Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng
2015-05-01
Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.
Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; Orem, William H.; Cunningham, Alfred B.; Ramsay, Bradley D.; Fields, Matthew W.
2017-01-01
Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).
Application of a weak magnetic field to improve microbial fuel cell performance.
Tong, Zhong-Hua; Yu, Han-Qing; Li, Wen-Wei; Wang, Yun-Kun; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping
2015-12-01
Microbial fuel cells (MFCs) have emerged as a promising technology for wastewater treatment with concomitant energy production but the performance is usually limited by low microbial activities. This has spurred intensive research interest for microbial enhancement. This study demonstrated an interesting stimulation effect of a static magnetic field (MF) on sludge-inoculated MFCs and explored into the mechanisms. The implementation of a 100-mT MF accelerated the reactor startup and led to increased electricity generation. Under the MF exposure, the activation loss of the MFC was decreased, but there was no increased secretion of redox mediators. Thus, the MF effect was mainly due to enhanced bioelectrochemical activities of anodic microorganisms, which are likely attributed to the oxidative stress and magnetohydrodynamic effects under an MF exposure. This work implies that weak MF may be applied as a simple and effective approach to stimulate microbial activities for various bioelectrochemical energy production and decontamination applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew
Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less
Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; ...
2017-01-05
Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had onlymore » 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO 2).« less
Cullen, Laurence G; Tilston, Emma L; Mitchell, Geoff R; Collins, Chris D; Shaw, Liz J
2011-03-01
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g⁻¹ soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered. Copyright © 2010 Elsevier Ltd. All rights reserved.
Carbon mineralization in acidic, xeric forest soils: induction of new activities.
Tate, R L
1985-08-01
Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon.
Carbon Mineralization in Acidic, Xeric Forest Soils: Induction of New Activities †
Tate, Robert L.
1985-01-01
Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of 14C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon. PMID:16346862
Caesar-Tonthat, The Can; Espeland, Erin; Caesar, Anthony J; Sainju, Upendra M; Lartey, Robert T; Gaskin, John F
2013-07-01
Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but little is known about the effects of these fungi on soil aggregation and the microbial community structure, particularly the communities that can bind soil particles. We studied three concentric zones of Agaricus lilaceps fairy rings in Eastern Montana that stimulate western wheatgrass (Pascopyrum smithii): outside the ring (OUT), inside the ring (IN), and stimulated zone adjacent to the fungal fruiting bodies (SZ) to determine (1) soil aggregate proportion and stability, (2) the microbial community composition and the N-acetyl-β-D-glucosaminidase activity associated with bulk soil at 0-15 cm depth, (3) the predominant culturable bacterial communities that can bind to soil adhering to wheatgrass roots, and (4) the stimulation of wheatgrass production. In bulk soil, macroaggregates (4.75-2.00 and 2.00-0.25 mm) and aggregate stability increased in SZ compared to IN and OUT. The high ratio of fungal to bacteria (fatty acid methyl ester) and N-acetyl-β-D-glucosaminidase activity in SZ compared to IN and OUT suggest high fungal biomass. A soil sedimentation assay performed on the predominant isolates from root-adhering soil indicated more soil-binding bacteria in SZ than IN and OUT; Pseudomonas fluorescens and Stenotrophomonas maltophilia isolates predominated in SZ, whereas Bacillus spp. isolates predominated in IN and OUT. This study suggests that growth stimulation of wheatgrass in A. lilaceps fairy rings may be attributed to the activity of the fungus by enhancing soil aggregation of bulk soil at 0-15 cm depth and influencing the amount and functionality of specific predominant microbial communities in the wheatgrass root-adhering soil.
Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.
2015-01-01
Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research is needed to understand what fraction of coal is available for biodegradation, and methods need to be developed to determine the extent of in-situ coal biodegradation by MECoM processes for monitoring changes to coal quality. Questions also remain about how well field-scale pilot tests will scale to commercial production, how often amendments will need to be added to maintain new methane generation, and how well MECoM strategies transfer between coal basins with different formation water geochemistries and coal ranks. Addressing these knowledge gaps will be key in determining the feasibility and commercial viability of MECoM technology.
Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex
Kubo, Yusuke; Hoshino, Tatsuhiko; Sakai, Sanae; Arnold, Gail L.; Case, David H.; Lever, Mark A.; Morita, Sumito; Nakamura, Ko-ichi
2018-01-01
Microbial life inhabiting subseafloor sediments plays an important role in Earth’s carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm−3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated. PMID:29928689
Chemical dispersants can suppress the activity of natural oil-degrading microorganisms
Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y.; Perkins, Matthew J.; Field, Jennifer; Sogin, Mitchell L.; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M.; Joye, Samantha B.
2015-01-01
During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates. PMID:26553985
Microbial activity in Alaskan taiga soils contaminated by crude oil in 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroe, E.M.; Lindstrom, J.E.; Brown, E.J.
1995-12-31
Biodegradation, often measured via microbial activity, includes destruction of environmental pollutants by living microorganisms and is dependent upon many physical and chemical factors. Effects of mineral nutrients and organic matter on biodegradation of Prudhoe Bay crude oil were investigated at a nineteen-year-old oil spill site in Alaskan taiga. Microcosms of two different soil types from the spill site; one undeveloped soil with forest litter and detritus (O horizon) and one more developed with lower organic content (A horizon), were treated with various nitrogen and phosphorus amendments, and incubated for up to six weeks. Each microcosm was sampled periodically and assayedmore » for hydrocarbon mineralization potential using radiorespirometry, for total carbon dioxide respired using gas chromatography, and for numbers of hydrocarbon-degrading bacteria and heterotrophic bacteria using most probable number counting techniques. Organic matter in the O horizon soil along with combinations of mineral nutrients were found to stimulate microbial activity. No combination of mineral nutrient additions to the A horizon soil stimulated any of the parameters above those measured in control microcosms. The results of this study indicate that adding mineral nutrients and tilling the O horizon into the A horizon of subarctic soils contaminated with crude oil, would stimulate microbial activity, and therefore the biodegradation potential, ultimately increasing the rate of destruction of crude oil in these soils.« less
Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang
2012-01-01
Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905
NASA Astrophysics Data System (ADS)
Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov
2015-04-01
Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro
Cai, Zhiqiang; Li, Shanshan; Zhang, Wenjie; Ma, Jiangtao; Wang, Jing; Cai, Jinyan; Yang, Guanghua
2015-03-01
Enzyme activity and microbial population in soils have important roles in keeping soil fertility. ZJ0273 is a novel pyrimidynyloxybenzoic-based herbicide, which was recently developed in China. The effect of ZJ0273 on soil enzyme activity and microbial population in two different soils was investigated in this study for the first time. The protease activity was significantly inhibited by ZJ0273 and this inhibiting effect gradually weakened after 60-day incubation. The results also showed that ZJ0273 had different stimulating effects on the activities of dehydrogenase, urease, and catalase. Dehydrogenase was consistently stimulated by all the applied concentrations of ZJ0273. The stimulating effect on urease weakened after 60-day incubation. Catalase activity was subject to variations during the period of the experiments. The results of microbial population showed that the number of bacteria and actinomycetes increased in ZJ0273-treated soil compared with the control after 20 days of incubation, while fungal number decreased after only 10 days of incubation in soils. DT50 (half-life value) and k (degradation rate constant) of ZJ0273 in S1 (marine-fluvigenic yellow loamy soil) and S2 (Huangshi soil) were found 69.31 and 49.50 days and 0.010 and 0.014 day(-1), respectively.
Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan
2015-10-30
This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of (14)C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of (14)C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of (14)C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of (14)C-catechol and microbial community in soil.
Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan
2015-01-01
This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil. PMID:26515132
Zhang, Xinxu; Fang, Jing; Bach, Wolfgang; Edwards, Katrina J.; Orcutt, Beth N.; Wang, Fengping
2016-01-01
Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement. PMID:27199959
NASA Astrophysics Data System (ADS)
Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland
2016-04-01
The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.
Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson
2015-06-01
Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.
2009-08-05
Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1more » Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.« less
Using N-Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies.
USDA-ARS?s Scientific Manuscript database
Typically, respiratory redox reactions are the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because electron (e-) donor availability generally restricts subsurface microbial activity. Thus, microbial growth and respiration can be greatly stimulated by the a...
NASA Astrophysics Data System (ADS)
Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew
2016-04-01
Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).
Biomass of active microorganisms is not limited only by available carbon in the rhizosphere
NASA Astrophysics Data System (ADS)
Gilmullina, Aliia
2017-04-01
Microbial activity is generally limited by carbon (C) availability. The easily available substrate release by roots creates so called "hotspots" in the rhizosphere that drives microbial activity removing C limitation. We simulated a gradient of root exudates by glucose addition at different concentrations to stimulate the activation of microbial biomass (MB). Glucose was added at the rates lower than MB (5, 10, 25 and 50%) and at the rates similar or higher than MB (100, 150, 200, 250, 300 and 400%). During incubation CO2 efflux was measured by conductometry, the size of active MB and specific growth rate were estimated by substrate-induced growth response method. We tested a hypothesis that glucose addition exceeding 100% MB is able to activate major fraction of soil microbial community. Addition of glucose at concentrations higher than 5% decreased specific growth rate, demonstrating the shift of microbial community from r-strategy to K-strategy. The percentage of active MB grew up by the increase of glucose concentration. The treatment with glucose at 100% presented a dramatic shift in the activation of MB up to 14%. Contrary to our hypothesis, further increase in glucose rate caused moderate stimulation of active MB up to 22% of total MB. Furthermore, glucose addition above 200% did not increase the fraction of active biomass indicating glucose oversaturation and possible limitation by other nutrients. The results suggest that despite the fact that C is the most important limitation factor, limitless C supply is not able to activate MB up to 100%. Thus, if the rhizosphere is limited by nutrients, the fraction of active biomass remains at low level despite an excess of available C.
Melo, Justine A.; Ruvkun, Gary
2012-01-01
Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong
2015-06-15
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.
2015-01-01
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; ...
2015-04-10
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less
2008-03-26
Response after Encountering Streptococcus Pneumoniae" Brian Schae:5 ,Ph.D. Department of Microbi ogy & Immunology Committee Chairperson Masters...presenting cells (APCs), such as macrophages (M ) and dendritic cells (DC) recognize microbial surface components via cell surface receptors (i.e...stimulating factor (GM-CSF). TH1 cells are able to secrete IFN- , which is important in activating M to produce mediators important for microbial
Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.
Stegen, James C; Johnson, Tim; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Fansler, Sarah J; Graham, Emily B; Kennedy, David W; Resch, Charles T; Tfaily, Malak; Zachara, John
2018-02-08
The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.
Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He
2014-01-01
Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357
NASA Astrophysics Data System (ADS)
Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He
2014-11-01
Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.
NASA Astrophysics Data System (ADS)
Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.
2012-12-01
Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy source stimulating changes in aquifer microbial communities immediately following CO2 leakage.
Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge
2016-12-15
Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.
The Influence of Nitrogen on the Biological Properties of Soil Contaminated with Zinc.
Strachel, Rafał; Wyszkowska, Jadwiga; Baćmaga, Małgorzata
2017-03-01
This study analyzed the relationship between nitrogen fertilization and the biological properties of soil contaminated with zinc. The influence of various concentrations of zinc and nitrogen on the microbiological and biochemical activity of soil was investigated. In a laboratory experiment, loamy sand with pH KCl 5.6 was contaminated with zinc (ZnCl 2 ) and fertilized with urea as a source of nitrogen. The activity of acid phosphatase, alkaline phosphatase, urease and β-glucosidase, and microbial counts were determined in soil samples after 2 and 20 weeks of incubation. Zinc generally stimulated hydrolase activity, but the highest zinc dose (1250 mg kg -1 ) led to the inhibition of hydrolases. Nitrogen was not highly effective in neutralizing zinc's negative effect on enzyme activity, but it stimulated the growth of soil-dwelling microorganisms. The changes in soil acidity observed after the addition of urea modified the structure of microbial communities.
Soil warming alters microbial substrate use in alpine soils.
Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W
2014-04-01
Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. © 2013 John Wiley & Sons Ltd.
Mnif, Ines; Ellouze-Chaabouni, Semia; Ayedi, Younes; Ghribi, Dhouha
2014-08-01
This study investigated the efficiency of hydrocarbon utilization by B. subtilis SPB1, a biosurfactant-producing strain. Microbial growth, biosurfactant production, and hydrocarbon biodegradation were studied in a liquid mineral medium, supplemented with 2% hydrocarbons in both the absence and in the presence of 0.1% yeast extract. Preliminary studies showed that maximum growth was registered with a 2% hydrocarbon solution. Results showed that the addition of yeast extract greatly stimulated microbial growth and thus induced biosurfactant production. Furthermore, biodegradation efficiencies were higher in the presence of yeast extract. Kerosene fuel was more recalcitrant to biodegradation than diesel oil. This study's findings suggest that the addition of an organic nitrogen source stimulates tension-active agents' production, which emulsifies hydrophobic compounds and enhances their biodegradation and microbial growth.
Cadena, Santiago; García-Maldonado, José Q; López-Lozano, Nguyen E; Cervantes, Francisco J
2018-05-01
Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H 2 S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.
Chen, Bor-Yann; Liao, Jia-Hui; Hsu, An-Wei; Tsai, Po-Wei; Hsueh, Chung-Chuan
2018-05-01
This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Human iNKT cells induce IL-1β secretion by peripheral blood monocytes via a P2X7-independent pathway
Felley, Laura E.; Sharma, Akshat; Theisen, Erin; Romero-Masters, James C.; Sauer, John-Demian; Gumperz, Jenny E.
2016-01-01
The cytokine IL-1β plays a central role in inflammatory responses that are initiated by microbial challenges, as well as in those that are due to endogenous processes (often called “sterile” inflammation). IL-1β secretion that occurs independently of microbial stimulation is typically associated with the presence of endogenous alarmins, such as extracellular ATP (an indicator of cytopathic damage). Here we show that IL-2 activated human iNKT cells stimulate the secretion of IL-1β protein by human peripheral blood monocytes in a manner that requires neither the presence of microbial compounds nor signaling through the extracellular ATP receptor P2X7. Monocyte IL-1β production was specifically induced by iNKT cells, since similarly activated polyclonal autologous T cells did not have this effect. Secretion of IL-1β protein occurred rapidly (within 3-4 hours), and required cell contact between the iNKT cells and monocytes. Similar to IL-1β production induced by TLR stimulation, the iNKT-induced pathway appeared to entail a two-step process involving NFκB signaling and IL1B gene transcription, as well as assembly of the NLRP3 inflammasome and activation of caspase 1. However, in contrast to the classical inflammasome-mediated pathway of IL-1β production, activation of monocytes via P2X7 was dispensable for iNKT-induced IL-1β secretion and potassium efflux was not required. Moreover, the iNKT-induced effect involved caspase 8 activity, yet induced little monocyte death. These results suggest that IL-2 activated human iNKT cells induce monocytes to produce IL-1β through a distinctive pathway that does not require the presence of microbial danger signals or alarmins associated with cytopathic damage. PMID:27534556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nostrand, J.D. Van; Wu, L.; Wu, W.M.
2010-08-15
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less
Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong
2011-01-01
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771
Rodrigo Quejigo, Jose; Dörfler, Ulrike; Schroll, Reiner; Esteve-Núñez, Abraham
2016-05-01
The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Microbial electroremediating cells (MERCs) consist in a variety of bioelectrochemical devices that aim to overcome electron acceptor limitation and maximize metabolic oxidation with the purpose of enhancing the biodegradation of a pollutant in the environment. The objective of this work was to use MERCs principles for stimulating soil bacteria to achieve the complete biodegradation of the herbicide (14) C-isoproturon (IPU) to (14) CO(2) in soils. Our study concludes that using electrodes at a positive potential [+600 mV (versus Ag/AgCl)] enhanced the mineralization by 20-fold respect the electrode-free control. We also report an overall profile of the (14) C-IPU metabolites and a (14) C mass balance in response to the different treatments. The remarkable impact of electrodes on the microbial activity of natural communities suggests a promising future for this emerging environmental technology that we propose to name bioelectroventing. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Limited recovery of soil microbial activity after transient exposure to gasoline vapors.
Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K
2016-09-01
During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E
2014-01-01
Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less
Vivanco, Lucía; Rascovan, Nicolás; Austin, Amy T
2018-01-01
Plant-microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant-microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species' effects on the litter fungal community. Together, our results suggest that plant-microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.
Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean.
Romera-Castillo, Cristina; Pinto, Maria; Langer, Teresa M; Álvarez-Salgado, Xosé Antón; Herndl, Gerhard J
2018-04-12
Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of heterotrophic microbes. Our estimates indicate that globally up to 23,600 metric tons of DOC are leaching from marine plastics annually. About 60% of it is available to microbial utilization in less than 5 days. If exposed to solar radiation, however, this DOC becomes less labile. Thus, plastic pollution of marine surface waters likely alters the composition and activity of the base of the marine food webs. It is predicted that plastic waste entering the ocean will increase by a factor of ten within the next decade, resulting in an increase in plastic-derived DOC that might have unaccounted consequences for marine microbes and for the ocean system.
Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Johnson, Tim; Fredrickson, James K.
The hyporheic corridor (HC) is a critical component of riverine ecosystems that encompasses the river-11 groundwater continuum. The mixing of groundwater (GW) with river water (RW) in the HC can 12 stimulate biogeochemical activity, and here we (i) propose a novel thermodynamic mechanism 13 underlying this phenomenon, and (ii) reveal broader impacts on dissolved organic carbon (DOC) 14 biogeochemistry and microbial ecology. We show that thermodynamically-favorable DOC 15 accumulates in GW despite decreases in DOC concentration along subsurface flow paths, and that RW 16 contains less thermodynamically-favorable DOC, but at higher concentrations. This indicates that DOC 17 in GW ismore » protected from microbial oxidation by low total energy contained within the DOC pool, while 18 RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-19 RW mixing overcomes these protection mechanisms and stimulates respiration. Mixing models 20 coupled with time-lapse electrical resistance tomography revealed that stimulated respiration leads 21 to tipping points in spatiotemporal dynamics of DOC across the HC. Further, shifts in DOC speciation 22 and biochemical pathways were associated with shifts in microbiome composition, highlighting 23 feedbacks among hydrology, DOC biochemistry, and microbial ecology. These results reveal that 24 previously unrecognized thermodynamic-based mechanisms regulated by GW-RW mixing can strongly 25 influence biogeochemical and microbial dynamics in riverine ecosystems.« less
Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology
Stegen, James C.; Johnson, Tim; Fredrickson, James K.; ...
2018-02-08
The hyporheic corridor (HC) is a critical component of riverine ecosystems that encompasses the river-11 groundwater continuum. The mixing of groundwater (GW) with river water (RW) in the HC can 12 stimulate biogeochemical activity, and here we (i) propose a novel thermodynamic mechanism 13 underlying this phenomenon, and (ii) reveal broader impacts on dissolved organic carbon (DOC) 14 biogeochemistry and microbial ecology. We show that thermodynamically-favorable DOC 15 accumulates in GW despite decreases in DOC concentration along subsurface flow paths, and that RW 16 contains less thermodynamically-favorable DOC, but at higher concentrations. This indicates that DOC 17 in GW ismore » protected from microbial oxidation by low total energy contained within the DOC pool, while 18 RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-19 RW mixing overcomes these protection mechanisms and stimulates respiration. Mixing models 20 coupled with time-lapse electrical resistance tomography revealed that stimulated respiration leads 21 to tipping points in spatiotemporal dynamics of DOC across the HC. Further, shifts in DOC speciation 22 and biochemical pathways were associated with shifts in microbiome composition, highlighting 23 feedbacks among hydrology, DOC biochemistry, and microbial ecology. These results reveal that 24 previously unrecognized thermodynamic-based mechanisms regulated by GW-RW mixing can strongly 25 influence biogeochemical and microbial dynamics in riverine ecosystems.« less
Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B
2011-06-06
Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.
Microbial expression profiles in the rhizosphere of willows depend on soil contamination
Yergeau, Etienne; Sanschagrin, Sylvie; Maynard, Christine; St-Arnaud, Marc; Greer, Charles W
2014-01-01
The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. PMID:24067257
Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction
Lovley, D.R.; Woodward, J.C.
1996-01-01
The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.
Kleindienst, Sara; Paul, John H; Joye, Samantha B
2015-06-01
Dispersants are globally and routinely applied as an emergency response to oil spills in marine ecosystems with the goal of chemically enhancing the dissolution of oil into water, which is assumed to stimulate microbially mediated oil biodegradation. However, little is known about how dispersants affect the composition of microbial communities or their biodegradation activities. The published findings are controversial, probably owing to variations in laboratory methods, the selected model organisms and the chemistry of different dispersant-oil mixtures. Here, we argue that an in-depth assessment of the impacts of dispersants on microorganisms is needed to evaluate the planning and use of dispersants during future responses to oil spills.
Jacquier, V; Combes, S; Oswald, I P; Rogel-Gaillard, C; Gidenne, T
2014-12-01
This study aimed at comparing various diets predicted to induce different stimulations of the cecal microbial activity of the young rabbit fed ad libitum from 16 to 70 d of age: i) a diet enriched with rapidly fermentable fiber expected to stimulate the cecal microbial activity (RFF group); ii) a control diet with a standard composition (C group); iii) and the same control diet with tiamulin and apramycin antibiotics, expected to inhibit the microbial activity (C+AB group). A total of 398 rabbits were used from 42 litters and weaned at 28 d of age. An in vivo digestibility trial was performed on 36 rabbits of 42 to 46 d of age housed in individual metabolic cages. The feed intake and growth rates were lower in the RFF group compared with the C+AB group (-15% in ADFI and -11% in ADG, P<0.001), with a lower weight of -183 g at 70 d (P<0.001). No significant difference was found on ADG and final BW between the RFF and the C groups, but the RFF diet allowed a better G:F ratio at postweaning (P<0.01). The digestion of soluble fiber (total dietary fiber minus NDF) was greater for the RFF group. The C+AB diet had a positive effect on the postweaning morbidity rate (P<0.05) but did not affect the mortality rate and the health risk index (morbidity and mortality). Conversely, the RFF diet appeared to reduce the mortality rate compared with the C+AB diet, especially before 41 d of age. Concerning the cecal microbial activity, a supply of RFF in the diet increased the cecal VFA concentrations (+28% vs. C+AB and +22% vs. C, P<0.001) and lowered the pH. The VFA pattern was affected at 45 and 60 d, with a dominance of acetate in the RFF group (+4% vs. C+AB and C groups, P<0.001) instead of butyrate in the C+AB and C groups (-3.6% and -5% vs. C+AB and C, respectively, P<0.001). Antibiotics addition (C+AB group) reduced the VFA concentration, but only after weaning (-25% at 45 d of age) without changing the fermentation pattern. In conclusion, early intake of RFF in young rabbits stimulated the cecal microbial activity, and reduced the voluntary feed intake, leading to a reduced G:F ratio.
Effects of Jet Fuel Spills on the Microbial Community of Soil †
Song, Hong-Gyu; Bartha, Richard
1990-01-01
Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138
Fanin, Nicolas; Barantal, Sandra; Fromin, Nathalie; Schimann, Heidy; Schevin, Patrick; Hättenschwiler, Stephan
2012-01-01
Human-caused alterations of the carbon and nutrient cycles are expected to impact tropical ecosystems in the near future. Here we evaluated how a combined change in carbon (C), nitrogen (N) and phosphorus (P) availability affects soil and litter microbial respiration and litter decomposition in an undisturbed Amazonian rainforest in French Guiana. In a fully factorial C (as cellulose), N (as urea), and P (as phosphate) fertilization experiment we analyzed a total of 540 litterbag-soil pairs after a 158-day exposure in the field. Rates of substrate-induced respiration (SIR) measured in litter and litter mass loss were similarly affected by fertilization showing the strongest stimulation when N and P were added simultaneously. The stimulating NP effect on litter SIR increased considerably with increasing initial dissolved organic carbon (DOC) concentrations in litter, suggesting that the combined availability of N, P, and a labile C source has a particularly strong effect on microbial activity. Cellulose fertilization, however, did not further stimulate the NP effect. In contrast to litter SIR and litter mass loss, soil SIR was reduced with N fertilization and showed only a positive effect in response to P fertilization that was further enhanced with additional C fertilization. Our data suggest that increased nutrient enrichment in the studied Amazonian rainforest can considerably change microbial activity and litter decomposition, and that these effects differ between the litter layer and the underlying soil. Any resulting change in relative C and nutrient fluxes between the litter layer and the soil can have important consequences for biogeochemical cycles in tropical forest ecosystems. PMID:23272052
Mayor, Daniel J; Sanders, Richard; Giering, Sarah L C; Anderson, Thomas R
2014-12-01
Sinking organic particles transfer ∼10 gigatonnes of carbon into the deep ocean each year, keeping the atmospheric CO2 concentration significantly lower than would otherwise be the case. The exact size of this effect is strongly influenced by biological activity in the ocean's twilight zone (∼50-1,000 m beneath the surface). Recent work suggests that the resident zooplankton fragment, rather than ingest, the majority of encountered organic particles, thereby stimulating bacterial proliferation and the deep-ocean microbial food web. Here we speculate that this apparently counterintuitive behaviour is an example of 'microbial gardening', a strategy that exploits the enzymatic and biosynthetic capabilities of microorganisms to facilitate the 'gardener's' access to a suite of otherwise unavailable compounds that are essential for metazoan life. We demonstrate the potential gains that zooplankton stand to make from microbial gardening using a simple steady state model, and we suggest avenues for future research. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Drake, J. E.; Darby, B. A.; Giasson, M.-A.; Kramer, M. A.; Phillips, R. P.; Finzi, A. C.
2012-06-01
Healthy plant roots release a wide range of chemicals into soils. This process, termed root exudation, is thought to increase the activity of microbes and the exo-enzymes they synthesize, leading to accelerated rates of carbon (C) mineralization and nutrient cycling in rhizosphere soils relative to bulk soils. The causal role of exudation, however, is difficult to isolate with in-situ observations, given the complex nature of the rhizosphere environment. We investigated the potential effects of root exudation on microbial and exo-enzyme activity using a theoretical model of decomposition and a field experiment, with a specific focus on the stoichiometric constraint of nitrogen (N) availability. The field experiment isolated the effect of exudation by pumping solutions of exudate mimics through microlysimeter "root simulators" into intact forest soils over two 50-day periods. Using a combined model-experiment approach, we tested two hypotheses: (1) exudation alone is sufficient to stimulate microbial and exo-enzyme activity in rhizosphere soils, and (2) microbial response to C-exudates (carbohydrates and organic acids) is constrained by N-limitation. Experimental delivery of exudate mimics containing C and N significantly increased microbial respiration, microbial biomass, and the activity of exo-enzymes that decompose labile components of soil organic matter (SOM, e.g., cellulose, amino sugars), while decreasing the activity of exo-enzymes that degrade recalcitrant SOM (e.g., polyphenols, lignin). However, delivery of C-only exudates had no effect on microbial biomass or overall exo-enzyme activity, and only increased microbial respiration. The theoretical decomposition model produced complementary results; the modeled microbial response to C-only exudates was constrained by limited N supply to support the synthesis of N-rich microbial biomass and exo-enzymes, while exuding C and N together elicited an increase in modeled microbial biomass, exo-enzyme activity, and decomposition. Thus, hypothesis (2) was supported, while hypothesis (1) was only supported when C and N compounds were exuded together. This study supports a cause-and-effect relationship between root exudation and enhanced microbial activity, and suggests that exudate stoichiometry is an important and underappreciated driver of microbial activity in rhizosphere soils.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-05-01
The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
Rojas-Avelizapa, Norma; Olvera-Barrera, Erika; Fernández-Linares, Luis
2005-01-01
The objective of this study was to determine the feasibility of bioremediation as a treatment option for an aged and chronically polluted drilling waste soil located at the Southeast of Mexico. The polluted drilling-waste site with a mean total petroleum hydrocarbon concentration (TPHs) of 39,397 +/- 858 mg/kg was treated with one dose of a nutrient-surfactant commercial product at 40 mg/kg soil and two doses of H2O2 (50 and 100 mg H2O2/kg soil). In this study, the parameters that were monitored include soil respiration, heterotrophic and hydrocarbon-degrading bacteria as biological indicators, catalase and dehydrogenase activities, and TPHs degradation as decontamination parameters. The results demonstrated that the microbial activities can be stimulated in a polluted drilling-waste site by the addition of H2O2 and commercial product, thereby resulting in increasing TPHs degradation. These aspects must be taken into account when biodegradation studies involve the application of a commercial product.
Colonization-Induced Host-Gut Microbial Metabolic Interaction
Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.
2011-01-01
The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910
Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria
2016-01-01
Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468
Masyagina, O V; Tokareva, I V; Prokushkin, A S
2016-12-15
Periodical ground fires of high frequency in permafrost forest ecosystems of Siberia (Russian Federation) are essential factors determining quantitative and qualitative parameters of permafrost soil organic matter. Specific changes in physical and chemical parameters and microbial activity of permafrost soil mineral horizons of northern taiga larch stands were revealed after heating at high temperatures (150-500°C) used for imitation of different burn intensities. Burning at 150-200°C resulted in decreasing of soil pH, whilst heating at 300-500°C caused increase of pH compare to unheated soils. Water-soluble organic carbon concentration in permafrost soils heated at 150-200°C was much higher than that of unheated soils. All these changes determined soil microbial activity in heated soils. In particular, in soils heated at 300-500°C there was momentary stimulating effect on substrate-induced respiration registered and on basal respiration values in soils burned at 150°C and 300-400°C. Four-month laboratory incubation of permafrost soils heated at different temperatures showed stimulation of microbial activity in first several days after inoculation due to high substrate availability after heating. Then soon after that soil microbial community started to be depleted on substrate because of decreasing water-soluble organic carbon, C and N content and it continued to the end of incubation. Copyright © 2016 Elsevier B.V. All rights reserved.
Water from air: An overlooked source of moisture in arid and semiarid regions
McHugh, Theresa; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert
2015-01-01
Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.
Akob, Denise M.; Kerkhof, Lee; Küsel, Kirsten; Watson, David B.; Palumbo, Anthony V.; Kostka, Joel E.
2011-01-01
Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [13C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions. PMID:21948831
Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections.
Tam, Vincent C
2013-10-31
Bioactive lipid mediators play crucial roles in promoting the induction and resolution of inflammation. Eicosanoids and other related unsaturated fatty acids have long been known to induce inflammation. These signaling molecules can modulate the circulatory system and stimulate immune cell infiltration into the site of infection. Recently, DHA- and EPA-derived metabolites have been discovered to promote the resolution of inflammation, an active process. Not only do these molecules stop the further infiltration of immune cells, they prompt non-phlogistic phagocytosis of apoptotic neutrophils, stimulating the tissue to return to homeostasis. After the rapid release of lipid precursors from the plasma membrane upon stimulation, families of enzymes in a complex network metabolize them to produce a large array of lipid metabolites. With current advances in mass spectrometry, the entire lipidome can be accurately quantified to assess the immune response upon microbial infection. In this review, we discuss the various lipid metabolism pathways in the context of the immune response to microbial pathogens, as well as their complex network interactions. With the advancement of mass spectrometry, these approaches have also been used to characterize the lipid mediator response of macrophages and neutrophils upon immune stimulation in vitro. Lastly, we describe the recent efforts to apply systems biology approaches to dissect the role of lipid mediators during bacterial and viral infections in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.
SULFATE-REDUCING BACTERIA IN THE SEAGRASS RHIZOSPHERE
Seagrasses are rooted in anoxic sediments that support high levels of microbial activity including utilization of sulfate as a terminal electron acceptor which is reduced to sulfide. Sulfate reduction in seagrass bed sediments is stimulated by input of organic carbon through the ...
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
Drought-induced carbon loss in peatlands
NASA Astrophysics Data System (ADS)
Fenner, Nathalie; Freeman, Chris
2011-12-01
Peatlands store vast amounts of organic carbon, amounting to approximately 455 Pg. Carbon builds up in these water-saturated environments owing to the presence of phenolic compounds--which inhibit microbial activity and therefore prevent the breakdown of organic matter. Anoxic conditions limit the activity of phenol oxidase, the enzyme responsible for the breakdown of phenolic compounds. Droughts introduce oxygen into these systems, and the frequency of these events is rising. Here, we combine in vitro manipulations, mesocosm experiments and field observations to examine the impact of drought on peatland carbon loss. We show that drought stimulates bacterial growth and phenol oxidase activity, resulting in a reduction in the concentration of phenolic compounds in peat. This further stimulates microbial growth, causing the breakdown of organic matter and the release of carbon dioxide in a biogeochemical cascade. We further show that re-wetting the peat accelerates carbon losses to the atmosphere and receiving waters, owing to drought-induced increases in nutrient and labile carbon levels, which raise pH and stimulate anaerobic decomposition. We suggest that severe drought, and subsequent re-wetting, could destabilize peatland carbon stocks; understanding this process could aid understanding of interactions between peatlands and other environmental trends, and lead to the development of strategies for increasing carbon stocks.
Feng, Yan; Li, Xing; Song, Ting; Yu, Yanzhen; Qi, Jingyao
2017-11-01
Improving the stimulation effect of electric current density (ECD) on microbial community is critical in designing and operating TDE-BAF. This study investigated the effect of ECD at 0.00, 4.08, 6.12, 12.20, 14.25, 16.30 and 20.20A·m -2 on the removal performance, diversity and structure of microbial community in TDE-BAF. Results indicated that the ECD of 14.25A·m -2 exhibited the highest COD, TOC and NH 4 + -N average removal rates with 93.33%, 91.26% and 93.87%, respectively; Under high ECD, especially exceeding 14.25A·m -2 , the inhibition of growth and activity because of plasmatorrhexis was in agreement with the sharp biomass decline; there was no significant relation between community richness and diversity and removal efficiency below optimum ECD, while above optimal ECD, it was just the opposite; Microbial communities mainly including Hydrogenophaga, Saprospiraceae_uncultured, Delftia, Enterobacter, Pseudomonas, Pseudoxanthomonas, and Nitrosospira and physicochemical properties well explained the excellent removal performance at the optimum ECD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Young, Erica B; Sielicki, Jessica; Grothjan, Jacob J
2018-04-20
Carnivorous pitcher plants Sarracenia purpurea host diverse eukaryotic and bacterial communities which aid in insect prey digestion, but little is known about the functional processes mediated by the microbial communities. This study aimed to connect pitcher community diversity with functional nutrient transformation processes, identifying bacterial taxa, and measuring regulation of hydrolytic enzyme activity in response to prey and alternative nutrient sources. Genetic analysis identified diverse bacterial taxa known to produce hydrolytic enzyme activities. Chitinase, protease, and phosphatase activities were measured using fluorometric assays. Enzyme activity in field pitchers was positively correlated with bacterial abundance, and activity was suppressed by antibiotics suggesting predominantly bacterial sources of chitinase and protease activity. Fungi, algae, and rotifers observed could also contribute enzyme activity, but fresh insect prey released minimal chitinase activity. Activity of chitinase and proteases was upregulated in response to insect additions, and phosphatase activity was suppressed by phosphate additions. Particulate organic P in prey was broken down, appearing as increasing dissolved organic and inorganic P pools within 14 days. Chitinase and protease were not significantly suppressed by availability of dissolved organic substrates, though organic C and N stimulated bacterial growth, resulting in elevated enzyme activity. This comprehensive field and experimental study show that pitcher plant microbial communities dynamically regulate hydrolytic enzyme activity, to digest prey nutrients to simpler forms, mediating biogeochemical nutrient transformations and release of nutrients for microbial and host plant uptake.
Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi
2015-04-01
Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.
Sun, Xi; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Su, Benying; Liu, Tong; Zhang, Cheng; Gao, Chong; Shao, Yuting
2017-01-01
Ionic liquids (ILs) were considered as "green" solvents and have been used widely because of their excellent properties. But ILs are not as "green" as has been suggested, and the toxic effects of ILs on organisms have been shown in recent years. In the present study, the toxic effects of the IL 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF 4 ) on soil enzyme activity and soil microbial communities at three different concentrations (1.0, 5.0 and 10.0mg/kg) and a control treatment over 40 days of incubation time (sampled on days 10, 20, 30 and 40) were examined under laboratory conditions. The concentrations of [Omim]BF 4 in soils were detected by high performance liquid chromatography (HPLC) and the results indicated that [Omim]BF 4 were maintained stable in the soil during the exposure period. However, the enzyme activity results showed that urease activity was stimulated on day 20 and then decreased after 30 days of incubation. The activity of β-glucosidase was stimulated after 20 days of incubation in both treatment groups. Moreover, both dehydrogenase and acid phosphatase were inhibited at a high level (10.0mg/kg) only on day 20. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed that the soil microbial community structures were altered by [Omim]BF 4 and that the soil microbial diversity and evenness of high levels (5.0mg/kg and 10.0mg/kg) treatments were decreased. Moreover, the dominant structure of the microbial communities was not changed by [Omim]BF 4 . Furthermore, the abundance of the ammonia monooxygenase (amoA) genes of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was examined using real time polymerase chain reaction (RT-PCR). The results revealed that the copy numbers of the amoA-gene were decreased by [Omim]BF 4 with the 5.0 and 10.0mg/kg treatments. Based on the experiment, we concluded that high levels (5.0 and 10.0mg/kg) of [Omim]BF 4 could have significantly toxic effects on soil enzyme activities and the diversity of the microbial communities. Copyright © 2016 Elsevier Inc. All rights reserved.
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells
Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael
2015-01-01
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518
Effects of controlled gas environments in microbial enhancement of plant protein recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudgett, R.E.; Bajracharya, R.
Controlled gas environments were maintained by a novel aeration system in solid substrate fermentations for enhanced protein recovery from pressed alfalfa residues. High O/sub 2/ pressures stimulated biomass and enzyme production by an Aspergillus species, isolated from alfalfa, which produced cellulase and pectinase activities in growth-associated metabolism. High CO/sub 2/ pressures also stimulated enzyme production, but had less effect on biomass production, as established from the dissimilation of plant solids. Cellulase and pectinase activities were generally related to protein recoveries. Recoveries were greater than or equal to 50% higher than those obtained by mechanical extraction, with maximum recoveries of greatermore » than or equal to 70% of crude protein contents. Protein not recovered at high cellulase and pectinase activities were believed to be in structurally bound forms not amenable to recovery by nonproteolytic enzymes. Buffering at pH 8 and autoclaving of residues prior to fermentation had little effect on protein recoveries. Controlled gas environments are seen to offer an interesting potential for optimizing industrial fermentation processes for the production of microbial enzymes.« less
Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie
2012-08-01
Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.
Belowground microbial processes underpin forest productivity.
C.Y. Li; E. Strzelczyk
2002-01-01
Nitrogen-fixing bacteria associated with mycorrhizal fungi and mycorrhizas can be demonstrated with microaerophilic procedures. The chemical substrates in mycorrhizal fungi or mycorrhizas often stimulate the growth and nitrogenase activity of the associated N2 fixers. In addition, the associated N2 fixers are producers of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weimin; Carley, Jack M; Watson, David B
Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uraniummore » was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.« less
Peatland Microbial Communities and Decomposition Processes in the James Bay Lowlands, Canada
Preston, Michael D.; Smemo, Kurt A.; McLaughlin, James W.; Basiliko, Nathan
2012-01-01
Northern peatlands are a large repository of atmospheric carbon due to an imbalance between primary production by plants and microbial decomposition. The James Bay Lowlands (JBL) of northern Ontario are a large peatland-complex but remain relatively unstudied. Climate change models predict the region will experience warmer and drier conditions, potentially altering plant community composition, and shifting the region from a long-term carbon sink to a source. We collected a peat core from two geographically separated (ca. 200 km) ombrotrophic peatlands (Victor and Kinoje Bogs) and one minerotrophic peatland (Victor Fen) located near Victor Bog within the JBL. We characterized (i) archaeal, bacterial, and fungal community structure with terminal restriction fragment length polymorphism of ribosomal DNA, (ii) estimated microbial activity using community level physiological profiling and extracellular enzymes activities, and (iii) the aeration and temperature dependence of carbon mineralization at three depths (0–10, 50–60, and 100–110 cm) from each site. Similar dominant microbial taxa were observed at all three peatlands despite differences in nutrient content and substrate quality. In contrast, we observed differences in basal respiration, enzyme activity, and the magnitude of substrate utilization, which were all generally higher at Victor Fen and similar between the two bogs. However, there was no preferential mineralization of carbon substrates between the bogs and fens. Microbial community composition did not correlate with measures of microbial activity but pH was a strong predictor of activity across all sites and depths. Increased peat temperature and aeration stimulated CO2 production but this did not correlate with a change in enzyme activities. Potential microbial activity in the JBL appears to be influenced by the quality of the peat substrate and the presence of microbial inhibitors, which suggests the existing peat substrate will have a large influence on future JBL carbon dynamics. PMID:22393328
MICROBIAL ACTIVITIES FOR THE REMEDIATION OF MERCURY CONTAMINATION
Methylmercury (MeHg) accumulation by aquatic biota could be reduced by stimulating bacterial degradation of MeHg and the reduction of Hg(II) to volatile Hg to zero power. Reduction of Hg(II) affects MeHg production by substrate limitation. The potential of bacterial reduction of ...
NASA Astrophysics Data System (ADS)
Moore, Rachael; Ménez, Bénédicte; Stéphant, Sylvian; Dupraz, Sébastien; Ranchou-Peyruse, Magali; Ranchou-Peyruse, Anthony; Gérard, Emmanuelle
2017-04-01
Alteration in the ocean crust through fluid circulation is an ongoing process affecting the first kilometers and at low temperatures some alteration may be microbially mediated. Hydrothermal activity through the hard rock basement supports diverse microbial communities within the rock by providing nutrient and energy sources. Currently, the impact of basement hosted microbial communities on alteration is poorly understood. In order to identify and quantify the nature of microbially mediated alteration two reactive percolation experiments mimicking circulation of CO2 enriched ground water were performed at 35 °C and 30 bar for 21 days each. The experiments were performed using a crystalline basalt substrate from an earlier drilled deep Icelandic aquifer. One experiment was conducted on sterile rock while the other was conducted with the addition of a microbial inoculate derived from groundwater enrichment cultures obtained from the same aquifer. µCT on the experimental basaltic substrate before and after the reactive percolation experiment along with synchrotron radiation x-ray tomographic microscopy and the mineralogical characterization of resulting material allows for the comparative volumetric quantification of dissolution and precipitation. The unique design of this experiment allows for the identification of alteration which occurs solely abiotically and of microbially mediated alteration. Experimental results are compared to natural basaltic cores from Iceland retrieved following a large field CO2 injection experiment that stimulated microbial activity at depth.
LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O
2006-03-15
The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.
Shrubs stimulate heterotrophic respiration in arctic soils
NASA Astrophysics Data System (ADS)
Phillips, C. A.; Wurzburger, N.
2016-12-01
The response of arctic ecosystems to global change will have critical effects on future climate. Climate warming has already triggered the expansion of shrubs across tundra, raising questions about how shrubs will affect ecosystem carbon balance. Shrub litter quality and mycorrhizal symbionts may accelerate the activity of soil microorganisms that facilitate the release of large stores of soil carbon. We investigated how shrubs affect the activity of soil microorganisms by creating soil mesocosms from areas with and without shrub species as dominants of the plant community in arctic Alaska. We hypothesized that relative to their non-shrub counterparts, heterotrophic respiration of shrub soils would: (1) be greater, (2) demonstrate greater response to additions of shrub litter, and (3) be less nutrient limited. We created mesocosms with root-free soils at constant moisture and temperature, and quantified basal heterotrophic soil respiration rates, and the response of respiration to litter and nutrient inputs in a series of laboratory experiments inputs. (1) We found that the presence of shrubs generally produced higher rates of basal soil respiration in both horizons, suggesting that shrubs stimulate microbial activity. (2) Litter addition increased respiration across both horizons with no differences in response between shrub and non-shrub soils. (3) N additions did not increase heterotrophic respiration, but P and N+P additions induced a short respiratory pulse in all soils, suggesting mild P limitation. Collectively, these findings provide evidence that shrubs stimulate heterotrophic microbial activity to enhance carbon loss, but generate new questions about the mechanisms driving these patterns.
Evaluation of Physical Strength of Wheat Straw Under Different Fertilizer Treatments and Rates
USDA-ARS?s Scientific Manuscript database
Application of nitrogen (N) fertilizer as urea ammonium nitrate and N plus sulfur fertilizer as ammonium thiosulfate as a mist on crop residue to stimulate microbial activity and subsequent decomposition of the residue is often debated, particularly for its potential to solve stand establishment iss...
ERIC Educational Resources Information Center
Berkes, Charlotte; Chan, Leo Li-Ying
2015-01-01
We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…
Schneider, Thomas; Keiblinger, Katharina M; Schmid, Emanuel; Sterflinger-Gleixner, Katja; Ellersdorfer, Günther; Roschitzki, Bernd; Richter, Andreas; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin
2012-01-01
Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes. PMID:22402400
Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, David; Mader, Esther; Lee, Tae Kwon
Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less
Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells
Berry, David; Mader, Esther; Lee, Tae Kwon; ...
2014-12-30
Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less
Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian
2017-04-15
Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.
Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less
Hashimoto, Masahito; Obara, Kyoko; Ozono, Mami; Furuyashiki, Maiko; Ikeda, Tsuyoshi; Suda, Yasuo; Fukase, Koichi; Fujimoto, Yukari; Shigehisa, Hiroshi
2013-12-01
Unpolished rice black vinegar (kurozu), a traditional Japanese vinegar, is considered to have beneficial health effects. Kurozu is produced via a static fermentation process involving the saccharification of rice by Aspergillus oryzae, alcohol fermentation by Saccharomyces cerevisiae, and the oxidation of ethanol to acetic acid by acetic acid bacteria such as Acetobacter pasteurianus. Since this process requires about 6 months' fermentation and then over a year of aging, most of these organisms die during the production process and so microbial components, which might stimulate the innate immune system, are expected to be present in the vinegar. In this study, we investigated whether microbial components are present in kurozu, and after confirming this we characterized their immunostimulatory activities. Lyophilized kurozu stimulated murine spleen cells to produce tumor necrosis factor (TNF)-α, at least in part, via Toll-like receptor (TLR) 2 and the Nod-like receptors NOD1 and 2. The active components associated with TLR2 activation were concentrated by Triton X-114-water phase partitioning and hydrophobic interaction chromatography on Octyl Sepharose. TLR4-activating components were also enriched by these methods. The concentrated preparation stimulated murine spleen cells to produce TNF-α and interferon (IFN)-γ. These results indicate that long-term fermented kurozu contains immunostimulatory components and that the TLR2 and TLR4-activating immunostimulatory components of kurozu are hydrophobic. These components might be responsible for the beneficial health effects of kurozu. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.
2016-09-01
Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.
Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F
2016-07-19
The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.
Jaiswal, Deepa; Pandey, Jitendra
2018-04-15
We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
Fang, Linchuan; Wang, Mengke; Cai, Lin; Cang, Long
2017-06-01
Biodegradable chelant-enhanced phytoremediation offers an alternative treatment technique for metal contaminated soils, but most studies to date have addressed on phytoextraction efficiency rather than comprehensive understanding of the interactions among plant, soil microbes, and biodegradable chelants. In the present study, we investigated the impacts of biodegradable chelants, including nitrilotriacetate, S,S-ethylenediaminedisuccinic acid (EDDS), and citric acid on soil microbes, nitrogen transformation, and metal removal from contaminated soils. The EDDS addition to soil showed the strongest ability to promote the nitrogen cycling in soil, ryegrass tissue, and microbial metabolism in comparison with other chelants. Both bacterial community-level physiological profiles and soil mass specific heat rates demonstrated that soil microbial activity was inhibited after the EDDS application (between day 2 and 10), but this effect completely vanished on day 30, indicating the revitalization of microbial activity and community structure in the soil system. The results of quantitative real-time PCR revealed that the EDDS application stimulated denitrification in soil by increasing nitrite reductase genes, especially nirS. These new findings demonstrated that the nitrogen release capacity of biodegradable chelants plays an important role in accelerating nitrogen transformation, enhancing soil microbial structure and activity, and improving phytoextraction efficiency in contaminated soil.
Xue, Gang; Lai, Sizhou; Li, Xiang; Zhang, Wenjuan; You, Jiguang; Chen, Hong; Qian, Yajie; Gao, Pin; Liu, Zhenhong; Liu, Yanan
2017-12-12
Lactic acid is one of the emerging top biomass derived platform chemicals that can be fermented from organic wastes. This study evaluated the potential of Cathodic Electro-Fermentation (CEF) as a novel approach to enhance the yield of high optical activity (OA) of l-lactic acid from organic wastes using mixed microbial consortium. The fermentation process was stimulated through the cathode applied with -100 mV versus standard hydrogen electrode (SHE), which contributed to 4.73 times higher lactic acid productivity (0.6578 g L -1 h -1 ) compared to that in the open circuit control (0.1392 g L -1 h -1 ), and an improved OA of l-lactic acid was also observed (42.3% vs. 3.6% of the open circuit control). The study elucidated that the optimal voltage at -100 mV promoted the conversion of pyruvate to l-lactate by 77.9% compared to the Blank, which triggered the generation of l-lactic acid to occur rapidly even at low concentration of pyruvate. The significant variation of microbial community in family- and genus-level distributions were observed in CEF system. Furthermore, the open-circuit operation test demonstrated that the cathode providing in-situ electron supply was essential to achieve high efficient bioconversion of organic wastes to lactic acid. Our work highlights the feasibility of CEF to steer high value-added fermentation products deriving from organic wastes by the mixed microbial consortium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Risberg, Kajsa; Cederlund, Harald; Pell, Mikael; Arthurson, Veronica; Schnürer, Anna
2017-03-01
The growing number of biogas plants in Europe has resulted in increased production of nutrient-rich digestate with great potential as fertilizer for arable land. The nutrient composition of digestate varies with the substrate treated in the biogas plant and may contain compounds that stimulate or inhibit soil microbial activity. This study compared 20 digestates (D) with 10 pig slurries (PS) and 10 cow manures (CM) regarding their chemical content and their effect on soil microbial activities, i.e. potential ammonia oxidation rate (PAO) and soil respiration. The results showed no significant differences within the D group when divided based on substrate type. i.e. manure dominated vs. other organic waste materials in any of the tests. In general D contained significantly higher concentrations of ammonium while the concentrations of total carbon and volatile fatty acids were higher in PS and CM than in D. The D showed both stimulating and inhibiting effects on PAO, while all CM and all PS except one showed inhibiting effects on PAO. However, PAO activity was negatively correlated with the content of volatile fatty acids in the residues indicating that these compounds may be the cause of the inhibition. The maximum respiration activity (h peakmax ) was lower and the time point for the maximum respiration activity (t peakmax ) occurred earlier for D compared with CM and PS. This earlier peak time could be indicative of a high proportion of easily degradable carbon in D compared with PS and CM. However, the utilization rate of carbon, i.e. the proportion of added organic C converted to CO 2 -C during 12days, did not differ significantly between D, PS and CM, indicating that overall carbon quality in the different fertilizers was still roughly comparable. In short, our results suggest that digestates were different compared with PS and CM but without posing a higher risk with respect to their impact on soil microbial activity. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Bullock, Avery; Ziervogel, Kai; Ghobrial, Sherif; Smith, Shannon; McKee, Brent; Arnosti, Carol
2017-01-01
Riverine systems are important sites for the production, transport, and transformation of organic matter. Much of the organic matter processing is carried out by heterotrophic microbial communities, whose activities may be spatially and temporally variable. In an effort to capture and evaluate some of this variability, we sampled four sites-two upstream and two downstream-at each of two North Carolina rivers (the Neuse River and the Tar-Pamlico River) ca. twelve times over a time period of 20 months from 2010 to 2012. At all of the sites and dates, we measured the activities of extracellular enzymes used to hydrolyze polysaccharides and peptides, and thus to initiate heterotrophic carbon processing. We additionally measured bacterial abundance, bacterial production, phosphatase activities, and dissolved organic carbon (DOC) concentrations. Concurrent collection of physical data (stream flow, temperature, salinity, dissolved oxygen) enabled us to explore possible connections between physiochemical parameters and microbial activities throughout this time period. The two rivers, both of which drain into Pamlico Sound, differed somewhat in microbial activities and characteristics: the Tar-Pamlico River showed higher β-glucosidase and phosphatase activities, and frequently had higher peptidase activities at the lower reaches, than the Neuse River. The lower reaches of the Neuse River, however, had much higher DOC concentrations than any site in the Tar River. Both rivers showed activities of a broad range of polysaccharide hydrolases through all stations and seasons, suggesting that the microbial communities are well-equipped to access enzymatically a broad range of substrates. Considerable temporal and spatial variability in microbial activities was evident, variability that was not closely related to factors such as temperature and season. However, Hurricane Irene's passage through North Carolina coincided with higher concentrations of DOC at the downstream sampling sites of both rivers. This DOC maximum persisted into the month following the hurricane, when it continued to stimulate bacterial protein production and phosphatase activity in the Neuse River, but not in the Tar-Pamlico River. Microbial community activities are related to a complex array of factors, whose interactions vary considerably with time and space.
Feedbacks Between Soil Structure and Microbial Activities in Soil
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.
2017-12-01
Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate formation could alter how we currently treat our predictions of soil biogeochemistry. Current predictions are largely site- or biome-specific; quantitative mechanisms could underpin "rules" that operate at the pore-scale leading to more robust, mechanistic models.
Griebler, Christian; Slezak, Doris
2001-01-01
A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity. PMID:11133433
Griebler, C; Slezak, D
2001-01-01
A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity.
NASA Astrophysics Data System (ADS)
Ziervogel, Kai; Joye, Samantha B.; Arnosti, Carol
2016-07-01
A large fraction of the spilled oil from the Deepwater Horizon (DwH) blowout in April 2010 reached the seafloor via sinking oil aggregates (oil snow) in a massive sedimentation that continued until late summer 2010 (;Dirty blizzard;). We measured heterotrophic microbial metabolic rates as well as porewater and sedimentary geochemical parameters at sites proximate to and distant from the wellhead to investigate microbial responses to the "Dirty Blizzard". Lipase activity and rates of bacterial protein production were highest and leucine-aminopeptidase activity was lowest in 0-2 cm sediment layers at the sites proximate to the wellhead. These results suggest that the presence of the oil snow stimulated benthic microbial enzymatic hydrolysis of oil-derived organic matter that was depleted in peptide substrates at the time of our sampling. The strong gradients in porewater DOC, NH4+, and HPO43- concentrations in the upper 6 cm of the sediments near the wellhead likewise indicate elevated heterotrophic responses to recently-sedimented organic matter. In addition to enhanced microbial activities in the 0-2 cm sediment layers, we found peaks of total organic carbon and elevated microbial metabolic rates down to 10 cm at the sites closest to the wellhead. Our results indicate distinct benthic metabolic responses of heterotrophic microbial communities, even three months after the ending of the "Dirty Blizzard". Compared to other deep-sea environments, however, metabolic rates associated with the recently deposited particulate matter around the wellhead were only moderately enhanced. Oil contaminants at the seafloor may therefore have prolonged residence times, enhancing the potential for longer-term ecological consequences in deep-sea environments.
Dhami, Navdeep K.; Alsubhi, Walaa R.; Watkin, Elizabeth; Mukherjee, Abhijit
2017-01-01
Microbially-induced CaCO3 precipitation (MICP) is a naturally occurring process wherein durable carbonates are formed as a result of microbial metabolic activities. In recent years, MICP technology has been widely harnessed for applications in civil engineering wherein synthesis of calcium carbonate crystals occurs at ambient temperature paving way for low energy biocement. MICP using pure urease (UA) and carbonic anhydrase (CA) producing bacteria has been promising in laboratory conditions. In the current study we enriched ureolytic and carbonic anhydrase communities in calcareous soil under biostimulation and bioaugmentation conditions and investigated the effect of microbial dynamics on carbonate precipitation, calcium carbonate polymorph selection and consolidation of biological sand column under nutrient limited and rich conditions. All treatments for stimulation and augmentation led to significant changes in the composition of indigenous bacterial population. Biostimulation as well as augmentation through the UA route was found to be faster and more effective compared to the CA route in terms of extracellular enzyme production and carbonate precipitation. Synergistic role of augmented cultures along with indigenous communities was recorded via both the routes of UA and CA as more effective calcification was seen in case of augmentation compared to stimulation. The survival of supplemented isolates in presence of indigenous bacterial communities was confirmed through sequencing of total diversity and it was seen that both UA and CA isolate had the potential to survive along with native communities under high nutrient conditions. Nutrient conditions played significant role in determining calcium carbonate polymorph fate as calcitic crystals dominated under high carbon supplementation. Finally, the consolidation of sand columns via stimulation and augmentation was successfully achieved through both UA and CA route under high nutrient conditions but higher consolidation in short time period was noticed in UA route. The study reports that based upon the organic carbon content in native soils, stimulation can be favored at sites with high organic carbon content while augmentation with repeated injections of nutrients can be applied on poor nutrient soils via different enrichment routes of microbial metabolism. PMID:28744265
Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C.
Erridge, Clett
2011-03-01
Recent evidence suggests that exposure to stimulants of the innate immune receptors Toll-like receptor (TLR)-2 and TLR4 may contribute to the development of atherosclerosis and insulin resistance. We showed recently that common foodsuffs can contain TLR-stimulants, and that the greatest concentrations were present in meat-based products. Using a recently developed quantitative bioassay, we here examined the kinetics of accumulation of TLR2- and TLR4-stimulants in a variety of meat products held at 5 °C in air or under a modified atmosphere for up to 8 d. Meat content of TLR-stimulants increased with time in each meat examined and was paralleled by growth of pseudomonads and Enterobacteriaceae, suggesting that bacterial lipopeptides and lipopolysaccharides are the likely sources of TLR2- and TLR4-stimulants, respectively. TLR-stimulants reached the highest levels (approximately 80 μg lipopeptide-equivalents per gramme and approximately 7 μg lipopolysaccharide-equivalents per gram) in meat that was minced rather than intact, and when stored in air rather than under a modified atmosphere. TLR2- and TLR4-stimulants in meat products cooked for 1 h retained approximately 20% and approximately 40% of their bioactivity, respectively. In summary, storage conditions and microbial flora critically regulate the kinetics of TLR2- and TLR4-stimulant accumulation in meat products and these may retain biological activity after cooking. The novel assays presented in this work could be used to predict the potential of foodstuffs to promote inflammatory signaling in human subjects, which may be deleterious to health. These assays may also be used to monitor the historical microbial flora in food products after cooking or other forms of food processing may have rendered the original microflora nonviable.
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD) combined with soil solarization continues to be evaluated for management of plant-parasitic nematodes in vegetable and ornamental crops in Florida. ASD combines organic amendments and soil saturation to stimulate microbial activity and create anaerobic conditions...
USDA-ARS?s Scientific Manuscript database
Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes from agricultural landscapes may contribute significantly to regional greenhouse gas budgets due to stimulation of soil microbial activity through fertilizer application and variable soil moisture effects. In this study, measuremen...
Zhang, Xueqin; Shen, Dongsheng; Feng, Huajun; Wang, Yanfeng; Li, Na; Han, Jingyi; Long, Yuyang
2015-01-01
A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio
2016-04-01
Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.
NASA Astrophysics Data System (ADS)
Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.
2014-12-01
Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.
Pone, Egest J.; Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Xu, Zhenming; Casali, Paolo
2011-01-01
Differentiation of naïve B cells, including immunoglobulin (Ig) class switch DNA recombination (CSR), is critical for the immune response and depends on the extensive integration of signals from the B cell receptor (BCR), tumor necrosis factor (TNF) receptor family members, Toll-like receptors (TLRs) and cytokine receptors. TLRs and BCR synergize to induce CSR in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B cell differentiation and antibody responses. The requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the upregulation of co-stimulatory CD80 and MHC-II receptors, which, in turn, result in more efficient interactions with T cells, thereby enhancing the germinal center (GC) reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products, determine the ensuing B cell antibody response. PMID:20370617
Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens.
Iraporda, Carolina; Abatemarco Júnior, Mário; Neumann, Elisabeth; Nunes, Álvaro Cantini; Nicoli, Jacques R; Abraham, Analía G; Garrote, Graciela L
2017-08-01
Kefir is a fermented milk obtained by the activity of kefir grains which are composed of lactic and acetic acid bacteria, and yeasts. Many beneficial health effects have been associated with kefir consumption such as stimulation of the immune system and inhibition of pathogenic microorganisms. The biological activity of kefir may be attributed to the presence of a complex microbiota as well as the microbial metabolites that are released during fermentation. The aim of this work was to characterise the non-microbial fraction of kefir and to study its antagonism against Escherichia coli, Salmonella spp. and Bacillus cereus. During milk fermentation there was a production of organic acids, mainly lactic and acetic acid, with a consequent decrease in pH and lactose content. The non-microbial fraction of kefir added to nutrient broth at concentrations above 75% v/v induced a complete inhibition of pathogenic growth that could be ascribed to the presence of un-dissociated lactic acid. In vitro assays using an intestinal epithelial cell model indicated that pre-incubation of cells with the non-microbial fraction of kefir did not modify the association/invasion of Salmonella whereas pre-incubation of Salmonella with this fraction under conditions that did not affect their viability significantly decreased the pathogen's ability to invade epithelial cells. Lactate exerted a protective effect against Salmonella in a mouse model, demonstrating the relevance of metabolites present in the non-microbial fraction of kefir produced during milk fermentation.
Adaptation of Aquatic Microbial Communities to Hg2+ Stress †
Barkay, Tamar
1987-01-01
The mechanism of adaptation to Hg2+ in four aquatic habitats was studied by correlating microbially mediated Hg2+ volatilization with the adaptive state of the exposed communities. Community diversity, heterotrophic activity, and Hg2+ resistance measurements indicated that adaptation of all four communities was stimulated by preexposure to Hg2+. In saline water communities, adaptation was associated with rapid volatilization after an initial lag period. This mechanism, however, did not promote adaptation in a freshwater sample, in which Hg2+ was volatilized slowly, regardless of the resistance level of the microbial community. Distribution of the mer operon among representative colonies of the communities was not related to adaptation to Hg2+. Thus, although volatilization enabled some microbial communities to sustain their functions in Hg2+-stressed environments, it was not mediated by the genes that serve as a model system in molecular studies of bacterial resistance to mercurials. PMID:16347488
Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance.
Kumar, Mayur; Curtis, Anthony; Hoskins, Clare
2018-01-14
Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance.
[Application and prospect of fungi elicitors in fermentation industry].
Gu, Shaobin; Gong, Hui; Yang, Bin; Bu, Meiling
2013-11-01
Fungal elicitors are a group of chemicals that can stimulate the secondary metabolite production in plants and microbial cells. After being recognized, it could enhance the expression of related genes through the signal-transduction pathway; regulate the activity of the enzyme involved in the biosynthesis of secondary metabolites. In recent years, the inducible mechanism of fungal elicitors has been studied deeply worldwide. Meanwhile, it has acquired wide concern in the area of biological industry, especially in the fermentation industry. This paper addresses the application and prospect of fungal elicitors in the secondary metabolites of plant and microbial cells.
Gao, Peike; Li, Guoqiang; Le, Jianjun; Liu, Xiaobo; Liu, Fang; Ma, Ting
2018-02-01
Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial enhanced oil recovery (IMEOR) in a post-polymer flooded reservoir was performed. The succession of microbial communities was revealed by high-throughput sequencing of 16S rRNA genes and changes of incremental oil were analyzed. The results indicated that the abundances of reservoir microorganisms significantly increased, with alpha diversities decreased in the IMEOR process. With the intermittent nutrient injection, microbial communities showed a regular change and were alternately dominated by minority populations: Pseudomonas and Acinetobacter significantly increased when nutrients were injected; Thauera, Azovibrio, Arcobacter, Helicobacter, Desulfitobacterium, and Clostridium increased in the following water-flooding process. Accompanied by the stimulated populations, higher oil production was obtained. However, these populations did not contribute a persistent level of incremental oil in the reservoir. In summary, this study revealed the alternative succession of microbial communities and the changes of incremental oil in a post-polymer flooded reservoir with intermittent nutrient stimulation process.
Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem
He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong
2014-01-01
The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems. PMID:24108327
Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.
ERIC Educational Resources Information Center
Heckman, J. R.; Strick, J. E.
1996-01-01
Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…
Production-related petroleum microbiology: progress and prospects.
Voordouw, Gerrit
2011-06-01
Microbial activity in oil reservoirs is common. Methanogenic consortia hydrolyze low molecular weight components to methane and CO2, transforming light oil to heavy oil to bitumen. The presence of sulfate in injection water causes sulfate-reducing bacteria to produce sulfide. This souring can be reversed by nitrate, stimulating nitrate-reducing bacteria. Removing biogenic sulfide is important, because it contributes to pitting corrosion and resulting pipeline failures. Increased water production eventually makes oil production uneconomic. Microbial fermentation products can lower oil viscosity or interfacial tension and produced biomass can block undesired flow paths to produce more oil. These biotechnologies benefit from increased understanding of reservoir microbial ecology through new sequence technologies and help to decrease the environmental impact of oil production. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.
2013-01-01
The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357
Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C; Arntzen, Evan; Kennedy, David W; Larget, Bret R; Roden, Eric E
2017-08-15
Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities ( in situ colonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to "cross-feeding" with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection during in situ colonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCE The influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were "cross-fed" with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors. Copyright © 2017 American Society for Microbiology.
TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.
O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J
2017-06-01
Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.
Kamalanathan, Manoj; Xu, Chen; Schwehr, Kathy; Bretherton, Laura; Beaver, Morgan; Doyle, Shawn M.; Genzer, Jennifer; Hillhouse, Jessica; Sylvan, Jason B.; Santschi, Peter; Quigg, Antonietta
2018-01-01
Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community – α- and β-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase – were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights into the alteration to the microbial processes such as EPS and extracellular enzyme production, and to the microbial community, when exposed to the mixture of oil and dispersant. PMID:29740422
2013-01-01
Background Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens. Results The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1β, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1β, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed. Conclusions Altogether, these data revealed that the degree of environmental microbial exposure of the hen moderately stimulated the egg innate defence, by reinforcing some specific antimicrobial activities to protect the embryo and to insure hygienic quality of table eggs. PMID:23758641
The effect of coal bed dewatering and partial oxidation on biogenic methane potential
Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.
2013-01-01
Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.
The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.
NASA Astrophysics Data System (ADS)
Jilling, A.; Grandy, S.; Keiluweit, M.
2017-12-01
Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids on soil solution chemistry. We predict that oxalic acid additions will result in the release of metals and formerly clay-bound organic compounds into solution. Results from these incubations will be discussed in the context of our conceptual framework on the N-supplying capacity of MAOM.
Microbial response to triepthylphosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazen, T.C.; Santo Domingo, J.W.; Berry, C.J.
1997-05-01
The effect of triethylphosphate (TEP) on the activity of a landfill aquifer microbial community was evaluated using standard techniques and in situ hybridizations with phylogenetic probes. Benzene was used as an external carbon source to monitor degradation of an aromatic compound in TEP amended microcosms. Microscopical and viable counts were higher in TEP containing microcosms when compared to unamended controls. A significant increase in metabolic activity was also observed for TEP amended samples as determined by the number of cells hybridizing to an eubacterial probe. In addition, the number of beta and gamma Proteobacteria increased from undetectable levels prior tomore » the study to 15-29% of the total bacteria in microcosms containing TEP and benzene. In these microcosms, nearly 40% of the benzene was degraded during the incubation period compared to less than 5% in unamended microcosms. While TEP has previously been used as an alternate phosphate source in the bioremediation of chlorinated aliphatics, this study shows that it can also stimulate the microbial degradation of aromatics in phosphate limited aquifers.« less
Bowman, James; Rodgers, Mary A.; Shi, Mude; Amatya, Rina; Hostager, Bruce; Iwai, Kazuhiro; Gao, Shou-Jiang
2015-01-01
ABSTRACT Linear ubiquitination is an atypical posttranslational modification catalyzed by the linear-ubiquitin-chain assembly complex (LUBAC), containing HOIP, HOIL-1L, and Sharpin. LUBAC facilitates NF-κB activation and inflammation upon receptor stimulation by ligating linear ubiquitin chains to critical signaling molecules. Indeed, linear-ubiquitination-dependent signaling is essential to prevent pyogenic bacterial infections that can lead to death. While linear ubiquitination is essential for intracellular receptor signaling upon microbial infection, this response must be measured and stopped to avoid tissue damage and autoimmunity. While LUBAC is activated upon bacterial stimulation, the mechanisms regulating LUBAC activity in response to bacterial stimuli have remained elusive. We demonstrate that LUBAC activity itself is downregulated through ubiquitination, specifically, ubiquitination of the catalytic subunit HOIP at the carboxyl-terminal lysine 1056. Ubiquitination of Lys1056 dynamically altered HOIP conformation, resulting in the suppression of its catalytic activity. Consequently, HOIP Lys1056-to-Arg mutation led not only to persistent LUBAC activity but also to prolonged NF-κB activation induced by bacterial lipopolysaccharide-mediated Toll-like receptor 4 (TLR4) stimulation, whereas it showed no effect on NF-κB activation induced by CD40 stimulation. This study describes a novel posttranslational regulation of LUBAC-mediated linear ubiquitination that is critical for specifically directing TLR4-mediated NF-κB activation. PMID:26578682
NASA Astrophysics Data System (ADS)
Adhikari, R.; Nickel, J.; Kallmeyer, J.
2012-12-01
Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.
Elsgaard, L; Petersen, S O; Debosz, K
2001-08-01
Linear alkylbenzene sulfonates (LAS) may occur in sewage sludge that is applied to agricultural soil, in which LAS can be inhibitory to biological activity. As a part of a broader risk assessment of LAS in the terrestrial environment, we tested the short-term effects of aqueous LAS on microbial parameters in a sandy agricultural soil that was incubated for up to 11 d. The assays included 10 microbial soil parameters; ethylene degradation; potential ammonium oxidation; potential dehydrogenase activity; beta-glucosidase activity; iron reduction; the populations of cellulolytic bacteria, fungi and actinomycetes; the basal soil respiration; and the phospholipid fatty acid (PLFA) content. Except for beta-glucosidase activity, basal respiration, and total PLFA content, all soil parameters were sensitive to LAS, with EC10 values in the range of less than 8 to 22 mg/kg dry weight. This probably reflected a similar mode of LAS toxicity, ascribed to cell membrane interactions, and showed that sensitivity to LAS was common for various soil microorganisms. The extracellular beta-glucosidase activity was rather insensitive to LAS (ECI10, 47 mg/kg dry wt), whereas the basal soil respiration was not inhibited even at 793 mg/kg dry weight. This was interpreted as a combined response of inhibited and stimulated compartments of the microbial community. The PLFA content, surprisingly, showed no decrease even at 488 mg/kg. In conclusion, LAS inhibited specific microbial activities, although this could not be deduced from the basal respiration or the total PLFA content. The lowest EC10 values for microbial soil parameters were slightly higher than the predicted no-effect concentrations recently derived for plants and soil fauna (approximately 5 mg/kg dry wt).
NASA Astrophysics Data System (ADS)
Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias
2016-04-01
Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils where C availability was initially low, but this priming effect was not linked to increased gross protein depolymerization rates. Similarly, we found no connection to increased activities of enzymes targeting N-containing polymers such as proteins or chitin. Instead, glucose addition increased the microbial efficiency to use the N already available, as indicated by lower gross N mineralization rates and lower concentrations of inorganic N in the soil. We emphasize that these findings do not generally preclude that higher C availability can induce microbial N mining and thus enhance soil N availability in some soils, but that such an effect cannot be universally assumed. In contrast, the changes in microbial N dynamics observed across our range of boreal forest soils suggest that higher C availability can at least in some soils increase N storage within microbial bio- and necromass, thus reducing N availability for plants, but also constraining soil N losses, e.g., by nitrate leaching and denitrification.
NASA Astrophysics Data System (ADS)
Florio, Alessandro; Pommier, Thomas; Gervaix, Jonathan; Bréfort, Caroline; Bérard, Annette; Le Roux, Xavier
2017-04-01
Introduction Maize inoculation with the plant-growth promoting rhizobacterium Azospirillum stimulates root growth and carbon, C, exudation, thereby enabling a better exploitation of soil and enhancing plant uptake of nitrogen, N. This can modulate the availability of N in the rhizosphere, by enhancing plant-microbe competition for N and modifying rhizosphere environmental variables important for N-cycling microbial communities, i.e. the amount of soil mineral N and oxygen availability. We tested the hypothesis that inoculation-induced stimulation of root N uptake and C exudation would enhance plant competition over microorganisms for N while increasing C availability for heterotrophs, thus leading to (i) a decrease of nitrifier abundance and activity, and (ii) a decrease or increase of denitrifier abundance and activity depending on the level of denitrifier limitation by N and C. Methods The extent of inoculation-induced changes in microbial activities (potential nitrification and denitrification), abundances and diversity of (de)nitrifiers as well as in root functional traits was assessed at 4 dates over two consecutive years in a multi-site field trial. Measurements were performed for the 6- and 12-leaves maize stages. In a second experiment, we artificially altered the level of denitrifier limitation by N and C in a greenhouse pot experiment by applying synthetic root exudates to inoculated and non-inoculated maize plants. Inoculation-induced response to nutrient limitation on microbial N-related activities and abundances was assessed for the 6-leaves stage maizeplants. Results Inoculation resulted in an idiosyncratic response of nitrification and nitrifier (AOA, AOB) abundance, which varied from one sampling date to another at a given site, and between sites and treatments at a given date. Modifications of water balance and soil moisture rather than increased plant-nitrifiers competition for soil NH4+ were the main drivers of nitrification. Conversely, inoculation-induced changes in denitrifier activity and abundance (nirK, nirS) were consistent across sites and ranged from -23% to +84% depending on sites. Particularly, in soils with high C limitation levels, inoculation increased nirS-denitrifier abundance and denitrification, likely by stimulating root C exudation. Conversely, in soils with lower C limitation, the stimulating effect of inoculation on root C exudation was less critical for denitrifiers whereas the increased competition between roots and denitrifiers for NO3- became prominent, thus resulting in slightly decreased nirS-denitrifier abundance and denitrification. Pot experiment results revealed that the inoculation effect on denitrification decreased with increased amount of root exudates-like amended to soil. Discussion Maize seed inoculation with the beneficial Azospirillum lipoferum CRT1 can be a sustainable, though soil-specific, agricultural practice providing both beneficial agronomic and environmental effects. Our findings may indicate that the crop seed inoculation practice would increase potential N2O losses from agricultural soils where denitrifiers are highly C-limited. However, our results also demonstrate that the responses of nitrite reducers and N2O reducers to inoculation are tightly coupled, and that inoculation thus does not necessarily represent a risk for increased N2O losses from C-limited soils. Finally, the nirS-denitrifier abundance to microbial basal respiration ratio could be successfully used as a proxy of gaseous-N losses through denitrification from the soil-plant system following inoculation.
Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.; ...
2015-10-20
Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.
Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less
Jin, Xing-Kun; Li, Shuang; Guo, Xiao-Nv; Cheng, Lin; Wu, Min-Hao; Tan, Shang-Jian; Zhu, You-Ting; Yu, Ai-Qing; Li, Wei-Wei; Wang, Qun
2013-12-01
The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi
2016-01-15
The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang
2017-12-01
A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F
2017-12-01
The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.
Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media
Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...
Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng
2018-03-01
This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Mary
2015-03-31
It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbonmore » decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.« less
NASA Astrophysics Data System (ADS)
Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2017-02-01
Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.
Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A; Mahjoubi, Mouna; Malkawi, Hanan; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N
2015-10-01
Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria.
Mayor, Daniel J; Sanders, Richard; Giering, Sarah L C; Anderson, Thomas R
2014-01-01
Sinking organic particles transfer ∼10 gigatonnes of carbon into the deep ocean each year, keeping the atmospheric CO2 concentration significantly lower than would otherwise be the case. The exact size of this effect is strongly influenced by biological activity in the ocean's twilight zone (∼50–1,000 m beneath the surface). Recent work suggests that the resident zooplankton fragment, rather than ingest, the majority of encountered organic particles, thereby stimulating bacterial proliferation and the deep-ocean microbial food web. Here we speculate that this apparently counterintuitive behaviour is an example of ‘microbial gardening’, a strategy that exploits the enzymatic and biosynthetic capabilities of microorganisms to facilitate the ‘gardener's’ access to a suite of otherwise unavailable compounds that are essential for metazoan life. We demonstrate the potential gains that zooplankton stand to make from microbial gardening using a simple steady state model, and we suggest avenues for future research. PMID:25220362
Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance
Kumar, Mayur; Curtis, Anthony
2018-01-01
Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance. PMID:29342903
Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y
2007-05-01
The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.
A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...
Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.
2005-01-01
The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838
NASA Astrophysics Data System (ADS)
Wilton, E.; Flanagan, L. B.
2014-12-01
Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex interaction between temporal changes in soil environmental factors and biological changes in the plant and microbial community that affect soil respiratory metabolism.
Gulis, V.; Rosemond, A.D.; Suberkropp, K.; Weyers, H.S.; Benstead, J.P.
2004-01-01
1. We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3-year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1-year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a reference. We determined the effects of enrichment on both wood veneers and sticks, which have similar carbon quality but differ in physical characteristics (e.g. surface area to volume ratios, presence of bark) that potentially affect microbial colonisation and activity. 2. Oak wood veneers (0.5 mm thick) were placed in streams monthly and allowed to decompose for approximately 90 days. Nutrient addition stimulated ash-free dry mass loss and increased mean nitrogen content, fungal biomass and microbial respiration on veneers in the treatment stream compared with the reference. The magnitude of the response to enrichment was great, with mass loss 6.1 times, and per cent N, fungal biomass and microbial respiration approximately four times greater in the treatment versus reference stream. 3. Decomposition rate and nitrogen content of maple sticks (ca. 1-2 cm diameter) also increased; however, the effect was less pronounced than for veneers. Wood response overall was greater than that determined for leaves in a comparable study, supporting the hypothesis that response to enrichment may be greater for lower quality organic matter (high C:N) than for higher quality (low C:N) substrates. 4. Our results show that moderate nutrient enrichment can profoundly affect decomposition rate and microbial activity on wood in streams. Thus, the timing and availability of wood that provides retention, structure, attachment sites and food in stream ecosystems may be affected by nutrient concentrations raised by human activities.
Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.
1997-01-01
Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semi-volatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.
Raiesi, Fayez; Razmkhah, Mahshid; Kiani, Shahram
2018-05-30
The objective of this study was to determine responses of soil nitrogen (N) transformation, microbial biomass N, and urease activity to the combined effect of cadmium (Cd) toxicity (0 and 30 mg kg -1 ) and NaCl stress (0, 7.5 and 15 dS m -1 ) in a clay loam soil unamended (0%) or amended with alfalfa residues (1%, w/w). Cd, NaCl, and alfalfa residues were added to the soil, and the mixtures were incubated for 90 days under standard laboratory conditions (25 ± 1 °C and 70% of water holding capacity [WHC]). The results showed that salinity increased soil Cd availability and toxicity and subsequently decreased soil microbial N transformations (i.e., potential ammonification and nitrification as well as net N mineralization), arginine ammonification and nitrification rates, microbial biomass N, and urease activity. The adverse effects of salinity on soil microbial properties were greater in Cd-polluted than unpolluted soils, at high than low salinity levels, but were lower in residue-amended than unamended soils. These effects were mainly attributed to the increased Cd availability under saline conditions or the decreased Cd availability with residue addition. All the measured soil microbial attributes showed a negative correlation with the available Cd content in the soil. The interaction or combined effects of Cd and NaCl on soil microbial attributes were mostly synergistic in residue-unamended soils but antagonistic in residue-amended soils. The addition of organic residues to Cd-polluted soils may moderate salinity effect, and thus could stimulate the activity of ammonifiers and nitrifiers, as well as urease. Copyright © 2018 Elsevier Inc. All rights reserved.
Barlett, Melissa; Moon, Hee Sun; Peacock, Aaron A; Hedrick, David B; Williams, Kenneth H; Long, Philip E; Lovley, Derek; Jaffe, Peter R
2012-07-01
Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.
Xu, Ran; Obbard, Jeffrey P
2003-01-01
Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.
Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas
2017-01-01
Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070
Deep sea microbial fuel cell output as a proxy for microbial activity
NASA Astrophysics Data System (ADS)
Richter, K.; George, R.; Hardy, K. R.
2016-02-01
Abstract: Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The current is chiefly limited by the rate of microbial metabolism at the anode and serves as a proxy for microbial activity. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions and studies of important environmental parameters that affect fuel cell performance. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>4000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. We are pursuing a field efforts to deploy a microbial fuel cell in progressively deeper water, record in situ power and temperature over several weeks, and retrieve the fuel cell along with sediment samples for analysis. We are also pursuing a laboratory effort to build a matching microbial fuel cell in a pressure vessel capable of matching the pressure and temperature of deep water, and stocking the pressure vessel with deep water sediment in order to take measurements analogous to those in the field. We also hope to determine whether bacteria growing on the anode are different from bacteria growing in the bulk sediment via DNA analysis. The current progress and results from this work at SPAWAR will be presented.
Microbial and viral chitinases: Attractive biopesticides for integrated pest management.
Berini, Francesca; Katz, Chen; Gruzdev, Nady; Casartelli, Morena; Tettamanti, Gianluca; Marinelli, Flavia
The negative impact of the massive use of synthetic pesticides on the environment and on human health has stimulated the search for environment-friendly practices for controlling plant diseases and pests. Among them, biocontrol, which relies on using beneficial organisms or their products (bioactive molecules and/or hydrolytic enzymes), holds the greatest promise and is considered a pillar of integrated pest management. Chitinases are particularly attractive to this purpose since they have fungicidal, insecticidal, and nematicidal activities. Here, current knowledge on the biopesticidal action of microbial and viral chitinases is reviewed, together with a critical analysis of their future development as biopesticides. Copyright © 2018 Elsevier Inc. All rights reserved.
Biotechnological Aspects of Microbial Extracellular Electron Transfer
Kato, Souichiro
2015-01-01
Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795
From birth to ‘immuno-health’, allergies and enterocolitis
Houghteling, Pearl D.; Walker, W. Allan
2015-01-01
Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.
Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less
Hakkaart, Xavier D V; Pronk, Jack T; van Maris, Antonius J A
2017-01-01
Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology that enables quantitative analysis of growth and metabolism under tightly defined conditions, provides a powerful platform to teach key features of microbial growth and metabolism. Substrate-limited chemostat cultivation can be mathematically described by four equations. These encompass mass balances for biomass and substrate, an empirical relation that describes distribution of consumed substrate over growth and maintenance energy requirements (Pirt equation), and a Monod-type equation that describes the relation between substrate concentration and substrate-consumption rate. The authors felt that the abstract nature of these mathematical equations and a lack of visualization contributed to a suboptimal operative understanding of quantitative microbial physiology among students who followed their Microbial Physiology B.Sc. courses. The studio-classroom workshop presented here was developed to improve student understanding of quantitative physiology by a set of question-guided simulations. Simulations are run on Chemostatus, a specially developed MATLAB-based program, which visualizes key parameters of simulated chemostat cultures as they proceed from dynamic growth conditions to steady state. In practice, the workshop stimulated active discussion between students and with their teachers. Moreover, its introduction coincided with increased average exam scores for questions on quantitative microbial physiology. The workshop can be easily implemented in formal microbial physiology courses or used by individuals seeking to test and improve their understanding of quantitative microbial physiology and/or chemostat cultivation.
Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”
Goodridge, Helen S.; Reyes, Christopher N.; Becker, Courtney A.; Katsumoto, Tamiko R.; Ma, Jun; Wolf, Andrea J.; Bose, Nandita; Chan, Anissa S. H.; Magee, Andrew S.; Danielson, Michael E.; Weiss, Arthur; Vasilakos, John P.; Underhill, David M.
2011-01-01
Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 is a pattern recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular anti-microbial activity, including phagocytosis and production of reactive oxygen species1, 2. In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 are excluded (Supplementary Figure 1). The “phagocytic synapse” now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular anti-microbial responses only when they are required. PMID:21525931
USDA-ARS?s Scientific Manuscript database
Microbial-based inoculants have been reported to stimulate plant growth and nutrient uptake. However, their effect may vary depending on the growth stage when evaluated and on the chemical fertilizer applied. Thus, the objective of this study was to test the hypothesis that microbial-based inoculant...
NASA Astrophysics Data System (ADS)
Halil Yanardaǧ, Ibrahim
2013-04-01
Soil quality is very important in terms of agricultural sustainability, ecosystem and terrestrial carbon (C) cycle. In turn, soil microbial and biochemical characteristics are indicative of nutrient cycling and soil organic matter dynamics. We investigated the effects of the pig slurries (raw pig slurry (RPS) and treated pig slurry (TPS) from liquid and solid feeding diets) on microbial and biochemical characteristics of soil under barley cropping system. Application doses of slurries are identified with legal doses of Castilla La Mancha Region, which is 210 kg N ha-1 year-1. Microbial biomass C, soluble C, black C and three soil enzymes (β-Glucosidase, β-galactosidase and Arylesterase enzymes) are studied to determine effect slurry on soil biochemical characteristics, which are very important in terms of C cycle in soil. Black carbon content and β-Glucosidase enzyme activities are increased with all pig slurry applications from liquid and traditional feeding diet, as well as microbial biomass and organic carbon content and β-galactosidase enzyme activities are increased with slurry from liquid feeding diet doses. However, pig slurry application from liquid feeding diet doses have increased yield, quality, length and total biomass content of barley. Bioavailable metal contents are increased with all slurry application and with using high doses of slurry can be caused soil pollution. Pig slurries from liquid feeding diet had positive impacts on microbial and biochemical characteristics in terms of soil quality in comparison to the different feeding diets. PS addition to soil had a very significant stimulating effect on the enzyme activities, microbial biomass, soluble and black C compared with different kind of PS and control plots on Mediterranean soil in barley monoculture. This effect may originate from the organic C, N, P and S compounds added with PS. The highest enzyme activity and microbial biomass were observed on the soil samples from the RPS treatment, whereas, black and soluble C was decreased with PS addition. There may have been a transient positive effect of the RPS treatments on the soil biochemical parameters. However, the effect could not be detected because of less labile C content during the experiment. The beneficial effects of the PS additions were less pronounced in the 0-30 cm. soil layer. In this monoculture barley production system and under these Mediterranean climate conditions, applications of TPS should be avoided, so they were associated with a decline in microbial counts and a leveling of almost all the enzymatic activities and microbial biomass C. Keywords: Pig slurry, Microbial biomass C, soluble C, black C, β-Glucosidase, β-galactosidase and Arylesterase enzyme activities.
Evidente, Antonio; Cimmino, Alessio; Andolfi, Anna
2013-02-01
Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive-and in some cases devastating-damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco-friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Copyright © 2012 Wiley Periodicals, Inc.
Data-Driven Microbial Modeling for Soil Carbon Decomposition and Stabilization
NASA Astrophysics Data System (ADS)
Luo, Yiqi; Chen, Ji; Chen, Yizhao; Feng, Wenting
2017-04-01
Microorganisms have long been known to catalyze almost all the soil organic carbon (SOC) transformation processes (e.g., decomposition, stabilization, and mineralization). Representing microbial processes in Earth system models (ESMs) has the potential to improve projections of SOC dynamics. We have recently examined (1) relationships of microbial functions with environmental factors and (2) microbial regulations of decomposition and other key soil processes. According to three lines of evidence, we have developed a data-driven enzyme (DENZY) model to simulate soil microbial decomposition and stabilization. First, our meta-analysis of 64 published field studies showed that field experimental warming significantly increased soil microbial communities abundance, which is negatively correlated with the mean annual temperature. The negative correlation indicates that warming had stronger effects in colder than warmer regions. Second, we found that the SOC decomposition, especially the transfer between labile SOC and protected SOC, is nonlinearly regulated by soil texture parameters, such as sand and silt contents. Third, we conducted a global analysis of the C-degrading enzyme activities, soil respiration, and SOC content under N addition. Our results show that N addition has contrasting effects on cellulase (hydrolytic C-degrading enzymes) and ligninase (oxidative C-degrading enzymes) activities. N-enhanced cellulase activity contributes to the minor stimulation of soil respiration whereas N-induced repression on ligninase activity drives soil C sequestration. Our analysis links the microbial extracellular C-degrading enzymes to the SOC dynamics at ecosystem scales across scores of experimental sites around the world. It offers direct evidence that N-induced changes in microbial community and physiology play fundamental roles in controlling the soil C cycle. Built upon those three lines of empirical evidence, the DENZY model includes two enzyme pools and explicitly characterizes two classes of extracellular enzyme activities: one that degrades organic molecules containing both C and N (e.g., chitin or protein) and another that degrades only C (e.g., cellulose). The DENZY model assumes that the microbes allocate resources to different enzyme pools so as to exactly satisfy microbial CN ratio stoichiometry in response to changes in climate conditions and soil attributes. The DENZY model can simulate differential effects of nitrogen fertilization on the two groups of enzymes and thus soil respiration and SOC dynamics. We will select field experimental sites to test the DENZY model. With increasing amounts of available observations and data synthesis, this DENZY model will be better parameterized and have a potential to reveal how responses of microbial enzymes to environmental changes regulate soil carbon decomposition and stabilization.
Pesce, Stéphane; Fajon, Céline; Bardot, Corinne; Bonnemoy, Frédérique; Portelli, Christophe; Bohatier, Jacques
2006-07-20
The effects of the phenylurea herbicide diuron (10 microgl(-1)) on natural riverine microbial communities were investigated using a three-week laboratory microcosm study. During the first six days, a latency period was observed both in the algal and the bacterial communities despite favorable abiotic conditions and independently of diuron exposure. From the second week, an intense algal bloom (chlorophyll a concentrations and cell abundances) was observed in the uncontaminated microcosms but not in the treated microcosms. The bloom stimulated the bacterial community and led to an increase in heterotrophic bacterial production ([3H]thymidine incorporation), activity (CTC reduction) and cell abundance. In parallel, shifts in bacterial community composition were recorded by polymerase chain reaction (PCR)-temporal temperature gradient gel electrophoresis (TTGE) analysis, whereas no major variation was detected using the fluorescent in situ hybridization (FISH) method. In the treated microcosms, the diuron acted not by damaging the initial communities but by inhibiting the algal bloom and indirectly maintaining constant bacterial conditions throughout the experiment. These inhibitory effects, which were recorded in terms of abundance, activity and diversity, suggest that exposure to diuron can decrease the recovery capacities of microbial communities and delay the resumption of an efficient microbial food web despite favorable environmental conditions.
Hassan, Rabeay Y A; Mekawy, Moataz M; Ramnani, Pankaj; Mulchandani, Ashok
2017-05-15
Microbial infections are rapidly increasing; however most of the existing microbiological and molecular detection methods are time consuming and/or cannot differentiate between the viable and dead cells which may overestimate the risk of infections. Therefore, a bioelectrochemical sensing platform with a high potential to the microbial-electrode interactions was designed based on decorated graphene oxide (GO) sheet with alumina (Al 2 O 3 ) nanocrystals. GO-Al 2 O 3 nanocomposite was synthesized using self-assembly of GO and Al 2 O 3 and characterized using the scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman-spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Enhancement of electrocatalytic activity of the composite-modified electrode was demonstrated. Thus, using the GO-Al 2 O 3 nanocomposite modified electrode, the cell viability was determined by monitoring the bioelectrochemical response of the living microbial cells (bacteria and yeast) upon stimulation with carbon source. The bioelectrochemical assay was optimized to obtain high sensitivity and the method was applied to monitor cell viability and screen susceptibility of metabolically active cells (E. coli, B. subtilis, Enterococcus, P. aeruginosa and Salmonella typhi) to antibiotics such as ampicillin and kanamycin. Therefore, the developed assay is suitable for cell proliferation and cytotoxicity testing. Copyright © 2017 Elsevier B.V. All rights reserved.
Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y
1992-11-01
Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented release of lactoferrin, an iron-binding protein which itself could inhibit the growth of C. albicans in vitro. Antibodies against lactoferrin effectively and specifically reduced the anti-C. albicans activity of both LPS-stimulated and unstimulated PMN. Northern (RNA blot) analysis showed enhanced production of mRNAs for interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and in neutrophils within 1 h of stimulation with LPS. The cytokines were also detected in the supernatant of the activated PMN, and their synthesis was prevented by pretreatment of LPS-stimulated PMN with protein synthesis inhibitors, such as emetine and cycloheximide. These inhibitors, however, did not block either lactoferrin release or the anti-Candida activity of LPS-stimulated PMN. These results demonstrate the ability of various bacterial LPSs to augment neutrophil function against C. albicans and suggest that the release of a candidastatic, iron-binding protein, lactoferrin, may contribute to the antifungal effect of PMN. Moreover, the ability to produce cytokines upon stimulation by ubiquitous microbial products such as the endotoxins points to an extraphagocytic, immunomodulatory role of PMN during infection.
Engelen, Bert; Meinken, Kristin; von Wintzingerode, Friedrich; Heuer, Holger; Malkomes, Hans-Peter; Backhaus, Horst
1998-01-01
Herbogil (dinoterb), a reference herbicide, the mineral oil Oleo (paraffin oil used as an additive to herbicides), and Goltix (metamitron) were taken as model compounds for the study of impacts on microbial soil communities. After the treatment of soil samples, effects on metabolic sum parameters were determined by monitoring substrate-induced respiration (SIR) and dehydrogenase activity, as well as carbon and nitrogen mineralization. These conventional ecotoxicological testing procedures are used in pesticide registration. Inhibition of biomass-related activities and stimulation of nitrogen mineralization were the most significant effects caused by the application of Herbogil. Even though Goltix and Oleo were used at a higher dosage (10 times higher), the application of Goltix resulted in smaller effects and the additive Oleo was the least-active compound, with minor stimulation of test parameters at later observation times. The results served as a background for investigation of the power of “fingerprinting” methods in microbial ecology. Changes in catabolic activities induced by treatments were analyzed by using the 95 carbon sources provided by the BIOLOG system. Variations in the complex metabolic fingerprints demonstrated inhibition of many catabolic pathways after the application of Herbogil. Again, the effects of the other compounds were expressed at much lower levels and comprised stimulations as well as inhibitions. Testing for significance by a multivariate t test indicated that the sensitivity of this method was similar to the sensitivities of the conventional testing procedures. The variation of sensitive carbon sources, as determined by factor weights at different observation times, indicated the dynamics of the community shift induced by the Herbogil treatment in more detail. DNA extractions from soil resulted in a collection of molecules representing the genetic composition of total bacterial communities. Distinct and highly reproducible community patterns, or genetic fingerprints, resulting from application of the different herbicides were obtained by the sequence-specific separation of partial 16S rDNA amplification products in temperature gradient gel electrophoresis. Significant pattern variations were quantified. For detailed analysis, application-responsive bands from the Herbogil and Oleo treatments were sequenced and their tentative phylogenetic positions were identified. Data interpretation and the potentials and biases of the additional observation windows on microbial communities are discussed. PMID:9687435
Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo
2018-06-01
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Waldrop, M. P.; Neumann, R. B.; Jones, M.; Manies, K.; Mcfarland, J. W.; Blazewicz, S.; Turetsky, M. R.
2016-12-01
Permafrost thaw is expected to become widespread in interior Alaska over the coming century, resulting in increased CO2 and CH4 fluxes from soils and a positive feedback to global warming. However much of our understanding of the microbial response to thaw is predicated on simple laboratory incubations that preclude the multitude of interactions occurring in soils under field situations. Here, we utilize a time series of 13CO2 and 13CH4 measured in porewater collected from thermokarst bogs of different ages to estimate in-situ reaction rates of microbial respiration, methanogenesis from acetate, methanogenesis from CO2, homoacetogenesis, and methane oxidation from porewater concentrations and 13CO2 and 13CH4. We utilized this modeling technique to test the hypothesis that microbial activities are stimulated soon after permafrost thaw and this effect declines over time. Our field site is a chronosequence of thermokarst bogs at the Alaska Peatland Experiment (APEX) in interior AK where we have observed significant losses of peatland carbon since permafrost collapse over the last half century. Concentrations of dissolved CO2 and CH4 in porewater increased with depth, and were higher in the youngest bog compared to the older bogs. With increasing depth 13CH4 became more depleted while 13CO2 became more enriched. Preliminary modeling results, based upon these porewater gas concentrations and isotope values, indicate that microbial activities are higher in the youngest bogs compared to the older bogs, supporting the hypothesis that accelerated rates of microbial activities in young thermokarst features are responsible for high rates of C losses from these systems. Additionally, model results will be compared to variation in the abundance of methanogens, methane oxidizers, and acetogens as well as process rates measured in lab incubations, providing insights into the mechanisms responsible for these losses.
Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers
Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.
2015-01-01
The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation. PMID:26067226
Omirou, Michalis; Rousidou, Constantina; Bekris, Fotios; Papadopoulou, Kalliope K; Menkissoglou-Spiroudi, Urania; Ehaliotis, Constantinos; Karpouzas, Dimitrios G
2011-01-01
Biofumigation (BIOF) is carried out mainly by the incorporation of brassica plant parts into the soil, and this fumigation activity has been linked to their high glucosinolate (GSL) content. GSLs are hydrolyzed by the endogenous enzyme myrosinase to release isothiocyanates (ITCs). A microcosm study was conducted to investigate the effects induced on the soil microbial community by the incorporation of broccoli residues into soil either with (BM) or without (B) added myrosinase and of chemical fumigation, either as soil application of 2-phenylethyl ITC (PITC) or metham sodium (MS). Soil microbial activity was evaluated by measuring fluorescein diacetate hydrolysis and soil respiration. Effects on the structure of the total microbial community were assessed by phospholipid fatty acid analysis, while the impact on important fungal (ascomycetes (ASC)) and bacterial (ammonia-oxidizing bacteria (AOB)) guilds was evaluated by denaturating gradient gel electrophoresis (DGGE). Overall, B, and to a lesser extent BM, stimulated microbial activity and biomass. The diminished effect of BM compared to B was particularly evident in fungi and Gram-negative bacteria and was attributed to rapid ITC release following the myrosinase treatment. PITC did not have a significant effect, whereas an inhibitory effect was observed in the MS-treated soil. DGGE analysis showed that the ASC community was temporarily altered by BIOF treatments and more persistently by the MS treatment, while the structure of the AOB community was not affected by the treatments. Cloning of the ASC community showed that MS application had a deleterious effect on potential plant pathogens like Fusarium, Nectria, and Cladosporium compared to BIOF treatments which did not appear to inhibit them. Our findings indicate that BIOF induces changes on the structure and function of the soil microbial community that are mostly related to microbial substrate availability changes derived from the soil amendment with fresh organic materials.
Interactions between extracellular polymeric substances and clay minerals affect soil aggregation
NASA Astrophysics Data System (ADS)
Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten
2017-04-01
Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.
Kocur, Chris M D; Lomheim, Line; Molenda, Olivia; Weber, Kela P; Austrins, Leanne M; Sleep, Brent E; Boparai, Hardiljeet K; Edwards, Elizabeth A; O'Carroll, Denis M
2016-07-19
Nanoscale zerovalent iron (nZVI) is an emerging technology for the remediation of contaminated sites. However, there are concerns related to the impact of nZVI on in situ microbial communities. In this study, the microbial community composition at a contaminated site was monitored over two years following the injection of nZVI stabilized with carboxymethyl cellulose (nZVI-CMC). Enhanced dechlorination of chlorinated ethenes to nontoxic ethene was observed long after the expected nZVI oxidation. The abundance of Dehalococcoides (Dhc) and vinyl chloride reductase (vcrA) genes, monitored using qPCR, increased by over an order of magnitude in nZVI-CMC-impacted wells. The entire microbial community was tracked using 16S rRNA gene amplicon pyrosequencing. Following nZVI-CMC injection, a clear shift in microbial community was observed, with most notable increases in the dechlorinating genera Dehalococcoides and Dehalogenimonas. This study suggests that coupled abiotic degradation (i.e., from reaction with nZVI) and biotic degradation fueled by CMC led to the long-term degradation of chlorinated ethenes at this field site. Furthermore, nZVI-CMC addition stimulated dehalogenator growth (e.g., Dehalococcoides) and biotic degradation of chlorinated ethenes.
Stimulation of Methanogenesis by Aldicarb and Several Other N-Methyl Carbamate Pesticides †
Kiene, Ronald P.; Capone, Douglas G.
1986-01-01
Aldicarb and several other N-methyl carbamate pesticides stimulated methane production in anaerobic salt marsh soils and organic-rich aquifer soils. Stimulation was biological and linearly related to the amount of carbamate added. Of the four carbamates studied, methomyl gave the greatest stimulation followed by carbaryl, aldicarb, and baygon. The percent conversions [(moles of CH4 in excess of control/mole of carbamate added) × 100] for methomyl, carbaryl, aldicarb, and baygon were 88, 57, 40, and 11, respectively. Using aldicarb as a model carbamate, we found that monomethylamine (MA) accumulated in sediments as a result of aldicarb addition. MA arises from the N-methyl carbamoyl portion of the carbamates as a result of presumptive biological hydrolysis. MA levels decreased as CH4 production was stimulated, and 2-bromoethane sulfonic acid (a specific inhibitor of mathanogenesis) partially inhibited the loss of MA. These findings suggest that N-methyl carbamates are readily hydrolyzed to MA in the presence of an active microbial population under anaerobic conditions and that methanogenesis is stimulated as a result of the consumption of MA by methanogenic bacteria. PMID:16347082
[S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].
Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin
2013-07-01
LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.
Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng
2017-01-01
Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic field (PEMF) showed significant influence on state-of-the-art pulse magnetic bioelectrochemical systems (PEMF-MBES) in terms of current generation and microbial ecology. EET was instantaneously and reversibly enhanced in MBESs inoculated with either mixed-culture or Geobacter . PEMF notably decreased bacterial and archaeal diversities of the anode biofilms in MMFCs via changing species evenness rather than species richness, and facilitated specific enrichment of exoelectrogenic bacteria ( Geobacter ) on the anode surface. This study demonstrates a new magnetic approach for understanding and facilitating microbial electrochemical activities.
NASA Astrophysics Data System (ADS)
Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge
2010-05-01
Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be detected at some agricultural fields by SOC measurements (Jüschke 2009). Therefore attention has to be drawn especially on the carbon content and quality of the used TWW for irrigation purposes.
Yin, Huajun; Li, Yufei; Xiao, Juan; Xu, Zhenfeng; Cheng, Xinyin; Liu, Qing
2013-07-01
Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m(-2) a(-1) ). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g(-1) root biomass h(-1) ), II (μg C cm(-1) root length h(-1) ) and III (μg C cm(-2) root area h(-1) ) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root-derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R(2) = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root-microbe interactions influence soil organic matter decomposition and N cycling should be incorporated into climate-carbon cycle models to determine reliable estimates of long-term C storage in forests. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Moreno-Barriga, Fabián; Acosta, José A.; Ángeles Muñoz, M.; Faz, Ángel; Zornoza, Raúl
2017-04-01
Creation of Technosols by use of different materials can be a sustainable strategy to reclaim mine tailings spread on the environment. A proper selection of materials is critical to efficiently contribute to soil creation, with development of soil structure, organic matter stabilization and stimulation of microbial growth. For this purpose, a short-term incubation experiment was designed with biochars derived from different feedstocks, added to tailings alone or in combination with marble waste (MaW). We aimed to assess the effects of the different materials on the evolution of C and N contents and pools, greenhouse gas (GHG) emissions, aggregate stability, and microbial biomass and activity. Results showed that carbonates provided by MaW increased pH around the target value of 8, with significant decrease in salinity by precipitation of soluble salts. Organic C and total N remained stable during the incubation, with high recalcitrant indices. Labile and soluble C and N pools were low in Technosols, with no differences with unamended tailings at the end of incubation. All biochars increased aggregate stability with regard to control by 40%, with no effect of addition of MaW. Biochars significantly increased microbial biomass C during the first 7 days of incubation; however, from this date, there were no significant differences with unamended tailings. The β-glucosidase activity was below detection limit in all samples, while arylesterase activity increased in biochar-amended samples favored by increases in pH. CO2 emissions were not significantly affected by any amendment, while N2O emissions increased with the addition of biochars with lower recalcitrance. CH4 emissions decreased in all Technosols receiving biochar. Thus, the combined use of biochar and MaW contributed to soil C sequestration and improved soil structure. However, labile sources of organic compounds would be needed to stimulate microbial populations in the Technosols. Acknowledgements This work was supported by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) [grant number 18920/JLI/13].
Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Danczak, Robert E.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak
2016-01-01
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662
Stegen, James C; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Danczak, Robert E; Fansler, Sarah J; Kennedy, David W; Resch, Charles T; Tfaily, Malak
2016-04-07
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.
A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study.
Misner, Bill D
2007-07-13
Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment. A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil. Application of this novel compound to the external surfaces of feet completely inhibited both aerobic bacteria and yeast-fungi-mold proliferation for 8-hours in spite of being in an enclosed environment compatible to microbial proliferation. Whether topical application of this compound prevents microbial infections in larger populations is not known. This calls for more research collected from subjects exposed to elements that may increase the risk of microbial-induced foot diseases.
NASA Astrophysics Data System (ADS)
Bonnett, Sam; Vink, Stefanie; Baker, Kate; Saghir, Muhammad; Hornung, Andreas
2014-05-01
Biochar application has been shown to positively affect soil microbial functions such as reducing greenhouse gas emissions, increasing water/nutrient availability and increasing crop yields in tropical regions (Lehmann & Joseph, 2009). Understanding the dynamics of biochar application to soil microbial processes is critical for ensuring that soil quality, integrity and sustainability of the soil sub-system are maintained for crop growth. The aim of this British Ecological Society (BES) funded study was to examine the effect of two types of biochar on soil physicochemistry, GHG production, soil enzyme activities and microbial biomass in typical agricultural soil types and whether the effects were altered by drying, rewetting and flooding events. Miscanthus and dairyfibre (a mixture of straw and manure) feedstocks from Harper Adams University were pyrolyzed by Aston University at 450 °C using 100 kg/hr pyroformer technology. Two sieved soil types (sandy loam and clay loam) were mixed with dry biochar to produce 2 and 10 % w/w treatments for comparison with controls and maintained at 15 °C in temperature controlled incubators. At 0, 22, 44, 80, 101, and 114 days, soil was collected for determination of heterotrophic respiration, and microbial biomass by substrate-induced respiration (SIR), by gas headspace incubation and analysis of carbon dioxide (CO2) and nitrous oxide (N2O) by gas chromatography. Soil was sampled for the determination of water-extractable carbon, pH, and extracellular enzyme activities. Soil samples were maintained at field gravimetric water content between 0 and 44 days; air dried between 44 and 80 days; rewetted between 80 and 101 days; and flooded between 101 to 114 days. Results showed that the impact of biochar on soil microbial processes was dependent on biochar type and soil type, the level of biochar application and changes in soil moisture. Biochar affected soil pH particularly within the dairyfibre treatments, potentially due to the dissolution of alkaline minerals, high ash content (Lehmann et al. 2011) and solubility of DOC. Biochar treatments buffered changes in pH caused by drying and flooding but resulted in an increase in DOC. Biochar in general stabilised glucosidase activity whilst Miscanthus biochar stimulated chitinase and phosphatase activity that may have been due to adsorption of either enzyme or substrate as observed by Bailey et al. (2011). Surprisingly, alkaline phosphatase activity was not stimulated by the rise in pH in the diaryfibre treatment and was lower than the control along with the other hydrolase enzymes suggesting that deprotonation of soil phenols at higher pH inhibited activity via the enzyme-latch mechanism that in peatlands explains low rates of decomposition (Freeman et al., 2001; Sinsabaugh et al. 2010). This was supported by observation of higher phenol oxidase activity within the dairyfibre treatment that increased in response to greater availability of substrate and/or increases in pH. All biochars inhibited the production of N2O that was stimulated by the supply of labile carbon from SIR, suggesting that biochar decreased C-substrate availability through adsorption at its surface (Clough and Condron, 2010). Overall, this study has shown that specific feedstocks may be used to produce biochars to control microbial functions in soil such as inhibiting hydrolase enzymes for carbon sequestration as occurs naturally in peatlands or suppress the production of the potent greenhouse gas N2O. References Bailey, V., Fansler, S.J., Smith, J.L. Bolton, H. (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry 43, 296-301. Clough, T. and Condron, L. (2010) Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality, 39,1218-1223. Freeman, C., Ostle, N. and Kang, H. (2001) An enzymic 'latch' on a global carbon store. Nature 409, 149. Lehmann, J and Joseph, S (2009). Biochar for Environmental Management. Earthscan, London. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. (2011) Biochar effects on soil biota - A review. Soil Biology and Biochemistry 43, 1812-1836. Sinsabaugh, R.L. (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42, 391-404.
NASA Astrophysics Data System (ADS)
Wang, Guan; Wang, Rui; Fu, Yaxiu; Duan, Lisha; Yuan, Xizhi; Zheng, Ya; Wang, Ai; Huo, Ran; Su, Na
2018-06-01
Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.
Responses of soil microbial activity to cadmium pollution and elevated CO2.
Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua
2014-03-06
To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.
Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil.
Militon, Cécile; Boucher, Delphine; Vachelard, Cédric; Perchet, Geoffrey; Barra, Vincent; Troquet, Julien; Peyretaillade, Eric; Peyret, Pierre
2010-12-01
The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium. FEMS Microbiology Ecology © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original French government works.
Climate change-driven treeline advances in the Urals alter soil microbial communities
NASA Astrophysics Data System (ADS)
Djukic, Ika; Moiseev, Pavel; Hagedorn, Frank
2016-04-01
Climatic warming may affect microbial communities and their functions either directly through increased temperatures or indirectly by changes in vegetation. Treelines are temperature-limited vegetation boundaries from tundra to forests. In unmanaged regions of the Ural mountains, there is evidence that the forest-tundra ecotone has shifted upward in response to climate warming during the 20th century. Little is known about the effects of the treeline advances on the microbial structure and function and hence they feedbacks on the belowground carbon and nitrogen cycling In our study, we aimed to estimate how ongoing upward shifts of the treeline ecotone might affect soil biodiversity and its function and hence soil carbon (C) and nitrogen (N) dynamics in the Southern and Polar Ural mountains. Along altitudinal gradients reaching from the tundra to forests, we determined the soil microbial community composition (using Phospholipid Fatty Acids method) and quantified the activity of several extracellular enzymes involved in the C and nutrient cycling. In addition, we measured C pools in biomass and soils and quantified C and N mineralization. The results for the top soils, both in South Urals and in the Polar Ural, indicate a close link between climate change driven vegetation changes and soil microbial communities. The observed changes in microbial structure are induced through the resulting more favorable conditions than due to a shift in litter quality. The activities of chitinase were significantly higher under trees than under herbaceous plants, while activities of cellulase and protease declined with altitude from the tundra to the closed forest. In contrast to enzymatic activities, soil carbon stocks did not change significantly with altitude very likely as a result of a balancing out of increased C inputs from vegetation by an enhanced C output through mineralization with forest expansion. The accelerated organic matter turnover in the forest than in the tundra leads to higher contents of mineral N and net nitrification rates. In turn, the increasing N availability may stimulate plant growth and hence, induce a positive feedback between treeline advances and soil nitrogen cycling through soil microbial communities.
Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong
2015-12-30
In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification. Copyright © 2015 Elsevier B.V. All rights reserved.
Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel
2013-03-01
Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.
A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.
Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L
2016-04-13
Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional diversity of soil invertebrates: a potential tool to explain N2O emission?
NASA Astrophysics Data System (ADS)
Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem
2017-04-01
Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, P<0.001). No proof was found to explain faunal-induced N2O emissions through differences in stimulated microbial activity. On the other hand, soil structural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; stepp, A.K.; Dennis, D.M.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
[Development of throat clearing herbal teas].
Puodziūniene, Gene; Janulis, Valdimaras; Milasius, Arvydas; Budnikas, Milasius
2004-01-01
Medicinal herbs in tea for throat clearing are used from ancient times. Taking into consideration the bronchial mucus secretion stimulating and antispasmodic, antimicrobial, antiphlogistic and stimulating effect on the ciliated epithelium two new formulations of throat clearing herbal tea were originated. The first formulation consists of liquorice roots, sweet fennel and thyme, and the second one consists of pine gemmae, thyme and elder flowers. The methods for identification and assay of the active substances of the components were adapted. The purity of the mixtures was regulated by the limitation of the loss on drying, total ash, microbial contamination, contamination with radionuclides, heavy metals, pesticides and foreign matter. Expiry date of both throat clearing herbal teas was confirmed to be 2 years.
NASA Astrophysics Data System (ADS)
Zhang, C.; Keating, K.
2014-12-01
Microbes and microbial processes play a significant role in shaping subsurface environments and are involved in applications ranging from microbially enhanced oil recovery to soil and groundwater contaminant remediation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface; however, due to the complexity of subsurface systems,it is difficult to monitor the growth of microbes and microbial activity in porous media. The focus of this research is to determine if low-field nuclear magnetic resonance (NMR), a method used in well logging to characterize fluids in hydrocarbon reservoirs or water in aquifers, can be used to directly detect the presence and the growth of microbes in geologic media. In this laboratory study, low-field NMR (2 MHz) relaxation measurements were collected on microbial suspensions with measured densities (i.e. biomasses), microbial pellets (live and dead), and inoculated silica. We focus on the direct contribution of microbes to the NMR signals in the absence of biomineralization. Shewanella oneidensis (MR-1), a facultative metal reducer known to play an important role in subsurface environments, were used as a model organism and were inoculated under aerobic condition. Data were collected using a CPMG pulse sequence, which was to determine the T2-distribution, and using a gradient spin-echo (PGSE) plus CPMG pulse sequence, which was used to encode diffusion properties and determine the effective diffusion-spin-spin relaxation correlation (D-T2) plot. Our data show no obvious change in the T2-distribution as S. oneidensis density varied in suspension, but show a clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets. A decrease in the T2-distribution is observed in the inoculated sand column. These results will provide a basis for understanding the effect of microbes within geologic media on low-field NMR measurements. This research is necessary to determine if NMR measurements can ultimately to be used to monitor microbial growth and activity in oil reservoirs or contaminated aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.
2013-03-05
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux throughmore » Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.« less
Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity
Svensson, Sarah L.; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G.; Li, Loretta
2017-01-01
ABSTRACT Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria, a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus. These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. PMID:28536287
Autochthonous microbe-assisted phytoremediation of brown coal mine overburden soil
NASA Astrophysics Data System (ADS)
Hamidović, Saud; Teodorović, Smilja; Lalević, Blažo; Karličić, Vera; Jovanović, Ljubinko; Kiković, Dragan; Raičević, Vera
2015-04-01
One of the largest brown coal mines in Bosnia and Herzegovina (BiH), Kakanj, has been exploited for over a hundred years. As a consequence of decades of exploitation, severe biocenosis disturbance and degradation of the entire ecosystem have occurred, resulting in overburden soil formation. A significant challenge in remediation of degraded mining areas is difficulty in creating conditions favorable for vegetation growth. Thus, numerous remediation technologies have focused on increasing soil nutrient composition, as well as the number and activity of plant growth-promoting bacteria (PGPB), given that they stimulate host plant growth by increasing the availability of essential nutrients (phosphorus, nitrogen, manganese, iron), producing phytohormones, and providing protection from pathogens. The main objective of this research was to characterize autochthonous plant and microbial overburden communities and access their ability to restore these contaminated soils. Phytocenological analysis of vegetation and plant species was performed according to Flora Europaea (2001), from 2011 - 2013. Our results show that plant species were not detected at mine overburden soil in 2011. However, we detected presence of a single plant species, Amaranthus albus L., in 2012. Further, we recorded the presence of five families (Amaranthaceae, Chenopodiaceae, Convolvulaceae, Poaceae and Polygonaceae) in 2013. Microbial abundance and enzymatic activity were also examined during the same period. The diversity of microbial populations in the first year was rather small. Two Bacillus spp., B. simplex and a B. cereus group member, indigenous to mine overburden were isolated and identified using standard macroscopic and microscopic, as well as molecular techniques (Hamidovic et al., submitted). Phosphate solubilizing activity of bacteria was tested on National Botanical Research Institute's phosphate growth medium (1999). Production of ammonia was determined in peptone water with Nessler's reagent. Siderophore production was detected by the method of Schwyn and Neilands, 1987 and quantitative analysis of IAA was performed using the method of Patten and Glick, 2002. Tested PGP activity of the two native Bacillus isolates, under laboratory conditions, indicated that they have the potential to stimulate plant growth. Further, their role in the production of ammonia, phosphate dissolving, and IAA production indicates that they may contribute to the restoration of vegetation cover and habitat stability. These complex interactions between indigenous microbial populations and plant roots can serve as a basis for effective ecoremediation strategies to repairing mine overburden soil.
Megharaj, M; Singleton, I; McClure, N C; Naidu, R
2000-05-01
Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity to soil algal populations, microbial biomass, and soil enzymes (dehydrogenase and urease) in a long-term TPH-polluted site with reference to an adjacent unpolluted site. Microbial biomass, soil enzyme activity, and microalgae declined in medium to high-level (5,200-21,430 mg kg(-1) soil) TPH-polluted soils, whereas low-level (<2,120 mg kg(-1) soil) pollution stimulated the algal populations and showed no effect on microbial biomass and enzymes. However, inhibition of all the tested parameters was more severe in soil considered to have medium-level pollution than in soils that were highly polluted. This result could not be explained by chemical analysis alone. Of particular interest was an observed shift in the species composition of algae in polluted soils with elimination of sensitive species in the medium to high polluted soils. Also, an algal growth inhibition test carried out using aqueous eluates prepared from polluted soils supported these results. Given the sensitivity of algae to synthetic pollutants, alteration in the algal species composition can serve as a useful bioindicator of pollution. The results of this experiment suggest that chemical analysis alone is not adequate for toxicological estimations and should be used in conjunction with bioassays. Furthermore, changes in species composition of algae proved to be more sensitive than microbial biomass and soil enzyme activity measurements.
Chen, Lei; Zhang, Wei; Zhang, Rong; Lin, Kuangfei; He, Lei; Wu, Liqun
2015-08-01
Lead (Pb) and decabromodiphenyl ether (BDE209) are the main pollutants at electronic waste (e-waste) recycling sites (EWRSs), and their potential toxic effects on soil organisms have received extensive attention. However, the impact on soil microorganisms of joint exposure to the two chemicals remains almost unknown. Therefore, indoor incubation tests were performed to explore the adverse impacts of Pb and BDE209 on soil microbial activities and chemical transformation for the first time. The results have demonstrated that BDE209 was barely degraded in all treated groups, indicating that the presence of Pb hardly affected BDE209 dissipation. The fractions analysis according to Tessier suggested that Pb gradually transformed towards more stable fractions in the slightly alkaline soil, thus reducing the bioavailability of Pb. Additionally, increased Pb doses caused significantly higher bioavailability (p < 0.05), and the same trend was clearly observed after simultaneous exposure to BDE209. Generally, single Pb or BDE209 exposure markedly inhibited (p < 0.05 or 0.01) soil microbial biomass C (C mic), while soil basal respiration (SBR) indicated the opposite response trend (inhibition or stimulation for BDE209 or Pb alone, respectively). Compared to the controls, Pb dramatically (p < 0.01) facilitated soil metabolic quotient (qCO2) during the incubation period. After joint exposure to Pb and BDE209, C mic generally declined with increasing exposure concentration, following certain dose-response relationships. However, SBR and qCO2 were highly significantly stimulated (p < 0.01), and more doses of Pb and BDE209 resulted in higher values. The results of these observations have provided a basic understanding of the potential ecological risk of Pb and BDE209 in soil at EWRSs.
Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N
2016-10-01
Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated bacteria. © 2016 John Wiley & Sons Ltd.
Chen, Hongzhang; Shao, Meixue; Li, Hongqiang
2014-03-05
The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.
Oryan, Ahmad; Alemzadeh, Esmat; Moshiri, Ali
2016-05-01
For thousands of years, honey has been used for medicinal applications. The beneficial effects of honey, particularly its anti-microbial activity represent it as a useful option for management of various wounds. Honey contains major amounts of carbohydrates, lipids, amino acids, proteins, vitamin and minerals that have important roles in wound healing with minimum trauma during redressing. Because bees have different nutritional behavior and collect the nourishments from different and various plants, the produced honeys have different compositions. Thus different types of honey have different medicinal value leading to different effects on wound healing. This review clarifies the mechanisms and therapeutic properties of honey on wound healing. The mechanisms of action of honey in wound healing are majorly due to its hydrogen peroxide, high osmolality, acidity, non-peroxide factors, nitric oxide and phenols. Laboratory studies and clinical trials have shown that honey promotes autolytic debridement, stimulates growth of wound tissues and stimulates anti-inflammatory activities thus accelerates the wound healing processes. Compared with topical agents such as hydrofiber silver or silver sulfadiazine, honey is more effective in elimination of microbial contamination, reduction of wound area, promotion of re-epithelialization. In addition, honey improves the outcome of the wound healing by reducing the incidence and excessive scar formation. Therefore, application of honey can be an effective and economical approach in managing large and complicated wounds. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Zheng, Shasha; Hedl, Matija; Abraham, Clara
2014-01-01
Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680
Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S; Inagaki, Fumio; Orphan, Victoria J
2017-10-31
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13 C- or 15 N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
Mei, R; Narihiro, T; Nobu, M K; Liu, W-T
2016-11-01
In anaerobic digesters, temperature fluctuation could lead to process instability and failure. It is still not well understood how digester microbiota as a whole respond to heat shock, and what specific organisms are vulnerable to perturbation or responsible for process recovery after perturbation. To address these questions, a mesophilic benzoate-degrading methanogenic culture enriched from digester was subjected to different levels of heat shock. Three types of methane production profiles after perturbation were observed in comparison to the control: uninhibited, inhibited with later recovery, and inhibited without recovery. These responses were correlated with the microbial community compositions based on the analyses of 16S rRNA and 16S rRNA gene. Specifically, the primary benzoate-degrading syntroph was highly affected by heat shock, and its abundance and activity were both crucial to the restoration of benzoate degradation after heat shock. In contrast, methanogens were stable regardless whether methane production was inhibited. Populations related to 'Candidatus Cloacimonetes' and Firmicutes showed stimulated growth. These observations indicated distinct physiological traits and ecological niches associated with individual microbial groups. The results obtained after exposure to heat shock can be critical to more comprehensive characterization of digester ecology under perturbations. Anaerobic digestion is an essential step in municipal wastewater treatment owing to its striking capacity of reducing wasted sludge and recovering energy. However, as an elaborate microbial process, it requires constant temperature control and is sensitive to heat shock. In this study, we explored the microbial response to heat shock of a methanogenic culture enriched from anaerobic digester sludge. Microorganisms that were vulnerable to perturbation or responsible for process recovery after perturbation were identified. © 2016 The Society for Applied Microbiology.
Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S.; Inagaki, Fumio
2017-01-01
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates. PMID:29078310
NASA Astrophysics Data System (ADS)
Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.
2017-12-01
Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.
Regulation of pesticide degradation in the detritusphere
NASA Astrophysics Data System (ADS)
Pagel, Holger; Poll, Christian; Ingwersen, Joachim; Ditterich, Franziska; Gebala, Aurelia; Kandeler, Ellen; Streck, Thilo
2015-04-01
The detritusphere is a microbial hot spot of C turnover and degradation of pesticides in soils. We aimed at an improved understanding of the regulation mechanisms, which are responsible for stimulated degradation of the herbicide MCPA (2-Methyl-4-chlorophenoxyacetic acid) in response to increased C availability in the detritusphere. We combined a microcosm experiment with biogeochemical modeling and linked genetic information on abundances of total bacteria, fungi and specific pesticide degraders in soil to the coupled biogeochemical dynamics of C and MCPA. As a result of diffusive and convective C transport from litter into the adjacent soil we found increased dissolved organic C (DOC) in soil up to a 6 mm distance to litter (detritusphere). In the detritusphere, we observed increased microbial C and accelerated MCPA degradation. These dynamics were accurately reproduced by the model. Whereas the observed increase of bacteria and pesticide degrader populations in the detritusphere was simulated satisfactorily, the model could not reproduce the steep increase of fungi indicated by the fungal marker gene. Our simulations suggest that bacterial MCPA degraders mostly benefited from high-quality DOC, whereas fungal activity and growth were specifically stimulated by low-quality DOC. According to the simulations, MCPA was predominantly degraded via fungal co-metabolism. Our study demonstrates that biogeochemical processes in soil hotspots are regulated by the interaction of transport processes and microbial dynamics. It further reveals that mathematical modelling is as powerful tool to gain comprehensive insight into the microbial regulation of matter cycling in soil. Genetic information has a high potential to parameterize and evaluate complex mechanistic models, but model approaches must be improved based on extended information on gene dynamics at the cellular level.
Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.
Jones, Stephanie E; Elliot, Marie A
2017-07-01
Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anoxia stimulates microbially catalyzed metal release from Animas River sediments.
Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J
2017-04-19
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.
Van den Abbeele, Pieter; Taminiau, Bernard; Pinheiro, Iris; Duysburgh, Cindy; Jacobs, Heidi; Pijls, Loek; Marzorati, Massimo
2018-02-07
Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.
Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
Hall, Steven J; Silver, Whendee L
2013-09-01
Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P < 0.0001, pseudo R(2) = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils. © 2013 John Wiley & Sons Ltd.
Ecological restoration alters microbial communities in mine tailings profiles
NASA Astrophysics Data System (ADS)
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-04-01
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.
Ecological restoration alters microbial communities in mine tailings profiles.
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-04-29
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.
Cappello, S; Caruso, G; Zampino, D; Monticelli, L S; Maimone, G; Denaro, R; Tripodo, B; Troussellier, M; Yakimov, M; Giuliano, L
2007-01-01
Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.
Ecological restoration alters microbial communities in mine tailings profiles
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-01-01
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064
[Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].
Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng
2016-01-01
The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment increased the proportion of fungivores especially in the drought period, suggesting the biochar was the preferred fungal energy channel in comparison to soil without biochar addition. In summary, complex patterns occurred not only due to the application rate of biochar as well as their interactions with N fertilization but also due to the drought and wet periods. It is, therefore, necessary to consider different ecological factors when evaluating the effects of biochar in future.
Potential of wheat bran to promote indigenous microbial enhanced oil recovery.
Zhan, Yali; Wang, Qinghong; Chen, Chunmao; Kim, Jung Bong; Zhang, Hongdan; Yoza, Brandon A; Li, Qing X
2017-06-01
Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO 3 and NH 4 H 2 PO 4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (A n -) and anaerobic (A 0 -) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, A n - and early A 0 -stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A 0 -stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.
Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.
Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo
2014-10-10
An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.
Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system.
Baiget, Mar; Constantí, Magda; López, M Teresa; Medina, Francesc
2013-09-25
Reduction of soluble uranium(VI) to insoluble uranium(IV) for remediating a uranium-contaminated effluent (EF-03) was examined using a biotic and abiotic integrated system. Shewanella putrefaciens was first used and reduced U(VI) in a synthetic medium but not in the EF-03 effluent sample. Subsequently the growth of autochthonous microorganisms was stimulated with lactate. When lactate was supported on active carbon 77% U(VI) was removed in 4 days. Separately, iron nanoparticles that were 50 nm in diameter reduced U(VI) by 60% in 4 hours. The efficiency of uranium(VI) removal was improved to 96% in 30 min by using a system consisting of lactate and iron nanoparticles immobilized on active carbon. Lactate also stimulated the growth of potential uranium-reducing microorganisms in the EF-03 sample. This system can be efficiently used for the bioremediation of uranium-contaminated effluents. Copyright © 2013 Elsevier B.V. All rights reserved.
Hu, Jun; Ran, Chao; He, Suxu; Cao, Yanan; Yao, Bin; Ye, Yuantu; Zhang, Xuezhen; Zhou, Zhigang
2016-06-01
The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41
NASA Astrophysics Data System (ADS)
Medvedeff, C.; Hogue, B.; Inglett, P.
2011-12-01
Prescribed fire is a common restoration and maintenance technique in the southern United States. Prescribed burns coupled with frequent natural fires in South Florida can have devastating effects on ecosystem function. To determine the effect fire residues have on carbon biogeochemical cycling litter material was obtained from two restored and one native marl wetland in Everglades National Park and manipulated in a laboratory setting to produce ash and vegetation derived char. Based on vegetation biomass removal pre and post fire (insitu) appropriate aliquots of each fire residue was added to experimental microcosms as a soil amendment. Soil enzymes (β-glucosidase, cellobiohydrolase, phosphatase, bis-phosphate and leucine amino peptidase), aerobic and anaerobic respiration (CO2) potentials, extractable C and methanogenesis were measured over a 25 day period. Regardless of site C enzymes responded to both amendments within 5 days of addition. Similarly amended soil contained more extractable carbon in the reference and one of the restored sites. In the restored sites ash and char inhibited methanogenesis, had no effect on anaerobic CO2 potentials, but stimulated aerobic respiration after ten days. In contrast, within the first ten days phosphatase enzyme activity was lower in the ash treatment when compared to the control treatment and stimulation of aerobic respiration was observed in both treatment soils. After ten days ash stimulated methanogenic processing while suppressing anaerobic CO2 production suggesting methanogens in this ecosystem may be dependant on usable carbon substrates derived from aerobic microbial processing. This study illustrates the variable response of C parameters to complete and incomplete combusted materials produced from both prescribed and natural fires with particular importance to fire adapted ecosystems.
Kim, Mi Eun; Jung, Inae; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik
2017-01-01
The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos, cox-2, il-1β, tnf-α, and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics. PMID:29104209
Kim, Mi Eun; Jung, Inae; Lee, Jong Suk; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik
2017-11-01
The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos , cox-2 , il-1β , tnf-α , and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.
Biogenic arsenic volatilisation from an acidic wetland soil
NASA Astrophysics Data System (ADS)
Ilgen, Gunter; Huang, Jen-How; Lu, Shipeng; Tian, Liyan; Alewell, Christine
2014-05-01
Biogenic arsenic (As) volatilisation was budgeted at 26000 t yr-1as the largest input of the global As release into the atmosphere, thereby playing an important role in the biogeochemical cycle of As in the surface environment. In order to quantify As volatilisation from wetland soils and to elucidate the geochemical and microbiological factors governing As volatilisation, a series of incubations with an acidic wetland soil collected in NE-Bavaria in Germany were performed at 15oC for 4 months with addition of NaN3, arsenite (As(III)), FeCl3, NaSO4 and NaOAc with N2 and air in the headspace. Speciation of gaseous As in the headspace using GC-ICP-MS/ ESI-MS coupling showed the predominance of either arsine (AsH3) or trimethylarsine ((CH3)3As) in all treatments during the time course of incubation. Monomethylarsine ((CH3)AsH2) and dimethylarsine ((CH3)2AsH) could be only detected in trace amounts. Arsenic speciation in porewater with HPLC-ICP-MS revealed the predominance of As(III) and methylated As was never detectable. Arsenic volatilisation summed to 2.3 ng As (88% as AsH3) in the control incubations, which accounted for ~0.25 % of the total As storage in the wetland soil. Treatments with 10 mM NaN3 resulted in emission of only 0.03 ng As. In contrast, addition of 10 mM NaOAc stimulated microbial activities in wetland soils and subsequently rose As volatilisation to 8.5 ng As. It could be therefore concluded that As volatilisation from the wetland soils was mainly biological. Spiking 67 μM As(III) increased 10 times of As volatilisation and the proportion of methylated arsines increased to 66%, which is supposed to be caused by the largely enhanced As availability in porewater for microbes (480 ppb, ~65 times higher than those in the controls). Adding 10 mM FeCl3 stimulated microbial Fe(III) reducing activities but suppressed other microbial activities by lowering soil pH from 5 to 3.6, decreasing consequently As volatilisation to 0.3 ng As. The much lower redox potential (-250 mV) than the other incubations (-50-50 mV) caused by microbial sulphidisation may benefit microbial As methylation. However, incubations manipulated with 10 mM NaSO4 decreased As volatilisation to 0.8 ng As in accompany with the very low As concentrations in porewater (~1 ppb), since sulphidisation may trap solution As by forming AsS precipitates. In addition, the presence of O2 in headspace had no significant influence on the amounts and speciation of As volatilisation. This study evidenced the strong linkage between the microorganism and As volatilisation from wetland soils and furthermore highlighted the potential utilising microbial As volatilisation to remediate As polluted soils. Further studies will focus on investigating the correlations between As volatilisation and microbial As methylation by quantifying the arsenite methyltransferase (arsM) gene-containing microbial communities in treatments mentioned above, using quantitative PCR assay with arsM-specific primer set.
Wang, Lei; Yang, Fang; E, Yaoyao; Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong
2016-01-01
Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF) on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1) control without fertilization (CK); (2) chemical fertilizer application (CF); and (3) bioorganic fertilizer application (BOF). The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009–2015). The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0–20 cm, 20–40 cm, and 40–60 cm), e.g., the relative abundance of bio-control bacteria (Xanthomonadales, Lysobacter, Pseudomonas, and Bacillus), Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria, and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter, and Ohtaekwangia. These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity. PMID:27965631
Wang, Lei; Yang, Fang; E, Yaoyao; Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong
2016-01-01
Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF) on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1) control without fertilization (CK); (2) chemical fertilizer application (CF); and (3) bioorganic fertilizer application (BOF). The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009-2015). The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0-20 cm, 20-40 cm, and 40-60 cm), e.g., the relative abundance of bio-control bacteria ( Xanthomonadales, Lysobacter, Pseudomonas , and Bacillus ), Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria , and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter , and Ohtaekwangia . These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity.
Fu, Congsheng; Wang, Guiling; Bible, Kenneth; Goulden, Michael L; Saleska, Scott R; Scott, Russell L; Cardon, Zoe G
2018-04-13
Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world-wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe-controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system-scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO 2 (or reduce annual CO 2 release to the atmosphere). Moreover, engagement of CLM4.5's ground-truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO 2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems. © 2018 John Wiley & Sons Ltd.
Microbial dehalogenation of organohalides in marine and estuarine environments.
Zanaroli, Giulio; Negroni, Andrea; Häggblom, Max M; Fava, Fabio
2015-06-01
Marine sediments are the ultimate sink and a major entry way into the food chain for many highly halogenated and strongly hydrophobic organic pollutants, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenylethers (PBDEs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Microbial reductive dehalogenation in anaerobic sediments can transform these contaminants into less toxic and more easily biodegradable products. Although little is still known about the diversity of respiratory dehalogenating bacteria and their catabolic genes in marine habitats, the occurrence of dehalogenation under actual site conditions has been reported. This suggests that the activity of dehalogenating microbes may contribute, if properly stimulated, to the in situ bioremediation of marine and estuarine contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting.
Robledo-Mahón, Tatiana; Aranda, Elisabet; Pesciaroli, Chiara; Rodríguez-Calvo, Alfonso; Silva-Castro, Gloria Andrea; González-López, Jesús; Calvo, Concepción
2018-06-01
Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable cover in the composting of sewage sludge allow a noticeable reduction in the process-time comparing to conventional open windrows. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbiology: A microbial arsenic cycle in a salt-saturated, extreme environment
Oremland, R.S.; Kulp, T.R.; Blum, J.S.; Hoeft, S.E.; Baesman, S.; Miller, L.G.; Stolz, J.F.
2005-01-01
Searles Lake is a salt-saturated, alkaline brine unusually rich in the toxic element arsenic. Arsenic speciation changed from arsenate [As(V)] to arsenite [As(III)] with sediment depth. Incubated anoxic sediment slurries displayed dissimilatory As(V)-reductase activity that was markedly stimulated by H2 or sulfide, whereas aerobic slurries had rapid As(III)-oxidase activity. An anaerobic, extremely haloalkaliphilic bacterium was isolated from the sediment that grew via As(V) respiration, using either lactate or sulfide as its electron donor. Hence, a full biogeochemical cycle of arsenic occurs in Searles Lake, driven in part by inorganic electron donors.
NASA Astrophysics Data System (ADS)
Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.
2017-11-01
Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When activation of SMG-T cells occurred in SMG, the T cells produced less IL-2 than control T cell cultures upon incubation with PMA and ionomycin. Short-term (24 h) SMG culture and activation of T cells by DC resulted in enhanced IL-2 production compared to Static-T cells, however, when culture was extended to 120 h, SMG-T cells secreted significantly less IL-2 than Static-T cells. SMG-T cell IL-2 doubled upon stimulation of the DC prior to addition to the T cell culture but remained less than control. SMG-T cell resistance to activation appeared comparable to the phenomenon of T cell exhaustion observed in patients with chronic diseases or persistent tumors. That is, long-term culture of T cells in SMG resulted in increased expression of the inhibitory receptor, CTLA-4. Blockade of CTLA-4 interaction with DC ligands resulted in improved T cell IL-2 production. Overall, this is the first study to determine the efficacy of DC in activating peptide-specific T cells. Furthermore, the findings suggests that countermeasures to restore T cell responsiveness in astronauts during long-term spaceflight or those living in microgravity environments should target possible inhibitory pathways that arise on activated T cells following stimulation.
Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K
2017-11-01
Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When activation of SMG-T cells occurred in SMG, the T cells produced less IL-2 than control T cell cultures upon incubation with PMA and ionomycin. Short-term (24 h) SMG culture and activation of T cells by DC resulted in enhanced IL-2 production compared to Static-T cells, however, when culture was extended to 120 h, SMG-T cells secreted significantly less IL-2 than Static-T cells. SMG-T cell IL-2 doubled upon stimulation of the DC prior to addition to the T cell culture but remained less than control. SMG-T cell resistance to activation appeared comparable to the phenomenon of T cell exhaustion observed in patients with chronic diseases or persistent tumors. That is, long-term culture of T cells in SMG resulted in increased expression of the inhibitory receptor, CTLA-4. Blockade of CTLA-4 interaction with DC ligands resulted in improved T cell IL-2 production. Overall, this is the first study to determine the efficacy of DC in activating peptide-specific T cells. Furthermore, the findings suggests that countermeasures to restore T cell responsiveness in astronauts during long-term spaceflight or those living in microgravity environments should target possible inhibitory pathways that arise on activated T cells following stimulation. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake.
Batanero, Gema L; León-Palmero, Elizabeth; Li, Linlin; Green, Andy J; Rendón-Martos, Manuel; Suttle, Curtis A; Reche, Isabel
2017-09-22
Waterbird aggregations and droughts affect nutrient and microbial dynamics in wetlands. We analysed the effects of high densities of flamingos on nutrients and microbial dynamics in a saline lake during a wet and a dry hydrological year, and explored the effects of guano on prokaryotic growth. Concentrations of dissolved organic carbon, total phosphorus and total nitrogen in the surface waters were 2-3 fold higher during the drought and were correlated with salinity. Flamingos stimulated prokaryotic heterotrophic production and triggered cascading effects on prokaryotic abundance, viruses and dissolved nitrogen. This stimulus of heterotrophic prokaryotes was associated with soluble phosphorus inputs from guano, and also from sediments. In the experiments, the specific growth rate and the carrying capacity were almost twice as high after guano addition than in the control treatments, and were coupled with soluble phosphorus assimilation. Flamingo guano was also rich in nitrogen. Dissolved N in lake water lagged behind the abundance of flamingos, but the causes of this lag are unclear. This study demonstrates that intense droughts could lead to increases in total nutrients in wetlands; however, microbial activity is likely constrained by the availability of soluble phosphorus, which appears to be more dependent on the abundance of waterbirds.
Pereira, Arthur P A; Zagatto, Maurício R G; Brandani, Carolina B; Mescolotti, Denise de Lourdes; Cotta, Simone R; Gonçalves, José L M; Cardoso, Elke J B N
2018-01-01
Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0-20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis , and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient ( q CO 2 ) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development.
Wang, Jing; Liu, Lingli; Wang, Xin; Chen, Yiwei
2015-05-01
Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter biodegradability was offset by its negative effect on microbial activity. Our results also suggested that UV radiation could alter the N cycle during decomposition, primarily by inhibiting N immobilization. © 2014 John Wiley & Sons Ltd.
Pereira, Arthur P. A.; Zagatto, Maurício R. G.; Brandani, Carolina B.; Mescolotti, Denise de Lourdes; Cotta, Simone R.; Gonçalves, José L. M.; Cardoso, Elke J. B. N.
2018-01-01
Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0–20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis, and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient (qCO2) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development. PMID:29670606
A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study
Misner, Bill D
2007-01-01
Background Athlete's Foot (Tinea pedis) is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment. Methods A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1) after 48-hours feet enclosure, (2) after washing feet, and (3) after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil. Conclusion Application of this novel compound to the external surfaces of feet completely inhibited both aerobic bacteria and yeast-fungi-mold proliferation for 8-hours in spite of being in an enclosed environment compatible to microbial proliferation. Whether topical application of this compound prevents microbial infections in larger populations is not known. This calls for more research collected from subjects exposed to elements that may increase the risk of microbial-induced foot diseases. PMID:17908343
NASA Astrophysics Data System (ADS)
Meier, I.; Phillips, R.
2012-12-01
The stimulatory effect of elevated atmospheric CO2 under global climate change on forest productivity has been predicted to decrease over time as pools of available N in soil become depleted, but empirical support for such progressive N limitation has been lacking. Increased N acquisition from soil depleted in inorganic nitrogen requires stimulation of the microbial processing of organic N, possibly through increasing C supply to soil by plant roots or mycorrhizal hyphae. Increases in (mycorr)rhizosphere C fluxes could stimulate microbes to produce extra-cellular enzymes that release N from SOM, feeding back from soil microsites to ecosystem-scale processes. We investigated the influence of elevated CO2 on root exudation and soil enzyme activity at the Duke Forest FACE site, USA, where loblolly pine (Pinus taeda L.) stands have been exposed to elevated CO2 for 14 years and N fertilization for five years. In each plot, root boxes containing acetate windows were installed in 2008. Two years after installation, we collected soils adjacent to root tips (the rhizosphere), hyphal tips (the hyphosphere) and bulk soil. We measured in situ root exudation rates from intact pine roots. Study objectives were to analyze (i) the influence of atmospheric CO2 on root exudation and extra-cellular enzyme activities, (ii) the influence of soil N availability in regulating these activities, and (iii) the relationship between the activities of enzymes involved in N cycling in soils and gross N transformations at soil microsites. Elevated atmospheric CO2 significantly increased the activity of β-1-4-N-acetylglucosaminidase (NAG) in the rhizosphere by almost 2.5 times (39 to 95 nmol h-1 g-1), and 1.6fold in the hyphosphere relative to ambient plots. NAG is an enzyme involved in the degradation of chitin from the cell walls of soil organisms, releasing absorbable forms of nitrogen. The activity of peroxidase, which degrades aromatic C compounds of SOM, increased significantly in the hyphosphere of stands exposed to elevated CO2. Nitrogen fertilization diminished this effect of elevated CO2 on enzyme activities at microsites. Our results show that the metabolism of microbial communities is shifted to the decomposition of organic N under elevated atmospheric CO2, presumably stimulated by N limitation and increased root C exudation.
Biostimulation involves stimulating indigenous microbial cultures by adding nutrients whereas bioaugmentation involves introducing microbial cultures that are particularly adept at degrading these contaminants into the target aquifer. This demonstration involved biostimulation fo...
Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium.
Ren, Cheng-Gang; Kong, Cun-Cui; Bian, Bian; Liu, Wei; Li, Yan; Luo, Yong-Ming; Xie, Zhi-Hong
2017-09-02
Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.
D. Jean Lodge; Dirk Winter; Grizelle Gonzalez; Naomi Clum
2016-01-01
Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20â50 cm away from large trunks of two...
NASA Astrophysics Data System (ADS)
Zhang, Chi; Keating, Kristina; Revil, Andre
2015-04-01
Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets was also observed. These results will provide a basis for understanding the effect of microbes within geologic media on SIP and low-field NMR measurements. This research suggests that both SIP and NMR have the potential to monitor microbial growth and activities in the subsurface and could provide spatiotemporal variations in bacterial abundance in porous media.
Biofouling of marbles by oxygenic photosynthetic microorganisms.
Karaca, Zeki; Öztürk, Ayten; Çolak, Emel
2015-08-01
Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.
Wilson, Jayne Louise; Jesse, Helen E.; Hughes, Bethan; Lund, Victoria; Naylor, Kathryn; Davidge, Kelly S.; Cook, Gregory M.; Mann, Brian E.
2013-01-01
Abstract Aims: Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. Results: CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H+/O quotients, i.e., H+ extrusion on pulsing anaerobic cells with O2) show that respiratory stimulation cannot be attributed to true “uncoupling,” that is, dissipation of the protonmotive force, or to direct stimulation of oxidase activity. Our data are consistent with CORM-3 facilitating the electrogenic transmembrane movement of K+ (or Na+), causing a stimulation of respiration and H+ pumping to compensate for the transient drop in membrane potential (ΔΨ). The effects on respiration are not mimicked by CO gas or control Ru compounds that do not release CO. Inhibition of respiration and loss of bacterial viability elicited by CORM-3 are reversible by white light, unambiguously identifying heme-containing oxidase(s) as target(s). Innovation: This is the most complete study to date of the antimicrobial action of a CO-RM. Noteworthy are the demonstration of respiratory stimulation, electrogenic ion transport, and photosensitive activity, establishing terminal oxidases and ion transport as primary targets. Conclusion: CORM-3 has multifaceted effects: increased membrane permeability, inhibition of terminal oxidases, and perhaps other unidentified mechanisms underlie its effectiveness in tackling microbial pathogenesis. Antioxid. Redox Signal. 19, 497–509. PMID:23186316
Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.
2016-01-01
Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells had statistically similar microbial communities despite significant changes in environmental parameters between oil fields. Together, this implies that no single microbial population is a reliable indicator of a reservoir's ability to degrade crude oil to methane, and that geochemistry may be a more important indicator for selecting a reservoir suitable for microbial enhancement of natural gas generation.
Fernández, D A; Roldán, A; Azcón, R; Caravaca, F; Bååth, E
2012-05-01
Our aim was to examine the effect of water stress on plant growth and development of two native plant species (Tetraclinis articulata and Crithmum maritimum) and on microbial community composition and activity in the rhizosphere soil, following the addition of an organic amendment, namely sugar beet residue (SBR), and/or the inoculation with an arbuscular mycorrhizal (AM) fungus, namely Glomus mosseae, in a non-sterile heavy metal-polluted soil. The AM inoculation did not have any significant effect on plant growth of both species. In T. articulata, SBR increased shoot growth, foliar P, total phospholipid fatty acids (PLFA), fungi-related PLFA, AM fungi-related neutral lipid fatty acid, bacterial gram-positive/gram-negative PLFA ratio and the β-glucosidase and dehydrogenase activities. SBR and AM inoculation increased phosphatase activity in T. articulata plants grown under drought conditions. In both plants, there was a synergistic effect between AM inoculation and SBR on mycorrhizal colonisation under drought conditions. In C. maritimum, the increase produced by the SBR on total amounts of PLFA, bacterial gram-positive-related PLFA and bacterial gram-negative-related PLFA was considerably higher under drought conditions. Our results suggest that the effectiveness of the amendment with regard to stimulating microbial communities and plant growth was largely limited by drought, particularly for plant species with a low degree of mycorrhizal colonisation.
Das, Amal Chandra; Debnath, Anjan
2006-11-01
A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon. We also demonstrate that a shift in microbial functional traits that favor the productionmore » of hygroscopic compounds alter the efflux of carbon dioxide following soil rewetting. Under drought the composition of the dissolved organic carbon pool changed in a manner consistent with a microbial metabolic response. We hypothesize that this microbial ecophysiological response to changing soil moisture elevates the intracellular carbon demand stimulating extracellular enzyme production, that prompts the observed decline in more complex carbon compounds (e.g., cellulose and lignin). Furthermore, a metabolic response to drought appeared to condition (biologically and physically) the soil, notably through the production of polysaccharides, particularly in experimental plots that had been pre-exposed to a short-term drought. This hysteretic response, in addition to an observed drought-related decline in phosphorus concentration, may have been responsible for a comparatively modest CO 2 efflux following wet-up in drought plots relative to control plots.« less
Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; Hao, Zhao; Ye, Zaw; Bowen, Ben P.; Lim, Hsiao Chien; Nico, Peter S.; Holman, Hoi-Ying; Gilbert, Benjamin; Silver, Whendee L.; Northen, Trent R.; Brodie, Eoin L.
2016-01-01
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon. We also demonstrate that a shift in microbial functional traits that favor the production of hygroscopic compounds alter the efflux of carbon dioxide following soil rewetting. Under drought the composition of the dissolved organic carbon pool changed in a manner consistent with a microbial metabolic response. We hypothesize that this microbial ecophysiological response to changing soil moisture elevates the intracellular carbon demand stimulating extracellular enzyme production, that prompts the observed decline in more complex carbon compounds (e.g., cellulose and lignin). Furthermore, a metabolic response to drought appeared to condition (biologically and physically) the soil, notably through the production of polysaccharides, particularly in experimental plots that had been pre-exposed to a short-term drought. This hysteretic response, in addition to an observed drought-related decline in phosphorus concentration, may have been responsible for a comparatively modest CO2 efflux following wet-up in drought plots relative to control plots. PMID:27014243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Matthew
Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the ratesmore » of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H 2O and CO 2 management.« less
Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; ...
2016-03-15
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon. We also demonstrate that a shift in microbial functional traits that favor the productionmore » of hygroscopic compounds alter the efflux of carbon dioxide following soil rewetting. Under drought the composition of the dissolved organic carbon pool changed in a manner consistent with a microbial metabolic response. We hypothesize that this microbial ecophysiological response to changing soil moisture elevates the intracellular carbon demand stimulating extracellular enzyme production, that prompts the observed decline in more complex carbon compounds (e.g., cellulose and lignin). Furthermore, a metabolic response to drought appeared to condition (biologically and physically) the soil, notably through the production of polysaccharides, particularly in experimental plots that had been pre-exposed to a short-term drought. This hysteretic response, in addition to an observed drought-related decline in phosphorus concentration, may have been responsible for a comparatively modest CO 2 efflux following wet-up in drought plots relative to control plots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hao; He, Zhili; Wang, Aijie
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; ...
2017-10-27
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye
2018-01-01
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.
Wang, Shanyun; Wang, Weidong; Liu, Lu; Zhuang, Linjie; Zhao, Siyan; Su, Yu; Li, Yixiao; Wang, Mengzi; Wang, Cheng; Xu, Liya; Zhu, Guibing
2018-05-24
Artificial microbial nitrogen (N) cycle hotspots in the plant-bed/ditch system were developed and investigated based on intact core and slurry assays measurement using isotopic tracing technology, quantitative PCR and high-throughput sequencing. By increasing hydraulic retention time and periodically fluctuating water level in heterogeneous riparian zones, hotspots of anammox, nitrification, denitrification, ammonium (NH 4 + ) oxidation, nitrite (NO 2 - ) oxidation, nitrate (NO 3 - ) reduction and DNRA were all stimulated at the interface sediments, with the abundance and activity being about 1-3 orders of magnitude higher than those in nonhotspots. Isotopic pairing experiments revealed that in microbial hotspots, nitrite sources were higher than the sinks, and both NH 4 + oxidation (55.8%) and NO 3 - reduction (44.2%) provided nitrite for anammox, which accounted for 43.0% of N-loss and 44.4% of NH 4 + removal in riparian zones but did not involve nitrous oxide (N 2 O) emission risks. High-throughput analysis identified that bacterial quorum sensing mediated this anammox hotspot with B.fulgida dominating the anammox community, but it was B. anammoxidans and Jettenia sp. that contributed more to anammox activity. In the nonhotspot zones, the NO 2 - source (NO 3 - reduction dominated) was lower than the sink, limiting the effects on anammox. The in situ N 2 O flux measurement showed that the microbial hotspot had a 27.1% reduced N 2 O emission flux compared with the nonhotspot zones.
Yang, Wenhao; Zhang, Taoxiang; Lin, Sen; Ni, Wuzhong
2017-06-01
The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.
Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study
Endres, Sonja; Galgani, Luisa; Riebesell, Ulf; Schulz, Kai-Georg; Engel, Anja
2014-01-01
Marine bacteria are the main consumers of freshly produced organic matter. Many enzymatic processes involved in the bacterial digestion of organic compounds were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years but the consequences for microbial physiology, organic matter cycling and marine biogeochemistry are still unresolved. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging initially from ca. 280 to 3000 µatm and sampled every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During the first phytoplankton bloom, 5–10% more transparent exopolymer particles were formed in the high pCO2 mesocosms. Simultaneously, the efficiency of the protein-degrading enzyme leucine aminopeptidase increased with decreasing pH resulting in up to three times higher values in the highest pCO2/lowest pH mesocosm compared to the controls. In general, total and cell-specific aminopeptidase activities were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported up to 28% higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean. PMID:24941307
Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun
2015-01-01
Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966
Siles, José A; Margesin, Rosa
2018-05-01
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel
2015-12-30
We studied in the laboratory the bioremediation effects over a 100-day period of three edaphic biostimulants (BS) obtained from sewage sludge (SS) and from two different types of chicken feathers (CF1 and CF2), in a soil polluted with three polycyclic aromatic hydrocarbons (PAH) (phenanthrene, Phe; pyrene, Py; and benzo(a)pyrene, BaP), at a concentration of 100 mg kg(-1) soil. We determined their effects on enzymatic activities and on soil microbial community. Those BS with larger amounts of proteins and a higher proportion of peptides (<300 daltons), exerted a greater stimulation on the soil biochemical properties and microbial community, possibly because low molecular weight proteins can be easily assimilated by soil microorganisms. The soil dehydrogenase, urease, β-glucosidase and phosphatase activities and microbial community decreased in PAH-polluted soil. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe. The application of the BS to PAH-polluted soils decreased the inhibition of the soil biological properties, principally at 7 days into the experiment. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe and was higher in polluted soils amended with CF2, followed by SS and CF1, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Engineering monolayer poration for rapid exfoliation of microbial membranes.
Pyne, Alice; Pfeil, Marc-Philipp; Bennett, Isabel; Ravi, Jascindra; Iavicoli, Patrizia; Lamarre, Baptiste; Roethke, Anita; Ray, Santanu; Jiang, Haibo; Bella, Angelo; Reisinger, Bernd; Yin, Daniel; Little, Benjamin; Muñoz-García, Juan C; Cerasoli, Eleonora; Judge, Peter J; Faruqui, Nilofar; Calzolai, Luigi; Henrion, Andre; Martyna, Glenn J; Grovenor, Chris R M; Crain, Jason; Hoogenboom, Bart W; Watts, Anthony; Ryadnov, Maxim G
2017-02-01
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Grunert, Oliver; Reheul, Dirk; Van Labeke, Marie-Christine; Perneel, Maaike; Hernandez-Sanabria, Emma; Vlaeminck, Siegfried E; Boon, Nico
2016-05-01
Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated €15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong
2015-03-20
Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.
Howell, Christopher C.; Hilton, Sally; Semple, Kirk T.; Bending, Gary D.
2014-01-01
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906
Howell, Christopher C; Hilton, Sally; Semple, Kirk T; Bending, Gary D
2014-10-01
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. Copyright © 2014. Published by Elsevier Ltd.
Nutrients and temperature additively increase stream microbial respiration
David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski
2017-01-01
Rising temperatures and nutrient enrichment are coâoccurring globalâchange drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...
USDA-ARS?s Scientific Manuscript database
Irrigated soils appear to be particularly susceptible to SOC decomposition and residue removal will likely exacerbate this effect by reducing C inputs, increasing soil temperature, and potentially stimulating microbial biomass. However, little is known about the long-term impacts on the soil microb...
Brewer, Elizabeth; Yarwood, Rockie; Lajtha, Kate; Myrold, David
2013-01-01
One explanation given for the high microbial diversity found in soils is that they contain a large inactive biomass that is able to persist in soils for long periods of time. This persistent microbial fraction may help to buffer the functionality of the soil community during times of low nutrients by providing a reservoir of specialized functions that can be reactivated when conditions improve. A study was designed to test the hypothesis: in soils lacking fresh root or detrital inputs, microbial community composition may persist relatively unchanged. Upon addition of new inputs, this community will be stimulated to grow and break down litter similarly to control soils. Soils from two of the Detrital Input and Removal Treatments (DIRT) at the H. J. Andrews Experimental Forest, the no-input and control treatment plots, were used in a microcosm experiment where Douglas-fir needles were added to soils. After 3 and 151 days of incubation, soil microbial DNA and RNA was extracted and characterized using quantitative PCR (qPCR) and 454 pyrosequencing. The abundance of 16S and 28S gene copies and RNA copies did not vary with soil type or amendment; however, treatment differences were observed in the abundance of archaeal ammonia-oxidizing amoA gene abundance. Analysis of ∼110,000 bacterial sequences showed a significant change in the active (RNA-based) community between day 3 and day 151, but microbial composition was similar between soil types. These results show that even after 12 years of plant litter exclusion, the legacy of community composition was well buffered against a dramatic disturbance. PMID:23263952
Lau, Ming Woei
2015-12-08
A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. O. Hitzman; A. K. Stepp; D. M. Dennis
This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters withmore » cultures and conditions representative of oil reservoirs. Field pilot studies are underway.« less
Effects of P and C inputs on microbial activities in P limiting bulk and rhizosphere soil
NASA Astrophysics Data System (ADS)
Bilyera, Nataliya
2017-04-01
Keywords: phosphorus, soil ATP, phosphatase, microbial biomass, Cambisol. Phosphorus (P) is the second important nutrient for plants and limiting element in many ecosystems. P is a non-renewable resource, and based on its current rate of use, it has been estimated that the worlds known reserves of P rocks may be depleted within the current century. Soils with high-sorption P capacity require higher P additions, but, do not provide plants with sufficient available P. Therefore, it is necessary to reduce P application rates, but facilitate soil microbiological activity to maintain good P availability for plants. We aimed to study soil adenosine triphosphate (ATP), microbial biomass (MBC) and phosphatase activity as microbial response to contrasting P input in a low P Cambisol in a 5 days incubation experiment. The treatments were i) bulk soil (no C), ii) rhizosphere soil (10 μg C g-1 soil day-1 - root exudates imitation) and iii) glucose addition to soil (50 μg C g-1 soil - for microbial activation). Three rates of P as KH2PO4 were applied at each C treatments: i) no P (P0) - for P severe limitation; ii) 10% P from initial extractable soil P (P10) - low P input; and iii) 50% P from initial extractable soil P (P50) - high P input. We tested the following hypotheses: 1) the better response of MBC and ATP to P is expected to be in the rhizosphere soil, as continuous C input resulted in gradual microbial activation; 2) phosphatase activity will decrease with increasing P rates in all soils. Microbial biomass grew linear (R2=0.99) and simultaneously with incremental P addition in bulk soil. In rhizosphere and C-amended soils, on contrary, the MBC response to P level was represented by quadratic model (y=-0.06x2+2.84x+37.03; R2=0.93). This model shows the highest MBC value at P23, which indicates optimal and the most effective application rate for this soil type. The correlation between soil ATP content and P rates ascended in the order bulk soil (R2=0.34) > C-amended soil (R2=0.51) > rhizosphere soil (R2=0.97). That proves our hypothesis that continuous C input (similar to root exudations) stimulates gradual microorganism activation. The soil ATP content per gram of microbial biomass C increased linearly (y=5.09x + 21.4; R2= 0.99) with increasing P rates in rhizosphere, whereas in bulk and C-amendment soils the effect of P was less pronounced. Phosphatase activity declined (57 and 64%) exponentially with increasing P rates for rhizosphere (R2=0.84) and C-amended (R2=0.98) soils, that complies with our hypothesis. In bulk soil, on contrary, phosphatase activity increased (35%) at P10 and remained constant at P50. P0 was resulted in 5-folds higher phosphatase activity in rhizosphere and C-amended soils compared to bulk soil. This proves the significance of root exudates in facilitation of microbial phosphatase production. Our results show that P (re)cycling can be accelerated in P-deficient soils by C addition and so, excessive P fertilization can be avoided to maintain ecosystem sustainability.
NASA Astrophysics Data System (ADS)
Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica
2017-04-01
Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for evaluated glyphosate behaviour in soil bioactivity and interaction with different soil factors.
Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem
Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin
2011-01-01
Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722
Tronchoni, Jordi; Curiel, Jose Antonio; Morales, Pilar; Torres-Pérez, Rafael; Gonzalez, Ramon
2017-01-16
Advances in microbial wine biotechnology have led to the recent commercialization of several non-Saccharomyces starter cultures. These are intended to be used in either simultaneous or sequential inoculation with Saccharomyces cerevisiae. The different types of microbial interactions that can be stablished during wine fermentation acquire an increased relevance in the context of these mixed-starter fermentations. We analysed the transcriptional response to co-cultivation of S. cerevisiae and Torulaspora delbrueckii. The study focused in the initial stages of wine fermentation, before S. cerevisiae completely dominates the mixed cultures. Both species showed a clear response to the presence of each other, even though the portion of the genome showing altered transcription levels was relatively small. Changes in the transcription pattern suggested a stimulation of metabolic activity and growth, as a consequence of the presence of competitors in the same medium. The response of S. cerevisiae seems to take place earlier, as compared to T. delbrueckii. Enhanced glycolytic activity of the mixed culture was confirmed by the CO 2 production profile during these early stages of fermentation. Interestingly, HSP12 expression appeared induced by co-cultivation for both of S. cerevisiae and Torulaspora delbrueckii in the two time points studied. This might be related with a recently described role of Hsp12 in intercellular communication in yeast. Expression of S. cerevisiae PAU genes was also stimulated in mixed cultures. Copyright © 2016. Published by Elsevier B.V.
Graham, Daniel B.; Robertson, Charles M.; Bautista, Jhoanne; Mascarenhas, Francesca; Diacovo, M. Julia; Montgrain, Vivianne; Lam, Siu Kit; Cremasco, Viviana; Dunne, W. Michael; Faccio, Roberta; Coopersmith, Craig M.; Swat, Wojciech
2007-01-01
Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C–γ2 (PLC-γ2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-γ2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav. PMID:17932569
Campos, M; Perruchon, C; Karas, P A; Karavasilis, D; Diez, M C; Karpouzas, D G
2017-02-01
Biobeds are on-farm biodepuration systems whose efficiency rely on their high pesticide biodegradation capacity. We evaluated two optimization strategies, bioaugmentation and/or rhizosphere-assisted biodegradation, to maximize the dissipation capacity of biobeds. Iprodione was used as a model pesticide. Its dissipation and metabolism was determined in a biobed packing material inoculated with an iprodione-degrading Arthrobacter strain C1 (bioaugmentation, treatments B+C1) and/or seeded with ryegrass (rhizosphere-assisted biodegradation, treatments B+P). The impact of those strategies on the activity and composition of the microbial community was determined. Bioaugmentation accelerated the dissipation of iprodione which was further enhanced in the bioaugmented, rhizosphere-assisted treatment (treatment B+P+C1, Half-life (DT 50 ) = 3.4 d), compared to the non-bioaugmented, non rhizosphere-assisted control (DT 50 = 9.5 d, treatment B). Bioaugmentation resulted in the earlier formation of intermediate formation of metabolites I (3,5-dichlorophenyl-carboxamide), II (3,5-dichlorophenylurea acetate) and 3,5-dichloroaniline (3,5-DCA). The latter was further dissipated by the indigenous microbial community. Acid phosphatase (AP) and β-glucosidase (GLU) were temporarily stimulated in rhizosphere-assisted treatments, whereas a stimulation of the fluorescein diacetate (FDA) hydrolytic activity in the bioaugmented treatments coincided with the hydrolysis of iprodione. q-PCR showed that changes in the abundance of alpha-proteobacteria and firmicutes was driven by the presence of rhizosphere while bioaugmentation had no significant effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bao, Yanping; Guo, Chuling; Lu, Guining; Yi, Xiaoyun; Wang, Han; Dang, Zhi
2018-03-01
Fe(III) hydroxysulfate minerals are secondary minerals commonly found in acid mine drainage (AMD) sites and have a major impact on water and soil quality in these environments. While previous studies showed that the Fe(III) hydroxysulfate mineral transformation could be mediated by some bacterial strains under laboratory conditions, the role of indigenous microbial activity in Fe(III) hydroxysulfate mineral transformation in natural environment has received little attention. In this study, microcosms were constructed with AMD-affected river water and sediment from the Dabaoshan Mine that was either left unamended or enriched with nutrients (lactate, nitrogen, and phosphorus (LNP)) and biosynthetic minerals (schwertmannite or jarosite). The results show that microbial activity played a decisive role in the mineralogical transformation of schwertmannite/jarosite in the AMD-contaminated site when organic carbon was available. The accumulation of Fe(II) and sulfide in microcosms amended with LNP indicates that schwertmannite/jarosite transformation is mediated by microbial reduction. XRD, SEM and FTIR analyses suggest that schwertmannite was completely transformed to goethite in the Sch-LNP microcosms at the end of their incubation. Jarosite in the Jar-LNP microcosms was also transformed to goethite, but at a much slower rate than schwertmannite. Bacterial community analysis reveals that the stimulated indigenous bacteria promote the mineralogical transformation of schwertmannite/jarosite. Most of these bacteria, including Geobacter, Desulfosporosinus, Geothrix, Desulfurispora, Desulfovibrio, and Anaeromyxobacter, are known to reduce iron and/or sulfate. The mineralogical transformation of schwertmannite and jarosite exerts significant control on the geochemistry of AMD-contaminated systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Anoxia stimulates microbially catalyzed metal release from Animas River sediments
Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; ...
2017-03-06
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less
Anoxia stimulates microbially catalyzed metal release from Animas River sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less
Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier.
Hoyles, Lesley; Snelling, Tom; Umlai, Umm-Kulthum; Nicholson, Jeremy K; Carding, Simon R; Glen, Robert C; McArthur, Simon
2018-03-21
Gut microbiota composition and function are symbiotically linked with host health and altered in metabolic, inflammatory and neurodegenerative disorders. Three recognised mechanisms exist by which the microbiome influences the gut-brain axis: modification of autonomic/sensorimotor connections, immune activation, and neuroendocrine pathway regulation. We hypothesised interactions between circulating gut-derived microbial metabolites, and the blood-brain barrier (BBB) also contribute to the gut-brain axis. Propionate, produced from dietary substrates by colonic bacteria, stimulates intestinal gluconeogenesis and is associated with reduced stress behaviours, but its potential endocrine role has not been addressed. After demonstrating expression of the propionate receptor FFAR3 on human brain endothelium, we examined the impact of a physiologically relevant propionate concentration (1 μM) on BBB properties in vitro. Propionate inhibited pathways associated with non-specific microbial infections via a CD14-dependent mechanism, suppressed expression of LRP-1 and protected the BBB from oxidative stress via NRF2 (NFE2L2) signalling. Together, these results suggest gut-derived microbial metabolites interact with the BBB, representing a fourth facet of the gut-brain axis that warrants further attention.
Gut microbiota functions: metabolism of nutrients and other food components.
Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran
2018-02-01
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps
Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...
2014-09-22
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less
Zheng, Shasha; Hedl, Matija; Abraham, Clara
2015-02-15
Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating proinflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. Copyright © 2015 by The American Association of Immunologists, Inc.
Techtmann, Stephen M; Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Hazen, Terry C; Conmy, Robyn; Santo Domingo, Jorge W
2017-05-15
To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio , Idiomarina , Marinobacter , Alcanivorax , and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium , Alcanivorax , and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus , known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira , Marinobacter , and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups. Copyright © 2017 American Society for Microbiology.
Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Conmy, Robyn
2017-01-01
ABSTRACT To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira. Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups. PMID:28283527
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Stepp, A.K.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Bailey, S.A.; Stepp, A.K.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen
2015-01-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role. PMID:25811886
Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen
2015-03-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.
Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan
2013-11-01
The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.
Andriamananjara, Andry; Rabeharisoa, Lilia; Prud’homme, Loïc; Morel, Christian
2016-01-01
Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using 32P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg−1.We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery. PMID:27379240
Enhancement of ethene removal from waste gas by stimulating nitrification.
de heyder, B; van Elst, T; van Langenhove, H; Verstraete, W
1997-01-01
The treatment of poorly water soluble waste gas compounds, such as ethene, is associated with low substrate concentration levels in the liquid phase. This low concentration level might hamper the optimal development of a microbial population. In this respect, the possible benefit of introducing nitrifying activity in the heterotrophic removal of ethene at moderate concentrations (< 1000 ppm) from a waste gas was investigated. Nitrifying activity is known to be associated with (i) the production of soluble microbial products, which can act as (co-)substrates for heterotrophic micro-organisms and (ii) the co-oxidation of ethene. The used reactor configuration was a packed granular activated carbon biobed inoculated with the heterotrophic strain Mycobacterium E3. The nitrifying activity was introduced by regular submersion in a nitrifying medium prepared from (i) compost or (ii) activated sludge. In both cases a clear enhancement of the volumetric removal rate of ethene could be observed. When combined with a NH3 dosage on a daily basis, a gradual increase of the volumetric removal rate of ethene could be observed. For a volumetric loading rate of 3 kg ethene-COD.m-3.d-1, the volumetric removal rate could thus be increased with a factor 1.8, i.e. from 0.72 to a level of 1.26 kg ethene-COD.m-3.d-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Robin
Background. The use of biological and chemical processes that degrade or immobilize contaminants in subsurface environments is a cornerstone of remediation technology. The enhancement of biological and chemical processes in situ, involves the transport, displacement, distribution and mixing of one or more reactive agents. Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale and larger is dictated by the success of phenomena that occur at the micron-scale. However, current understanding of scaling effects on the mixing and delivery of nutrients in biogeochemically dynamicmore » porous media systems is limited, despite the limitations this imposes on the efficiency and effectiveness of the remediation challenges at hand. Objectives. We therefore proposed to experimentally characterize and computationally describe the growth, evolution, and distribution of microbial activity and mineral formation as well as changes in transport processes in porous media that receive two or more reactive amendments. The model system chosen for this project was based on a method for immobilizing 90Sr, which involves stimulating microbial urea hydrolysis with ensuing mineral precipitation (CaCO3), and co-precipitation of Sr. Studies at different laboratory scales were used to visualize and quantitatively describe the spatial relationships between amendment transport and consumption that stimulate the production of biomass and mineral phases that subsequently modify the permeability and heterogeneity of porous media. Biomass growth, activity, and mass deposition in mixing zones was investigated using two-dimensional micro-model flow cells as well as flow cells that could be analyzed using synchrotron-based x-ray tomography. Larger-scale flow-cell experiments were conducted where the spatial distribution of media properties, flow, segregation of biological activity and impact on ancillary constituents (i.e., Sr) was determined. Model simulations accompanied the experimental efforts. Benefits and Outcomes of the Project. The research contributed towards defining the key physical, chemical, and biological processes influencing the form and mobility of DOE priority contaminants (e.g., 60Co, 90Sr, U) in the subsurface. The work conducted and reported herein, will in the future (i) contribute to controlling the juxtaposition of microbial activity, contaminants and amendments, (ii) promote new strategies for delivering amendments, and (iii) allow new approaches for modifying permeability and flow in porous media. We feel that the work has already translated directly to improving the efficiency of amendment based remediation strategies. Products. The results of the project have been published in a number of peer reviewed journal articles. The abstracts and citations to those articles, given in section 2.0 below, make up the bulk of this final report.« less
Briard, Benoit; Heddergott, Christoph; Latgé, Jean-Paul
2016-03-15
Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. Microbiota studies have shown that pathogens cannot be studied individually anymore and that the establishment and progression of a specific disease are due not to a single microbial species but are the result of the activity of many species living together. To date, the interaction between members of the human microbiota has been analyzed in situations of direct contact or liquid-mediated contact between organisms. This study showed unexpectedly that human opportunistic pathogens can interact at a distance after sensing volatiles emitted by another microbial species. This finding will open a new research avenue for the understanding of microbial communities. Copyright © 2016 Briard et al.
Das, Amal Chandra; Debnath, Anjan; Mukherjee, Debatosh
2003-10-01
A field experiment has been conducted with two herbicides viz. oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at rates of 0.4 and 0.12 kg a.i. ha(-1), respectively, to investigate their effect on the growth and activities of phosphate solubilizing microorganisms in relation to availability of phosphorus as well as persistence of the herbicides in the rhizosphere soil of wetland rice (Oryza sativa L. variety IR-36). Application of herbicides stimulated the population and activities of phosphate solubilizing microorganisms and also the availability of phosphorus in the rhizosphere soil. Oxyfluorfen provided greater microbial stimulation than oxadiazon. Dissipation of oxyfluorfen and oxadiazon followed first order reaction kinetics with half-life (T(1/2)) of 8.8 and 12 days, respectively. Sixty days after application 0.5% and 3% of the applied oxadiazon and oxyfluorfen residues persisted, respectively, in the rhizosphere soil of rice.
NASA Astrophysics Data System (ADS)
Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.
2013-12-01
Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and IP surveys are performed regularly to monitor the stimulated biodegradation and progress of remediation until soil cleanup. Microbial activity is characterized by CO2 production increase and δ13C isotopic deviation, in the produced CO2 measured by infrared laser spectroscopy, and by an evolution of electrical conductivity and IP responses in correlation with microbiological and chemical analyses.
Comparison of heavy metal toxicity in continuous flow and batch reactors
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Gikas, P.; Moberly, J. G.; Peyton, B. M.; Ginn, T. R.
2009-12-01
The presence of heavy metals may significantly affect microbial growth. In many cases, small amounts of particular heavy metals may stimulate microbial growth; however, larger quantities may result in microbial growth reduction. Environmental parameters, such as growth pattern may alter the critical heavy metal concentration, above which microbial growth stimulation turns to growth inhibition. Thus, it is important to quantify the effects of heavy metals on microbial activity for understanding natural or manmade biological reactors, either in situ or ex situ. Here we compare the toxicity of Zn and Cu on Arthrobacter sp., a heavy metal tolerant microorganism, under continuous flow versus batch reactor operations. Batch and continuous growth tests of Arthrobacter sp. were carried out at various individual and combined concentrations of Zn and Cu. Biomass concentration (OD) was measured for both the batch and continuous reactors, whereas ATP, oxygen uptake rates and substrate concentrations were additionally measured for the continuous system. Results indicated that Cu was more toxic than Zn under all conditions for both systems. In batch reactors, all tested Zn concentrations up to 150 uM showed a stimulatory effect on microbial growth. However, in the case of mixed Zn and Cu exposures, the presence of Zn either eliminated (at the 50 uM level both Zn and Cu) or reduced by ~25% (at the 100 and 150 uM levels both Zn and Cu) the Cu-induced inhibition. In the continuous system, only one test involved combined Cu (40uM) and Zn (125uM) and this test showed similar results to the 40uM Cu continuous test, i.e., no reduction in inhibition. The specific ATP concentration, i.e., ATP/OD, results for the continuous reactor showed an apparent recovery for both Cu-treated populations, although neither the OD nor glucose data showed any recovery. This may reflect that the individual microorganisms that survived after the addition of heavy metals, kept maintaining the usual ATP levels, as before metal addition. The last may imply a short of adaptation by some microorganisms to the presence of heavy metals. Overall, the batch reactor tests underestimated significantly the heavy metal inhibition, as compared to the continuous flow reactors. Therefore, the results of batch reactor tests should be used with some caution when heavy metal inhibition is to be interpreted for continuous flow natural environmental systems, such as rivers or wetlands.
Jiang, Lili; Dai, Jianying; Sun, Yaqin; Xiu, Zhilong
2018-04-12
Ionic liquids (ILs) as "green" solvents have been widely used owing to their excellent properties, e.g., for biodiesel production. Crude glycerol as a by-product in biodiesel production is an ideal feedstock for the microbial production of 1,3-propanediol (PDO), which is a versatile bulk chemical. PDO can be produced by microbial consortium with the advantages of high substrate tolerance and narrow by-product profile. In the present study, the effect of IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim][TfO]) was evaluated on the capacity of PDO production from crude glycerol by microbial consortium DL38-BH. In the batch fermentation at 60 g/L crude glycerol and 10 g/L [Emim][TfO], the concentration and yield of PDO from glycerol increased from 23.14 g/L and 0.45 mol/mol to 31.17 g/L and 0.60 mol/mol, respectively. Our results showed that [Emim][TfO] decreased the ratio of intracellular NADH to NAD + and increased the concentration of 3-HPA during batch fermentation. The activities of three key enzymes in glycerol metabolism were stimulated by [Emim][TfO] during the batch fermentation by microbial consortium DL38-BH. Compared to the control, the proportion of Klebsiella genus which could convert glycerol to PDO increased significantly from 79.19% to 89.49% and the other genera that did not produce PDO were dramatically decreased (P < 0.05) at the end of batch fermentation. This work demonstrated that [Emim][TfO] significantly improved the concentration and yield of PDO from crude glycerol by adjusting microbial community during batch fermentation by microbial consortium.
Errea, A; Moreno, G; Sisti, F; Fernández, J; Rumbo, M; Hozbor, Daniela Flavia
2010-05-01
Non-specific enhancement of the airways innate response has been shown to impair lung infections in several models of infection such diverse as influenza A, Streptococcus pneumoniae, and Aspergillus niger. Our aim was to evaluate whether a similar event could operate in the context of Bordetella pertussis respiratory infection, not only to enrich the knowledge of host-bacteria interaction but also to establish immunological basis for the development of new control strategies against the pathogen. Using a B. pertussis intranasal infection model and coadministration of different TLR agonists at the moment of the infection, we observed that the enhancement of innate response activation, in a TLR4-dependent way, could efficiently impair B. pertussis colonization (P < 0.001). While LPS from different microbial sources were equally effective in promoting this effect, flagellin and poly I:C coadministration, in spite of inducing expression of innate response markers TNFalpha, CXCL2, CXCL10 and IL6, was not effective to prevent B. pertussis colonization. Our results indicate that during the early stage of infection, specific anti-microbial mechanisms triggered by TLR4 stimulation are able to impair B. pertussis colonization. These findings could complement our current view of the role of TLR4-dependent processes that contribute to anti-pertussis immunity.
Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska
Bradley, Paul M.; Chapelle, Frances H.
2004-01-01
A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the establishment of mixed Mn/Fe-reducing, SO42--reducing and methanogenic conditions and enhanced TCE biodegradation in two of three Peger Road sediment treatments.
Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas
2014-01-01
Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. PMID:25089062
Fonvielle, J A; Reynaud, S; Jacquet, S; LeBerre, B; Ferrier-Pages, C
2015-01-01
Mucus, i.e., particulate and dissolved organic matter (POM, DOM) released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs) as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2), but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released). Organic matter was rapidly degraded by prokaryotes' enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop.
Belstrøm, Daniel; Constancias, Florentin; Liu, Yang; Yang, Liang; Drautz-Moses, Daniela I; Schuster, Stephan C; Kohli, Gurjeet Singh; Jakobsen, Tim Holm; Holmstrup, Palle; Givskov, Michael
2017-01-01
The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n = 10, dental caries: n = 10, oral health: n = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F . alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages.
NASA Astrophysics Data System (ADS)
Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio
2013-04-01
A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue directly into the soil, had additive effect on the root growth of C. albidus and chemical and biological quality of soil.
Alkalinity production in intertidal sands intensified by lugworm bioirrigation.
Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R
2014-07-05
Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.
Williams, Kenneth H; Bargar, John R; Lloyd, Jonathan R; Lovley, Derek R
2013-06-01
Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter
2010-04-01
Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.
A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone
Pruitt, Rory N.; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R.; Ronald, Pamela C.
2018-01-01
Summary The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides.Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides.Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence.These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. PMID:28556915
David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski; John C. Maerz
2016-01-01
Nutrient enrichment of detritus-based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial- vs. detritivore-mediated detrital breakdown are poorly understood....
Vogelweith, Fanny; Moreau, Jérôme; Thiéry, Denis; Moret, Yannick
2015-06-01
Inherent to the cost of immunity, the immune system itself can exhibit tradeoffs between its arms. Phytophagous insects face a wide range of microbial and eukaryotic parasites, each activating different immune pathways that could compromise the activity of the others. Feeding larvae are primarily exposed to microbes, which growth is controlled by antibiotic secondary metabolites produced by the host plant. The resulting variation in abundance of microbes on plants is expected to differentially stimulate the insect antimicrobial immune defenses. Under the above tradeoff hypothesis, stimulation of the insect antimicrobial defenses is expected to compromise immune activity against eukaryote parasites. In the European grape berry moth, Eupoecilia ambiguella, immune effectors directed towards microbes are negatively correlated to those directed towards eukaryotic parasites among host plants. Here, we hypothesize this relationship is caused by a variable control of the microbial community among host plants by their antibiotic metabolites. To test this hypothesis, we first quantified antimicrobial activity in berries of several grape varieties. We then measured immune defenses of E. ambiguella larvae raised on artificial diets in which we mimicked levels of antimicrobial activity of grape berries using tetracycline to control the abundance of growing microbes. Another group of larvae was raised on artificial diets made of berry extracts only to control for the effect of nutrition. We found that controlling microbe abundance with tetracycline in diets did not explain variation in the immune function whereas the presence of berry extracts did. This suggests that variation in immune defenses of E. ambiguella among grape varieties is caused by nutritional difference among host plants rather than microbe abundance. Further study of the effects of berry compounds on larval immune parameters will be needed to explain the observed tradeoff among immune system components. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sedaghatdoost, A.; Mohanty, B.; Huang, Y.
2017-12-01
The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) have many contemporary significance due to their critical roles in determining the structure and function of ecosystems. The objectives of our study is to find out temporal dynamics and spatial distribution of soil physical, chemical, and biological properties and their interaction with C, N, and P cycles in the soil for different land covers and weather conditions. The study is being conducted at three locations within Texas Water Observatory (TWO), including Riesel (USDA-ARS experimental watersheds), Texas A&M Agrilife Research Farm, and Danciger forest in Texas. Soil physical, hydraulic, chemical (total C, total N, total P, pH, EC, redox potential, N-NO3-, N-NH4+, PO42-, K, Ca, Mg, Na, Mn, and Alox and Feox), and microbiological (Microbial biomass C, N, and P, PLFA analysis, enzymatic activity) properties are being measured in the top 30 cm of the soil profile. Our preliminary data shows that biogeochemical processes would be more profound in the areas with higher temperature and precipitation as these factors stimulate microbial activity and thus influence C, N, and P cycles. Also concentrations of C and N are greater in woodlands relative to remnant grasslands as a consequence of the greater above- and below-ground productivity of woodlands relative to remnant grasslands. We hypothesize that finer soil textures have more organic matter, microbial population, and reactive surfaces for chemicals than coarse soils, as described in some recent literature. However, the microbial activity may not be active in fine textured soils as organic materials may be sorbed to clay surfaces or protected from decomposing organisms. We also expect reduced condition in saturated soils which will decrease carbon mineralization while increase denitrification and alkalinity in the soil. Spatio-temporal data with initial evaluation of biogeochemical factors/processes for different land covers will be presented.
Khdhiri, Mondher; Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G; Constant, Philippe
2017-06-01
The enrichment of H 2 -oxidizing bacteria (HOB) by H 2 generated by nitrogen-fixing nodules has been shown to have a fertilization effect on several different crops. The benefit of HOB is attributed to their production of plant growth-promoting factors, yet their interactions with other members of soil microbial communities have received little attention. Here we report that the energy potential of H 2 , when supplied to soil, alters ecological niche partitioning of bacteria and fungi, with multifaceted consequences for both generalist and specialist microbial functions. We used dynamic microcosms to expose soil to the typical atmospheric H 2 mixing ratio (0.5 ppmv) permeating soils, as well as mixing ratios comparable to those found at the soil-nodule interface (10,000 ppmv). Elevated H 2 exposure exerted direct effects on two HOB subpopulations distinguished by their affinity for H 2 while enhancing community level carbon substrate utilization potential and lowering CH 4 uptake activity in soil. We found that H 2 triggered changes in the abundance of microorganisms that were reproducible yet inconsistent across soils at the taxonomic level and even among HOB. Overall, H 2 exposure altered microbial process rates at an intensity that depends upon soil abiotic and biotic features. We argue that further examination of direct and indirect effects of H 2 on soil microbial communities will lead to a better understanding of the H 2 fertilization effect and soil biogeochemical processes. IMPORTANCE An innovative dynamic microcosm chamber system was used to demonstrate that H 2 diffusing in soil triggers changes in the distribution of HOB and non-HOB. Although the response was uneven at the taxonomic level, an unexpected coordinated response of microbial functions was observed, including abatement of CH 4 oxidation activity and stimulation of carbon turnover. Our work suggests that elevated H 2 rewires soil biogeochemical structure through a combination of direct effects on the growth and persistence of HOB and indirect effects on a variety of microbial processes involving HOB and non-HOB. Copyright © 2017 American Society for Microbiology.
[Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].
Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu
2014-02-01
The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.
Persistent inflammation in HIV infection: established concepts, new perspectives.
Nasi, Milena; Pinti, Marcello; Mussini, Cristina; Cossarizza, Andrea
2014-10-01
Immune activation is now considered a main driving force for the progressive immune failure in HIV infection. During the early phases of infection, a rapid depletion of gastrointestinal CD4+ T cells occurs that is followed by a deterioration of the gut epithelium and by the subsequent translocation of microbial products into the blood. Activation of innate immunity results in massive production of proinflammatory cytokines, which can trigger activation induced cell death phenomena among T lymphocytes. Moreover, persistent antigenic stimulation and inflammatory status causes immune exhaustion. The chronic immune activation also damages lymphoid tissue architecture, so contributing to the impairment of immune reconstitution. Recently, new mechanisms were identified, so opening new perspective on the innate immune sensing in HIV-1 infection. Cell death is followed by the release of molecules containing "damage-associated molecular patterns", that trigger a potent innate immune response through the engagement of Toll-like receptors. Then, also different types of HIV-related nucleic acids can act as potent stimulators of innate immunity. All these events contribute to the loss of T cell homeostatic regulation and to the failure of adaptive immunity. Copyright © 2014 Elsevier B.V. All rights reserved.
Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J
2017-09-01
Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Lara, Paloma; Morett, Enrique; Juárez, Katy
2017-11-01
Stimulation of microbial reduction of Cr(VI) to the less toxic and less soluble Cr(III) through electron donor addition has been regarded as a promising approach for the remediation of chromium-contaminated soil and groundwater sites. However, each site presents different challenges; local physicochemical characteristics and indigenous microbial communities influence the effectiveness of the biostimulation processes. Here, we show microcosm assays stimulation of microbial reduction of Cr(VI) in highly alkaline and saline soil samples from a long-term contaminated site in Guanajuato, Mexico. Acetate was effective promoting anaerobic microbial reduction of 15 mM of Cr(VI) in 25 days accompanied by an increase in pH from 9 to 10. Our analyses showed the presence of Halomonas, Herbaspirillum, Nesterenkonia/Arthrobacter, and Bacillus species in the soil sample collected. Moreover, from biostimulated soil samples, it was possible to isolate Halomonas spp. strains able to grow at 32 mM of Cr(VI). Additionally, we found that polluted groundwater has bacterial species different to those found in soil samples with the ability to resist and reduce chromate using acetate and yeast extract as electron donors.
Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D.; Zhou, Jizhong
2015-01-01
Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0–5 cm and 5–15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904
Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D.; Xu, Xinhua
2012-01-01
Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. PMID:22923398
LaBarge, Nicole; Yilmazel, Yasemin Dilsad; Hong, Pei-Ying; Logan, Bruce E
2017-02-01
Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P>0.4) for GAC acclimated to hydrogen (22±9.3nmolcm -3 d -1 ), methanol (25±9.7nmolcm -3 d -1 ), and a volatile fatty acid (VFA) mix (22±11nmolcm -3 d -1 ). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13±4.1nmolcm -3 d -1 ), and MECs without GAC had the lowest rates (0.7±0.8nmolcm -3 d -1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs. Copyright © 2016 Elsevier B.V. All rights reserved.
Near infrared laser irradiation induces NETosis via oxidative stress and autophagy.
Mario, Migliario; Stelvio, Tonello; Vincenzo, Rochetti; Manuela, Rizzi; Filippo, Renò
2018-06-02
NETosis is a novel immune defense strategy in which neutrophil activation results in the formation of extracellular DNA/protein network which is able to kill microbial populations. NETosis can be induced in vitro by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA). Due to the importance of NETosis in different physiological and pathological processes, photobiostimulation effect on this neutrophil activation mechanism has been investigated. Human granulocytes, isolated from venous blood of healthy donors, were stimulated with a diode laser emitting at 980 nm with an energy intensity ranging from 0 to 75 joules. After 3 h of laser stimulation, granulocytes were fixed and colored with crystal violet in order to assess the NETosis morphology while extracellular DNA produced has been quantified using Sytox Green fluorescent dye. To evaluate ROS production and autophagy role in photobiostimulation-induced NETosis, granulocytes were pre-treated with ROS scavengers (vitamin C, sodium pyruvate, L-NAME, sodium azide), and an autophagy inhibitor (wortmannin). Laser stimulation induced an energy-dependent neutrophil extracellular trap (NET) production in human granulocytes starting from 50-J laser intensity. ROS scavengers and the autophagy inhibitor were able to abrogate both morphological features of NETosis and extracellular DNA production without modifying the basal level of NETosis. Photobiostimulation induced an increase in NET production due to an increase in ROS levels and autophagy activation.
The search for an endogenous activator.
Gekowski, K. M.; Atkins, E.
1985-01-01
Certain febrile diseases are unaccompanied by infection or apparent hypersensitivity. In myocardial infarction or pulmonary embolism, for example, fever has been attributed to inflammation and/or tissue necrosis. Exogenous (microbial) pyrogens stimulate both human and animal monocytes/macrophages to produce endogenous pyrogen (EP) in vitro. To determine if plasma and cellular endogeneous mediators (EMs) of inflammation induced EP production, human mononuclear cells (M/L) were incubated for 18 hours with varying amounts of EM and the supernates assayed for EP in rabbits. Neutrophils (PMNs), which do not generate EP and yet are a feature of acute inflammation, were tested. Neither viable, phorbol myristic acetate-stimulated PMNs nor sonicated PMNs, red blood cells, or M/L stimulated human monocytes to produce EP. Human C3b and C5a, which mediate phagocytosis and chemotaxis, respectively, were also inactive. Despite its chemoattractant properties, the synthetic peptide FMLP failed to induce EP release. Since Poly I:Poly C (PIC: a synthetic, double-stranded RNA) is a potent pyrogen in rabbits, we investigated PIC, as well as a native, single-stranded RNA (from E. coli) and DNA (from calf thymus). None was active in vitro, and only PIC caused fever when given to rabbits intravenously. In summary, we have been unable to find an endogenous activator of EP from human monocytes to explain fevers associated with inflammation alone. PMID:3875936
NASA Astrophysics Data System (ADS)
Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.
2015-12-01
The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.
Priming effect in topsoil and subsoil induced by earthworm burrows
NASA Astrophysics Data System (ADS)
Thu, Duyen Hoang Thi
2017-04-01
Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.
NASA Astrophysics Data System (ADS)
Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes
2015-04-01
It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria are the fundamental microbial decomposers and thus the main agents involved in respiration, ROM mobilisation and carbon cycling. By describing if and how litter decomposition is primed by primary producer-release of labile carbon we gain a better understanding of how microbial communities degrade OM in terrestrial and aquatic systems.
Wang, Yufei; Whittall, Trevor; McGowan, Edward; Younson, Justine; Kelly, Charles; Bergmeier, Lesley A; Singh, Mahavir; Lehner, Thomas
2005-03-15
The 70-kDa microbial heat shock protein (mHSP70) has a profound effect on the immune system, interacting with the CD40 receptor on DC and monocytes to produce cytokines and chemokines. The mHSP70 also induces maturation of dendritic cells (DC) and thus acts as an alternative ligand to CD40L on T cells. In this investigation, we have identified a cytokine-stimulating epitope (peptide 407-426), by activating DC with overlapping synthetic peptides (20-mers) derived from the sequence of mHSP70. This peptide also significantly enhances maturation of DC stimulated by mHSP70 or CD40L. The epitope is located at the base of the peptide-binding groove of HSP70 and has five critical residues. Furthermore, an inhibitory epitope (p457-496) was identified downstream from the peptide-binding groove that inhibits cytokine production and maturation of DC stimulated by HSP70 or CD40L. The p38 MAP kinase phosphorylation is critical in the alternative CD40-HSP70 pathway and is inhibited by p457-496 but enhanced by p407-426.
Baltar, Federico; Lundin, Daniel; Palovaara, Joakim; Lekunberri, Itziar; Reinthaler, Thomas; Herndl, Gerhard J.; Pinhassi, Jarone
2016-01-01
To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates—assumed to be related to autotrophic metabolisms—were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention. PMID:27818655
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handley, Kim M.; Wrighton, Kelly C.; Piceno, Yvette M.
2012-04-13
There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identifiedmore » hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill-core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (for example, Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). These data imply complex membership among highly stimulated taxa, and by inference biogeochemical responses to acetate, a non-fermentable substrate.« less
Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel
2018-04-01
In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Windey, Karen; De Preter, Vicky; Huys, Geert; Broekaert, Willem F; Delcour, Jan A; Louat, Thierry; Herman, Jean; Verbeke, Kristin
2015-01-28
Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.
Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhangshuan; Nelson, William C.; Stegen, James C.
The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of water, nutrients, and organic matter occur in response to variations in discharge and riverbed properties. Within this region, a confluence of surface-derived organic carbon and subsurface nitrogen (in the form of nitrate) has been shown to stimulate microbial activity and transformations of carbon and nitrogen species. For example, production of gases such as CO 2, N 2 and N 2O indicate hyporheic zones might have a significant effect on energy and nutrient flows between the atmosphere and the subsurface. Managed and seasonal rivermore » stage changes and geomorphology-controlled sediment texture drive water flow within the HZ of the Columbia River. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the HZ, the grain size distributions for sediment samples taken across 320 m of shoreline were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of carbon and nitrogen oxidizers were found to explain the variability in many biogeochemical attributes. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae, together comprising ~20% of the total community across all samples, but scant ammonia-oxidizing Bacteria. Network analysis of operational taxonomic units and the measured geophysical, chemical, and functional parameters showed negative relationships between abundance-based modules of organisms and sand and mud contents, and positive relationships with total organic carbon. The relationships identified in this work indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Some member populations of these sub-communities appear to respond directly to environmental conditions, while others may be dependent on the function of the first group. For example, nitrification is a strong primary response to the observed conditions, and this activity appears to support a larger heterotrophic community. Relationships between facies and hydrobiogeochemical properties enables facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.« less
Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities
NASA Astrophysics Data System (ADS)
Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.
2014-12-01
Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr isotope determinations will be presented, which are essential in better understanding bacterial reducing activities under different environmental conditions and can also provide important background information for interpreting Cr isotope fractionations in natural environment, and using Cr isotopes to identify reduction by microbial activity.
Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies
Hou, Zhangshuan; Nelson, William C.; Stegen, James C.; ...
2017-09-20
The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of water, nutrients, and organic matter occur in response to variations in discharge and riverbed properties. Within this region, a confluence of surface-derived organic carbon and subsurface nitrogen (in the form of nitrate) has been shown to stimulate microbial activity and transformations of carbon and nitrogen species. For example, production of gases such as CO 2, N 2 and N 2O indicate hyporheic zones might have a significant effect on energy and nutrient flows between the atmosphere and the subsurface. Managed and seasonal rivermore » stage changes and geomorphology-controlled sediment texture drive water flow within the HZ of the Columbia River. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the HZ, the grain size distributions for sediment samples taken across 320 m of shoreline were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of carbon and nitrogen oxidizers were found to explain the variability in many biogeochemical attributes. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae, together comprising ~20% of the total community across all samples, but scant ammonia-oxidizing Bacteria. Network analysis of operational taxonomic units and the measured geophysical, chemical, and functional parameters showed negative relationships between abundance-based modules of organisms and sand and mud contents, and positive relationships with total organic carbon. The relationships identified in this work indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Some member populations of these sub-communities appear to respond directly to environmental conditions, while others may be dependent on the function of the first group. For example, nitrification is a strong primary response to the observed conditions, and this activity appears to support a larger heterotrophic community. Relationships between facies and hydrobiogeochemical properties enables facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.« less
NASA Astrophysics Data System (ADS)
Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter
Recent studies have suggested that microbial activity in highly compacted bentonite (⩾1600 kg/m 3) is severely suppressed. Therefore, it appears that the dry density of emplaced bentonite barriers in a geological repository for nuclear waste may be tailored such that a microbiologically unfavorable environment can be created adjacent to used fuel containers. This would ensure that microbiologically influenced corrosion is a negligible contributor to the overall corrosion process. However, this premise is valid only as long as the emplaced bentonite maintains a uniform high dry density (⩾1600 kg/m 3) because it has been shown that high dry density only suppresses microbial activity but not necessarily eliminates the viable microbial population in bentonite. In a repository, a reduction in the dry density of highly compacted bentonite may occur at a number of interface locations, such as placement gaps, contact regions with materials of different densities and contact points with water-carrying fractures in the rock. Experiments were carried out in our laboratory to examine the effects of a reduction in dry density (from 1600 kg/m 3 to about 1000 kg/m 3) on the recovery of microbial culturability in compacted bentonite. Results showed that upon expansion of compacted bentonite into a void, the resulting reduction in dry density stimulated or restored culturability of indigenous microbes. In a repository this would increase the possibility of in situ activity, which might be detrimental for the longevity of waste containers. Reductions in dry density, therefore, should be minimized or eliminated by adequate design and placement methods of compacted bentonite. Materials compliance models can be used to determine the required as-placed dry densities of bentonite buffer and gap fillings to achieve specific targets for long-term equilibrium dry densities for various container placement room designs. Locations where flowing fractures could be in contact with highly compacted bentonite should either be avoided or grouted adequately to limit contact between bentonite and flowing water. Even if localized enhanced microbial activity at interfaces remains of concern, despite adequate engineering and placement methods, the potential consequences can be assessed and quantified adequately by a combination of in situ activity measurements and modeling calculations.
Situ microbial plugging process for subterranean formations
McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.
1985-12-17
Subterranean paths of water flow are impeded or changed by the facilitation of microbial growth therein. Either indigenous bacterial growth may be stimulated with nutrients or the formation may be first seeded with bacteria or their spores which inhibit fluid flow after proliferation. These methods and bacteria are usable to alter the flow of water in a waterflooded oil formation and to impede the outflow of contaminated water.
Visualization of the Dynamic Rhizosphere Environment: Microbial and Biogeochemical Perspectives
NASA Astrophysics Data System (ADS)
Cardon, Z. G.; Forbes, E. S.; Thomas, F.; Herron, P. M.; Gage, D. J.; Thomas, S.; Larsen, M.; Arango Pinedo, C.; Sievert, S. M.; Giblin, A. E.
2014-12-01
The rhizosphere is a hotbed of nutrient cycling fueled by carbon from plants and controlled by microbes. Plants also strongly affect the rhizosphere by driving water flow into and out of roots, and by oxygenating saturated soil and sediment. Location and dynamics of plant-spurred microbial growth and activities are impossible to discern with destructive soil assays mixing microbe-scale soil microenvironments in a single"snap-shot" sample. Yet data are needed to inform (and validate) models describing microbial activity and biogeochemistry in the ebb and flow of the dynamic rhizosphere. Dynamics and localization of rapid microbial growth in the rhizosphere can be assessed over time using living soil microbiosensors. We used the bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE(genes coding for light production). High light production by KT2440/pZKH2 correlated with rapid microbial growth supported by high carbon availability. Biosensors were used in clear-sided microcosms filled with non-sterile soil in which corn, black poplar or tomato were growing. KT2440/pZKH2 revealed that root tips are not necessarily the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. Roots can also be sources of oxygen (O2) to the rhizosphere in saturated soil. We quantified spatial distributions of O2 using planar optodes placed against the face of sediment blocks cut from vegetated salt marsh at Plum Island Ecosystems LTER. Integrated over time, Spartina alterniflora roots were O2 sources to the rhizosphere. However, "sun-up" (light on) did not uniformly enhance rhizosphere O2 concentrations (as stomata opened and O2 production commenced). In some regions, the balance of O2 supply (from roots) and O2 demand (root and microbial) tipped toward demand at sun-up (repeatedly, over days). We speculate that in these regions, carbon produced during photosynthesis was released from roots and stimulated microbial O2 demand in the light. In situ, such dynamics in O2 and carbon availability around plant roots will influence interlinked sulfur, nitrogen, and carbon cycling in salt marsh rhizosphere.
NASA Astrophysics Data System (ADS)
Kashi, N. N.; Wieder, R.; Vile, M. A.
2013-12-01
Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (< 1 kg/ha/yr). This elevated N deposition has the potential to alter the ecosystem structure and function of nutrient-poor boreal peatlands. Nitrogen enrichment may alter soil microbial activity, which could be manifested in changes in extracellular enzyme activities. Since 2011, we have been experimentally adding N as NH4NO3 in simulated precipitation at 0, 5, 10, 15, 20, and 25 kg N ha/yr/ plus no-water controls to a boreal bog and a poor fen (3 replicate plots per treatment). In 2013, acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the three moss species and weighting by their abundances within each plot (percent cover), phosphatase activities differed between N treatments in the bog (p=0.0388) and the poor fen (p=0.0005), with the latter exhibiting a clear increase in enzyme activity with increasing N deposition, and a doubling of phosphatase activity between the control plots and the 25 kg/kg/yr N deposition treatment. Although the three moss species responded differently, at the plot scale, increasing N deposition stimulated phosphatase activity, suggesting that microbial enzyme activity in peat is sensitive to increasing N deposition from oil sands development, with potential consequences for peatland nutrient cycling.
Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.
2010-01-01
Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.
Humic substances as a mediator for microbially catalyzed metal reduction
Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.
1998-01-01
The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.
Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes
Miller, L.G.; Oremland, R.S.
2008-01-01
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.
Ohshima, Tomoko; Kojima, Yukako; Seneviratne, Chaminda J.; Maeda, Nobuko
2016-01-01
Candida is a major human fungal pathogen causing infectious conditions predominantly in the elderly and immunocompromised hosts. Although Candida resides as a member of the oral indigenous microbiota in symbiosis, some circumstances may cause microbial imbalance leading to dysbiosis and resultant oral candidiasis. Therefore, oral microbial symbiosis that suppresses the overgrowth of Candida is important for a healthy oral ecosystem. In this regard, probiotics, prebiotics, and synbiotics can be considered a potential therapeutic and preventive strategy against oral candidiasis. Prebiotics have a direct effect on microbial growth as they stimulate the growth of beneficial bacteria and suppress the growth of pathogens. Probiotics render a local protective effect against pathogens and a systemic indirect effect on immunological amelioration. Synbiotics are fusion products of prebiotics and probiotics. This mini review discusses the potential use and associated limitations of probiotics, prebiotics, and synbiotics for the prevention and treatment of oral candidiasis. We will also introduce biogenics, a recent concept derived from the work on probiotics. Biogenics advocates the use of beneficial bioactive substances produced by probiotic bacteria, whose activities are independent from the viability of probiotic bacteria in human bodies. PMID:26834728
Payne, A N; Chassard, C; Lacroix, C
2012-09-01
The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.
Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota
Arnal, Marie-Edith
2016-01-01
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882
Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.
Schirmer, Melanie; Smeekens, Sanne P; Vlamakis, Hera; Jaeger, Martin; Oosting, Marije; Franzosa, Eric A; Ter Horst, Rob; Jansen, Trees; Jacobs, Liesbeth; Bonder, Marc Jan; Kurilshikov, Alexander; Fu, Jingyuan; Joosten, Leo A B; Zhernakova, Alexandra; Huttenhower, Curtis; Wijmenga, Cisca; Netea, Mihai G; Xavier, Ramnik J
2016-11-03
Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.
Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long
2017-08-01
Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradford, M A; Melillo, J M; Reynolds, J F
2010-06-10
The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere asmore » climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with higher-temperature optima for soils exposed to warmer temperatures. To relate these changes within the microbial community to potential positive feedbacks between climate warming and soil respiration, we develop a microbial-enzyme model to simulate the responses of soil carbon to warming. We find that declines in microbial biomass and degradative enzymes can explain the observed attenuation of soil-carbon emissions in response to warming. Specifically, reduced carbon-use efficiency limits the biomass of microbial decomposers and mitigates loss of soil carbon. However, microbial adaptation or a change in microbial communities could lead to an upward adjustment of the efficiency of carbon use, counteracting the decline in microbial biomass and accelerating soil-carbon loss. We conclude that the soil-carbon response to climate warming depends on the efficiency of soil microbes in using carbon.« less
NASA Astrophysics Data System (ADS)
Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeremy Semrau; Sung-Woo Lee; Jeongdae Im
2010-09-30
The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although themore » contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.« less
The microbial habitability of weathered volcanic glass inferred from continuous sensing techniques.
Bagshaw, Elizabeth A; Cockell, Charles S; Magan, Naresh; Wadham, Jemma L; Venugopalan, T; Sun, Tong; Mowlem, Matt; Croxford, Anthony J
2011-09-01
Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Stricker, Craig A.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos
2014-01-01
The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median = 280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r = 0.92) and microbial Hg(II) methylation (kmeth. r = 0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for “reactive Hg” (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median = 205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median = 22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere biogeochemistry through organic exudation and transpiration-driven concentration of pore-water constituents and oxidation of reduced compounds. While the relative role of vegetation varied among wetland types, macrophyte activity enhanced MeHg production.
Degradation of 2,4-D in soils by Fe₃O₄ nanoparticles combined with stimulating indigenous microbes.
Fang, Guodong; Si, Youbin; Tian, Chao; Zhang, Gangya; Zhou, Dongmei
2012-03-01
Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in soils by Fe₃O₄ nanoparticles combined with soil indigenous microbes was investigated, and the effects of Fe₃O₄ nanoparticles on soil microbial populations and enzyme activities were also studied. The soils contaminated with 2,4-D were treated with Fe₃O₄ nanoparticles. The microbial populations and enzyme activities were analyzed by dilution plate method and chemical assay, respectively, and the concentration of 2,4-D in soil was determined by high-performance liquid chromatography (HPLC). The results indicated that Fe₃O₄ nanoparticles combined with soil indigenous microbes led to a higher degradation efficiency of 2,4-D than the treatments with Fe₃O₄ nanoparticles or indigenous microbes alone. The degradation of 2,4-D in soils followed the pseudo first-order kinetic. The half-lives of 2,4-D degradation (DT₅₀) of the combined treatments were 0.9, 1.9 and 3.1 days in a Red soil, Vertisol and Alfisol, respectively, which implied that the DT₅₀ of the combination treatments were significantly shorter than that of the treatments Fe₃O₄ nanoparticles or indigenous microbes alone. The effects of Fe₃O₄ nanoparticles on soil microbial populations and enzyme activities were also investigated and compared with the α-Fe₂O₃ nanoparticles. The results suggested that the α-Fe₂O₃ nanoparticles had only comparatively small effects on degradation of 2,4-D in soils, while the Fe₃O₄ nanoparticles not only degraded 2,4-D in soils but also increased the soil microbial populations and enzyme activities; the maximum increase in enzyme activities were 67.8% (amylase), 53.8% (acid phosphatase), 26.5% (catalase) and 38.0% (urease), compared with the untreated soil. Moreover, the introduction of Fe₃O₄ nanoparticles at the different dosage resulted in a variable degradation efficiency of 2,4-D in soil. The method of combining Fe₃O₄ nanoparticles with indigenous soil microbes may offer great benefits for the application of nanotechnology in remediation of herbicide contaminated soil.
Microbial Dynamics During a Temporal Sequence of Bioreduction Stimulated by Emulsified Vegetable Oil
NASA Astrophysics Data System (ADS)
Schadt, C. W.; Gihring, T. M.; Yang, Z.; Wu, W.; Green, S.; Overholt, W.; Zhang, G.; Brandt, C. C.; Campbell, J. H.; Carroll, S. C.; Criddle, C.; Jardine, P. M.; Lowe, K.; Mehlhorn, T.; Kostka, J. E.; Watson, D. B.; Brooks, S. C.
2011-12-01
Amendments of slow-release substrates (e.g. emulsified vegetable oil; EVO) are potentially pragmatic alternatives to short-lived labile substrates for sustained uranium bioimmobilization within groundwater systems. The spatial and temporal dynamics of geochemical and microbial community changes during EVO amendment are likely to differ significantly from populations stimulated by readily utilizable soluble substrates (e.g. ethanol or acetate). We tracked dynamic changes in geochemistry and microbial communities for 270 days following a one-time EVO injection at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site that resulted in decreased groundwater U concentrations for ~4 months. Pyrosequencing and quantitative PCR of 16S rRNA and dissimilatory sulfite reductase (dsrA) genes from monitoring well samples revealed a rapid decline in bacterial community richness and evenness after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group consisting of 10-15 dominant OTUs, rather than a broad community stimulation. By association of the known physiology of close relatives identified in the pyrosequencing analysis, it is possible to infer a hypothesized sequence of microbial functions leading the major changes in electron donors and acceptors in the system. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition and utilized the glycerol associated with the oils. Sulfate-reducing bacteria from the genus Desulforegula, known for LCFA oxidation to acetate, also dominated shortly after EVO amendment and are thought to catalyze this process. Acetate and H2 production during LCFA degradation appeared to stimulate NO3-, Fe(III), U(VI), and SO42- reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late in the experiment and in some samples constituted over 25 % of the total microbial community. Bacterial richness rebounded after nine months, although community composition remained distinct from the pre-amendment conditions. Subsequent to the experiment we have isolated several of these organisms into pure culture including representatives of probable new species of Geobacter, Desulforegula and Desulfovibrio. A hypothesized model for the functioning of these limited communities will be verified in the laboratory using defined combinations of isolates from the field where possible. These results demonstrated EVO serves as an effective electron donor source for in situ U(VI) bioreduction, and subsurface EVO degradation and metal reduction was likely mediated by successive identifiable guilds of organisms.
Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
DeBruyn, R. P.
2017-12-01
Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or insufficiency of data make other technologies too expensive.
Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M
2015-01-01
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.
Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.
2015-01-01
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation. PMID:26244346
Immunostimulation in the era of the metagenome
Proal, Amy D; Albert, Paul J; Blaney, Greg P; Lindseth, Inge A; Benediktsson, Chris; Marshall, Trevor G
2011-01-01
Microbes are increasingly being implicated in autoimmune disease. This calls for a re-evaluation of how these chronic inflammatory illnesses are routinely treated. The standard of care for autoimmune disease remains the use of medications that slow the immune response, while treatments aimed at eradicating microbes seek the exact opposite—stimulation of the innate immune response. Immunostimulation is complicated by a cascade of sequelae, including exacerbated inflammation, which occurs in response to microbial death. Over the past 8 years, we have collaborated with American and international clinical professionals to research a model-based treatment for inflammatory disease. This intervention, designed to stimulate the innate immune response, has required a reevaluation of disease progression and amelioration. Paramount is the inherent conflict between palliation and microbicidal efficacy. Increased microbicidal activity was experienced as immunopathology—a temporary worsening of symptoms. Further studies are needed, but they will require careful planning to manage this immunopathology. PMID:21278764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang
The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scalesmore » of interest.« less
Dense water plumes modulate richness and productivity of deep sea microbes.
Luna, Gian Marco; Chiggiato, Jacopo; Quero, Grazia Marina; Schroeder, Katrin; Bongiorni, Lucia; Kalenitchenko, Dimitri; Galand, Pierre E
2016-12-01
Growing evidence indicates that dense water formation and flow over the continental shelf is a globally relevant oceanographic process, potentially affecting microbial assemblages down to the deep ocean. However, the extent and consequences of this influence have yet to be investigated. Here it is shown that dense water propagation to the deep ocean increases the abundance of prokaryotic plankton, and stimulates carbon production and organic matter degradation rates. Dense waters spilling off the shelf modifies community composition of deep sea microbial assemblages, leading to the increased relevance of taxa likely originating from the sea surface and the seafloor. This phenomenon can be explained by a combination of factors that interplay during the dense waters propagation, such as the transport of surface microbes to the ocean floor (delivering in our site 0.1 megatons of C), the stimulation of microbial metabolism due to increased ventilation and nutrients availability, the sediment re-suspension, and the mixing with ambient waters along the path. Thus, these results highlight a hitherto unidentified role for dense currents flowing over continental shelves in influencing deep sea microbes. In light of climate projections, this process will affect significantly the microbial functioning and biogeochemical cycling of large sectors of the ocean interior. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Redmond, Molly C; Valentine, David L
2012-12-11
Microbial communities present in the Gulf of Mexico rapidly responded to the Deepwater Horizon oil spill. In deep water plumes, these communities were initially dominated by members of Oceanospirillales, Colwellia, and Cycloclasticus. None of these groups were abundant in surface oil slick samples, and Colwellia was much more abundant in oil-degrading enrichment cultures incubated at 4 °C than at room temperature, suggesting that the colder temperatures at plume depth favored the development of these communities. These groups decreased in abundance after the well was capped in July, but the addition of hydrocarbons in laboratory incubations of deep waters from the Gulf of Mexico stimulated Colwellia's growth. Colwellia was the primary organism that incorporated (13)C from ethane and propane in stable isotope probing experiments, and given its abundance in environmental samples at the time that ethane and propane oxidation rates were high, it is likely that Colwellia was active in ethane and propane oxidation in situ. Colwellia also incorporated (13)C benzene, and Colwellia's abundance in crude oil enrichments without natural gas suggests that it has the ability to consume a wide range of hydrocarbon compounds or their degradation products. However, the fact that ethane and propane alone were capable of stimulating the growth of Colwellia, and to a lesser extent, Oceanospirillales, suggests that high natural gas content of this spill may have provided an advantage to these organisms.
Microbiological, biochemical, and functional aspects of sugary kefir fermentation - A review.
Fiorda, Fernanda Assumpção; de Melo Pereira, Gilberto Vinicius; Thomaz-Soccol, Vanete; Rakshit, Sudip Kumar; Pagnoncelli, Maria Giovana Binder; Vandenberghe, Luciana Porto de Souza; Soccol, Carlos Ricardo
2017-09-01
Sugary kefir beverage is produce by fermenting raw sugar solution with kefir grains, the latter consisting of polysaccharide and microorganisms. This beverage, with great consumption in countries such as USA, Japan, France, and Brazil, represents a promising market to functional cultured drinks. This paper reviews the microbial diversity and interaction, kinetics, safety, and bioactivities of sugary kefir fermentation. The literature reviewed here demonstrates that sugary kefir possesses a similar microbial association relative to traditional milk kefir fermentation, especially among lactic acid bacteria and yeast species, such as Lactobacillus, Leuconostoc, Kluyveromyces, Pichia, and Saccharomyces. However, a selective pressure at species level is generally observed, as, for example, the stimulation of Saccharomyces species metabolism, leading to a high content of alcohol in the final product. This also seems to stimulate the growth of acetic acid bacteria that benefit of increased ethanol production to acetic acid metabolism. Existing reports have suggested important bioactivities associated with sugary kefir beverage consumption, such as antimicrobial, antiedematogenic, anti-inflammatory, antioxidant, cicatrizing, and healing activities. Other alternative non-dairy substrates, such as fruits, vegetables, and molasses, have also been tested for adaptation of kefir grains and production of functional beverages with distinct sensory characteristics. This diversification is of crucial importance for the production of new probiotic products to provide people with special needs (lactose intolerance) and vegan consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reductive dechlorination of chlorobenzenes in surfactant-amended sediment slurries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoof, P.L.; Jafvert, C.T.
1996-11-01
Microbial anaerobic dechlorination of hexachlorobenzene (HCB) was examined in sediment slurries amended with two classes of nonionic surfactant, polyoxyethylene (POE) sorbitan fatty acid esters (Tweens) and POE alcohols (Brijs). The rationale for surfactant addition was to increase the bioavailability of highly sorbed organic pollutants to degrading microorganisms by enhancing their solubility. The solubility of HCB was initially enhanced via micellar partitioning; however, primary degradation of most surfactants occurred within 10 d. Dechlorination activity was significantly reduced at POE alcohol concentrations above the critical micelle concentration (cmc), with or without the occurrence of surfactant degradation. Tween 80 decreased HCB dechlorination atmore » concentrations significantly above the cmc. At concentrations closer to the cmc, Tween 80 increased dechlorination rate constants four- to fivefold in acclimated slurries. Additions of Tween 80 at or below the cmc stimulated dechlorination activity in unacclimated slurries that exhibited very little activity in unamended controls. An average of 89% of HCB was dechlorinated after 90 d, compared to 20% in unamended sediments. No effect was observed for POE alcohols at these sub-cmc levels. The lack of a stimulated response for the POE alcohols suggests that Tween 80 may not be acting simply as a source of carbon or energy.« less
Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong
2014-01-01
Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change. PMID:25490701
Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong
2014-01-01
Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change.
Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease
NASA Astrophysics Data System (ADS)
Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.
2016-12-01
Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p<0.05). There was no evidence of priming in soils that had been fertilized for >20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.
Gupta, Rupali; Singh, Akanksha; Ajayakumar, P V; Pandey, Rakesh
2017-06-01
Microbial interference plays an imperative role in plant development and response to various stresses. However, its involvement in mitigation of oxidative stress generated by plant parasitic nematode in plants remains elusive. In the present investigation, the efficacy of microbe's viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 single and in combinations was examined to mitigate oxidative stress generated by M. incognita in medicinal plant, Bacopa monnieri. Microbial combination with and without pathogen also enhanced the growth parameters along with secondary metabolites (bacoside) of B. monnieri than the pathogen inoculated control. The study showed that initially the production of hydrogen peroxide (H 2 O 2 ) was higher in dual microbes infected with pathogen which further declined over M. incognita inoculated control plants. Superoxide dismutase and free radical scavenging activity were also highest in the same treatment which was linearly related with least lipid peroxidation and root gall formation in B. monnieri under the biotic stress. Microscopic visualization of total reactive oxygen species (ROS), H 2 O 2 , superoxide radical and programmed cell death in host plant further extended our knowledge and corroborated well with the above findings. Furthermore, scanning electron microscopy confirmed good microbial colonization on the host root surface around nematode penetration sites in plants treated with dual microbes under pathogenic stress. The findings offer novel insight into the mechanism adopted by the synergistic microbial strains in mitigating oxidative stress and simultaneously stimulating bacoside production under pathogenic stress. Copyright © 2017 Elsevier GmbH. All rights reserved.
Van Horn, David J.; Okie, Jordan G.; Buelow, Heather N.; Gooseff, Michael N.; Barrett, John E.
2014-01-01
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region. PMID:24610850
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
Xue, Kai; Xie, Jianping; Zhou, Aifen; ...
2016-05-06
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less
Van Horn, David J; Okie, Jordan G; Buelow, Heather N; Gooseff, Michael N; Barrett, John E; Takacs-Vesbach, Cristina D
2014-05-01
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong
2016-01-01
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Kai; Xie, Jianping; Zhou, Aifen
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less
Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries
NASA Astrophysics Data System (ADS)
Wieczorek, A. S.; Hetz, S. A.; Kolb, S.
2014-06-01
Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.
Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries
NASA Astrophysics Data System (ADS)
Wieczorek, A. S.; Hetz, S. A.; Kolb, S.
2014-02-01
Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.
Olsen, Marianne; Schaanning, Morten Thorne; Braaten, Hans Fredrik Veiteberg; Eek, Espen; Moy, Frithjof E; Lydersen, Espen
2018-01-01
Macrophytes are shown to affect the microbial activity in different aqueous environments, with an altering of the sediment cycling of mercury (Hg) as a potential effect. Here, we investigated how a meadow with permanently submerged macrophytes in a contaminated brackish fjord in southern Norway influenced the conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant (60-80tons, 1947-1987) was evident through high Hg concentrations (491mgTot-Hgkg -1 , 268μgMeHgkg -1 ) in intermediate sediment depths (10-20cm) outside of the meadow, with reduced concentrations within the meadow. Natural recovery of the fjord was revealed by lower sediment surface concentrations (1.9-15.5mgTot-Hgkg -1 , 1.3-3.2μgMeHgkg -1 ). Within the meadow, vertical gradients of sediment hydrogen sulfide (H 2 S) E h and pH suggested microbial sulfate reduction in 2-5cm depths, coinciding with peak values of relative MeHg levels (0.5% MeHg). We assume that MeHg production rates was stimulated by the supply and availability of organic carbon, microbial activity and a sulfide oxidizing agent (e.g. O 2 ) within the rhizosphere. Following this, % MeHg in sediment (0-5cm) within the meadow was approximately 10× higher compared to outside the meadow. Further, enhanced availability of MeHg within the meadow was demonstrated by significantly higher fluxes (p<0.01) from sediment to overlying water (0.1-0.6ngm -2 d -1 ) compared to sediment without macrophytes (0.02-0.2ngm -2 d -1 ). Considering the productivity and species richness typical for such habitats, submerged macrophyte meadows located within legacy Hg contaminated sediment sites may constitute important entry points for MeHg into food webs. Copyright © 2017 Elsevier B.V. All rights reserved.
Davis, Jasmine C. C.; Totten, Sarah M.; Huang, Julie O.; Nagshbandi, Sadaf; Kirmiz, Nina; Garrido, Daniel A.; Lewis, Zachery T.; Wu, Lauren D.; Smilowitz, Jennifer T.; German, J. Bruce; Mills, David A.; Lebrilla, Carlito B.
2016-01-01
Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity. PMID:27435585
Davis, Jasmine C C; Totten, Sarah M; Huang, Julie O; Nagshbandi, Sadaf; Kirmiz, Nina; Garrido, Daniel A; Lewis, Zachery T; Wu, Lauren D; Smilowitz, Jennifer T; German, J Bruce; Mills, David A; Lebrilla, Carlito B
2016-09-01
Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Harris, S. H.; Barker, C. E.; Smith, R. L.
2005-12-01
Methane desorbed from subsurface coalseams contributes about 8% of the total natural gas produced in the US. This value is expected to increase over the next several years as a growing proportion of energy demands are supplied from unconventional reservoirs. Isotopic analyses of gas samples from several geographically separate coalbeds indicates a substantial proportion of the sorbed methane is biogenic in origin. Furthermore, previous studies have shown the ability of microbial consortia to degrade coal in aerobic laboratory incubations. These findings suggests the stimulation of microbial methane production in subsurface coals may provide a sustainable source of domestic energy. To address this prospect, we assessed the ability of indigenous microbial populations to produce methane in coal maintained under anaerobic conditions in the laboratory and investigated factors that influenced the rate and extent of the process. Several freshly collected coals of different rank were examined for their ability to support methanogenesis in mineral medium alone or amended with different nutrients such as hydrogen (4 kPa), formate (20 mM), or acetate (25mM). Microbial methane production was distinguished from abiotic desorption by subtracting methane generated in replicate incubations that contained bromoethanesulfonic acid (5 mM), an inhibitor of methanogenesis. The extent and rate of methane production varied among the different coals. A relatively shallow (400 m), immature coal exhibited a rate of 700 nmole CH4*day-1*g coal-1, a value comparable to previous observations of contaminated sediments. Methane production was negligible in a deeper, relatively mature (650 m) coal obtained from the same borehole although the same material exhibited a rate of about 80 nmole CH4*day-1*g coal-1 after a formate amendment. In contrast, hydrogen proved to be ineffective as a methanogenic substrate, although this electron donor was rapidly consumed in coal incubations. A filter-sterilized warm water extract of spent coal renewed methanogenesis in incubations no longer generating methane, suggesting the cessation of methane production was not due to moribund cells or the accumulation of an inhibitory compound, but rather the lack of suitable electron donor. Viable methanogenic consortia were present in most of the coal samples examined in this study and their activity could be enhanced by electron donor amendment, which presumably supports microbial growth. Furthermore, the observation of rapid hydrogen consumption uncoupled from methanogenesis suggests competition exists for this compound. The success of efforts to stimulate methanogenesis in subsurface coalbeds will likely be influenced by the nature of the electron donor.
NASA Astrophysics Data System (ADS)
Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd
2014-05-01
Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate mineralization (10%) and the highest phosphatase activity (in the case of FW irrigation) was observed. The PO+PE activity was two to three times higher than in the soil with low clay content and increased clearly with increasing of soil depth. The last tendency was also valid generally for the enzymes of C-, N-, and P-cycles under both types of irrigation. The upper layer in the soil under TWW irrigation was characterized by the highest microbial biomass value (74 μg/g soil). DHA in all soil depths under both types of irrigation was significantly higher than in the corresponding depths of soil with low clay content. CLPP data showed the highest consumption of ascorbic acid and D-glucosamine hydrochloride in comparison to consumption of D-glucose and L-glutamine in both irrigation types.
Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir.
Romanin, David; Serradell, María; González Maciel, Dolores; Lausada, Natalia; Garrote, Graciela L; Rumbo, Martín
2010-06-15
Kefir is obtained by milk fermentation with a complex microbial population included in a matrix of polysaccharide and proteins. Several health-promoting activities has been attributed to kefir consumption. The aim of this study was to select microorganisms from kefir able to down-regulate intestinal epithelial innate response and further characterize this activity. Caco-2 cells stably transfected with a human CCL20 promoter luciferase reporter were used to screen a collection of 24 yeast and 23 bacterial strains isolated from kefir. The Toll-like receptor 5 agonist, flagellin was used to activate the reporter cells, while pre-incubation with the selected strains was tested to identify strains with the capacity to inhibit cell activation. In this system, 21 yeast strains from the genera Saccharomyces, Kluyveromyces and Issatchenkia inhibited almost 100% of the flagellin-dependent activation, whereas only some lactobacilli strains showed a partial effect. K. marxianus CIDCA 8154 was selected for further characterization. Inhibitory activity was confirmed at transcriptional level on Caco-2/TC-7 and HT-29 cells upon flagellin stimulation. A similar effect was observed using other pro-inflammatory stimulation such as IL-1beta and TNF-alpha. Pre-incubation with yeasts induced a down-regulation of NF-kappaB signalling in epithelial cells in vitro, as well as expression of other pro-inflammatory chemokines such as CXCL8 and CXCL2. Furthermore, modulation of CCL20 mRNA expression upon flagellin stimulation was evidenced in vivo, in a mouse ligated intestinal loop model. Results indicate kefir contains microorganisms able to abolish the intestinal epithelial inflammatory response that could explain some of the properties attributed to this fermented milk. Copyright 2010 Elsevier B.V. All rights reserved.
Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer
Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi
2016-01-01
The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389
Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.
Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi
2016-03-07
The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.
Sundin, Johanna; Rangel, Ignacio; Repsilber, Dirk; Brummer, Robert-Jan
2015-01-01
Microbial dysbiosis and prolonged immune activation resulting in low-grade inflammation and intestinal barrier dysfunction have been suggested to be underlying causes of post-infectious irritable bowel syndrome (PI-IBS). The aim of this study was to evaluate the difference in cytokine response between mucosal specimens of PI-IBS patients and healthy controls (HC) after ex vivo stimulation with key anaerobic bacteria. Colonic biopsies from 11 PI-IBS patients and 10 HC were stimulated ex vivo with the commensal bacteria Bacteroides ovatus, Ruminococcus gnavus, Akkermansia muciniphila, Subdoligranulum variabile and Eubacterium limosum, respectively. The cytokine release (IL-1β, IL-2, IL-8, IL-10, IL-13, IL-17, TNF-α and IFN-γ) in stimulation supernatants was analyzed using the LUMINEX assay. Comparison of cytokine release between PI-IBS patients and healthy controls was performed taking both unstimulated and bacterially stimulated mucosal specimens into account. IL-13 release from mucosal specimens without bacterial stimulation was significantly lower in PI-IBS patients compared to HC (p < 0.05). After stimulation with Subdoligranulum variabile, IL-1β release from PI-IBS patients was significantly increased compared to HC (p < 0.05). Stimulation with Eubacterium limosum resulted in a significantly decreased IL-10 release in HC compared to PI-IBS patients (p < 0.05) and a tendency to decreased IL-13 release in HC compared to PI-IBS patients (p = 0.07). PI-IBS patients differ from HC with regard to cytokine release ex vivo after stimulation with selected commensal bacteria. Hence, our results support that the pathogenesis of PI-IBS comprises an altered immune response against commensal gut microbes.
Haissman, Judith M; Haugaard, Anna K; Ostrowski, Sisse R; Berge, Rolf K; Hov, Johannes R; Trøseid, Marius; Nielsen, Susanne D
2017-06-23
HIV infection is associated with increased risk of cardiovascular disease beyond that explained by traditional risk factors. Altered gut microbiota, microbial translocation, and immune activation have been proposed as potential triggers. The microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) predicts myocardial infarction (MI) in the general population and has recently been shown to induce platelet hyperreactivity. In the present study, we investigated if TMAO was associated with platelet function, microbial translocation, and immune activation in both untreated and combination anti-retroviral therapy (cART) HIV infection. TMAO and the pre-cursors betaine, choline, and carnitine were quantified by mass-spectrometry in plasma samples from a previously established cross-sectional cohort of 50 untreated and 50 cART treated HIV-infected individuals. Whole-blood impedance aggregometry, C-reactive protein, sCD14, and lipopolysaccharide were assessed as measures of platelet function, inflammation, monocyte activation, and microbial translocation, respectively. TMAO was not associated with platelet aggregation response after stimulation with four different agonists, or with overall hypo- or hyperreactivity in untreated or treated HIV-infected individuals. In contrast, sCD14 a marker of both monocyte activation and microbial translocation was independently associated with TMAO in untreated HIV-infection (R = 0.381, P = 0.008). Lower levels of carnitine [32.2 (28.4-36.8) vs. 38.2 (33.6-42.0), P = 0.001] and betaine [33.1 (27.3-43.4) vs.37.4 (31.5-48.7, P = 0.02], but similar TMAO levels [3.8 (2.3-6.1), vs. 2.9 μM (1.9-4.8) P = 0.15] were found in cART treated compared to untreated HIV-infected individuals, resulting in higher ratios of TMAO/carnitine [0.12 (0.07-0.20) vs. 0.08 (0.05-0.11), P = 0.02] and TMAO/betaine [0.11 (0.07-0.17) vs. 0.08 (0.05-0.13), P 0.02]. In contrast to recent studies in HIV-uninfected populations, the present study found no evidence of TMAO-induced platelet hyperreactivity in HIV infected individuals. Microbial translocation and monocyte activation may affect TMAO levels in untreated individuals. Furthermore, the elevated ratios of TMAO/betaine and TMAO/carnitine in cART-treated individuals could possibly suggest a role of cART in TMAO metabolism.
A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.
Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C
2017-07-01
The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Nascimento, Anna Christina C; Zanotta, Lanuse C; Kyaw, Cynthia M; Schwartz, Elisabeth N F; Schwartz, Carlos A; Sebben, Antonio; Sousa, Marcelo V; Fontes, Wagner; Castro, Mariana S
2004-11-01
The emergence, in recent years, of microbial resistance to commonly used antibiotics has aroused a search for new naturally occurring bactericidal and fungicidal agents that may have clinical utility. In the present study, three new antimicrobial peptides were purified from the electrical-stimulated skin secretion of the South American frog Leptodactylus ocellatus by reversed-phase chromatographic procedures. Ocellatin 1 (1GVVDILKGAGKDLLAHLVGKISEKV25-CONH2), ocellatin 2 (1GVLDIFKDAAKQILAHAAEKQI25-CONH2) and ocellatin 3 (1GVLDILKNAAKNILAHAAEQI21-CONH2) are structurally related peptides. These peptides present hemolytic activity against human erythrocytes and are also active against Escherichia coli. Ocellatins exhibit significant sequence similarity to other amphibian antimicrobial peptides, mainly to brevinin 2ED from Rana esculenta.
Elucidating carbon sources driving microbial metabolism during oil sands reclamation.
Bradford, Lauren M; Ziolkowski, Lori A; Goad, Corey; Warren, Lesley A; Slater, Gregory F
2017-03-01
Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H 2 S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ 14 C = -769 to -955‰) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ 14 C = -250 to -350‰). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ 14 C PLFA = -257‰; Sand cap Δ 14 C PLFA = -805‰) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ 14 C PLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential outcomes of the introduction of relatively bioavailable carbon to mine wastes in order to predict and manage the performance of reclamation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting
2016-01-01
This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051
Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting
2016-01-01
This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.
NASA Astrophysics Data System (ADS)
Hoang Thi Thu, Duyen; Razavi, Bahar S.
2016-04-01
Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67, 192-211.
Wang, Yang; Sumathipala, Niranji; Rayaprolu, Subrahmanyam; Jiang, Haobo
2011-01-01
Detection of pathogenic invaders is the essential first step of a successful defense response in multicellular organisms. In this study, we have identified a new member of the β-1,3-glucanase-related protein superfamily from the tobacco hornworm Manduca sexta. This protein, designated microbe binding protein (MBP), is 61% identical in sequence to Bombyx mori Gram-negative bacteria binding protein, but only 34-36% identical to M. sexta β-1,3-glucan recognition protein-1 and 2. Its mRNA levels were strongly up-regulated in hemocytes and fat body of immune challenged larvae, along with an increase in concentration of the plasma protein. We expressed M. sexta MBP in a baculovirus-insect cell system. The purified protein associated with intact bacteria and fungi. It specifically bound to lipoteichoic acid, lipopolysaccharide, diaminopimelic acid-type peptidoglycans (DAP-PGs) from Escherichia coli and Bacillus subtilis, but less so to laminarin or Lys-type PG from Staphylococcus aureus. The complex binding pattern was influenced by other plasma factors and additional microbial surface molecules. After different amounts of MBP had been incubated with larval plasma on ice, a concentration-dependent increase in phenoloxidase (PO) activity occurred in the absence of any microbial elicitor. The activity increase was also observed in the mixture of plasma and a bacterial or fungal cell wall component. The prophenoloxidase (proPO) activation became more prominent when DAP-PGs, Micrococcus luteus Lys-PG, or lipoteichoic acid was included in the mixture of MBP and plasma. Statistic analysis suggested that a synergistic enhancement of proPO activation was caused by an interaction between MBP and these elicitors, but not S. aureus Lys-PG, lipopolysaccharide, curdlan, or laminarin. These data indicate that M. sexta MBP is a component of the surveillance mechanism and, by working together with other pattern recognition molecules and serine proteinases, triggers the proPO activation system. PMID:21296155
Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W
2003-01-17
T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.
Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction
Hernandez, Maria E.; Kappler, Andreas; Newman, Dianne K.
2004-01-01
Natural products with important therapeutic properties are known to be produced by a variety of soil bacteria, yet the ecological function of these compounds is not well understood. Here we show that phenazines and other redox-active antibiotics can promote microbial mineral reduction. Pseudomonas chlororaphis PCL1391, a root isolate that produces phenazine-1-carboxamide (PCN), is able to reductively dissolve poorly crystalline iron and manganese oxides, whereas a strain carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not; the addition of purified PCN restores this ability to the mutant strain. The small amount of PCN produced relative to the large amount of ferric iron reduced in cultures of P. chlororaphis implies that PCN is recycled multiple times; moreover, poorly crystalline iron (hydr)oxide can be reduced abiotically by reduced PCN. This ability suggests that PCN functions as an electron shuttle rather than an iron chelator, a finding that is consistent with the observation that dissolved ferric iron is undetectable in culture fluids. Multiple phenazines and the glycopeptidic antibiotic bleomycin can also stimulate mineral reduction by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR1. Because diverse bacterial strains that cannot grow on iron can reduce phenazines, and because thermodynamic calculations suggest that phenazines have lower redox potentials than those of poorly crystalline iron (hydr)oxides in a range of relevant environmental pH (5 to 9), we suggest that natural products like phenazines may promote microbial mineral reduction in the environment. PMID:14766572
Attermeyer, Katrin; Premke, Katrin; Hornick, Thomas; Hilt, Sabine; Grossart, Hans-Peter
2013-12-01
In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using 13C-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POM(L) and via benthic macroinvertebrates by shredding of t-POM(L). The latter pathway represents a "benthic shortcut" which efficiently transfers t-POM(L) to higher trophic levels.
Identification of Novel Synthetic Toll-like Receptor 2 Agonists by High Throughput Screening*
Guan, Yue; Omueti-Ayoade, Katherine; Mutha, Sarita K.; Hergenrother, Paul J.; Tapping, Richard I.
2010-01-01
Toll-like receptors (TLRs) play a central role in host defense by inducing inflammatory and adaptive immune responses following infection. Drugs that target TLRs are of considerable interest as potential inflammatory regulators, vaccine adjuvants, and novel immunotherapeutics. TLR2, in cooperation with either TLR1 or TLR6, mediates responses to a wide variety of microbial products as well as products of host tissue damage. In an effort to understand the structural basis of TLR2 recognition and uncover novel TLR2 agonists, a synthetic chemical library of 24,000 compounds was screened using an IL-8-driven luciferase reporter in cells expressing these human receptors. The screening yielded several novel TLR2-dependent activators that utilize TLR1, TLR6, or both as co-receptors. These novel small molecule compounds are aromatic in nature and structurally unrelated to any known TLR2 agonists. The three most potent compounds do not exhibit synergistic activity, nor do they act as pseudoantagonists toward natural TLR2 activators. Interestingly, two of the compounds exhibit species specificity and are inactive toward murine peritoneal macrophages. Mutational analysis reveals that although the central extracellular region of TLR1 is required for stimulation, there are subtle differences in the mechanism of stimulation mediated by the synthetic compounds in comparison with natural lipoprotein agonists. The three most potent compounds activate cells in the nanomolar range and stimulate cytokine production from human peripheral blood monocytes. Our results confirm the utility of high throughput screens to uncover novel synthetic TLR2 agonists that may be of therapeutic benefit. PMID:20504771
NASA Astrophysics Data System (ADS)
Schrenk, M. O.; Brazelton, W. J.; Woodruff, Q.; Szponar, N.; Morrill, P. L.
2010-12-01
The aqueous alteration of ultramafic rocks (serpentinization) has been suggested to be a favorable process for the habitability of astrobodies in our solar system including subsurface environments of Mars and Europa. Serpentinization produces copious quantities of hydrogen and small organic molecules, and leads to highly reducing, highly alkaline conditions (up to pH 12) and a lack of dissolved inorganic carbon, which both stimulates and challenges microbial activities. Several environments on Earth provide insight into the relationships between serpentinization and microbial life including slow-spreading mid-ocean ridges, subduction zones, and ophiolite materials emplaced along continental margins. The Tablelands, an ophiolite in western Newfoundland, Canada provides an opportunity to carefully document and map the relationships between geochemical energy, microbial growth, and physiology. Alkaline fluids at the Tablelands originate from 500-million year old oceanic crust and accumulate in shallow pools or seep from beneath serpentinized talus. Fluids, rocks, and gases were collected from the Tablelands during a series of field excursions in 2009 and 2010, and geochemical, microscopic, molecular, and cultivation-based approaches were used to study the serpentinite microbial ecosystem. These samples provide an opportunity to generate a comprehensive map of microbial communities and their activities in space and time. Data indicate that a low but detectable stock of microorganisms inhabit high pH pools associated with end-member serpentinite fluids. Enrichment cultures yielded brightly pigmented colonies related to Alphaproteobacteria, presumably carrying out anoxygenic photosynthesis, and Firmicutes, presumably catalyzing the fermentation of organic matter. Culture-independent analyses of SSU rRNA using T-RFLP indicated low diversity communities of Firmicutes and Archaea in standing alkaline pools, communities of Beta- and Gammaproteobacteria at high pH seeps, and assemblages consisting of diverse taxa at neutral pH background sites. Terrestrial serpentinite-hosted microbial ecosystems with their accessibility, their low phylogenetic diversity, and limited range of energetic resources provide an excellent opportunity to explore the interplay between geochemical energy and life and to elucidate the native serpentinite subsurface biosphere. From the perspective of Mars exploration, studies of serpentinite ecosystems provide the opportunity to pinpoint the organisms and physiological adaptations specifically associated with serpentinization and to directly measure their geochemical impacts. Both of these results will inform modeling and life detection efforts of the Martian subsurface environment.
Fernandez, Patricia L.; Dutra, Fabianno F.; Alves, Letícia; Figueiredo, Rodrigo T.; Mourão-Sa, Diego; Fortes, Guilherme B.; Bergstrand, Sophie; Lönn, David; Cevallos, Ricardo R.; Pereira, Renata M. S.; Lopes, Ulisses G.; Travassos, Leonardo H.; Paiva, Claudia N.; Bozza, Marcelo T.
2010-01-01
Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases. PMID:20729208
Yoshitomi, Hiroyuki; Sakaguchi, Noriko; Kobayashi, Katsuya; Brown, Gordon D.; Tagami, Tomoyuki; Sakihama, Toshiko; Hirota, Keiji; Tanaka, Satoshi; Nomura, Takashi; Miki, Ichiro; Gordon, Siamon; Akira, Shizuo; Nakamura, Takashi; Sakaguchi, Shimon
2005-01-01
A combination of genetic and environmental factors can cause autoimmune disease in animals. SKG mice, which are genetically prone to develop autoimmune arthritis, fail to develop the disease under a microbially clean condition, despite active thymic production of arthritogenic autoimmune T cells and their persistence in the periphery. However, in the clean environment, a single intraperitoneal injection of zymosan, a crude fungal β-glucan, or purified β-glucans such as curdlan and laminarin can trigger severe chronic arthritis in SKG mice, but only transient arthritis in normal mice. Blockade of Dectin-1, a major β-glucan receptor, can prevent SKG arthritis triggered by β-glucans, which strongly activate dendritic cells in vitro in a Dectin-1–dependent but Toll-like receptor-independent manner. Furthermore, antibiotic treatment against fungi can prevent SKG arthritis in an arthritis-prone microbial environment. Multiple injections of polyinosinic-polycytidylic acid double-stranded RNA also elicit mild arthritis in SKG mice. Thus, specific microbes, including fungi and viruses, may evoke autoimmune arthritis such as rheumatoid arthritis by stimulating innate immunity in individuals who harbor potentially arthritogenic autoimmune T cells as a result of genetic anomalies or variations. PMID:15781585
Colla, Giuseppe; Hoagland, Lori; Ruzzi, Maurizio; Cardarelli, Mariateresa; Bonini, Paolo; Canaguier, Renaud; Rouphael, Youssef
2017-01-01
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture’s impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions. PMID:29312427
Probiotics, their health benefits and applications for developing healthier foods: a review.
Nagpal, Ravinder; Kumar, Ashwani; Kumar, Manoj; Behare, Pradip V; Jain, Shalini; Yadav, Hariom
2012-09-01
In the industrialized world, functional foods have become a part of an everyday diet and are demonstrated to offer potential health benefits beyond the widely accepted nutritional effects. Currently, the most important and frequently used functional food compounds are probiotics and prebiotics, or they are collectively known as 'synbiotics'. Moreover, with an already healthy image, dairy products appear to be an excellent mean for inventing nutritious foods. Such probiotic dairy foods beneficially affect the host by improving survival and implantation of live microbial dietary supplements in the gastrointestinal flora, by selectively stimulating the growth or activating the catabolism of one or a limited number of health-promoting bacteria in the intestinal tract, and by improving the gastrointestinal tract's microbial balance. Hence, the paper reviews the current scenario of probiotics and their prospective potential applications for functional foods for better health and nutrition of the society. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
R-Spondin1 expands Paneth cells and prevents dysbiosis induced by graft-versus-host disease
Hayase, Eiko; Nakamura, Kiminori; Noizat, Clara; Ogasawara, Reiki; Ohigashi, Hiroyuki; Sugimoto, Rina; Matsuoka, Satomi; Ara, Takahide; Yokoyama, Emi; Yamakawa, Tomohiro; Ebata, Ko; Kondo, Takeshi; Aizawa, Tomoyasu; Ogura, Yoshitoshi; Hayashi, Tetsuya; Mori, Hiroshi; Tomizuka, Kazuma; Ayabe, Tokiyoshi
2017-01-01
The intestinal microbial ecosystem is actively regulated by Paneth cell–derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host–microbiota cross talk toward therapeutic benefits. PMID:29066578
Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.
Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian
2017-05-23
Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight into what might make the clay antibacterial. Our analyses suggest that the deposit contains a surprising diversity of bacteria, which live in at least three distinct environments. In addition, the clay harbors bacteria that may have interesting potential as biocontrol/bioremediation agents or producers of novel bioactive compounds. Copyright © 2017 Svensson et al.
Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.
2000-01-01
Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.
Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia
2015-06-01
To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.
Assaf, Areej M; Haddadin, Randa N; Aldouri, Nedhal A; Alabbassi, Reem; Mashallah, Sundus; Mohammad, Mohammad; Bustanji, Yasser
2013-02-13
Mercurialis annua L., Bongardia chrysogonum L., and Viscum cruciatum Sieb have been traditionally used by local herbalists in Jordan for the treatment of hematopoietic neoplasms. To determine the anti-cancer, anti-inflammatory and anti-microbial potentials of the three extracts against two of the most common hematopoietic malignancies in the Jordanian populations; Burkitt's lymphoma and Multiple myeloma. The anti-cancer activity was tested against the two cell lines (BJAB Burkitt's lymphoma and U266 multiple myeloma) using the MTT and trypan blue assays. The agar dilution assay was used to study the anti-microbial activity against Gram-positive bacteria, Gram-negative bacteria, anaerobic bacteria and yeast. The pro-inflammatory cytokines interleukin (IL) -1β, IL-8 and tumor necrosis factor-α (TNF-α) were measured in the pretreated cell lines using ELISA assay to determine the anti-inflammatory activity of Viscum cruciatum Sieb against the two cell lines. The results show no evidence of stimulation of tumor growth by any of the three extracts comprising cell lines from hematological malignancies, but Viscum cruciatum Sieb showed a selective anticancer activity against BJAB cells, with IC(50) value of 14.21μg/ml. The antimicrobial effect was only noticed with Viscum cruciatum extract by inhibiting Staphylococcus aureus, Candida albicans and Propionibacterium acne, but not Pseudomonas aeruginosa at MIC of 1.25, 1.25, 0.625 and <5mg/ml, respectively. The highest activity was against the anaerobic bacteria Propionibacterium acne. Viscum cruciatum Sieb extract showed an inhibitory effect on the pro-inflammatory cytokine IL-8, but it increased TNF-α and IL-1β secretions in BJAB cells. Whereas, it had an inhibitory effect on TNF-α and IL-1β cytokines while it enhanced IL-8 secretions in U266 cells. Among the three tested herbal extracts used in the traditional medicine in Jordan, only Viscum cruciatum Sieb showed high anti-cancer and anti-microbial potentials. They also had an anti-inflammatory effect. These observations raise the prospects of using Viscum cruciatum Sieb for treatment of diseases associated with some bacterial and fungal infections, for imbalanced cytokine production and for enhancing cancer and other immunotherapies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fifty important research questions in microbial ecology.
Antwis, Rachael E; Griffiths, Sarah M; Harrison, Xavier A; Aranega-Bou, Paz; Arce, Andres; Bettridge, Aimee S; Brailsford, Francesca L; de Menezes, Alexandre; Devaynes, Andrew; Forbes, Kristian M; Fry, Ellen L; Goodhead, Ian; Haskell, Erin; Heys, Chloe; James, Chloe; Johnston, Sarah R; Lewis, Gillian R; Lewis, Zenobia; Macey, Michael C; McCarthy, Alan; McDonald, James E; Mejia-Florez, Nasmille L; O'Brien, David; Orland, Chloé; Pautasso, Marco; Reid, William D K; Robinson, Heather A; Wilson, Kenneth; Sutherland, William J
2017-05-01
Microbial ecology provides insights into the ecological and evolutionary dynamics of microbial communities underpinning every ecosystem on Earth. Microbial communities can now be investigated in unprecedented detail, although there is still a wealth of open questions to be tackled. Here we identify 50 research questions of fundamental importance to the science or application of microbial ecology, with the intention of summarising the field and bringing focus to new research avenues. Questions are categorised into seven themes: host-microbiome interactions; health and infectious diseases; human health and food security; microbial ecology in a changing world; environmental processes; functional diversity; and evolutionary processes. Many questions recognise that microbes provide an extraordinary array of functional diversity that can be harnessed to solve real-world problems. Our limited knowledge of spatial and temporal variation in microbial diversity and function is also reflected, as is the need to integrate micro- and macro-ecological concepts, and knowledge derived from studies with humans and other diverse organisms. Although not exhaustive, the questions presented are intended to stimulate discussion and provide focus for researchers, funders and policy makers, informing the future research agenda in microbial ecology. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei
2015-01-01
At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.
Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei
2015-01-01
At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe2+ ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD+ through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609
You, Fang; Dalal, Ram; Huang, Longbin
2018-08-01
Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vaslaki, L; Karátson, A; Vörös, P; Major, L; Pethö, F; Ladányi, E; Weber, C; Mitteregger, R; Falkenhagen, D
2000-01-01
Microbial contamination is characterized not only by the presence of bacteria, but also by high concentrations of biologically active by-products. They are potentially able to cross ultrafiltration and dialysis membranes and stimulate immunocompetent blood cells to synthesize cytokines. In turn, cytokine induction causes acute symptoms and has been incriminated in the long-term complications of haemodialysis patients. Infusion of large volumes of substitution fluids following ultrafiltration of microbially contaminated dialysis fluids may place patients on on-line therapies at particular risk. In this study we evaluated 30 machines with a two-stage ultrafiltration system in routine clinical haemodiafiltration settings in six centres for 6 months. Microbiological safety was assessed monthly and at the last use of the filters by determining microbial counts, endotoxin concentration and cytokine-inducing activity. No pyrogenic episodes were observed during the study period. Double-filtration of standard dialysis fluid (range, <1-895 cfu/ml, 0.0028-4.6822 IU/ml) resulted in sterile substitution fluids with endotoxin concentrations well below the Ph.Eur. standard for haemofiltration solutions (range, 0.0014-0.0281 vs 0.25 IU/ml). Moreover, they did not differ from commercial haemofiltration solutions and depyrogenated saline. Likewise, there was no difference in the cytokine-inducing activity between the solutions tested. The high microbiological quality of the ultrafiltered dialysis fluid, which was in the same range as substitution fluid, translates into both the absence of cytokine induction by dialyser back-transport and a redundant safety mode of the on-line system by a second filtration step. On-line HDF treatment can routinely be provided with ultra-pure dialysis fluids and sterile substitution fluids at pyrogen-free levels. The online preparation of substitution fluids thus can be considered microbiologically safe.
Dunn, John R; Kaneene, John B; Grooms, Daniel L; Bolin, Steven R; Bolin, Carole A; Bruning-Fann, Colleen S
2005-02-01
To determine whether cattle testing positive for Mycobacterium avium subsp paratuberculosis as determined by microbial culture of feces or antibody ELISA were more likely to have false-positive responses on the caudal fold tuberculin (CFT) test or interferon-gamma (IFN-gamma) assay for Mycobacterium bovis than cattle testing negative for M paratuberculosis. 1043 cattle from 10 herds in Michigan. Feces and blood samples for plasma were collected from cattle > or =24 months old on the day the CFT test was read. Fecal samples were submitted for microbial culture for M paratuberculosis. Plasma samples were tested for antibody against M paratuberculosis, and IFN-gamma after stimulation with purified protein derivative tuberculin from M bovis or M avium. Of 1043 cattle, 180 (17.3%) had positive CFT test results (suspects) and 8 (0.8%) had positive IFN-gamma assay results after stimulation with purified protein derivative tuberculin from M bovis. Forty-five (4.3%) and 115 (11.0%) cattle tested positive for M paratuberculosis as determined by microbial culture of feces and antibody ELISA, respectively. Cattle with positive responses for M paratuberculosis appeared to have an increased likelihood of false-positive results on the CFT test, although this association was not significant. No significant association was detected among cattle testing positive for M paratuberculosis as determined by microbial culture of feces and antibody ELISA and positive CFT test and IFN-gamma assay results for M bovis.
NASA Astrophysics Data System (ADS)
Pendall, E.; Carrillo, Y.; Dijkstra, F. A.
2017-12-01
Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of warming on incorporation of plant derived C into microbes was stronger in deeper soils. Thus, warming made microbes incorporate relatively more plant inputs in deeper soils, where biomass was less stimulated. This dependency on depth of impacts of warming on microbial C cycling should have important implications for forecasting potential feedbacks of soil C to climate change.
Are silver nanoparticles always toxic in the presence of environmental anions?
Guo, Zhi; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Huang, Zhenzhen; Jiang, Luhua; Peng, Chuan; Wang, Jiajia; Xiao, Zhihua
2017-03-01
Increasing amounts of silver nanoparticles (AgNPs) are expected to enter the ecosystems where their toxicity in the environment is proposed. In this study, we exploited the effect of environmental anions on AgNP toxicity. AgNP were mixed with various environmental anions, and then exposed to Escherichia coli to determine the effect on bacteria growth inhibition. The results demonstrated that AgNP are not always toxic in the presence of sulfide, but can stimulate microbial growth at certain concentrations. Environmental chloride and phosphate anions cannot induce the stimulation because of their weak capacity to control the release of Ag + from AgNP. Ag + that released from AgNP is proven to be responsible for AgNP toxicity. Moreover, we found that AgNP toxicity is dependent on sulfuration rate. At the same sulfuration rate, AgNP shows an identical pattern of toxicity. This study indicates that only sulfide of the tested environmental anions can induce AgNP stimulation to microbial growth in a sulfuration rate dependent pattern and the toxicity originate from Ag + that released from AgNP. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nii-Annang, S.; Rodionov, A.; Dilly, O.; Bens, O.; Raab, T.; Hüttl, R. F.
2009-04-01
The search for viable re-cultivation techniques for the reclamation of large scale soil disturbances induced by mining of mineral resources has increasingly received attention in recent times. These techniques should favour plant growth under dry conditions and under nutrient-poor substrates; a problem in the lignite mining district in Lusatia, Germany. Substrates with basal respiration around 0.04 µg CO2 g-1 h-1, which is relatively low compared to mature soils, were amended with two nutrient rich commercial soil additives (CSA 1 and CSA 2). The CSA 1 is a synthetic-mineral mixture and CSA 2 an organo-mineral mixture. The amendment stimulated basal respiration based on both carbon dioxide evolution and oxygen uptake by 150 and 125 % for SCA 1 and CSA 2, respectively when 1 % of each additive was thoroughly mixed with substrate in a laboratory study. The stimulating effect was evident after glucose addition to CSA 2. The CSA 1 application in the field at lower rates still showed apparent stimulation of soil respiratory activities after one year. Similarly, the organo-mineral-mixture has prominent effects on basal respiration and substrate-induced respiration when glucose was added. We concluded that the commercial additives used as long-term amelioration techniques increased both nutrient preservation and, to some extent, soil microbial activity.
2006-12-18
Defense. Reference herein to any specific commercial product, process , or service by trade name, trademark, manufacturer, or otherwise, does not...result of a combination of both respiratory and cometabolic processes . For in situ bioremediation, it would be most desirable to stimulate...conditions we examined. While the process has much potential, a key aspect of the technology – the nature and capability of the intrinsic microbial
NASA Astrophysics Data System (ADS)
Fujita, Y.; Taylor, J. L.; Tyler, T. L.; Banta, A. B.; Reysenbach, A. L.; Delwiche, M. E.; McLing, T. L.; Colwell, F. S.; Smith, R. W.
2003-12-01
Groundwater contamination by radionuclides and metals from past weapons processing activities is a significant problem for the United States Department of Energy. Removal of these pollutants from the subsurface can be prohibitively expensive and result in worker exposure, and therefore in situ containment and stabilization is an attractive remediation alternative. One potential approach for the immobilization of certain radionuclides and metals (e.g., 90Sr, 60Co, Pb, Cd) is to induce geochemical conditions that promote co-precipitation in calcite. Many aquifers in the arid western US are calcite-saturated, and calcite precipitated under an engineered remediation scheme in such aquifers should remain stable even after return to ambient conditions. We have proposed that an effective way to promote calcite precipitation is to utilize native microorganisms that hydrolyze urea. Urea hydrolysis results in carbonate and ammonium production, and an increase in pH. The increased carbonate alkalinity favors calcite precipitation, and the ammonium serves the additional role of promoting desorption of sorbed metal ions from the aquifer matrix by ion exchange. The desorbed metals are then accessible to co-precipitation in calcite, which can be a longer-term immobilization mechanism than sorption. The ability to hydrolyze urea is common among environmental microorganisms, and we have shown in the laboratory that microbial urea hydrolysis can be linked to calcite precipitation and co-precipitation of the trace metal strontium. As a next step in the development of our remediation approach, we aimed to demonstrate that we can stimulate the native microbial community to express urease in the field. In 2002 we conducted a preliminary field trial of our approach, using a well in the Eastern Snake River Plain Aquifer in Idaho Falls, Idaho, USA. A dilute molasses solution (0.00075%) was injected to promote overall biological growth, and then urea (50 mM) was added to the aquifer. Results from the field experiment indicated that following the molasses addition, total cell counts and ureolytic cell numbers increased by one to two orders of magnitude. Ureolysis rates increased from <100 pmol L-1hr-1 to >25,000 pmol L-1hr-1. DNA extracted from groundwater was analyzed for 16S rRNA and urease gene diversity, and indicated that distinct changes in the microbial community resulted from our substrate additions. Following urea injection, calcite precipitation in the formation occurred. These results are promising with respect to the potential of this approach for remediation of radionuclides and metals in groundwater.
Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang
2018-06-01
Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model
NASA Astrophysics Data System (ADS)
Abramoff, Rose Z.; Davidson, Eric A.; Finzi, Adrien C.
2017-09-01
Soil decomposition models range from simple empirical functions to those that represent physical, chemical, and biological processes. Here we develop a parsimonious, modular C and N cycle model, the Dual Arrhenius Michaelis-Menten-Microbial Carbon and Nitrogen Phyisology (DAMM-MCNiP), that generates testable hypotheses regarding the effect of temperature, moisture, and substrate supply on C and N cycling. We compared this model to DAMM alone and an empirical model of heterotrophic respiration based on Harvard Forest data. We show that while different model structures explain similar amounts of variation in respiration, they differ in their ability to infer processes that affect C flux. We applied DAMM-MCNiP to explain an observed seasonal hysteresis in the relationship between respiration and temperature and show using an exudation simulation that the strength of the priming effect depended on the stoichiometry of the inputs. Low C:N inputs stimulated priming of soil organic matter decomposition, but high C:N inputs were preferentially utilized by microbes as a C source with limited priming. The simplicity of DAMM-MCNiP's simultaneous representations of temperature, moisture, substrate supply, enzyme activity, and microbial growth processes is unique among microbial physiology models and is sufficiently parsimonious that it could be incorporated into larger-scale models of C and N cycling.
Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M
2017-10-03
In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.
Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas
2015-01-01
The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759
Molecular Viability Testing of UV-Inactivated Bacteria.
Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A
2017-05-15
PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Montanié, Hélène; Ory, Pascaline; Orvain, Francis; Delmas, Daniel; Dupuy, Christine; Hartmann, Hans J.
2014-09-01
In shallow macrotidal ecosystems with large intertidal mudflats, the sediment-water coupling plays a crucial role in structuring the pelagic microbial food web functioning, since inorganic and organic matter and microbial components (viruses and microbes) of the microphytobenthic biofilm can be suspended toward the water column. Two experimental bioassays were conducted in March and July 2008 to investigate the importance of biofilm input for the pelagic microbial and viral loops. Pelagic inocula (< 0.6 μ- and < 10 μ filtrates) were diluted either with < 30 kDa-ultrafiltered seawater or with this ultrafiltrate enriched with the respective size-fractionated benthic biofilm or with < 30 kDa-benthic compounds (BC). The kinetics of heterotrophic nanoflagellates (HNF), bacteria and viruses were assessed together with bacterial and viral genomic fingerprints, bacterial enzymatic activities and viral life strategies. The experimental design allowed us to evaluate the effect of BC modulated by those of benthic size-fractionated microorganisms (virus + bacteria, + HNF). BC presented (1) in March, a positive effect on viruses and bacteria weakened by pelagic HNF. Benthic microorganisms consolidated this negative effect and sustained the viral production together with a relatively diverse and uneven bacterial assemblage structure; (2) in July, no direct impact on viruses but a positive effect on bacteria modulated by HNF, which indirectly enhanced viral multiplication. Both effects were intensified by benthic microorganisms and bacterial assemblage structure became more even. HNF indirectly profited from BC more in March than in July. The microbial loop would be stimulated by biofilm during periods of high resources (March) and the viral loop during periods of depleted resources (July).
Aura-biomes are present in the water layer above coral reef benthic macro-organisms.
Walsh, Kevin; Haggerty, J Matthew; Doane, Michael P; Hansen, John J; Morris, Megan M; Moreira, Ana Paula B; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D; Thompson, Fabiano; Dinsdale, Elizabeth A
2017-01-01
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis , (2) fleshy macroalgae ( Stypopodium , Dictota and Canistrocarpus ), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria , Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.
Aura-biomes are present in the water layer above coral reef benthic macro-organisms
Haggerty, J. Matthew; Doane, Michael P.; Hansen, John J.; Morris, Megan M.; Moreira, Ana Paula B.; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D.; Thompson, Fabiano; Dinsdale, Elizabeth A.
2017-01-01
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms. PMID:28828261
Rachmawati, Dessy; Bontkes, Hetty J; Verstege, Marleen I; Muris, Joris; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W
2013-06-01
Nickel was recently identified as a potent activator of dendritic cells through ligating with human Toll-like receptor (TLR)-4. Here, we studied an extended panel of transition metals neighbouring nickel in the periodic table of elements, for their capacity to activate human monocyte-derived dendritic cells (MoDCs). The panel included chromium, cobalt, and palladium, all of which are known to be frequent clinical sensitizers. MoDC activation was monitored by assessment of release of the pro-inflammatory mediator interleukin (IL)-8, a major downstream result of TLR ligation. Results The data obtained in the present study show that cobalt and palladium also have potent MoDC-activating capacities, whereas copper and zinc, but not iron and chromium, have low but distinct MoDC-activating potential. Involvement of endotoxin contamination in MoDC activation was excluded by Limulus assays and consistent stimulation in the presence of polymyxin B. The critical role of TLR4 in nickel-induced, cobalt-induced and palladium-induced activation was confirmed by essentially similar stimulatory patterns obtained in an HEK293 TLR4/MD2 transfectant cell line. Given the adjuvant role of costimulatory danger signals, the development of contact allergies to the stimulatory metals may be facilitated by signals from direct TLR4 ligation, whereas other metal sensitizers, such as chromium, may rather depend on microbial or tissue-derived cofactors to induce clinical sensitization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can
2011-04-01
In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.
Advances in sepsis research derived from animal models.
Männel, Daniela N
2007-09-01
Inflammation is the basic process by which tissues of the body respond to infection. Activation of the immune system normally leads to removal of microbial pathogens, and after resolution of the inflammation immune homeostasis is restored. This controlled process, however, can be disturbed resulting in disease. Therefore, many studies using infection models have investigated the participating immune mechanisms aiming at possible therapeutic interventions. Defined model substances such as bacterial lipopolysaccharide (endotoxin) have been used to mimic bacterial infections and analyze their immune stimulating functions. A complex network of molecular mechanisms involved in the recognition and activation processes of bacterial infections and their regulation has developed from these studies. More complex infection models will now help to interpret earlier observations leading to the design of relevant new infection models.
NASA Astrophysics Data System (ADS)
Edwards, Bethanie R.; Bidle, Kay D.; Van Mooy, Benjamin A. S.
2015-05-01
Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.
Edwards, Bethanie R; Bidle, Kay D; Van Mooy, Benjamin A S
2015-05-12
Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.
Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank
Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.
2017-01-01
Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425
Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.
Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E
2017-02-15
Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.
Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.
Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen
2016-06-03
Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.
Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine.
Khan, Muhammad Imran; Lee, Jaejin; Park, Joonhong
2012-10-01
In the present work, current knowledge on the potential fate, microbial degradation, and toxicity of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX) was thoroughly reviewed, focusing on the toxicological assessment of a variety of potential RDX degradation pathways in bacteria and fungi. The present review on microbial degradation pathways and toxicities of degradation intermediates suggests that, among aerobic RDX degradation pathways, the one via denitration may be preferred in a toxicological perspective, and that among anaerobic pathways, those forming 4- nitro-2,4-diazabutanal (NDAB) via ring cleavage of 1-nitroso- 3,5-dinitro-1,3,5-triazinane (MNX) may be toxicologically advantageous owing to its potential mineralization under partial or complete anoxic conditions. These findings provide important information on RDX-degrading microbial pathways, toxicologically most suitable to be stimulated in contaminated fields.
Commensal microbiota stimulate systemic neutrophil migration through induction of Serum amyloid A
Kanther, Michelle; Tomkovich, Sarah; Sun, Xiaolun; Grosser, Melinda R.; Koo, Jaseol; Flynn, Edward J.; Jobin, Christian; Rawls, John F.
2015-01-01
Summary Neutrophils serve critical roles in inflammatory responses to infection and injury, and mechanisms governing their activity represent attractive targets for controlling inflammation. The commensal microbiota is known to regulate the activity of neutrophils and other leucocytes in the intestine, but the systemic impact of the microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic neutrophil development and function. The presence of a microbiota resulted in increased neutrophil number and myeloperoxidase expression, and altered neutrophil localization and migratory behaviours. These effects of the microbiota on neutrophil homeostasis were accompanied by an increased recruitment of neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of tissue-specific neutrophil migratory behaviours. In vitro studies revealed that zebrafish cells respond to Saa exposure by activating NF-κB, and that Saa-dependent neutrophil migration requires NF-κB-dependent gene expression. These results implicate the commensal microbiota as an important environmental factor regulating diverse aspects of systemic neutrophil development and function, and reveal a critical role for a Saa-NF-κB signalling axis in mediating neutrophil migratory responses. PMID:24373309
Jędrzejewski, Tomasz; Pawlikowska, Małgorzata; Piotrowski, Jakub; Kozak, Wiesław
2016-10-01
Protein-bound polysaccharides (PBP) isolated from Coriolus versicolor (CV) are classified as biological response modifiers capable of exhibiting various biological activities, such as anti-tumour and immunopotentiating activity. Since we have found in vivo studies that the tested PBP induced prolongation of endotoxin fever in rats, the aim of the present study was to investigate the in vitro effect of the PBP on the production of pro-inflammatory cytokines by the lipolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs). The results showed that the PBP affect the immunomodulating properties of the LPS-treated PBMCs by the enhancement of mitogenic activity and attenuation of the LPS-induced production of interleukin (IL)-1β and IL-6. Moreover, the tested polysaccharides peptides themselves also exhibit immunomodulatory properties manifested in the increased cell proliferation and pro-inflammatory cytokine release from PBMCs. The effect of PBP on the both phenomena was time-dependent and occurred in the U-shaped dose response manner. These findings are significant when considering the use of commercially available PBP from CV extract by cancer patients suffering from immunodeficiency, who may experience microbial infections during therapy. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Trametes versicolor extract modifies human fecal microbiota composition in vitro.
Yu, Zhuo-Teng; Liu, Bo; Mukherjee, Purna; Newburg, David S
2013-06-01
Trametes versicolor is a mushroom used as a traditional Chinese medicine (Yun-zhi) for a wide array of seemingly disparate conditions. We hypothesized that many of its multiple purported activities could be mediated through stimulation of beneficial mutualist components of the microbiota. Human fecal microbiota was cultured anaerobically to determine its ability to ferment a common extract of T. versicolor, designated polysaccharide peptide (PSP), and the ability of PSP to alter the composition of the microbial community. The presence of PSP and fructooligosaccharides (FOS, a common prebiotic) in the medium, but not cellulose, significantly increased levels of Bifidobacterium spp. PSP also elevated Lactobacillus spp., while reducing Clostridium spp., Staphylococcus spp. and Enterococcus spp. Levels of Streptococcus spp., Bacteroides spp. and Escherichia did not significantly change. Fermentation of PSP increased the concentration of organic acids (lactate and short-chain fatty acids), decreased the pH, and induced β-galactosidase and β-glucosidase activities. The genera of the human microbiota that are promoted by FOS and other prebiotics are also stimulated by the Trametes versicolor extract, PSP. Thus, Trametes versicolor, a common East Asian botanical, contains putative prebiotic agents that alter human gut microbiota and pH. This prebiotic-like activity may help explain some of the plethora of the health benefits attributed to this traditional Chinese medicine.
Emergent behaviour in a chlorophenol-mineralising three-tiered microbial ‘food web’
Wade, M.J.; Pattinson, R.W.; Parker, N.G.; Dolfing, J.
2016-01-01
Anaerobic digestion enables the water industry to treat wastewater as a resource for generating energy and recovering valuable by-products. The complexity of the anaerobic digestion process has motivated the development of complex models. However, this complexity makes it intractable to pin-point stability and emergent behaviour. Here, the widely used Anaerobic Digestion Model No. 1 (ADM1) has been reduced to its very backbone, a syntrophic two-tiered microbial ‘food chain’ and a slightly more complex three-tiered microbial ‘food web’, with their stability analysed as a function of the inflowing substrate concentration and dilution rate. Parameterised for phenol and chlorophenol degradation, steady-states were always stable and non-oscillatory. Low input concentrations of chlorophenol were sufficient to maintain chlorophenol- and phenol-degrading populations but resulted in poor conversion and a hydrogen flux that was too low to sustain hydrogenotrophic methanogens. The addition of hydrogen and phenol boosted the populations of all three organisms, resulting in the counterintuitive phenomena that (i) the phenol degraders were stimulated by adding hydrogen, even though hydrogen inhibits phenol degradation, and (ii) the dechlorinators indirectly benefitted from measures that stimulated their hydrogenotrophic competitors; both phenomena hint at emergent behaviour. PMID:26551153
Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region
Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.
2013-01-01
It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022
NASA Astrophysics Data System (ADS)
Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten
2017-11-01
The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.
Arbeli, Ziv; Ronen, Zeev
2003-12-01
Tetrabromobisphenol-A is a reactive flame retardant used in the production of many plastic polymers. In previous research, it was demonstrated that anaerobic microorganisms from contaminated sediment debrominate tetrabromobisphenol-A to bisphenol-A, but an enrichment culture was not established. The current study was carried out to identify the intermediate metabolites in this process and to determine the factors facilitating enrichment of debrominating microorganisms. During the enrichment process in an anaerobic semi-continuous batch reactor, tetrabromobisphenol-A debromination gradually slowed down with concurrent accumulation of three intermediate products. These compounds were tentatively identified using GC-MS as tri-, di-, and mono-brominated bisphenol-A. GC-MS and HPLC analyses showed one dominant metabolite of dibromobisphenol-A, and NMR analysis identified it as 2,2'-dibromobisphenol-A. Addition of sterile sediment (15% wt/wt) to the reactor stimulated debromination of tetrabromobisphenol-A. Furthermore, different solid amendments such as surface soil and pulverized gray chalk from the site subsurface (100 m below ground) were also stimulating agents. We conclude that organic matter is involved in stimulation since the stimulation effect of the sediment, soil and gray chalk was abolished after it was heat-treated to 550 degrees C. Our study suggests that the debrominating culture requires some organic components found in the sediment, soil, and chalk in order to sustain activity and perhaps to survive. The possible mechanisms of stimulation by these solids are discussed.
Stephen, Abish S; Millhouse, Emma; Sherry, Leighann; Aduse-Opoku, Joseph; Culshaw, Shauna; Ramage, Gordon; Bradshaw, David J; Burnett, Gary R; Allaker, Robert P
2016-01-01
Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodontal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum are key oral microbial species that produce methanethiol via methionine gamma lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingivalis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with gas chromatographic head space analysis confirming lack of methanethiol production. 10-species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregatibacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were analysed using a multiplex bead immunoassay for cytokines. Significant population differences were observed between mutant and wild type biofilms; V. dispar proportions increased (p<0.001), whilst A. naeslundii (p<0.01) and Streptococcus spp. (p<0.05) decreased in mutant biofilms. Keratinocytes produced less IL-8, IL-6 and IL-1α when stimulated with the mutant biofilms compared to wild type. Lack of mgl in P. gingivalis has been shown to affect microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more pro-inflammatory cytokine response from the keratinocytes observed. A possible role for methanethiol in biofilm formation and cytokine response with subsequent effects on oral malodor and periodontitis is suggested.
Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N
2004-12-01
The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.
Microbial Repopulation Following In Situ STAR Remediation
NASA Astrophysics Data System (ADS)
Gerhard, J.; Overbeeke, G.; Edwards, E.; Lomheim, L.; Grant, G.
2016-12-01
STAR (Self-sustaining Treatment for Active Remediation) is an emerging remediation technology that employs a self-sustaining smouldering reaction to destroy nonaqueous phase liquids (NAPLs) in the subsurface. The reaction front travels outwards from an ignition well at approximately 0.5 per day and subjects the soil to temperatures of 400°C-1000°C. The objectives of this work were to monitor re-saturation of the soil over time and quantify the microbial repopulation of the treated zone. STAR is currently being applied as a full scale, in situ remedy for coal tar beneath a former creosol manufacturing facility in New Jersey, USA. This study analyzed soil cores taken at regular intervals following STAR treatment, allowing time for groundwater to re-infiltrate and for microbial populations to potentially reestablish. Soil and groundwater were analyzed for total number of microorganisms via quantitative Polymerase Chain Reaction (qPCR), as well as microbial diversity via amplicon sequencing. Results demonstrate that microbes rapidly repopulated over a 2 month period to 106 gene copies/g of soil. However, concentrations in the treated zone did not rise above this concentration over 6 months post-STAR, indicating a low carrying capacity of the treated soil. To examine the system in more detail and consider the effects of bio-stimulation, a bench top column study using site soil and artificial groundwater explored the rate at which STAR-treated soil is repopulated with naturally occurring microorganisms in the presence and absence of lactate and a terminal electron acceptor. Results demonstrated that biostimulation did not increase the carrying capacity of the STAR treated sol, but rather shifted the microbial community to reflect the TEA provided, in this case, promoting sulfate reducers. Overall, the work illustrates that microbial populations in STAR treated soil do recover via groundwater infiltration but robust communities will take time to naturally establish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.
Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17more » boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.« less
Microbial reduction of uranium
Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.
1991-01-01
REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.
Schauber, Jürgen; Dorschner, Robert A.; Coda, Alvin B.; Büchau, Amanda S.; Liu, Philip T.; Kiken, David; Helfrich, Yolanda R.; Kang, Sewon; Elalieh, Hashem Z.; Steinmeyer, Andreas; Zügel, Ulrich; Bikle, Daniel D.; Modlin, Robert L.; Gallo, Richard L.
2007-01-01
An essential element of the innate immune response to injury is the capacity to recognize microbial invasion and stimulate production of antimicrobial peptides. We investigated how this process is controlled in the epidermis. Keratinocytes surrounding a wound increased expression of the genes coding for the microbial pattern recognition receptors CD14 and TLR2, complementing an increase in cathelicidin antimicrobial peptide expression. These genes were induced by 1,25(OH)2 vitamin D3 (1,25D3; its active form), suggesting a role for vitamin D3 in this process. How 1,25D3 could participate in the injury response was explained by findings that the levels of CYP27B1, which converts 25OH vitamin D3 (25D3) to active 1,25D3, were increased in wounds and induced in keratinocytes in response to TGF-β1. Blocking the vitamin D receptor, inhibiting CYP27B1, or limiting 25D3 availability prevented TGF-β1 from inducing cathelicidin, CD14, or TLR2 in human keratinocytes, while CYP27B1-deficient mice failed to increase CD14 expression following wounding. The functional consequence of these observations was confirmed by demonstrating that 1,25D3 enabled keratinocytes to recognize microbial components through TLR2 and respond by cathelicidin production. Thus, we demonstrate what we believe to be a previously unexpected role for vitamin D3 in innate immunity, enabling keratinocytes to recognize and respond to microbes and to protect wounds against infection. PMID:17290304
The transcriptional response of microbial communities in thawing Alaskan permafrost soils.
Coolen, Marco J L; Orsi, William D
2015-01-01
Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
NASA Technical Reports Server (NTRS)
Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.
1999-01-01
At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.
Bach Knudsen, Knud Erik
2015-03-01
Whole-grain cereals have a complex dietary fiber (DF) composition consisting of oligosaccharides (mostly fructans), resistant starch, and nonstarch polysaccharides (NSPs); the most important are arabinoxylans, mixed-linkage β(1,3; 1,4)-d-glucan (β-glucan), and cellulose and the noncarbohydrate polyphenolic ether lignin. The highest concentration of NSPs and lignin is found in the outer cell layers of the grain, and refined flour will consequently be depleted of a large proportion of insoluble DF components. The flow and composition of carbohydrates to the large intestine are directly related to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown to augment SCFA production, with the strongest relative effect on butyrate. When arabinoxylans were provided as a concentrate, the effect was only on total SCFA production. Increased SCFA production in the large intestine was shown by the concentration in the portal vein, whereas the impact on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting as signaling molecules between the gut and the peripheral tissues. The latter can have implications for insulin sensitivity and glucose homeostasis. © 2015 American Society for Nutrition.
Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa
2016-01-15
Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.
The transcriptional response of microbial communities in thawing Alaskan permafrost soils
Coolen, Marco J. L.; Orsi, William D.
2015-01-01
Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660
Utto, Weerawate; Preutikul, Rittirong; Malila, Patcharee; Noomhorm, Athapol; Bronlund, John E
2018-03-01
This research was conducted to investigate effects of ethanol vapour released in active packaging and storage temperatures on the quality of freshly peeled shallots. The package tested was a solid polypropylene tray incorporating an ethanol vapour-controlled release sachet. The sachet was made of an aluminium foil film on one side and either low-density polyethylene or nylon/polyethylene on the other. Individual sachets contained silica gel adsorbent as the carrier pre-loaded with ethanol. One sachet was placed in each tray containing the peeled shallots and the tray was heat sealed with the low-density polyethylene film lid. Packages were stored at either 10 or 25 ℃ for 10 d. Trays containing only peeled shallots were designated as controls. High storage temperature stimulated quality changes in the shallots. Although ethanol vapour accumulated in the active package headspace, the extent to which ethanol concentrations increased within the shallots was not significantly different from that in the control packages. Microbial proliferation in terms of yeast and mould counts could be delayed through a combination of 10 ℃ and ethanol vapour released from the low-density polyethylene sachet. The ethanol vapour accumulated in the packages did not have a significant effect on mass loss, firmness, and colour changes in the peeled shallots, or on the concentrations of oxygen and carbon dioxide in the packages.
Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel
2014-05-30
We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Interfacing microbiology and biotechnology. Conference abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maupin, Julia A.
2001-05-19
The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction andmore » future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.« less
NASA Astrophysics Data System (ADS)
Druhan, Jennifer L.; Bill, Markus; Lim, HsiaoChien; Wu, Cindy; Conrad, Mark E.; Williams, Kenneth H.; DePaolo, Donald J.; Brodie, Eoin L.
2014-01-01
Here we report a combined analysis of carbon mass balance based on isotopic labeling and microbiological characterization during organic carbon stimulated bioreduction of a subsurface sediment in a large laboratory column experimental system. This combination of approaches allows quantification of both the cycling of carbon through multiple redox pathways and the associated spatial and temporal evolution of bacterial communities in response to this nutrient source. Carbon isotope mass balance facilitated by the use of 13C-labeled acetate as the electron donor showed evidence for a net loss of sediment organic carbon over the course of the amendment experiment. Furthermore, these data clearly demonstrated a source of isotopically labeled inorganic carbon that was not attributable to primary metabolism by acetate-oxidizing microorganisms. Fluid samples collected weekly over the duration of the 43-day amendment at <20 cm intervals along the flow path were analyzed for microbial composition by pyrosequencing of ribosomal RNA genes. The microbial community composition was transient, with distinct occurrences of Azoarcus, Geobacter and multiple sulfate reducing species over the course of the experiment. In combination with DNA sequencing data, the anomalous carbon cycling process is shown to occur exclusively during the period of predominant Geobacter species growth. Pyrosequencing indicated, and targeted cloning and sequencing confirmed the presence of several bacteriovorous protozoa, including species of the Breviata, Planococcus and Euplotes genera. Cloning and qPCR analysis demonstrated that Euplotes species were most abundant and displayed a growth trajectory that closely followed that of the Geobacter population. These results suggest a previously undocumented secondary turnover of biomass carbon related to protozoan grazing that was not sufficiently prevalent to be observed in bulk concentrations of carbon species in the system, but was clearly identified in the partitioning of carbon isotopes. This study demonstrates evidence for predator-prey relationships that impact subsurface microbial community dynamics and provides a novel indication of the impact of this relationship on the flux of carbon through a system via the microbial biomass pool. Overall, our approach provides high temporal and spatial sampling resolution at field relevant flow rates, while minimizing effects of mixing and transverse dispersion. The result is a quantitative carbon budget accounting for a diversity of processes that should be considered for inclusion in reactive transport models that aim to predict carbon turnover, nutrient flux, and redox reactions in natural and stimulated subsurface systems. the mobilization of previously stabilized, sediment-bound carbon; a carbon mass balance for a through-flowing sediment column over the course of a 43-day amendment using 13C-labeled acetate; a phylogenetic microbial community structure at <20 cm sampling resolution with distance away from the organic carbon source weekly over the 43-day amendment; protozoan grazing on the active Geobacteraceae population and the rapid turnover of microbial biomass carbon as a secondary cycling pathway. Such a high resolution, combined analysis of microbial populations and the associated carbon mass balance in a through-flowing system at field relevant flow rates provides novel, quantitative insights into the interface between biogeochemical cycling and bulk carbon fluxes in the near-surface environment.
Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Heipieper, Hermann J; Müller, Jochen A; Jehmlich, Nico
2016-07-15
Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Müller, Jochen A.; Jehmlich, Nico
2016-01-01
ABSTRACT Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem. PMID:27129963
NASA Astrophysics Data System (ADS)
Bradley, James A.; Anesio, Alexandre M.; Arndt, Sandra
2017-04-01
The recent retreat of glaciers and ice sheets as a result of global warming exposes forefield soils that are rapidly colonised by microbes. These ecosystems are dominant in high-latitude carbon and nutrient cycles as microbial activity drives biogeochemical transformations within these newly exposed soils. Despite this, little is known about the response of these emerging ecosystems and associated biogeochemical cycles to projected changes in environmental factors due to human impacts. Here, we applied the model SHIMMER to quantitatively explore the sensitivity of biogeochemical dynamics in the forefield of Midtre Lovénbreen, Svalbard, to future changes in climate and anthropogenic forcings including soil temperature, snow cover, and nutrient and organic substrate deposition. Model results indicated that the rapid warming of the Arctic, as well as an increased deposition of organic carbon and nutrients, may impact primary microbial colonisers in Arctic soils. Warming and increased snow-free conditions resulted in enhanced bacterial production and an accumulation of biomass that was sustained throughout 200 years of soil development. Nitrogen deposition stimulated growth during the first 50 years of soil development following exposure. Increased deposition of organic carbon sustained higher rates of bacterial production and heterotrophic respiration leading to decreases in net ecosystem production and thus net CO2 efflux from soils. Pioneer microbial communities were particularly susceptible to future changes. All future climate simulations encouraged a switch from allochthonously-dominated young soils (<40 years) to microbially-dominated older soils, due to enhanced heterotrophic degradation of organic matter. Critically, this drove remineralisation and increased nutrient availability. Overall, we show that human activity, especially the burning of fossil fuels and the enhanced deposition of nitrogen and organic carbon, has the potential to considerably affect the biogeochemical development of recently exposed Arctic soils in the present day and for centuries into the future. These effects must be acknowledged when attempting to make accurate predictions of the future fate of Arctic soils that are exposed over large expanses of presently ice-covered regions.
Priha; Grayston; Pennanen; Smolander
1999-10-01
The aim of this study was to determine whether Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) seedlings have a selective influence on the soil microbial community structure and activity and whether this varies in different soils. Seedlings of pine, spruce and birch were planted into pots of two soil types: an organic soil and a mineral soil. Pots without seedlings were also included. After one growing season, microbial biomass C (C(mic)) and N (N(mic)), C mineralization, net ammonification, net nitrification, denitrification potential, phospholipid fatty acid (PLFA) patterns and community level physiological profiles (CLPPs) were measured in the rhizosphere soil of the seedlings. In the organic soil, C(mic) and N(mic) were higher in the birch rhizosphere than in pine and spruce rhizosphere. The C mineralization rate was not affected by tree species. Unplanted soil contained the highest amount of mineral N and birch rhizosphere the lowest, but rates of net N mineralization and net nitrification did not differ between treatments. The microbial community structure, measured by PLFAs, had changed in the rhizospheres of all tree species compared to the unplanted soil. Birch rhizosphere was most clearly separated from the others. There was more of the fungal specific fatty acid 18:2omega6,9 and more branched fatty acids, common in Gram-positive bacteria, in this soil. CLPPs, done with Biolog GN plates and 30 additional substrates, separated only birch rhizosphere from the others. In the mineral soil, roots of all tree species stimulated C mineralization in soil and prevented nitrification, but did not affect C(mic) and N(mic), PLFA patterns or CLPPs. The effects of different tree species did not vary in the mineral soil. Thus, in the mineral soil, the strongest effect on soil microbes was the presence of a plant, regardless of the tree species, but in the organic soil, different tree species varied in their influence on soil microbes.
Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.
Liévin-Le Moal, Vanessa
2014-01-01
SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432
2011-01-01
Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 μM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound. PMID:22104600
Shi, Y.; Zwolinski, M. D.; Schreiber, M. E.; Bahr, J. M.; Sewell, G. W.; Hickey, W. J.
1999-01-01
This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the FC aquifer community. These studies demonstrated that alterations in aquifer microbial communities resulting from specific anthropogenic perturbances can be inferred from microcosm studies integrating chemical and phylogenetic probe analysis and in the case of hydrocarbon contamination may facilitate the identification of organisms important for in situ biodegradation processes. Further work integrating and coordinating microcosm and field experiments is needed to explore how differences in scale, substrate complexity, and other hydrogeological conditions may affect patterns observed in these systems. PMID:10224013
Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Fleck, Jacob A.; Alpers, Charles N.; Stricker, Craig A.
2014-01-01
As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible ‘reactive’ mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall–winter period may be effective in limiting MeHg production within agricultural wetlands.
Roohi, Mahnaz; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Yasmeen, Tahira; Riaz, Muhammad Atif; Tahir, Shermeen; Mahmood, Khalid
2016-12-01
Wastewater is an alternative, valuable and cost effective resource for irrigation in water-scarce arid and sami-arid regions of the world including Pakistan. Soils near urban centers are cultivated for vegetable and cash crops using untreated wastewater. Current study was performed with objectives of assessing impacts of untreated textile wastewater on some soil chemical, biological and enzymatic activities. The microcosm incubation study used a clay loam soil that received 0 (distilled-water), 25, 50 and 100% wastewater concentrations and incubated for 30 and 60 days under optimum temperature and moisture conditions. Soil respiration was measured periodically throughout the experiment over 60 days. After the incubation periods of 30- and 60-d, soils were destructively analyzed for pH, electrical conductivity (EC), water extractable organic matter (WEOM), microbial biomass carbon (MBC), microbial metabolic quotient (qCO 2 ) and dehydrogenase enzymatic activity. Results revealed that wastewater and incubation time significantly altered chemical, biological and enzymatic properties of soils. The observed large surge in soil respiration, at initial stage, was stimulated by dissolved organic matter in wastewater. Dehydrogenase activity increased significantly with increasing wastewater concentrations. Increase in qCO 2 with wastewater concentration and incubation time suggested more stress to microorganisms but also enhanced microbial activity under stress to synthesize biomass. We found significant positive (R 2 = 0.64, p < 0.001) relationship between soil respiration and MBC, however, correlation between WEOM and MBC was significant negative (R 2 = 0.18, p < 0.01) indicating a dynamic mismatch between carbon substrate, soil respiration and buildup of MBC pool. Wastewater concentration and incubation time interaction had significant (p < 0.01) effect on WEOM suggesting that WEOM accumulated over time and comparatively less utilized by microorganisms. Short- and long-term effects of untreated wastewater on soil physico-chemical and biological health should be assessed before its use for crop production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L; Kakouros, Evangelos; Kieu, Le H; Fleck, Jacob A; Alpers, Charles N; Stricker, Craig A
2014-06-15
As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall-winter period may be effective in limiting MeHg production within agricultural wetlands. © 2013.
Zimmer, Beth L.; May, Amanda L.; Bhedi, Chinmayee D.; Dearth, Stephen P.; Prevatte, Carson W.; Pratte, Zoe; Campagna, Shawn R.; Richardson, Laurie L.
2014-01-01
Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome. PMID:25268348
Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes
2016-12-01
Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2 yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert
2014-05-01
Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, β-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue, which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.
Social role conflict predicts stimulated cytokine production among men, not women.
Schreier, Hannah M C; Hoffer, Lauren C; Chen, Edith
2016-11-01
To assess whether perceived role conflict is associated with stimulated pro-inflammatory cytokine production and glucocorticoid sensitivity, and whether these associations are moderated by sex. 153 healthy adults (aged 45.8±5.5years, 78% female) listed their 3 main social roles and indicated the amount of role conflict they perceived between each pair of social roles. Subsequently, participants underwent blood draws and leukocyte response to microbial challenge and glucocorticoid sensitivity were assessed by incubating whole blood with lipopolysaccharide (LPS) in the presence or absence of hydrocortisone. Stimulated levels of Interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNFα) were measured. Multiple regression analyses controlling for sociodemographics revealed significant sex×role conflict interactions for LPS-stimulated production of IL-1β, IL-6, and TNFα (all interaction ps<0.05), and a marginal interaction on LPS-stimulated IL-8 production (interaction p<0.10). Greater perceived role conflict was associated with greater pro-inflammatory cytokine production in response to microbial stimulation only among men, not women. There also were significant sex×role conflict interactions with respect to glucocorticoid sensitivity for IL-1β, IL-6, and TNFα production (all interaction ps<0.05) and a marginal interaction for IL-8 (interaction p<0.10). Greater perceived role conflict was unrelated to glucocorticoid sensitivity among women, but associated with less sensitivity to glucocorticoid signaling among men. Perceived social role conflict, indicating greater perceived demand across multiple social roles, may take a greater toll on the regulation of inflammatory processes among men compared to women. Copyright © 2016 Elsevier Inc. All rights reserved.
Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.
2014-12-01
Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and endogeneous respiration are important to understand the dynamic behavior of electron-acceptor and -donor fluxes under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.
Huang, Xiangdong; Xue, Dong; Xue, Lian
2015-08-01
A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly.
John E Drake; Anne Gallet-Budynek; Kirsten S Hofmockel; Emily S Bernhardt; Sharon A Billings; Robert B Jackson; Kurt S Johnsen; al. et.
2011-01-01
The earthâs future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO2. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO2 stimulated microbial...
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley
2015-04-01
Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5-7 years post fire (70.70±8.94 ppm CO2-CO and 21.67±2.62 mg kg-1, respectively). Microbial activity measured with the Solvita test was significantly correlated (R Pearson > 0.7; P < 0.001) with microbial parameters analysed with PLFA such as microbial biomass, bacteria biomass or mycorrhizhal fungi. This method has proven to be reliable, fast and easy to interpret for assessment of soil microbial activity in the recovery of soil quality during the recovery after fire. Keywords Pilbara region, biodiverse ecosystems, microbial biomass, microbial respiration, Solvita test, CO2 burst.
Profiling In Situ Microbial Community Structure with an Amplification Microarray
Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.
2013-01-01
The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129
Identification and microbial production of a terpene-based advanced biofuel
Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D.; Lee, Taek Soon
2011-01-01
Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217
Developing methanogenic microbial consortia from diverse coal sources and environments
Fuertez, John; Boakye, Richard; McLennan, John; ...
2017-08-18
Biogenic gas production is a promising alternative or supplement to conventional methane extraction from coalbeds. Adsorbed and free gas, generated over geologic time, can be supplemented with biogenic gas during short-term engineering operations. There are two generic protocols for doing this. The first is to contact the coal with nutrients to support native bacterial development. The second approach is to inject appropriately cultured ex-situ consortia into subsurface coal accumulations. Research has mainly focused on the former: in-situ stimulation of native microbial communities with added nutrients. Relatively few studies have been conducted on the strategies for enriching ex-situ microbial populations undermore » initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation, and methanogenesis. In order to evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals (i.e., lignite, sub-bituminous, bituminous), complex hydrocarbon sources (i.e., oil shale, waxy crude), hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening (down-selection to high grade the most productive consortia) allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to twenty-four weeks were evaluated at 23 °C. Headspace concentrations of CH 4 and CO 2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm (154 sft 3/ton or 4.8 scm 3/g) for methane and 176,370 ppm (31 sft 3/ton or 0.9 scm 3/g) for carbon dioxide. Rudimentary statistical assessments – variance analysis (ANOVA) of a single factor - were used to identify trends and levels of significance or impact of the consortia enrichment. We then demonstrated that microbial communities from coal and lake sediments can be enriched and adapted to effectively generate methane under initial atmospheric exposure. The development and enrichment of these methanogenic consortia is described.« less
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Ansari, M.; Hartsock, A.; Lui, S.; Lenhart, J.
2012-12-01
The use of fluids containing chemicals and variable water sources during the hydrofracking of unconventional shale is the source of considerable controversy due to perceived risks from altered subsurface biogeochemistry and the potential for contaminating potable water supplies. Rapid shifts in subsurface biogeochemistry are often driven by available macronutrients combined with the abundance and metabolic condition of the subsurface microbiota. While the depth that fracturing occurs in the Marcellus formation is reasonably deep to pose little risk to groundwater supplies, no published studies have systematically characterized the indigenous microbial population and how this community is altered through variable fluid management practices (e.g., chemical composition, source water makeup). In addition, limited information is available on how shallower microbial communities and geochemical conditions might be affected through the accidental release of these fluids to groundwater aquifers. Our measurements indicate field-applied and laboratory-generated fracking fluids contain levels of organic carbon greater than 300 mg/l and nitrogen concentrations greater than 80 mg/l that may differentially stimulate microbial growth in subsurface formations. In contrast to certain inorganic constituents (e.g., chloride) which increase in concentration through the flowback period; dissolved organic carbon levels decrease with time after the fracturing process through multiple attenuation processes (dilution, sorption, microbial utilization). Pyrosequencing data of the 16S rRNA gene indicate a shift from a more diverse source water microbial community to a less diverse community typical of a brine formation as time after fracturing increases. The introduction of varying percentages of a laboratory-generated fracking fluid to microcosm bottles containing groundwater and aquifer media stimulated biogeochemical changes similar to the introduction of landfill leachate, another wastewater containing elevated carbon, nitrogen, and complex organic constituents (e.g., decreased redox conditions, stepwise utilization of available terminal electron acceptors, enriched Fe(II) and sulfide concentrations). These research findings are important for understanding how fluids used during shale energy development may alter in situ microbial communities and provide insight into processes that attenuate the migration of these fluids in shallow aquifers and deep shale formations.
Developing methanogenic microbial consortia from diverse coal sources and environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuertez, John; Boakye, Richard; McLennan, John
Biogenic gas production is a promising alternative or supplement to conventional methane extraction from coalbeds. Adsorbed and free gas, generated over geologic time, can be supplemented with biogenic gas during short-term engineering operations. There are two generic protocols for doing this. The first is to contact the coal with nutrients to support native bacterial development. The second approach is to inject appropriately cultured ex-situ consortia into subsurface coal accumulations. Research has mainly focused on the former: in-situ stimulation of native microbial communities with added nutrients. Relatively few studies have been conducted on the strategies for enriching ex-situ microbial populations undermore » initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation, and methanogenesis. In order to evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals (i.e., lignite, sub-bituminous, bituminous), complex hydrocarbon sources (i.e., oil shale, waxy crude), hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening (down-selection to high grade the most productive consortia) allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to twenty-four weeks were evaluated at 23 °C. Headspace concentrations of CH 4 and CO 2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm (154 sft 3/ton or 4.8 scm 3/g) for methane and 176,370 ppm (31 sft 3/ton or 0.9 scm 3/g) for carbon dioxide. Rudimentary statistical assessments – variance analysis (ANOVA) of a single factor - were used to identify trends and levels of significance or impact of the consortia enrichment. We then demonstrated that microbial communities from coal and lake sediments can be enriched and adapted to effectively generate methane under initial atmospheric exposure. The development and enrichment of these methanogenic consortia is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhili; Xu, Meiying; Deng, Ye
2010-05-17
The global atmospheric concentration of CO2 has increased by more than 30percent since the industrial revolution. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been well studied, its influences on belowground microbial communities are poorly understood and controversial. In this study, we showed a significant change in the structure and functional potential of soil microbial communities at eCO2 in a grassland ecosystem, the BioCON (Biodiversity, CO2 and Nitrogen) experimental site (http://www.biocon.umn.edu/) using a comprehensive functional gene array, GeoChip 3.0, which contains about 28,0000 probes and covers approximately 57,000 gene variants from 292 functionalmore » gene families involved in carbon, nitrogen, phosphorus and sulfur cycles as well as other functional processes. GeoChip data indicated that the functional structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 by detrended correspondence analysis (DCA) of all 5001 detected functional gene probes although no significant differences were detected in the overall microbial diversity. A further analysis of 1503 detected functional genes involved in C, N, P, and S cycles showed that a considerable portion (39percent) of them were only detected under either aCO2 (14percent) or eCO2 (25percent), indicating that the functional characteristics of the microbial community were significantly altered by eCO2. Also, for those shared genes (61percent) detected, some significantly (p<0.05) changed their abundance at eCO2. Especially, genes involved in labile C degradation, such as amyA, egl, and ara for starch, cellulose, and hemicelluloses, respectively, C fixation (e.g., rbcL, pcc/acc), N fixation (nifH), and phosphorus utilization (ppx) were significantly increased under eCO2, while those involved in decomposing recalcitrant C, such as glx, lip, and mnp for lignin degradation remained unchanged. This study provides insights into our understanding of belowground microbial communities and their feedbacks to terrestrial ecosystems at eCO2.« less
Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Krüger, Martin
2014-05-01
Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.
Nixon, Sophie L.; Walker, Leanne; Streets, Matthew D. T.; Eden, Bob; Boothman, Christopher; Taylor, Kevin G.; Lloyd, Jonathan R.
2017-01-01
Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide. PMID:28469616
Nixon, Sophie L; Walker, Leanne; Streets, Matthew D T; Eden, Bob; Boothman, Christopher; Taylor, Kevin G; Lloyd, Jonathan R
2017-01-01
Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria ( Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.
NASA Astrophysics Data System (ADS)
Kim, M.; Gyeong, H. R.; Lee, Y. K.
2017-12-01
Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.
Development and application of microbial selective plugging processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenneman, G.E.; Gevertz, D.; Davey, M.E.
1995-12-31
Phillips Petroleum Company recently completed a microbial selective plugging (MSP) pilot at the North Burbank Unit (NBU), Shidler, Oklahoma. Nutrients were selected for the pilot that could stimulate indigenous microflora in the reservoir brine to grow and produce exopolymer. It was found that soluble corn starch polymers (e.g., maltodextrins) stimulated the indigenous bacteria to produce exopolymer, whereas simple sugars (e.g., glucose and sucrose), as well as complex media (e.g., molasses and Nutrient Broth), did not. Injection of maltodextrin into rock cores in the presence of indigenous NBU bacteria resulted in stable permeability reductions (> 90%) across the entire length, whilemore » injection of glucose resulted only in face plugging. In addition, it was found that organic phosphate esters (OPE) served as a preferable source of phosphorus for the indigenous bacteria, since orthophosphates and condensed phosphates precipitated in NBU brine at reservoir temperature (45{degrees}C). Injection of maltodextrin and ethyl acid phosphate into a producing well stimulated an increase in maltodextrin utilizing bacteria (MUB) in the back-flowed, produced fluid. Additional screens of indigenous and nonindigenous bacteria yielded several nonindigenous isolates that could synthesize polymer when growing in brine containing 6% NaCl at 45{degrees}C.« less
Priming of native soil organic matter by pyrogenic organic matter
NASA Astrophysics Data System (ADS)
DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes
2015-04-01
Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was counteracted by PyOM additions. However, repeated additions of crop residues over seven years did not result in lower mineralization of the residue and nSOM. We have also determined that, although there is no optimal duration for pre-incubation of soil before SOC studies, the type of carbon available is crucial in determining the effects of PyOM additions. We will continue to examine the contribution of the different mechanisms by isolating variables such as nutrient addition, soil texture, and mineral availability. We anticipate that sorption on PyOM surfaces are important in nSOM stabilization and will continue to study these effects using highly labeled substrates and nano secondary ion mass spectrometry (nano-SIMS).
Hao, Liping; Lü, Fan; Li, Lei; Shao, Liming; He, Pinjing
2013-05-01
To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems, the responses of microbial communities and metabolic activities, which were involved in anaerobic degradation of acetate, to the addition of methyl fluoride (CH3F), 2-bromoethanesulfonate (BES) and hydrogen were investigated in a thermophilic batch experiment. Both the methanogenic inhibitors, i.e., CH3F and BES, showed their effectiveness on inhibiting CH4 production, whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES, as reflected by the fluctuated acetate concentration. Syntrophic acetate oxidation was thermodynamically blocked by hydrogen (H2), while H2-utilizing reactions as hydrogenotrophic methanogenesis and homoacetogenesis were correspondingly promoted. Results of PCR-DGGE fingerprinting showed that, CH3F did not influence the microbial populations significantly. However, the BES and hydrogen notably altered the bacterial community structures and increased the diversity. BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels, whilst H2 greatly changed the abundance of different methanogenic populations, and induced growth of new species.
Zhao, Gang; Huang, Qiaoyun; Rong, Xingmin; Cai, Peng; Liang, Wei; Dai, Ke
2014-02-01
In the present study, the influence of kaolinite and goethite on microbial degradation of methyl parathion was investigated. We observed that the biodegradation process was improved by kaolinite and depressed by goethite. Calorimetric data further showed that the metabolic activities of degrading cells (Pseudomonas putida) were enhanced by the presence of kaolinite and depressed by the presence of goethite. A semipermeable membrane experiment was performed and results supported the above observations: the promotive effect of kaolinite and the inhibition of goethite for microbial degradation was not found when the bacteria was enclosed by semipermeable membrane and had no direct contact with these minerals, suggesting the important function of the contact of cellular surfaces with mineral particles. The relative larger particles of kaolinite were loosely attached to the bacteria. This attachment made the cells easy to use the sorbed substrate and then stimulated biodegradation. For goethite, small particles were tightly bound to bacterial cells and limited the acquisition of substrate and nutrients, thereby inhibiting biodegradation. These results indicated that interfacial interaction between bacterial cells and minerals significantly affected the biodegradation of pesticides.
Cycoń, Mariusz; Borymski, Sławomir; Żołnierczyk, Bartłomiej; Piotrowska-Seget, Zofia
2016-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently used group of pharmaceuticals. The high consumption and the uncontrolled disposal of unused drugs into municipal waste or their deposit in landfills can result in an increased concentration of these compounds in soils. Moreover, these drugs can affect the microbial activity. However, there is a lack of knowledge about these effects or it is very limited. Therefore, the objective of this study was to compare the impact of selected commercially available NSAIDs, i.e., diclofenac (DCF), naproxen (NPX), ibuprofen (IBF) and ketoprofen (KTP), applied at concentrations of 1 and 10 mg/kg soil, on the activity of soil microorganisms during the 90-day experiment. To ascertain this impact, substrate-induced respiration (SIR), soil enzyme activities, i.e., dehydrogenase (DHA), acid and alkaline phosphatases (PHOS-H and PHOS-OH) and urease (URE) as well as changes in the rates of nitrification and ammonification processes were determined. In addition, the number of culturable bacteria and fungi were enumerated. In general, the obtained data showed a significant stimulatory effect of NSAIDs on the microbial activity. Higher concentrations of NSAIDs caused a greater effect, which was observed for SIR, PHOS-H, PHOS-OH, URE, N-NO3- and N-NH4+, even during the whole incubation period. Moreover, the number of heterotrophic bacteria and fungi increased significantly during the experiment, which was probably a consequence of the evolution of specific microorganisms that were capable of degrading NSAIDs and used them as an additional source of carbon and energy. However, an inhibitory effect of NPX, IBF or KTP for SIR, DHA, on both phosphatases and culturable bacteria and fungi was observed at the beginning of the experiment. At lower concentrations of NSAIDs, in turn, the effects were negligible or transient. In conclusion, the application of NSAIDs altered the biochemical and microbial activity of soil what may cause the disturbance in soil functioning. It is reasonable to assume that some components of the NSAID formulations could stimulate soil microorganisms, thus resulting in an increase in biochemical activities of the soil. PMID:28018307
Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F
2004-07-01
Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.
Potential microbial contamination during sampling of permafrost soil assessed by tracers
NASA Astrophysics Data System (ADS)
Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.
2017-02-01
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.
Potential microbial contamination during sampling of permafrost soil assessed by tracers.
Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S
2017-02-23
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.
Potential microbial contamination during sampling of permafrost soil assessed by tracers
Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.
2017-01-01
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151
Bae, J Y; Park, S N
2016-12-01
In this study, anti-microbial activities of ZnO of three different particle sizes of citric acid (CA) and of mixtures of ZnO and CA were confirmed against Propionibacterium acnes. ZnO with the smallest particle size showed relatively high anti-microbial activity by disc diffusion assay and broth macrodilution assay. The mixtures of ZnO and CA also showed relatively high anti-microbial activity when the particle size of ZnO was the smallest. Furthermore, anti-microbial activities of ZnO, CA and the mixtures of ZnO and CA were compared through the checkerboard assay. The results indicated that a 1 : 1 ratio of ZnO and CA resulted in the highest anti-microbial activity. The substances were confirmed to have synergic anti-microbial effects. With the time-kill curve assay, the mixture of ZnO-containing CA reduced the surviving microbial content the most after 24 h. The results of our study suggest that ZnO may not only be an anti-microbial ingredient for the prevention of and treatment of acne. The results of our study suggest that ZnO may be an anti-microbial ingredient for the prevention of and treatment of acne when mixed with CA. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Primary production control of methane emission from wetlands
NASA Technical Reports Server (NTRS)
Whiting, G. J.; Chanton, J. P.
1993-01-01
Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.