Science.gov

Sample records for stimulate alternative energy

  1. Shoreside Alternative Energy Evaluation

    DTIC Science & Technology

    2002-09-01

    in November 2000 titled, Shoreside Alternative Energy Evaluation. This study of alternative energies focused on usage of natural gas, and included...energy sources such as costs, benefits, and logistic availability. This study of alternative energies focused on usage of natural gas and included...resources in this area. Recognizing Air Station Cape Cod as a leader in utilizing alternative energies , the Research and Development Center established

  2. Alternatives in solar energy

    NASA Technical Reports Server (NTRS)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  3. Energy conversion alternatives study

    NASA Technical Reports Server (NTRS)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  4. Alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Dresselhaus, M. S.; Thomas, I. L.

    2001-11-01

    Fossil fuels currently supply most of the world's energy needs, and however unacceptable their long-term consequences, the supplies are likely to remain adequate for the next few generations. Scientists and policy makers must make use of this period of grace to assess alternative sources of energy and determine what is scientifically possible, environmentally acceptable and technologically promising.

  5. The energy cane alternative

    SciTech Connect

    Alexander, A.G.

    1985-01-01

    This book reviews the conceptual and theoretical background of Saccharum botany, which underlies the growing of cane as a total growth commodity. Management details are provided for energy cane planting, cultivation, harvest, and postharvest operations. Chapters on energy cane utilization stress new developments in lignocellulose conversion plus alternative options for fermentable solids usage. Chapters are also included for the management of alternative grasses to supplement energy cane, and the breeding of new hybrid canes with high biomass attributes at the intergeneric and interspecific levels.

  6. Exploring new energy alternatives.

    SciTech Connect

    LePoire, D.J.

    2011-09-01

    What is most likely to satisfy our energy needs in the future - wind farms and photovoltaic arrays, or something yet to be invented? Options for the world's energy future may include surprises, thanks to innovative research under way around the world. The article focuses on the energy sources alternatives in the U.S. It explores innovations for energy sources such as wind farms, solar thermal concentrators, solar cells, and geothermal energy production. It states that the attainment of energy efficiency through conversation or improved technology allows to extract more applied energy. It points out that techniques are being explored to expand the possible fuel materials to includes other types of uranium and thorium. Furthermore, it discusses the capability of nanotechnology in offering a tool which could help create designs that convert energy more efficiently.

  7. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  8. Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation.

    PubMed

    Kar, Kohitij; Duijnhouwer, Jacob; Krekelberg, Bart

    2017-03-01

    We previously showed that brief application of 2 mA (peak-to-peak) transcranial currents alternating at 10 Hz significantly reduces motion adaptation in humans. This is but one of many behavioral studies showing that weak currents applied to the scalp modulate neural processing. Transcranial stimulation has been shown to improve perception, learning, and a range of clinical symptoms. Few studies, however, have measured the neural consequences of transcranial current stimulation. We capitalized on the strong link between motion perception and neural activity in the middle temporal (MT) area of the macaque monkey to study the neural mechanisms that underlie the behavioral consequences of transcranial alternating current stimulation. First, we observed that 2 mA currents generated substantial intracranial fields, which were much stronger in the stimulated hemisphere (0.12 V/m) than on the opposite side of the brain (0.03 V/m). Second, we found that brief application of transcranial alternating current stimulation at 10 Hz reduced spike-frequency adaptation of MT neurons and led to a broadband increase in the power spectrum of local field potentials. Together, these findings provide a direct demonstration that weak electric fields applied to the scalp significantly affect neural processing in the primate brain and that this includes a hitherto unknown mechanism that attenuates sensory adaptation.SIGNIFICANCE STATEMENT Transcranial stimulation has been claimed to improve perception, learning, and a range of clinical symptoms. Little is known, however, how transcranial current stimulation generates such effects, and the search for better stimulation protocols proceeds largely by trial and error. We investigated, for the first time, the neural consequences of stimulation in the monkey brain. We found that even brief application of alternating current stimulation reduced the effects of adaptation on single-neuron firing rates and local field potentials; this mechanistic

  9. Comparing solar energy alternatives

    NASA Astrophysics Data System (ADS)

    White, J. R.

    1984-03-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  10. Alternate policies for alternate energy sources

    SciTech Connect

    Hall, F.F.

    1985-09-01

    Some ''alternates within alternates'' are studied and possible improvement of our energy policies are explored. The viability of a hydrogen fuel economy is reviewed. Methanol, ethanol or ammonia versus hydrogen is one area of interest. Others include liquid hydrogen versus jet fuels, the use of geothermal, solar, wind or water energy for production of hydrogen gas versus development of deep earth supplies of natural gas is another. Energy enhancement as opposed to energy conservation is investigated with regard to polar climate and what might be done to improve natural energy balances, particularly in the northern hemisphere. Pumping Arctic Ocean water out into the Pacific Ocean via the Bering Strait would be an energy debit as opposed to energy gains such as biomass conversion of future plant growth throughout the Siberian and Canadian tundra regions and presently very arid desert regions, improved access to northern region fuel, metal ore and mineral resources, year-round shipping and fishing fleet operations in the Arctic Ocean and development of the tremendous Greenland hydro-electric power potential.

  11. Alternative Energy Development and China's Energy Future

    SciTech Connect

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  12. Alternative Energy Busing

    ERIC Educational Resources Information Center

    LaFee, Scott

    2012-01-01

    In recent years, school districts have converted portions of their bus fleets to cleaner-burning, sometimes cheaper, alternative fossil fuels, such as compressed natural gas or propane. Others have adopted biodiesel, which combines regular diesel with fuel derived from organic sources, usually vegetable oils or animal fats. The number of biodiesel…

  13. Military Energy Alternatives Conference

    DTIC Science & Technology

    2012-03-08

    Mobile Power (PM MEP / PM CP) Vehicle Power (PM Tactical Vehicle / PM HTV) Portable Solar Photovoltaic ( PV ) Modules and Mobile Hybrid PV Power Sources...Photovoltaic ( PV ), Solar Thermal, & Wind Energy Harvesting •Waste-to-Energy (W2E) and Gas to Liquids (GTL) •Waste heat recovery, Heat-actuated Cooling...solutions to ensure mission success and their safe return home. CERDEC Renewable Energy Team Mission Summary Enabling Technologies • Hybrid Power

  14. Peat as an energy alternative

    SciTech Connect

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  15. Experiences in mainstreaming alternative energy

    SciTech Connect

    Cabraal, A.

    1997-12-01

    The author discusses efforts by the Asia Alternative Energy Unit (ASTAE) of the World Bank in supporting alternative energy source projects in Asia. Energy growth rates have been as high as 18% per year, with power capacity doubling each decade in the 1960`s, 70`s and 80`s. Much of this has come from fossil fuel projects coupled with major hydroelectric projects. One consequence is developing air pollution loads originating in Asia. ASTAE has been supporting pilot programs in applying alternative energy sources. The goal has been to mainstream renewable energy sources in World Bank operations, by working with managers from different countries to: include renewable energy in country assistance strategies and sectorial development plans; provide assistance to renewable energy initiatives; expand initiatives to new countries, sectors and technologies.

  16. Alternative Energy Solutions

    SciTech Connect

    Cowley, David E.; Berman, Marc J.; Breinlinger, Helmut; Gilly, Ladina; Graves, Sam; Kovatch, Patricia; Kulesza, Pete; Martinez, Dave; Minyard, Tommy; Prucnal, Dave; Seager, Mark; Vadgama, Ash

    2011-03-19

    How can HPC centers reduce cost and environmental impact by making creative use of local natural resources? Energy efficiency inside the data center is only part of the story. In keeping with the principle of reduce, reuse, recycle, we should be able to take advantage of local resources to increase efficiency either at new or existing locations. Are there creative ways to reduce PUE below 1? Is a more meaningful way needed to express and measure the environmental effects of operating HPC centers? We will explore approaches such as sustainable energy sources, use of ambient external air or water temperatures, and reuse of "waste" heat.

  17. Alternate Propulsion Energy Sources

    DTIC Science & Technology

    1983-12-01

    Fermilab in the USA. The antiprotons are generated by the collision of high energy protons with multiple arrays of thin metal targets. The high...UNCLASSIFIED AD NUMBER ADB088771 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S...EdwarsAFB CA 93523erne_ .... • ir cont-rac--o-S Report distribution limited to ... . .y, Critical Technology,14-Ne 4. .. 9A2 M - Other requests for this

  18. Renewable Energy Alternatives in Maryland.

    ERIC Educational Resources Information Center

    Welsh, Greg E.; McClellan, Deborah A. S.

    This handbook discusses the renewable energy resources suitable for use in Maryland. It follows a question and answer format with sections about the following alternative renewable energy sources; solar, wind, wood, water, bio-gas/methane, and geothermal. Each section includes a list of recommended readings, appropriate agencies or organizations,…

  19. Radiant energy required for infrared neural stimulation

    PubMed Central

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-01-01

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS. PMID:26305106

  20. Radiant energy required for infrared neural stimulation

    DOE PAGES

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; ...

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less

  1. Radiant energy required for infrared neural stimulation.

    PubMed

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm(2), respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.

  2. Radiant energy required for infrared neural stimulation

    SciTech Connect

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.

  3. Looking for alternative energy sources.

    PubMed

    Gross, Michael

    2012-02-21

    With unrest in oil-exporting countries, backlashes against biofuels and photovoltaics, and a nuclear incident in Japan, the year 2011 rattled confidence in future energy supplies. The search for alternatives is all the more urgent, but some of the solutions investigated hark back to fossil fuels that we can't afford to burn.

  4. State Energy Alternatives: Alternative Energy Resources by State

    DOE Data Explorer

    This U.S. map provides state by state information on incentives and laws related to alternative fuels and advanced vehicles. Discover what's available in each state for innovation grants, infrastructure grants, and production grants and who to contact. Find out how many alternative refueling stations are available in each state and where they are. Tennessee, for example, in 2009, has 114 alternative refueling stations: 36 biodiesel, 1 electrical, 29 ethanol, 4 natural gas, and 44 propane. There are also 5 Truck Stop Electrification (TSE) sites in Tennessee. Users can also find out from this map interface the contacts for Clean Cities in a state, information about renewable energy projects and activities in each state, fuel prices across a state, and biomass potential resources and current production in each state.

  5. Ambitious Philippine alternative energy plans

    SciTech Connect

    Not Available

    1981-09-07

    The Philippines is to spend $5.4 billion over the next ten years for the development of alternative sources of energy. These would include the development of fuel woods and other biomass, and the commercialization of a coconut/diesel-oil fuel. It is hoped that the Philippines' dependence on imported oil will be reduced from about 80% today to around 50% by the end of the decade.

  6. Alternate Energy for National Security.

    NASA Astrophysics Data System (ADS)

    Rath, Bhakta

    2010-02-01

    Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )

  7. Alternative energy technologies for the Caribbean islands

    SciTech Connect

    Pytlinski, J.T. )

    1992-01-01

    All islands in the Caribbean except Puerto Rico can be classified as developing islands. Of these islands, all except Trinidad and Tobago are oil importers. Uncertainties concerning uninterrupted oil supply and increasing oil prices causes economic, social and political instability and jeopardizes further development of these islands. The paper discusses the energy situation of the Caribbean islands and presents alternative energy options. Several alternative energy projects financed by local, federal and international organizations are presented. Present and future uses of alternative energy technologies are described in different islands. Barrier which handicap developing and implementing alternative energy sources in the Caribbean are discussed. The potential and possible applications of alternative energy technologies such as: solar-thermal energy, photovoltaics, wind energy, ocean thermal energy conversion (OTEC), ocean currents and tides energy, biomass, peat energy, municipal solid wastes, bioconversion, hydropower, geothermal energy, nuclear energy and energy conservation are discussed in detail as means to alleviate the energy situation in the Caribbean islands.

  8. Alternate Energy from the Desert

    NASA Astrophysics Data System (ADS)

    Malek, E.

    2003-12-01

    Due to rapid growth of the world's population and more demands for energy, and due to limited amount of fossil fuels (which provide 95 % of the world's energy needs), harnessing of alternate energy sources such as solar and wind power should be considered. In addition to the mountain passes with usually high wind, vast and flat desert areas could be good candidates for harvesting both solar and wind power. We set up a weather station in the middle of a desert, approximately 65 km east-west by 130 km north-south, located at Dugway (40\\deg 08' N, 113\\deg 27' W, 1124 m above mean sea level) in northwestern Utah, USA, in 1999. This station measured the incoming (Rsi) and outgoing (Rso) solar or shortwave radiation using two CM21 Kipp & Zonen pyranometers (one inverted), the incoming (Rli or atmospheric) and outgoing (Rlo or terrestrial) longwave radiation, using two CG1 Kipp & Zonen pyrgeometers (one inverted), and the net (Rn) radiation using a Q*7 net radiometer (Radiation Energy Balance System, REBS). We also measured the 3-m wind speed (U3) and direction (R.M. Young wind monitor) and precipitation (Campbell Sci., Inc.) and some other weather parameters. The measurements were taken every two seconds, and averaged into 20-min, continuously, throughout the year. The two-year (January 2000 - December 2001) period comparisons of global or solar radiation and windiness with two other stations in central (Hunter) and northern (Logan) Utah, indicate higher average solar radiation [Rsi,Dugway = 601 MJ / (m2-month) vs. Rsi, Hunter = 5371 MJ /(m2-month) and Rsi, Logan = 516 MJ /(m2-month)] and much higher 10-m average wind (UDugway = 478 km/d vs. UHunter = 323 km/d and ULogan = 275 km/d) throughout the period over the desert. These data reveal the possibility of simultaneously harvesting these two sources of clean energies at this vast and uniform desert area. Keywords: Desert, energy, radiation balance, solar and wind energies, windiness.

  9. Economics of alternative energy sources.

    PubMed

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  10. Alternative Energy Lessons in Scotland

    NASA Astrophysics Data System (ADS)

    Boyle, Julie

    2010-05-01

    In Scotland the new science curriculum for pupils aged 12 to 15 shall include the following outcomes: "Using my knowledge and understanding, I can express an informed view on a national or global environmental issue;" "I have participated in constructing a model to harness a renewable source of energy and can investigate how to optimise the output;" and "I can discuss why it is important to me and to the future of the world that alternatives to fossil fuels are developed." There will be an emphasis on creating lessons that will nurture responsible citizens, improve pupil engagement and allow students to develop their team working skills. To help teachers plan lessons to address this, the Scottish Schools Equipment Research Centre and Edinburgh University made teaching materials on four renewable energy resources. This poster describes how their suggested activities on solar cells, wind turbines, hydroelectric power stations and wave power were used in science lessons with twelve year old students. After an initial class discussion based on issues related to climate change and diminishing fossil fuel supplies, a workshop activity was carried out in three stages. The students were issued with a fact sheet about one of four imaginary islands (Skisdale, Cloudy Island, Surfsville and Sun City) and they were asked to work in teams to choose the most suitable method of generating electricity for their island. Issues such as costs, where it will be sited and environmental implications were considered. They were then asked to conduct practical activities by constructing and testing models for these forms of renewable energy. To conclude, they presented their proposal to the rest of the class with reasoned explanations. The kits used in the lessons can be purchased from Anderson Scientific (sales@andersonscientific.co.uk). The solar cells were simply connected to a voltmeter. The wind and hydroelectric groups used the same basic equipment. This was made using a small water

  11. Alternative Energy for Higher Education

    SciTech Connect

    Michael Cherney, PhD

    2012-02-22

    This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time dashboard and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.

  12. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  13. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    PubMed

    Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes

    2015-01-01

    This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  14. Emerging Energy Alternatives for the Southeastern States

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K. (Editor)

    1978-01-01

    The proceedings of the first symposium on emerging energy alternatives for the Southeastern States are presented. Some topics discussed are: (1) solar energy, (2) wood energy, (3) novel energy sources, (4) agricultural and industrial process heat, (5) waste utilization, (6) energy conservation and (7) ocean thermal energy conversion.

  15. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  16. Alternative Sources of Energy: A Course in Energy Education.

    ERIC Educational Resources Information Center

    Gupta, Gian

    1983-01-01

    Describes a course designed to familiarize students with alternative sources of energy, with emphasis on problem-solving strategies. Includes list of major topics/subtopics addressed and list of textbooks and recommended readings on alternative energy sources. (JN)

  17. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  18. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  19. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  20. Transcranial Alternating Current Stimulation with Sawtooth Waves: Simultaneous Stimulation and EEG Recording.

    PubMed

    Dowsett, James; Herrmann, Christoph S

    2016-01-01

    Transcranial alternating current stimulation (tACS) has until now mostly been administered as an alternating sinusoidal wave. Despite modern tACS stimulators being able to deliver alternating current with any arbitrary shape there has been no systematic exploration into the relative benefits of different waveforms. As tACS is a relatively new technique there is a huge parameter space of unexplored possibilities which may prove superior or complimentary to the traditional sinusoidal waveform. Here, we begin to address this with an investigation into the effects of sawtooth wave tACS on individual alpha power. Evidence from animal models suggests that the gradient and direction of an electric current should be important factors for the subsequent neural firing rate; we compared positive and negative ramp sawtooth waves to test this. An additional advantage of sawtooth waves is that the resulting artifact in the electroencephalogram (EEG) recording is significantly simpler to remove than a sine wave; accordingly we were able to observe alpha oscillations both during and after stimulation. We found that positive ramp sawtooth, but not negative ramp sawtooth, significantly enhanced alpha power during stimulation relative to sham (p < 0.01). In addition we tested for an after-effect of both sawtooth and sinusoidal stimulation on alpha power but in this case did not find any significant effect. This preliminary study paves the way for further investigations into the effect of the gradient and direction of the current in tACS which could significantly improve the usefulness of this technique.

  1. Industrial Arts Curriculum Guide for Alternative Energy.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational and Adult Education.

    This curriculum guide for alternative energy courses is part of a series of curriculum guides for use in the industrial arts curriculum in Connecticut. The guide contains two parts. Part 1 provides the following overview: (1) objectives of alternative energy education, including suggestions for course levels, class sizes, teaching methods, and…

  2. Alternative Energy for Defense Conference

    DTIC Science & Technology

    2011-10-26

    5590 batteries per month with 3 ASIP Radios Solar case 145 lbs Any Army Standard Charger or Eliminatesne Powers Weight /cost Remote Power for...PV), Solar Thermal & Wind Applications , Energy Harvesting •Waste-to-Energy •Tactical Mobile Power •Vehicle-mounted Objectives (W2E) and Gas to...Energy Team Solar PV Module FY14 Objectives All performance metrics reported for AM1.5 insolation and standard, temperature, and pressure (STP) ambient

  3. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  4. Magma energy: a feasible alternative

    SciTech Connect

    Colp, J.L.

    1980-03-01

    A short review of the work performed by Sandia Laboratories in connection with its Magma Energy Research Project is provided. Results to date suggest that boreholes will remain stable down to magma depths and engineering materials can survive the downhole environments. Energy extraction rates are encouraging. Geophysical sensing systems and interpretation methods require improvement, however, to clearly define a buried magma source.

  5. Alternative energy: Plenty of wind

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, Daniel

    2013-02-01

    By exerting a drag on the atmosphere, wind turbines convert a fraction of the atmosphere's kinetic energy to electrical energy. To find the point of diminishing returns, a new study adds so much drag to a simulated atmosphere that the winds slow to a crawl.

  6. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

    PubMed Central

    Antal, Andrea; Herrmann, Christoph S.

    2016-01-01

    Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations. PMID:27242932

  7. Progress on alternative energy resources

    NASA Astrophysics Data System (ADS)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  8. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    PubMed Central

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-01-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses. PMID:27929043

  9. Transcranial Alternating Current Stimulation with Sawtooth Waves: Simultaneous Stimulation and EEG Recording

    PubMed Central

    Dowsett, James; Herrmann, Christoph S.

    2016-01-01

    Transcranial alternating current stimulation (tACS) has until now mostly been administered as an alternating sinusoidal wave. Despite modern tACS stimulators being able to deliver alternating current with any arbitrary shape there has been no systematic exploration into the relative benefits of different waveforms. As tACS is a relatively new technique there is a huge parameter space of unexplored possibilities which may prove superior or complimentary to the traditional sinusoidal waveform. Here, we begin to address this with an investigation into the effects of sawtooth wave tACS on individual alpha power. Evidence from animal models suggests that the gradient and direction of an electric current should be important factors for the subsequent neural firing rate; we compared positive and negative ramp sawtooth waves to test this. An additional advantage of sawtooth waves is that the resulting artifact in the electroencephalogram (EEG) recording is significantly simpler to remove than a sine wave; accordingly we were able to observe alpha oscillations both during and after stimulation. We found that positive ramp sawtooth, but not negative ramp sawtooth, significantly enhanced alpha power during stimulation relative to sham (p < 0.01). In addition we tested for an after-effect of both sawtooth and sinusoidal stimulation on alpha power but in this case did not find any significant effect. This preliminary study paves the way for further investigations into the effect of the gradient and direction of the current in tACS which could significantly improve the usefulness of this technique. PMID:27065835

  10. Environmentally conscious alternative energy production

    SciTech Connect

    Kutz, M.

    2007-09-15

    This fourth volume of the series describes and compares the environmental and economic impacts of renewable and conventional power generation technologies. Chapter heading are: Economic comparisons of power generation technologies (Todd Nemec); Solar energy applications (Jan F. Kreider); Fuel cells (Matthew W. Mench); Geothermal resources and technology: an introduction (Peter D. Blair); Wind power generation (Todd Nemec); Cogeneration (Jerald Caton); Hydrogen energy (Elias K. Stefanakos, Yogi Goswami, S.S. Srinivasan, and J.T. Wolan); Clean power generation from coal (Prabir Basu and James Butler); and Using waste heat from power plants (Herbert A. Ingley). The chapter on clean coal power generation from coal has been abstracted separately on the Coal Abstracts database. 2 apps.

  11. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    PubMed Central

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  12. Energy Conversion Alternatives Study (ECAS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  13. Community Energy: A Social Architecture for an Alternative Energy Future

    ERIC Educational Resources Information Center

    Hoffman, Steven M.; High-Pippert, Angela

    2005-01-01

    Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…

  14. Radiogenic metabolism: an alternative cellular energy source.

    PubMed

    Benford, M S

    2001-01-01

    The concept of 'healing energy' is commonly used in complementary and alternative medicine; however, efforts to define this concept using contemporary scientific theory, and measure it using modern scientific methods, have been limited to date. Recent experimental testing by Benford et al. observed a uniform, substantial, and consistent decrease in gamma radiation during alternative healing sessions, thus supporting a new energy-balance paradigm hypothesizing ionizing radiation as an alternative cellular energy source. This hypothesis extends the known elements of radiogenic metabolism to potentially explain a number of presumably biopositive energy-related phenomena, including fasting and radiation hormesis, as well as to demystify unexplained anomalies such as idiopathic thermogenesis, halos and auras, and incorruptibility of human corpses.

  15. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  16. A search for space energy alternatives

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  17. Harvesting alternate energies from our planet

    NASA Astrophysics Data System (ADS)

    Rath, Bhakta B.

    2009-04-01

    Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.

  18. Proceedings of the Alternate Energy Systems Seminar

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Alternative Energy Systems Seminar was held on March 30, 1978, and was sponsored jointly be the Southwest District Office of the U.S. Department of Energy and JPL. The seminar was an experiment in information exchange with the aim of presenting, in a single day, status and prospects for a number of advanced energy systems to a diverse, largely nontechnical audience, and to solicit post-seminar responses from that audience as to the seminar's usefulness. The major systems presented are: (1) Solar Photovoltaic; (2) Geothermal; (3) Cogeneration Power; (4) Solar Thermal; (5) Solar Heating and Cooling; (6) Wind Energy; and (7) Systems Considerations.

  19. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages

  20. Economic assessment of alternative energy policies

    SciTech Connect

    Groncki, P J; Goettle, IV, R J; Hudson, E A

    1980-04-01

    Current US energy policy includes many programs directed toward the restructuring of the energy system so as to decrease US dependence on foreign supplies and to increase our reliance on plentiful and environmentally benign energy forms. However, recent events have led to renewed concern over the direction of current energy policy. This study describes three possible energy strategies and analyzes each in terms of its economic, environmental, and national security benefits and costs. Each strategy is represented by a specific policy. The first strategy is to initiate no additional programs or policies beyond those currently in effect or announced. The second is to direct policy toward reducing the growth in energy demand, i.e., energy conservation. The third is to promote increased supply through accelerated development of synthetic and unconventional fuels. The analysis focuses on the evaluation and comparison of these strategy alternatives with respect to their energy, economic, and environmental consequences. The analysis indicates that conservation can substantially reduce import dependence and slow the growth of energy demand, with only a small macroeconomic cost and with substantial environmental benefits; the synfuels policy reduces imports by a smaller amount, does not reduce the growth in energy demand, and involves substantial environmental costs and impacts on economic performance. However, these relationships could be different if the energy savings per unit cost for conservation turned out to be less than anticipated; therefore, both conservation and R, D, and D support for synfuels should be included in future energy policy.

  1. Initial comparison of energy measures for neural stimulation in a single conductance channel.

    PubMed

    Stahl, John; Miller, Damon A

    2016-08-01

    This paper considers the utility of several alternative energy measures to reduce the energy required by a stimulation current source to charge a neuron membrane capacitance to a prescribed value in the case of a single sodium channel. For a simple case, minimizing the energy of the nonlinear channel conductance provides improved efficiency in terms of stimulator energy as compared to minimizing a squared-integral measure of the stimulation current. This work lays the foundation for expanding this investigation to a full conductance-based Hodgkin-Huxley model.

  2. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  3. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  4. Energy accounting for solar and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Devine, W. D., Jr.

    Shortcomings in energy data collection, display and accounting practices are of minor consequence in an economy of today in which most end use services are provided via fossil fuels and electricity. However, the emergence of a variety of alternative technologies that might be used to provide these services suggests that present accounting practices be reexamined and a more appropriate system devised. The paper proposes an energy accounting framework based upon the actual services provided to end users. An energy service is a measure of the service actually provided to ultimate consumers by their own use of energy, quantified, for example, using units of work or of heat at various temperatures. Fifteen categories of energy service are described and some of their characteristics are identified. The proposed energy accounting framework consists of two matrices - an energy service matrix and an energy carrier matrix. The energy service matrix displays quantities of energy carriers used to provide energy services. The energy carrier matrix displays quantities of energy carriers used to produce and distribute energy carriers to ultimate consumers.

  5. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  6. Impact of alternative energy forms on public utilities

    NASA Technical Reports Server (NTRS)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  7. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  8. 77 FR 32038 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of proposed rulemaking. SUMMARY: The U.S....

  9. Optimization methods for alternative energy system design

    NASA Astrophysics Data System (ADS)

    Reinhardt, Michael Henry

    An electric vehicle heating system and a solar thermal coffee dryer are presented as case studies in alternative energy system design optimization. Design optimization tools are compared using these case studies, including linear programming, integer programming, and fuzzy integer programming. Although most decision variables in the designs of alternative energy systems are generally discrete (e.g., numbers of photovoltaic modules, thermal panels, layers of glazing in windows), the literature shows that the optimization methods used historically for design utilize continuous decision variables. Integer programming, used to find the optimal investment in conservation measures as a function of life cycle cost of an electric vehicle heating system, is compared to linear programming, demonstrating the importance of accounting for the discrete nature of design variables. The electric vehicle study shows that conservation methods similar to those used in building design, that reduce the overall UA of a 22 ft. electric shuttle bus from 488 to 202 (Btu/hr-F), can eliminate the need for fossil fuel heating systems when operating in the northeast United States. Fuzzy integer programming is presented as a means of accounting for imprecise design constraints such as being environmentally friendly in the optimization process. The solar thermal coffee dryer study focuses on a deep-bed design using unglazed thermal collectors (UTC). Experimental data from parchment coffee drying are gathered, including drying constants and equilibrium moisture. In this case, fuzzy linear programming is presented as a means of optimizing experimental procedures to produce the most information under imprecise constraints. Graphical optimization is used to show that for every 1 m2 deep-bed dryer, of 0.4 m depth, a UTC array consisting of 5, 1.1 m 2 panels, and a photovoltaic array consisting of 1, 0.25 m 2 panels produces the most dry coffee per dollar invested in the system. In general this study

  10. 77 FR 31756 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Parts 429, 430, and 431 RIN 1904-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable... proposed modifications to the regulations authorizing the use of alternative methods of determining...

  11. Suppression of cardiac alternans by alternating-period-feedback stimulations

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Le, Duy-Manh; Mi, Yun-Chieh; Sinha, Sitabhra; Lai, Pik-Yin; Chan, C. K.

    2013-04-01

    Alternans response, comprising a sequence of alternating long and short action potential durations in heart tissue, seen during rapid periodic pacing can lead to conduction block resulting in potentially fatal cardiac failure. A method of pacing with feedback control is proposed to reduce the alternans and therefore the probability of subsequent cardiac failure. The reduction is achieved by feedback control using small perturbations of constant magnitude to the original, alternans-generating pacing period T, viz., using sequences of two alternating periods of T+ΔT and T-ΔT, with ΔT≪T. Such a control scheme for alternans suppression is demonstrated experimentally in isolated whole heart experiments. This alternans suppression scheme is further confirmed and investigated in detail by simulations of ion-channel-based cardiac models both for a single cell and in one-dimensional spatially extended systems. The mechanism of the success of our method can be understood in terms of dynamics in phase space, viz., as the state of activity of the cell being confined within a narrow volume of phase space for the duration of control, resulting in extremely diminished variation in successive action potential durations. Our method is much more robust to noise than previous alternans reduction techniques based on fixed point stabilization and should thus be more efficient in terms of experimental implementation, which has implications for clinical treatment for arrhythmia.

  12. Energy Teaching Centers--One Good Way to Explore Alternatives

    ERIC Educational Resources Information Center

    Kenick, Lois E.

    1976-01-01

    Proposes the development of community centers in which school children, parents, and homeowners can be educated in areas of energy conservation and alternative fuel sources. Provides brief passages on some of the most promising alternative fuels. (CP)

  13. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. (a) General. A...

  14. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. Link to an...

  15. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative methods for determining energy efficiency or energy use. 429.70 Section 429.70 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....70 Alternative methods for determining energy efficiency or energy use. (a) General. A...

  16. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  17. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    NASA Technical Reports Server (NTRS)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  18. Energy supply alternatives for Picatinny Arsenal, NJ. Final report

    SciTech Connect

    Savoie, M.J.; Moshage, R.E.; Davidson, J.E.; Schanche, G.W.

    1992-09-01

    This report documents a study to determine the most economic methods of supplying thermal and electrical energy to Picatinny Arsenal, NJ. Based on energy use patterns and the condition of existing equipment, 10 major potential energy supply alternatives were identified and evaluated. Most of the alternatives contain additional options for various fuels and electrical generation. Each alternative was evaluated on the basis of (1) availability of funds, (2) initial capital costs, and (3) annual O and M costs.

  19. Genetic algorithm reveals energy-efficient waveforms for neural stimulation.

    PubMed

    Wongsarnpigoon, Amorn; Grill, Warren M

    2009-01-01

    Energy consumption is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented the organisms of a population, and each waveform's shape was encoded into genes. The fitness of each waveform was based on its energy efficiency and ability to elicit an action potential. After each generation of the GA, waveforms mated to produce offspring waveforms, and a new population was formed consisting of the offspring and the fittest waveforms of the previous generation. Over the course of the GA, waveforms became increasingly energy-efficient and converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated normal curves or sinusoids and were 3-74% more energy-efficient than several waveform shapes commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-replacement surgery.

  20. Genetic Algorithm Reveals Energy-Efficient Waveforms for Neural Stimulation

    PubMed Central

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2013-01-01

    Energy consumption is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented the organisms of a population, and each waveform’s shape was encoded into genes. The fitness of each waveform was based on its energy efficiency and ability to elicit an action potential. After each generation of the GA, waveforms mated to produce offspring waveforms, and a new population was formed consisting of the offspring and the fittest waveforms of the previous generation. Over the course of the GA, waveforms became increasingly energy-efficient and converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated normal curves or sinusoids and were 3–74% more energy-efficient than several waveform shapes commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-replacement surgery. PMID:19964233

  1. Energy for Survival: The Alternative to Extinction.

    ERIC Educational Resources Information Center

    Clark, Wilson

    The author initially describes the basic physical principles associated with energy and the rise of energy usage in the United States. Also discussed are the ways energy limits growth and its use in various sectors of society. It is suggested that the decentralization of America's electrical system will save a great deal of energy. A variety of…

  2. Development of a multi-resource alternate energy facility. Final technical report

    SciTech Connect

    Keel, J.S.

    1981-04-01

    A grant was awarded for development of a bio-gas alternate energy project on a 60 acre cattle farm on the outskirts of Harrison, Arkansas. The project required construction of a bio-gas plant to demonstrate that methane gas produced from livestock manure can lead to semi-independence of rural areas from traditional energy resources, and that the effluent fertilizer produced will reduce reliance on chemical fertilizers. A supplemental grant was awarded for adding a solar hot water heater for the bio-gas plant, and a wind powered electrical generating system for the project. Thus, this is a multi-resource alternate energy facility that uses solar, wind and bio-conversion to produce energy for the farm. The facility has three sub-systems: (a) A bio-gas plant which produces methane gas which can be used for hot water heat or other human comfort needs, generation of electricity, a rich effluent alternate fertilizer, and an alternate vehicle fuel. (b) A solar hot water heater that provides supplemental heat for the methane-powered bio-gas digester circulating hot water system. (c) A wind powered electrical generating system which supplements farm and residential electrical demands. The goals of the facility are to: (a) Introduce small-scale alternate energy technology into farming operations. (b) Demonstrate that small-scale energy alternatives are practical and attainable. (c) Stimulate production of alternate energy technology in Agriculture.

  3. Regional Urban Planning for Energy Conservation: Alternative Approaches.

    ERIC Educational Resources Information Center

    Manohar, Shri

    1982-01-01

    Discusses the role of urban and regional planners in redesigning land use patterns which reinforce energy conservation while preserving satisfying living conditions. A model for evaluating energy conservation planning alternatives for Perth, Australia is described. (AM)

  4. Washoe Tribe Alternative Energy Feasibility Study Final Report

    SciTech Connect

    Johnson, Jennifer

    2014-10-01

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownership for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.

  5. The Energy Question: Problems and Alternatives

    ERIC Educational Resources Information Center

    Nesbitt, William A.

    1973-01-01

    Some ideas for teaching about the energy crisis are developed in this article. The author suggests related inquiry questions and suggests techniques for clarification of interrelationships. Graphs and data related to the energy crisis are included. (SM)

  6. Alternative Energy: A Bay Area Reference Center Workshop. Proceedings.

    ERIC Educational Resources Information Center

    Roberts, Kay, Ed.; And Others

    Presented are proceedings and related documents of a workshop on alternative energy resources which was held in April, 1980. This information is intended to bring reference librarians up to date on alternative energy technologies and available reference materials to which library patrons may be directed. Among the speeches included are those…

  7. Alternative Energy Curriculum for Trade and Industry Exploratory. Final Report.

    ERIC Educational Resources Information Center

    University of Central Arkansas, Conway.

    This study was a descriptive curriculum research project covering the development of learning packets on alternative energy. The purpose of the project was to improve instruction in trades and industry exploratory programs by providing alternative energy materials. It was anticipated that the use of a prepared learning package would facilitate the…

  8. Energy Crunch is Stimulant for Coal Research

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Presents views of the first International Coal Research Conference, involving problems facing reconversion to a coal-based energy economy, organization and funding of coal research units, development of new techniques for mining and using coal; and transportation of coal products to users. (CC)

  9. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  10. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    SciTech Connect

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  11. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria.

    PubMed

    Popov, V N; Simonian, R A; Skulachev, V P; Starkov, A A

    1997-09-22

    The hypothesis that a non-coupled alternative oxidase of plant mitochondria operates as an antioxygen defence mechanism [Purvis, A.C. and Shewfelt, R.L., Physiol. Plant. 88 (1993) 712-718; Skulachev, V.P., Biochemistry (Moscow) 59 (1994) 1433-1434] has been confirmed in experiments on isolated soybean and pea cotyledon mitochondria. It is shown that inhibitors of the alternative oxidase, salicyl hydroxamate and propyl gallate strongly stimulate H2O2 production by these mitochondria oxidizing succinate. Effective concentrations of the inhibitors proved to be the same as those decreasing the cyanide-resistant respiration. The inhibitors proved to be ineffective in stimulating H2O2 formation in rat liver mitochondria lacking the alternative oxidase.

  12. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  13. Airports Offer Unrealized Potential for Alternative Energy Production

    NASA Astrophysics Data System (ADS)

    Devault, Travis L.; Belant, Jerrold L.; Blackwell, Bradley F.; Martin, James A.; Schmidt, Jason A.; Wes Burger, L.; Patterson, James W.

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  14. Airports offer unrealized potential for alternative energy production.

    PubMed

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  15. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    PubMed

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  16. Energy efficient alternatives to halogen torchieres

    SciTech Connect

    Siminovitch, M.; Marr, L.; Mitchell, J.; Page, E.

    1997-03-01

    A series of novel energy efficient torchiere systems have been developed using compact fluorescent lamps (CFLs). These systems were studied photometrically and compared with the performance of traditional commercially available tungsten halogen sources. Gonio-photometric data and power assessments indicate that significant lighting energy savings can be obtained by utilizing CFL sources instead of standard tungsten halogen sources. This energy savings is jointly due to the higher source efficacy of the CFLs and the surprisingly poor performance of the imported 300 Watt halogen lamps. Experimental data shows that a 50 to 60 Watt CFL will effectively lumen match a variety of 300 Watt tungsten halogen sources with 5 to 10 times the efficacy. CFL torchieres have additional benefits of higher power quality and cooler lamp operating temperature, making them safer fixtures.

  17. Space solar power - An energy alternative

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  18. Food, Energy, and The Environment: Alternatives for Creating New Lifestyles.

    ERIC Educational Resources Information Center

    Sorrells, Nancy R.; Pimentel, David

    1981-01-01

    Provides background information on the interdependency of agriculture and ecological and social systems. Discusses in detail: (1) fossil energy and food production; (2) energy-intensive agriculture and environmental pollution; and (3) methods for developing alternatives. Includes recommendations to conserve fossil energy used in current food…

  19. Alternatives for Financing School Energy Savings Programs.

    ERIC Educational Resources Information Center

    Esteves, Rich

    1983-01-01

    This report compares shared-savings programs with financing through the use of internal funds, loans, leases, and lease purchase plans for financing energy conservation in nonprofit buildings. The shared savings option was found to offer the greatest benefits to the customer. (MLF)

  20. The use of alternative energies for powering ELTs

    NASA Astrophysics Data System (ADS)

    Pescador, German R.

    2004-07-01

    The use of alternative energies is becoming common in many places around the world. It is envisaged that most large projects will consider the use of alternative energies in this new century. Such use or at least the attempts to use renewable energies to somewhat offset the power requirements of an ELT will be seen very positively by the general public, as well as by the administration and political authorities. The enclosure of an ELT will be one of the most unique buildings on earth. Its location will be suitable for the use of alternative energies and in particular of solar energy. The use of solar energy to power the building of an ELT will be discussed. A conceptual design of the possible building shall be done cosidering the installation of photovoltaic panels as part of the building structure.

  1. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    EIA Publications

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  2. USD Catalysis Group for Alternative Energy

    SciTech Connect

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  3. Southern California Edison bets on energy alternatives

    NASA Astrophysics Data System (ADS)

    Riley, W. B.

    1981-08-01

    A 10-MW solar-thermal generating plant and a 100-MW integrated coal-gasification combined cycle (IGCC) power facility are being built to develop a wide range of renewable, alternative power sources by 1990. The solar-thermal generating plant will use steam at 500 C and 100 kg/sq cm to produce 10 MW of electricity. It consists of a 1818 heliostat array, each weighing 1155 kg and having 12 mirrors which are rotated at either 0.25 deg/min (for sun following) or 22.5 deg/min (for major focusing and defocusing). A master control system allows both fully automatic and manual operation, and a beam-characterization system permits the operator to check the alignment of each heliostat individually. A central receiver, consisting of 24 panels of tubing, produces steam at 500 C and 100 kg/sq cm. The thermal storage unit uses crushed granite to absorb 50 kWht/cu m, allowing the plant to operate after sundown. The IGCC plant integrates the coal-gasification plant and the combined-cycle unit, demonstrating operational flexibility and reliability, load-following capability, and compliance with environmental regulations. The gasifier produces 79,300 cu m/h of a mixture of 51% CO and 36% H at 1370 C,and the gas turbine regenerates 65 MW through its own generator.

  4. Microwind Alternative Energy and the Windbelt

    NASA Astrophysics Data System (ADS)

    Myers, Eric

    2009-04-01

    The windbelt is an energy generating device which makes use of aeroelastic flutter to produce small amounts of electrical power under very low wind speeds. There are several natural modes of vibration present on the windbelt under different conditions. Each of the modes provide a different waveform for the output voltage. This talk will provide an introduction to the windbelt, will attempt to explain the effect different modes of vibration have on the output waveform, and will provide some potential uses for the windbelt.

  5. Nanostructured Materials for Renewable Alternative Energy

    SciTech Connect

    Parsons, Gregory

    2013-07-24

    This project has been in effect from July 25th, 2008 to July 24th, 2013. It supported 19 graduate students and 6 post-doctoral students and resulted in 23 publications, 7 articles in preparation, 44 presentations, and many other outreach efforts. Two representative recent publications are appended to this report. The project brought in more than $750,000 in cost share from North Carolina State University. The project funds also supported the purchase and installation of approximately $667,000 in equipment supporting solar energy research.

  6. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation

    PubMed Central

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan

    2015-01-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310

  7. Alternative Energy: A New Frontier for Microfluidics

    NASA Astrophysics Data System (ADS)

    Buie, Cullen

    2011-03-01

    Microfuidics is classified as the physics of fluid manipulation at sub-mm length scales. Typically, microfluidic techniques benefit from small sample volumes, low power consumption, and increased surface-to-volume ratio. Because of their high surface to volume ratio, microfluidic systems often utilize surface phenomena such as wettability (i.e. droplet microfluidics) and surface charge (i.e. electrokinetics) for actuation. To date, most applications of microfluidics are in medicine or biology with the purpose of creating ``lab on a chip'' devices. However, the scale of microfluidics is favorable for other engineering problems as well. In this talk we will discuss how phenomena typically applied to lab on a chip devices can be used to enhance energy systems. Specifically, we explore electric field driven fluid and particle flows such as electrophoresis, electroosmosis, and dielectrophoresis. We will show how these phenomena can solve a diverse array of problems, from water management in fuel cells to the selection of microorganisms for bio-energy applications.

  8. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    PubMed Central

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  9. Effects of alternating current stimulation on the healthy and diseased brain

    PubMed Central

    Abd Hamid, Aini Ismafairus; Gall, Carolin; Speck, Oliver; Antal, Andrea; Sabel, Bernhard A.

    2015-01-01

    Cognitive and neurological dysfunctions can severely impact a patient's daily activities. In addition to medical treatment, non-invasive transcranial alternating current stimulation (tACS) has been proposed as a therapeutic technique to improve the functional state of the brain. Although during the last years tACS was applied in numerous studies to improve motor, somatosensory, visual and higher order cognitive functions, our knowledge is still limited regarding the mechanisms as to which type of ACS can affect cortical functions and altered neuronal oscillations seem to be the key mechanism. Because alternating current send pulses to the brain at predetermined frequencies, the online- and after-effects of ACS strongly depend on the stimulation parameters so that “optimal” ACS paradigms could be achieved. This is of interest not only for neuroscience research but also for clinical practice. In this study, we summarize recent findings on ACS-effects under both normal conditions and in brain diseases. PMID:26578858

  10. Alternative Energy Center, Final Scientific/Technical Report

    SciTech Connect

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  11. Radiant energy during infrared neural stimulation at the target structure.

    PubMed

    Richter, Claus-Peter; Rajguru, Suhrud; Stafford, Ryan; Stock, Stuart R

    2013-03-08

    Infrared neural stimulation (INS) describes a method, by which an infrared laser is used to stimulate neurons. The major benefit of INS over stimulating neurons with electrical current is its spatial selectivity. To translate the technique into a clinical application it is important to know the energy required to stimulate the neural structure. With this study we provide measurements of the radiant exposure, at the target structure that is required to stimulate the auditory neurons. Flat polished fibers were inserted into scala tympani so that the spiral ganglion was in front of the optical fiber. Angle polished fibers were inserted along scala tympani, and rotating the beveled surface of the fiber allowed the radiation beam to be directed perpendicular to the spiral ganglion. The radiant exposure for stimulation at the modiolus for flat and angle polished fibers averaged 6.78±2.15 mJ/cm(2). With the angle polished fibers, a 90° change in the orientation of the optical beam from an orientation that resulted in an INS-evoked maximum response, resulted in a 50% drop in the response amplitude. When the orientation of the beam was changed by 180°, such that it was directed opposite to the orientation with the maxima, minimum response amplitude was observed.

  12. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  13. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  14. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  15. [Transcranial alternating current stimulation. Entrainment and function control of neuronal networks].

    PubMed

    Vosskuhl, J; Strüber, D; Herrmann, C S

    2015-12-01

    Transcranial alternating current stimulation (tACS) is a new technique for the modulation of oscillatory brain activity as measured in the electroencephalogram (EEG). In contrast to well-established stimulation techniques, such as transcranial direct current stimulation and transcranial magnetic stimulation, tACS applies a sinusoidal alternating current at a specific frequency. This enables the modulation of the amplitude and frequency of endogenous brain oscillations as well as related cognitive processes. Therefore, the use of tACS has the possibility to evaluate well-known correlations between brain oscillations and cognitive processes in terms of causality. Such causal relationships have been documented in numerous neurocognitive studies on sensory, motor and perceptual processes; however, the clinical application of tACS is still in its infancy. In principle, any pathology that can reliably be connected with brain oscillations of a defined frequency is treatable. A current main focus of clinical research is on symptoms of Parkinson's disease and to a lesser degree, tinnitus. For an effective application of tACS it is important to choose the electrode positions as well as the frequency, intensity and duration of the stimulation in a theory-based and symptom-related manner. A successful therapeutic intervention requires the persistence of the tACS effect after stimulation has ceased. A mechanism that offers not only an explanation to the origin of persistent tACS effects but is also of high therapeutic benefit is neural plasticity. Therefore, one current focus of research aims at a better understanding of tACS after effects.

  16. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  17. Characteristics and optimum end uses of alternative energies

    SciTech Connect

    Henderson, M.D.

    1980-12-01

    From the perspective of a consulting engineer to public-electric utilities, projections of growth in energy consumption by the year 2000 present both problems and opportunities. Consumption of energy to generate electricity will substantially increase its relative share and alternatives will have to compete with electricity generated from conventional sources in terms of end-use economics. Organizations having a direct interest in furthering coal-fired and nuclear generation have estimated their capabilities to expand. The resulting competition between the conventional technologies and alternative energies will be decided not by the wishes of ''soft path'' proponents but by the outcome of technical and economic feasibility studies. Comparisons are made of five alternative energy options (wind, wood, solar, geothermal and coal conversion) on the basis of four characteristics (schedule, cost, resource, environment). As it turns out, end-use and location may prove to be the overriding considerations.

  18. Perturbation energy as an alternative to the total energy calculations

    NASA Astrophysics Data System (ADS)

    Kutepov, Andrey; Antropov, Vladimir; van Schilfgaarde, Mark; Antonov, Victor

    2014-03-01

    We analyze different approaches to determine the energy from a perturbation using modern electronic structure methods. We compare the energy of perturbation from standard perturbation theory with what is obtained directly in self consistent band structure methods. The method is applied for studies such perturbations as internal magnetic field and spin orbital coupling in solids. This method is further compared with integration over the coupling constant. Numerical tests have been performed for magnetic Fe and Gd systems using the local density approximation. The main advantage of present scheme is its usefulness in methods for strongly correlated electronic systems studies where total energy calculations are not always possible. Specific calculations are performed using self consistent quasiparticle GW and LDA+U calculations for MnBi where the right value of magnetic moment and sign/value of magnetic anisotropy as a function of temperature have been obtained. This research is supported in part by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy through the Ames Laboraory.

  19. Proceedings of the conference on alternative energy sources for Texas

    SciTech Connect

    Rothman, I.N.

    1981-01-01

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospects for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.

  20. FEMP (Federal Energy Management Program) presents alternative financing guidance memoranda

    SciTech Connect

    1998-06-01

    Utility financing of energy efficient measures becomes easier to accomplish with the two new alternative financing guidance memoranda, released April 17, 1998, that address the use of utility incentives for Federal facilities. The memoranda have been approved by the Alternative Financing Guidance Committee on the Interagency Energy Management Task Force. The memoranda include: (1) Policy Statement No. 001: Authority to Sole Source Utility Service Contracts as Referenced in Section 152 of the Energy Policy Act (EPACT) of 1992; and (2) Policy Statement No. 002: Congressional Notification for Utility Projects Under the Authority of Section 152 of the Energy Policy Act (EPACT) of 1992. The purpose for developing the financing memoranda was to address specific issues within current Federal procurement regulations that require clarification or guidance. This new guidance will allow for increased use of utility incentives as a means of financing energy efficient and life cycle cost-effective projects in Federal facilities.

  1. Geothermal Well Stimulated Using High Energy Gas Fracturing

    SciTech Connect

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, Henry

    1987-01-20

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments. 5 refs., 2 tabs., 5 figs.

  2. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    PubMed

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.

  3. Alternative energy sources could support life on Europa

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.

    Energy pervades the solar system in a variety of forms, including electromagnetic and particle radiation, magnetism, heat, kinetic motion, and gravitational interactions. Life on Earth is sustained by the conversion of light and chemical energy into proton gradients across membranes that drive the phosphorylation of high-energy intermediate metabolites.The use of light and reduced chemical bonds as energy sources is not surprising on Earth, where the intensity of light is strong and an oxidizing atmosphere favors energy-yielding chemical reactions. However, any naturally occurring energy gradient that generates charge separation across boundary layers could theoretically yield the free energy needed to sustain life. Using specific, plausible examples from Jupiter's ice-covered satellite Europa, we propose that alternative energy sources could sustain life where neither light nor an oxidizing atmosphere is available.

  4. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review.

    PubMed

    Schutter, Dennis J L G

    2016-10-15

    Transcranial alternating current stimulation (tACS) applies exogenous oscillatory electric field potentials to entrain neural rhythms and is used to investigate brain-function relationships and its potential to enhance perceptual and cognitive performance. However, due to current spread tACS can cause cutaneous activation of the retina and phosphenes. Several lines of evidence suggest that retinal phosphenes are capable of inducing neural entrainment, making the contributions of central and peripheral stimulation to the effects in the brain difficult to disentangle. In this literature review, the importance of this issue is further illustrated by the fact that photic stimulation can have a direct impact on perceptual and cognitive performance. This leaves open the possibility that peripheral photic stimulation can at least in part explain the central effects that are attributed to tACS. The extent to which phosphene perception contributes to the effects of exogenous oscillatory electric fields in the brain and influence perception and cognitive performance needs to be examined to understand the working mechanisms of tACS in neurophysiology and behaviour.

  5. Thallium-201 scintigraphy of the suppressed thyroid: an alternative for iodine-123 scanning after TSH stimulation

    SciTech Connect

    Corstens, F.; Huysmans, D.; Kloppenborg, P.

    1988-08-01

    Thallium-201 scintigraphy of the thyroid gland suppressed by autonomous nodule was compared with /sup 123/I scintigraphy after TSH stimulation. In all patients, similar images were obtained by both methods. In 20 patients, the contralateral lobe was visualized on both scans and in 14 of these, the upper pole of the ipsilateral lobe was also visualized. In one patient, neither /sup 123/I scanning after TSH nor /sup 201/TI scintigraphy showed any extranodular tissue. This study suggests that /sup 201/TI scintigraphy is a reliable alternative for scanning after TSH. It is a relatively simple method, not inducing any TSH-related allergic reactions. Iodine uptake in extranodular tissue is not stimulated and therefore, /sup 201/TI scintigraphy and radioiodine therapy can be combined on one day, without increasing the risk of radiation damage to the normal thyroid tissue with a resultant post-treatment hypothyroidism.

  6. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS)

    PubMed Central

    Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.

    2015-01-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149

  7. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation.

    PubMed

    Fröhlich, Flavio; Sellers, Kristin K; Cordle, Asa L

    2015-02-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested that specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack demonstration of causal relationships between specific network activity patterns and cognitive capabilities and treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. Here, we propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition performed in healthy participants, according to the Research Domain Criteria of the National Institute of Mental Health.

  8. Feasibility of Online Neuromodulation Using Transcranial Alternating Current Stimulation in Schizophrenia

    PubMed Central

    Sreeraj, Vanteemar S.; Shanbhag, Vandita; Nawani, Hema; Shivakumar, Venkataram; Damodharan, Dinakaran; Bose, Anushree; Narayanaswamy, Janardhanan C.; Venkatasubramanian, Ganesan

    2017-01-01

    Abnormalities in resting and event-related brain oscillations are known to be associated with cognitive deficits in schizophrenia. Transcranial alternating current stimulation (tACS) modulates these rhythms across the neuronal circuits and could have a potential therapeutic role in psychiatric disorders. In this report, we describe, for the first time, application of online tACS in a schizophrenia patient with working memory deficits. This case report supports the feasibility and potential utility of online tACS in schizophrenia, which needs further systematic research. PMID:28250567

  9. The use of hydrazine as an alternate source of energy

    NASA Technical Reports Server (NTRS)

    Carvalho, J. A., Jr.; Bressan, C.; Ferreira, J. L.

    1984-01-01

    The potentials of using hydrazine as an alternative source of energy was studied. Three chemical reactions are considered: oxidation with air, oxidation with hydrogen peroxide, and thermocatalytic decomposition. Performance data of gasoline, ethylic alcohol, and propane are compared. An item about the NO(x) emissions by the various investigated reactions is included. Promising results are shown, mainly those regarding the available energy per unit volume of unburned gases (vaporized fuel and oxidizer).

  10. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  11. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  12. 77 FR 48148 - Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding, of Energy Alternatives Wholesale, LLC's application for...

  13. Studying Effects of Transcranial Alternating Current Stimulation on Hearing and Auditory Scene Analysis.

    PubMed

    Riecke, Lars

    2016-01-01

    Recent studies have shown that perceptual detection of near-threshold auditory events may depend on the relative timing of the event and ongoing brain oscillations. Furthermore, transcranial alternating current stimulation (tACS), a non-invasive and silent brain stimulation technique, can entrain cortical alpha oscillations and thereby provide some experimental control over their timing. The present research investigates the potential of delta/theta-tACS to modulate hearing and auditory scene analysis. Detection of near-threshold auditory stimuli, which are modulated at 4 Hz and presented at various moments (phase lags) during ongoing tACS (two synchronous 4-Hz alternating currents applied transcranially to the two cerebral hemispheres), is measured in silence or in a masker. Results indicate that performance fluctuates as a function of phase lag and these fluctuations can be explained best by a sinusoid at the tACS frequency. This suggests that tACS may amplify/attenuate sounds that are temporally coherent/anticoherent with tACS-entrained cortical oscillations.

  14. Alternative energy systems for Antarctic stations: Investing for the future

    NASA Astrophysics Data System (ADS)

    Guichard, Antoine; Steel, John

    A French-Australian cooperative research project focused on energy systems at Antarctic research stations has been initiated. Its aims are to investigate the current energy requirements of the Australian and French stations and to conduct a feasibility study on the use of alternative energy systems. This is designed to reduce the quantity of fuel used and the impact on the environment. This paper outlines the various issues addressed, presents the first options identified and provides a basis for identifying directions for future work.

  15. Dark energy cosmology with the alternative cosmic microwave background data

    SciTech Connect

    Wei, Hao

    2011-04-01

    Recently, in a series of works by Liu and Li (L and L), they claimed that there exists a timing asynchrony of -25.6 ms between the spacecraft attitude and radiometer output timestamps in the original raw WMAP time-ordered data (TOD). L and L reprocessed the WMAP data while the aforementioned timing asynchrony has been corrected, and they obtained an alternative CMB map in which the quadrupole dropped to nearly zero. In the present work, we try to see the implications to dark energy cosmology if L and L are right. While L and L claimed that there is a bug in the WMAP pipeline which leads to significantly different cosmological parameters, an interesting question naturally arises, namely, how robust is the current dark energy cosmology with respect to systematic errors and bugs? So, in this work, we adopt the alternative CMB data of L and L as a strawman to study the robustness of dark energy predictions.

  16. Development of alternative energy science and engineering in the Caribbean

    NASA Astrophysics Data System (ADS)

    Bonnet, J. A., Jr.; Koehler, W. C., Jr.

    1983-11-01

    A pilot designed to improve the capabilities of Caribbean universities and research institutes in helping solve the energy problems of the region is discussed. Most of the region is almost entirely dependent on imported petroleum to satisfy its energy needs. That dependency has exascerbated economic problems with the escalation of petroleum prices in the past ten years. A potential solution to reduce both the high degree of dependence and economic costs is to develop other energy systems. A project to foster cooperative research efforts to assist in the introduction of alternative energy solutions was developed. A network of scientists and engineers working in energy was established to promote cooperation, interchange of technical information and development of joint projects.

  17. Alternative futures for the Department of Energy National Laboratories

    SciTech Connect

    Not Available

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  18. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability

    PubMed Central

    Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability. PMID:27607431

  19. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect

    Vineyard, E.A.; Sand, J.R.; Miller, W.A.

    1989-01-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising refrigeration system, such as a different capillary tube or compressor, may improve their performance. 12 refs., 2 figs., 3 tabs.

  20. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  1. Creating an acute energy deficit without stimulating compensatory increases in appetite: is there an optimal exercise protocol?

    PubMed

    Deighton, Kevin; Stensel, David J

    2014-05-01

    Recent years have witnessed significant interest from both the scientific community and the media regarding the influence of exercise on subsequent appetite and energy intake responses. This review demonstrates a consensus among the majority of scientific investigations that an acute bout of land-based endurance exercise does not stimulate any compensatory increases in appetite and energy intake on the day of exercise. Alternatively, preliminary evidence suggests that low volume, supramaximal exercise may stimulate an increase in appetite perceptions during the subsequent hours. In accordance with the apparent insensitivity of energy intake to exercise in the short term, the daily energy balance response to exercise appears to be primarily determined by the energy cost of exercise. This finding supports the conclusions of recent training studies that the energy expenditure of exercise is the strongest predictor of fat loss during an exercise programme.

  2. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  3. Understanding and accepting fusion as an alternative energy source

    NASA Astrophysics Data System (ADS)

    Goerz, D. A.

    1987-12-01

    Fusion, the process that powers our Sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on Earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the Moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical.

  4. Alternative energy sources and new energy technologies for Turkish rural areas

    SciTech Connect

    Ultanir, M.O.

    1983-12-01

    Modern agriculture is an energy consumer sector, also agriculture is an energy conversion process. In addition to biomass energy's raw materials are harvested by agriculture. The concept of energy in agriculture, energy is one of the main and outstanding factor which renders the realization of the overall development of the agriculture and rural areas. Agricultural income depends on total mechanical power in agricultural mechanization; general energy consumption of rural sector; cultural energy consumption by agricultural inputs which are fertilizer, pesticides, indirect energy in machinery, irrigation equipments, buildings and other services; direct energy consumption in agricultural mechanization which are fuel and electricity etc. In general, energy input in the rural areas is classified as direct and indirect. Direct energy input reflects demands for mechanical energy, electrical energy and heat energy. Indirect energy consists of inputs which have been produced by industrial sector and introduced into rural sector. Although conventional energy sources, especially petroleum products are used in meeting direct energy input requirements, alternative energy sources may be used as well in this respect. Especially emphasis is being given to new and renewable alternative sources for heat and electrical energy requirements.

  5. Expeditionary Energy Assessment Environmental Control Unit Alternatives Study

    DTIC Science & Technology

    2011-07-28

    base case using the equipment and energy footprint of the Marine Expeditionary Force (MEF) Forward (FWD) in Afghanistan and four alternative cases...year) were varied. A base case, designed around the Marine Expeditionary Force (MEF) Forward (FWD) Equipment Density List (EDL) and current ECU...report calculated the cost up through the first leg of tactical delivery, i.e., from the point of retail sale to the main camp to the Forward Operating

  6. Current alternative energy research and development in Illinois

    SciTech Connect

    Not Available

    1983-12-01

    This directory constitutes an inventory of recent activities involving research, development and demonstration projects of nonfossil, nonnuclear energy sources. Projects discussed in the directory were either in process in November 1983 or had been completed after May 1983. Entries are arranged by broad subject categories and within each category, entries are alphabetical by the performing organization and alphabetical by title where there is more than one entry for an organization. Entries are indexed by title, contributor, research organization and project site. Reports on 101 alternative energy projects are included and fall into nine major categories. Nearly half of the projects involve bioenergy and a third are solar related. The topics with actual numbers of reports are as follows: Bioenergy, 45; Solar Heating and Cooling, 24; Solar Photovoltaics, 3; Solar Thermal and Advanced Technologies, 5; Geothermal and Ocean Thermal, 2; Wind Energy, 5; Waste Heat and Materials Recovery, 6; Energy Storage, 8; and Regulations, Surveys and Planning, 2.

  7. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states

    PubMed Central

    Neuling, Toralf; Rach, Stefan; Herrmann, Christoph S.

    2013-01-01

    The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations. PMID:23641206

  8. Preventing long-lasting fear recovery using bilateral alternating sensory stimulation: A translational study.

    PubMed

    Wurtz, H; El-Khoury-Malhame, M; Wilhelm, F H; Michael, T; Beetz, E M; Roques, J; Reynaud, E; Courtin, J; Khalfa, S; Herry, C

    2016-05-03

    Posttraumatic stress disorder (PTSD) is a highly debilitating and prevalent psychological disorder. It is characterized by highly distressing intrusive trauma memories that are partly explained by fear conditioning. Despite efficient therapeutic approaches, a subset of PTSD patients displays spontaneous recurrence of traumatic memories after successful treatment. The development of animal behavioral models mimicking the individual variability in treatment outcome for PTSD patients represent therefore an important challenge as it allows for the identification of predicting factors of resilience or susceptibility to relapse. However, to date, only few animal behavioral models of long-lasting fear recovery have been developed and their predictive validity has not been tested directly. The objectives of this study were twofold. First we aimed to develop a simple animal behavioral model of long-lasting fear recovery based on auditory cued fear conditioning and extinction learning, which recapitulates the heterogeneity of fear responses observed in PTSD patients after successful treatment. Second we aimed at testing the predictive validity of our behavioral model and used to this purpose a translational approach based (i) on the demonstration of the efficiency of Eye Movement Desensitization and Reprocessing (EMDR) therapy to reduce conditioned fear responses in PTSD patients and (ii) on the implementation in our behavioral model of an electrical bilateral alternating stimulation of the eyelid which mimics the core feature of EMDR. Our data indicate that electrical bilateral alternating stimulation of the eyelid during extinction learning alleviates long-lasting fear recovery of conditioned fear responses and dramatically reduces inter-individual variability. These results demonstrate the face and predictive validity of our animal behavioral model and provide an interesting tool to understand the neurobiological underpinnings of long-lasting fear recovery.

  9. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect

    Sand, J.R. ); Vineyard, E.A.; Sand, J.R.

    1989-01-01

    As a result of the Montreal Protocol (UNEP 1987) that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must resolved. Among these are energy impacts, system compatibility, cost, and availability, In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers (AHAM 1985). The results are presented for an 18 ft{sup 3} (0.51 m{sup 3}), top mount refrigerators-freezer with a static condenser using the following refrigerants: R 12, R500, R12/dimethylether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12/DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants, indicating a higher capacity. While the R134a and R22/R142b results were less promising (6.8% and 8.5% higher energy consumption, respectively), changes to the refrigeration system, such as a different capillary tube or compressor, may improve their performance. It is noted that the test results are only an initial step in determining a replacement for R12.

  10. Effects of Transcranial Alternating Current Stimulation on Cognitive Functions in Healthy Young and Older Adults

    PubMed Central

    Antonenko, Daria; Faxel, Miriam; Grittner, Ulrike; Lavidor, Michal; Flöel, Agnes

    2016-01-01

    Recently, transcranial alternating current stimulation (tACS) has emerged as a tool to enhance human cognitive processes. Here, we provide a brief summary of the rationale behind tACS-induced effects on task-relevant brain oscillations and associated cognitive functions and review previous studies in young subjects that have applied tACS in cognitive paradigms. Additionally, we present pilot data where we administered theta-tACS (6 Hz) over the temporoparietal cortex and a supraorbital reference for 20 min during implicit language learning in healthy young (mean/SD age: 22/2) and older (mean/SD age: 66/4) adults, in a sham-controlled crossover design. Linear mixed models revealed significantly increased retrieval accuracy following tACS-accompanied associative learning, after controlling for session order and learning success. These data provide the first implementation of tACS during cognitive performance in older adults and support recent studies suggesting that tACS in the theta frequency range may serve as a tool to enhance cognition, possibly through direct modulation of task-relevant brain oscillations. So far, studies have been heterogeneous in their designs, leaving a number of issues to be addressed in future research, including the setup of electrodes and optimal stimulation frequencies to be employed, as well as the interaction with age and underlying brain pathologies in specific patient populations. PMID:27298740

  11. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation

    PubMed Central

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  12. Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner.

    PubMed

    Ruhnau, Philipp; Neuling, Toralf; Fuscá, Marco; Herrmann, Christoph S; Demarchi, Gianpaolo; Weisz, Nathan

    2016-06-02

    Transcranial alternating current stimulation (tACS) is used to modulate brain oscillations to measure changes in cognitive function. It is only since recently that brain activity in human subjects during tACS can be investigated. The present study aims to investigate the phase relationship between the external tACS signal and concurrent brain activity. Subjects were stimulated with tACS at individual alpha frequency during eyes open and eyes closed resting states. Electrodes were placed at Cz and Oz, which should affect parieto-occipital areas most strongly. Source space magnetoencephalography (MEG) data were used to estimate phase coherence between tACS and brain activity. Phase coherence was significantly increased in areas in the occipital pole in eyes open resting state only. The lag between tACS and brain responses showed considerable inter-individual variability. In conclusion, tACS at individual alpha frequency entrains brain activity in visual cortices. Interestingly, this effect is state dependent and is clearly observed with eyes open but only to a lesser extent with eyes closed.

  13. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial

    PubMed Central

    Schittkowski, Michael P.; Antal, Andrea; Ambrus, Géza Gergely; Paulus, Walter; Dannhauer, Moritz; Michalik, Romualda; Mante, Alf; Bola, Michal; Lux, Anke; Kropf, Siegfried; Brandt, Stephan A.; Sabel, Bernhard A.

    2016-01-01

    Background Vision loss after optic neuropathy is considered irreversible. Here, repetitive transorbital alternating current stimulation (rtACS) was applied in partially blind patients with the goal of activating their residual vision. Methods We conducted a multicenter, prospective, randomized, double-blind, sham-controlled trial in an ambulatory setting with daily application of rtACS (n = 45) or sham-stimulation (n = 37) for 50 min for a duration of 10 week days. A volunteer sample of patients with optic nerve damage (mean age 59.1 yrs) was recruited. The primary outcome measure for efficacy was super-threshold visual fields with 48 hrs after the last treatment day and at 2-months follow-up. Secondary outcome measures were near-threshold visual fields, reaction time, visual acuity, and resting-state EEGs to assess changes in brain physiology. Results The rtACS-treated group had a mean improvement in visual field of 24.0% which was significantly greater than after sham-stimulation (2.5%). This improvement persisted for at least 2 months in terms of both within- and between-group comparisons. Secondary analyses revealed improvements of near-threshold visual fields in the central 5° and increased thresholds in static perimetry after rtACS and improved reaction times, but visual acuity did not change compared to shams. Visual field improvement induced by rtACS was associated with EEG power-spectra and coherence alterations in visual cortical networks which are interpreted as signs of neuromodulation. Current flow simulation indicates current in the frontal cortex, eye, and optic nerve and in the subcortical but not in the cortical regions. Conclusion rtACS treatment is a safe and effective means to partially restore vision after optic nerve damage probably by modulating brain plasticity. This class 1 evidence suggests that visual fields can be improved in a clinically meaningful way. Trial Registration ClinicalTrials.gov NCT01280877 PMID:27355577

  14. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehér, Kristoffer D; Morishima, Yosuke

    2016-01-22

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized.

  15. Alternative energy balances for Bulgaria to mitigate climate change

    SciTech Connect

    Christov, C.

    1996-09-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987-1992 period. The energy sector is the main contributor to the total CO{sub 2} emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; waste-heat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed. 3 refs.

  16. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  17. Analysis of alternative strategies for energy conservation in new buildings

    SciTech Connect

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  18. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  19. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  20. Potential alternative energy technologies on the Outer Continental Shelf.

    SciTech Connect

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  1. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    SciTech Connect

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  2. 78 FR 13695 - Information Collection: Renewable Energy and Alternate Uses of Existing Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Bureau of Ocean Energy Management Information Collection: Renewable Energy and Alternate Uses of Existing... requirements in the regulations under ``Renewable Energy and Alternate Uses of Existing Facilities on the Outer...: 1010-0176. Title: 30 CFR 585, Renewable Energy and Alternate Uses of Existing Facilities on the...

  3. Wavelet modulation: An alternative modulation with low energy consumption

    NASA Astrophysics Data System (ADS)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  4. Modified GBIG scenario as an alternative for dark energy

    SciTech Connect

    Nozari, Kourosh; Rashidi, Narges E-mail: n.rashidi@umz.ac.ir

    2009-09-01

    We construct a DGP-inspired braneworld model where induced gravity on the brane is modified in the spirit of f(R) gravity and stringy effects are taken into account by incorporation of the Gauss–Bonnet term in the bulk action. We explore cosmological dynamics of this model and we show that this scenario is a successful alternative for dark energy proposal. Interestingly, it realizes the phantom-like behavior without introduction of any phantom field on the brane and the effective equation of state parameter crosses the cosmological constant line naturally in the same way as observational data suggest.

  5. Integrated alternative energy systems for use in small communities

    NASA Astrophysics Data System (ADS)

    Thornton, J.

    1982-01-01

    This paper summarizes the principles and conceptual design of an integrated alternative energy system for use in typical farming communities in developing countries. A system is described that, utilizing the Sun and methane produced from crop waste, would supply sufficient electric and thermal energy to meet the basic needs of villagers for water pumping, lighting, and cooking. The system is sized to supply enough pumping capacity to irrigate 101 ha (249 acres) sufficiently to optimize annual crop yields for the community. Three economic scenarios were developed, showing net benefits to the community of $3,578 to $15,547 anually, payback periods of 9.5 to 20 years, and benefit-to-cost ratios of 1.1 to 1.9.

  6. Identification of alternating renewal electric load models from energy measurements

    NASA Astrophysics Data System (ADS)

    El-Ferik, Sami; Malhame, Roland P.

    1994-06-01

    In statistical load modeling methodologies, aggregate electric load behavior is derived by propagating the ensemble statistics of an individual load process which is representative of the loads in the aggregate. Such a modeling philosophy tends to yield models whereby if physical meaning is present at the elemental level, it is preserved at the aggregate level. This property is essential for applications involving direct control of power system loads (for peak load shaving purposes, for example). The potential applicability of statistical load models is a strong function of one's ability to limit the volume of unusual data required to build those. An identification algorithm for a previously proposed stochastic hybrid-state Markov model of individual heating-cooling loads is presented. It relies only on data routinely gathered in power systems (device energy consumption over constant time intervals). It exploits an alternating renewal viewpoint of the load dynamics. After deriving some general results on the occupation statistics of time homogeneous alternating renewal processes, the analysis is focused on the specific model. In the process, however, some intriguing features likely to be shared by a wide class of alternating renewal processes are revealed.

  7. USU Alternative and Unconventional Energy Research and Development

    SciTech Connect

    Behunin, Robert; Wood, Byard; Heaslip, Kevin; Zane, Regan; Lyman, Seth; Simmons, Randy; Christensen, David

    2014-01-29

    The purpose and rationale of this project has been to develop enduring research capabilities at Utah State University (USU) and the Utah State University Research Foundation (USURF) in a number of energy efficient and renewable energy areas including primarily a) algae energy systems, b) solar lighting, c) intuitive buildings, d) electric transportation, 3) unconventional energy environmental monitoring and beneficial reuse technologies (water and CO2), f) wind energy profiling, and g) land use impacts. The long-term goal of this initiative has been to create high-wage jobs in Utah and a platform for sustained faculty and student engagement in energy research. The program’s objective has been to provide a balanced portfolio of R&D conducted by faculty, students, and permanent staff. This objective has been met. While some of the project’s tasks met with more success than others, as with any research project of this scope, overall the research has contributed valuable technical insight and broader understanding in key energy related areas. The algae energy systems research resulted in a highly productive workforce development enterprise as it graduated a large number of well prepared students entering alternative energy development fields and scholarship. Moreover, research in this area has demonstrated both the technological and economic limitations and tremendous potential of algae feedstock-based energy and co-products. Research conducted in electric transportation, specifically in both stationary and dynamic wireless inductive coupling charging technologies, has resulted in impactful advances. The project initiated the annual Conference on Electric Roads and Vehicles (http://www.cervconference.org/), which is growing and attracts more than 100 industry experts and scholars. As a direct result of the research, the USU/USURF spin-out startup, WAVE (Wireless Advanced Vehicle Electrification), continues work in wirelessly charged bus transit systems

  8. Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI.

    PubMed

    Cabral-Calderin, Yuranny; Williams, Kathleen A; Opitz, Alexander; Dechent, Peter; Wilke, Melanie

    2016-11-01

    Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. Combining tACS with functional magnetic resonance imaging (fMRI), we recently showed that tACS applied over the occipital cortex did not exert its strongest effect on regions below the electrodes, but mainly on more distant fronto-parietal regions. Theoretically, this effect could be explained by tACS-induced modulation of functional connectivity between directly stimulated areas and more distant but anatomically and functionally connected regions. In the present study, we aimed to characterize the effect of tACS on low frequency fMRI signal fluctuations. We employed simultaneous fMRI-tACS in 20 subjects during resting state (eyes open with central fixation for ~8min). Subjects received tACS at different frequencies (10, 16, 40Hz) and with different electrode montages (Cz-Oz, P5-P6) previously used in behavioral studies. Electric field simulations showed that tACS over Cz-Oz directly stimulates occipital cortex, while tACS over P5-P6 primarily targets parietal cortices. Group-level simulation-based functional connectivity maps for Cz-Oz and P5-P6 resembled the visual and fronto-parietal control resting-state networks, respectively. The effects of tACS were frequency and partly electrode montage dependent. In regions where frequency-dependent effects of tACS were observed, 10 and 40Hz tACS generally induced opposite effects. Most tACS effects on functional connectivity were observed between, as opposed to within, resting-state networks. The left fronto-parietal control network showed the most extensive frequency-dependent modulation in functional connectivity, mainly with occipito-parietal regions, where 10Hz tACS increased and 40Hz tACS decreased correlation values. Taken together, our results show that tACS modulates local spontaneous low frequency fluctuations and their correlations with more distant regions, which should be taken into account when

  9. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    SciTech Connect

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will

  10. Alternative Energy Science and Policy: Biofuels as a Case Study

    NASA Astrophysics Data System (ADS)

    Ammous, Saifedean H.

    This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to alleviate the impacts of climate change and their relative efficacy. Three case studies of policy-making on biofuels in the European Union, United States of America and Brazil are presented and discussed. It is found that these policies have had large unintended negative consequences and that they relied on Lifecycle Analysis studies that had concluded that increased biofuels production can help meet economic, energy and environmental goals. A close examination of these Lifecycle Analysis studies reveals that their results are not conclusive. Instead of continuing to attempt to find answers from Lifecycle Analyses, this study suggests an alternative approach: formulating policy based on recognition of the ignorance of real fuel costs and pollution. Policies to combat climate change are classified into two distinct approaches: policies that place controls on the fuels responsible for emissions and policies that target the pollutants themselves. A mathematical model is constructed to compare these two approaches and address the central question of this study: In light of an ignorance of the cost and pollution impacts of different fuels, are policies targeting the pollutants themselves preferable to policies targeting the fuels? It is concluded that in situations where the cost and pollution functions of a fuel are unknown, subsidies, mandates and caps on the fuel might result in increased or decreased greenhouse gas emissions; on the other hand, a tax or cap on carbon dioxide results in the largest decrease possible of greenhouse gas emissions. Further, controls on greenhouse gases are shown to provide incentives for the development and advancement of cleaner alternative energy options, whereas controls on the fuels are shown to provide equal incentives to the development of cleaner and dirtier

  11. Energy cane as a multiple-products alternative

    SciTech Connect

    Alexander, A.G.

    1984-01-01

    CANE SUGAR planting as it was formerly known is in serious and essentially irreversible trouble. Diversification of sugarcane to alternative farm crops is indicated in some instances. Yet, for the most part, the more logical alternative is an internal diversification to a multiple-products biomass commodity. Sometimes termed the energy cane approach, its keystones are the management of sugarcane as a quantitative rather than qualitative entity, and the inclusion of certain tropical-grass relatives to assist cane in its year-round supply of biomass to industrial consumers. Managed in this way, absolute tonnages of whole cane are increased materially beyond what is possible from sugar-crop management. Juice quality declines but sugar yields are significant as a function of high biomass tonnages per acre. Usage of the lignocellulose can range from low-quality humid boiler fuel in furnaces designed for refuse incineration, to higher-quality fuels in more efficient boilers, to proprietary fuels and chemical products, and to lignocellulose supply as the feedstock for primary chemicals production. The latter might include, for example, synthesis gas and petrochemicals in tropical regions lacking natural gas, naphtha, or coal as starting materials. Diversification of sugarcane to completely new farm commodities is opposed in favor of internal diversification to a high-growth, multiple-products commodity. Decisive issues here are as much educational as they are technical. The energy cane concept maintains that sugarcane is a future resource of enormous national and international value. It should develop accordingly where decision-taking is by persons who respect the cane plant and who have done their homework on its alternative-use potentials. 35 references, 5 figures, 6 tables.

  12. 77 FR 41873 - In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil... current and accurate information concerning the securities of Alternative Energy Sources, Inc. because...

  13. Transcranial Alternating Current Stimulation: A Potential Risk for Genetic Generalized Epilepsy Patients (Study Case)

    PubMed Central

    San-Juan, Daniel; Sarmiento, Carlos Ignacio; Hernandez-Ruiz, Axel; Elizondo-Zepeda, Ernesto; Santos-Vázquez, Gabriel; Reyes-Acevedo, Gerardo; Zúñiga-Gazcón, Héctor; Zamora-Jarquín, Carol Marina

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a re-emergent neuromodulation technique that consists in the external application of oscillating electrical currents that induces changes in cortical excitability. We present the case of a 16-year-old female with pharmaco-resistant juvenile myoclonic epilepsy to 3 antiepileptic’s drugs characterized by 4 myoclonic and 20 absence seizures monthly. She received tACS at 1 mA at 3 Hz pulse train during 60 min over Fp1–Fp2 (10–20 EEG international system position) during 4 consecutive days using an Endeavor™ IOM Systems device® (Natus Medical Incorporated, Middleton, WI, USA). At the 1-month follow-up, she reported a 75% increase in seizures frequency (only myoclonic and tonic–clonic events) and developed a 24-h myoclonic status epilepticus that resolved with oral clonazepam and intravenous valproate. At the 2-month follow-up, the patient reported a 15-day seizure-free period. PMID:27965623

  14. 75 FR 39957 - Certificate of Alternative Compliance for the Offshore Supply Vessel/Well Stimulation Vessel BLUE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard Certificate of Alternative Compliance for the Offshore Supply Vessel/Well Stimulation Vessel BLUE TARPON AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that...

  15. Nonimaging solar energy concentrators (CPC's) with fully illuminated flat receivers: A viable alternative to flat-plate collectors

    SciTech Connect

    Gordon, J.M.

    1986-08-01

    Low-concentration, stationary, nonimaging concentrators (CPC's) with flat receivers illuminated on both sides are considered as viable alternatives to flat-plate solar collectors. Closed-form, analytic formulae are derived for the geometric characteristics of two concentrator types of greatest interest (i.e., stationary collectors for year-round energy delivery), which enable calculations of collectible energy without computer ray-tracing stimulations. The relative merits of these concentrators in terms of energy collection and production costs are assessed with respect to each other as well as to flat-plate collectors.

  16. A Project-Based, STEM-Integrated Alternative Energy Team Challenge for Teachers

    ERIC Educational Resources Information Center

    Felix, Allison; Harris, John

    2010-01-01

    The topic of alternative energy is not only relevant to a multitude of issues today, it is also an effective vehicle for developing instruction that applies across a variety of content disciplines and academic standards. Since many of the issues associated with alternative energy are open-ended, alternative energy also lends itself to…

  17. Mesoporous Carbon-based Materials for Alternative Energy Applications

    NASA Astrophysics Data System (ADS)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  18. Spinal Cauda Equina Stimulation for Alternative Location of Spinal Cord Stimulation in Intractable Phantom Limb Pain Syndrome: A Case Report.

    PubMed

    Lee, Pil Moo; So, Yun; Park, Jung Min; Park, Chul Min; Kim, Hae Kyoung; Kim, Jae Hun

    2016-04-01

    Phantom limb pain is a phenomenon in which patients experience pain in a part of the body that no longer exists. In several treatment modalities, spinal cord stimulation (SCS) has been introduced for the management of intractable post-amputation pain. A 46-year-old male patient complained of severe ankle and foot pain, following above-the-knee amputation surgery on the right side amputation surgery three years earlier. Despite undergoing treatment with multiple modalities for pain management involving numerous oral and intravenous medications, nerve blocks, and pulsed radiofrequency (RF) treatment, the effect duration was temporary and the decreases in the patient's pain score were not acceptable. Even the use of SCS did not provide completely satisfactory pain management. However, the trial lead positioning in the cauda equina was able to stimulate the site of the severe pain, and the patient's pain score was dramatically decreased. We report a case of successful pain management with spinal cauda equina stimulation following the failure of SCS in the treatment of intractable phantom limb pain.

  19. Alternative energy estimation from the shower lateral distribution function

    NASA Astrophysics Data System (ADS)

    de Souza, Vitor; Escobar, Carlos; Brito, Joel; Dobrigkeit, Carola; Medina-Tanco, Gustavo

    The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new estimator proposed here is shown to be a good and robust alternative to the standard single point procedure.

  20. Don't forget alternate energy sources: biomass, geothermal, wind

    SciTech Connect

    Miskell, J.T.

    1981-01-01

    The United States is probably the most fortunate country in the world in terms of potential energy resources, and that is part of the problem in developing alternate sources. Which ones should be given preference, and which ones will give the quickest, most economic return on investment. The exploration of converting potential plant life to energy is already underway. One such plant is the milkweed. The milky latex substance of the weed contains 30% hydrocarbon and 70% water. About 7% to 10% of the plant weight is extractable crude oil. The unused plant residue can be processed to produce alcohol. In Utah, a milkweed project yielded 2.5 pounds of oil from 35 lbs. of milkweed. The California Commission is looking into the possibility of using two million tons of rice straw, now left in the fields to be burned. The basic thrust of geothermal activity is still the dry steam plants in the Geyser field in California, but the movement to develop more prevalent hot water persists. Binary production and the use of moderate hot water are gaining in acceptance. The government's goal for wind for the year 2000 is 2% of total energy usage. Both utility and consumer participation will be required to meet that goal. Utilities will have to install 20,000 to 30,000 large-scale machines and nearly 1 million would have to be installed by consumers for homes and farms. Movement is already underway.

  1. Gasohol: An Energy Alternative. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    This 2-3 week high school chemistry unit is designed to provide students with an awareness of Gasohol as an energy alternative. Gasohol is a blend of 10 percent pure ethanol and 90 percent unleaded gasoline. The unit consists of nine activities (five laboratory experiments, three informational readings, and a sample problem activity). The five…

  2. Energy conservation and alternate energy resources for a dairy utilizing a water flush waste disposal system

    SciTech Connect

    Erdman, M.D.; Bryan, W.L.; Johnson, J.C. Jr.; Newton, G.L.

    1981-01-01

    Electricity use and costs were evaluated for a dairy farm using a water flush disposal system. Electricity conservastion, reducing the peak electrical demand, and alternative energy production from animal waste can be reduce purchased electrical costs while still maintaining the benefits derived from mechanization. ref.

  3. Alternative Main Linac BNS Configuration for Reduced IP Energy Spread (LCC-0139)

    SciTech Connect

    Tenenbaum, P

    2004-05-24

    We present a series of alternate BNS phase configurations for the 500 GeV CM NLC main linac in which the energy spread at the end of the linac is reduced from its nominal 0.25% value. The energy spectrum, achievable IP beam energy, energy bias, and linac stability are evaluated for the alternate cases. We conclude that the RMS energy spread and energy bias in the NLC can easily be reduced but that modest reductions in CM energy are required.

  4. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.

    PubMed

    Fröhlich, Flavio

    2014-03-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

  5. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation

    PubMed Central

    Fröhlich, Flavio

    2014-01-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses. PMID:24733974

  6. Effects of oral and gastric stimulation on appetite and energy intake.

    PubMed

    Wijlens, Anne G M; Erkner, Alfrun; Alexander, Erin; Mars, Monica; Smeets, Paul A M; de Graaf, Cees

    2012-11-01

    Appetite is regulated by many factors, including oro-sensory and gastric signals. There are many studies on contributions of and possible interaction between sensory and gastric stimulation, but there are few studies in humans using simultaneous oral and gastric stimulation. We investigated the effect of simultaneous, but independently manipulated, oral and gastric stimulation on appetite ratings and energy intake. We hypothesized that compared with no stimulation, oral and gastric stimulation would equally and additively decrease appetite ratings and energy intake. Healthy men (n = 26, 21 ± 2 years, BMI 22 ± 3 kg/m(2)) participated in a randomized crossover trial with four experimental conditions and a control condition. Experimental conditions consisted of oral stimulation, with either 1 or 8 min modified sham feeding (MSF), and gastric stimulation, with either 100 or 800 ml intragastrically infused liquid (isocaloric, 99 kcal, 100 ml/min). The control condition consisted of no oral or gastric stimulation. Outcome measures were energy intake 30 min after the treatment and appetite ratings. Compared with the control condition, energy intake decreased significantly after the 8 min/100 ml (19% lower, P = 0.001) and 8 min/800 ml conditions (15% lower, P = 0.02), but not after the 1 min/100 ml (14% lower, P = 0.06) and 1 min/800 ml conditions (10% lower, P = 0.39). There was no interaction of oral and gastric stimulation on energy intake. Hunger and fullness differed across all conditions (P ≤ 0.01). In conclusion, duration of oral exposure was at least as important in decreasing energy intake as gastric filling volume. Oral and gastric stimulation did not additively decrease energy intake. Longer oro-sensory stimulation, therefore, may be an important contributor to a lower energy intake.

  7. Analysis of Federal incentives used to stimulate energy production

    SciTech Connect

    Cone, B.W.; Brenchley, D.L.; Brix, V.L.

    1980-02-01

    Solar energy's share in the national energy budget has caused policy makers to speculate on the reasons for the large difference between present and potential use. Complex technical, economic, legal, institutional, and political interrelationships appear and an attempt is made to present an understanding of that relationship and to enhance the design of solar energy policy. Federal incentives that have been previously used on other energy sources are examined and the report identifies, quantifies, and analyzes such incentives and relates them to current thought about solar energy. The chapters presented are: A Theoretical Approach to Analyzing Incentives for Energy Production; Generic Analysis of Energy Incentives; Nuclear Energy Incentives; Hydroenergy Incentives; Coal Energy Incentives; Oil Energy Incentives; Natural Gas Energy Incentives; and Electricity. Conclusions with respect to solar energy policy for each of these are summed. (MCW)

  8. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function.

    PubMed

    Naro, Antonino; Bramanti, Alessia; Leo, Antonino; Manuli, Alfredo; Sciarrone, Francesca; Russo, Margherita; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-01-07

    The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about -20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about -15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.

  9. Follicle-stimulating hormone receptor (FSHR) alternative skipping of exon 2 or 3 affects ovarian response to FSH.

    PubMed

    Karakaya, Cengiz; Guzeloglu-Kayisli, Ozlem; Hobbs, Rebecca J; Gerasimova, Tsilya; Uyar, Asli; Erdem, Mehmet; Oktem, Mesut; Erdem, Ahmet; Gumuslu, Seyhan; Ercan, Deniz; Sakkas, Denny; Comizzoli, Pierre; Seli, Emre; Lalioti, Maria D

    2014-07-01

    Genes critical for fertility are highly conserved in mammals. Interspecies DNA sequence variation, resulting in amino acid substitutions and post-transcriptional modifications, including alternative splicing, are a result of evolution and speciation. The mammalian follicle-stimulating hormone receptor (FSHR) gene encodes distinct species-specific forms by alternative splicing. Skipping of exon 2 of the human FSHR was reported in women of North American origin and correlated with low response to ovarian stimulation with exogenous follicle-stimulating hormone (FSH). To determine whether this variant correlated with low response in women of different genetic backgrounds, we performed a blinded retrospective observational study in a Turkish cohort. Ovarian response was determined as low, intermediate or high according to retrieved oocyte numbers after classifying patients in four age groups (<35, 35-37, 38-40, >40). Cumulus cells collected from 96 women undergoing IVF/ICSI following controlled ovarian hyperstimulation revealed four alternatively spliced FSHR products in seven patients (8%): exon 2 deletion in four patients; exon 3 and exons 2 + 3 deletion in one patient each, and a retention of an intron 1 fragment in one patient. In all others (92%) splicing was intact. Alternative skipping of exons 2, 3 or 2 + 3 were exclusive to low responders and was independent of the use of agonist or antagonist. Interestingly, skipping of exon 3 occurs naturally in the ovaries of domestic cats--a good comparative model for human fertility. We tested the signaling potential of human and cat variants after transfection in HEK293 cells and FSH stimulation. None of the splicing variants initiated cAMP signaling despite high FSH doses, unlike full-length proteins. These data substantiate the occurrence of FSHR exon skipping in a subgroup of low responders and suggest that species-specific regulation of FSHR splicing plays diverse roles in mammalian ovarian function.

  10. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  11. Direct inductive stimulation for energy-efficient wireless neural interfaces.

    PubMed

    Ha, Sohmyung; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2012-01-01

    Advanced neural stimulator designs consume power and produce unwanted thermal effects that risk damage to surrounding tissue. In this work, we present a simplified architecture for wireless neural stimulators that relies on a few circuit components including an inductor, capacitor and a diode to elicit an action potential in neurons. The feasibility of the design is supported with analytical models of the inductive link, electrode, electrolyte, membrane and channels of neurons. Finally, a flexible implantable prototype of the design is fabricated and tested in vitro on neural tissue.

  12. 3rd Miami international conference on alternative energy sources

    SciTech Connect

    Nejat Veziroglu, T.

    1980-01-01

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

  13. A comparison of alternative energy storage systems for automobiles

    NASA Astrophysics Data System (ADS)

    The performance potentials of primary batteries, fuel cells, and flywheel-transmission systems in comparison with secondary batteries as alternates to conventional internal combustion engine automobile power systems are discussed. A number of areas of research that are recommended for attention as part of a well-rounded investigation of alternatives are outlined.

  14. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    SciTech Connect

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.; Taylor, Zachary T.; Makela, Eric J.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goal of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.

  15. Development of alternative energy science and engineering in the Caribbean

    NASA Astrophysics Data System (ADS)

    Bonnet, J. A., Jr.

    1983-12-01

    The conclusions and recommendations of the Solar Energy Utilization Workshop for the Caribbean Basin were summarized. Wind power utilization and biomass energy production were discussed briefly. Solar energy conversion research at the University of Florida was presented.

  16. An evaluation of alternate energy sources for the Guyana energy crisis

    NASA Astrophysics Data System (ADS)

    Sankies, M.

    Hydropower, tidal power, and Ocean Thermal Energy Conversion (OTEC) are evaluated as energy sources for the economic development of Guyana. The realization of a 3000 MW hydropower scheme is expected to promote industries such as an aluminum smelting plant and an ammonium nitrate plant in the hinterland. A proposal is made for a tidal power plant on the Saint John River with a million kW capacity. Although Guyana's geological location and atmospheric conditions make it a favorable site for solar seapower, OTEC cannot be considered as a current alternative. It is concluded that hydropower will play an important role as an inexpensive source of energy for industry, and that tidal power will supply coastal areas and function as part of the sea-defense system.

  17. Supplement to energy for rural development: Renewable resources and alternative technologies for developing countries

    NASA Astrophysics Data System (ADS)

    The publication energy for rural development: renewable resources and alternative technologies for developing countries, which presented information on a variety of subjects, including direct uses of solar energy (heating, cooling, distillation, crop drying, photovoltaics), indirect uses of solar energy (wind power, hydropower, photosynthesis, biomass), geothermal energy, and energy storage is reviewed. New technologies developed and advances made in technologies are discussed.

  18. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    SciTech Connect

    Not Available

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  19. Alternative Energy: A Guide to Free Information for Educators.

    ERIC Educational Resources Information Center

    White, Janet A.

    This guide was compiled to help teachers and students locate free educational materials (both lessons and nontechnical background references) on renewable energy resources and energy conservation. The 214 entries are arranged by these topic areas: (1) energy efficiency and renewables; (2) biomass; (3) hydropower; (4) solar thermal energy; (5)…

  20. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions.

    PubMed

    Jaušovec, Norbert; Jaušovec, Ksenija; Pahor, Anja

    2014-02-01

    The study aimed to explore the role of the fronto-parietal brain network in working memory function--in temporary storage and manipulation of information. In a single blind sham controlled experiment 36 respondents solved different working memory tasks after theta transcranial alternating current stimulation (tACS) was applied to left frontal, left parietal and right parietal areas. Both verum tACS protocols stimulating parietal brain areas (target electrodes positioned at location P3, or P4) had a positive effect on WM storage capacity as compared with sham tACS, whereas no such influence was observed for the stimulation of the left frontal area (target electrode positioned at location F3). A second finding was that left parietal theta tACS had a more pronounced influence on backward recall than on forward recall, which was not related to task content (spatial or verbal). The influence of theta tACS on WM executive processes was most pronounced for right parietal stimulation. The results are discussed in the broad theoretical framework of the multicomponent model of working memory.

  1. Nanoscale heat transfer and thermoelectrics for alternative energy

    NASA Astrophysics Data System (ADS)

    Robinson, Richard

    2011-03-01

    In the area of alternative energy, thermoelectrics have experienced an unprecedented growth in popularity because of their ability to convert waste heat into electricity. Wired in reverse, thermoelectrics can act as refrigeration devices, where they are promising because they are small in size and lightweight, have no moving parts, and have rapid on/off cycles. However, due to their low efficiencies bulk thermoelectrics have historically been a niche market. Only in the last decade has thermoelectric efficiency exceeded ~ 20 % due to fabrication of nanostructured materials. Nanoscale materials have this advantage because electronic and acoustic confinement effects can greatly increase thermoelectric efficiency beyond bulk values. In this talk, I will introduce our work in the area of nanoscale heat transfer with the goal of more efficient thermoelectrics. I will discuss our experiments and methods to study acoustic confinement in nanostructures and present some of our new nanostructured thermoelectric materials. To study acoustic confinement we are building a nanoscale phonon spectrometer. The instrument can excite phonon modes in nanostructures in the ~ 100 s of GHz. Ballistic phonons from the generator are used to probe acoustic confinement and surface scattering effects. Transmission studies using this device will help optimize materials and morphologies for more efficient nanomaterial-based thermoelectrics. For materials, our group has synthesized nano-layer superlattices of Na x Co O2 . Sodium cobaltate was recently discovered to have a high Seebeck coeficent and is being studied as an oxide thermoelectric material. The thickness of our nano-layers ranges from 5 nm to 300 nm while the lengths can be varied between 10 μ m and 4 mm. Typical aspect ratios are 40 nm: 4 mm, or 1:100,000. Thermoelectric characterization of samples with tilted multiple-grains along the measurement axis indicate a thermoelectric efficiency on par with current polycrystalline samples

  2. A DSP based power electronics interface for alternative /renewable energy system.

    SciTech Connect

    1999-09-28

    This report is an update on the research project involving the implementation of a DSP-based power electronics interface for alternate/renewable energy systems, that was funded by the Department of Energy under the Inventions and Innovations program.

  3. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements.

    PubMed

    Varlet, Manuel; Wade, Alanna; Novembre, Giacomo; Keller, Peter E

    2017-03-18

    Human rhythmic movements spontaneously entrain to external rhythmic stimuli. Such sensory-motor entrainment can attract movements to different tempi and enhance their efficiency, with potential clinical applications for motor rehabilitation. Here we investigate whether entrainment of self-paced rhythmic movements can be induced via transcranial alternating current stimulation (tACS), which uses alternating currents to entrain spontaneous brain oscillations at specific frequencies. Participants swung a handheld pendulum at their preferred tempo with the right hand while tACS was applied over their left or right primary motor cortex at frequencies equal to their preferred tempo (Experiment 1) or in the alpha (10Hz) and beta (20Hz) ranges (Experiment 2). Given that entrainment generally occurs only if the frequency difference between two rhythms is small, stimulations were delivered at frequencies equal to participants' preferred movement tempo (≈1Hz) and ±12.5% in Experiment 1, and at 10Hz and 20Hz, and ±12.5% in Experiment 2. The comparison of participants' movement frequency, amplitude, variability, and phase synchrony with and without tACS failed to reveal entrainment or movement modifications across the two experiments. However, significant differences in stimulation-related side effects reported by participants were found between the two experiments, with phosphenes and burning sensations principally occurring in Experiment 2, and metallic tastes reported marginally more often in Experiment 1. Although other stimulation protocols may be effective, our results suggest that rhythmic movements such as pendulum swinging or locomotion that are low in goal-directedness and/or strongly driven by peripheral and mechanical constraints may not be susceptible to modulation by tACS.

  4. Strategic Art and Energy: An Alternative Ends-Ways-Means View

    DTIC Science & Technology

    2007-05-09

    Conference, Kuala Lumpur, Malaysia , 13 June 2005 3 Energy data from U.S. Energy Information Agency, http://www.eia.doe.gov/pub/international/iealf...STRATEGIC ART AND ENERGY : AN ALTERNATE ENDS-WAYS-MEANS VIEW BY COLONEL JOHN B. WISSLER United States Air Force DISTRIBUTION STATEMENT A...2007 4. TITLE AND SUBTITLE Strategic Art and Energy An Alternative Ends-Ways-Means View 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  5. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  6. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    SciTech Connect

    Harto, C. B.; Schroeder, J. N.; Horner, R. M.; Patton, T. L.; Durham, L. A.; Murphy, D. J.; Clark, C. E.

    2014-10-01

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  7. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  8. Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2010-08-01

    The energy efficiency of stimulation is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. As the GA progressed, waveforms became increasingly energy efficient and converged upon an energy-optimal shape. The results of the GA were consistent across several trials, and resulting waveforms resembled truncated Gaussian curves. When constrained to monophasic cathodic waveforms, the GA produced waveforms that were symmetric about the peak, which occurred approximately during the middle of the pulse. However, when the cathodic waveforms were coupled to rectangular charge-balancing anodic pulses, the location and sharpness of the peak varied with the duration and timing (i.e., before or after the cathodic phase) of the anodic phase. In a model of a population of mammalian axons and in vivo experiments on a cat sciatic nerve, the GA-optimized waveforms were more energy efficient and charge efficient than several conventional waveform shapes used in neural stimulation. If used in implantable neural stimulators, GA-optimized waveforms could prolong battery life, thereby reducing the frequency of recharge intervals, the volume of implanted pulse generators, and the costs and risks of battery-replacement surgeries.

  9. Energy-efficient waveform shapes for neural stimulation revealed with genetic algorithm

    PubMed Central

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2010-01-01

    The energy efficiency of stimulation is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. As the GA progressed, waveforms became increasingly energy-efficient and converged upon an energy-optimal shape. The results of the GA were consistent across several trials, and resulting waveforms resembled truncated Gaussian curves. When constrained to monophasic cathodic waveforms, the GA produced waveforms that were symmetric about the peak, which occurred approximately during the middle of the pulse. However, when the cathodic waveforms were coupled to rectangular charge-balancing anodic pulses, the location and sharpness of the peak varied with the duration and timing (i.e., before or after cathodic phase) of the anodic phase. In a model of a population of mammalian axons and in vivo experiments on cat sciatic nerve, the GA-optimized waveforms were more energy-efficient and charge-efficient than several conventional waveform shapes used in neural stimulation. If used in implantable neural stimulators, GA-optimized waveforms could prolong battery life, thereby reducing the frequency of recharge intervals, the volume of implanted pulse generators, and the costs and risks of battery-replacement surgeries. PMID:20571186

  10. Direct Acoustic Stimulation at the Lateral Canal: An Alternative Route to the Inner Ear?

    PubMed Central

    Walraevens, Joris; Desloovere, Christian; Wouters, Jan; Gérard, Jean-Marc

    2016-01-01

    Severe to profound mixed hearing loss is associated with hearing rehabilitation difficulties. Recently, promising results for speech understanding were obtained with a direct acoustic cochlear implant (DACI). The surgical implantation of a DACI with standard coupling through a stapedotomy can however be regarded as challenging. Therefore, in this experimental study, the feasibility of direct acoustic stimulation was investigated at an anatomically and surgically more accessible inner ear site. DACI stimulation of the intact, blue-lined and opened lateral semicircular canal (LC) was investigated and compared with standard oval window (OW) coupling. Additionally, stapes footplate fixation was induced. Round window (RW) velocity, as a measure of the performance of the device and its coupling efficiency, was determined in fresh-frozen human cadaver heads. Using single point laser Doppler vibrometry, RW velocity could reliably be measured in low and middle frequency range, and equivalent sound pressure level (LE) output was calculated. Results for the different conditions obtained in five heads were analyzed in subsequent frequency ranges. Comparing the difference in RW membrane velocity showed higher LE in the LC opened condition [mean: 103 equivalent dB SPL], than in LC intact or blue-lined conditions [63 and 74 equivalent dB SPL, respectively]. No difference was observed between the LC opened and the standard OW condition. Inducing stapes fixation, however, led to a difference in the low frequency range of LE compared to LC opened. In conclusion, this feasibility study showed promising results for direct acoustic stimulation at this specific anatomically and surgically more accessible inner ear site. Future studies are needed to address the impact of LC stimulation on cochlear micromechanics and on the vestibular system like dizziness and risks of hearing loss. PMID:27500399

  11. Direct Acoustic Stimulation at the Lateral Canal: An Alternative Route to the Inner Ear?

    PubMed

    Verhaert, Nicolas; Walraevens, Joris; Desloovere, Christian; Wouters, Jan; Gérard, Jean-Marc

    2016-01-01

    Severe to profound mixed hearing loss is associated with hearing rehabilitation difficulties. Recently, promising results for speech understanding were obtained with a direct acoustic cochlear implant (DACI). The surgical implantation of a DACI with standard coupling through a stapedotomy can however be regarded as challenging. Therefore, in this experimental study, the feasibility of direct acoustic stimulation was investigated at an anatomically and surgically more accessible inner ear site. DACI stimulation of the intact, blue-lined and opened lateral semicircular canal (LC) was investigated and compared with standard oval window (OW) coupling. Additionally, stapes footplate fixation was induced. Round window (RW) velocity, as a measure of the performance of the device and its coupling efficiency, was determined in fresh-frozen human cadaver heads. Using single point laser Doppler vibrometry, RW velocity could reliably be measured in low and middle frequency range, and equivalent sound pressure level (LE) output was calculated. Results for the different conditions obtained in five heads were analyzed in subsequent frequency ranges. Comparing the difference in RW membrane velocity showed higher LE in the LC opened condition [mean: 103 equivalent dB SPL], than in LC intact or blue-lined conditions [63 and 74 equivalent dB SPL, respectively]. No difference was observed between the LC opened and the standard OW condition. Inducing stapes fixation, however, led to a difference in the low frequency range of LE compared to LC opened. In conclusion, this feasibility study showed promising results for direct acoustic stimulation at this specific anatomically and surgically more accessible inner ear site. Future studies are needed to address the impact of LC stimulation on cochlear micromechanics and on the vestibular system like dizziness and risks of hearing loss.

  12. Investigating Effects of Nano- to Micro-Ampere Alternating Current Stimulation on Trichophyton rubrum Growth

    PubMed Central

    Kwon, Dong Rak; Kwon, Hyunjung; Lee, Woo Ram

    2016-01-01

    Background Fungi are eukaryotic microorganisms including yeast and molds. Many studies have focused on modifying bacterial growth, but few on fungal growth. Microcurrent electricity may stimulate fungal growth. Objective This study aims to investigate effects of microcurrent electric stimulation on Trichophyton rubrum growth. Methods Standard-sized inoculums of T. rubrum derived from a spore suspension were applied to potato dextrose cornmeal agar (PDACC) plates, gently withdrawn with a sterile pipette, and were applied to twelve PDACC plates with a sterile spreader. Twelve Petri dishes were divided into four groups. The given amperage of electric current was 500 nA, 2 µA, and 4 µA in groups A, B, and C, respectively. No electric current was given in group D. Results In the first 48 hours, colonies only appeared in groups A and B (500 nA and 2 µA exposure). Colonies in group A (500 nA) were denser. Group C (4 µA) plates showed a barely visible film of fungus after 96 hours of incubation. Fungal growth became visible after 144 hours in the control group. Conclusion Lower intensities of electric current caused faster fungal growth within the amperage range used in this study. Based on these results, further studies with a larger sample size, various fungal species, and various intensities of electric stimulation should be conducted. PMID:27746636

  13. 5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern.

    PubMed

    Kunz, Patrik; Antal, Andrea; Hewitt, Manuel; Neef, Andreas; Opitz, Alexander; Paulus, Walter

    2016-01-01

    Background: Suprathreshold transcranial single pulse electrical stimulation (tES) is painful and not applicable in a repetitive mode to induce plastic after-effects. Objective: In order to circumvent this pain problem, we applied here a 5 kHz transcranial alternating current stimulation (tACS) theta burst protocol with a field intensity of up to 10 mA to the primary motor cortex (M1). Furthermore, we were interested in finding out whether electrical theta burst stimulation (eTBS) is able to induce lasting after-effects on cortical plasticity. Methods: Three different eTBS protocols were applied at 5 mA in a sham controlled, double blinded cross-over design on the M1 region of seventeen healthy subjects during the first part of the study. The second study part consists of three different eTBS protocols ranging from 5 mA to 10 mA and 1 ms to 5 ms sinusoidal bursts, applied to the M1 region of 14 healthy subjects. Results: We were able to apply all eTBS protocols in a safe manner, with only six subjects reporting mild side effects related to the stimulation. However, no eTBS protocol induced lasting effects on muscle- evoked potential (MEP) amplitudes when compared to sham stimulation. Significant inhibition of MEP amplitude was only seen in the lower intensity protocols as compared to baseline. Conclusion: eTBS is a safe method to apply high frequency tACS with up to 10 mA intensity. Future studies need to explore the parameter space to a larger extent in order to assure efficacy.

  14. 5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern

    PubMed Central

    Kunz, Patrik; Antal, Andrea; Hewitt, Manuel; Neef, Andreas; Opitz, Alexander; Paulus, Walter

    2017-01-01

    Background: Suprathreshold transcranial single pulse electrical stimulation (tES) is painful and not applicable in a repetitive mode to induce plastic after-effects. Objective: In order to circumvent this pain problem, we applied here a 5 kHz transcranial alternating current stimulation (tACS) theta burst protocol with a field intensity of up to 10 mA to the primary motor cortex (M1). Furthermore, we were interested in finding out whether electrical theta burst stimulation (eTBS) is able to induce lasting after-effects on cortical plasticity. Methods: Three different eTBS protocols were applied at 5 mA in a sham controlled, double blinded cross-over design on the M1 region of seventeen healthy subjects during the first part of the study. The second study part consists of three different eTBS protocols ranging from 5 mA to 10 mA and 1 ms to 5 ms sinusoidal bursts, applied to the M1 region of 14 healthy subjects. Results: We were able to apply all eTBS protocols in a safe manner, with only six subjects reporting mild side effects related to the stimulation. However, no eTBS protocol induced lasting effects on muscle- evoked potential (MEP) amplitudes when compared to sham stimulation. Significant inhibition of MEP amplitude was only seen in the lower intensity protocols as compared to baseline. Conclusion: eTBS is a safe method to apply high frequency tACS with up to 10 mA intensity. Future studies need to explore the parameter space to a larger extent in order to assure efficacy. PMID:28119589

  15. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°.

  16. Local alternative energy futures: developing economies/building communities

    SciTech Connect

    Totten, M.; Glass, B.; Freedberg, M.; Webb, L.

    1980-12-01

    A separate abstract was prepared for each of the three parts of the conference. A sufficient range of information is presented to enable interested parties to explore the viable alternatives for community self-sufficiency. The parts are entitled: Financial Incentives and Funding Sources; Standards, Regulations, Mandates, Ordinances, Covenants; and Community/Economic Development. (MCW)

  17. Current alternative energy research and development in Illinois

    NASA Astrophysics Data System (ADS)

    Swager, R.

    1984-12-01

    This directory lists research and demonstration projects, as well as sponsoring organization and investigators involved in developing nonfossil, nonnuclear energy sources. Areas of concern are: bioenergy; solar heating and cooling; solar photovoltaics; solar thermal and advanced technologies; geothermal and ocean thermal; wind energy; waste heat and materials recovery; and energy storage projects performed by Illinois organizations, both within by out-of-state organizations at sites within Illinois.

  18. Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen.

    PubMed

    Stempin, Cinthia; Giordanengo, Laura; Gea, Susana; Cerbán, Fabio

    2002-10-01

    We studied the macrophage (Mo) activation pathways through Mo interaction with immunogenic Trypanosoma cruzi antigens as cruzipain (Cz) and R13. J774 cells, peritoneal and spleen Mo from normal mice, were used. Although Mo classic activation was observed in the presence of lipopolysaccharide, evaluated through nitric oxide (NO) and interleukin (IL)-12 production, Cz and R13 did not activate Mo in this way. To study the alternative pathway, we examined the arginase activity in Mo cultured with Cz. An increase of arginase activity was detected in all Mo sources assayed. An increase of IL-10 and transforming growth factor-beta in culture supernatants from Mo stimulated with Cz was observed. The study of expression of B7.1 and B7.2 in spleen Mo revealed that Cz induces preferential expression of B7.2. In vitro studies revealed that Cz stimulated J774 cells and then, infected with trypomastigotes of T. cruzi, developed a higher number of intracellular parasites than unstimulated infected Mo. Thus, Cz favors the perpetuation of T. cruzi infection. In addition, a down-regulation of inducible NO synthase was observed in J774 cells stimulated with Cz. These results suggest that Cz interaction with Mo could modulate the immune response generated against T. cruzi through the induction of a preferential metabolic pathway in Mo.

  19. Alternative Stimulation Intensities for Mapping Cortical Motor Area with Navigated TMS.

    PubMed

    Kallioniemi, Elisa; Julkunen, Petro

    2016-05-01

    Navigated transcranial magnetic stimulation (nTMS) is becoming a popular tool in pre-operative mapping of functional motor areas. The stimulation intensities used in the mapping are commonly suprathreshold intensities with respect to the patient's resting motor threshold (rMT). There is no consensus on which suprathreshold intensity should be used nor on the optimal criteria for selecting the appropriate stimulation intensity (SI). In this study, the left motor cortices of 12 right-handed volunteers (8 males, age 24-61 years) were mapped using motor evoked potentials with an SI of 110 and 120 % of rMT and with an upper threshold (UT) estimated by the Mills-Nithi algorithm. The UT was significantly lower than 120 % of rMT (p < 0.001), while no significant difference was observed between UT and 110 % of rMT (p = 0.112). The representation sizes followed a similar trend, i.e. areas computed based on UT (5.9 cm(2)) and 110 % of rMT (5.0 cm(2)) being smaller than that of 120 % of rMT (8.8 cm(2)) (p ≤ 0.001). There was no difference in representation sizes between 110 % of rMT and UT. The variance in representation size was found to be significantly lower with UT compared to 120 % of rMT (p = 0.048, uncorrected), while there was no difference between 110 % of rMT and UT or 120 % of rMT. Indications of lowest inter-individual variation in representation size were observed with UT; this is possibly due to the fact that it takes into account the individual input-output characteristics of the motor cortex. Therefore, the UT seems to be a good option for SI in motor mapping applications to outline functional motor areas with nTMS and it could potentially reduce the inter-individual variation caused by the selection of SI in motor mapping in pre-surgical applications and radiosurgery planning.

  20. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  1. Analysis of alternative strategies for energy conservation in new buildings

    NASA Astrophysics Data System (ADS)

    Fang, J. M.; Tawil, J.

    1980-12-01

    The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.

  2. Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.

  3. Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems

    NASA Astrophysics Data System (ADS)

    Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.

    1980-04-01

    Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.

  4. Alternative Energy Sources for United States Air Force Installations

    DTIC Science & Technology

    1975-08-01

    planetary system will have to be faced. As Jay W. Forrester (ref. 3) states: "it is not a question of whether growth will cease, but rather whether...known energy storage concept. This is primarily due to the fact that the wind turbine energy can be transmitted directly to the flywheel through gears ...and shafting at very high efficiency. The flywheel can then be connected directly to the AC generator without the need for gearing . 7. W!NO TURBINES

  5. Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant

    NASA Astrophysics Data System (ADS)

    Gong, Hua; Xiang, Jian; Xu, Ligeng; Song, Xuejiao; Dong, Ziliang; Peng, Rui; Liu, Zhuang

    2015-11-01

    Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT:PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT:PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT:PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity

  6. Comparing energy technology alternatives from an environmental perspective

    SciTech Connect

    House, P W; Coleman, J A; Shull, R D; Matheny, R W; Hock, J C

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity.

  7. Geothermal, an alternate energy source for power generation

    SciTech Connect

    Espinosa, H.A.

    1985-02-01

    The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

  8. Monomeric S-adenosylmethionine decarboxylase from plants provides an alternative to putrescine stimulation.

    PubMed

    Bennett, Eric M; Ekstrom, Jennifer L; Pegg, Anthony E; Ealick, Steven E

    2002-12-10

    S-Adenosylmethionine decarboxylase has been implicated in cell growth and differentiation and is synthesized as a proenzyme, which undergoes autocatalytic cleavage to generate an active site pyruvoyl group. In mammals, S-adenosylmethionine decarboxylase is active as a dimer in which each protomer contains one alpha subunit and one beta subunit. In many higher organisms, autocatalysis and decarboxylation are stimulated by putrescine, which binds in a buried site containing numerous negatively charged residues. In contrast, plant S-adenosylmethionine decarboxylases are fully active in the absence of putrescine, with rapid autocatalysis that is not stimulated by putrescine. We have determined the structure of the S-adenosylmethionine decarboxylase from potato, Solanum tuberosum, to 2.3 A resolution. Unlike the previously determined human enzyme structure, the potato enzyme is a monomer in the crystal structure. Ultracentrifugation studies show that the potato enzyme is also a monomer under physiological conditions, with a weak self-association constant of 6.5 x 10(4) M(-)(1) for the monomer-dimer association. Although the potato enzyme contains most of the buried charged residues that make up the putrescine binding site in the human enzyme, there is no evidence for a putrescine binding site in the potato enzyme. Instead, several amino acid substitutions, including Leu13/Arg18, Phe111/Arg114, Asp174/Val181, and Phe285/His294 (human/potato), provide side chains that mimic the role of putrescine in the human enzyme. In the potato enzyme, the positively charged residues form an extensive network of hydrogen bonds bridging a cluster of highly conserved negatively charged residues and the active site, including interactions with the catalytic residues Glu16 and His249. The results explain the constitutively high activity of plant S-adenosylmethionine decarboxylases in the absence of putrescine and are consistent with previously proposed models for how putrescine together

  9. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    SciTech Connect

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  10. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Power and Energy.

    DTIC Science & Technology

    1980-12-22

    energy impacts of analysis of site-specific impacts for each M-X deployment alternative. Each analysis identifies the cause-and- effect relationships for...Power 70 3.9 Alternative 8 - Coyote Spring Valley; Clovis 70 4.0 Effects on Energy Systevr.s 73 4.1 Energy Supply - Nevada/Utah 73 4.1.1 Fuel Supply...73 4.1.2 Electric Power 73 4.2 Energy Supply - Texas/New Mexico 73 4.2.1 Fuel Supply 73 4.2.2 Electric Power 73 4.3 Effect on Energy Systems near

  11. Specifying energy to stimulate the market - the Canadian Federal Government

    SciTech Connect

    Kirk, I.

    1995-12-01

    Public Works and Government Services Canada (PWGSC) is the equivalent to the U.S. General Services Administration (GSA). The Central Procurement Agency purchases all goods and services for the federal public sector-$1.5 billion per annum expenditure for information technology. The personal computer (PC) group buys about 300 million PCs per annum. All requirements are fulfilled through a competitive process, which involves a Request for Proposal. The lowest compliant bidder always wins. All requirements are computed under GATT and NAFTA. PWGSC and GSA purchase the same office technology. PWGSC has a standing offer method of supply, much like a GSA schedule. Only the least expensive vendors are allowed on the standing offer after a Request for Standing Offer. The price is determined by a mean plus one standard deviation, so 68% of the bidders make it on to the standing offer. Multiple vendors offer multiple platforms, and a wide variety are from the United States and the Canadian Pacific Rim. New PC technology introduced through categories is where the `green` issue comes in. Those categories reflect new PC technology, usually models with Intel CPUs. A green PC category was created in parallel with other nongreen categories. All the testing - not necessarily green testing - was done by the Philadelphia based National Software Testing Laboratory. Again, the lowest compliant bidder is always used. This laboratory does a good job of performance, usability, and compatibility studies. The green category, one category out of a possible six, specifies Energy Star. All the suppliers to the Canadian Government also supply to the U.S. Government. Canadian PC manufacturers essentially repackage Taiwanese or U.S. components, and through the insight of GSA, it is very easy for a vendor to become an Energy Star partner. An in-house test methodology with a watt meter was developed.

  12. Implications of solar energy alternatives for community design

    SciTech Connect

    Santos, A.; Steinitz, C.

    1980-06-01

    A graduate-level studio at the Harvard School of Design explored how a policy of solar-based energy independence will influence the design of a new community of approximately 4500 housing units and other uses. Three large sites outside Tucson (a cooling problem), Atlanta (a humidity problem), and Boston (a heating problem) were selected. Each is typical of its region. A single program was assumed and designed for. Each site had two teams, one following a compact approach and one following a more dispersed approach. Each was free to choose the most appropriate mix of (solar) technology and scale, and was free to integrate energy and community in the design as it saw fit. These choice and integration issues are key areas where our experience may be of interest to those involved in community design and solar energy.

  13. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    NASA Astrophysics Data System (ADS)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  14. 76 FR 4244 - Regulation and Enforcement; Renewable Energy Alternate Uses of Existing Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Bureau of Ocean Energy Management 30 CFR Part 285 RIN 1010-AD71 Regulation and Enforcement; Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental Shelf--Acquire a Lease... renewable energy regulatory provisions that pertain to noncompetitive acquisition of leases, published...

  15. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications

    NASA Astrophysics Data System (ADS)

    Wilson, J. Adam; Walton, Léo M.; Tyler, Mitch; Williams, Justin

    2012-08-01

    This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual feedback for 11 participants. These subjects were able to modulate the chosen BCI EEG features during both feedback modalities, indicating that the type of feedback chosen does not matter provided that the task information is clearly conveyed through the chosen medium. In addition, we tested a blind subject with the tactile feedback system, and found that the training time, accuracy, and movement times were indistinguishable from results obtained from subjects using visual feedback. We believe that BCI systems with alternative feedback pathways should be explored, allowing individuals with severe motor disabilities and accompanying reduced visual and sensory capabilities to effectively use a BCI.

  16. Alternative Fueled Vehicles Competitiveness and Energy Security Act of 2013

    THOMAS, 113th Congress

    Sen. Wyden, Ron [D-OR

    2013-06-26

    06/26/2013 Read twice and referred to the Committee on Energy and Natural Resources. (text of measure as introduced: CR S5270-5272) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. The Most Economic, Socially Viable, and Environmentally Sustainable Alternative Energy

    ERIC Educational Resources Information Center

    Vanderburg, Willem H.

    2008-01-01

    The strengths and weaknesses of current energy planning can be attributed to the limited economic, social, and environmental contexts taken into account as a result of the current intellectual and professional division of labor. A preventive approach is developed by which the ratio of desired to undesired effects can be substantially improved. It…

  18. The Energy Crisis in the Public Schools; Alternative Solutions.

    ERIC Educational Resources Information Center

    Grossbach, Wilmar; Shaffer, William

    One hundred and eighty school personnel held a workshop with representatives of the petroleum, natural gas, and electrical power industries. The objectives of the workshop were (1) to provide participants with a common body of knowledge and a common understanding of the energy crisis and its implications for the public schools, (2) to delineate…

  19. Hot dry rock heat mining: An alternative energy progress report

    SciTech Connect

    Duchane, D.V.

    1991-01-01

    Mining Heat from the hot dry rock (HDR) resource that lies beneath the earth's crust may provide an almost inexhaustible supply of energy for mankind with minimal environmental effects. In the heat mining process, water is pumped down an injection well into a mass of hydraulically fractured hot rock. As the water flows under high pressure through the opened rock joints, it becomes heated by the rock. It is returned to the surface through a production well (or wells) located some distance from the injector where its thermal energy is recovered by a heat exchanger. The same water is then recirculated through the system to extract more thermal energy. In this closed-loop process, nothing but heat is released to the environment during normal operation. The technical feasibility of HDR heat mining already has been proven by field testing. A long-term flow test is scheduled to begin in 1991 at the world's largest HDR heat mine in New Mexico, USA, to demonstrate that energy can be produced from HDR on a continuous basis over an extended time period. Significant HDR programs are also underway in several other countries. The paper describes the HDR resource, the heat mining concept, environmental characteristics, economics, developments at Los Alamos to date, and HDR development outside the US. 15 refs., 5 figs., 2 tabs.

  20. Paul Hill d/b/a Alternative Energy Windows and Siding

    EPA Pesticide Factsheets

    Paul Hill d/b/a Alternative Energy Windows and Siding (the Company) is located in Concord, New Hampshire. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Concord, New Hampshire.

  1. Health and safety implications of alternative energy technologies. II. Solar

    NASA Astrophysics Data System (ADS)

    Etnier, E. L.; Watson, A. P.

    1981-09-01

    No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released

  2. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-07-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (εF). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper.

  3. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    PubMed

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  4. Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

    SciTech Connect

    Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David; Roberts, Wayne

    2006-04-30

    The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The

  5. USD Catalysis Group for Alternative Energy - Final report

    SciTech Connect

    Hoefelmeyer, James

    2014-10-03

    I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate in significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests

  6. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    PubMed

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M

    2016-01-21

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.

  7. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits

    PubMed Central

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M.

    2016-01-01

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for “closing the loop” is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm. PMID:26790614

  8. Buffer-stimulated citrate efflux in Penicillium simplicissimum: an alternative charge balancing ion flow in case of reduced proton backflow?

    PubMed

    Burgstaller, W; Zanella, A; Schinner, F

    1994-01-01

    Organic acids excreted by filamentous fungi may be used to win metals from industrial secondary raw materials. For a future commercial use a high production rate of organic acids is necessary. The conditions under which the commercially used fungus Aspergillus niger excretes high amounts of citric acid can not be maintained in metal leaching processes. However, Penicillium simplicissimum showed an enhanced citric acid efflux in the presence of an industrial filter dust containing 50% zinc oxide. Because Good buffers of high molarity were able to mimic the effect of zinc oxide, the high buffering capacity of zinc oxide and not an effect of the zinc ions was held responsible for the enhanced citric acid efflux. The presence of ammonium and trace elements reduced this buffer-stimulated citric acid efflux, whereas the plant hormone auxine canceled this reduction. This citric acid efflux was influenced by a depolarization of the membrane: the freely permeable compound tetraphenylphosphoniumbromide decreased the citric acid efflux, without decreasing intracellular citric acid or consumption of glucose and oxygen. Vanadate, an inhibitor of the plasma membrane H(+)-ATPase also reduced the buffer-stimulated citric acid efllux. The role of the efflux of citrate anions as an alternative charge balancing ion flow in case of impaired backflow of extruded protons because of a high extracellular buffering capacity is discussed.

  9. Transcorneal alternating current stimulation after severe axon damage in rats results in "long-term silent survivor" neurons.

    PubMed

    Henrich-Noack, Petra; Lazik, Stefanie; Sergeeva, Elena; Wagner, Sebastian; Voigt, Nadine; Prilloff, Sylvia; Fedorov, Anton; Sabel, Bernhard A

    2013-06-01

    Transcorneal alternating current stimulation (tACS) was proposed to decrease acute death of retinal ganglion cells after optic nerve transection in rats, but it is not known if cell survival is long-term and associated with functional restoration. We therefore evaluated the effects of tACS in a rat model of optic nerve crush using anatomical, electrophysiological and behavioural measures. Rats were trained in a brightness discrimination visual task and the retinal ganglion cell number was quantified with in vivo confocal neuroimaging. Thereafter, severe optic nerve crush or sham crush was performed and rats were treated under anaesthesia either with tACS or sham stimulation immediately after the lesion and on day 3, 7, 11, 15, 19 and 23. Brightness discrimination was evaluated for 6 weeks and retinal ganglion cells were counted in vivo on post-crush days 7 and 28. In additional rats we studied the influence of tACS on bioelectrical activity. On post-lesion day 28, the tACS-treated group showed a neuronal survival of 28.2% which was significantly greater than in sham operates (8.6%). All animals with optic nerve crush were significantly impaired in brightness discrimination and did not recover performance, irrespective to which group they belonged. In accordance with this, there was no significant influence of the stimulation on EEG power spectra. In conclusion, tACS induced long-term neuronal protection from delayed retrograde cell death, but in this case of severe axonal damage tACS did not influence functional restoration and EEG signals recorded over the visual cortex.

  10. Alternative energy sources for non-highway transportation: technical section

    SciTech Connect

    Not Available

    1980-06-01

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  11. Possibilities of utilizing alternative energy sources for combined heat supply systems in the Baltic

    SciTech Connect

    Shipkovs, P.; Grislis, V.; Zebergs, V. )

    1991-01-01

    The problem of alternative energy sources is an issue of major importance for the Baltic republics because of the limited supply of conventional energy resources. One of the ways to solve this problem could be the introduction of combined heat supply systems (CHSS). The combined heat supply systems are such systems where various energy sources in different regimes are made use of to ensure the optimum temperature on residential and industrial premises. The influence of climatic conditions on the selection of heat supply systems has been studied at large. In the present paper the use of alternative energy sources (AES) in combined heat supply systems (CHSS) is described.

  12. The Role of Awards Programs in Stimulating Energy Efficient Behavior: A Study of Award Winners

    SciTech Connect

    McDermott, Christa; Malone, Elizabeth L.

    2014-07-01

    The value of formal awards programs may be principally in gaining wider recognition for achievements in energy efficiency. But how do these programs contribute to the goal that is presumably behind this value, i.e., stimulating further energy efficient behavior, beyond publicizing the awards ceremonies and describing the projects via websites, posters, and the like? Interviews with 22 individuals and teams of award winners under the Department of Energy Federal Energy Management Program (DOE FEMP) yield insights on the roles that awards programs can play in stimulating energy efficient behavior, especially with regard to institutional dimensions of such behavior. Award winners identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. Although only one of the interviewees affirmed that winning an award was a motivating factor, awards do validate often-hard-won achievements through recognition and, in some cases, additional resources, thus stimulating both the winners themselves and those who see the achievements to further energy-saving activities. Finally, award winners’ responses demonstrated the importance of behavioral and institutional change in energy efficiency.

  13. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  14. Alternative Energy Sources for Heating the Stratospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Zahnle, K.; Freedman, R.; Lodders, K.; Fortney, J.

    2009-09-01

    Spitzer Space Telescope observations have constrained the atmospheric thermal structure of many transiting extrasolar giant planets. Many of these planets, like their solar system cousins, apparently have hot stratospheres. It has been suggested that absorption in the optical by gaseous TiO and VO provides the necessary energy source to power their thermal emission. While this mechanism is certainly plausible in the hottest Jupiters, temperature inversions have also been observed in cooler planets in which TiO and VO should be condensed into grains. Motivated by the importance of photochemistry in producing important atmospheric absorbers in the solar system, we have explored the role of atmospheric sulfur photochemistry in hot Jupiter atmospheres. Our photochemical kinetics code was previously used to study various problems in solar system, including the aftermath of the S/L-9 impacts into Jupiter. We find that the optically active gases S2 and HS (mercapto) are generated photochemically and thermochemically at T > 1200 K from H2S with peak abundances between 1 and 10 mbar. S2 absorbs UV between 240 and 340 nm and is optically thick for metallicities higher than solar. HS is generally more abundant than S2 and absorbs between 300 and 460 nm. Together these species play an important role in the stratospheric energy budget of hot Jupiters and may provide a mechanism for producing temperature inversions under conditions where gaseous TiO and VO are not present. At lower temperatures, below 1200 K, we find that the atmospheric chemistry enters a different domain where the production of soots may be favored. Such soots may be responsible for the haze detected in the atmosphere of HD189733 and may also play a role in the stratospheric energy budgets of cooler planets.

  15. Some alternate methods of energy recovery from reverse osmosis plants

    SciTech Connect

    Guy, D.B.; Singh, R.

    1982-07-01

    Only random information is available on the subject of energy recovery from reverse osmosis plants. This study includes an attempt to collect this information and bring it up to date. The equipment discussed includes classic turbines, reversed pump turbines, integrated hydroturbines and work exchangers, including integrated pump and power recovery units. A short description of each type of equipment is given, followed by advantages and disadvantages, including their state of development. Plants that are or will be using them are enumerated, as are some development possibilities.

  16. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  17. Energy efficiency of alternative coke-free metallurgical technologies

    SciTech Connect

    V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov

    2009-02-15

    Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

  18. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    PubMed Central

    Hu, Yuanan; Cheng, Hefa

    2017-01-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467

  19. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    NASA Astrophysics Data System (ADS)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  20. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  1. Assuring Supply Through New Energy Alternatives and Opportunities: The Defense Energy Support Center

    DTIC Science & Technology

    2009-04-27

    an energy and fuel supplier, DESC is sup- porting programs and initiatives that involve renewable energy , synthetic paraffinic kerosene, waste-to...overseeing their energy sustainment needs for the contract duration. BRANCHING INTO RENEWABLE ENERGY DESC recently developed the Renewable...projects intended to use renewable energy sources to supply power to installations. Solar Energy and Hydrogen The Defense Energy Supply Center has

  2. Essays on alternative energy policies affecting the US transportation sector

    NASA Astrophysics Data System (ADS)

    O'Rear, Eric G.

    This dissertation encompasses three essays evaluating the impacts of different policies targeting the greenhouse gas (GHG) emissions, fuel demands, etc. of the transportation sector. Though there are some similarities across the three chapters, each essay stands alone as an independent work. The 2010 US EPA MARKAL model is used in each essay to evaluate policy effects. Essay 1 focuses on the recent increases in Corporate Average Fuel Economy (CAFE) standards, and the implications of a "rebound effect." These increases are compared to a carbon tax generating similar reductions in system-wide emissions. As anticipated, the largest reductions in fuel use by light-duty vehicles (LDV) and emissions are achieved under CAFE. Consideration of the rebound effect does little to distort CAFE benefits. Our work validates many economists' belief that a carbon tax is a more efficient approach. However, because the tax takes advantage of cheaper abatement opportunities in other sectors, reductions in transportation emissions will be much lower than what we observe with CAFE. Essay 2 compares CAFE increases with what some economists suggest would be a much more "efficient" alternative -- a system-wide oil tax internalizing some environmental externalities. Because oil taxes are likely to be implemented in addition to CAFE standards, we consider a combined policy case reflecting this. Our supplementary analysis approximates the appropriate tax rates to produce similar reductions in oil demands as CAFE (CAFE-equivalent tax rates). We discover that taxes result in greater and more cost-effective reductions in system-wide emissions and net oil imports than CAFE. The current fuel tax system is compared to three versions of a national vehicle miles traveled (VMT) tax charged to all LDVs in Essay 3. VMT taxes directly charge motorists for each mile driven and help to correct the problem of eroding tax revenues given the failure of today's fuel taxes to adjust with inflation. Results

  3. Alternative Energy in the Midwest: Research and Applications. Conference Proceedings, Rosemont, Illinois, March 19-20, 1987

    NASA Astrophysics Data System (ADS)

    Swager, R.

    1987-12-01

    Session topics included: wind energy, waste-to-energy, photovoltaics, alternative transportation fuels, energy storage, biomass production and use, solar energy, project development and financing, and government policy and planning.

  4. 75 FR 1634 - MMS Information Collection Activity: 1010-0176, Renewable Energy and Alternate Uses of Existing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... governments that submit information or comments relative to alternative energy-related uses of the OCS... information to administer and carry out the offshore alternative energy program via Federal Register Notices... $2,866,000 non-hour costs Subpart B--Issuance of OCS Alternative Energy Leases 200; 224; 231;...

  5. Alternate Funding Sources for the International Atomic Energy Agency

    SciTech Connect

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  6. Alternatives to Rare Earth Permanent Magnets for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    Direct-drive permanent magnet generators (DDPMGs) offer increased reliability and efficiency over the more commonly used geared doubly-fed induction generator, yet are only employed in less than 1 percent of utility scale wind turbines in the U.S. One major barrier to increased deployment of DDPMGs in the U.S. wind industry is NdFeB permanent magnets (PMs), which contain critical rare earth elements Nd and Dy. To allow for the use of rare earth free PMs, the magnetic loading, defined as the average magnetic flux density over the rotor surface, must be maintained. Halbach cylinders are employed in 3.5kW Halbach PMGs (HPMGs) of varying slot-to-pole ratio to concentrate the magnetic flux output by a lower energy density PM over the rotor surface. We found that for high pole and slot number, the increase in magnetic loading is sufficient to allow for the use of strontium iron oxide hard ferrite PMs and achieved rated performance. Joule losses in the stator windings were found to increase for the hard ferrite PMs due to increased inductance in the stator windings. However, for scaling of the HPMG designs to 3MW, rated performance and high efficiency were achieved, demonstrating the potential for elimination for rare earth PMs in commercial scale wind turbines. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  7. Solar Panels and Alternative Energy in the Eighth-Grade Classroom

    ERIC Educational Resources Information Center

    Buck, Laura

    2010-01-01

    In this solar panels and alternative energy project, students were challenged to develop a researchable question about solar energy and electronics and devise a means of answering it. Students worked cooperatively, with specific roles for each member, conducting research, conducting experiments, analyzing results, and writing the final…

  8. Land-Rich Colleges Explore Opportunities to Create Alternative-Energy Sources

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    In a time of expensive energy and concerns about climate change, land may be a major asset for colleges, providing a vastly different opportunity than it did in the past, when it was merely a place to set down new buildings, new campuses, or research parks. Since new alternative-energy technologies like wind and solar demand a lot of land--along…

  9. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    ERIC Educational Resources Information Center

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  10. Nutritional energy stimulates NAD+ production to promote tankyrase-mediated PARsylation in insulinoma cells.

    PubMed

    Zhong, Linlin; Yeh, Tsung-Yin J; Hao, Jun; Pourtabatabaei, Nasim; Mahata, Sushil K; Shao, Jianhua; Chessler, Steven D; Chi, Nai-Wen

    2015-01-01

    The poly-ADP-ribosylation (PARsylation) activity of tankyrase (TNKS) regulates diverse physiological processes including energy metabolism and wnt/β-catenin signaling. This TNKS activity uses NAD+ as a co-substrate to post-translationally modify various acceptor proteins including TNKS itself. PARsylation by TNKS often tags the acceptors for ubiquitination and proteasomal degradation. Whether this TNKS activity is regulated by physiological changes in NAD+ levels or, more broadly, in cellular energy charge has not been investigated. Because the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in vitro is robustly potentiated by ATP, we hypothesized that nutritional energy might stimulate cellular NAMPT to produce NAD+ and thereby augment TNKS catalysis. Using insulin-secreting cells as a model, we showed that glucose indeed stimulates the autoPARsylation of TNKS and consequently its turnover by the ubiquitin-proteasomal system. This glucose effect on TNKS is mediated primarily by NAD+ since it is mirrored by the NAD+ precursor nicotinamide mononucleotide (NMN), and is blunted by the NAMPT inhibitor FK866. The TNKS-destabilizing effect of glucose is shared by other metabolic fuels including pyruvate and amino acids. NAD+ flux analysis showed that glucose and nutrients, by increasing ATP, stimulate NAMPT-mediated NAD+ production to expand NAD+ stores. Collectively our data uncover a metabolic pathway whereby nutritional energy augments NAD+ production to drive the PARsylating activity of TNKS, leading to autoPARsylation-dependent degradation of the TNKS protein. The modulation of TNKS catalytic activity and protein abundance by cellular energy charge could potentially impose a nutritional control on the many processes that TNKS regulates through PARsylation. More broadly, the stimulation of NAD+ production by ATP suggests that nutritional energy may enhance the functions of other NAD+-driven enzymes including sirtuins.

  11. What Do You Know about Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Johari, Marliza; Said, Hardimah; Treagust, David F.

    2015-01-01

    The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students' understanding and alternative conceptions about alternative energy in terms of: sources of alternative energy, greenhouse gas emission, as well as advantages, and disadvantages. Results obtained with Years 10 and 11 students (n = 491) using the 12-item two-tier instrument (α = 0.61) showed that students' understanding of alternative energy was low (M = 7.03; SD = 3.90). The 23 alternative conceptions about alternative energy sources that could be identified from the instrument are reported. The implications for teaching and learning about alternative energy and suggestions for further development and improvement of the instrument are presented.

  12. Transcranial Alternating Current Stimulation in Patients with Chronic Disorder of Consciousness: A Possible Way to Cut the Diagnostic Gordian Knot?

    PubMed

    Naro, Antonino; Bramanti, Placido; Leo, Antonino; Russo, Margherita; Calabrò, Rocco Salvatore

    2016-07-01

    Unresponsive wakefulness syndrome (UWS) is a chronic disorder of consciousness (DOC) characterized by a lack of awareness and purposeful motor behaviors, owing to an extensive brain connectivity impairment. Nevertheless, some UWS patients may retain residual brain connectivity patterns, which may sustain a covert awareness, namely functional locked-in syndrome (fLIS). We evaluated the possibility of bringing to light such residual neural networks using a non-invasive neurostimulation protocol. To this end, we enrolled 15 healthy individuals and 26 DOC patients (minimally conscious state-MCS- and UWS), who underwent a γ-band transcranial alternating current stimulation (tACS) over the right dorsolateral prefrontal cortex. We measured the effects of tACS on power and partial-directed coherence within local and long-range cortical networks, before and after the protocol application. tACS was able to specifically modulate large-scale cortical effective connectivity and excitability in all the MCS participants and some UWS patients, who could be, therefore, considered as suffering from fLIS. Hence, tACS could be a useful approach in supporting a DOC differential diagnosis, depending on the level of preservation of the cortical large-scale effective connectivity.

  13. Environmental and economic comparisons of the satellite power system and six alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Whitfield, R. G.; Habegger, L. J.; Levine, E. P.; Tanzman, E.

    1981-04-01

    The satellite power system (SPS) was compared with alternative systems on life cycle cost and environmental impacts. Environmental and economic effects are evaluated and subdivided into the following issue areas: human health and safety, environmental welfare, resources (land, materials, energy, water, labor), macroeconomics, socioeconomics, and institutional. These evaluations are based on technology characterization data and alternative futures scenarios, developed as part of CDEP. The technologies and the scenarios are described. The cost and performance of the SPS and the alternative technologies provide the basis of the macroeconomic analyses.

  14. Minilaparoscopic hysterectomy made easy: first report on alternative instrumentation and new integrated energy platform.

    PubMed

    Ng, Ying Woo; Lim, Li Min; Fong, Yoke Fai

    2014-05-01

    Minilaparoscopy is an attractive approach for hysterectomy due to advantages such as reduced morbidities and enhanced cosmesis. However, it has not been popularized due to the lack of suitable instruments and high technical demand. We aim to highlight the first case of minilaparoscopic hysterectomy reported in Asia and the use of a new integrated energy platform, Thunderbeat. We would like to propose an alternative method of instrumentation, so as to improve the feasibility and safety of minilaparoscopic hysterectomy. The first minilaparoscopic hysterectomy in Singapore was successfully completed using the alternative instrumentation and new energy platform. There was no conversion or complication during the surgery. The patient recovered uneventfully. To our knowledge, this is the first report on the use of such alternative instrumentation. This approach in instrumentation and the new energy platform will improve the feasibility and speed of the surgery and ensure safety in our patients.

  15. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  16. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer.

    PubMed

    Grumstrup, Erik M; Chen, Zhuo; Vary, Ryan P; Moran, Andrew M; Schanze, Kirk S; Papanikolas, John M

    2013-07-11

    A Raman-pump frequency modulation scheme and an automated signal-processing algorithm are developed for improved collection of time-resolved femtosecond stimulated Raman spectra. Together, these two advancements remove the broad background signals endemic to FSRS measurements and retrieve signals with high sensitivity. We apply this frequency-modulated femtosecond stimulated Raman spectroscopy (FM-FSRS) to the characterization of ultrafast energy transport in a copolymer comprised of polystyrene linked oligo(phenylene-ethynylene) donor and thiophene-benzothiadiazole acceptor chromophores. After photoexcitation of the donor, ultrafast energy transfer is monitored by the decay of donor vibrational modes and simultaneous growth of acceptor modes. The FM-FSRS method shows clear advantages in signal-to-noise levels, mitigation of artifact features, and ease of data processing over the conventional FSRS technique.

  17. Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons.

    PubMed

    Burkhalter, Julia; Fiumelli, Hubert; Allaman, Igor; Chatton, Jean-Yves; Martin, Jean-Luc

    2003-09-10

    Brain-derived neurotrophic factor (BDNF) promotes the biochemical and morphological differentiation of selective populations of neurons during development. In this study we examined the energy requirements associated with the effects of BDNF on neuronal differentiation. Because glucose is the preferred energy substrate in the brain, the effect of BDNF on glucose utilization was investigated in developing cortical neurons via biochemical and imaging studies. Results revealed that BDNF increases glucose utilization and the expression of the neuronal glucose transporter GLUT3. Stimulation of glucose utilization by BDNF was shown to result from the activation of Na+/K+-ATPase via an increase in Na+ influx that is mediated, at least in part, by the stimulation of Na+-dependent amino acid transport. The increased Na+-dependent amino acid uptake by BDNF is followed by an enhancement of overall protein synthesis associated with the differentiation of cortical neurons. Together, these data demonstrate the ability of BDNF to stimulate glucose utilization in response to an enhanced energy demand resulting from increases in amino acid uptake and protein synthesis associated with the promotion of neuronal differentiation by BDNF.

  18. Can China use alternative energies instead of coal to provide more electricity by 2030?

    NASA Astrophysics Data System (ADS)

    Wu, Yan

    Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.

  19. Determining the energy distribution of traps in insulating thin films using the thermally stimulated current technique

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Fleetwood, D. M.; McWhorter, P. J.

    1992-08-01

    We have developed a simple method to analyze and predict the thermally stimulated current (TSC) of charged insulating thin films experiencing arbitrary time-dependent thermal environments and high electric fields. The method allows greater flexibility in experimental conditions than previous work, and includes the effect of field-induced barrier lowering on the trap energy scale. Trap distributions for irradiated metal-SiO2-Si capacitors were accurately determined from TSC measurements spanning a factor of 50 in heating rate, providing an improved estimate of trapped-hole energies in SiO2 (peak ~1.8 eV).

  20. Influence of energy alternatives and carbon emissions on an institution's green reputation.

    PubMed

    Komarek, Timothy M; Lupi, Frank; Kaplowitz, Michael D; Thorp, Laurie

    2013-10-15

    Institutions' reputation for being environmentally friendly or 'green' can come from many sources. This paper examines how the attributes of alternative energy management plans impact an institutions' 'green' reputation by focusing on the interaction between 'external' and 'internal' influences. Some 'external' influences on environmental reputation we studied include the institution's mix of fuels, energy conservation effort, carbon emissions targets, investment time-frame, and program cost. The 'internal' influences on institutions' green reputation we examined include altruism (respondents' concern for the welfare of others) and environmentalism (respondents' concern for the environment). Using a stated-preference conjoint survey, we empirically examine how attributes of alternative energy management plans influence a large, research university's 'green' reputation. Our results show that constituents benefit from their institution's green reputation and that the energy management choices of the institution can significantly influence its perceived green reputation. Furthermore, integrating internal and external influences on reputation can create more informative models and better decision-making.

  1. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    PubMed

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  2. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    SciTech Connect

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  3. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    SciTech Connect

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  4. 78 FR 62472 - Energy Conservation Program: Alternative Efficiency Determination Methods, Basic Model Definition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... assess a unit's performance through third party testing. Under this approach, DOE would begin the... Conditioners.... Sensible Coefficient 5% (0.05) of Performance. Commercial Warm-Air Furnaces...... Thermal..., U.S. Department of Energy, Building Technologies Office, Mailstop EE-2J, Alternative...

  5. An Alternative Energy Career Project at the Warwick School, Redhill, Surrey

    ERIC Educational Resources Information Center

    Balmer, Denise

    2014-01-01

    The article describes an innovative project for year 9 (age 13-14) students that has run since 2002 with the help of professional engineers and scientists and incorporates careers information and hands-on practical work. The programme was developed to highlight alternative energy as a subject and also to provide a hands-on practical day for the…

  6. The Search for Energy Alternatives: Responses Received by State Agricultural Experiment Stations.

    ERIC Educational Resources Information Center

    Cross, William M.

    Directors of the 51 agricultural experiment stations in the United States (including Guam) were mailed questionnaires inquiring as to the extent of requests which had been received for information about wind, solar, and other energy alternatives such as wood and gasahol. There was a total response of 88% with three mailings. The returned…

  7. Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware

    SciTech Connect

    Mancus, J.; Perrone, E.

    1982-08-01

    This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

  8. Contribution of alternative energies to meet the needs of rural areas

    SciTech Connect

    Lavagno, E.; Ravetto, P.

    1980-12-01

    The possibility of fulfilling part of the energy demand of an agricultural area in a Northern Italy region (Piedmont) by means of non-conventional sources is being studied. The research is mainly intended to give the local community government a means for a correct energy planning of the whole system and closely parallels other investigations performed on the energy system of the region. An analysis of the energy needs of the area and of the sources which are at present employed is thoroughly carried out and discussed, in order to have an as good as possible picture of the situation that must be faced. A study is than implanted with the scope of organizing all the available information upon the alternative energy resources, special attention being devoted to biomasses. As far as biomasses are concerned, the possibility of an energy utilization of cereal straws, of animal manure in large scale livestock plants, of agricultural wastes, and of the forestry resources are discussed. Some agronomic and ecological problems involved in such an exploitation and their implication are pointed out. It is concluded that alternative energy resources are important, specially for the correct management and development of a rural area such as the one at hand and their use can be significant for its energy optimization.

  9. Energy from waste: a possible alternative energy source for large size municipalities.

    PubMed

    Eleftheriou, Polyvios

    2007-10-01

    The net calorific values and weight composition of solid waste from all the major municipalities of the island of Cyprus were measured. Representative waste samples were collected, processed and tested for energy generation over a complete year. The energy values appear to vary from city to city depending on the season. The total energy that could be recovered from the waste amounted to approximately 8.5% of the total electricity generation of the island of Cyprus.

  10. Predicting hydration free energies of amphetamine-type stimulants with a customized molecular model

    NASA Astrophysics Data System (ADS)

    Li, Jipeng; Fu, Jia; Huang, Xing; Lu, Diannan; Wu, Jianzhong

    2016-09-01

    Amphetamine-type stimulants (ATS) are a group of incitation and psychedelic drugs affecting the central nervous system. Physicochemical data for these compounds are essential for understanding the stimulating mechanism, for assessing their environmental impacts, and for developing new drug detection methods. However, experimental data are scarce due to tight regulation of such illicit drugs, yet conventional methods to estimate their properties are often unreliable. Here we introduce a tailor-made multiscale procedure for predicting the hydration free energies and the solvation structures of ATS molecules by a combination of first principles calculations and the classical density functional theory. We demonstrate that the multiscale procedure performs well for a training set with similar molecular characteristics and yields good agreement with a testing set not used in the training. The theoretical predictions serve as a benchmark for the missing experimental data and, importantly, provide microscopic insights into manipulating the hydrophobicity of ATS compounds by chemical modifications.

  11. Analysis of the results of Federal incentives used to stimulate energy production

    SciTech Connect

    Cone, B.W.; Emery, J.C.; Fassbender, A.G.

    1980-06-01

    The research program analyzed the Federal incentives used to stimulate nuclear, hydro, coal, gas, oil, and electricity production in order to supply what was learned to the selection of an incentives strategy to induce new energy production from renewable resources. Following the introductory chapter, Chapter 2 examines the problem of estimating effects from a theoretical perspective. Methods of quantifying and identifying the many interactive effects of government actions are discussed. Chapter 3 presents a generic analysis of the result of Federal incentives. Chapters 4 through 9 deal with incentives to energy forms - nuclear, hydro, coal, oil, gas, and electricity. Chapter 10 summarizes the estimated results of the incentives, which are presented in terms of their quantity and price impacts. The incentive costs per million Btu of induced energy production is also discussed. Chapter 11 discusses the parity issue, that is an equivalence between Federal incentives to renewable resources and to traditional energy resources. Any analysis of incentives for solar needs will profit from an analysis of the costs of solar incentives per million Btu compared with those for traditional energy forms. Chapter 12 concludes the analysis, discussing the history of traditional energy incentives as a guide to solar-energy incentives. 216 references, 38 figures, 91 tables.

  12. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    SciTech Connect

    Zee, Ralph; Schindler, Anton; Duke, Steve; Burch, Thom; Bransby, David; Stafford, Don

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  13. The role of energy forestry in alternative energy planning, waste recycling and agriculture in Sweden

    SciTech Connect

    Sennerby-Forsse, L.; Christersson, L. . Dept. of Ecology and Environmental Research)

    1994-09-01

    In Sweden, 15 years of research and development within the National Swedish Energy Forestry Programme (NSEFP) have resulted in a new agricultural crop with a high potential for sound ecological and economic outcome. Commercialization of energy plantations is in progress and about 10,000 ha of energy plantations have been established on private farm land. To replace the part of the imported oil used for heating purposes, approximately 200,000 ha of energy forests are needed. Thus, in the near future, bioenergy could constitute one-third of Sweden's total annual energy need which illustrates the potential of bioenergy as an important part of the energy supply. The further utilization of biomass plantations for environmental clean-up programs and waste cycling is now developing on a regional and local basis. As a complement to intensively cultivated pure energy plantations, mixed forest stands are of interest as multipurpose production systems for wood chips, short fiber and veneer. Economic calculations concerning natively produced bioenergy, from conventional forestry as well as from bioenergy plantations, are mostly positive today. Considering different environmental as well as the low profitability of agriculture, the waste mountain and the requirement for energy.

  14. Line Integral Alternating Minimization Algorithm for Dual-Energy X-Ray CT Image Reconstruction.

    PubMed

    Chen, Yaqi; O'Sullivan, Joseph A; Politte, David G; Evans, Joshua D; Han, Dong; Whiting, Bruce R; Williamson, Jeffrey F

    2016-02-01

    We propose a new algorithm, called line integral alternating minimization (LIAM), for dual-energy X-ray CT image reconstruction. Instead of obtaining component images by minimizing the discrepancy between the data and the mean estimates, LIAM allows for a tunable discrepancy between the basis material projections and the basis sinograms. A parameter is introduced that controls the size of this discrepancy, and with this parameter the new algorithm can continuously go from a two-step approach to the joint estimation approach. LIAM alternates between iteratively updating the line integrals of the component images and reconstruction of the component images using an image iterative deblurring algorithm. An edge-preserving penalty function can be incorporated in the iterative deblurring step to decrease the roughness in component images. Images from both simulated and experimentally acquired sinograms from a clinical scanner were reconstructed by LIAM while varying the regularization parameters to identify good choices. The results from the dual-energy alternating minimization algorithm applied to the same data were used for comparison. Using a small fraction of the computation time of dual-energy alternating minimization, LIAM achieves better accuracy of the component images in the presence of Poisson noise for simulated data reconstruction and achieves the same level of accuracy for real data reconstruction.

  15. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  16. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  17. Alternative structure of TiO2 with higher energy valence band edge

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa; Yu, Peter Y.; Aoki, Yuta; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2017-02-01

    We propose an alternative structure of TiO2 anatase that has a higher energy oxygen p -like valence band maximum than pristine TiO2 anatase and thus has a much better alignment with the water splitting levels. This alternative structure is unique when considering a large subspace of possible structural distortions of TiO2 anatase. We propose two routes towards this state and argue that one of them might have been realized in the recently discovered so-called black TiO2.

  18. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  19. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  20. Energy consumption due to local travel by urban households under three alternative policies: 1980 to 2000

    SciTech Connect

    Singh, M K

    1981-11-01

    An evaluation was made of total energy consumption, by fuel type, resulting from local travel (by urban households) in 1980, 1990, and 2000, in two scenarios and three alternative policies. Energy consumed in vehicle operation, fuel production, vehicle production, and infrastructure construction was projected; and the relative impact of each policy was also evaluated. The results indicate that the Group Travel and Individual Travel Policies in both scenarios save on total energy use and total petroleum use relative to the In-Place Travel Policy in both scenarios. However, the results also indicate that some of the savings achieved in direct energy consumed by vehicle operation under the Group Travel and Individual Travel Policies are offset by the increased energy required to manufacture the vehicles and to build the infrastructure associated with these policies.

  1. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations.

    PubMed

    Horn, Paul R; Head-Gordon, Martin

    2016-02-28

    In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.

  2. Development Of Educational Programs In Renewable And Alternative Energy Processing: The Case Of Russia

    NASA Astrophysics Data System (ADS)

    Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin

    2014-12-01

    The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.

  3. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    SciTech Connect

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  4. Rethinking stimulation of brain in stroke rehabilitation: Why higher-motor areas might be better alternatives for patients with greater impairments

    PubMed Central

    Plow, Ela B; Cunningham, David; Varnerin, Nicole; Machado, Andre

    2015-01-01

    Stimulating the brain to drive its adaptive plastic potential is promising to accelerate rehabilitative outcomes in stroke. Ipsilesional Primary Motor Cortex (M1) is invariably facilitated. However, evidence supporting its efficacy is divided, indicating we may have over-generalized its potential. Since M1 and its corticospinal output are frequently damaged, in patients with serious lesions and impairments, ipsilesional premotor areas (PMA) could be useful alternates instead. We base our premise on their higher probability of survival, greater descending projections, and an adaptive potential, which is causal for recovery across the seriously impaired. Using a conceptual model, we describe how chronically stimulating PMA would strongly affect key mechanisms of stroke motor recovery, such as facilitating plasticity of alternate descending output, restoring inter-hemispheric balance, and establishing widespread connectivity. Although at this time it is difficult to predict whether PMA would be ‘better’, it is important to at least investigate whether they are reasonable substitutes for M1. Even if stimulation of M1 may benefit those with maximum recovery potential, while that of PMA may only help the more disadvantaged, it may still be reasonable to achieve some recovery across the majority rather than stimulate a single locus fated to be inconsistently effective across all. PMID:24951091

  5. Climate and energy: A comparative assessment of the Satellite Power System (SPS) and alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Kellermeyer, D. A.

    1980-01-01

    The potential effects of five energy technologies on global, regional, and local climate are assessed. The energy technologies examined are coal combustion, light water nuclear reactors, satellite power systems, terrestrial photovoltaics, and fusion. The assessment focuses on waste heat rejection, production of particulate aerosols, and emission of carbon dioxide. The current state of climate modeling and long range climate prediction introduces considerable uncertainty into the assessment, but it may be concluded that waste heat will not produce detectable changes in global climate until world energy use increases 100fold, although minor effects on local weather may occur now; that carbon dioxide from coal combustion in the US alone accounts for about 30% of the current increase in global atmospheric CO2 which may, by about 2050 increase world temperature 2to 3 C, with pronounced effects on world climate; and that rocket exhaust from numerous launches during construction of a satellite power system may affect the upper atmosphere, with uncertain consequences.

  6. Assessment of Energy Storage Alternatives in the Puget Sound Energy System

    SciTech Connect

    Balducci, Patrick J.; Jin, Chunlian; Wu, Di; Kintner-Meyer, Michael CW; Leslie, Patrick; Daitch, Charles

    2013-12-12

    As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefits to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.

  7. Biofuels as an Alternative Energy Source for Aviation-A Survey

    NASA Technical Reports Server (NTRS)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  8. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes.

    PubMed

    Kazmier, Kelli; Claxton, Derek P; Mchaourab, Hassane S

    2016-12-29

    Secondary active transporters couple the uphill translocation of substrates to electrochemical ion gradients. Transporter conformational motion, generically referred to as alternating access, enables a central ligand binding site to change its orientation relative to the membrane. Here we review themes of alternating access and the transduction of ion gradient energy to power this process in the LeuT-fold class of transporters where crystallographic, computational and spectroscopic approaches have converged to yield detailed models of transport cycles. Specifically, we compare findings for the Na(+)-coupled amino acid transporter LeuT and the Na(+)-coupled hydantoin transporter Mhp1. Although these studies have illuminated multiple aspects of transporter structures and dynamics, a number of questions remain unresolved that so far hinder understanding transport mechanisms in an energy landscape perspective.

  9. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    PubMed Central

    Jansen, S. W.; Akintola, A. A.; Roelfsema, F.; van der Spoel, E.; Cobbaert, C. M.; Ballieux, B. E.; Egri, P.; Kvarta-Papp, Z.; Gereben, B.; Fekete, C.; Slagboom, P. E.; van der Grond, J.; Demeneix, B. A.; Pijl, H.; Westendorp, R. G. J.; van Heemst, D.

    2015-01-01

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism. PMID:26089239

  10. The road to Clean Cities: Promoting energy security and cleaner air through alternative fuels

    SciTech Connect

    Chun, C.A.

    1997-12-31

    The United States Department of Energy (DOE) Clean Cities Program is a locally-based government/industry partnership program coordinated by DOE to expand the use of alternatives to gasoline and diesel fuel. By combining local decision-making with the voluntary action of partners, the Clean Cities grass roots approach departs from traditional government programs. It creates an effective plan, carried out at the local level, to establish a sustainable alternative fuels market. The broad goals of the Clean Cities Program are to: reduce dependence on foreign oil, improve the environment, and increase economic growth and competitiveness. The key element of success for this program is partnerships -- public/private partnerships that engage the necessary market forces to accomplish the infusion of new alternative fuels and alternative fuel vehicle (AFV) technologies. DOE does not provide direct funding for acquisition of AFVs and products, but rather, provides market development assistance. DOE technical and management resources are targeted at building local coalitions, coordinating technology product suppliers, and improving market and customer information. Clean Cities works directly with local governments and local businesses and shares innovations along the network of Clean Cities coalitions. Since 1993, Clean Cities has made great strides in diversifying transportation fuel consumption. Voluntary Clean Cities partnerships around the United States have heightened public awareness of alternative fuel usage, increased the number of AFVs on the road, and developed alternative fuels infrastructure throughout North America. The Clean Cities Program encourages sustainable development by reducing a community`s dependence on nonrenewable fossil fuels (both domestic and imported), cleaning up the local and global environment, and boosting local economies through the development of alternative fuels industries.

  11. Productive Resources in Students' Ideas about Energy: An Alternative Analysis of Watts' Original Interview Transcripts

    ERIC Educational Resources Information Center

    Harrer, Benedikt W.; Flood, Virginia J.; Wittmann, Michael C.

    2013-01-01

    For over 30 years, researchers have investigated students' ideas about energy with the intent of reforming instructional practice. In this pursuit, Watts contributed an influential study with his 1983 paper "Some alternative views of energy" ["Phys. Educ." 18, 213 (1983)]. Watts' "alternative frameworks"…

  12. Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle

    PubMed Central

    Krouchev, Nedialko I.; Danner, Simon M.; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse’s shape whereas a rectangular pulse is most

  13. Energy-optimal electrical-stimulation pulses shaped by the Least-Action Principle.

    PubMed

    Krouchev, Nedialko I; Danner, Simon M; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP's) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints--e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain--e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most frequently

  14. SOLPLAN report: An assessment of barriers and incentives to conservation and alternative-energy use in the residential sector in Wisconsin

    NASA Astrophysics Data System (ADS)

    Fulenwider, C. K.; Weiss, L. S.; Pfefferkorn, C.; Wiener, D. E.; Feldmam, S. L.

    1981-03-01

    The Alternative Energy Policy Project of the Wisconsin Center for Public Policy focused upon two principle objectives: gathering and analyzing data on energy conservation and alternative energy commercialization; and building consensus around alternative energy policy to develop guidelines for alternative energy policy for the state. Particular attention was paid to public involvement in the policy process and to assessing barriers and incentives from as many key sectors of the energy field as possible. Data were gathered from the general public, alternative energy users, the heating industry generally, the alternative-energy industry specifically, and key decision makers.

  15. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Cornaton, Yann; Stoyanova, Alexandrina; Jensen, Hans Jørgen Aa.; Fromager, Emmanuel

    2013-08-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse [Theor. Chem. Acc.TCACFW1432-881X10.1007/s00214-005-0688-2 114, 305 (2005)] and relies on a long-range-interacting wave function instead of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where “f” stands for “full-range integrals” as the regular full-range interaction appears explicitly in the energy expression when expanded in perturbation theory. In contrast to the usual RSDH functionals, RSDHf describes the coupling between long- and short-range correlations as an orbital-dependent contribution. Calculations on the first four noble-gas dimers show that this coupling has a significant effect on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate.

  16. Transformative research issues and opportunities in alternative energy generation and storage.

    SciTech Connect

    Rockett, A.; Chung, Y. W.; Blaschek, H.; Butterfield, S.; Chance, R. R.; Ferekides, C.; Robinson, M.; Snyder, S. W; Thackeray, M.

    2011-01-01

    This article presents a summary of research issues and opportunities in alternative energy source research identified by panels of experts assembled by the Engineering Directorate of the US National Science Foundation. The objective was to identify transformative research issues and opportunities to make alternative energy sources viable. The article presents motivations for energy research, grand challenges, and specific challenges in the research areas covered. The grand challenges identified for the United States include supplying 30% of US electricity from photovoltaics by 2030, supplying 25% of US electricity from wind by 2025, displacing 30% of US hydrocarbon use by 2030 with bio-based products, and providing a practical 250-300 W h/kg energy storage system by 2025. Similar challenges could be outlined along the same lines for the remainder of the world. Examples of specific areas of research focus identified as promising include high performance p-type transparent conductors, multijunction thin-film photovoltaic devices, defects in chalcogenide semiconductors, experimental study and numerical modeling of the fluid mechanics of airflow as applied to wind turbines, improved materials for wind turbines, methods for creating high energy density transportable biological feedstocks, biorefinery processes yielding infrastructure-compatible biofuels and biochemicals directly, and improved electrodes and electrolytes for Li ion batteries. Arguments for each of these as research priorities are given.

  17. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  18. Vagus Nerve Stimulation Increases Energy Expenditure: Relation to Brown Adipose Tissue Activity

    PubMed Central

    Vijgen, Guy H. E. J.; Bouvy, Nicole D.; Leenen, Loes; Rijkers, Kim; Cornips, Erwin; Majoie, Marian; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2013-01-01

    Background Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. Methods and Findings Fifteen patients with stable VNS therapy (age: 45±10yrs; body mass index; 25.2±3.5 kg/m2) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUVMean; 0.55±0.25 versus 0.67±0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). Conclusions VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. Trial Registration The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282. PMID:24194874

  19. 77 FR 1019 - Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental Shelf-Acquire a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... Bureau of Ocean Energy Management 30 CFR Part 585 RIN 1010-AD79 Renewable Energy Alternate Uses of... for offshore renewable energy projects. DATES: Effective Date: This correction is effective on January..., fax (703) 787-1555, or email peter.meffert@boem.gov or Timothy Redding, Renewable Energy, BOEM,...

  20. High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy Uses

    SciTech Connect

    Hadjipanayis, George C.; McCallum, William R.; Sellmyer, David J.; Harris, Vincent; Carpenter, Everett E.; Liu, Jinfang

    2013-12-17

    The report summarizes research undertaken by a multidisciplinary team aimed at the development of the next generation high-energy permanent magnets. The principal approach was relied on bottom-up fabrication of anisotropic nanocomposite magnets. Our efforts resulted in further development of the theoretical concept and fabrication principles for the nanocomposites and in synthesis of a range of rare-earth-based hard magnetic nanoparticles. Even though we did not make a breakthrough in the assembly of these hard magnetic particles with separately prepared Fe(Co) nanoparticles and did not obtain a compact nanocomposite magnet, our performed research will help to direct the future efforts, in particular, towards nano-assembly via coating, when the two phases which made the nanocomposite are first organized in core-shell-structured particles. Two other approaches were to synthesize (discover) new materials for the traditional singe-material magnets and the nanocomposite magnets. Integrated theoretical and experimental efforts lead to a significant advance in nanocluster synthesis technique and yielded novel rare-earth-free nanostructured and nanocomposite materials. Examination of fifteen R-Fe-X alloy systems (R = rare earth), which have not been explored earlier due to various synthesis difficulties reveal several new ferromagnetic compounds. The research has made major progress in bottom-up manufacturing of rare-earth-containing nanocomposite magnets with superior energy density and open new directions in development of higher-energy-density magnets that do not contain rare earths. The advance in the scientific knowledge and technology made in the course of the project has been reported in 50 peer-reviewed journal articles and numerous presentations at scientific meetings.

  1. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    NASA Astrophysics Data System (ADS)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  2. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  3. Health and safety implications of alternative energy technologies. III. Fossil energy

    NASA Astrophysics Data System (ADS)

    Walsh, P. J.; Etnier, E. L.; Watson, A. P.

    1981-11-01

    This paper reviews both innovative fossil energy sources (tar sands, oil shale, and unconventional natural gas), and more established technologies that are being considered as suppliers of gaseous and liquid fuels (that is, coal gasification and liquefaction). Potential health and safety issues related to the technologies are discussed, although the absence of commercial-scale facilities in the United States restricts the discussion to health effects information derived from related processes. The available epidemiological and carcinogenic studies give cause for concern. The study of the health and environmental impacts of the emerging fossil fuel technologies will be important for quantification of adverse effects and rectification of problems before commitment to large-scale commercialization occurs.

  4. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    SciTech Connect

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  5. Education and the energy crisis: policies and actions for the Department of Energy. [Options and alternatives, DOE Education Programs Div

    SciTech Connect

    1980-01-22

    This report is the result of a study carried out to determine options and alternatives for the Education Programs Division (EPD) of the Department of Energy. In the conduct of this study, numerous individuals from various concerned institutions were interviewed. While the project scope clearly precluded contact with every involved or potentially involved party, a concerted effort was made to obtain a representative sampling of the opinions and views of relevant government, academic and private sector agencies and organizations. A listing of those contacted, excluding the Department of Energy, is provided. In addition to interviews, an extensive range of literature was drawn upon including memoranda, brochures, program statements, school-enrollment data, speeches and the like. It was determined during this study that a wide range of public and private institutions are actively involved in the energy-education field. Oil companies, utilities, public interest groups, schools, agencies at every level of government, and others are formulating and delivering education which is enormously varied. It was concluded, however, that the public is not being reached, partially because current efforts are unfocused and partially because the public has become inured to problems and resistant to many of the traditional means of education. The study found that within this crowded and varied energy education field the Department of Energy is well placed to begin to provide direction and focus to the widespread activity now occurring.

  6. Comparison of weight gain and energy intake after subthalamic versus pallidal stimulation in Parkinson's disease.

    PubMed

    Sauleau, Paul; Leray, Emmanuelle; Rouaud, Tiphaine; Drapier, Sophie; Drapier, Dominique; Blanchard, Sophie; Drillet, Gwenolla; Péron, Julie; Vérin, Marc

    2009-10-30

    To compare body mass index (BMI) and daily energy intake (DEI) after subthalamic versus pallidal deep brain stimulation (DBS). Weight gain following DBS in Parkinson's disease patients remains largely unexplained and no comparison of subthalamic and pallidal (GPi) stimulation has yet been performed. BMI and DEI, dopaminergic drug administration and motor scores were recorded in 46 patients with PD before STN (n = 32) or GPi (n = 14) DBS and 3 and 6 months after. At M6, BMI had increased by an average of 8.4% in the STN group and 3.2% in the GPi group. BMI increased in 28 STN and 9 GPi patients. This increase was significantly higher in the STN group (P < 0.048) and the difference remained significant after adjustment for reduced dopaminergic medication; 28.6% of GPi patients were overweight at 6 months (14.3% preoperatively) versus 37.5% of STN patients (21.9% preoperatively). Changes in BMI were negatively correlated with changes in dyskinesia in the GPi-DBS group. Food intake did not change in the two groups, either quantitatively or qualitatively. Frequent weight gain, inadequately explained by motor improvement or reduced dopaminergic drug dosage, occurred in subthalamic DBS patients. The difference between groups suggests additional factors in the STN group, such as homeostatic control center involvement.

  7. Conditions for energy generation as an alternative approach to compost utilization.

    PubMed

    Raclavska, H; Juchelkova, D; Skrobankova, H; Wiltowski, T; Campen, A

    2011-01-01

    Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.

  8. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions.

  9. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    SciTech Connect

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  10. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    PubMed

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  11. Environmental Value Considerations in Public Attitudes About Alternative Energy Development in Oregon and Washington

    NASA Astrophysics Data System (ADS)

    Steel, Brent S.; Pierce, John C.; Warner, Rebecca L.; Lovrich, Nicholas P.

    2015-03-01

    The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.

  12. Environmental value considerations in public attitudes about alternative energy development in Oregon and Washington.

    PubMed

    Steel, Brent S; Pierce, John C; Warner, Rebecca L; Lovrich, Nicholas P

    2015-03-01

    The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.

  13. A DSP based power electronics interface for alternate/renewable energy systems. Quarterly report 3.

    SciTech Connect

    2000-03-31

    This report is an update on the research project involving the implementation of a DSP based power electronics interface for alternate/renewable energy systems that was funded by the Department of Energy under the Inventions and Innovations program 1998. The objective of this research is to develop a utility interface (dc to ac converter) suitable to interconnect alternate/renewable energy sources to the utility system. The DSP based power electronics interface in comparison with existing methods will excel in terms of efficiency, reliability and cost. Moreover DSP-based control provides the flexibility to upgrade/modify control algorithms to meet specific system requirements. The proposed interface will be capable of maintaining stiffness of the ac voltages at the point of common coupling regardless of variation in the input dc bus voltage. This will be achieved without the addition of any extra components to the basic interface topology but by inherently controlling the inverter switching strategy in accordance to the input voltage variation.

  14. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    SciTech Connect

    Piot, Philippe

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  15. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    USGS Publications Warehouse

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  16. Alternative method for evaluating the pair energy of nucleons in nuclei

    SciTech Connect

    Nurmukhamedov, A. M.

    2015-12-15

    An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.

  17. Dynamical energy systems and modern physics: fostering the science and spirit of complementary and alternative medicine.

    PubMed

    Schwartz, G E; Russek, L G

    1997-05-01

    When systems theory is carefully applied to the concept of energy, some novel and far-reaching implications for modern physics and complementary medicine emerge. The heart of systems theory is dynamic interactions: systems do not simply act on systems, they interact with them in complex ways. By definition, systems at any level (e.g., physical, biological, social, ecological) are open to information, energy, and matter to varying degrees, and therefore interact with other systems to varying degrees. We first show how resonance between two tuning forks, a classic demonstration in physics, can be seen to reflect synchronized dynamic interactions over time. We then derive how the dynamic interaction of systems in mutual recurrent feedback relationships naturally create dynamic "memories" for their interactions over time. The mystery of how a photon (or electron) "knows" ahead of time whether to function as a particle or wave in the single slit/double slit quantum physics paradigm is potentially solved when energetic interactions inherent in the experimental system are recognized. The observation that energy decreases with the square of distance is shown not to be immutable when viewed from a dynamical energy systems perspective. Implications for controversial claims in complementary and alternative medicine, such as memory for molecules retained in water (homeopathy), remote diagnosis, and prayer and healing, are considered. A dynamical energy systems framework can facilitate the development of what might be termed "relationship consciousness," which has the potential to nurture both the science and spirit of complementary medicine and might help to create integrated medicine.

  18. Alternative energy sources II; Proceedings of the Second Miami International Conference, Miami Beach, Fla., December 10-13, 1979. Volume 2 - Solar Energy 2

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    The conference focused on heat transfer and energy transport, water heating, heat pumps, heating and cooling, and various applications of alternative energy sources. Papers are presented on the numerical resolution of the heat transfer equations in a latent heat solar energy storage system, the series solar heat pumps and energy conservation, solar air conditioning with solid absorbents and earth cooling, and the use of solar energy in multi-storied buildings.

  19. Electron Microscopy in the Catalysis of Alkane Oxidation, Environmental Control, and Alternative Energy Sources

    NASA Astrophysics Data System (ADS)

    Gai, Pratibha L.; Calvino, Jose J.

    2005-08-01

    The key role of electron microscopy in understanding and creating advanced catalyst materials and processes in selective alkane oxidation, environmental control, and alternative energy sources is reviewed. In many technological processes, catalysts are increasingly nanoscale heterogeneous materials. With growing regulatory guidelines requiring efficient and environmentally compatible catalytic processes, it is crucial to have a fundamental understanding of the catalyst nanostructure and modes of operation under reaction conditions to design novel catalysts and processes. The review highlights the pioneering development and applications of atomic resolution in situ-environmental transmission electron microscopy (ETEM) for probing dynamic catalysis directly at the atomic level, high-resolution electron microscopy, and analytical spectroscopic methods in the development of alkane catalyzation, environmental protection, and new energy sources.

  20. Materials for Alternative Energies: Computational Materials Discovery and Crystal Structure Prediction

    NASA Astrophysics Data System (ADS)

    Wolverton, Chris

    2013-03-01

    Many of the key technological problems associated with alternative energies may be traced back to the lack of suitable materials. The materials discovery process may be greatly aided by the use of computational methods, particular those atomistic methods based on density functional theory. In this talk, we present an overview of recent work on energy-related materials from density-functional based approaches. We have developed novel computational tools which enable accurate prediction of crystal structures for new materials (using both Monte Carlo and Genetic Algorithm based approaches), materials discovery via high-throughput, data mining techniques, and automated phase diagram calculations. We highlight applications in the area of Li battery materials and hydrogen storage materials.

  1. Social issues and energy alternatives: the context of conflict over nuclear waste. Final report

    SciTech Connect

    Lindell, M.K.; Earle, T.C.; Perry, R.W.

    1980-06-01

    The perceived risks and benefits of electric power alternatives were used to explore the context of attitudes toward nuclear power. Supporters and opponents of nuclear power responded to thirty-three items which referred to five categories of energy issue: the production potential of electric, risks of those technologies, power generation technologies, energy conservation, comparisons of risks among technologies and comparisons between risks and benefits of each technology. The results are summarized. The nuclear supporters studied here do favor nuclear power. However, they believe that there are limited prospects for contributions from solar, wind and hydroelectric technologies. They also believe that there are serious disadvantages to conservation. Nuclear opponents, on the other hand, disagree that there are such limited prospects for solar and wind, although they are neutral on the prospects for increased hydro capacity. They also do not believe that conservation necessarily poses serious adverse consequences either for themselves or others.

  2. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation.

    PubMed

    Refojo, Patrícia N; Teixeira, Miguel; Pereira, Manuela M

    2012-10-01

    Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  3. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    SciTech Connect

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.; Kintner-Meyer, Michael CW

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.

  4. What Do You Know about Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science

    ERIC Educational Resources Information Center

    Cheong, Irene Poh-Ai; Johari, Marliza; Said, Hardimah; Treagust, David F.

    2015-01-01

    The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students' understanding and alternative conceptions about alternative…

  5. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient.

  6. Controlled Soil Warming Powered by Alternative Energy for Remote Field Sites

    PubMed Central

    Johnstone, Jill F.; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2°C in 1 m2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes. PMID:24386125

  7. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.

    PubMed

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.

  8. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates.

    PubMed

    Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles

    2014-01-25

    Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation.

  9. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  10. Controlling activation site density by low-energy far-field stimulation in cardiac tissue.

    PubMed

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  11. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  12. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  13. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    NASA Astrophysics Data System (ADS)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  14. Transcranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex

    PubMed Central

    Rjosk, Viola; Kaminski, Elisabeth; Hoff, Maike; Gundlach, Christopher; Villringer, Arno; Sehm, Bernhard; Ragert, Patrick

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI. PMID:27857687

  15. Transcranial Alternating Current Stimulation at Beta Frequency: Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex.

    PubMed

    Rjosk, Viola; Kaminski, Elisabeth; Hoff, Maike; Gundlach, Christopher; Villringer, Arno; Sehm, Bernhard; Ragert, Patrick

    2016-01-01

    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and IHI.

  16. Energy Efficiency Under Alternative Carbon Policies. Incentives, Measurement, and Interregional Effects

    SciTech Connect

    Steinberg, Daniel C.; Boyd, Erin

    2015-08-28

    In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures are treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.

  17. Viterbi algorithm as an alternative to energy minimization for stereo image matching

    NASA Astrophysics Data System (ADS)

    Robinson, Martin J.; Kubik, Kurt; McKinnon, David; Andrews, Robert

    2001-04-01

    The correspondence problem in image matching is an ill-defined one. It is difficult to match two stereo images to produce an accurate depth map without applying some sort of constraints to the matching process. Matching is made especially difficult near discontinuities and occlusions in the images. A popular method of applying constraints to image matching is energy minimisation. However, this technique is computationally expensive and is not guaranteed to finish at an optimal solution. This paper describes the use of a least cost path finding algorithm called the Viterbi algorithm as an alternative to energy minimisation. The Viterbi algorithm operates on individual horizontal scanlines and uses a cost function to find the optimum "path" of nodes through disparity space from one side of the image to the other. Constraints can be applied by restricting the possible movements of the path or by modifying the cost function. The Viterbi algorithm, unlike energy minimisation, is not an iterative process and is guaranteed to find the path that has the least possible cost. The implementation of the Viterbi algorithm described in this paper uses constraints that were developed to make the image matching robust in the presence of discontinuities and occlusions. Results are shown for both synthetic and real-world stereo pairs.

  18. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    PubMed

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-03-25

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH4/gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH4/gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills.

  19. Muscle activation and energy expenditure of sedentary behavior alternatives in young and old adults.

    PubMed

    Lerma, Nicholas L; Keenan, Kevin G; Strath, Scott J; Forseth, Bethany M; Cho, Chi C; Swartz, Ann M

    2016-09-21

    The physiological mechanisms that underlie the metabolic benefits of breaking up sedentary behavior (SB) have yet to be determined. The purpose of this study is to compare energy expenditure (EE) and muscle activation (MA) responses to sitting and four SB alternatives in younger and older adults. Twenty-two adults, grouped by age (21-35 and 62-76 years), completed five randomly ordered 20 min tasks: (1) continuous sitting (Sit), (2) sitting on a stability ball (Ball), (3) continuous standing (Stand), (4) sitting interrupted by walking (S/W), and (5) sitting interrupted by standing (S/S). Muscle activation of two upper (trapezius and erector spinae) and two lower (rectus femoris and medial gastrocnemius) body muscles and total body EE were measured continuously. A linear mixed model using gender and age as a covariate with Bonferroni adjustment were used to determine significant differences between tasks. Collectively, S/W produced significantly higher MA and EE compared with Sit (p  <  0.001). Stand and Ball provided significantly greater EE, but not MA, compared to Sit (p  <  0.05), while S/S did not significantly change EE or MA compared to Sit. There were no net EE differences when comparing age groups across the tasks. Upper body MA was not consistent in both age groups across tasks. Specifically, during S/W the upper body MA of older adults (9.7  ±  1.5% MVC) was double that of young adults (4.8  ±  0.7% MVC, p  =  0.006). Lower body MA responded similarly to all tasks in both age groups. Disrupting sitting with walking produced the largest increase in EE and MA compared to other SB alternatives in both age groups. These results are important considering the wide use of SB alternatives by researchers and public health practitioners.

  20. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and

  1. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    SciTech Connect

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  2. Built out of books: lesbian energy and feminist ideology in alternative publishing.

    PubMed

    Adams, K

    1998-01-01

    This paper chronicles the birth of lesbian-feminist publishing in the 1970s, a significant but often overlooked chapter of American alternative publishing history, and one that would help create the circumstances supporting a flourishing lesbian and gay literature in the 1980s and 1990s. Between 1968 and 1973, over 500 feminist and lesbian publications appeared across the country, and what would become an organized network of independent women's bookstores began to appear. In 1976, a group of feminist trades-women-printers, booksellers, and others-would meet in the first of a series of Women in Print conferences that would give a name to the fledgling alternative press movement. Fueled by the energy of the women's movement, lesbians were instrumental actors in a variety of feminist publishing enterprises that, taken together, constituted a unique brand of print activism that illuminated and revised categories of identity; empowered individuals to overcome social isolation and discrimination; and informed nascent lesbian and feminist communities about strategies of resistance.

  3. Element Specific Magnetic Anisotropy Energy of Alternately Layered FeNi Thin Films

    NASA Astrophysics Data System (ADS)

    Sakamaki, Masako; Amemiya, Kenta

    2011-07-01

    The element specific magnetic anisotropy energy (MAE) of alternately layered FeNi thin films grown on Ni (4-20 MLs)/Cu(001) is investigated by means of the X-ray magnetic circular dichroism (XMCD) and magneto-optic Kerr effect (MOKE). Although surface Fe is known to show strong perpendicular magnetic anisotropy, the Ni-sandwiched Fe layer has a tiny MAE of 10+/-40 µeV. On the other hand, the Fe-sandwiched Ni layer has a positive MAE of 60+/-30 µeV. The total MAE simulated from the XMCD analysis shows good agreement with the MOKE result. We demonstrate that in-situ analysis of the element specific MAE gives a possible strategy for manipulating the magnetic anisotropy of multilayers.

  4. A super-bright storage ring alternative to an energy recovery linac

    NASA Astrophysics Data System (ADS)

    Borland, Michael

    2006-02-01

    One of the promised characteristics of an energy recovery linac (ERL) as a synchrotron light source is the very low emittance of the electron beam. A difficulty with ERLs is that, as yet, no one has demonstrated a gun that delivers average currents comparable to what has been demonstrated in storage rings, i.e., 0.1-1 A, with the required emittance and for the long periods of time necessary for a user facility. As an alternative to an ERL, one might consider a super-bright storage ring with short lifetime, requiring fast top-up. We present a possible replacement ring for the Advanced Photon Source with 0.5-micron normalized emittance at 7 GeV, along with a discussion of design challenges and operating considerations.

  5. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  6. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    PubMed

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  7. Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier

    SciTech Connect

    Sumpter, Bobby G; Beach, David B; Labinov, Solomon Davidovich; Richards, Roger K; Rondinone, Adam Justin

    2007-01-01

    As an alternative to conventional methods of conveying and delivering energy in mobile applications or to remote locations, we have examined the combustion of nanostructured metal particles assembled into metal clusters. Clusters containing iron nanoparticles (~50 nm in diameter) were found to combust entirely in the solid state due to the high surface-to-volume ratio typical of nanoparticles. Optical temperature measurements indicated that combustion was rapid (~500 msec), and occurred at relatively low peak combustion temperatures (1000-1200 K). Combustion produces a mixture of Fe(III) oxides. Xray diffraction and gravimetric analysis indicated that combustion was nearly complete (93-95% oxidation). Oxide nanoparticles could be readily reduced at temperatures between 673 and 773 K using hydrogen at 1 atmosphere pressure, and then passivated by the growth of a thin oxide layer. The nanostructuring of the particles is retained throughout the combustion-regeneration cycle. Modeling of the combustion process is in good agreement with observed combustion characteristics.

  8. The vulnerabilities of the power-grid system: renewable microgrids as an alternative source of energy.

    PubMed

    Meyer, Victor; Myres, Charles; Bakshi, Nitin

    2010-03-01

    The objective of this paper is to analyse the vulnerabilities of current power-grid systems and to propose alternatives to using fossil fuel power generation and infrastructure solutions in the form of microgrids, particularly those from renewable energy sources. One of the key potential benefits of microgrids, apart from their inherent sustainability and ecological advantages, is increased resilience. The analysis is targeted towards the context of business process outsourcing in India. However, much of the research on vulnerabilities has been derived from the USA and as such many of the examples cite vulnerabilities in the USA and other developed economies. Nevertheless, the vulnerabilities noted are to a degree common to all grid systems, and so the analysis may be more broadly applicable.

  9. Survey of alternate stored chemical energy reactions. Annual report, 25 May 1984-25 May 1985

    SciTech Connect

    Cook, L.P.; Plante, E.R.

    1985-12-01

    A survey of eight alternative liquid-metal stored chemical energy reactions has been made for purposes of comparison with the lithium-aluminum/water, lithium/sulfur hexafluoride, and other reaction schemes. The objective of this study was to survey the potential of these eight reactions as alternate stored chemical energy systems and to develop priorities for future study. Experimental data on the products of reaction and kinetics of reaction are presented for: Li/H/sub 2/O; H/sub 2//O/sub 2/), (Li/H/sub 2/O; NaO/sub 2//H/sub 2/O; H/sub 2//O/sub 2/), (MgAl/H/sub 2/O; H/sub 2//O/sub 2/), and LiAl/ClO/sub 3/F). These data were collected using thermogravimetry and Knudsen-effusion mass spectrometry, with x-ray diffraction analysis of experimental products. Among other results, the data show that the aluminum component of the fuels is relatively inert to oxidation up to 650 C. Above this temperature, materials limitations have hampered the collection of experimental data. Thermodynamic analysis has been used to extend the data on each of the eight reaction schemes, and to predict the chemical reaction which best represents the complete oxidation of each fuel by the indicated oxidant at 1100 K. Enthalpies have been calculated for each fuel/oxidant combination. Safety considerations are also discussed for each. Suggestions for future research are given, including suggestions for overcoming the materials problems encountered in this study.

  10. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  11. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    SciTech Connect

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  12. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect

    Kingston, Tim; Kelly, John

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation

  13. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  14. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    PubMed

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg(-1) to 16.60 MJ kg(-1) depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm(-3) at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kWe. The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  15. Alternative Therapies

    MedlinePlus

    ... Late Effects of Poliomyelitis for Physicians and Survivors © Alternative Therapies Alternative therapies, also called complementary, can support ... of motion, pain, and fatigue are often reported. Energy work includes acupuncture and acupressure, traditional Chinese medicine ...

  16. Alternative reproductive tactics in snail shell-brooding cichlids diverge in energy reserve allocation

    PubMed Central

    von Kuerthy, Corinna; Tschirren, Linda; Taborsky, Michael

    2015-01-01

    Life history theory predicts that the amount of resources allocated to reproduction should maximize an individual's lifetime reproductive success. So far, resource allocation in reproduction has been studied mainly in females. Intraspecific variation of endogenous energy storage and utilization patterns of males has received little attention, although these patterns may vary greatly between individuals pursuing alternative reproductive tactics (ARTs). ARTs are characterized by systematic variation of behavioral, physiological, and often morphological traits among same-sex conspecifics. Some individuals may rely on previously accumulated reserves, because of limited foraging opportunities during reproduction. Others may be able to continue foraging during reproduction, thus relying on reserves to a lesser extent. We therefore predicted that, if male tactics involve such divergent limitations and trade-offs within a species, ARTs should correspondingly differ in energy reserve allocation and utilization. To test this prediction, we studied short-term and long-term reserve storage patterns of males in the shell-brooding cichlid Lamprologus callipterus. In this species, bourgeois males investing in territory defense, courtship, and guarding of broods coexist with two distinct parasitic male tactics: (1) opportunistic sneaker males attempting to fertilize eggs by releasing sperm into the shell opening when a female is spawning; and (2) specialized dwarf males attempting to enter the shell past the spawning female to fertilize eggs from inside the shell. Sneaker males differed from other male types by showing the highest amount of accumulated short-term and long-term fat stores, apparently anticipating their upcoming adoption of the nest male status. In contrast, nest males depleted previously accumulated energy reserves with increasing nest holding period, as they invest heavily into costly reproductive behaviors while not taking up any food. This conforms to a capital

  17. Alternative reproductive tactics in snail shell-brooding cichlids diverge in energy reserve allocation.

    PubMed

    von Kuerthy, Corinna; Tschirren, Linda; Taborsky, Michael

    2015-05-01

    Life history theory predicts that the amount of resources allocated to reproduction should maximize an individual's lifetime reproductive success. So far, resource allocation in reproduction has been studied mainly in females. Intraspecific variation of endogenous energy storage and utilization patterns of males has received little attention, although these patterns may vary greatly between individuals pursuing alternative reproductive tactics (ARTs). ARTs are characterized by systematic variation of behavioral, physiological, and often morphological traits among same-sex conspecifics. Some individuals may rely on previously accumulated reserves, because of limited foraging opportunities during reproduction. Others may be able to continue foraging during reproduction, thus relying on reserves to a lesser extent. We therefore predicted that, if male tactics involve such divergent limitations and trade-offs within a species, ARTs should correspondingly differ in energy reserve allocation and utilization. To test this prediction, we studied short-term and long-term reserve storage patterns of males in the shell-brooding cichlid Lamprologus callipterus. In this species, bourgeois males investing in territory defense, courtship, and guarding of broods coexist with two distinct parasitic male tactics: (1) opportunistic sneaker males attempting to fertilize eggs by releasing sperm into the shell opening when a female is spawning; and (2) specialized dwarf males attempting to enter the shell past the spawning female to fertilize eggs from inside the shell. Sneaker males differed from other male types by showing the highest amount of accumulated short-term and long-term fat stores, apparently anticipating their upcoming adoption of the nest male status. In contrast, nest males depleted previously accumulated energy reserves with increasing nest holding period, as they invest heavily into costly reproductive behaviors while not taking up any food. This conforms to a capital

  18. The Role of Alternating Bilateral Stimulation in Establishing Positive Cognition in EMDR Therapy: A Multi-Channel Near-Infrared Spectroscopy Study.

    PubMed

    Amano, Tamaki; Toichi, Motomi

    2016-01-01

    Eye movement desensitisation and reprocessing (EMDR) is a standard method for treating post-traumatic stress disorder. EMDR treatment consists of desensitisation and resource development and installation (RDI) stages. Both protocols provide a positive alternating bilateral stimulation (BLS). The effect of desensitisation with BLS has been elucidated. However, a role for BLS in RDI remains unknown. Therefore, it is important to measure feelings as subjective data and physiological indicators as objective data to clarify the role of BLS in RDI. RDI was administered to 15 healthy volunteer subjects who experienced pleasant memories. Their oxygenated haemoglobin concentration ([oxy-Hb]), a sensitive index of brain activity, was measured from the prefrontal cortex (PFC) to the temporal cortex using multi-channel near-infrared spectroscopy during recall of a pleasant memory with or without BLS. The BLS used was alternating bilateral tactile stimulation with a vibration machine. The psychological evaluation suggested that RDI was successful. The results showed that, compared with non-BLS conditions, accessibility was increased and subjects were more relaxed under BLS conditions. A significant increase in [oxy-Hb] was detected in the right superior temporal sulcus (STS), and a decrease in the wide bilateral areas of the PFC was observed in response to BLS. The significant BLS-induced activation observed in the right STS, which is closely related to memory representation, suggests that BLS may help the recall of more representative pleasant memories. Furthermore, the significant reduction in the PFC, which is related to emotion regulation, suggests that BLS induces relaxation and comfortable feelings. These results indicate an important neural mechanism of RDI that emotional processing occurred rather than higher cognitive processing during this stage. Considering the neuroscientific evidence to date, BLS in RDI may enhance comfortable feelings about pleasant memories

  19. The Role of Alternating Bilateral Stimulation in Establishing Positive Cognition in EMDR Therapy: A Multi-Channel Near-Infrared Spectroscopy Study

    PubMed Central

    Amano, Tamaki; Toichi, Motomi

    2016-01-01

    Eye movement desensitisation and reprocessing (EMDR) is a standard method for treating post-traumatic stress disorder. EMDR treatment consists of desensitisation and resource development and installation (RDI) stages. Both protocols provide a positive alternating bilateral stimulation (BLS). The effect of desensitisation with BLS has been elucidated. However, a role for BLS in RDI remains unknown. Therefore, it is important to measure feelings as subjective data and physiological indicators as objective data to clarify the role of BLS in RDI. RDI was administered to 15 healthy volunteer subjects who experienced pleasant memories. Their oxygenated haemoglobin concentration ([oxy-Hb]), a sensitive index of brain activity, was measured from the prefrontal cortex (PFC) to the temporal cortex using multi-channel near-infrared spectroscopy during recall of a pleasant memory with or without BLS. The BLS used was alternating bilateral tactile stimulation with a vibration machine. The psychological evaluation suggested that RDI was successful. The results showed that, compared with non-BLS conditions, accessibility was increased and subjects were more relaxed under BLS conditions. A significant increase in [oxy-Hb] was detected in the right superior temporal sulcus (STS), and a decrease in the wide bilateral areas of the PFC was observed in response to BLS. The significant BLS-induced activation observed in the right STS, which is closely related to memory representation, suggests that BLS may help the recall of more representative pleasant memories. Furthermore, the significant reduction in the PFC, which is related to emotion regulation, suggests that BLS induces relaxation and comfortable feelings. These results indicate an important neural mechanism of RDI that emotional processing occurred rather than higher cognitive processing during this stage. Considering the neuroscientific evidence to date, BLS in RDI may enhance comfortable feelings about pleasant memories

  20. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS-fMRI study.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2016-10-15

    Many studies have proven transcranial alternating current stimulation (tACS) to manipulate brain activity. Until now it is not known, however, how these manipulations in brain activity are represented in brain metabolism or how spatially specific these changes are. Alpha-tACS has been shown to enhance the amplitude of the individual alpha frequency (IAF) and a negative correlation between alpha amplitude and occipital BOLD signal was reported in numerous EEG/fMRI experiments. Thus, alpha-tACS was chosen to test the effects of tACS on the BOLD signal. A reduction thereof was expected during alpha-tACS which shows the spatial extent of tACS effects beyond modeling studies. Three groups of subjects were measured in an MRI scanner, receiving tACS at either their IAF (N=11), 1Hz (control; N=12) or sham (i.e., no stimulation - a second control; N=11) while responding to a visual vigilance task. Stimulation was administered in an interleaved pattern of tACS-on runs and tACS-free baseline periods. The BOLD signal was analyzed in response to tACS-onset during resting state and in response to seldom target stimuli. Alpha-tACS at 1.0mA reduced the task-related BOLD response to visual targets in the occipital cortex as compared to tACS-free baseline periods. The deactivation was strongest in an area where the BOLD signal was shown to correlate negatively with alpha amplitude. A direct effect of tACS on resting state BOLD signal levels could not be shown. Our findings suggest that tACS-related changes in BOLD activity occur only as a modulation of an existing BOLD response.

  1. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-09-01

    Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.

  2. Negative energy balance in a male songbird, the Abert's Towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-07-10

    Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.

  3. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation

    PubMed Central

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre

    2015-01-01

    ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925

  4. Treatment of PVC using an alternative low energy ion bombardment procedure

    NASA Astrophysics Data System (ADS)

    Rangel, Elidiane C.; dos Santos, Nazir M.; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Rangel, Rita de Cássia C.; Cruz, Nilson C.

    2011-12-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  5. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  6. United States biomass energy: An assessment of costs and infrastructure for alternative uses of biomass energy crops as an energy feedstock

    NASA Astrophysics Data System (ADS)

    Morrow, William Russell, III

    Reduction of the negative environmental and human health externalities resulting from both the electricity and transportation sectors can be achieved through technologies such as clean coal, natural gas, nuclear, hydro, wind, and solar photovoltaic technologies for electricity; reformulated gasoline and other fossil fuels, hydrogen, and electrical options for transportation. Negative externalities can also be reduced through demand reductions and efficiency improvements in both sectors. However, most of these options come with cost increases for two primary reasons: (1) most environmental and human health consequences have historically been excluded from energy prices; (2) fossil energy markets have been optimizing costs for over 100 years and thus have achieved dramatic cost savings over time. Comparing the benefits and costs of alternatives requires understanding of the tradeoffs associated with competing technology and lifestyle choices. As bioenergy is proposed as a large-scale feedstock within the United States, a question of "best use" of bioenergy becomes important. Bioenergy advocates propose its use as an alternative energy resource for electricity generation and transportation fuel production, primarily focusing on ethanol. These advocates argue that bioenergy offers environmental and economic benefits over current fossil energy use in each of these two sectors as well as in the U.S. agriculture sector. Unfortunately, bioenergy research has offered very few comparisons of these two alternative uses. This thesis helps fill this gap. This thesis compares the economics of bioenergy utilization by a method for estimating total financial costs for each proposed bioenergy use. Locations for potential feedstocks and bio-processing facilities (co-firing switchgrass and coal in existing coal fired power plants and new ethanol refineries) are estimated and linear programs are developed to estimate large-scale transportation infrastructure costs for each sector

  7. Radiofrequency energy ablation in a child with an implanted vagus nerve stimulator.

    PubMed

    Radolec, Mackenzy M; Beerman, Lee B; Arora, Gaurav

    2015-10-01

    An 8-year-old girl with supraventricular tachycardia and an implanted vagus nerve stimulator underwent radiofrequency ablation of her supraventricular tachycardia substrate. No known literature exists addressing the potential interaction of these two technologies, although there are reported cases of interaction between radiofrequency and other implanted stimulating devices such as pacemakers. The procedure was performed successfully without observed interaction, and the patient's family reported no significant change in frequency of seizure control.

  8. Alternative energy sources II; Proceedings of the Second Miami International Conference, Miami Beach, Fla., December 10-13, 1979. Volume 9 - Conservation, economics, and policy; Index

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    The book examines the topics of waste utilization, conservation, and energy economics and policy. Energy supply and demand, energy economics and planning, and energy strategies and policies are reviewed. Papers are presented on the contributions to the energy supply of the industrialized countries from nuclear energy and regenerative energy flows, a method for estimating escalation and interest during construction, and a comparison of the incentives used to stimulate energy production between the United States and Japan.

  9. Response of two pea hybrids to CO2 enrichment: a test of the energy overflow hypothesis for alternative respiration.

    PubMed

    Musgrave, M E; Strain, B R; Siedow, J N

    1986-11-01

    Two pea (Pisum sativum L.) hybrids differing in the presence or absence of the cyanide-resistant (alternative) pathway of respiration were constructed by reciprocally crossing cv. Alaska and cv. Progress No. 9. The F1 hybrids were grown in greenhouses maintained at either 350 or 650 ppm CO2, and the growth, flowering, and dry matter accumulation were compared. The objective was to assess the significance of the alternative respiratory pathway to whole-plant carbon budgets and further to test the hypothesis that the alternative pathway is important in oxidizing excess carbohydrates such as might accumulate under conditions of CO2 enrichment. More carbohydrates were available in the F1 hybrid lacking the pathway, as evidenced by greater plant height, leaf area, specific leaf weight, and total dry matter compared with the reciprocal hybrid, especially at 650 ppm CO2. Specific leaf weight increased markedly under CO2 enrichment in the hybrid lacking the pathway, while it was the same at 350 and 650 ppm in the reciprocal cross. The hybrid lacking the alternative pathway also outperformed the reciprocal cross in terms of total dry matter and seed production. Increased branching with CO2 enrichment was observed in the hybrid lacking the pathway, while branching in the reciprocal cross was only slightly stimulated. These results suggest that alternative respiration consumes luxury carbohydrate and that respiration via this pathway may be considered energetically wasteful in terms of whole-plant carbon budgets.

  10. Alternating carrier models of asymmetric glucose transport violate the energy conservation laws.

    PubMed

    Naftalin, Richard J

    2008-11-01

    Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric "carrier" (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (proportional, variant 1/KD(in)) and slower unliganded "free" carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, DeltaGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (KD(in)/KD(out)), where R is the universal gas constant (8.314 Joules/M/K degrees), and T is the temperature, assumed here to be 300 K degrees , sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly simulated if ligand transit occurs by serial dissociation-association reactions between external high-affinity and internal low-affinity immobile sites. Faster intersite transit rates occur from lower-affinity sites than from higher-affinity sites and require no other energy source to maintain equilibrium. Similar constraints must apply to cotransport.

  11. Taenia crassiceps: fatty acids oxidation and alternative energy source in in vitro cysticerci exposed to anthelminthic drugs.

    PubMed

    Vinaud, Marina Clare; Ferreira, Cirlane Silva; Lino Junior, Ruy de Souza; Bezerra, José Clecildo Barreto

    2009-07-01

    Cysticerci metabolic studies demonstrate alternative pathways responsible for its survival, such as energy sources, fatty acids oxidation and excretion of beta-hydroxybutyrate, which indicates the capability of energy production from proteins. The aim of this study was to detect alternative metabolic pathways for energy production and its end products in Taenia crassiceps cysticerci in vitro exposed to praziquantel and albendazole, in sub-lethal doses. Spectrophotometer and chromatographic analysis were performed to detect: propionate, acetate, beta-hydroxybutyrate, total proteins, urea and creatinine, SE by cysticerci in vitro exposed to praziquantel and albendazole. The drugs influenced the metabolism by inducing the creatinine phosphate phosphorylation as an alternative energy source, inhibiting the use of proteins and amino acids in the acid nucleic synthesis; and preventing the budding and replication of the cysticerci. This study also highlights the description of urea excretion, which is an important metabolic pathway to excrete toxic products such as ammonia, and the fatty acid oxidation as an alternative energy source in cysticerci exposed to anthelmintic drugs.

  12. Embodied Energy Assessment and Comparisons for a Residential Building Using Conventional and Alternative Materials in Indian Context

    NASA Astrophysics Data System (ADS)

    Naveen Kishore, K.; Chouhan, J. S.

    2014-06-01

    Building sector is responsible for 40 % of the primary energy use and 24 % of carbon dioxide emissions in India. The main source of green house gas emissions from buildings is due to energy consumption. This paper aims to assess the embodied energy index and environmental impact of a two storied residential building. The study proposes various alternative materials which can be used in day to day construction in order to mitigate the environmental impact and climate change due to construction activity in India. Two types of construction techniques have been considered for the study, namely load bearing and reinforced concrete framed construction. Embodied energy and carbon dioxide emissions of walling and roofing components using conventional and alternative materials has also been analyzed and compared. The comparison is done based on two parameters namely, embodied energy/m2 and CO2 emissions per unit of floor area. The study shows that bricks, cement and steel are the three major contributors to the energy cost of constructing a building by conventional methods. A conventional two storied load bearing structure is 22 % more energy efficient when compared to a reinforced concrete structure. It has also been observed from the study that use of alternative material in the building envelope gives embodied energy savings between 50 and 60 % for a two storey load bearing structure and 30-42 % for a two storey reinforced concrete structure. Hence a load bearing construction is certainly a better alternative to RC framed construction for up to two storied structures in terms of embodied energy and environmental impacts.

  13. PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism.

    PubMed

    Liang, Hui; He, Shiming; Yang, Jingyi; Jia, Xinying; Wang, Pan; Chen, Xi; Zhang, Zhong; Zou, Xiajuan; McNutt, Michael A; Shen, Wen Hong; Yin, Yuxin

    2014-05-06

    PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes.

  14. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results.

  15. Dealing with Energy Conservation Alternatives. CEFP Special Report No. 9. Energy Conservation: A New Challenge for Education

    ERIC Educational Resources Information Center

    Stein, Richard G.

    1973-01-01

    Examines how rising energy costs will affect school planning in general and urban school planning in particular. It discusses the energy crisis, the energy consumption by schools, and the potential for energy conservation in education. Also describes a project to be undertaken in New York City to determine ways of conserving energy in that city's…

  16. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  17. Development of Indonesia corncob and rice husk biobriquette as alternative energy source

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Wulandari, Asry Peni; Hidayat, Darmawan; Wibawa, Bambang Mukti; Aditya Permana, P.

    2016-02-01

    Facing the increasing of fuel price and lacking of world oil resource, research for biobriquette as alternative energy for fossil fuel is conducted. Indonesia has considerable amount of biomass and it is still remain unused that can be used as biobriquette. As the initial research, Garut, Ciamis, and Sumedang district, West Java are selected which have rice husk and corncob commodities. In these disrticts, rice husk and corncob potency are respectively 4,460.73 tons and 3,222.85 tons and potentially result 57,572.86 GJ from husk and 60,911.86 GJ from corncob. To optimize mechanical properties and calorie value of biobriquette, research for calorie content and combination of rice husk and corncob are being conducted with various adhesive content and mixture. The best result of shatter index, durability, and calorie test on the corncob biobriquette is from biobriquette with 6% adhesive with calorie content as 5,516.85 kkal/kg. While the best calorie content for husk biobriquette is 6% adhesive with calorie content as 2,650.20 kkal/kg. The best calorie content for mixed biobriquette is biobriquette with 75% corncob and 25% rice husk with calorie content as 5,331.95 kkal/kg. Economy analysis show for corncob and husk biobriquette production cost per kg are respectively Rp 2,585.00 and Rp 2.625.00 with price of Rp 5,000.00 and Rp 3,000.00 obtained nett profit respectively Rp 2,173.00 and Rp 338.00.

  18. A Visual Analytics Based Decision Support Methodology For Evaluating Low Energy Building Design Alternatives

    NASA Astrophysics Data System (ADS)

    Dutta, Ranojoy

    The ability to design high performance buildings has acquired great importance in recent years due to numerous federal, societal and environmental initiatives. However, this endeavor is much more demanding in terms of designer expertise and time. It requires a whole new level of synergy between automated performance prediction with the human capabilities to perceive, evaluate and ultimately select a suitable solution. While performance prediction can be highly automated through the use of computers, performance evaluation cannot, unless it is with respect to a single criterion. The need to address multi-criteria requirements makes it more valuable for a designer to know the "latitude" or "degrees of freedom" he has in changing certain design variables while achieving preset criteria such as energy performance, life cycle cost, environmental impacts etc. This requirement can be met by a decision support framework based on near-optimal "satisficing" as opposed to purely optimal decision making techniques. Currently, such a comprehensive design framework is lacking, which is the basis for undertaking this research. The primary objective of this research is to facilitate a complementary relationship between designers and computers for Multi-Criterion Decision Making (MCDM) during high performance building design. It is based on the application of Monte Carlo approaches to create a database of solutions using deterministic whole building energy simulations, along with data mining methods to rank variable importance and reduce the multi-dimensionality of the problem. A novel interactive visualization approach is then proposed which uses regression based models to create dynamic interplays of how varying these important variables affect the multiple criteria, while providing a visual range or band of variation of the different design parameters. The MCDM process has been incorporated into an alternative methodology for high performance building design referred to as

  19. Energy Education. Volume I of the Proceedings of the International Conference on Energy Alternatives/Risk Education (Lake Balaton, Hungary, September 7-13, 1989). Volume I.

    ERIC Educational Resources Information Center

    Marx, George, Ed.

    The proceedings of the International Conference on Energy Alternatives and Risk Education contains papers which examine science teaching in relation to societal aspects of risk assessment. A challenge for the conference was to show how science education can help students learn the concepts of acceptable and unacceptable risks, leading to rational…

  20. Alternative Financing of Alternative Energy.

    ERIC Educational Resources Information Center

    California Higher Education, 1982

    1982-01-01

    The University of San Francisco financed conversion of three dormitories to solar heat by having private investors purchase and install equipment through a limited partnership. A public utilities rebate and eventual donation of the equipment also resulted. Available from California Higher Education, P.O. Box 26541, Sacramento, CA 95826, $2.00.…

  1. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  2. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  3. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  4. A plan for the study of the costs and environmental impact of fusion compared with alternative energy sources

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Monsler, M. J.

    1990-03-01

    Based on our work during this contract and our discussions with LLNL personnel at the presentation made to LLNL on Wednesday, February 14, we have defined the following set of tasks for a study on the total cost of fusion compared to alternative energy sources. The proposed study is not intended to be exhaustive or comprehensive. It will, however, help LLNL to develop a greater understanding, to quantify some comparisons between fusion power and alternative energy sources, and to communicate the benefits of fusion to Congress and other decision makers. We recommend that the study focus on energy use in the U.S., but conclusions relative to global factors should be included to the extent possible.

  5. Quantitative measurements of alternating finger tapping in Parkinson's disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation.

    PubMed

    Taylor Tavares, Ana Lisa; Jefferis, Gregory S X E; Koop, Mandy; Hill, Bruce C; Hastie, Trevor; Heit, Gary; Bronte-Stewart, Helen M

    2005-10-01

    The Unified Parkinson's Disease Rating Scale (UPDRS) is the primary outcome measure in most clinical trials of Parkinson's disease (PD) therapeutics. Each subscore of the motor section (UPDRS III) compresses a wide range of motor performance into a coarse-grained scale from 0 to 4; the assessment of performance can also be subjective. Quantitative digitography (QDG) is an objective, quantitative assessment of digital motor control using a computer-interfaced musical keyboard. In this study, we show that the kinematics of a repetitive alternating finger-tapping (RAFT) task using QDG correlate with the UPDRS motor score, particularly with the bradykinesia subscore, in 33 patients with PD. We show that dopaminergic medication and an average of 9.5 months of bilateral subthalamic nucleus deep brain stimulation (B-STN DBS) significantly improve UPDRS and QDG scores but may have different effects on certain kinematic parameters. This study substantiates the use of QDG to measure motor outcome in trials of PD therapeutics and shows that medication and B-STN DBS both improve fine motor control.

  6. Mapping alternative energy paths for taiwan to reach a sustainable future: An application of the leap model

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ming

    Energy is the backbone of modern life which is highly related to national security, economic growth, and environmental protection. For Taiwan, a region having limited conventional energy resources but constructing economies and societies with high energy intensity, energy became the throat of national security and development. This dissertation explores energy solutions for Taiwan by constructing a sustainable and comprehensive energy planning framework (SCENE) and by simulating alternative energy pathways on the horizon to 2030. The Long-range Energy Alternatives Planning system (LEAP) is used as a platform for the energy simulation. The study models three scenarios based on the E4 (energy -- environment -- economic -- equity) perspectives. Three scenarios refer to the business-as-usual scenario (BAU), the government target scenario (GOV), and the renewable and efficiency scenario (REEE). The simulation results indicate that the most promising scenario for Taiwan is the REEE scenario, which aims to save 48.7 million tonnes of oil equivalent (Mtoe) of final energy consumption. It avoids USD 11.1 billion on electricity expenditure in final demand sectors. In addition, the cost of the REEE path is the lowest among all scenarios before 2020 in the electricity generation sector. In terms of global warming potential (GWP), the REEE scenario could reduce 35 percent of the GWP in the demand sectors, the lowest greenhouse gases emission in relation to all other scenarios. Based on lowest energy consumption, competitive cost, and least harm to the environment, the REEE scenario is the best option to achieve intergenerational equity. This dissertation proposes that promoting energy efficiency and utilizing renewable energy is the best strategy for Taiwan. For efficiency improvement, great energy saving potentials do exist in Taiwan so that Taiwan needs more ambitious targets, policies, and implementation mechanisms for energy efficiency enhancement to slow down and decrease

  7. Comparison of the incentives used to stimulate energy production in Japan, France, West Germany, and the United States

    SciTech Connect

    Cole, R.J.; Sommers, P.; Eschbach, C.; Sheppard, W.J.; Lenerz, D.E.; Huelshoff, M.; Marcus, A.A.

    1981-09-01

    This volume represents the culmination of a five-year research effort examining the incentives used to stimulate energy production in four countries, and the incentives used to stimulate energy consumption in one country. Following the theoretical approach developed for studying US energy incentives, the researchers in each country classified incentives into the following six categories: (1) Taxation, including exemption from or reduction of existing taxes; (2) Disbursements, in which the national government distributes money without requiring anything in return; (3) Requirements, including demands made by the government, backed by civil or criminal sanctions; (4) Traditional Services, including those almost always provided exclusively by a governmental entity; (5) Nontraditional Services, including those sometimes performed by non-governmental entities, as well as governmental entities (e.g., research and development); and (6) Market Activities, including government involvement in the market under conditions similar to those faced by non-governmental producers or consumers. A complete list of research reports prepared in the Federal Incentives series is provided in the Appendix.

  8. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis

    EPA Science Inventory

    Microwave, ultrasound, sunlight and mechanochemical mixing can be used to augment conventional laboratory techniques. By applying these alternative means of activation, a number of chemical transformations have been achieved thereby improving many existing protocols with superi...

  9. Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems

    SciTech Connect

    Not Available

    1993-10-01

    This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

  10. Biomass Energy Self-Sufficiency Resource Alternatives for a Forested Air Force Installation.

    DTIC Science & Technology

    1982-05-01

    to support basewide biomass energy systems. The study confirmed the feasibility of a biomass energy plantation supplying the required fuel wood to...support the basewide biomass energy systems while, at the same time not conflicting with any of the operational missions of Eglin AFB. This conclusion is...have an installation that provides all of its electrical and thermal energy requirements through the utilization of the Biomass Energy Island concept. (Author)

  11. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe

  12. Beyond prometheus and Bakasura: Elements of an alternative to nuclear power in India's response to the energy-environment crisis

    NASA Astrophysics Data System (ADS)

    Mathai, Manu Verghese

    In India, as elsewhere, modern energy-society relations and economic development, metaphorically, Prometheus and the insatiable demon Bakasura, respectively, have produced unprecedented economic growth even as they have ushered in the "energy-environment crisis." Government efforts interpret the crisis as insufficiently advanced modernity. Resulting efforts to redress this crisis reaffirm more economic growth through modern energy-society relations and economic development. The civilian nuclear power renaissance in India, amidst rapidly accelerating economic growth and global climate change, is indicative. It presents the prospect of producing "abundant energy" and being "green" at the same time. This confidence in civilian nuclear power is questioned. It is investigated as proceeding from the modern discourse of "Cornucopianism" and its institutionalization as "modern megamachine organization of society." It is found that civilian nuclear power as energy policy is based on a presumption of overabundance as imperative for viable social and economic development; is predisposed to centralization and secrecy; its institutionalization limits deliberation on energy-society relations to technocratic terms; such deliberation is restrained to venues accessible only to the highest political office and technocratic elite; it fails to redress entrenched "energy injustice;" it embodies "modern technique" fostering the "displaced person" while eclipsing the "complete human personality." Overall, despite its green rhetoric, civilian nuclear power reaffirms the "politics of commodification" and refutes social and political arrangements for sustainability and equity. Alternatives are surveyed as strategies for resistance. They include the DEFENDUS approach for energy planning, the "Human Development and Capability Approach" and the "Sustainable Energy Utility." These alternatives and the synergy between them are offered as avenues to resist nuclear power as a response to the

  13. Analysis of federal incentives used to stimulate energy production: an executive summary

    SciTech Connect

    Cone, B. W.; Brenchley, D. L.; Brix, V. L.; Brown, M. L.; Cochran, K. E.; Cohn, P. D.; Cole, R. J.; Curry, M. G.; Davidson, R.; Easterling, J.; Emery, J. C.; Fassbender, A. G.; Fattorini, Jr. J S; Gordon, B.; Harty, H.; Mazzucchi, R.; Maurizi, A. R.; McClain, C.; Moore, D. D.; Sheppard, E. J.; Maxwell, J. H.; Solomon, S.; Sommers, P.

    1980-02-01

    The purpose of this research was to analyze past and present federal incentives to production of various energy sources and thereby assist the Division of Conservation and Solar Applications, Department of Energy, in the study and recommendation of federal incentives for the development of solar energy. The research was divided into five parts: a survey of current thought about incentives for solar energy production; the theoretical approach to analyzing and characterizing incentives; a generic view of the energy incentive creating landscape for 1978; analysis of the major energy sources (nuclear, hydro, coal, electricity, oil, and gas) along their trajectories from exploration to waste management, including their costs in 1978 dollars; and insights into potential incentives for solar policy. Economic, political, organizational, and legal viewpoints were considered in formulating the typology of incentives. Eight types of incentives were identified.

  14. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.01–0.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  15. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-01

    We report a strategy to investigate O vacancy (VO) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y2O3:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of VO(0/+). In the following cross relaxation, energy transfer from VO to the excitation energy level of Tb3+ in ZnO:Tb core area. While in Y2O3:Eu shell area, energy transfer to the excitation energy level of Eu3+. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu3+ or Tb3+ in the range of 0.01-0.05, chromaticity coordinates of ZnO:Tb/Y2O3:Eu nanocable stably stays at yellow region in color space except ZnO:Tb0.01/Y2O3:Eu0.01. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  16. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  17. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    SciTech Connect

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

    2010-08-06

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different

  18. Effect of photon energy in collagen generation by interstitial low level laser stimulation

    NASA Astrophysics Data System (ADS)

    Jun, Eunkwon; Ha, Myungjin; Lee, Sangyeob; Radfar, Edalat; Park, Jihoon; Jung, Byungjo

    2015-03-01

    Although the mechanism of low level laser therapy (LLLT) is unclear, many studies demonstrated the positive clinical performance of LLLT for skin rejuvenation. An increase in dermal collagen plays an important role in skin rejuvenation and wound healing. This study aimed to investigate collagen generation after interstitial low level laser stimulation (ILLS). Rabbits were divided into two groups: surfacing irradiation and minimally invasive irradiation. 660nm diode laser of 20mW with 10J, 13J and 15J was applied to the backside of rabbits. Collagen formation was evaluated with ultrasound skin scanner every 12 hours. Results shows that ILLS groups have denser collagen density than surfacing groups.

  19. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  20. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    NASA Technical Reports Server (NTRS)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  1. Assessment of energy efficiency project financing alternatives for Brookhaven National Laboratory

    SciTech Connect

    WDM Hunt; JC Hail; GP Sullivan

    2000-03-13

    Energy reduction goals for Federal agencies were first established in the National Energy Conservation Policy Act of 1988, and directed 10{percent} reduction in facility energy use based on a 1985 baseline. Since that time, Federal sites have been actively seeking and implementing a wide variety of energy-efficiency measures in facilities across the Federal sector. In the intervening years this energy reduction goal has been progressively increased to 20{percent} through legislation (Public Law 102-486, The Energy Policy Act of 1992) and a number of Executive Orders. Executive Order 13123, Greening the Government Through Efficient Energy management (signed June 3, 1999), further increased the facility energy-efficiency improvement goal from 30{percent} in 2005 to 35{percent} by 2010 relative to the 1985 baseline.

  2. Alternative fuels

    SciTech Connect

    Not Available

    1991-07-01

    This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

  3. The potential contribution of biodiesel with improved properties to an alternative energy mix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuing and increasing world-wide concerns regarding the availability of petroleum and other "conventional" sources of energy have sparked the search for sustainable sources of energy. Fuels derived from renewable biological sources (biomass) play a prominent role among the sustainable energy so...

  4. A Feasibility Study to Assess Alternative Energy Program Development Potential at the Community College Level, October 1, 1983-June 30, 1984. Final Report.

    ERIC Educational Resources Information Center

    Blair, Brittain A.

    In 1983-84, a feasibility study was conducted to determine the viability of establishing a comprehensive alternative energy technology program at Southeastern Illinois College (SIC). The study involved an examination of a number of exemplary associate degree programs in alternative energy, through on-site visits and telephone surveys; a survey of…

  5. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    NASA Technical Reports Server (NTRS)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    Hydrogen and chemical heat pipes were proposed as methods of transporting energy from a primary energy source (nuclear, solar) to the user. In the chemical heat pipe system, primary energy is transformed into the energy of a reversible chemical reaction; the chemical species are then transmitted or stored until the energy is required. Analysis of thermochemical hydrogen schemes and chemical heat pipe systems on a second law efficiency or available work basis show that hydrogen is superior especially if the end use of the chemical heat pipe is electrical power.

  6. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.

    PubMed

    Wallström, Sabá V; Florez-Sarasa, Igor; Araújo, Wagner L; Escobar, Matthew A; Geisler, Daniela A; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R; Ribas-Carbó, Miquel; Rasmusson, Allan G

    2014-05-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.

  7. Cochlear Implant Electrode Effect on Sound Energy Transfer within the Cochlea during Acoustic Stimulation

    PubMed Central

    Greene, Nathaniel T.; Mattingly, Jameson K.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.

    2015-01-01

    Hypothesis Cochlear implants (CI) designed for hearing preservation will not alter mechanical properties of the middle and inner ear as measured by intracochlear pressure (PIC) and stapes velocity (Vstap). Background CIs designed to provide combined electrical and acoustic stimulation (EAS) are now available. To maintain functional acoustic hearing, it is important to know if a CI electrode can alter middle or inner ear mechanics, as any alteration could contribute to elevated low-frequency thresholds in EAS patients. Methods Seven human cadaveric temporal bones were prepared, and pure-tone stimuli from 120Hz–10kHz were presented at a range of intensities up to 110 dB SPL. PIC in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors concurrently with VStap using laser Doppler vibrometry. Five CI electrodes from two different manufacturers, with varying dimensions were inserted via a round window approach at six different depths (16–25 mm). Results The responses of PIC and VStap to acoustic stimulation were assessed as a function of stimulus frequency, normalized to SPL in the external auditory canal (EAC), in baseline and electrode inserted conditions. Responses measured with electrodes inserted were generally within ~5 dB of baseline, indicating little effect of cochlear implant electrode insertion on PIC and VStap. Overall, mean differences across conditions were small for all responses, and no substantial differences were consistently visible across electrode types. Conclusions Results suggest that the influence of a CI electrode on middle and inner ear mechanics is minimal, despite variation in electrode lengths and configurations. PMID:26333018

  8. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    SciTech Connect

    Dutton, Spencer M.; Fisk, William J.

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  9. Biosolids management strategies: an evaluation of energy production as an alternative to land application.

    PubMed

    Egan, Maureen

    2013-07-01

    Currently, more than half of the biosolids produced within the USA are land applied. Land application of biosolids introduces organic contaminants into the environment. There are potential ecological and human health risks associated with land application of biosolids. Biosolids may be used as a renewable energy source. Nutrients may be recovered from biosolids used for energy generation for use as fertilizer. The by-products of biosolids energy generation may be used beneficially in construction materials. It is recommended that energy generation replace land application as the leading biosolids management strategy.

  10. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 2, No. 2

    SciTech Connect

    Not Available

    1998-05-01

    Official publication of the Clean Cities Network and the Alternative Fuels Data Center featuring alternative fuels activity in every state, the Clean Cities game plan '98, and news from the Automakers.

  11. Miglitol prevents diet-induced obesity by stimulating brown adipose tissue and energy expenditure independent of preventing the digestion of carbohydrates.

    PubMed

    Sasaki, Tsutomu; Shimpuku, Mayumi; Kitazumi, Tomoya; Hiraga, Haruna; Nakagawa, Yuko; Shibata, Hiroshi; Okamatsu-Ogura, Yuko; Kikuchi, Osamu; Kim, Hye-jin; Fujita, Yuki; Maruyama, Jun; Susanti, Vina Yanti; Yokota-Hashimoto, Hiromi; Kobayashi, Masaki; Saito, Masayuki; Kitamura, Tadahiro

    2013-01-01

    Miglitol is an alpha-glucosidase inhibitor that improves post-prandial hyperglycemia, and it is the only drug in its class that enters the bloodstream. Anecdotally, miglitol lowers patient body weight more effectively than other alpha-glucosidase inhibitors, but the precise mechanism has not been addressed. Therefore, we analyzed the anti-obesity effects of miglitol in mice and in the HB2 brown adipocyte cell line. Miglitol prevented diet-induced obesity by stimulating energy expenditure without affecting food intake in mice. Long-term miglitol treatment dose-dependently prevented diet-induced obesity and induced mitochondrial gene expression in brown adipose tissue. The anti-obesity effect was independent of preventing carbohydrate digestion in the gastrointestinal tract. Miglitol effectively stimulated energy expenditure in mice fed a high-fat high-monocarbohydrate diet, and intraperitoneal injection of miglitol was sufficient to stimulate energy expenditure in mice. Acarbose, which is a non-absorbable alpha glucosidase inhibitor, also prevented diet-induced obesity, but through a different mechanism: it did not stimulate energy expenditure, but caused indigestion, leading to less energy absorption. Miglitol promoted adrenergic signaling in brown adipocytes in vitro. These data indicate that circulating miglitol stimulates brown adipose tissue and increases energy expenditure, thereby preventing diet-induced obesity. Further optimizing miglitol's effect on brown adipose tissue could lead to a novel anti-obesity drug.

  12. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    SciTech Connect

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  13. EPA RE-Powering Mapper: Alternative Energy Potential at Cleanup Sites

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management??s (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.

  14. The Impact of Traditional and Alternative Energy Production on Water Resources: Assessment and Adaptation Studies

    EPA Science Inventory

    Water, fuel and energy issues are intricately related and cannot be addressed in isolation. With increasing population, increasing energy demand, continued migration towards and population growth within water stressed regions of the U.S., and with the continuing impacts of climat...

  15. Integration and Penetration Opportunities of Alternative Energy, Fuels, and Technologies within Military Systems, Logistics, and Operations

    DTIC Science & Technology

    2010-01-01

    production processes and the feedstocks used to produce a gasoline gallon equivalent ( GGE ) are vastly different. The CSIS/NREL study and the JASON’s...expenditures, one of the primary drivers in adopting alternative fuels is the price compared to a gasoline gallon equivalent ( GGE ). For the currently...available fuels, the 2008 nationwide average price of ethanol (E85) was listed at $3.99/ GGE , propane at $4.67/ GGE , biodiesel (B20) at $3.69/ GGE , and

  16. Alternative Sources of Energy for U.S. Air Force Bases

    DTIC Science & Technology

    2009-08-01

    In the United States , alternative approaches for liquid fuels include processing from biomass , coal, and wastes. Most approaches involve preparing...safe operation, and carbon -free emissions during operation), most of the owners of the nuclear plants currently operating in the United States have...Nuclear Weapons and Terrorism. SAND2008-8027P (2009). 190 United States . U.S. Army Material Command. Technical Report 174: Camp Century Evolution of

  17. Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis.

    PubMed

    Baig, R B Nasir; Varma, Rajender S

    2012-02-21

    Microwave, ultrasound, sunlight and mechanochemical mixing can be used to augment conventional laboratory techniques. By applying these alternative means of activation, a number of chemical transformations have been achieved thereby improving many existing protocols with superior results when compared to reactions performed under traditional conditions. The purpose of this critical review is to highlight the advances in this general area by presenting such newer applications in organic synthesis (175 references).

  18. Immunolocalization of an Alternative Respiratory Chain in Antonospora (Paranosema) locustae Spores: Mitosomes Retain Their Role in Microsporidial Energy Metabolism ▿

    PubMed Central

    Dolgikh, Viacheslav V.; Senderskiy, Igor V.; Pavlova, Olga A.; Naumov, Anton M.; Beznoussenko, Galina V.

    2011-01-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis. PMID:21296913

  19. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism.

    PubMed

    Dolgikh, Viacheslav V; Senderskiy, Igor V; Pavlova, Olga A; Naumov, Anton M; Beznoussenko, Galina V

    2011-04-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.

  20. A research needs assessment: Energy efficient alternatives to chlorofluorocarbons (CFCs). Final reprot

    SciTech Connect

    Not Available

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum -- based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are present. The potential benefits, research, general approach, and probability of success are addressed.

  1. The S(2p) Core Level Binding Energies for Alternative Adsorption Sites and the Example of Thiol Self Assembly

    NASA Astrophysics Data System (ADS)

    Jia, Juanjuan; Esaulov, Vladimir; Kara, Abdelkader

    2015-03-01

    Results of an investigation of the characteristics of thiol SAMs obtained by vacuum evaporative adsorption, useful for reactive substrates, are presented along with core level binding energy (BE) calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) are obtained by evaporation on Au. They display an unconventional BE structure at about 161 eV, which is close to a known BE of an S atom on Au. S(2p) core level BE calculations for molecules chemisorbed on hollow, bridge and atop sites are reported and suggest that the 161 eV peak is indeed due to an alternative adsorption site, which can be associated to an atop configuration. This must therefore not be confused with atomic sulfur and dissociation processes with S-C bond scission. Work partially supported by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243.

  2. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect

    Stovall, Therese K; Kingston, Tim

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This

  3. Research group sends alternative energy R and D report to Congress

    SciTech Connect

    Not Available

    1990-10-11

    A new report prepared for Congress has found that because the uses of energy are too diverse, no single technological fix that would significantly reduce the emissions of greenhouse gases during the next few decades could be identified in any of the four end-use sectors (electric power, transportation, building, and industry). The report, Confronting Climate Change: Strategies for Energy Research and Development, was prepared by the National Research Council, the operating arm of the National Academies of Sciences and Engineering. Instead of a technological fix, two broad technological pathways exist that by the year 2050 could lead to significant reductions from today's levels in greenhouse emissions. These pathways involve: increases in energy productivity through improvements in the efficiency of energy use and conversion technologies; and the development of and shift to the use of low- or non-greenhouse gas emitting energy technologies. The report recommends two energy R and D strategies including a focused strategy aimed at reducing greenhouse emissions, and an insurance strategy that would pursue energy R and D that would be viable only in the presence of concerns about global climate change.

  4. M.A.E.G.U.S.: Measuring alternate energy generation via unity simulation

    NASA Astrophysics Data System (ADS)

    Nataraja, Kavin Muhilan

    This paper presents the MAEGUS serious game and a study to determine its efficacy as a pedagogical tool. The MAEGUS serious game teaches sustainable energy concepts through gameplay simulating wind turbines and solar arrays. Players take the role of an energy manager for a city and use realistic data and information visualizations to learn the physical factors of wind and solar energy generation. The MAEGUS serious game study compares game assisted learning to a more traditional teaching method such as reading material in a crossover study, the results of which can inform future serious game development for educational purposes.

  5. Alternative analytically calculation procedure of two-center kinetic energy integral in molecular coordinate system

    NASA Astrophysics Data System (ADS)

    Mamedov, Bahtiyar Akber; Copuroglu, Ebru

    2017-02-01

    By using the Löwdin-α function method, we have analytically calculated the two-center kinetic energy integrals over Slater type orbitals (STOs). The two-center kinetic energy integrals are presented in terms of the two-center overlap integrals. A new approach is applicable to accurate calculations of two-center kinetic energy integral over STOs for arbitrary values of scaling parameters and interatomic distances. Obtained results show that the proposed method is easy to apply to the real systems, and has better calculation CPU time with compared to the existing approximations.

  6. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    SciTech Connect

    Rutledge, G.; Lane, D.; Edblom, G.

    1980-01-01

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

  7. Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program

    SciTech Connect

    Vine, E.; De Buen, O.; Goldfman, C.

    1990-12-01

    This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

  8. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2010-08-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.

  9. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  10. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from Municipal Solid Waste (MSW) by dedicated Waste-To-Energy (WTE) plants. In strategy 1, the residue of Material Recovery (MR) is fed directly to a grate combustor, while in strategy 2 the grate combustor comes downstream of light mechanical treatment. In strategies 3 and 4, the MR residue is converted into Refuse Derived Fuel (RDF), in a fluidized cumbuster bed. The results of Part A, devoted to mass and energy balances, clearly show that pre-treating the MR residue in order to increase the heating value of the feedstock fed to the WTE plant has marginal effects on the energy efficiency of the WTE plant. When considering the efficiency of the whole strategy of waste management, the energy balances show that the more thorough the pre-treatment, the smaller the amount of energy recovered per unit of MR residue. Starting from the heat/mass balances illustrated in Part A, Part B examines the environmental impacts and economics of the various strategies by means of a Life Cycle Assessment (LCA). Results show that treating the MR residues ahead of the WTE plant does not provide environmental or economic benefits. RDF production worsens almost all impact indicators because it reduces net electricity production and thus the displacement of power plant emissions; it also increases costs, because the benefits of improving the quality of the material fed to the WTE plant do not compensate the cost of such improvement.

  11. Healing, Mental Energy in the Physics Classroom: Energy Conceptions and Trust in Complementary and Alternative Medicine in Grade 10-12 Students

    NASA Astrophysics Data System (ADS)

    Svedholm, Annika M.; Lindeman, Marjaana

    2013-03-01

    Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.

  12. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  13. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    PubMed

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  14. Energy Transport Induced by an External Alternating Field in Strongly Disordered Media

    SciTech Connect

    Burin, Alexander L.; Kagan, Yuri; Polishchuk, Il'ya Ya.

    2001-06-11

    The delocalization of excitations in an ensemble of two-level systems with a strong disorder due to an external alternating acoustic or electric field is considered. The propagating modes are shown to appear if a ratio of the field amplitude to the frequency is large enough. Two complementary approaches, the static one similar to that of Anderson and the dynamic one related to Landau-Zener, are developed. It is shown that the field-induced relaxation mechanism can have a strong influence on the kinetics. The internal friction is argued to be vastly affected by the relaxation mechanism proposed.

  15. Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson's disease.

    PubMed

    Perlemoine, Caroline; Macia, Frédéric; Tison, François; Coman, Isabelle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Baillet, Laurence; Gin, Henri; Rigalleau, Vincent

    2005-02-01

    Patients with Parkinson's disease (PD) often lose weight, but after subthalamic nucleus deep brain stimulation (STN-DBS), they gain weight. We compared daily energy intake (DEI), resting energy expenditure (REE) and substrate oxidation rates (measured by indirect calorimetry) in nineteen STN-DBS-treated patients (Group S), thirteen others on pharmacologic treatment by levodopa (Group L) and eight control subjects. We also determined the acute effects of STN-DBS and levodopa on REE and substrate oxidation rates. STN-DBS treated patients gained 9.7 (SEM 7.1) kg after surgery, whereas patients on pharmacologic treatment lost 3.8 (SEM 10.0) kg since diagnosis. In STN-DBS-treated patients, REE (-16.5 %; P<0.001), lipid oxidation (-27 %; P<0.05) and protein oxidation (-46 %; P<0.05) were decreased, whereas glucose oxidation was elevated (+81 %; P<0.05) as compared to patients on pharmacologic treatment. Levodopa acutely reduced REE (-8.3 %; P<0.05) and glucose oxidation (-37 %; P<0.01) with a slight hyperglycaemic effect (after levodopa challenge: 5.6 (SEM 0.8) v. before levodopa challenge: 5.3 (SEM 0.6) mmol/l; P<0.01). Switching 'on' STN-DBS acutely reduced REE (-17.5 %; P<0.01) and lipid oxidation (-24 %; P<0.001) 30 min after starting stimulation. Fasting glycaemia was slightly but significantly reduced (5.4 (SEM 1.4) v. 5.5 (SEM 1.3) mmol/l; P<0.01). After STN-DBS, the normalization of REE and the reduction in lipid and protein oxidation contribute to the restoration of weight. As levodopa decreases glucose oxidation, the reduction in daily dose of levodopa in STN-DBS-treated patients helps prevent the effect of weight gain on glycaemia.

  16. Response of corn markets to climate volatility under alternative energy futures

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Hertel, Thomas W.; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades. However, commodity price volatility is also influenced by other factors, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the United States, which causes US corn price volatility to increase sharply in response to global warming projected to occur over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages and climate change.

  17. Response of corn markets to climate volatility under alternative energy futures.

    PubMed

    Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.

  18. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  19. Lessons from an Energy Curriculum for the Senior High Grades. Unit VI - Fossil Fuels and Energy Alternatives (Solar, Coal). Energy Education Curriculum Project.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Public Instruction, Indianapolis. Div. of Curriculum.

    Energy education units (consisting of a general teacher's guide and nine units containing a wide variety of energy lessons, resources, learning aids, and bibliography) were developed for the Indiana Energy Education Program from existing energy education materials. The units were designed to serve as an entire curriculum, resource document,…

  20. A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance.

    PubMed

    Lee, Yung Seng; Challis, Ben G; Thompson, Darren A; Yeo, Giles S H; Keogh, Julia M; Madonna, Michael E; Wraight, Vicki; Sims, Matthew; Vatin, Vincent; Meyre, David; Shield, Julian; Burren, Christine; Ibrahim, Zala; Cheetham, Tim; Swift, Peter; Blackwood, Anthea; Hung, Chiao-Chien Connie; Wareham, Nicholas J; Froguel, Philippe; Millhauser, Glenn L; O'Rahilly, Stephen; Farooqi, I Sadaf

    2006-02-01

    The melanocortin-4 receptor (MC4R) plays a critical role in the control of energy balance. Of its two pro-opiomelanocortin (POMC)-derived ligands, alpha- and beta-MSH, the majority of attention has focused on alpha-MSH, partly reflecting the absence of beta-MSH in rodents. We screened the POMC gene in 538 patients with severe, early-onset obesity and identified five unrelated probands who were heterozygous for a rare missense variant in the region encoding beta-MSH, Tyr221Cys. This frequency was significantly increased (p < 0.001) compared to the general UK Caucasian population and the variant cosegregated with obesity/overweight in affected family members. Compared to wild-type beta-MSH, the variant peptide was impaired in its ability to bind to and activate signaling from the MC4R. Obese children carrying the Tyr221Cys variant were hyperphagic and showed increased linear growth, both of which are features of MC4R deficiency. These studies support a role for beta-MSH in the control of human energy homeostasis.

  1. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory

    NASA Astrophysics Data System (ADS)

    Stoyanova, Alexandrina; Teale, Andrew M.; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-01

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  2. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  3. Alternatives to linear analysis of energy balance data from lactating dairy cows.

    PubMed

    Kebreab, E; France, J; Agnew, R E; Yan, T; Dhanoa, M S; Dijkstra, J; Beever, D E; Reynolds, C K

    2003-09-01

    The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (kl), 3) growth (kg), and the efficiency of utilization of body stores for milk production (kt). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate kg and kt. Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for kg and kt using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for kg and 0.82 to 0.84 for kt. Using the estimated values of kg and kt, the data were corrected to allow for body tissue changes. Based on the definition of kl as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and kl were determined. Meta-analysis of the pooled data showed that the average kl ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.

  4. Bounded energy exchange as an alternative to the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Heidrich, Matthias

    2016-10-01

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is the phenomenological, macroscopic and non-statistical one of classical thermodynamics.

  5. Energy-selective SESD imaging utilizing a CMA. [Scanning Electron Stimulated Desorption with Cylindrical Mirror Analyzer

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Soria, F.; Poppa, H.

    1980-01-01

    A particularly simple conversion of a scanning Auger system for ESD ion energy distributions and scanning ESD has been developed. This approach combines the advantages of the small spot-size electron guns and mapping systems developed for SAM with the capability of ESD for the detection of hydrogen. Our intended use for the device is detection and mapping of surface concentrations of hydrogen on metals. The characteristics of SESD are illustrated with the preliminary results of an investigation into the ESD properties of hydrogenic adsorbates on Nb. It is shown that the ESDIED exhibit distinct differences indicative of the surface preparation, and that the ESD ion angular distributions have an effect on the observed contrast relationships in SESD.

  6. Wind, Sun and Water: Complexities of Alternative Energy Development in Rural Northern Peru

    ERIC Educational Resources Information Center

    Love, Thomas; Garwood, Anna

    2011-01-01

    Drawing on recent research with NGO-driven projects in rural Cajamarca, Peru, we examine the paradoxes of relying on wind, solar and micro-hydro generation of electricity for rural community development. In spite of cost, vagaries of these energy resources and limited material benefits, especially with wind and solar systems, villagers are eagerly…

  7. Alternative Energy and Propulsion Power for Today’s US Military

    DTIC Science & Technology

    2009-05-05

    others) to a JP-8 surrogate or biojet/biofuel. Currently the most promising research has expanded to cellulosic and algal feedstocks to produce a second... infused into the TARDEC’s program, high-powered and high-energy storage technologies will be advanced enough to meet the real and tangible needs of the

  8. Alternative Resources for Curriculum Balance in Nutrition, Economics, Energy, Environmental, Consumer & Citizenship Education.

    ERIC Educational Resources Information Center

    Harty, Sheila, Comp.

    This annotated directory lists selected informational and educational resources in the subject areas predominant in corporate education efforts. Organized by categories of nutrition, economics, energy, environmental consumer and citizenship education, this list is intended to help provide a balance of resources and perspectives for the classroom…

  9. Analysis of market penetration of renewable energy alternatives under uncertain and carbon constrained world

    EPA Science Inventory

    Future energy prices and supply, availability and costs can have a significant impact on how fast and cost effectively we could abate carbon emissions. Two-staged decision making methods embedded in U.S. EPA's MARKAL modeling system will be utilized to find the most robust mitig...

  10. Colleges Offer New Alternative-Energy Degrees, Fueled by Student Demand

    ERIC Educational Resources Information Center

    Basken, Paul

    2009-01-01

    More U.S. college students are enrolling in power- and energy-engineering courses, but the increase is not enough to meet the need, says a new report by the IEEE, the professional association of electrical engineers. About 45% of engineers at electric utilities are expected to retire or leave their jobs within five years, creating as many as…

  11. Current Research on Molasses as an Alternative Energy Source for Organic Dairy Herds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As organic grain prices have increased and organic milk prices have decreased, dairy farmers are seeking lower-cost supplementation strategies. Sugarcane molasses, a rich source of sucrose, seems to be a viable option as a source of energy. Molasses frequently costs less per pound of dry matter than...

  12. The potential of biodiesel with improved properties to an alternative energy mix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuels derived from renewable biological sources (biomass) are prominent among the sustainable energy sources. Biodiesel, the mono-alkyl esters of vegetable oils or animal fats, is one of the significant biomass-derived fuels. It is obtained from vegetable oils or other triacylglycerol feedstocks b...

  13. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  14. Thermodynamic analysis of alternate energy carriers, hydrogen and chemical heat pipes

    NASA Technical Reports Server (NTRS)

    Cox, K. E.; Carty, R. H.; Conger, W. L.; Soliman, M. A.; Funk, J. E.

    1976-01-01

    The paper discusses the production concept and efficiency of two new energy transmission and storage media intended to overcome the disadvantages of electricity as an overall energy carrier. These media are hydrogen produced by water-splitting and the chemical heat pipe. Hydrogen can be transported or stored, and burned as energy is needed, forming only water and thus obviating pollution problems. The chemical heat pipe envisions a system in which heat is stored as the heat of reaction in chemical species. The thermodynamic analysis of these two methods is discussed in terms of first-law and second-law efficiency. It is concluded that chemical heat pipes offer large advantages over thermochemical hydrogen generation schemes on a first-law efficiency basis except for the degradation of thermal energy in temperature thus providing a source of low-temperature (800 K) heat for process heat applications. On a second-law efficiency basis, hydrogen schemes are superior in that the amount of available work is greater as compared to chemical heat pipes.

  15. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer

    PubMed Central

    Griffin, Graham B.; Lundin, Pamela M.; Rolczynski, Brian S.; Linkin, Alexander; McGillicuddy, Ryan D.; Bao, Zhenan; Engel, Gregory S.

    2014-01-01

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs. PMID:25669410

  16. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer

    SciTech Connect

    Griffin, Graham B.; Rolczynski, Brian S.; Linkin, Alexander; McGillicuddy, Ryan D.; Engel, Gregory S.; Lundin, Pamela M.; Bao, Zhenan

    2014-01-21

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.

  17. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer.

    PubMed

    Griffin, Graham B; Lundin, Pamela M; Rolczynski, Brian S; Linkin, Alexander; McGillicuddy, Ryan D; Bao, Zhenan; Engel, Gregory S

    2014-01-21

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.

  18. A water system model for exploring electric energy alternatives in southeastern US basins

    NASA Astrophysics Data System (ADS)

    Flores-López, F.; Yates, D.

    2013-09-01

    Electric power generation often involves the use of water for power plant cooling and steam generation, which typically involves the release of cooling water to nearby rivers and lakes. The resulting thermal pollution may negatively impact the ecosystems of these water bodies. Water resource systems models enable the examination of the implications of alternative electric generation on regional water resources. This letter documents the development, calibration, and validation of a climate-driven water resource systems model of the Apalachicola-Chattahoochee-Flint, the Alabama-Coosa-Tallapoosa, and the Tombigbee River basins in the states of Georgia, Alabama, and Florida, in the southeastern US. The model represents different water users, including power plants, agricultural water users, and municipal users. The model takes into account local population, per-capita use estimates, and changes in population growth. The water resources planning model was calibrated and validated against the observed, managed flows through the river systems of the three basins. Flow calibration was performed on land cover, water capacity, and hydraulic conductivity of soil horizons; river water temperature calibration was performed on channel width and slope properties. Goodness-of-fit statistics indicate that under 1980-2010 levels of water use, the model robustly represents major features of monthly average streamflow and water temperatures. The application of this integrated electricity generation-water resources planning model can be used to explore alternative electric generation and water implications. The implementation of this model is explored in the companion paper of this focus issue (Yates et al 2013 Environ. Res. Lett. 8 035042).

  19. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    SciTech Connect

    Polack, Francois; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Francoise

    2007-01-19

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  20. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect

    Not Available

    2012-04-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  1. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect

    Not Available

    2014-03-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  2. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.; Soares, C. G.

    2004-01-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  3. Lactate is an alternative energy fuel to glucose in neurons under anesthesia.

    PubMed

    Yamada, Akifumi; Yamamoto, Keisuke; Imamoto, Natsumi; Momosaki, Sotaro; Hosoi, Rie; Yamaguchi, Masatoshi; Inoue, Osamu

    2009-11-25

    The uptake of [14C]lactate was measured in the brains of mice anesthetized with pentobarbital or chloral hydrate. The results showed significant increase of the [14C]lactate uptake in the brain under both anesthesia. Despite energy metabolism in the brain being suppressed by both pentobarbital and chloral hydrate, the [14C]lactate uptake was unexpectedly increased under anesthesia. [14C]Lactate uptake in rat brain injured by infusion of quinolic acid was significantly decreased, and the reduction of [14C]lactate uptake was parallel to neural cell death, suggesting that exogenous lactate might be selectively taken up by neuron. These results indicated that lactate rather than glucose might serve as an energy substrate for neuron in intact brain under anesthesia.

  4. Mixed metal oxides as alternate cathodes for high energy density electric propulsion

    SciTech Connect

    Papp, J.E.

    1995-12-31

    Silver (II) oxide is currently the Navy`s cathode of choice in high energy density, high rate batteries for torpedo and mobile target applications, for medium rate applications such as Seal Delivery Vehicles, and may be useful for low rate, long endurance UUV missions. While it is certainly a versatile material, silver (II) oxide is expensive to produce and has a lower faradaic (storage) capacity than desired. New research being conducted at the NUWC electric propulsion laboratory is focused toward developing new, lower cost cathode materials with energy densities at least comparable to silver (II) oxide. Mixed metal oxides, with silver (II) oxide as one component, are under investigation. Other materials, without a silver component, are also being considered. This poster will illustrate recent developments in the modification of the silver (II) oxide cathode for Navy applications.

  5. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation

    EPA Science Inventory

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. These processes include examples of coupling reactions, the synthesis of heterocyclic compounds, and a variety of reactio...

  6. The inverse triax x ray diode: An alternate reduced-endpoint-energy bremsstrahlung source

    NASA Astrophysics Data System (ADS)

    Harper-Slaboszewicz, V. J.; Poukey, J. W.; Stygar, W. A.; Fowler, W. E.; Peyton, B.

    1990-02-01

    The inverse triax diode is a high power, low impedance electron diode which offers significant advantages over conventional electron diodes on short-pulse (less than 30 ns FWHM) high power x ray simulators. Parametric calculations show that the radiation efficiency of the inverse triax is competitive with standard diodes for mean photon energies below about 120 keV, and sometimes up to 150 keV. Particle-in-cell code simulations show the impedance behavior and flow pattern in the inverse triax with and without the presence of an anode plasma. The simulation results are used to suggest design rules for inverse triax diodes. Experimental results show good agreement with calculations of the impedance behavior and electron beam dynamics. Using inverse triax diodes, we have produced peak doses of 1.4 x 10(exp 11) rad(TLD)/s over 840 sq cm with a mean photon energy of 120 keV on SPEED and 3.1 x 10(exp 11) rad(TLD)/s over 3700 sq cm with a mean photon energy of 140 keV on Saturn.

  7. Alternate propulsion energy sources. Final report, 3 March-21 September 1983

    SciTech Connect

    Forward, R.L.

    1983-12-01

    This report contains a summary of the non-proprietary technical results of the referenced contract. The objective of the contract was to survey the entire field of advanced propulsion to uncover and carry out a technical assessment of any concept that showed promise of leading to a major advance in available energy sources for space power and propulsion in the next century. In general, any concept that might derive energy from the space environment was to be considered, as well as any unconventional methods of storing energy in a compact form that may have applicability to space power and propulsion. In Phase I, 64 concepts were uncovered and preliminary technical assessments were carried out on 28 of the more promising concepts. For Phase 2, it was recommended that further studies be carried out on solid metastable helium, solar heated plasmas, perforated solar sails, and antiproton annihilation propulsion. Of these, the Air Force selected two concepts to receive the major portion of the Phase 2 effort, solar heated plasmas and antiproton annihilation.

  8. Health and safety implications of alternative energy technologies. I. Geothermal and biomass

    NASA Astrophysics Data System (ADS)

    Watson, A. P.; Etnier, E. L.

    1981-07-01

    An evaluation of potential occupational and public health aspects of geopressure, hydrothermal, hot dry rock, silviculture, crop and animal residues, fermentable plant products, municipal waste, and plantation energy technologies has been performed. Future development of these energy options in the United States will contain hazards that could easily be eliminated by safer equipment design and common-sense attention to operation and maintenance. Occupational exposure to hydrogen sulfide gas occurs near all geothermal sites and wherever organic matter decomposes anaerobically. Respiratory damage has occurred to laborers in geothermal fields, while farm workers have been fatally overcome when employed near agitating liquid manure systems. However, the most frequent and severe of reported injuries to geothermal workers is dermal exposure to caustic sludges produced by H2S abatement systems. Principal health and safety considerations of biomass pathways are directly related to the diffuse nature of solar energy fixation by photosynthesis and subsequent transfer to animal food chains. Since the potential fuel is in an unconcentrated form, cultivation, harvest, and transport are necessarily laborintensive. Thus, a significant potential for occupational injuries and fatalities exists. Of all biomass systems evaluated, direct burning of solid fuels presents the greatest public health risk. Data are presented to characterize the population at risk and the frequency and severity of injuries.

  9. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments.

    PubMed

    Silva, Lourival A; Vinaud, Marina C; Castro, Ana Maria; Cravo, Pedro Vítor L; Bezerra, José Clecildo B

    2015-01-01

    Leishmaniasis is a complex disease that affects mammals and is caused by approximately 20 distinct protozoa from the genus Leishmania. Leishmaniasis is an endemic disease that exerts a large socioeconomic impact on poor and developing countries. The current treatment for leishmaniasis is complex, expensive, and poorly efficacious. Thus, there is an urgent need to develop more selective, less expensive new drugs. The energy metabolism pathways of Leishmania include several interesting targets for specific inhibitors. In the present study, we sought to establish which energy metabolism enzymes in Leishmania could be targets for inhibitors that have already been approved for the treatment of other diseases. We were able to identify 94 genes and 93 Leishmania energy metabolism targets. Using each gene's designation as a search criterion in the TriTrypDB database, we located the predicted peptide sequences, which in turn were used to interrogate the DrugBank, Therapeutic Target Database (TTD), and PubChem databases. We identified 44 putative targets of which 11 are predicted to be amenable to inhibition by drugs which have already been approved for use in humans for 11 of these targets. We propose that these drugs should be experimentally tested and potentially used in the treatment of leishmaniasis.

  10. Risks and psychic costs of alternative energy sources for generating electricity

    SciTech Connect

    Spangler, M.B.

    1981-01-01

    Divisive personal issues will continue to impede the formulation of a coherent national energy policy until we come to grips with the disagreements and anxieties behind the issues. Variations in individual anxiety profiles and limited knowledge are the major sources of conflict. A structured approach for analyzing psychic costs in the risk-cost-benefit analyses of energy options focuses on the electric-utility industry. Coupling psychic costs with economic costs requires an understanding of how social values interact to produce either risk acceptance or risk rejection. A review of the literature shows that people experiencing a continuous anxiety state may come to value the focus of their fear as a policy issue more than on loss of life. Public reaction after the Three Mile Island accident illustrates this condition. Personal bias in risk perception is variable partly because of differences in information. Information and personal values, however, can be mutually incompatible and lead to psychic conflicts. Proponents of soft energy technology, for example, are criticized for their lack of information about the associated risks and not credited for the psychic benefits of their goals. 58 references. (DCK)

  11. Survey of alternate stored-chemical-energy reactions. Annual report, 25 May 1984-25 May 1985

    SciTech Connect

    Cook, L.P.; Plante, E.R.

    1985-12-01

    A survey of eight alternative liquid-metal stored-chemical-energy reactions was made for purposes of comparison with the lithium-aluminum/water, lithium/sulfur hexafluoride, and other reaction schemes. The objective of the study was to survey the potential of these eight reactions as alternate stored-chemical-energy systems and to develop priorities for future study. Experimental data on the products of reaction and kinetics of reaction are presented for: (Li/H/sub 2/O; H/sub 2//O/sub 2/), (Li/H/sub 2/O; NaO/sub 2//H/sub 2/O; H/sub 2//O/sub 2/), (MgAl/H/sub 2/O; H/sub 2//O/sub 2/), and (LiAl/ClO/sub 3/F). These data were collected using thermogravimetry and Knudsen effusion mass spectrometry, with x-ray diffraction analysis of experimental products. Among other results, the data show that the aluminum component of the fuels is relatively inert to oxidation up to 650/sup 0/s C. Above this temperature, materials limitations have hampered the collection of experimental data. Thermodynamic analysis has been used to extend the data on each of the eight reaction schemes, and to predict the chemical reaction that best represents the complete oxidation of each fuel by the indicated oxidant at 1100 K. Enthalpies were calculated for each fuel/oxidant combination. Safety considerations are also discussed for each.

  12. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    SciTech Connect

    Jia, Juanjuan; Kara, Abdelkader E-mail: vladimir.esaulov@u-psud.fr; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A. E-mail: vladimir.esaulov@u-psud.fr

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  13. Environmental impact assessment for alternative-energy power plants in México.

    PubMed

    González-Avila, María E; Beltrán-Morales, Luis Felipe; Braker, Elizabeth; Ortega-Rubio, Alfredo

    2006-07-01

    Ten Environmental Impact Assessment Reports (EIAR) were reviewed for projects involving alternative power plants in Mexico developed during the last twelve years. Our analysis focused on the methods used to assess the impacts produced by hydroelectric and geothermal power projects. These methods used to assess impacts in EIARs ranged from the most simple, descriptive criteria, to quantitative models. These methods are not concordant with the level of the EIAR required by the environmental authority or even, with the kind of project developed. It is concluded that there is no correlation between the tools used to assess impacts and the assigned type of the EIAR. Because the methods to assess impacts produced by these power projects have not changed during 2000 years, we propose a quantitative method, based on ecological criteria and tools, to assess the impacts produced by hydroelectric and geothermal plants, according to the specific characteristics of the project. The proposed method is supported by environmental norms, and can assist environmental authorities in assigning the correct level and tools to be applied to hydroelectric and geothermal projects. The proposed method can be adapted to other production activities in Mexico and to other countries.

  14. Miami International Conference on Alternative Energy Sources, 5th, Miami Beach, FL, December 13-15, 1982, Proceedings of Condensed Papers

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    1982-10-01

    The rate of progress and state of the art in various alternative energy systems is assessed in a series of extended abstracts. Renewable energy sources such as hydroelectricity, solar heating, wind power, solar cells, bioconversion, OTEC, and alcohol are discussed. Attention is given to thermal energy storage, solar stills, hydrogen fuel systems, and the economics of wind power. Fusion, breeder, and fission reactors are considered, as are geothermal energy extraction, wave energy systems, the CO2 effects on the atmosphere caused by burning fuels, and conservation and waste utilization technologies. Finally, energy education programs and national energy policy are investigated

  15. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  16. Foraging in chemically diverse environments: energy, protein, and alternative foods influence ingestion of plant secondary metabolites by lambs.

    PubMed

    Villalba, Juan J; Provenza, Frederick D

    2005-01-01

    Interactions among nutrients and plant secondary metabolites (PSM) may influence how herbivores mix their diets and use food resources. We determined intake of a food containing a mix of terpenoids identified in sagebrush (Artemisia tridentata) when present in isoenergetic diets of increasing concentrations of protein (6, 9, 15, or 21% CP) or in isonitrogenous diets of increasing concentrations of energy (2.17, 2.55, 3.30, or 3.53 Mcal/kg). Lambs were offered choices between those diets with or without terpenes or between diets with terpenes and alfalfa hay. Intake of the diets with terpenes was lowest with the lowest concentrations of protein (6%) and energy (2.17 Mcal/kg) in the diets, and highest with diets of 15% CP and 3.53 Mcal/kg. In contrast, when terpenes were absent from the diets, lambs consumed similar amounts of all four diets with different concentrations of protein, and more of the diets with intermediate amounts of energy. When given a choice between the diet with or without terpenes, lambs preferred the diet without terpenes. When lambs were offered choices between terpene-containing diets and alfalfa, energy and protein concentrations influenced the amount of terpenes animals ingested. Energy densities higher than alfalfa, and protein concentrations higher than 6%, increased intake of the terpene-containing diet. Thus, the nutritional environment interacted with terpenes to influence preference such that lambs offered diets of higher energy or protein concentration ate more terpenes when forced, but not when offered alternative food without terpenes. The nutrients supplied by a plant and its neighbors likely influence how much PSM an animal can ingest, which in turn may affect the dynamics of plant communities, and the distribution of herbivores in a landscape. We discuss implications of these findings for traditional views of grazing refuges and varied diets in herbivores.

  17. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  18. Alternative Energy Sources for Stratospheric Heating in the Atmospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Zahnle, K.; Fortney, J.; Lodders, K.; Freedman, R.

    2009-05-01

    Spitzer Space Telescope observations of the transiting hot Jupiter exoplanets have revealed that some possess hot stratospheres, well in excess of the planetary equilibrium temperatures. Stratospheres are a commonplace attribute of solar system planetary atmospheres and are often heated by absorption of incident UV flux by photochemically produced species. Hubeny et al. (2003) and Fortney et al. (2008), however, suggested that strong optical absorption by equilibrium gaseous atmospheric TiO and VO could provide the necessary energy source for at least some hot Jupiters. Fortney et al. in fact suggested that hot Jupiters might be spectroscopically classified on the basis of the presence or absence of these species into pM and pL spectral classes, analogously to ultracool dwarfs. However there are difficulties with this mechanism, most notably that TiO and VO may condense out into a refractory cloud layer relatively deeply in the atmosphere of even very hot giant planets. Guided by the prediction of Zahnle et al. (2009) that sulfur photochemistry will produce copious S2 in hot Jupiter atmospheres, we explore the heating potential of this and other photochemical species. We find that sulfur products, in at least some cases, may provide an important component of the stratospheric energy budget. This prediction may be tested by UV transit spectroscopy.

  19. Institutional constraints on alternative water for energy: a guidebook for regional assessments

    SciTech Connect

    Not Available

    1980-11-01

    Basic information is presented about the legal, political, and social constraints faced by energy developers in the acquisition of water from underground, irrigation return flow, municipal waste, and saline sources. It is a guide to those institutional constraints which are general and pronounced enough to be important for regional assessments. First, attention was focused on the acquisition phase of the water use cycle. Second, constraints were analyzed primarily from a regional, rather than state-by-state, perspective. Emphasis was placed generally on the West - particularly the synfuel-rich Rocky Mountain states, the East, and Mid-West, in that order. Alaska and Hawaii were not surveyed. Third, the study focuses on the constraints associated with groundwater, municipal waste, irrigation return flow, and sea water, in that order. The phrase, institutional constraints, as used in the study, means legal, social, economic, and political restrictions, requirements, circumstances, or conditions that must be anticipated or responded to in order to acquire water for energy development. The study focuses primarily on legal constraints and secondarily on political constraints, because they tend to encompass or reflect other forms of institutional constraints.

  20. French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products.

    PubMed

    Jard, G; Marfaing, H; Carrère, H; Delgenes, J P; Steyer, J P; Dumas, C

    2013-09-01

    Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS).