the globe, in the future. Hence, we seek to understand the evolutionary and environmental-ecological history of Amazonia over the past 10 million years through a comparative approach that integrates across the disciplines of systematic biology, population biology, ecosystem structure and function, geology, Earth systems modeling and remote sensing, and paleoenvironmental history. During springtime 2013, the NASA/JPL airborne imaging radar, UAVSAR, conducted airborne studies over many regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired over the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology of the Amazon's planalto, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. In the late Neogene, the Amazonian lowlands comprised either a series of independent basins or a single sedimentary basin. The Amazonian planalto is variously described as either an erosional surface or a surface of deposition. We employ UAVSAR data collections to assess (1) the utility of these high quality imaging radar data for use in identifying associated geomorphologic features, and (2) UAVSAR's utility in aiding interpretation of ALOS PALSAR and SRTM datasets to support a basin-wide characterization. The results of the analysis will have a major impact on interpreting the evolutionary history of the Amazon Basin. We are grateful to Bruce Chapman, Naira Pinto, and the JPL UAVSAR team for supporting the planning and acquisition of the UAVSAR data, and to the NASA Biodiversity Program for providing funding to support the UAVSAR acquisitions. This work was carried out under a grant from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  18. Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River basin

    NASA Astrophysics Data System (ADS)

    Yan, D. H.; Wu, D.; Huang, R.; Wang, L. N.; Yang, G. Y.

    2013-07-01

    Abrupt drought-flood change events caused by atmospheric circulation anomalies have occurred frequently and widely in recent years, which has caused great losses and casualties in China. In this paper, we focus on investigating whether there will be a rainfall occurrence with higher intensity after a drought period in the Huang-Huai-Hai River basin. Combined with the Chinese climate divisions and the basin's DEM (digital elevation model), the basin is divided into seven sub-regions by means of cluster analysis of the basin meteorological stations using the self-organizing map (SOM) neural network method. Based on the daily precipitation data of 171 stations for the years 1961-2011, the changes of drought times with different magnitudes are analyzed, and the number of consecutive days without precipitation is used to identify the drought magnitudes. The first precipitation intensity after a drought period is analyzed with the Pearson-III frequency curve, then the relationship between rainfall intensity and different drought magnitudes is observed, as are the changes of drought times for different years. The results of the study indicated that the occurrence times of different drought levels show an overall increasing trend; there is no clear interdecadal change shown, but the spatial difference is significant. (2) As the drought level increases, the probability of extraordinary rainstorm becomes lower, and the frequency of occurrence of spatial changes in different precipitation intensities vary. In the areas I and II, as the drought level increases, the occurrence frequency of different precipitation intensities first shows a decreasing trend, which becomes an increasing trend when extraordinary drought occurs. In the area III, IV and V, the probability of the different precipitation intensities shows an overall decreasing trend. The areas VI and VII are located at the mountains with high altitudes where the variation of different precipitation intensities with the increase in drought level is relatively complex. (3) As the drought times increase, areas I, II and V, which are located on the coastal and in the valley or basin, are vulnerable to extreme precipitation processes; areas III, IV, VI and VII are located in the inland area, where heavier precipitation is not likely to occur. (4) The local rainfall affected by multiple factors is closely related with drought occurrence. The characteristics between the first rainfall intensity after a drought period and different drought magnitudes (or drought occurrence times) are preliminarily examined in this paper, but its formation mechanism still requires further research.

  19. The Porcupine Basin: from rifting to continental breakup

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Gaw, Viola; Klaeschen, Dirk; McDermott, Ken

    2015-04-01

    Southwest of Ireland, the Porcupine Basin is characterized by axial stretching factors that increase southward to values greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup, and in particular the processes of mantle serpentinisation, and the onset of detachment faulting. We have processed through to prestack depth migration a series of E-W profiles crossing the basin at different axial stretching factors and linked by a N-S profile running close to the rift axis. Our results constrain the structure of the basin and have implications for the evolution of rifted margins. In the north at a latitude of 52.25N, no clear detachment is imaged, although faults do appear to cut down into the mantle, so that serpentinisation may have started. Further south (51.75N), a bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, with numerical models of crustal embrittlement and mantle serpentinization during extension and with wide-angle data (see posters of Prada and of Watremez). Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. P develops where the crust was thinned to less than 3 km during rifting, again similar to S. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Analysis of the depth sections suggests that the detachment may have been active as a rolling hinge rooting at low-angle beneath the Porcupine Bank, consistent with the presence of a footwall of serpentinites. This requires very weak fault rocks, such as serpentinites. Reconstructions suggest that the detachment developed after the onset of serpentinisation and thus represents late stage of faulting within a complex polyphase rift history. Farther south still, a N-S running profile shows that P cuts up to form the top of the basement, and locally forms the top of what we interpret as exhumed mantle, since buried by postrift sediments. Thus detachment here appear to have been both responsible for the late-stage extension of the crust and the unroofing of the mantle. The same processes are likely to have occurred at magma poor rifted margins.

  20. Microgravity

    NASA Image and Video Library

    2001-05-02

    John Henson (grade 12) and Suzi Bryce (grade 10) from DuPont Manual High School in Louisville, Kentucky, conduct a drop with NASA's Microgravity Demonstrator. A camera and a TV/VCR unit let students play back recordings of how different physical devices behave differently during freefall as compared to 1-g. The activity was part of the education outreach segment of the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  1. Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia-Sudan)

    NASA Astrophysics Data System (ADS)

    Hassaballah, Khalid; Mohamed, Yasir; Uhlenbrook, Stefan; Biro, Khalid

    2017-10-01

    Understanding the land use and land cover changes (LULCCs) and their implication on surface hydrology of the Dinder and Rahad basins (D&R, approximately 77 504 km2) is vital for the management and utilization of water resources in the basins. Although there are many studies on LULCC in the Blue Nile Basin, specific studies on LULCC in the D&R are still missing. Hence, its impact on streamflow is unknown. The objective of this paper is to understand the LULCC in the Dinder and Rahad and its implications on streamflow response using satellite data and hydrological modelling. The hydrological model has been derived by different sets of land use and land cover maps from 1972, 1986, 1998 and 2011. Catchment topography, land cover and soil maps are derived from satellite images and serve to estimate model parameters. Results of LULCC detection between 1972 and 2011 indicate a significant decrease in woodland and an increase in cropland. Woodland decreased from 42 to 14 % and from 35 to 14 % for Dinder and Rahad, respectively. Cropland increased from 14 to 47 % and from 18 to 68 % in Dinder and Rahad, respectively. The model results indicate that streamflow is affected by LULCC in both the Dinder and the Rahad rivers. The effect of LULCC on streamflow is significant during 1986 and 2011. This could be attributed to the severe drought during the mid-1980s and the recent large expansion in cropland.

  2. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yan, Maodu; Fang, Xiaomin; Song, Chunhui; Zhang, Weilin; Zan, Jinbo; Zhang, Zhiguo; Li, Bingshuai; Yang, Yongpeng; Zhang, Dawen

    2017-10-01

    The paleo-Red River is suggested to have been a continental-scale drainage system connecting the Tibetan Plateau to the South China Sea. However, the evolution of the paleo-Red River is still under debate. This study presents new results from sedimentological analyses and detrital zircon U-Pb geochronologic data from fluvial sedimentary rocks of Paleocene to Oligocene age of the Simao Basin to constrain the nature of the paleo-drainage system of the Red River. The detrital zircon U-Pb results reveal multiple age groups at 190-240 Ma, 260-280 Ma, 450-540 Ma, 1700-1900 Ma and 2400-2600 Ma for the Paleocene to late Eocene Denghei Formation (Fm.), but only one conspicuous peak at 220-240 Ma for the late Eocene-Oligocene Mengla Fm. Provenance analyses illustrate that the former likely had source areas that included the Hoh-Xil, Songpan-Ganzi, northern Qiangtang, Yidun and western Yangtze Terranes, which are consistent with the catchments of the Upper and Lower Jinshajiang Segments, whereas the latter mainly transported material from a limited number of sources, such as the Lincang granitic intrusions west of the Simao Basin. Integrated with available detrital zircon U-Pb geochronologic and paleogeographic data, our study suggests the existence of a paleo-Red River during the Paleocene to late Eocene that was truncated and lost its northern sources after approximately 35 Ma, due to left-lateral strike-slip faulting of the Ailao Shan-Red River and clockwise rotation of the Lanping-Simao Terrane.

  3. How does a High Resolution Global Model represent Mesoscale Convective Systems over the Amazon Basin?

    NASA Astrophysics Data System (ADS)

    Rehbein, A.; Ambrizzi, T.

    2017-12-01

    The mesoscale convective systems (MCSs) are very important meteorological systems, which can impact on the local, regional and global climate. Despite of their importance, the knowledge about their occurrence and behavior is still poor, mainly over the tropical region of South America where the data availability is scarce. Besides, few attentions are given to represent the MCSs in the numerical modeling in that region. The aim of the present work is to evaluate the representation of the MCSs by a global high resolution model over the Amazon basin. In this study, we will make a revision of the state of art involving the MCSs' over the Amazon basin and also how they are represented. For this last point, we will identify and track the MCSs using precipitation data from a high resolution nonhydrostatic global model, called Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The spatial and temporal resolution of NICAM are 14 km and 1 hour, respectively. The MCSs identification and tracking will be performed by the algorithm Forecast and Tracking the evolution of Cloud Clusters (ForTraCC) for the period of 2000 to 2008. This will allow us evaluate the representation of the MCSs obtained by NICAM and compare them with those found using infrared satellite images. NICAM's precipitation was validated using Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from 1981 to 2008. Once the model is validated, we will analyze the variability of the MCSs using the simulations of the NICAM for a future climate.

  4. The legacy of leaded gasoline in bottom sediment of small rural reservoirs

    USGS Publications Warehouse

    Juracek, K.E.; Ziegler, A.C.

    2006-01-01

    The historical and ongoing lead (Pb) contamination caused by the 20th-century use of leaded gasoline was investigated by an analysis of bottom sediment in eight small rural reservoirs in eastern Kansas, USA. For the reservoirs that were completed before or during the period of maximum Pb emissions from vehicles (i.e., the 1940s through the early 1980s) and that had a major highway in the basin, increased Pb concentrations reflected the pattern of historical leaded gasoline use. For at least some of these reservoirs, residual Pb is still being delivered from the basins. There was no evidence of increased Pb deposition for the reservoirs completed after the period of peak Pb emissions and (or) located in relatively remote areas with little or no highway traffic. Results indicated that several factors affected the magnitude and variability of Pb concentrations in reservoir sediment including traffic volume, reservoir age, and basin size. The increased Pb concentrations at four reservoirs exceeded the U.S. Environmental Protection Agency threshold-effects level (30.2 mg kg-1) and frequently exceeded a consensus-based threshold-effects concentration (35.8 mg kg-1) for possible adverse biological effects. For two reservoirs it was estimated that it will take at least 20 to 70 yr for Pb in the newly deposited sediment to return to baseline (pre-1920s) concentrations (30 mg kg-1) following the phase out of leaded gasoline. The buried sediment with elevated Pb concentrations may pose a future environmental concern if the reservoirs are dredged, the dams are removed, or the dams fail. ?? ASA, CSSA, SSSA.

  5. Assessment of water quality of Sembilang River receiving effluent from controlled municipal solid waste (MSW) landfill in Selangor

    NASA Astrophysics Data System (ADS)

    Tengku Ibrahim, T. N. B.; Othman, F.; Mahmood, N. Z.

    2017-06-01

    Most of the landfills in Malaysia are situated near to the main river basin that supplies almost 90% of water requirement. This includes landfills in Selangor where a total of 20 landfill sites are situated in 5 main river basins and the highest number of operating landfills (three) are at the Selangor River Basin (Jeram, Bukit Tagar and Kuang Inert landfills). This situation has caused wide concern over the water safety, even the leachate has been treated. The leachate itself still contains contaminants that are difficult to treat. The main objective of this study is to investigate the effect on water quality of Sembilang River that receives effluent from the nearby landfill. In this study, we analyzed samples of water from ten sampling stations starting from the upstream to downstream of Sembilang River. The water quality was evaluated by the Water Quality Index (WQI) depending on in-situ and laboratory analysis. 11 water quality variables are selected for the quality assessment; temperature, pH, turbidity, salinity, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total suspended solid, ammoniacal nitrogen, phosphate and nitrate. The result indicated that, when the effluent mixed with the river water, the water quality decreased gradually and was found to be lower at a few stations. The water quality of Sembilang River falls under Class III of Water Quality Index with ranges between 68.03 to 43.46 mg/L. It is revealed that the present scenario of water quality of Sembilang River is due to the effect of effluent from the landfill.

  6. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  7. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  8. Madden-Julian Oscillation: Western Pacific and Indian Ocean

    NASA Astrophysics Data System (ADS)

    Fuchs, Z.; Raymond, D. J.

    2016-12-01

    The MJO has been and still remains a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e. why does it prefer long wavelengths or planetary wavenumbers 1-3? The MJO has the strongest signal in the Indian ocean and in the West Pacific, but the average vertical structure is very different in each of those basins. We look at the reanalysis/analysis FNL, ERAI vertical structure of temperature and moisture as well as the surface zonal winds for two ocean basins. We also look at data from DYNAMO and TOGA_COARE in great detail (saturation fraction, temperature, entropy, surface zonal winds, gross moist stability, etc). The findings from observations and field projects for the two ocean basins are then compared to a linear WISHE model on an equatorial beta plane. Though linear WISHE has long been discounted as a plausible model for the MJO, the version we have developed explains many of the observed features of this phenomenon, in particular, the preference for large zonal scale, the eastward propagation, the westward group velocity, and the thermodynamic structure. There is no need to postulate large-scale negative gross moist stability, as destabilization occurs via WISHE at long wavelengths only. This differs from early WISHE models because we take a moisture adjustment time scale of order one day in comparison to the much shorter time scales assumed in earlier models. Linear modeling cannot capture all of the features of the MJO, so we are in the process of adding nonlinearity.

  9. The early cretaceous evolution of carbonate platforms from northern Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masse, J.P.; Borgomano, J.; Maskiry, S.Al.

    1993-09-01

    In northern Oman (Jebel Akhdar and foothills) Hauterivian to early Aptian shallow carbonate platforms are widely extending and pass laterally to slope and basin environments in the Nakhl zone. Progradational geometries are identified in that zone where significant correlation between thickness and sediment types supports a prominent tectonic control. The platform records four main sedimentary breaks (drowning events). Early Barremian (lower Lekhwair Formation), Late Barremian (basal Kharaib Formation), lowermost early Aptian (upper Kharaib Formation) and middle Aptian (Shuaiba-Al Hassanat formations boundary). The late Aptian-early Albian hiatus (pre-Nahr Umr unconformity) is regarded as an early Albian tectonically driven erosion. In themore » Nakhl zone, coral-rudist limestones of late Aptian-early Albian (lower Al Hassanat Formation) document an east-west ribbon platform, the southward extension of which was obscured by the middle Albian erosions and rudist limestones of middle to late Albian (upper Al Hassanat Formation), a lateral equivalent of the Nahr Umr circa littoral shaly sediments, document an east-west-trending linear platform. The foregoing points out a northward progradation coeval with a southward transgressive major trend for the Hauterivian-early Aptian interval, a faulted margin corresponding with the Nakhl zone active during the Aptian-Albian, a late Aptian ribbon platform coeval with the Bab basin initiation southward, a regional uplifting and truncation during the early-Albian (Austrian phase), whereas shallow-water carbonates are still forming at the edge of the former platform, and an active linear platform at the northern edge of the Nahr Umr basin, the corresponding drowning contemporaneous with the onset of the Cenomanian platform eastward.« less

  10. Inferring changes in water cycle dynamics of intensively managed landscapes via the theory of time-variant travel time distributions

    NASA Astrophysics Data System (ADS)

    Danesh-Yazdi, Mohammad; Foufoula-Georgiou, Efi; Karwan, Diana L.; Botter, Gianluca

    2016-10-01

    Climatic trends and anthropogenic changes in land cover and land use are impacting the hydrology and water quality of streams at the field, watershed, and regional scales in complex ways. In poorly drained agricultural landscapes, subsurface drainage systems have been successful in increasing crop productivity by removing excess soil moisture. However, their hydroecological consequences are still debated in view of the observed increased concentrations of nitrate, phosphorus, and pesticides in many streams, as well as altered runoff volumes and timing. In this study, we employ the recently developed theory of time-variant travel time distributions within the StorAge Selection function framework to quantify changes in water cycle dynamics resulting from the combined climate and land use changes. Our results from analysis of a subbasin in the Minnesota River Basin indicate a significant decrease in the mean travel time of water in the shallow subsurface layer during the growing season under current conditions compared to the pre-1970s conditions. We also find highly damped year-to-year fluctuations in the mean travel time, which we attribute to the "homogenization" of the hydrologic response due to artificial drainage. The dependence of the mean travel time on the spatial heterogeneity of some soil characteristics as well as on the basin scale is further explored via numerical experiments. Simulations indicate that the mean travel time is independent of scale for spatial scales larger than approximately 200 km2, suggesting that hydrologic data from larger basins may be used to infer the average of smaller-scale-driven changes in water cycle dynamics.

  11. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  12. Contribution of wetlands to nitrate removal at the watershed scale

    NASA Astrophysics Data System (ADS)

    Hansen, Amy T.; Dolph, Christine L.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Intensively managed row crop agriculture has fundamentally changed Earth surface processes within the Mississippi River basin through large-scale alterations of land cover, hydrology and reactive nitrogen availability. These changes have created leaky landscapes where excess agriculturally derived nitrate degrades riverine water quality at local, regional and continental scales. Individually, wetlands are known to remove nitrate but the conditions under which multiple wetlands meaningfully reduce riverine nitrate concentration have not been established. Only one region of the Mississippi River basin—the 44,000 km2 Minnesota River basin—still contains enough wetland cover within its intensively agriculturally managed watersheds to empirically address this question. Here we combine high-resolution land cover data for the Minnesota River basin with spatially extensive repeat water sampling data. By clearly isolating the effect of wetlands from crop cover, we show that, under moderate-high streamflow, wetlands are five times more efficient per unit area at reducing riverine nitrate concentration than the most effective land-based nitrogen mitigation strategies, which include cover crops and land retirement. Our results suggest that wetland restorations that account for the effects of spatial position in stream networks could provide a much greater benefit to water quality then previously assumed.

  13. Automatic Calibration of Global Flow Routing Model Parameters in the Amazon Basin Using Virtual SWOT Data

    NASA Astrophysics Data System (ADS)

    Mouffe, Melodie; Getirana, Augusto; Ricci, Sophie; Lion, Christine; Biancamaria, Sylvian; Boone, Aaron; Mognard, Nelly; Rogel, Philippe

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) wide swath altimetry mission will provide measurements of water surface elevations (WSE) at a global scale. The aim of this study is to investigate the potential of these satellite data for the calibration of the hydrological model HyMAP, over the Amazon river basin. Since SWOT has not yet been launched, synthetical observations are used to calibrate the river bed depth and width, the Manning coefficient and the baseflow concentration time. The calibration process stands in the minimization of a cost function using an evolutionnary, global and multi-objective algorithm that describes the difference between the simulated and the observed WSE. We found that the calibration procedure is able to retrieve an optimal set of parameters such that it brings the simulated WSE closer to the observation. Still with a global calibration procedure where a uniform correction is applied, the improvement is limited to a mean correction over the catchment and the simulation period. We conclude that in order to benefit from the high resolution and complete coverage of the SWOT mission, the calibration process should be achieved sequentially in time over sub-domains as observations become available.

  14. Functional groups of fossil marattialeans: Chemotaxonomic implications for Pennsylvanian tree ferns and pteridophylls

    USGS Publications Warehouse

    Psenicka, J.; Zodrow, E.L.; Mastalerz, Maria; Bek, J.

    2005-01-01

    Marattialean-fossil foliage, assigned to Pecopteris Brongniart, was an important and widespread floral component in Late Pennsylvanian mires, with phylogenetic affinity to extant marattialean taxa in tropical regions. Marattialean fossil taxonomy is, however, still uncertain. Specimens from the Pilsen limnic Basin, Westphalian D, Czech Republic, represent fertile marattialean foliage of Pecopteris (Asterotheca) nyranensis and Pecopteris (Asterotheca) miltonii, and sterile foliage of Pecopteris aspidioides and Pecopteris polypodioides. Taxonomic parameters for their assignments included cuticle, stomatal morphologies (studied for the first time), and in situ reproductive organs and spores. Chemotaxonomic interpretations hinge on fidelity of preservation of compounds, or molecular fragments thereof, that were synthesized by the once-living plants. This preservation state was possibly due to the thermal history (maximum temperature of 130 ??C) in the Pilsen Basin, acidic preservation conditions, lithology and facies stability. Although subtle, the four pecopterid species are differentiable from one another by combined FTIR characteristics, supporting taxonomy. The ratio of CH2/CH3 is hypothesized to be a chemotaxonomic parameter for Pennsylvanian pteridophylls, both in seed and true ferns that have previously been studied. It will, however, be supplemented by additional biochemical markers. ?? 2004 Elsevier B.V. All rights reserved.

  15. Acid phosphatase patterns in microfilariae of Onchocerca volvulus s.l. from the Upper Orinoco Basin, Venezuela.

    PubMed

    Yarzàbal, L; Petralanda, I; Arango, M; Lobo, L; Botto, C

    1983-06-01

    The patterns of acid phosphatase in strains of Onchocerca volvulus s.l. which parasitize an Amerindian population (Yanomami) in Venezuela's Upper Orinoco Basin were examined by using the naphthol AS-TR phosphate method. The study sample consisted of 40 Yanomami inhabiting a savannah area at 950 m above sea level and 21 Yanomami residents of a tropical rainforest area at an altitude of 250 m. Stained intrauterine microfilariae, still within the egg case, exhibited a diffuse distribution of the enzyme in the early stages of embryonic development and a negative reaction at a more developed stage. Four of the five enzyme staining patterns described by Omar (1978) were found in the 3157 microfilariae examined from skin snips. Their distribution was: Type I--17.2%, Type III--0.5%, Type IV--75.6% and Type V--6.6%. No examples of Type II were observed. The results indicate that acid phosphatase patterns of the Upper Orinoco Onchocerca strain most resemble those of strains from Guatemala and Yemen, and are different from the African strains found in Upper Volta and Liberia. The relative frequency of acid phosphatase patterns was modified by cryopreservation of microfilariae.

  16. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  17. Fault history of the Pribilof Island and its relevance to bottom stability in the St. George Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D.M.

    1976-04-01

    This study evaluates frequency of faulting and volcanic eruptions on the Pribilof Islands and in nearby waters, examines rates and directions of changes in the island shorelines during the 20th Century, and investigates the nature of the soils and thier susceptibility to erosion after disturbance. Volcanos have been active in the Pribilof Island area throughout the last 8 my, activity during the last 300,000 years and has been confined to the vicinity of St. Paul Island. Eruptions recur at intervals of about 10,000 years. Faulting is also an ongoing process. Fault movements recur at rather long but still unknown intervals.more » Although the recurrence interval of movement on individual faults is long, the fault hazard is significant, because faluts cross any possible path for a pipeline connecting production areas in the St. George Basin with terminal facilities on the Pribilof Islands. The sandy beaches and sandy soils of St. Paul Island are sensitive to human activity. Perturbations related to construction of logistic bases and pipeline and transhipment facilities are likely to result in extensive changes in the beaches and loss of surface soils by wind deflation.« less

  18. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  19. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    NASA Astrophysics Data System (ADS)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  20. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  1. Joint modelling of annual maximum drought severity and corresponding duration

    NASA Astrophysics Data System (ADS)

    Tosunoglu, Fatih; Kisi, Ozgur

    2016-12-01

    In recent years, the joint distribution properties of drought characteristics (e.g. severity, duration and intensity) have been widely evaluated using copulas. However, history of copulas in modelling drought characteristics obtained from streamflow data is still short, especially in semi-arid regions, such as Turkey. In this study, unlike previous studies, drought events are characterized by annual maximum severity (AMS) and corresponding duration (CD) which are extracted from daily streamflow of the seven gauge stations located in Çoruh Basin, Turkey. On evaluation of the various univariate distributions, the Exponential, Weibull and Logistic distributions are identified as marginal distributions for the AMS and CD series. Archimedean copulas, namely Ali-Mikhail-Haq, Clayton, Frank and Gumbel-Hougaard, are then employed to model joint distribution of the AMS and CD series. With respect to the Anderson Darling and Cramér-von Mises statistical tests and the tail dependence assessment, Gumbel-Hougaard copula is identified as the most suitable model for joint modelling of the AMS and CD series at each station. Furthermore, the developed Gumbel-Hougaard copulas are used to derive the conditional and joint return periods of the AMS and CD series which can be useful for designing and management of reservoirs in the basin.

  2. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  3. The Younger Dryas phase of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  4. Flood design recipes vs. reality: can predictions for ungauged basins be trusted?

    NASA Astrophysics Data System (ADS)

    Efstratiadis, A.; Koussis, A. D.; Koutsoyiannis, D.; Mamassis, N.

    2014-06-01

    Despite the great scientific and technological advances in flood hydrology, everyday engineering practices still follow simplistic approaches that are easy to formally implement in ungauged areas. In general, these "recipes" have been developed many decades ago, based on field data from typically few experimental catchments. However, many of them have been neither updated nor validated across all hydroclimatic and geomorphological conditions. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, on the safety and cost of the related flood protection works. Preliminary results, based on historical flood data from Cyprus and Greece, indicate that a substantial revision of many aspects of flood engineering procedures is required, including the regionalization formulas as well as the modelling concepts themselves. In order to provide a consistent design framework and to ensure realistic predictions of the flood risk (a key issue of the 2007/60/EU Directive) in ungauged basins, it is necessary to rethink the current engineering practices. In this vein, the collection of reliable hydrological data would be essential for re-evaluating the existing "recipes", taking into account local peculiarities, and for updating the modelling methodologies as needed.

  5. Low-cost approaches to problem-driven hydrologic research: The case of Arkavathy watershed, India.

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Ballukraya, P. N.; Jeremiah, K.; R, A.

    2014-12-01

    Groundwater depletion is a major problem in the Arkavathy Basin and it is the probable cause of declining flows in the Arkavathy River. However, investigating groundwater trends and groundwater-surface water linkages is extremely challenging in a data-scarce environment where basins are largely ungauged so there is very little historical data; often the data are missing, flawed or biased. Moreover, hard-rock aquifer data are very difficult to interpret. In the absence of reliable data, establishing a trend let alone the causal linkages is a severe challenge. We used a combination of low-cost, participatory, satellite based and conventional data collection methods to maximize spatial and temporal coverage of data. For instance, long-term groundwater trends are biased because only a few dug wells with non-representative geological conditions still have water - the vast majority of the monitoring wells drilled in the 1970s and 1980s have dried up. Instead, we relied on "barefoot hydrology" techniques. By conducting a comprehensive well census, engaging farmers in participatory groundwater monitoring and using locally available commercial borewell scanning techniques we have been able to better establish groundwater trends and spatial patterns.

  6. Cretaceous combined structure in eastern Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, P.; Liu, S.

    2009-12-01

    Eastern Sichuan Basin is confined by two thin-skinned fold-thrust belt, NW-trending Southern Daba Shan (Shan=Mountain) (SDB) in the northeast and NNE- or NE-trending Western XueFeng Shan (WXF) in the southeast, which constitute two convergent salients convex to the inner basin respectively. Although many factors can lead to the formation of fold-thrust belt salients, the eastern Sichuan salients would be attributed to the combined structure (firstly nominated by Chinese geologist, Li Siguang), which means the interaction of two structural belts in the same period. By field surveying and geological map interpreting, we found that WXF deformation began in Late Jurassic along the eastern side of structral belt, where the synclines cored by Upper-Middle Jurassic rock. The initial time of SDB deformation remains poorly determined, however our palaeocurrent data of Lower Cretaceous rock in adjecent foreland basin indicate the provenance from northeast or east. Hence we considered the two fold-thrust belt started interactive in Late Jurassic and mainly combined during Cretaceous. In Early Cretaceous, the front belt of WXF salient arrived near KaiXian where NEE-trending arc-shape folds converged with the NWW-trending arc-shape folds of SDB.The two salients shaped like an westward "open mouth", east of which EW-trending folds of two structural belts juxtaposed. Particularly in the middle belt of WXF (FengJie - WuFeng) the earlier NEE-trending folds were refolded by later NNE-trending folds. We interpret the NEE-trending folds as the front belt of earlier (maybe Late Jurassic) WXF salient. When the two combined fold belts propagated westward together, the original NNE-trending front belt of WXF constrained by the front belt of SDB and formed the curved fold trend lines convex to NNW. Then as WXF deformation continued but SDB gradually terminated, the consequent NNE-trending folds could not be curved and would superpose on the earlier NEE-trending folds.In Late Cretaceous, WXF still propagated westward but without combination with SDB, and formed three NNE-trending parallel anticlines flanking the central Sichuan Basin. These anticlines dominated by steep dips and west-vergent thrust faults, which suggests the eastward back pushing force. We suppose that the pre-existing deep fault obstructed the WXF westward propagation. In addition, thermochronolgy analysis proved that SDB underwent tectonic sequence in Late Cretaceous. Thus the convergent salients broke up with only NNE-trending parallel fold being present in the front belt of WXF. We also use a finite-element model (FEM) to illustrate the maximum horizontal compressive stress (SHmax) under the combined structure in ABAQUSTM software. A 2D plane stress model with realistic mechanical properties for whole Sichuan Basin was built based on the Late Jurassic paleogeographic boundaries. The model consists of 5,400 elements, providing a resolution of 0.1° in both latitude and longitude. In general, FEM analysis result shows the SHmax direction well perpendicular to the arc-shape folds trend lines in eastern Sichuan Basin when pressure loaded on the SDB and WXF boundaries. The SHmax contours reflect two convergent salients incorporating the gradually decreased stress value from the boundaries to inner basin.

  7. Low cost thermoformed solar still water purifier for D&E countries

    NASA Astrophysics Data System (ADS)

    Flendrig, L. M.; Shah, B.; Subrahmaniam, N.; Ramakrishnan, V.

    IntroductionSolar distillation mimics nature’s hydrologic water cycle by purifying water through evaporation (using solar energy) and condensation (rain). It is one of the most basic purification systems available today to obtain high quality drinking water and can remove non-volatile contamination from almost any water source. This low-tech technology should therefore be ideally suited for developing and emerging countries where sun shines in abundance. In the past century numerous designs have been realised with footprints ranging from 0.5 m 2 to thousands of square meters. Despite all efforts, this intriguing technology has not been applied widely yet. Among the challenges that remain are: (1) its low yield, (2) obtaining local commitment to operate/maintain large scale systems properly, and (3) relatively high initial investment costs. The objective of this study has been to address challenges 1 and 3 by using standard plastic thermoforming technology to realize a small scale single slope solar still for personal use (2-4 l per day) with adequate efficiency and at low production costs. Materials and methodsThe solar still consists of two parts: a basin that holds the dirty water and a transparent tilted cover onto which the clean water vapour can condense. The basin has a footprint of 1.34 m 2 and is made of a 3 mm thick sheet of black high-density polyethylene (HDPE) which is thermoformed using standard equipment for making fish-ponds. This allows for the incorporation of detailed features, like reinforcements and a clean-water collection gutter, at no extra cost. The transparent cover is made of UV stabilised low-density PE-foil which is under a slope of 10° to transport condensed water droplets to the lower located collection gutter. Throughput and purification performance were evaluated in duplicate at our Bangalore R&D facilities in India, over a short term (5 day) period. Solar radiation was measured using a Pyranometer. The system was loaded with 40 l of laundry rinse water. ResultsAt an average solar radiation of 12.95 MJ/day/m 2 the average yield of purified water was 3 l/day. This resulted in a calculated overall system efficiency of 39%. Purification performance (contaminated versus purified water) of the solar still loaded with the most contaminated water source was: Total dissolved solids (TDS) from 2925 ppm to 40 ppm, pH from 9.6 to 5.5, conductivity from 6130 mS/cm to 26 mS/cm, turbidity from 394 NTU to 0.4 NTU, total viable count (TVC) from 314 million cfu/ml to <10 cfu/ml. ConclusionThermoforming allowed for the realisation of a single slope solar still that can sustainably produce high quality drinking water at point of use from waste water with an above average efficiency and at a manufacturing price (in The Netherlands) of below €25-per system. Next step should focus on a long term evaluation (months, instead of days) to access the full potential of the solar still to produce safe drinking water at point of use in an economical and reliable way.

  8. Pleistocene alterations of drainage network between the Alps and the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Kovács, G.

    2012-04-01

    The investigated study area is situated in the transition zone between the still uplifting Eastern Alps and the subsiding Little Hungarian Plain (Joó 1992), bordered by Lafnitz (Lapincs), Répce (Rabnitz) and Rába (Raab) rivers. The contrasting forcing of the regions of differential uplift created a distinctive surface morphology of typically low relief that has a characteristic drainage network pattern as well. Our study is aimed at the reconstruction of the surface evolution by separation of individual geomorphic domains delineated by their geomorphometric characteristics. The hilly area is mostly covered by Miocene sediments. The mesoscale geomorphological units of the study area are influenced by the uplifting metamorphic core complex of Koszeg-Rechnitz Mountains (Tari - Horváth 1995), by the also metamorphic and relatively uplifting Vas Hill as well as by the subsiding grabens. There are two dominant flow directions alternating downstream. Valley segments are often bordered by steep scarps, which were identified by previous research as listric normal faults and grabens. Largely, the investigated area consists of tilted blocks bordered by 30-60 m high and steep, fault-related escarpments as it was demonstrated by the analysis of lignite layers, topographic sections and topographic swath analyses (Kovács et al. 2010, Kovács et al. 2011). Drainage network reorganizations occurred in several steps during the Pleistocene. Corresponding landforms are abrupt changes in stream direction, wind gaps, uplifted terrace levels built up of sedimentary rocks and wide alluvial valleys. Terraces are best developed along the Strem stream, which has a strikingly small drainage area at present, due to the Pinka River, which captured the upper parts of the drainage basin. The widest valley belongs to Pinka River. Drainage reorganizations are most likely due to the uplifting scarps that diverted the streams. Remainders of previous cross-valleys are wind gaps. Using these markers (wide alluvial valleys with relatively small streams, terrace levels and wind gaps) and the different height of the scarps we roughly elaborated the geomorphological development of the area, including relative age of drainage network elements, tectonic features and river captures. Results indicate a detailed but still regionally dissected timeline about drainage network alterations, including phases of gravel sedimentation, incision and beheadings. The abstract titled "Pleistocene alteration of drainage network and surface morphology caused by basement structure in the foreland of Eastern Alps" determine the origin of the investigated scarps. This paper was supported by Hungarian Scientific Research Fund (OTKA NK83400). Joó, I. (1992): Recent vertical surface movements in the Carpathian Basin. Tectonophysics 202: 129-134. Kovács, G., Telbisz, T., Székely, B. (2010) Faulted and eroded gravel deposit in western Hungary. - Geophysical Research Abstracts Vol. 12. EGU General Assembly 2010. Kovács, G., Telbisz, T., Székely, B. (2011) Quaternary alterations of drainage network in a transition area between the Alps and the Pannonian Basin. - Geophysical Research Abstracts Vol. 13. EGU General Assembly 2011. Tari, G. and Horváth, F. (1995): Middle Miocene extensional collapse in the Alpine-Pannonian transitional zone, in: Horváth, F., Tari, G., and Bokor, K. (Eds.): Extensional collapse of the Alpine orogene and hydrocarbon prospects in the basement and fill of the western Pannonian Basin, AAPG Inter. Conf. and Exhib., Nice, France, Guidebook to fieldtrip No. 6, 75-105

  9. Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacán, México): implications for archeology and future hazard evaluations

    NASA Astrophysics Data System (ADS)

    Reyes-Guzmán, Nanci; Siebe, Claus; Chevrel, Magdalena Oryaëlle; Guilbaud, Marie-Noëlle; Salinas, Sergio; Layer, Paul

    2018-02-01

    The Zacapu lacustrine basin is located in the north-central part of the Michoacán-Guanajuato volcanic field (MGVF), which constitutes the west-central segment of the Trans-Mexican Volcanic Belt. Geological mapping of a 395 km2 quadrangle encompassing the western margin of the basin, 40Ar/39Ar and 14C radiometric dating, whole-rock chemical and petrographic analyses of volcanic products provide information on the stratigraphy, erupted volumes, age, and composition of the volcanoes. Although volcanism in the MGVF initiated since at least 5 Ma ago, rocks in the western Zacapu lacustrine basin are all younger than 2.1 Ma. A total of 47 volcanoes were identified and include 19 viscous lava flows ( 40 vol.%), 17 scoria cones with associated lava flows ( 36 vol.%), seven lava shields ( 15 vol.%), three domes ( 6 vol.%), and one maar ( 2 vol.%). Erupted products are dominantly andesites with 42 km3 ( 86 vol.%) followed by 4 km3 of dacite ( 8 vol.%), 1.4 km3 of basaltic trachy-andesite ( 3 vol.%), 1 km3 of basaltic andesite ( 2 vol.%), and 0.14 km3 of rhyolite ( 0.3 vol.%). Eruptive centers are commonly aligned ENE-WSW following the direction of the regional Cuitzeo Fault System. Over time, the high frequency of eruptions and consequent accumulation of lavas and pyroclastic materials pushed the lake's shore stepwise toward the southeast. Eruptions appear to have clustered through time. One cluster occurred during the Late Pleistocene between 27,000 and 21,300 BC when four volcanoes erupted. A second cluster formed during the Late Holocene, between 1500 BC and AD 900, when four closely spaced monogenetic vents erupted forming thick viscous `a'a to blocky flows on the margin of the lacustrine flats. For still poorly understood reasons, these apparently inhospitable lava flows were attractive to human settlement and eventually became one of the most densely populated heartlands of the pre-Hispanic Tarascan civilization. With an average eruption recurrence interval of 900 years during the Late Holocene the western Zacapu lacustrine basin is one of the most active areas in the MGVF and should hence be of focal interest for regional volcanic risk evaluations.

  10. Through the Looking Glass: Droughtorama to Snowpocalypse in the Sierra Nevada as studied with the NASA Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Bormann, K.; Deems, J. S.; Hedrick, A. R.; Marks, D. G.; Skiles, M.; Stock, G. M.

    2017-12-01

    Across the last five years, the Sierra Nevada has seen increasing drought and then an abrupt return to a top five snowpack. Fortunately, the NASA Airborne Snow Observatory has been flying the Central Sierra Nevada since the spring of 2013, quantifying critical mountain basins' snow water equivalent and snow albedo. The huge variation of snowpack years captured by the NASA ASO is of enormous benefit to water cycle science, ecosystem science, and water management utilization of ASO data and its modeling. It allows a much broader understanding of mountain basin snow season cases for understanding snowmelt runoff, snow/rain mixes, snowfall distribution, evapotranspiration, soil moisture, and glacier mass balance. For water management, trust in empirical and physically-based modeling from the ASO data for application anywhere in the range of snow years is greatly improved by having consistency in that modeling with the span of years ASO has characterized. The NASA ASO was designed to characterize mountain snowpack and fill this void in water cycle science. Our original conversations with partner California Department of Water Resources in 2011 focused on the utility of ASO for flood risk mitigation, given the large snowfall of that year. However, from 2012 through 2016, California snowpacks expressed horrible drought, reaching the nadir in 2015 with the lowest snowpack on record. The 2016 snowpack was nearly normal according to snow pillows and snow courses (ASO's record is too short to define a `normal' year). However, 2017 had enormous snowfall in January and February, keeping snow pillows on track with the largest year on record, 1982-83. However, March backed off and the record year was lost. Still, accumulation was enormous. In parts of the San Joaquin basin, snow depths were > 30 m. The sum of near April 1 ASO total basin SWE for 2013 through 2016 in the Tuolumne Basin was only 92% of the near April 1, 2017 acquisition. In addition to the large accumulation of snow in 2017, the snowpack was also covered with far greater impurities (dust, black carbon) across the snowmelt period than in the previous years, as expressed in the snow albedo and radiative forcing by dust and BC in snow from the ASO imaging spectrometer. In this presentation, we explore the importance of this opportunity for water cycle science and water management.

  11. Back-arc rifting at a continental margin: A case study from the Okinawa trough

    NASA Astrophysics Data System (ADS)

    Arai, R.; Kaiho, Y.; Takahashi, T.; Nakanishi, A.; Fujie, G.; Kodaira, S.; Kaneda, Y.

    2014-12-01

    The Okinawa trough, a back-arc basin formed behind the Ryukyu arc-trench system, southwest Japan, represents an active rifting zone associated with extension of the continental lithosphere. The basin is located at the southeastern margin of the Eurasian plate and characterized by axial rift valleys with over 1.0 km depth and ~100 km width. Previous studies suggest that the early rifting phase started late Miocene and crustal extension is currently active at a full rate of 30 to 50 mm/yr. Within the basin, numerous active hydrothermal vents are observed, suggesting that the crustal rifting enhances melt/heat transfer from the deep mantle up to the seafloor. However, internal structure beneath the back-arc basin and its relation to the rifting system are little documented. Complex regional tectonic setting, such as active collision in Taiwan to the west, oblique subduction of the Philippine Sea slab, and changing spreading rate along the rift axis, may also have significant influences on the thermal structure and flow within the mantle wedge, but their relative roles in controlling the rifting mode and magmatic supply are still poorly understood. As a step toward filling this gap in knowledge, we started a new 7-year project that consists of four two-dimensional active-source seismic experiments and extensive passive-source seismic observations along the Ryukyu arc. In 2013, active-source seismic data were collected on the first line that crosses the southernmost part of the Ryukyu arc-trench and Okinawa trough at 124-125°E. For refraction/wide-angle reflection analyses, a total of 60 ocean bottom seismographs were deployed with approximately 6 km spacing on a ~390-km-long profile. On the same line, multichannel seismic (MCS) reflection profiling was also carried out. Seismic velocity models obtained by first arrival tomography show that beneath the volcanic arc a thick layer (~10 km) of the middle crust with Vp = 6.0-6.8 km/s is developed, a typical feature in the major volcanic arc in the circum-Pacific region, but such thick layers are not observed beneath the Okinawa trough. Correspondingly, crustal thickness significantly varies: Crust thins from over 20 km beneath the volcanic arc to ~15 km beneath the back-arc basin.

  12. Common behaviour of the Adriatic and Black Seas level in the 20th century as response to a Mediterranean forcing.

    NASA Astrophysics Data System (ADS)

    Scarascia, Luca; Stanica, Adrian; Dinu, Irina; Lionello, Piero

    2017-04-01

    The Adriatic and Black Seas are two marginal seas, both connected with the Eastern Mediterranean Sea, through the Otranto and Bosporus straits respectively. This contribution aims to evidence the fraction of the interannual sea level variability that is common to the two basins, likely an effect of the common forcing produced by Mediterranean Sea. In order to identify the common signal, the effect of the main local factors (wind, inverse barometer effect, steric effects, river runoff) determining the larger fraction of the interannual sea level variability have been identified and subtracted. Using 7 and 5 tide gauge timeseries located along the Adriatic and Black Sea coasts respectively, provided by PSMSL (Permanent Service of Mean Sea Level), two seamless timeseries representing the sea level of the basins from 1900 to 2009 have been produced. The comparison with satellite data, between 1993 and 2009, confirms that these reconstructions are representative of the actual sea level in the two basins (values are 0.87 for the Adriatic and 0.72 for the Black Sea). When considering local factors, for the Adriatic Sea the annual cycle of inverse barometer effect, steric contribution due to local temperature and salinity variations, and wind set-up have been computed. For the Black Sea, the wind factor (negligible in this case) has been replaced by the Danube river contribution estimated from the available discharge data of Sulina (one of the exits of the Danube delta). After subtracting these local factors from the observed sea level of each basin, the correlation between the residual time series amounts to 0.47, suggesting the presence of a common factor acting at Mediterranean scale, which can be attributed to the effect of the large-scale circulation on the mass exchange between the Mediterranean and the two local basins. The present analysis is still unable to explain a non-negligible fraction of interannual variability of sea level of the Black Sea. This is likely, to a substantial extent, due to uncertainties of hydrographic data caused by their irregular distribution in space and time and to the lack of regular records of past river discharge for most rivers contributing to the Black Sea.

  13. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission (ZAMCON) should be established in the next future, Zambia recently refused to sign and ratify the ZAMCON Protocol and the road toward a fully cooperative framework is still long. Results show that increasing levels of information exchange can help in mitigating the conflict generated by a non-cooperative setting as it allows the downstream agents, i.e. Mozambique country, to better adapt to the upstream management strategies. Furthermore, the role of information exchange depends on the considered objectives and it is particularly relevant for environmental interests.

  14. Site Characterization for CO 2 Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Peter E.; Pashin, Jack; Carlson, Eric

    2013-11-29

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the westmore » of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.« less

  15. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    NASA Astrophysics Data System (ADS)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness grows, the sedimentary multiples will become stronger and arrive later, and will eventually interfere with Pms. In summary, although both VDSS and PRF are subject to sedimentary effects, when the sedimentary velocity is relatively high, we can still expect VDSS to give reasonable estimations of Moho depths, whereas PRF in such cases might be too noisy to use.

  16. Aquatic balance in Vegoritis Lake, West Macedonia, Greece, relating to lignite mining works in the area

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, D.; Grigorakou, E.; Koumantakis, J.

    2003-04-01

    Vegoritis Lake, which is located at Vegoritis closed Basin in West Macedonia, Greece, is the biggest lake in Greece. In 1994 the area of the lake was 35 Km2 with maximum depth 42 m at the northwestern part of the lake. It is the final receiving body of the surface runoff of the hydrological basin. Moreover, it is the surficial appearance of an enormous and not well-known karstic aquifer. Being a closed hydrological basin any interference in surface or groundwater conditions in every part of its area affects the level of the lake. The level of the lake in 1900 was 525 masl, in 1942 was 542 masl reaching the higher level of 543 masl in 1956. The increase of the level of the lake was due to the drainage of Ptolemais (Sarigiol) swamp through Soulou drain ditches that transfer the water in the lake. Since then, a continuous drawdown took place with small periods of rising of water level. Today, the level of the lake is declined in a smaller rate having reached the level of 510 masl. Water coming from the lake has been used in the past, and in some cases still does, for agricultural, industrial and domestic use, for hydropower generation and for the cooling system of power plants. Moreover, P.P.C. (Public Power Corporation of Greece) develops an intense activity in the area with the exploitation of the lignite deposits of the basin and power generation in several Power Plants. Few years ago significant quantities from Vegoritis Lake were used for hydro power of Agras Power Plant. With the elaboration of the existent data (water level measurements, recharge, discharge) the connection between the lowering of the surface of the lake and the subtracted quantities through the Arnissa Tunel the first years of its use, is obvious. The last twenty years the condition has change. Outflow through the Arnissa Tunnel for hydropower has stopped. The continued lowering of the level of the lake is caused, mainly, by overexploitation due to the intense increase of the irrigating land. The dewatering of the aquifers for the protection of the lignite mine seems to have an insignificant influence on the aquatic balance, as the water is discharged again into the streams and rivers of the closed basin.

  17. Synchronous changes in the rift-margin San Jose Island basin and initiation of the Alarcón spreading ridge: implications for rift to drift transition in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.; Sutherland, F.; Kent, G.; Harding, A.; Lizarralde, D.; Fletcher, J.; Holbrook, W.; Axen, G.; González-Fernández, A.

    2004-12-01

    The rift to drift hypothesis is widely cited, but it well known in detail. The low sedimentation rate and recent rifting of the Gulf of California provides insight into the rift-to-drift process. Lizarralde et al. (2007) showed that the style of rifting, based on crustal structure, varies significantly between the central and southern Gulf of California, and this combined with the analysis of sedimentary basins shows the small-scale (~15 km) complexities of the rift-to-drift transition. The shut off of rifting on the eastern side of the plate boundary occurred at ca. 2 - 3 Ma (Aragon-Arreola etal, 2005, Aragon-Arreola & Martin-Barajas, 2007; our unpublished data). Many studies have shown that the western side of the Gulf is still active despite sea-floor spreading occurring on the Alarcón and other short spreading centers since 2 - 3 Ma. At the mouth of the Gulf, magnetic anomalies on the eastern side of the Alarcón rise show that it appears to have changed to seafloor spreading as early as 3.7 Ma. But comparatively, on the eastern side, magnetic anomalies do not indicate the formation of new oceanic crust until 2.5 Ma, so spreading was first fully established at 2.5 Ma. The San Jose Island basin (Umhoefer et al., 2007) began at approximately 4- 6 Ma; the basin had its most rapid subsidence, with faulting accompanying marine sedimentation, from 3.6 ± 0.5 Ma (Ar tuff age) to 2.5-2.4 Ma (forams). Basin margin faulting died and moved east (offshore) shortly after 2.5-2.4 Ma. Late Quaternary marine terraces suggest that faulting rates slowed by 1-2 orders of magnitude since the fault reorganization at 2.5 Ma. These observations suggest that the rift - drift transition started, but is not yet finished, on the western side of the Gulf of California, with low rates of faulting (<1? mm/yr) continuing on the continental margin for reasons that are not well understood. Our work highlights the importance of combining onshore field and MSC data and analyzing entire conjugate rifted margins to accurately assess rifting processes.

  18. Synchronous changes in the rift-margin San Jose Island basin and initiation of the Alarcón spreading ridge: implications for rift to drift transition in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.; Sutherland, F.; Kent, G.; Harding, A.; Lizarralde, D.; Fletcher, J.; Holbrook, W.; Axen, G.; González-Fernández, A.

    2007-12-01

    The rift to drift hypothesis is widely cited, but it well known in detail. The low sedimentation rate and recent rifting of the Gulf of California provides insight into the rift-to-drift process. Lizarralde et al. (2007) showed that the style of rifting, based on crustal structure, varies significantly between the central and southern Gulf of California, and this combined with the analysis of sedimentary basins shows the small-scale (~15 km) complexities of the rift-to-drift transition. The shut off of rifting on the eastern side of the plate boundary occurred at ca. 2 - 3 Ma (Aragon-Arreola etal, 2005, Aragon-Arreola & Martin-Barajas, 2007; our unpublished data). Many studies have shown that the western side of the Gulf is still active despite sea-floor spreading occurring on the Alarcón and other short spreading centers since 2 - 3 Ma. At the mouth of the Gulf, magnetic anomalies on the eastern side of the Alarcón rise show that it appears to have changed to seafloor spreading as early as 3.7 Ma. But comparatively, on the eastern side, magnetic anomalies do not indicate the formation of new oceanic crust until 2.5 Ma, so spreading was first fully established at 2.5 Ma. The San Jose Island basin (Umhoefer et al., 2007) began at approximately 4- 6 Ma; the basin had its most rapid subsidence, with faulting accompanying marine sedimentation, from 3.6 ± 0.5 Ma (Ar tuff age) to 2.5-2.4 Ma (forams). Basin margin faulting died and moved east (offshore) shortly after 2.5-2.4 Ma. Late Quaternary marine terraces suggest that faulting rates slowed by 1-2 orders of magnitude since the fault reorganization at 2.5 Ma. These observations suggest that the rift - drift transition started, but is not yet finished, on the western side of the Gulf of California, with low rates of faulting (<1? mm/yr) continuing on the continental margin for reasons that are not well understood. Our work highlights the importance of combining onshore field and MSC data and analyzing entire conjugate rifted margins to accurately assess rifting processes.

  19. Health benefit from decreasing exposure to heavy metals and metalloid after strict pollution control measures near a typical river basin area in China.

    PubMed

    Cao, Suzhen; Duan, Xiaoli; Ma, Yingqun; Zhao, Xiuge; Qin, Yanwen; Liu, Yan; Li, Sai; Zheng, Binghui; Wei, Fusheng

    2017-10-01

    The metal(loid) pollution still is a great concern due to the effects from urbanization and industrialization. While, the health risks from the toxic metal(loid)s could decrease if strict pollution control measures were adopted. However, few studies to date investigate the health risks of heavy metal(loid)s in a systematic river basin for the dependent residents, after taking pollution control measures. Thus, the contents of metal(loid)s (Cu, Pb, Zn, Cd, Mn, As) in surface water along a typical river basin were investigated in this study, and the potential non-carcinogenic and carcinogenic health risks posed to the residents were assessed. Although the soluble contents of Cu, Pb, Zn and Cd exceeded the respective thresholds in two sites located downstream the mine area, they were greatly decreased in comparison with previous contamination levels, and the soluble concentrations of all the metal(loid)s were within the relevant thresholds in the sites far away from the mining area. Moreover, the closer to the mining area, the higher the pollution levels of metal(loid)s. The total hazard index for non-carcinogenic risks of metal(loid)s were basically lower than the threshold (1) for the local population. Whereas, although the content of metal(loid)s were low (such as As), they could pose relative higher non-carcinogenic health risks. The result illustrated that pollution levels, toxicity of the contaminants and exposure behavior patterns all could contribute to the potential detrimental health risks. Additionally, the non-carcinogenic and carcinogenic risks from ingestion exposure were ∼2-∼4 orders of magnitude higher than those from dermal contact. The total carcinogenic risks were basically lower than the maximum tolerable levels (1.0 × 10 -4 ), indicating carcinogenic risks from most areas of the river could also be accepted. Among different population groups, heavy metal(loid)s posed relative higher non-carcinogenic and carcinogenic risks to the children in 0-5 years old. Fortunately, the surface water in most area of this basin is safe in usage for the local population and the health risks were basically acceptable in case exposed to the target metal(loid)s, after the river basin was in the charge of strict pollution control measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Volcanic Infillings of Large Basins on Mercury as Indicators of Mantle Thermal State and Composition

    NASA Astrophysics Data System (ADS)

    Padovan, Sebastiano; Tosi, Nicola; Plesa, Ana-Catalina; Ruedas, Thomas

    2017-04-01

    The crust of Mercury is mostly the cumulative result of partial melting in the mantle associated with solid-state convection [1]. The details of how the surface composition represents the result of dynamical processes in the interior are difficult to elucidate. Explanations for the observed geochemically varied surface include a heterogeneous mantle, the effects of ancient giant impacts, an evolving mantle composition, or a combination of these processes [e.g., 2]. Here we explore the effects of large impacts on mantle dynamics and associated melt production. With the convection code GAIA we compute thermal evolution histories of Mercury compatible with the expected amount of heat producing elements in the mantle and with the crustal thickness inferred from gravity and topography data. We estimate the thermal anomalies in the mantle generated by large impacts using scaling laws [3]. Impactors have a velocity of 42 km/s and an impact angle of 45°, as appropriate for Mercury [4]. Their size is varied in order to produce basins with diameters in the range from 715 km (Rembrandt) to 1550 km (Caloris). Depending on the timing of the impact, the melt erupting in the basin interior is a combination of convective melt generated at depth and shallow melt resulting from shallow impact-induced convective currents. The volcanic infillings following an impact happening early in the evolution of the planet, when convection is still vigorous, are dominated by convective melt. Later in the evolution, the erupted melt shows the signature of the impact-induced shallow melt. We show that the properties of melt sheets within the young large basins Caloris and Rembrandt depend on the mantle thermal state and composition. In particular, we predict the source depth of the volcanic plains within large young basins to be different from the source depth of older surface units, a result that can help explaining the peculiar composition of the volcanic plains inside Caloris [2, 5]. [1] Tosi N. et al. (2013), JGR-Planets, 118, 2474—2487. [2] Weider S.Z. et al. (2015) EPSL, 416, 109—120. [3] Roberts J.H. and Barnouin O.S. (2012), JGR-Planets, 117, E02007. [4] Le Feuvre M. and Wieczorek M.A. (2008), Icarus, 197, 291—306. [5] Namur O. and Charlier B. (2017), Nature Geosc., 10, 9—13.

  1. Virus fate and transport during recharge using recycled water at a research field site in the Montebello Forebay, Los Angeles County, California, 1997-2000

    USGS Publications Warehouse

    Anders, Robert; Yanko, William A.; Schroeder, Roy A.; Jackson, James L.

    2004-01-01

    Total and fecal coliform bacteria distributions in subsurface water samples collected at a research field site in Los Angeles County were found to increase from nondetectable levels immediately before artificial recharge using tertiary-treated municipal wastewater (recycled water). This rapid increase indicates that bacteria can move through the soil with the percolating recycled water over intervals of a few days and vertical and horizontal distances of about 3 meters. This conclusion formed the basis for three field-scale experiments using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human enteric viruses and bromide as a conservative tracer to determine the fate and transport of viruses in recycled water during subsurface transport under actual recharge conditions. The research field site consists of a test basin constructed adjacent to a large recharge facility (spreading grounds) located in the Montebello Forebay of Los Angeles County, California. The soil beneath the test basin is predominantly medium to coarse, moderately sorted, grayish-brown sand. The three tracer experiments were conducted during August 1997, August-September 1998, and August 2000. For each experiment, prepared solutions of bacteriophage and bromide were sprayed on the surface of the water in the test basin and injected, using peristaltic pumps, directly into the feed pipe delivering the recycled water to the test basin. Extensive data were obtained for water samples collected from the test basin itself and from depths of 0.3, 0.6, 1.0, 1.5, 3.0, and 7.6 meters below the bottom of the test basin. The rate of bacteriophage inactivation in the recycled water, independent of any processes occurring in the subsurface, was determined from measurements on water samples from the test basin. Regression analysis of the ratios of bacteriophage to bromide was used to determine the attenuation rates for MS2 and PRD1, defined as the logarithmic reduction in the ratio during each experiment. Although the inactivation rates increased during the third tracer experiment, they were nearly two orders of magnitude less than the attenuation rates. Therefore, adsorption, not inactivation, is the predominant removal mechanism for viruses during artificial recharge. Using the colloid-filtration model, the collision efficiency was determined for both bacteriophage during the second and third field-scale tracer experiments. The collision efficiency confirms that more favorable attachment conditions existed for PRD1, especially during the third tracer experiment. The different collision efficiencies between the second and third tracer experiments possibly were due to changing hydraulic conditions at the research field site during each experiment. The field data suggest that an optimal management scenario might exist to maximize the amount of recycled water that can be applied to the spreading grounds while still maintaining favorable attachment conditions for virus removal and thereby ensuring protection of the ground-water supply.

  2. 100-kyr fluvial fill terrace cycles since the Middle Pleistocene in the southern Central Andes, Toro Basin, NW Argentina

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Schildgen, Taylor F.; Bookhagen, Bodo; Savi, Sara; Pingel, Heiko; Wickert, Andrew D.; Wittmann, Hella; Alonso, Ricardo N.; Strecker, Manfred R.

    2017-04-01

    Fluvial fill terraces in intermontane basins are valuable sedimentary and geomorphic archives that record tectonic and/or climate- driven changes of river networks and their adjacent hillslopes. However, the rarely complete preservation of such geomorphic features, often combined with large distances from sediment source areas, complicates the identification of causal links between tectonic/climatic forcing mechanisms and landscape response, especially over timescales of 105 to 106 years. The intermontane Quebrada del Toro Basin in the Eastern Cordillera of NW Argentina contains at least five fluvial terrace-surface remnants that have been sculpted into a succession of several-hundred-meter-thick Quaternary gravel conglomerate. These terraces can be followed over several tens of kilometers and are located in the higher part of the basin, close to the sediment source areas. In this study, we determined the onset of multiple river incision phases by dating the abandonment of the three most extensive and best preserved terrace surfaces with nine cosmogenic 10Be-depth profiles. The timing of terrace-gravel deposition is based on four cosmogenic 26Al/10Be burial ages and U-Pb zircon age estimates of three intercalated volcanic ashes in the conglomeratic fill. The 10Be depth profile ages suggest a successive abandonment of these terrace surfaces with a 100-kyr-cyclicity between 487 ± 34 ka and 75 ± 7 ka. Depositional ages of the conglomerates, determined by 26Al/10Be burial samples and U-Pb zircon ages, range from 936 ± 170 ka to 18 ± 141ka. They show a clear overlap with the terrace-surface abandonment ages and thus indicate the existence of multiple cut-and-fill cycles. Although the initial onset of aggradation of the Quaternary gravel conglomerate at ˜1 Ma and the overall net fluvial incision since ˜0.5 Ma can be linked to tectonic processes affecting the narrow basin outlet, the superimposed 100-kyr-cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods that are linked with regional humid phases recorded on the Bolivian Altiplano, 1000 km north of the Toro Basin. Deposition, on the other hand, occurs mainly during more arid conditions on the Altiplano (regional) and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation, reduced evapotranspiration, or both - resulted in increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. On the other hand during arid phases, the river runoff decreases and the still high sediment supply rates result in overall aggradation. Although located far from major ice-sheets, our study shows that global eccentricity-driven glacial-interglacial cycles also result in significant variations in the sediment-transport system in high mountains of the sub-tropics.

  3. Characteristics and seasonal variation of hydrochemistry in the Tangra Yumco basin, central Tibetan Plateau, and its response to Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wang, Junbo; Qiao, Baojin; Huang, Lei; Zhu, Liping

    2016-04-01

    Lake Tangra Yumco, located in central Tibetan Plateau, is the deepest lake recorded on the Plateau with a maximum water depth of 230m. Several studies have been conducted focused on paleoenvironmental changes utilizing lake sediemts cores and high lake terraces. The results revealed a significant lake level decreasing up to 180m from early Holocene and Tangra Yumco was separated from two other adjacent lakes since then. A high resolution continuous lake sediment record covering the past 17.4 cal ka has been established. However, compared with the high lake level and paleoenvironmental studies, modern investigations on the water in this basin are still lack. A comprehensive investigation of hydrochemistry is helpful to understand the modern environment and its response to climate change. This study focuses on the characteristics, seasonal variation and controlling mechanism of hydrochemistry in Tangra Yumco basin, including lake water, river water and rainfall water. Lake water, river water and rainfall water were collected for analyzing major ionic composition in Tangra Yumco basin during 2013-2014. The results showed that Na+ is the major cation of lake water; Ca2+ is the major cation of river and rainfall water, whereas the major anion of all samples is HCO3-. Comparison of the concentration of calcium in river water, lake water and surface sediments reveals a significant carbonate precipitation process within the lake. The chemical composition of lake is mainly controlled by evaporation and crystallization, whereas river water and rainfall water are mainly controlled by carbonate weathering. Among all rivers, DR10 and DR1 locate in the north and west part of Tangra Yumco where dense local populations live nearby show the highest and second highest total dissolved solid (TDS) with a small catchment and a high content of SO42-, indicating that anthropogenic input and planting have likely a strong influence on chemical compositions of both rivers. The TDS of lake water and river water is much higher during Indian summer monsoon (ISM) period than the pre-monsoon period. The TDS concentration of lake water shows a rapid increase from early August and reaches 2.5 times of pre-monsoon period within one month indicating that due to the rise of temperature and increase of rainfall, rock weathering is enhanced, thus the runoff could take much more chemical composition into the river and the lake. During the post-monsoon period, the TDS of lake water is still keeping in a high level as in monsoon period, probably resulting from the balance between concentration of ions due to lake water loss and decrease of terrestrial ion input. K+ and Cl- of rainfall may originate from evaporation of lake water and mineral aerosols, and the dissolved carbonates are responsible for the chemical composition of rainfall water.

  4. Scramble in the South China Sea: Regional Conflict and U.S. Strategy

    DTIC Science & Technology

    2013-02-14

    Basin Phu Kanh Basin Cuu Long Basin Nam Con Son Basin South China Sea Platform Baram Delta Basin Palawan Shelf Basin Greater Sarawak Basin...Basin 183 10,599 Greater Sarawak Basin 618 34,083 Phu Kanh Basin 116 10,679 Baram Delta Basin 4,056 12,546 Cuu Long Basin 1,599 487 Palawan Shelf

  5. Microgravity

    NASA Image and Video Library

    2001-05-02

    John Henson (grade 12) and Suzi Bryce (grade 10) conducted the drop from DuPont Manual High School in Louisville, Kentucky, conduct a drop with NASA's Microgravity Demonstrator. A camera and a TV/VCR unit let students play back recordings of how different physical devices behave differently during freefall as compared to 1-g. The activity was part of the education outreach segment of the Pan-Pacific Basin Workshop on Microgravity Sciences held in Pasadena, California. The event originated at the California Science Center in Los Angeles. The DuPont Manual students patched in to the event through the distance learning lab at the Louisville Science Center. This image is from a digital still camera; higher resolution is not available.

  6. Late Glacial to Early Holocene socio-ecological responses to climatic instability within the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Fernández-López de Pablo, Javier; Jones, Samantha E.; Burjachs, Francesc

    2018-03-01

    The period spanning the Late Glacial and the Early Holocene (≈19-8.2 ka) witnessed a dramatic sequence of climate and palaeoenvironmental changes (Rasmussen et al., 2014). Interestingly, some of the most significant transformations ever documented in human Prehistory took place during this period such as the intensification of hunter-gatherer economic systems, the domestication process of wild plants and animals, and the spread of farming across Eurasia. Understanding the role of climate and environmental dynamics on long-term cultural and economic trajectories, as well as specific human responses to episodes of rapid climate change, still remains as one of the main challenges of archaeological research (Kintigh et al., 2014).

  7. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  8. River pollution caused by natural stone industry

    NASA Astrophysics Data System (ADS)

    Oktriani, Ani; Darmajanti, Linda; Soesilo, Tri Edhi Budhi

    2017-03-01

    The natural stone industry is classified as small industry. Current wastewater treatment still causes pollution in the river. This thesis aims to analyze the performance of wastewater treatment in natural stones industry. The data was collected from water quality test (parameters: temperature, pH, DO, and TSS). The wastewater treatment performance was in a slightly higher position compared to the 2nd class quality standards of Government Regulation No. 82/2001. The parameter that exceeded quality standards was the concentration of TSS, which was up to 240.8 mg/l. The high concentration of TSS was affected by the absence of sludge management schedule, which resulted in non-optimal precipitation. Besides that, the design of sedimentation basin was still not adapted with wastewater debit. Referring to the results, this study suggests the government of Cirebon District to provide wastewater treatment development through the village staff. Furthermore, the government also needs to give strict punishment to business owner who does not treat waste correctly and does not have a business license. Moreover, the sale value of sludge as byproduct of wastewater treatment needs to be increased.

  9. Prospects of the New Science and Outreach Network Baltic Earth with Results of the Second Climate Change Assessment for the Baltic Sea Region (BACC II)

    NASA Astrophysics Data System (ADS)

    Reckermann, M.; Von Storch, H.; Omstedt, A. T.; Meier, M.; Rutgersson, A.

    2014-12-01

    The Baltic Sea region in Northern Europe spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It represents an old cultural landscape, and the Baltic Sea itself is among the most intensively studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. A major outcome of Baltic Earth will be the update of the BALTEX Assessment of Climate Change for the Baltic Sea Basin (BACC II). This new study after 5 years finds the results of BACC I still valid. Climate change can be detected at the regional scale but attribution is still weak. The effect of changing atmospheric aerosol loads and land use change is largely unknown so far and needs further attention in the coming years. For the observed changes in biogeochemical and ecological systems, multiple drivers are at work of which climate change is one. Their relative importance still needs to be evaluated. When addressing climate change impacts on e.g. forestry, agriculture, urban complexes and the marine and terrestrial environment in the Baltic Sea basin, a broad perspective is needed which considers not only climate change but also other significant factors such as emission changes, demographic, economic as well as land-use changes.

  10. On the measure of large woody debris in an alpine catchment

    NASA Astrophysics Data System (ADS)

    D'Agostino, V.; Bertoldi, G.; Rigon, E.

    2012-04-01

    The management of large woody debris (LWD) in Alpine torrents is a complex and ambiguous task. On one side the presence of LWD contributes to in-channel and floodplain morphological processes and plays an important role in landscape ecology and biodiversity. On the other side LWD increases considerably flood hazards when some river cross-sections result critical for the human interface (e.g. culverts, bridges, artificial channels). Only few studies provide quantitative data of LWD volumes in Alpine torrents. Research is needed both at basin scale processes (LWD recruiting from hillslopes) and at channel scale processes (feeding from river bank, storage/transport/deposition of LWD along the river bed). Our study proposes an integrate field survey methodology to assess the overall LWD amount which can be entrained by a flood. This knowledge is mandatory for the scientific research, for the implementation of LWD transport models, and for a complete hazard management in mountain basins. The study site is the high-relief basin of the Cordevole torrent (Belluno Province, Central Alps, Italy) whose outlet is located at the Saviner village (basin area of 109 square kilometers). In the November 1966 an extreme flood event occurred and some torrent reaches were heavily congested by LWD enhancing the overall damages due to long-duration overflows. Currently, the LWD recruitment seems to be strictly correlated with bank erosion and hillslope instability and the conditions of forest stand suggest LWD hazard is still high. Previous studies on sub-catchments of the Cordevole torrent have also shown an inverse relation between the drainage area and the LWD storage in the river-bed. Present contribution analyzes and quantifies the presence of LWD in the main valley channel of the Cordevole basin. A new sampling methodology was applied to integrate surveys of riparian vegetation and LWD storage. Data inventory confirms the previous relationship between LWD volumes and drainage area and indicates the floating as primary origin of LWD presence in the river bed. The total amount of LWD at the basin outlet resulted 1300 cubic meters corresponding to about 12 cubic meters per square kilometer of drainage area. Additional data about in-channel dynamics and threshold discharges to move LWD are in progress. These will be obtained through an innovative monitoring approach based on active transponders (RFID, Radio Frequency Identification). 70 transponder have been inserted in selected LWD samples and 70 transponders will be inserted in standardized artificial LWD to carry out experiments during the snowmelt season. A fixed antenna is located at the outlet section on a check-dam together with a video-camera and a hydrometer. The overall arrangement of the LWD monitoring system under test is then presented.

  11. Comparison of Prognostic and Diagnostic Approaches to Modeling Evapotranspiration in the Nile River Basin

    NASA Astrophysics Data System (ADS)

    Yilmaz, M.; Anderson, M. C.; Zaitchik, B. F.; Crow, W. T.; Hain, C.; Ozdogan, M.; Chun, J. A.

    2012-12-01

    Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing data, prognostic models offer continuous sub-daily ET information together with the full set of water and energy balance fluxes and states (i.e. soil moisture, runoff, sensible and latent heat). On the other hand, the diagnostic modeling approach provides ET estimates over regions where reliable information about available soil water is not known (e.g., due to irrigation practices or shallow ground water levels not included in the prognostic model structure, unknown soil texture or plant rooting depth, etc). Prognostic model-based ET estimates are of great interest whenever consistent and complete water budget information is required or when there is a need to project ET for climate or land use change scenarios. Diagnostic models establish a stronger link to remote sensing observations, can be applied in regions with limited or questionable atmospheric forcing data, and provide valuable observation-derived information about the current land-surface state. Analysis of independently obtained ET estimates is particularly important in data poor regions. Such comparisons can help to reduce the uncertainty in the modeled ET estimates and to exclude outliers based on physical considerations. The Nile river basin is home to tens of millions of people whose daily life depends on water extracted from the river Nile. Yet the complete basin scale water balance of the Nile has been studied only a few times, and the temporal and the spatial distribution of hydrological fluxes (particularly ET) are still a subject of active research. This is due in part to a scarcity of ground-based station data for validation. In such regions, comparison between prognostic and diagnostic model output may be a valuable model evaluation tool. Motivated by the complementary information that exists in prognostic and diagnostic energy balance modeling, as well as the need for evaluation of water consumption estimates over the Nile basin, the purpose of this study is to 1) better describe the conceptual differences between prognostic and diagnostic modeling, 2) present the potential for diagnostic models to capture important hydrologic features that are not explicitly represented in prognostic model, 3) explore the differences in these two approaches over the Nile Basin, where ground data are sparse and transnational data sharing is unreliable. More specifically, we will compare output from the Noah prognostic model and the Atmosphere-Land Exchange Inverse (ALEXI) diagnostic model generated over ground truth data-poor Nile basin. Preliminary results indicate spatially, temporally, and magnitude wise consistent flux estimates for ALEXI and NOAH over irrigated Delta region, while there are differences over river-fed wetlands.

  12. Basin-scale characterization of river hydromorphology by map derived information: A case study on the Red River (Sông Hông), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J.; Bizzi, S.; Castelletti, A.

    2012-12-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since fluvial geomorphic processes shape physical habitat, affect river infrastructures and influence freshwater ecological processes. Characterization of river hydromorphological features is commonly location specific and highly demanding in terms of field-works, resource and expertise required. Therefore, its routine application at regional or national scales, although an urgent need of catchment management, is infeasible at present. Recently available high-resolution data, such as DEM or LIDAR, opens up novel potential for basin-wide analysis of fluvial processes at limited effort and cost. Specifically, in this study we assess the feasibility of characterizing river hydromorphology from specific map derived geomorphic controls namely: channel gradient, bankfull flow, specific stream power, and degree of channel confinement. The river network, extracted from a digital elevation model and validated with available network shape-files and optical satellite imagery, available flow gauging stations and GIS processing allow producing continuous values of geomorphic drivers defined over given length segments at catchment or regional scales. This generic framework was applied to the Red River (Sông Hông) basin, the second largest basin (87,800 km2) in Vietnam. Besides its economic importance, the river since few years is experiencing severe river bed incisions due to the building of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high developing rate, current efforts to increase water productivity by infrastructure and management measures require a thorough understanding of fluvial system and, in particular, of the basin-wide river hydromorphology. The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model that is capable of learning from complex, multidimensional data without specification of what the outputs should be, and of generating a nonlinear classification of visually decipherable clusters. The use of the above framework allowed to analyze the spatial distribution of geomorphic features at catchment scale, reviling patterns of similarities and dissimilarities within the catchment and allowing classification of river reaches characterized by similar geomorphic drivers and then likely (but still to be validated) fluvial processes. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale opening the way towards regional or national scale hydromorphological assessments through automatic GIS and statistical procedures with moderate effort, an urgent requirement of modern catchment management.

  13. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward propagation of the main faults. The evolution of the sedimentary provenance can be explained by overall forward propagation of deformation in the Himalayan fold-thrust belt. In both the eastern and western syntaxes, it also shows stability of the major drainage systems of the Yarlung-Brahmaputra and Indus, respectively, suggesting that hinterland river incision kept pace with uplift of the syntaxes during the Neogene. Drainage reorganization may take place in the foreland basin because of thin-skinned tectonics but did not significantly affect sediment routing and the contribution of different sources of the upper catchment to the overall sediment budget. In contrast, major rivers in the Central Himalaya (such as the Kali Gandaki or the Karnali) could have been affected by changes in their upper catchment.

  14. Investigating high concentrations of three greenhouse gases in the Los Angeles Basin and San Bernardino Valley

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Blake, D. R.; Marrero, J.

    2013-12-01

    Following the Montreal Protocol of 1987 calling for the phase-out of CFCs and other ozone depleting substances, HCFCs and HFCs were introduced as alternatives despite still being greenhouse gases with high global warming potentials. In this study, whole air samples were collected during four research flights over Southern California aboard the NASA DC-8 Airborne Science Laboratory as part of the NASA Student Airborne Science Program. These samples were then analyzed by gas chromatography using a suite of detectors for many compounds, including HFC-134a, HCFC-22, and HFC-152a. HCFC-22 is primarily used as a refrigerant, while HFC-134a and HFC-152a are also used as aerosol propellants and foam blowing agents. High concentrations of these three compounds were observed for samples taken at low altitudes over urban areas around Los Angeles and San Bernardino. Exceptionally high concentrations were seen for all three compounds in samples taken near the Ontario and San Bernardino airports. Concentrations of HFC-134a, HCFC-22, and HFC-152a were enhanced above background levels near other airports sampled in the Los Angeles Basin and San Bernardino Valley. It is clear that concentrations of these three gases are higher in the San Bernardino Valley than in the Los Angeles Basin, and locations with exceptionally high concentrations were investigated to identify potential point sources. Concentrations of these three compounds were also compared to data from past SARP missions and data collected at Trinidad Head, California since 2005 as part of the AGAGE network. Comparison of the average values for each of these campaigns reveal that the background concentrations of HFC-134a, HCFC-22, and HFC-152a are all increasing with a strong linear trend in Southern California.

  15. Mineralogy and Geochemical Evidence of the Late Early Miocene Aridification Intensification in Xining Basin Caused By the Northeastern Tibetan Plateau Uplift

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xiao, G.; Wu, H.; Hao, Q.; Guo, Z.

    2014-12-01

    A typical inland aridification is present in Central Asia, global cooling, the retreat of Para-Tethys Sea and Tibetan Plateau uplift have been thought to be the main driving forces of the climate change in interior Asia during Cenozoic. However, only few terrestrial climate records from the Asian inland were extended to the late Oligocene-early Miocene, it is still unclear the evolution of aridification before the middle Miocene and which of these driving forces plays the key role. Here, a sedimentary, mineralogy and geochemical proxies record of the early Miocene sedimentary sequence (ca. 22.1 to 16.7 Ma) from Xining Basin was present in this paper, which locates in the northeastern side of Tibetan Plateau. Mineralogical and geochemical parameters show obvious two stages climate change. During ~ 22.1-19 Ma (Unit I), the enrichment of I/S (irregular mixed-layers of illite and smectite) content, high values of a*/L* and much stronger chemical weathering degree reveal a warm and humid climate condition. During 19-16.7 Ma (Unit II), the increase of chlorite and dolomite contents, the upward decrease of a*/L* and much weaker chemical weathering than Unit I suggest evidently increased aridity since ca. 19 Ma. Comprehensive comparisons among records from the central western China demonstrate that the aridification since ca. 19 Ma is widespread in northeastern of Tibetan Plateau. The early Miocene episodic uplift of the north and northeastern Tibetan Plateau, especially, the uplift of Laji Shan at ~22 Ma, possibly have played a key role in the aridification of the Xining Basin.

  16. Thin-skinned tectonics in the Central Basin of the Iranian Plateau in the Semnan area, Central Iran

    NASA Astrophysics Data System (ADS)

    Bouzari, Soheila; Konon, Andrzej; Koprianiuk, Marek; Julapour, Ali A.

    2013-01-01

    During continent-continent convergence of the Arabian and Eurasian plates, and after the late Eocene inversion of a back-arc rift, the Iranian Plateau underwent broad subsidence resulting in the formation of the Central Basin (Morley et al., 2009). New 2D seismic data acquired by National Iranian Oil Company (NIOC) in the NW-SW-trending arm of the Central Basin suggest that during the main stage of shortening (middle-late? Miocene to Pliocene), strain concentrations resulted in the development of the thin-skinned Kuh-e-Gachab, Kuh-e-Gugerd, Garmsar and Sorkh-e-Kuh structures. These structures are built of Oligocene-Miocene/Pliocene(?) rocks belonging to the Lower Red, Qom and Upper Red formations. Seismic data suggest that one of these structures comprises the south-verging Kuh-e-Gachab anticline, which is bounded by the N-dipping Kuh-e-Gachab thrust and cored by a complex array of thrust sheets forming a triangle zone. During the deformation process, two salt evaporate levels played a significant role as detachment horizons. The main detachment horizon was rooted within the Lower Red Formation, whereas the second detachment horizon was located along evaporites belonging to the Upper Red Formation. Variations in the thin-skinned style of deformation between the larger triangle zone in the western part of the Kuh-e-Gachab structure contrasts with less shortening in the smaller triangle zone to the east. This suggests that the change resulted from the increase of thickness of the mobile detachment horizon to the east. Contraction deformations are still active south of the Alborz Mountains, which is confirmed by GPS data and present-day seismicity.

  17. Water Resources Planning under Uncertainty: A "Real Options" Approach

    NASA Astrophysics Data System (ADS)

    Jeuland, M. A.; Whittington, D.

    2011-12-01

    This research develops a real options approach for planning new water resources developments, in infrastructure construction and system operation, under uncertainty. The approach treats the planning problem as a series of staged decisions - the selection of new projects; their scale, timing and sequencing; and finally their operating rules - each of which is characterized by varying levels of irreversibility. The performance of different configurations of the system is then assessed along the various dimensions of the decision space, using simulation methods. The methodology is then made operational using an existing hydrological simulation model that can be used to study the example of hydropower development options in the Blue Nile in Ethiopia. The model includes physical linkages between climate change and system hydrology, and allows users to test the sensitivity of the basin-wide economic consequences of dams, which consist of energy generation, changes in irrigation crop-water demand, the value of flood control, and other basin-wide impacts, to climate change or changes in runoff, as well as to other uncertainties. The analysis shows that, from an economic perspective, there is no single optimal system configuration across a range of future climate conditions deemed plausible for this basin. For example, small infrastructures perform best in scenarios with reduced runoff into the river, whereas large ones are best when runoff increases. The real options framework therefore becomes useful for helping to identify configurations that are both more robust to poor outcomes and still contain sufficient flexibility to capture high upside benefits should favorable future conditions arise. The framework could readily be extended to explore a range of features that could be usefully built into water resources projects more generally, to improve the long-term economic performance of such investments.

  18. Hydrogeochemical assessment of arsenic in groundwater and its policy implication: a case study in Terai Basin, Nepal

    NASA Astrophysics Data System (ADS)

    Gurung, J. K.; Upreti, B. N.; Kansakar, D. R.

    2007-12-01

    Arsenic contamination at levels above the WHO guideline (10 ìg/l) in groundwater is a worldwide problem due to its detrimental effects on health and now known to be a problem also in the Terai Basin of Nepal, posing a serious threat to more than 10 million people. The distribution of arsenic in the basin, however, is patchy. The study emphasizes on the three different types of research into an interdisciplinary package that can be immediately useful to government agencies in Nepal trying to deal with groundwater contamination. They are: hydrogeological assessment of water sources and flow, geochemical analysis of groundwater, and assessment of practical public policy. Basic geochemical analysis gives the abundance and distribution of arsenic along with other physico-chemical parameters of groundwater, whereas, the hydrogeological assessment as an integral part of this study that assist in determining process of mobilization or attenuation of arsenic. Arsenic levels and other key parameters mainly pH, electrical conductivity, chemical oxygen demand, iron, and biological parameter as E-coli were observed at the various locations with different transmissivity values. The study suggests that the flushing rate of an aquifer plays an important role in arsenic content. High flushing rates of an aquifer lead to low levels of arsenic, however the mechanism of this process is still under study. Transmissivity the property of an aquifer that measures the rate at which ground water moves horizontally through a unit is the main factor for controlling flushing. Concentration maps overlaying the base transmissivity map reveals relation of groundwater movement and arsenic concentration. Understanding the relationship between groundwater movement and arsenic content helps planners protect uncontaminated aquifers from future contamination. Also assessment of public policy related to groundwater has identified important changes needed in the existing policy.

  19. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    NASA Technical Reports Server (NTRS)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  20. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    PubMed

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

Top