Science.gov

Sample records for stimulated cell motility

  1. Hyaluronan stimulates pancreatic cancer cell motility

    PubMed Central

    Cheng, Xiao-Bo; Kohi, Shiro; Koga, Atsuhiro; Hirata, Keiji; Sato, Norihiro

    2016-01-01

    Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis. PMID:26684359

  2. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells.

    PubMed

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA3 on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA3 may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  3. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    SciTech Connect

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  4. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  5. L1 stimulation of human glioma cell motility correlates with FAK activation

    PubMed Central

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A.; Boulos, Magdy I.; Kappes, John C.

    2011-01-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  6. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor.

    PubMed

    Mohanan, Vishnu; Temburni, Murali K; Kappes, John C; Galileo, Deni S

    2013-04-01

    The L1CAM cell adhesion/recognition molecule (L1, CD171) and fibroblast growth factor receptor (FGFR) both are expressed by human high-grade glioma cells, but their potential actions in controlling cell behavior have not been linked. L1 actions in cancer cells have been attributed mainly to integrin receptors, and we demonstrated previously that L1-stimulated glioma cell migration correlates with integrin expression, increased focal adhesion kinase activation and focal complex turnover. Our analyses of datasets revealed FGFR is overexpressed in glioma regardless of grade, while ADAM10 metalloprotease expression increases with glioma grade. Here, we used dominant-negative and short hairpin RNA approaches to inhibit the activation of FGFR1 and expression of L1, respectively. An L1 peptide that inhibits L1-FGFR interaction and PD173074, a chemical inhibitor of FGFR1 activity, also were used to elucidate the involvement of L1-FGFR interactions on glioma cell behavior. Time-lapse cell motility studies and flow cytometry cell cycle analyses showed that L1 operates to increase glioma cell motility and proliferation through FGFR activation. Shutdown of both L1 expression and FGFR activity in glioma cells resulted in a complete termination of cell migration in vitro. These studies show for the first time that soluble L1 ectodomain (L1LE) acts on glioma cells through FGFRs, and that FGFRs are used by glioma cells for increasing motility as well as proliferation in response to activation by L1LE ligand. Thus, effective treatment of high-grade glioma may require simultaneous targeting of L1, FGFRs, and integrin receptors, which would reduce glioma cell motility as well as proliferation.

  7. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule.

    PubMed

    Yang, Muhua; Adla, Shalini; Temburni, Murali K; Patel, Vivek P; Lagow, Errin L; Brady, Owen A; Tian, Jing; Boulos, Magdy I; Galileo, Deni S

    2009-10-29

    Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines. L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding alphavbeta5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies. Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain.

  8. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule

    PubMed Central

    Yang, Muhua; Adla, Shalini; Temburni, Murali K; Patel, Vivek P; Lagow, Errin L; Brady, Owen A; Tian, Jing; Boulos, Magdy I; Galileo, Deni S

    2009-01-01

    Background Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines. Results L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding αvβ5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies. Conclusion Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain. PMID:19874583

  9. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-08

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells.

  10. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    PubMed

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT.

  11. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met

    PubMed Central

    Williamson, Ashley J.; Doscas, Michelle E.; Ye, Jin; Heiden, Katherine B.; Xing, Mingzhao; Li, Yi; Prinz, Richard A.; Xu, Xiulong

    2016-01-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT. PMID:26859575

  12. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation.

    PubMed

    Conacci-Sorrell, Maralice; Kaplan, Anna; Raveh, Shani; Gavert, Nancy; Sakurai, Takeshi; Ben-Ze'ev, Avri

    2005-12-15

    Nr-CAM, a cell-cell adhesion molecule of the immunoglobulin-like cell adhesion molecule family, known for its function in neuronal outgrowth and guidance, was recently identified as a target gene of beta-catenin signaling in human melanoma and colon carcinoma cells and tissue. Retrovirally mediated transduction of Nr-CAM into fibroblasts induces cell motility and tumorigenesis. We investigated the mechanisms by which Nr-CAM can confer properties related to tumor cell behavior and found that Nr-CAM expression in NIH3T3 cells protects cells from apoptosis in the absence of serum by constitutively activating the extracellular signal-regulated kinase and AKT signaling pathways. We detected a metalloprotease-mediated shedding of Nr-CAM into the culture medium of cells transfected with Nr-CAM, and of endogenous Nr-CAM in B16 melanoma cells. Conditioned medium and purified Nr-CAM-Fc fusion protein both enhanced cell motility, proliferation, and extracellular signal-regulated kinase and AKT activation. Moreover, Nr-CAM was found in complex with alpha4beta1 integrins in melanoma cells, indicating that it can mediate, in addition to homophilic cell-cell adhesion, heterophilic adhesion with extracellular matrix receptors. Suppression of Nr-CAM levels by small interfering RNA in B16 melanoma inhibited the adhesive and tumorigenic capacities of these cells. Stable expression of the Nr-CAM ectodomain in NIH3T3 cells conferred cell transformation and tumorigenesis in mice, suggesting that the metalloprotease-mediated shedding of Nr-CAM is a principal route for promoting oncogenesis by Nr-CAM.

  13. Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking.

    PubMed

    Streif, Stefan; Staudinger, Wilfried Franz; Oesterhelt, Dieter; Marwan, Wolfgang

    2009-02-01

    To investigate the responses of Halobacterium salinarum to stimulation with light (phototaxis and photokinesis), we designed an experimental setup consisting of optical devices for automatic video image acquisition and computer-controlled light stimulation, and developed algorithms to analyze physiological responses of the cells. Cells are categorized as motile and nonmotile by a classification scheme based on the square displacement of cell positions. Computerized tracking based on a dynamic model of the stochastic cell movement and a Kalman filter-based algorithm allows smoothed estimates of the cell tracks and the detection of physiological responses to complex stimulus patterns. The setup and algorithms were calibrated which allows quantitative measurements and systematic analysis of cellular sensing and response. Overall, the setup is flexible, extensible, and consists mainly of commercially available products. This facilitates modifications of the setup and algorithms for physiological studies of the motility of cells or microorganisms.

  14. Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking

    NASA Astrophysics Data System (ADS)

    Streif, Stefan; Staudinger, Wilfried Franz; Oesterhelt, Dieter; Marwan, Wolfgang

    2009-02-01

    To investigate the responses of Halobacterium salinarum to stimulation with light (phototaxis and photokinesis), we designed an experimental setup consisting of optical devices for automatic video image acquisition and computer-controlled light stimulation, and developed algorithms to analyze physiological responses of the cells. Cells are categorized as motile and nonmotile by a classification scheme based on the square displacement of cell positions. Computerized tracking based on a dynamic model of the stochastic cell movement and a Kalman filter-based algorithm allows smoothed estimates of the cell tracks and the detection of physiological responses to complex stimulus patterns. The setup and algorithms were calibrated which allows quantitative measurements and systematic analysis of cellular sensing and response. Overall, the setup is flexible, extensible, and consists mainly of commercially available products. This facilitates modifications of the setup and algorithms for physiological studies of the motility of cells or microorganisms.

  15. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  16. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia

    PubMed Central

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC. PMID:27487118

  17. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia.

    PubMed

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.

  18. Downregulation of VANGL1 Inhibits Cellular Invasion Rather than Cell Motility in Hepatocellular Carcinoma Cells Without Stimulation

    PubMed Central

    Toylu, Asli; Atabey, Nese; Sercan, Zeynep; Sakizli, Meral

    2015-01-01

    Aims: The Wnt planar cell polarity (PCP) pathway is one of the Wnt pathways which plays a critical role in cell proliferation and fate. The VANGL1 protein is one of Wnt-PCP pathway components. It is known that Wnt-PCP pathway has major roles in cell motility but its role in hepatocellular carcinoma (HCC) progression through invasion and metastasis needs to be clarified. Methods: We silenced VANGL1 gene expression in the HepG2 HCC cell line by stable transfection with a vector containing siRNA template for VANGL1 and investigated the change in cell invasion and motility. Results: Transfected cells with the siRNA template showed significantly suppressed invasive capacity when compared to controls although cellular motility was only slightly affected. Conclusion: Our study showed a basal role for VANGL1 with respect to the invasive capacity of HCC cells. This suggests that the Wnt-PCP pathway may play a role in progression of HCC through cellular invasion but further studies are needed to clarify its role in cell motility. PMID:25874746

  19. Quantifying the roles of random motility and directed motility using advection-diffusion theory for a 3T3 fibroblast cell migration assay stimulated with an electric field.

    PubMed

    Simpson, Matthew J; Lo, Kai-Yin; Sun, Yung-Shin

    2017-03-17

    Directed cell migration can be driven by a range of external stimuli, such as spatial gradients of: chemical signals (chemotaxis); adhesion sites (haptotaxis); or temperature (thermotaxis). Continuum models of cell migration typically include a diffusion term to capture the undirected component of cell motility and an advection term to capture the directed component of cell motility. However, there is no consensus in the literature about the form that the advection term takes. Some theoretical studies suggest that the advection term ought to include receptor saturation effects. However, others adopt a much simpler constant coefficient. One of the limitations of including receptor saturation effects is that it introduces several additional unknown parameters into the model. Therefore, a relevant research question is to investigate whether directed cell migration is best described by a simple constant tactic coefficient or a more complicated model incorporating saturation effects. We study directed cell migration using an experimental device in which the directed component of the cell motility is driven by a spatial gradient of electric potential, which is known as electrotaxis. The electric field (EF) is proportional to the spatial gradient of the electric potential. The spatial variation of electric potential across the experimental device varies in such a way that there are several subregions on the device in which the EF takes on different values that are approximately constant within those subregions. We use cell trajectory data to quantify the motion of 3T3 fibroblast cells at different locations on the device to examine how different values of the EF influences cell motility. The undirected (random) motility of the cells is quantified in terms of the cell diffusivity, D, and the directed motility is quantified in terms of a cell drift velocity, v. Estimates D and v are obtained under a range of four different EF conditions, which correspond to normal

  20. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  1. NCAM regulates cell motility.

    PubMed

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna; Hartmann-Petersen, Rasmus; Kawa, Anna; Walmod, Peter S; Belman, Vadym; Gallagher, Helen C; Berezin, Vladimir; Bock, Elisabeth; Pedersen, Nina

    2002-01-15

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine inhibitor of NCAM-negative cell locomotion through a heterophilic interaction with a cell-surface receptor. As we showed that the two N-terminal immunoglobulin modules of NCAM, which are known to bind to heparin, were responsible for this inhibition, we presume that this receptor is a heparan sulfate proteoglycan. A model for the inhibitory effect of NCAM is proposed, which involves competition between NCAM and extracellular components for the binding to membrane-associated heparan sulfate proteoglycan.

  2. Weak Power Frequency Magnetic Field Acting Similarly to EGF Stimulation, Induces Acute Activations of the EGFR Sensitive Actin Cytoskeleton Motility in Human Amniotic Cells

    PubMed Central

    Wu, Xia; Cao, Mei-Ping; Shen, Yun-Yun; Chu, Ke-Ping; Tao, Wu-Bin; Song, Wei-Tao; Liu, Li-Ping; Wang, Xiang-Hui; Zheng, Yu-Fang; Chen, Shu-De; Zeng, Qun-Li; Xia, Ruo-Hong

    2014-01-01

    In this article, we have examined the motility-related effects of weak power frequency magnetic fields (MFs) on the epidermal growth factor receptor (EGFR)-sensitive motility mechanism, including the F-actin cytoskeleton, growth of invasive protrusions and the levels of signal molecules in human amniotic epithelial (FL) cells. Without extracellular EGF stimulation, the field stimulated a large growth of new protrusions, especially filopodia and lamellipodia, an increased population of vinculin-associated focal adhesions. And, an obvious reduction of stress fiber content in cell centers was found, corresponding to larger cell surface areas and decreased efficiency of actin assembly of FL cells in vitro, which was associated with a decrease in overall F-actin content and special distributions. These effects were also associated with changes in protein content or distribution patterns of the EGFR downstream motility-related signaling molecules. All of these effects are similar to those following epidermal growth factor (EGF) stimulation of the cells and are time dependent. These results suggest that power frequency MF exposure acutely affects the migration/motility-related actin cytoskeleton reorganization that is regulated by the EGFR-cytoskeleton signaling pathway. Therefore, upon the MF exposure, cells are likely altered to be ready to transfer into a state of migration in response to the stimuli. PMID:24505297

  3. Novel Quantitation of Autocrine/Paracrine Stimulation of Cell Motility in Vitro and Metastasis

    DTIC Science & Technology

    2008-09-01

    1) revealed that MDA-MB-435 cells metastatic ability is great than MDA-MB-231, which is then greater than MDA-MB-468. Therefore, to test if L1-CAM...cancer cells was tested using the same three cell lines in above tests . As presented in Fig.5, PMA (phorbol 12-myristate 13-acetate) did increased L1...Then virus was introduced firstly into 293T or QT6 cells to test correct L1 fragments expression. As shown in Fig. 6 different parts of L1 were

  4. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation.

    PubMed

    Anderson, Hannah J; Galileo, Deni S

    2016-06-01

    The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.

  5. Expression of granulocyte-macrophage colony stimulating factor (GM-CSF) in male germ cells: GM-CSF enhances sperm motility.

    PubMed

    Vilanova, Lourdes T; Rauch, M Cecilia; Mansilla, Alejandra; Zambrano, Angara; Brito, Mónica; Werner, Enrique; Alfaro, Víctor; Cox, José F; Concha, Ilona I

    2003-10-01

    The granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine capable of stimulating proliferation, maturation and function of hematopoietic cells. Receptors for this cytokine are composed of two subunits, alpha and beta, and are expressed on myeloid progenitors and mature mononuclear phagocytes, monocytes, eosinophils and neutrophils, as well as in other nonhematopietic cells. We have recently demonstrated that bull spermatozoa express functional GM-CSF receptors that signal for increased glucose and Vitamin C uptake. In this study, we analyzed the expression of GM-CSF in bovine and human germ cells and its influence in bovine sperm motility. Reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization and immunoblotting analysis demonstrated that adult bovine and human testes expressed GM-CSF. In addition, immunolocalization studies confirmed the presence of GM-CSF in the germ cell line in bovine and human testes. Computer-assisted evaluation of patterns of sperm motility demonstrated that the addition of GM-CSF enhances several parameters of sperm motility in the presence of glucose or fructose substrates.

  6. Shape determination in motile cells

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex

    2010-03-01

    Flat, simple shaped, rapidly gliding fish keratocyte cell is the model system of choice to study cell motility. The cell motile appendage, lamellipod, has a characteristic bent-rectangular shape. Recent experiments showed that the lamellipodial geometry is tightly correlated with cell speed and with actin dynamics. These quantitative data combined with computational modeling suggest that a model for robust actin treadmill inside the 'unstretchable membrane bag'. According to this model, a force balance between membrane tension and growing and pushing actin network distributed unevenly along the cell periphery can explain the cell shape and motility. However, when adhesion of the cell to the surface weakens, the actin dynamics become less regular, and myosin-powered contraction starts playing crucial role in stabilizing the cell shape. I will illustrate how the combination of theoretical and experimental approaches helped to unravel the keratocyte motile behavior.

  7. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  8. Mechanics of motility initiation and motility arrest in crawling cells

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Putelat, Thibaut; Truskinovsky, Lev

    2015-11-01

    Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on keratocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of re-symmetrization remain unknown. In this paper we show that if adhesion with the extra-cellular substrate is sufficiently low, the progressive intensification of motor-induced contraction may be responsible for both transitions: from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static (symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency we also neglect active protrusion and view adhesion as passive. Despite the unavoidable oversimplifications associated with these assumptions, the model reproduces quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback between the mechanics and the transport of active agents. A prediction of the model that a crawling cell can stop and re-symmetrize when contractility increases sufficiently far beyond the motility initiation threshold still awaits experimental verification.

  9. MLK3 regulates fMLP-stimulated neutrophil motility

    PubMed Central

    Polesskaya, Oksana; Wong, Christopher; Chamberlain, Jeffrey M.; Gelbard, Harris A.; Goodfellow, Val; Kim, Minsoo; Daiss, John L.; Dewhurst, Stephen

    2014-01-01

    Introduction Mixed Lineage Kinase 3 (MLK3) is part of the intracellular regulatory system that connects extracellular cytokine or mitogen signals received through G-protein coupled receptors to changes in gene expression. MLK3 activation stimulates motility of epithelial cells and epithelial-derived tumor cells, but its role in mediating the migration of other cell types remains unknown. Since neutrophils play a crucial role in innate immunity and contribute to the pathogenesis of several diseases, we therefore examined whether MLK3 might regulate the motility of mouse neutrophils responding to a chemotactic stimulus, the model bacterial chemoattractant fMLP. Methods The expression of Mlk3 in mouse neutrophils was determined by immunocytochemistry and by RT-PCR. In vitro chemotaxis in a gradient of fMLP, fMLP-stimulated random motility, fMLP-stimulated F-actin formation were measured by direct microscopic observation using neutrophils pre-treated with a novel small molecule inhibitor of MLK3 (URMC099) or neutrophils obtained from Mlk3−/− mice. In vivo effects of MLK3 inhibition were measured by counting the fMLP-induced accumulation of neutrophils in the peritoneum following pre-treatment with URMC099 in wild-type C57Bl/6 or mutant Mlk3−/−mice. Results The expression of Mlk3 mRNA and protein was observed in neutrophils purified from wild-type C57Bl/6 mice but not in neutrophils from mutant Mlk3−/− mice. Chemotaxis by wild-type neutrophils induced by a gradient of fMLP was reduced by pre-treatment with URMC099. Neutrophils from C57Bl/6 mice pretreated with URMC099 and neutrophils from Mlk3−/− mice moved far less upon fMLP-stimulation and did not form F-actin as readily as untreated neutrophils from C57Bl/6 controls. In vivo recruitment of neutrophils into the peritoneum by fMLP was significantly reduced in wild-type mice treated with URMC099, as well as in untreated Mlk3−/− mice – thereby confirming the role of MLK3 in neutrophil migration

  10. MLK3 regulates fMLP-stimulated neutrophil motility.

    PubMed

    Polesskaya, Oksana; Wong, Christopher; Lebron, Luis; Chamberlain, Jeffrey M; Gelbard, Harris A; Goodfellow, Val; Kim, Minsoo; Daiss, John L; Dewhurst, Stephen

    2014-04-01

    Mixed lineage kinase 3 (MLK3) is part of the intracellular regulatory system that connects extracellular cytokine or mitogen signals received through G-protein coupled receptors to changes in gene expression. MLK3 activation stimulates motility of epithelial cells and epithelial-derived tumor cells, but its role in mediating the migration of other cell types remains unknown. Since neutrophils play a crucial role in innate immunity and contribute to the pathogenesis of several diseases, we therefore examined whether MLK3 might regulate the motility of mouse neutrophils responding to a chemotactic stimulus, the model bacterial chemoattractant fMLP. The expression of Mlk3 in mouse neutrophils was determined by immunocytochemistry and by RT-PCR. In vitro chemotaxis in a gradient of fMLP, fMLP-stimulated random motility, fMLP-stimulated F-actin formation were measured by direct microscopic observation using neutrophils pre-treated with a novel small molecule inhibitor of MLK3 (URMC099) or neutrophils obtained from Mlk3-/- mice. In vivo effects of MLK3 inhibition were measured by counting the fMLP-induced accumulation of neutrophils in the peritoneum following pre-treatment with URMC099 in wild-type C57Bl/6 or mutant Mlk3-/- mice. The expression of Mlk3 mRNA and protein was observed in neutrophils purified from wild-type C57Bl/6 mice but not in neutrophils from mutant Mlk3-/- mice. Chemotaxis by wild-type neutrophils induced by a gradient of fMLP was reduced by pre-treatment with URMC099. Neutrophils from C57Bl/6 mice pretreated with URMC099 and neutrophils from Mlk3-/- mice moved far less upon fMLP-stimulation and did not form F-actin as readily as untreated neutrophils from C57Bl/6 controls. In vivo recruitment of neutrophils into the peritoneum by fMLP was significantly reduced in wild-type mice treated with URMC099, as well as in untreated Mlk3-/- mice-thereby confirming the role of MLK3 in neutrophil migration. Mlk3 mRNA is expressed in murine neutrophils. Genetic

  11. Self-organized cell motility

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; Doubrovinski, Konstantin

    2011-03-01

    Cell migration plays a key role in a wide range of biological phenomena, such as morphogenesis, chemotaxis, and wound healing. Cell locomotion relies on the cytoskeleton, a meshwork of filamentous proteins, intrinsically out of thermodynamic equilibrium and cross-linked by molecular motors, proteins that turn chemical energy into mechanical work. In the course of locomotion, cells remain polarized, i.e. they retain a single direction of motion in the absence of external cues. Traditionally, polarization has been attributed to intracellular signaling. However, recent experiments show that polarization may be a consequence of self-organized cytoskeletal dynamics. Our aim is to elucidate the mechanisms by which persistent unidirectional locomotion may arise through simple mechanical interactions of the cytoskeletal proteins. To this end, we develop a simple physical description of cytoskeletal dynamics. We find that the proposed description accounts for a range of phenomena associated with cell motility, including spontaneous polarization, persistent unidirectional motion, and the co-existence of motile and non-motile states.

  12. Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling.

    PubMed

    Li, Ying; Huang, Xiaohua; Zhong, Weiliang; Zhang, Jianing; Ma, Keli

    2013-10-01

    Ganglioside GM3 plays a well-documented and important role in the regulation of tumor cell proliferation, invasion, and metastasis by modulating tyrosine kinase growth factor receptors. However, the effect of GM3 on the hepatocyte growth factor receptor (HGFR, cMet) has not been fully delineated. In the current study, we investigated how GM3 affects cMet signaling and HGF-stimulated cell motility and migration using three hepatic cancer cell lines of mouse (Hca/A2, Hca/16A3, and Hepa1-6). Decreasing GM3 expression with the use of P4, a specific inhibitor for ganglioside synthesis inhibited the HGF-stimulated phosphorylation of cMet and activity of PI3K/Akt signaling pathway. In contrast, the increased expression of GM3 as a result of adding exogenous GM3 enhanced the HGF-stimulated phosphorylation of cMet and activity of PI3K/Akt signaling pathway. Furthermore, HGF-stimulated cell motility and migration in vitro were inhibited by reduced expression of GM3 and enhanced by increased expression of GM3. All the observations indicate that ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling.

  13. Deterministic patterns in cell motility

    NASA Astrophysics Data System (ADS)

    Lavi, Ido; Piel, Matthieu; Lennon-Duménil, Ana-Maria; Voituriez, Raphaël; Gov, Nir S.

    2016-12-01

    Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.

  14. Campylobacter jejuni carbon starvation protein A (CstA) is involved in peptide utilization, motility and agglutination, and has a role in stimulation of dendritic cells.

    PubMed

    Rasmussen, J J; Vegge, C S; Frøkiær, H; Howlett, R M; Krogfelt, K A; Kelly, D J; Ingmer, H

    2013-08-01

    Campylobacter jejuni is the most frequent cause of severe gastroenteritis in the developed world. The major symptom of campylobacteriosis is inflammatory diarrhoea. The molecular mechanisms of this infection are poorly understood compared to those of less frequent disease-causing pathogens. In a previous study, we identified C. jejuni proteins that antibodies in human campylobacteriosis patients reacted with. One of the immunogenic proteins identified (Cj0917) displays homology to carbon starvation protein A (CstA) from Escherichia coli, where this protein is involved in the starvation response and peptide uptake. In contrast to many bacteria, C. jejuni relies on amino acids and organic acids for energy, but in vivo it is highly likely that peptides are also utilized, although their mechanisms of uptake are unknown. In this study, Biolog phenotype microarrays have been used to show that a ΔcstA mutant has a reduced ability to utilize a number of di- and tri-peptides as nitrogen sources. This phenotype was restored through genetic complementation, suggesting CstA is a peptide uptake system in C. jejuni. Furthermore, the ΔcstA mutant also displayed reduced motility and reduced agglutination compared to WT bacteria; these phenotypes were also restored through complementation. Murine dendritic cells exposed to UV-killed bacteria showed a reduced IL-12 production, but the same IL-10 response when encountering C. jejuni ΔcstA compared to the WT strain. The greater Th1 stimulation elicited by the WT as compared to ΔcstA mutant cells indicates an altered antigenic presentation on the surface, and thus an altered recognition of the mutant. Thus, we conclude that C. jejuni CstA is important not only for peptide utilization, but also it may influence host-pathogen interactions.

  15. Active gel model of amoeboid cell motility

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Voituriez, R.

    2013-02-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  16. Toward the reconstitution of synthetic cell motility

    PubMed Central

    Siton-Mendelson, Orit; Bernheim-Groswasser, Anne

    2016-01-01

    ABSTRACT Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell. PMID:27019160

  17. Toward the reconstitution of synthetic cell motility.

    PubMed

    Siton-Mendelson, Orit; Bernheim-Groswasser, Anne

    2016-09-02

    Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.

  18. Tumor invasion as dysregulated cell motility.

    PubMed

    Kassis, J; Lauffenburger, D A; Turner, T; Wells, A

    2001-04-01

    Investigations across a range of disciplines over the past decade have brought the study of cell motility and its role in invasion to an exciting threshold. The biophysical forces proximally involved in generating cell locomotion, as well as the underlying signaling and genomic regulatory processes, are gradually becoming elucidated. We now appreciate the intricacies of the many cellular and extracellular events that modulate cell migration. This has enabled the demonstration of a causal role of cell motility in tumor progression, with various points of 'dysregulation' of motility being responsible for promoting invasion. In this paper, we describe key fundamental principles governing cell motility and branch out to describe the essence of the data that describe these principles. It has become evident that many proposed models may indeed be converging into a tightly-woven tapestry of coordinated events which employ various growth factors and their receptors, adhesion receptors (integrins), downstream molecules, cytoskeletal components, and altered genomic regulation to accomplish cell motility. Tumor invasion occurs in response to dysregulation of many of these modulatory points; specific examples include increased signaling from the EGF receptor and through PLC gamma, altered localization and expression of integrins, changes in actin modifying proteins and increased transcription from specific promoter sites. This diversity of alterations all leading to tumor invasion point to the difficulty of correcting causal events leading to tumor invasion and rather suggest that the underlying common processes required for motility be targeted for therapeutic intervention.

  19. Characterizing motility dynamics in human RPE cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  20. Corticotropin Releasing Factor promotes breast cancer cell motility and invasiveness

    PubMed Central

    Androulidaki, Ariadne; Dermitzaki, Erini; Venihaki, Maria; Karagianni, Effie; Rassouli, Olga; Andreakou, Erini; Stournaras, Christos; Margioris, Andrew N; Tsatsanis, Christos

    2009-01-01

    Introduction Cancer cells secrete bioactive peptides that act in an autocrine or paracrine fashion affecting tumor growth and metastasis. Corticotropin-releasing factor (CRF), a hypothalamic neuropeptide that controls the response to stress, has been detected in breast cancer tissues and cell lines. CRF can affect breast cancer cells in an autocrine or paracrine manner via its production from innervating sympathetic neurons or immune cells. Methods In the present study we report our findings regarding the impact of CRF on breast cancer cell motility and invasiveness. For this purpose we used the MCF7 breast cancer cell line and evaluated the effect of CRF on motility and invasiveness using the wound-healing and boyden-chamber assays. In addition, we measured the effect of CRF on molecules that mediate motility by western blot, immunofluorescence, ELISA and RT-PCR. Results Our findings show that: 1. CRF transiently inhibited the apoptosis of MCF7 cells. 2. CRF enhanced MCF7 cell motility in a wound healing assay and their invasiveness through extracellular matrix. 3. CRF increased actin polymerization, phosphorylation of Focal Adhesion Kinase (FAK), providing a potential mechanism for the observed induction of MCF7 motility. 4. CRF induced the expression of Cox-1 but not Cox-2 in MCF7 cells as well as the production of prostaglandins, factors known to promote invasiveness and metastasis. Conclusion Overall, our data suggest that CRF stimulates cell motility and invasiveness of MCF7 cells most probably via induction of FAK phosphorylation and actin filament reorganization and production of prostaglandins via Cox1. Based on these findings we postulate that the stress neuropeptide CRF present in the vicinity of tumors (either produced locally by the tumor cells themselves or by nearby normal cells or secreted from the innervations of surrounding tissues) may play an important role on breast tumor growth and metastatic capacity, providing a potential link between stress

  1. The cleaved FAS ligand activates the Na+/H+ exchanger NHE1 through Akt/ROCK1 to stimulate cell motility

    PubMed Central

    Monet, Michael; Poët, Mallorie; Tauzin, Sébastien; Fouqué, Amélie; Cophignon, Auréa; Lagadic-Gossmann, Dominique; Vacher, Pierre; Legembre, Patrick; Counillon, Laurent

    2016-01-01

    Transmembrane CD95L (Fas ligand) can be cleaved to release a promigratory soluble ligand, cl-CD95L, which can contribute to chronic inflammation and cancer cell dissemination. The motility signaling pathway elicited by cl-CD95L remains poorly defined. Here, we show that in the presence of cl-CD95L, CD95 activates the Akt and RhoA signaling pathways, which together orchestrate an allosteric activation of the Na+/H+ exchanger NHE1. Pharmacologic inhibition of Akt or ROCK1 independently blocks the cl-CD95L-induced migration. Confirming these pharmacologic data, disruption of the Akt and ROCK1 phosphorylation sites on NHE1 decreases cell migration in cells exposed to cl-CD95L. Together, these findings demonstrate that NHE1 is a novel molecular actor in the CD95 signaling pathway that drives the cl-CD95L-induced cell migration through both the Akt and RhoA signaling pathways. PMID:27302366

  2. The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility.

    PubMed

    Monet, Michael; Poët, Mallorie; Tauzin, Sébastien; Fouqué, Amélie; Cophignon, Auréa; Lagadic-Gossmann, Dominique; Vacher, Pierre; Legembre, Patrick; Counillon, Laurent

    2016-06-15

    Transmembrane CD95L (Fas ligand) can be cleaved to release a promigratory soluble ligand, cl-CD95L, which can contribute to chronic inflammation and cancer cell dissemination. The motility signaling pathway elicited by cl-CD95L remains poorly defined. Here, we show that in the presence of cl-CD95L, CD95 activates the Akt and RhoA signaling pathways, which together orchestrate an allosteric activation of the Na(+)/H(+) exchanger NHE1. Pharmacologic inhibition of Akt or ROCK1 independently blocks the cl-CD95L-induced migration. Confirming these pharmacologic data, disruption of the Akt and ROCK1 phosphorylation sites on NHE1 decreases cell migration in cells exposed to cl-CD95L. Together, these findings demonstrate that NHE1 is a novel molecular actor in the CD95 signaling pathway that drives the cl-CD95L-induced cell migration through both the Akt and RhoA signaling pathways.

  3. Function of liprins in cell motility.

    PubMed

    de Curtis, Ivan

    2011-01-01

    Liprins have been known for years to play an essential role in setting up functional synapses in the nervous system. On the other hand, these proteins had been first identified in non-neuronal cells as multivalent proteins that may affect the integrin-mediated interactions of the cells with extracellular matrix ligands. Although the research on the function of liprins in non-neuronal cells has been quiescent for several years, a number of recent findings are putting them back on stage again as important players also in the regulation of non-neuronal cell motility, and possibly of tumor cell behavior. The aim of this review is to highlight the findings supporting the importance of liprins as central regulators of cell adhesion and motility, making them an interesting family of proteins to be considered for future studies on the mechanisms regulating cell migration. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Tegaserod (HTF 919) stimulates gut motility in normal horses.

    PubMed

    Lippold, B S; Hildebrand, J; Straub, R

    2004-11-01

    It has been shown that the selective 5-HT4 receptor agonist tegaserod induces an increase in frequency and amplitude of contractions in isolated muscle preparations of equine ileum and pelvic flexure. To investigate the effects of tegaserod on gut motility and transit of spheres in normal horses. Six mature Freiberger horses were kept under standardised conditions. Effects of tegaserod (0.02 mg/kg bwt i.v. b.i.d. for 2 days) or vehicle on intestinal transit of barium-filled spheres, defaecation and gut sounds were studied in a cross-over design. Spheres were given via stomach tube prior to the first dosing of tegaserod or vehicle. Faeces were collected every 3 h and spheres eliminated were identified radiologically in the faeces. Tegaserod significantly accelerated the gastrointestinal (GI) transit time of spheres and increased the frequency of defaecation and scores of gut sounds compared to vehicle. The compound was well tolerated; no effects on behaviour, body temperature, heart rate, respiratory rate and clinical laboratory data were observed. Tegaserod efficaciously stimulated motility and accelerate GI transit in healthy horses. Tegaserod may offer therapeutic potential in horses suffering from impaction or paralytic ileus.

  5. Cell motility: Combining experiments with modeling

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    2013-03-01

    Cell migration and motility is a pervasive process in many biology systems. It involves intra-cellular signal transduction pathways that eventually lead to membrane extension and contraction. Here we describe our efforts to combine quantitative experiments with theoretical and computational modeling to gain fundamental insights into eukaryotic cell motion. In particular, we will focus on the amoeboid motion of Dictyostelium discoideum cells. This work is supported by the National Institutes of Health (P01 GM078586)

  6. Fourier analysis of cell motility: correlation of motility with metastatic potential.

    PubMed Central

    Partin, A W; Schoeniger, J S; Mohler, J L; Coffey, D S

    1989-01-01

    We report the development of a computerized, mathematical system for quantitating the various types of cell motility. This Fourier analysis method simultaneously quantifies for individual cells (i) temporal changes in cell shape represented by cell ruffling, undulation, and pseudopodal extension, (ii) cell translation, and (iii) average cell size and shape. This spatial-temporal Fourier analysis was tested on a series of well-characterized animal tumor cell lines of rat prostatic cancer to study in a quantitative manner the correlation of cell motility with increasing in vivo metastatic potential. Fourier motility coefficients measuring pseudopodal extension correlated best with metastatic potential in the cell lines studied. This study demonstrated that Fourier analysis provides quantitative measurement of cell motility that may be applied to the study of biological processes. This analysis should aid in the study of the motility of individual cells in various areas of cellular and tumor biology. Images PMID:2919174

  7. Memo mediates ErbB2-driven cell motility.

    PubMed

    Marone, Romina; Hess, Daniel; Dankort, David; Muller, William J; Hynes, Nancy E; Badache, Ali

    2004-06-01

    Clinical studies have revealed that cancer patients whose tumours have increased ErbB2 expression tend to have more aggressive, metastatic disease, which is associated with parameters predicting a poor outcome. The molecular basis underlying ErbB2-dependent cell motility and metastases formation, however, still remains poorly understood. In this study, we show that activation of a set of signalling molecules, including MAPK, phosphatidylinositol-3-OH kinase (PI(3)K) and Src, is required for Neu/ErbB2-dependent lamellipodia formation and for motility of breast carcinoma cells. Stimulation of these molecules, however, failed to induce efficient cell migration in the absence of Neu/ErbB2 phosphorylation at Tyr 1201 or Tyr 1227. We describe a novel molecule, Memo (mediator of ErbB2-driven cell motility), that interacts with a phospho-Tyr 1227-containing peptide, most probably through the Shc adaptor protein. After Neu/ErbB2 activation, Memo-defective cells form actin fibres and grow lamellipodia, but fail to extend microtubules towards the cell cortex. Our data suggest that Memo controls cell migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton.

  8. Optogenetic engineering: light-directed cell motility.

    PubMed

    Hughes, Robert M; Lawrence, David S

    2014-10-06

    Genetically encoded, light-activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark-state background remains a significant challenge. When placed within the framework of a genetically encodable, light-activatable heterodimerizer system, the actin-remodelling protein cofilin induces dramatic changes in the F-actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light-directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F-actin remodeling, formation of filopodia, and directed cell motility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-Dimensional Motility of a Macrophage Cell Line on Microcontact-Printed Fibronectin

    PubMed Central

    Hind, Laurel E.; MacKay, Joanna L.; Cox, Dianne; Hammer, Daniel A.

    2014-01-01

    The ability of macrophages to migrate to sites of infection and inflammation is critical for their role in the innate immune response. Macrophage cell lines have made it possible to study the roles of individual proteins responsible for migration using molecular biology, but it has not been possible to reliably elicit the motility of macrophage cell lines in two-dimensions. In the past, measurements of the motility of macrophage cell lines have been largely limited to transwell assays which provide limited quantitative information on motility and limited ability to visualize cell morphology. We used microcontact printing to create polydimethylsiloxane (PDMS) surfaces functionalized with fibronectin that otherwise support little macrophage adhesion. We used these surfaces to measure macrophage migration in two-dimensions and found that these cells migrate efficiently in a uniform field of colony-stimulating factor-1, CSF-1. Knockdown of Cdc42 led to a non-statistically significant reduction in motility, whereas chemical inhibition of PI3K activity led to a complete loss of motility. Inhibition of the RhoA kinase, ROCK, did not abolish the motility of these cells but caused a quantitative change in motility, reducing motility significantly on high concentrations of fibronectin but not on low concentrations. This study illustrates the importance of studying cell motility on well controlled materials to better understand the exact roles of specific proteins on macrophage migration. PMID:25186818

  10. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2011-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.

  11. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2012-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.

  12. Quantum-dot-based cell motility assay.

    PubMed

    Gu, Weiwei; Pellegrino, Teresa; Parak, Wolfgang J; Boudreau, Rosanne; Le Gros, Mark A; Gerion, Daniele; Alivisatos, A Paul; Larabell, Carolyn A

    2005-06-28

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  13. Automated real-time measurement of chemotactic cell motility.

    PubMed

    Hadjout, N; Laevsky, G; Knecht, D A; Lynes, M A

    2001-11-01

    We have developed a novel method, (ECIS/taxis), for monitoring cell movement in response to chemotactic and chemokinetic factors. In this system, cells migrate in an under-agarose environment, and their positions are monitored using the electric cell-substrate impedance sensor technology to measure the impedance change at a target electrode, that is lithographed onto the substrate, as the cells arrive at the target. In the studies reported here, Dictyostelium discoideum was used as a prototypical, motile eukaryotic cell. Using the ECIS/taxis system, the arrival of cells at the target electrode was proportional to the dose offolate used to stimulate the cells and could be assessed by changes in resistance at the electrode. ECIS/taxis was readily able to distinguish between wild-type cells and a mutant that is deficient in its chemotactic response. Finally, we have shown that an agent that interferes with chemotactic motility leads to the delayed arrival of cells at the target electrode. The multi-well assay configuration allows for simultaneous automated screening of many samples for chemotactic or anti-chemotactic activity. This assay system is compatible with measurements of mammalian cell movement and should be valuable in the assessment of both agonists and antagonists of cell movement.

  14. Cell motility and local viscoelasticity of fibroblasts.

    PubMed

    Park, S; Koch, D; Cardenas, R; Käs, J; Shih, C K

    2005-12-01

    Viscoelastic changes of the lamellipodial actin cytoskeleton are a fundamental element of cell motility. Thus, the correlation between the local viscoelastic properties of the lamellipodium (including the transitional region to the cell body) and the speed of lamellipodial extension is studied for normal and malignantly transformed fibroblasts. Using our atomic force microscopy-based microrheology technique, we found different mechanical properties between the lamellipodia of malignantly transformed fibroblasts (H-ras transformed and SV-T2 fibroblasts) and normal fibroblasts (BALB 3T3 fibroblasts). The average elastic constants, K, in the leading edge of SV-T2 fibroblasts (0.48 +/- 0.51 kPa) and of H-ras transformed fibroblasts (0.42 +/- 0.35 kPa) are significantly lower than that of BALB 3T3 fibroblasts (1.01 +/- 0.40 kPa). The analysis of time-lapse phase contrast images shows that the decrease in the elastic constant, K, for malignantly transformed fibroblasts is correlated with the enhanced motility of the lamellipodium. The measured mean speeds are 6.1 +/- 4.5 microm/h for BALB 3T3 fibroblasts, 13.1 +/- 5.2 microm/h for SV-T2 fibroblasts, and 26.2 +/- 11.5 microm/h for H-ras fibroblasts. Furthermore, the elastic constant, K, increases toward the cell body in many instances which coincide with an increase in actin filament density toward the cell body. The correlation between the enhanced motility and the decrease in viscoelastic moduli supports the Elastic Brownian Ratchet model for driving lamellipodia extension.

  15. Cell Motility and Local Viscoelasticity of Fibroblasts

    PubMed Central

    Park, S.; Koch, D.; Cardenas, R.; Käs, J.; Shih, C. K.

    2005-01-01

    Viscoelastic changes of the lamellipodial actin cytoskeleton are a fundamental element of cell motility. Thus, the correlation between the local viscoelastic properties of the lamellipodium (including the transitional region to the cell body) and the speed of lamellipodial extension is studied for normal and malignantly transformed fibroblasts. Using our atomic force microscopy-based microrheology technique, we found different mechanical properties between the lamellipodia of malignantly transformed fibroblasts (H-ras transformed and SV-T2 fibroblasts) and normal fibroblasts (BALB 3T3 fibroblasts). The average elastic constants, K, in the leading edge of SV-T2 fibroblasts (0.48 ± 0.51 kPa) and of H-ras transformed fibroblasts (0.42 ± 0.35 kPa) are significantly lower than that of BALB 3T3 fibroblasts (1.01 ± 0.40 kPa). The analysis of time-lapse phase contrast images shows that the decrease in the elastic constant, K, for malignantly transformed fibroblasts is correlated with the enhanced motility of the lamellipodium. The measured mean speeds are 6.1 ± 4.5 μ m/h for BALB 3T3 fibroblasts, 13.1 ± 5.2 μm/h for SV-T2 fibroblasts, and 26.2 ± 11.5 μm/h for H-ras fibroblasts. Furthermore, the elastic constant, K, increases toward the cell body in many instances which coincide with an increase in actin filament density toward the cell body. The correlation between the enhanced motility and the decrease in viscoelastic moduli supports the Elastic Brownian Ratchet model for driving lamellipodia extension. PMID:16199496

  16. Regulation of gastrointestinal motility by Ca2+/calmodulin-stimulated protein kinase II.

    PubMed

    Perrino, Brian A

    2011-06-15

    Gastrointestinal (GI) motility ultimately depends upon the contractile activity of the smooth muscle cells of the tunica muscularis. Integrated functioning of multiple tissues and cell types, including enteric neurons and interstitial cells of Cajal (ICC) is necessary to generate coordinated patterns of motor activity that control the movement of material through the digestive tract. The neurogenic mechanisms that govern GI motility patterns are superimposed upon intrinsic myogenic mechanisms regulating smooth muscle cell excitability. Several mechanisms regulate smooth muscle cell responses to neurogenic inputs, including the multifunctional Ca(2+)/calmodulin-stimulated protein kinase II (CaMKII). CaMKII can be activated by Ca(2+) transients from both extracellular and intracellular sources. Prolonging the activities of Ca(2+)-sensitive K(+) channels in the plasma membrane of GI smooth muscle cells is an important regulatory mechanism carried out by CaMKII. Phospholamban (PLN) phosphorylation by CaMKII activates the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), increasing both the rate of Ca(2+) clearance from the myoplasm and the frequency of localized Ca(2+) release events from intracellular stores. Overall, CaMKII appears to moderate GI smooth muscle cell excitability. Finally, transcription factor activities may be facilitated by the neutralization of HDAC4 by CaMKII phosphorylation, which may contribute to the phenotypic plasticity of GI smooth muscle cells.

  17. High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Wakisaka, Y.; Iwata, O.; Nakashima, A.; Ito, T.; Hirose, M.; Domon, R.; Sugawara, M.; Tsumura, N.; Watarai, H.; Shimobaba, T.; Suzuki, K.; Goda, K.; Ozeki, Y.

    2017-02-01

    Microalgae have been receiving great attention for their ability to produce biomaterials that are applicable for food supplements, drugs, biodegradable plastics, and biofuels. Among such microalgae, Euglena gracilis has become a popular species by virtue of its capability of accumulating useful metabolites including paramylon and lipids. In order to maximize the production of desired metabolites, it is essential to find ideal culturing conditions and to develop efficient methods for genetic transformation. To achieve this, understanding and controlling cell-to-cell variations in response to external stress is essential, with chemically specific analysis of microalgal cells including E. gracilis. However, conventional analytical tools such as fluorescence microscopy and spontaneous Raman scattering are not suitable for evaluation of diverse populations of motile microalgae, being restricted either by the requirement for fluorescent labels or a limited imaging speed, respectively. Here we demonstrate video-rate label-free metabolite imaging of live E. gracilis using stimulated Raman scattering (SRS) - an optical spectroscopic method for probing the vibrational signatures of molecules with orders of magnitude higher sensitivity than spontaneous Raman scattering. Our SRS's highspeed image acquisition (27 metabolite images per second) allows for population analysis of live E. gracilis cells cultured under nitrogen-deficiency - a technique for promoting the accumulation of paramylon and lipids within the cell body. Thus, our SRS system's fast imaging capability enables quantification and analysis of previously unresolvable cell-to-cell variations in the metabolite accumulation of large motile E. gracilis cell populations.

  18. Egg jelly proteins stimulate directed motility in Xenopus laevis sperm.

    PubMed

    Burnett, Lindsey A; Sugiyama, Hitoshi; Bieber, Allan L; Chandler, Douglas E

    2011-06-01

    Previously we have shown that extracts from Xenopus egg jelly (egg water) increase the passage of sperm through a porous membrane in a dose-dependent manner. Although this assay has shown that sperm accumulation occurs only in the presence of an egg water gradient, it has not revealed the dynamic features of how Xenopus sperm swim in such gradients. Here, we use video microscopic observations to trace sperm trajectories in a Zigmond chamber. Our results show that Xenopus sperm swim in linear and gently curving paths and only infrequently perform turns. In the presence of an egg water gradient, however, the percent of sperm swimming up the gradient axis and the net distance traveled by each sperm along this axis was increased significantly. There was no change in curvilinear velocity. Rather, the orientation of sperm travel was shifted to more closely match that of the gradient axis. In addition, using a porous filter assay, we demonstrate that the egg water protein allurin, in both purified and recombinant forms, stimulates directed motility of sperm. Finally, we use Oregon Green 488-conjugated allurin to show that this protein binds primarily to the sperm midpiece; binding of allurin to the entire head was observed in a minor subpopulation of sperm. Dose dependence of allurin binding occurred over the 0-1 µg/ml range and correlated well with previously published dose-dependent sperm attraction data. Binding was rapid with a half-time of about 10 sec. These data suggest that egg water proteins bind to sperm and modify sperm-orienting behavior.

  19. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  20. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  1. Electro-acupuncture stimulation effects on duodenal motility in anesthetized rats.

    PubMed

    Noguchi, Eitaro; Ohsawa, Hideo; Tanaka, Hideki; Ikeda, Hiroko; Aikawa, Yoshihiro

    2003-02-01

    The effect of electro-acupuncture stimulation (EAS) on duodenal motility was examined in anesthetized, artificially ventilated rats. EAS was applied to the abdominal area or to a hindpaw for 30 s at stimulus intensities of 0.1-10.0 mA with a stimulus frequency of 20 Hz. The duodenal motility was measured using the balloon method at a position about 1.5 cm caudal from the pylorus. Duodenal motility was inhibited by EAS at intensities of more than 5.0 mA (suprathreshold of group IV afferent excitation) when applied to the abdominal area. The duodenal inhibitory response existed after bilateral vagotomy or spinal transection, but was abolished by sectioning bilateral splanchnic nerves. Duodenal motility was facilitated by EAS at intensities of more than 2.0 mA (subthreshold of group IV, and suprathreshold for groups II+III afferent excitation) when applied to a hindpaw. The duodenal facilitatory response by EAS to a hindpaw existed after sectioning the splanchnic nerves, but disappeared after bilateral vagotomy or spinal transection. Furthermore, repetitive electrical stimulation of vagal efferent nerves enhanced duodenal motility, while repetitive electrical stimulation of the splanchnic efferent nerves inhibited the motility. It was concluded that the inhibitory response of duodenal motility elicited by EAS to the abdominal area is a spinal reflex response involving splanchnic inhibitory efferent nerves, and the enhanced response of duodenal motility by EAS to a hindpaw is a supraspinal reflex response involving vagal excitatory nerves.

  2. Viscumins functionally modulate cell motility-associated gene expression.

    PubMed

    Schötterl, Sonja; Hübner, Miriam; Armento, Angela; Veninga, Vivien; Wirsik, Naita Maren; Bernatz, Simon; Lentzen, Hans; Mittelbronn, Michel; Naumann, Ulrike

    2017-02-01

    In Europe extracts from Viscum album L., the European white-berry mistletoe, are widely used as a complementary cancer therapy. Viscumins (mistletoe lectins, ML) have been scrutinized as important active components of mistletoe and exhibit a variety of anticancer effects such as stimulation of the immune system, induction of cytotoxicity, reduction of tumor cell motility as well as changes in the expression of genes associated with cancer development and progression. By microarray expression analysis, quantitative RT-PCR and RT-PCR based validation of microarray data we demonstrate for the Viscum album extract Iscador Qu and for the lectins Aviscumine and ML-1 that in glioma cells these drugs differentially modulate the expression of genes involved in the regulation of cell migration and invasion, including processes modulating cell architecture and cell adhesion. A variety of differentially expressed genes in ML treated cells are associated with the transforming growth factor (TGF)-β signaling pathway or are targets of TGF-β. ML treatment downregulated the expression of TGF-β itself, of the TGF-β receptor II (TGFBR2), of the TGF-β intracellular signal transducer protein SMAD2, and of matrix-metalloproteinases (MMP) MMP-2 and MMP-14. Even if the changes in gene expression differ between Aviscumine, Iscador Qu and ML-1, the overall regulation of motility associated gene expression by all drugs showed functional effects since tumor cell motility was reduced in a ML-dependent manner. Therefore, ML containing compounds might provide clinical benefit as adjuvant therapeutics in the treatment of patients with invasively growing tumors such as glioblastomas.

  3. Activated Membrane Patches Guide Chemotactic Cell Motility

    PubMed Central

    Hecht, Inbal; Skoge, Monica L.; Charest, Pascale G.; Ben-Jacob, Eshel; Firtel, Richard A.; Loomis, William F.; Levine, Herbert; Rappel, Wouter-Jan

    2011-01-01

    Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. PMID:21738453

  4. Coordination of glioblastoma cell motility by PKCι

    PubMed Central

    2010-01-01

    Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required for the transition of

  5. Computational approaches to substrate-based cell motility

    NASA Astrophysics Data System (ADS)

    Ziebert, Falko; Aranson, Igor S.

    2016-07-01

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realisation of active, self-propelled 'particles', a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recently in its modelling on the whole-cell level. Here we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organised systems such as living cells.

  6. Computational approaches to substrate-based cell motility

    DOE PAGES

    Ziebert, Falko; Aranson, Igor S.

    2016-07-15

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realization of active, self-propelled ‘particles’, a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity, and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recentlymore » in its modeling on the whole cell level. Furthermore we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organized systems such as living cells.« less

  7. Computational approaches to substrate-based cell motility

    SciTech Connect

    Ziebert, Falko; Aranson, Igor S.

    2016-07-15

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realization of active, self-propelled ‘particles’, a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity, and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recently in its modeling on the whole cell level. Furthermore we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organized systems such as living cells.

  8. Physical models of collective cell motility: from cell to tissue

    NASA Astrophysics Data System (ADS)

    Camley, B. A.; Rappel, W.-J.

    2017-03-01

    In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell–cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.

  9. Computational and Modeling Strategies for Cell Motility

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory

    A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback

  10. Cell Motility as Persistent Random Motion: Theories from Experiments

    PubMed Central

    Selmeczi, David; Mosler, Stephan; Hagedorn, Peter H.; Larsen, Niels B.; Flyvbjerg, Henrik

    2005-01-01

    Experimental time series for trajectories of motile cells may contain so much information that a systematic analysis will yield cell-type-specific motility models. Here we demonstrate how, using human keratinocytes and fibroblasts as examples. The two resulting models reflect the cells' different roles in the organism, it seems, and show that a cell has a memory of past velocities. They also suggest how to distinguish quantitatively between various surfaces' compatibility with the two cell types. PMID:15951372

  11. A mechanism for cell motility by active polar gels

    PubMed Central

    Marth, W.; Praetorius, S.; Voigt, A.

    2015-01-01

    We analyse a generic motility model, with the motility mechanism arising by contractile stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory is used to model the cytoplasm of a cell and is combined with a Helfrich-type model to account for membrane properties. The overall model allows consideration of the motility without the necessity for local adhesion. Besides a detailed numerical approach together with convergence studies for the highly nonlinear free boundary problem, we also compare the induced flow field of the motile cell with that of classical squirmer models and identify the motile cell as a puller or pusher, depending on the strength of the myosin–actin interactions. PMID:25926698

  12. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues.

  13. Lysophosphatidic acid (LPA) signaling via LPA4 and LPA6 negatively regulates cell motile activities of colon cancer cells.

    PubMed

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Inui, Karin; Node, Yusuke; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-29

    Lysophosphatidic acid (LPA) is an extracellular biological lipid and interacts with six subtypes of G protein-coupled LPA receptors (LPA1 to LPA6). LPA receptors exhibit a variety of cellular functions, depending on types of cancer cells. In this study, to assess the roles of LPA4 and LPA6 in cell growth and motile activities of colon cancer cells, LPA4 and LPA6 knockdown cells were established from DLD1 and HCT116 cells. LPA treatment increased the cell growth activities of LPA4 and LPA6 knockdown cells, compared with control cells. The cell motile activities of LPA4 and LPA6 knockdown cells were significantly higher than those of control cells. To evaluate the effects of LPA4 and LPA6 on cell motile activity induced by anticancer drug, long-term fluorouracil (5-FU) treated (DLD-5FU) cells were generated. The expression levels of LPAR1, LPAR4 and LPAR6 genes were significantly increased in DLD-5FU cells. DLD-5FU cells showed the high cell motile activity, compared with DLD1 cells. The increased cell motile activity was markedly stimulated by LPA4 and LPA6 knockdown. In contrast, the cell motile activity enhanced by 5-FU treatment was suppressed by LPA1 knockdown. These results suggest that LPA signaling via LPA4 and LPA6 negatively regulates the cell motile activities of DLD1 and HCT116 cells as well as long-term 5-FU treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Rac and Rho GTPases in cancer cell motility control

    PubMed Central

    2010-01-01

    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination. PMID:20822528

  15. Rac and Rho GTPases in cancer cell motility control.

    PubMed

    Parri, Matteo; Chiarugi, Paola

    2010-09-07

    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  16. Self-Organized Cell Motility from Motor-Filament Interactions

    PubMed Central

    Du, XinXin; Doubrovinski, Konstantin; Osterfield, Miriam

    2012-01-01

    Cell motility is driven primarily by the dynamics of the cell cytoskeleton, a system of filamentous proteins and molecular motors. It has been proposed that cell motility is a self-organized process, that is, local short-range interactions determine much of the dynamics that are required for the whole-cell organization that leads to polarization and directional motion. Here we present a mesoscopic mean-field description of filaments, motors, and cell boundaries. This description gives rise to a dynamical system that exhibits multiple self-organized states. We discuss several qualitative aspects of the asymptotic states and compare them with those of living cells. PMID:22768929

  17. Effect of BL-21 (Wei-Yu) acupoint stimulation on gastric motility following preanesthetic treatment in dogs.

    PubMed

    Kim, H Y; Kwon, O K; Nam, T C

    2000-12-01

    In acupuncture practice of animals, preanesthetics sometimes are needed. The purpose of this study was to select the ideal chemical restraint at acupuncture for gastric motility. Nine healthy mixed breed dogs weighed 10-21 kg and aged 1-3 years old were used in this study. Two EMG surface electrodes were placed between the seromuscular and the mucosal layer of pylorus. Twenty minutes after feeding normal gastric motility was recorded for 60 minutes using physiograph (Narco-Biosystem). Then preanesthetic treated-gastric motility was observed for 30 minutes. Preanesthetics used were xylazine, diazepam, and acepromazine. Acupuncture needles were inserted to BL-21 (Wei-Yu) acupoint, and then changes of gastric motility were recorded for 60 minutes. The gastric motility following xylazine administration (1 mg/kg, IV) was markedly decreased. BL-21 (Wei-Yu) acupoints stimulation did not alter xylazine-induced depression of gastric motility. The diazepam (1 mg/kg IV) treated-gastric motility was increased mildly 20 minutes after drug administration. BL-21 (Wei-Yu) acupoint stimulation after diazepam administration enhanced gastric motility significantly. The gastric motility following acepromazine (0.3 mg/kg, IM) administration was not changed compared with normal gastric motility. Application of traditional acupuncture at BL-21 (Wei-Yu) significantly increased the gastric motility. Based on these results, acepromazine and diazepam could be acceptable chemical restraints for acupuncture therapy of gastric motility, but xylazine couldn't be.

  18. Paxillin controls directional cell motility in response to physical cues.

    PubMed

    Sero, Julia E; German, Alexandra E; Mammoto, Akiko; Ingber, Donald E

    2012-01-01

    Physical cues from the extracellular environment that influence cell shape and directional migration are transduced into changes in cytoskeletal organization and biochemistry through integrin-based cell adhesions to extracellular matrix (ECM). Paxillin is a focal adhesion (FA) scaffold protein that mediates integrin anchorage to the cytoskeleton, and has been implicated in regulation of FA assembly and cell migration. To determine whether paxillin is involved in coupling mechanical distortion with directional movement, cell shape was physically constrained by culturing cells on square-shaped fibronectin-coated adhesive islands surrounded by non-adhesive barrier regions that were created with a microcontact printing technique. Square-shaped cells preferentially formed FAs and extended lamellipodia from their corner regions when stimulated with PDGF, and loss of paxillin resulted in loss of this polarized response. Selective expression of the N- and C-terminal domains of paxillin produced opposite, but complementary, effects on suppressing or promoting lamellipodia formation in different regions of square cells, which corresponded to directional motility defects in vitro. Paxillin loss or mutation was also shown to affect the formation of circular dorsal ruffles, and this corresponded to changes in cell invasive behavior in 3D. This commentary addresses the implications of these findings in terms of how a multifunctional FA scaffold protein can link physical cues to cell adhesion, protrusion and membrane trafficking so as to control directional migration in 2D and 3D. We also discuss how microengineered ECM islands and in vivo model systems can be used to further elucidate the functions of paxillin in directional migration.

  19. Geometry-Driven Polarity in Motile Amoeboid Cells.

    PubMed

    Nagel, Oliver; Guven, Can; Theves, Matthias; Driscoll, Meghan; Losert, Wolfgang; Beta, Carsten

    2014-01-01

    Motile eukaryotic cells, such as leukocytes, cancer cells, and amoeba, typically move inside the narrow interstitial spacings of tissue or soil. While most of our knowledge of actin-driven eukaryotic motility was obtained from cells that move on planar open surfaces, recent work has demonstrated that confinement can lead to strongly altered motile behavior. Here, we report experimental evidence that motile amoeboid cells undergo a spontaneous symmetry breaking in confined interstitial spaces. Inside narrow channels, the cells switch to a highly persistent, unidirectional mode of motion, moving at a constant speed along the channel. They remain in contact with the two opposing channel side walls and alternate protrusions of their leading edge near each wall. Their actin cytoskeleton exhibits a characteristic arrangement that is dominated by dense, stationary actin foci at the side walls, in conjunction with less dense dynamic regions at the leading edge. Our experimental findings can be explained based on an excitable network model that accounts for the confinement-induced symmetry breaking and correctly recovers the spatio-temporal pattern of protrusions at the leading edge. Since motile cells typically live in the narrow interstitial spacings of tissue or soil, we expect that the geometry-driven polarity we report here plays an important role for movement of cells in their natural environment.

  20. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  1. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells

    PubMed Central

    1986-01-01

    The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion- promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp- ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis- promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on

  2. Form and Function in Cell Motility: From Fibroblasts to Keratocytes

    PubMed Central

    Herant, Marc; Dembo, Micah

    2010-01-01

    Abstract It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. PMID:20409459

  3. Gastric electrical stimulation optimized to inhibit gastric motility reduces food intake in dogs.

    PubMed

    Song, Geng-Qing; Zhu, Hongbing; Lei, Yong; Yuan, Charlene; Starkebaum, Warren; Yin, Jieyun; Chen, Jiande D Z

    2015-06-01

    The aim of this study was to test the hypothesis that that a method of gastric electrical stimulation (GES) optimized to inhibit gastric motility was effective in reducing food intake in dogs. Female dogs with a gastric cannula and gastric serosal electrodes were studied in three experiments: (1) to determine the best parameters and locations of GES in inhibiting gastric tone, slow waves, and contractions in dogs;( 2) to investigate the reproducibility of the inhibitory effects of GES; and (3) to study the effect of the GES method on food intake in dogs. (1) For GES to exert significant effects on gastric motility, a pulse width of ≥2 ms was required, and with other appropriate inhibitory parameters, GES was able to increase gastric volume by 190.4 %, reduce antral contractions by 39.7 %, and decrease the percentage of normal slow waves by 47.6 %. In addition, the inhibitory effect of GES was more potent with the stimulation electrodes placed along the lesser or greater curvature than placed in the middle, and more potent with the electrodes placed in the distal stomach than in the proximal stomach; (2) the inhibitory effects of GES on gastric motility were reproducible; (3) the GES method optimized to inhibit gastric motility produced a 20 % reduction in food intakes in non-obese dogs. GES with appropriate parameters inhibits gastric motility, and the effects are reproducible. The GES method optimized to inhibit gastric motility reduces food intake in healthy dogs and may have a therapeutic potential for treating obesity.

  4. Role of macrophage-stimulating protein and its receptor, RON tyrosine kinase, in ciliary motility.

    PubMed Central

    Sakamoto, O; Iwama, A; Amitani, R; Takehara, T; Yamaguchi, N; Yamamoto, T; Masuyama, K; Yamanaka, T; Ando, M; Suda, T

    1997-01-01

    Macrophage-stimulating protein (MSP) is an 80-kD serum protein with homology to hepatocyte growth factor (HGF). Its receptor, RON tyrosine kinase, is a new member of the HGF receptor family. The MSP-RON signaling pathway has been implicated in the functional regulation of mononuclear phagocytes. However, the function of this pathway in other types of cells has not been elucidated. Here we show that in contrast to the HGF receptor, which was expressed at the basolateral surface, RON was localized at the apical surface of ciliated epithelia in the airways and oviduct. In addition, MSP was found in the bronchoalveolar space at biologically significant concentrations. MSP bound to RON on normal human bronchial epithelial cells with a high affinity (Kd = 0.5 nM) and induced autophosphorylation of RON. Activation of RON by MSP led to a significant increase in ciliary beat frequency of human nasal cilia. These findings indicate that the ciliated epithelium of the mucociliary transport apparatus is a novel target of MSP. Ciliary motility is critical for mucociliary transport. Our findings suggest that the MSP-RON signaling pathway is a novel regulatory system of mucociliary function and might be involved in the host defense and fertilization. PMID:9045873

  5. TUTORIAL: An introduction to cell motility for the physical scientist

    NASA Astrophysics Data System (ADS)

    Fletcher, Daniel A.; Theriot, Julie A.

    2004-03-01

    Directed, purposeful movement is one of the qualities that we most closely associate with living organisms, and essentially all known forms of life on this planet exhibit some type of self-generated movement or motility. Even organisms that remain sessile most of the time, like flowering plants and trees, are quite busy at the cellular level, with large organelles, including chloroplasts, constantly racing around within cellular boundaries. Directed biological movement requires that the cell be able to convert its abundant stores of chemical energy into mechanical energy. Understanding how this mechanochemical energy transduction takes place and understanding how small biological forces generated at the molecular level are marshaled and organized for large-scale cellular or organismal movements are the focus of the field of cell motility. This tutorial, aimed at readers with a background in physical sciences, surveys the state of current knowledge and recent advances in modeling cell motility.

  6. An introduction to cell motility for the physical scientist.

    PubMed

    Fletcher, Daniel A; Theriot, Julie A

    2004-06-01

    Directed, purposeful movement is one of the qualities that we most closely associate with living organisms, and essentially all known forms of life on this planet exhibit some type of self-generated movement or motility. Even organisms that remain sessile most of the time, like flowering plants and trees, are quite busy at the cellular level, with large organelles, including chloroplasts, constantly racing around within cellular boundaries. Directed biological movement requires that the cell be able to convert its abundant stores of chemical energy into mechanical energy. Understanding how this mechanochemical energy transduction takes place and understanding how small biological forces generated at the molecular level are marshaled and organized for large-scale cellular or organismal movements are the focus of the field of cell motility. This tutorial, aimed at readers with a background in physical sciences, surveys the state of current knowledge and recent advances in modeling cell motility.

  7. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  8. Nitric oxide stimulates human sperm motility via activation of the cyclic GMP/protein kinase G signaling pathway.

    PubMed

    Miraglia, Erica; De Angelis, Federico; Gazzano, Elena; Hassanpour, Hossain; Bertagna, Angela; Aldieri, Elisabetta; Revelli, Alberto; Ghigo, Dario

    2011-01-01

    Nitric oxide (NO), a modulator of several physiological processes, is involved in different human sperm functions. We have investigated whether NO may stimulate the motility of human spermatozoa via activation of the soluble guanylate cyclase (sGC)/cGMP pathway. Sperm samples obtained by masturbation from 70 normozoospermic patients were processed by the swim-up technique. The kinetic parameters of the motile sperm-rich fractions were assessed by computer-assisted sperm analysis. After a 30-90  min incubation, the NO donor S-nitrosoglutathione (GSNO) exerted a significant enhancing effect on progressive motility (77, 78, and 78% vs 66, 65, and 62% of the control at the corresponding time), straight linear velocity (44, 49, and 48 μm/s vs 34, 35, and 35.5 μm/s), curvilinear velocity (81, 83, and 84 μm/s vs 68 μm/s), and average path velocity (52, 57, and 54 μm/s vs 40, 42, and 42 μm/s) at 5 μM but not at lower concentrations, and in parallel increased the synthesis of cGMP. A similar effect was obtained with the NO donor spermine NONOate after 30 and 60  min. The GSNO-induced effects on sperm motility were abolished by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (a specific sGC inhibitor) and mimicked by 8-bromo-cGMP (8-Br-cGMP; a cell-permeating cGMP analog); the treatment with Rp-8-Br-cGMPS (an inhibitor of cGMP-dependent protein kinases) prevented both the GSNO- and the 8-Br-cGMP-induced responses. On the contrary, we did not observe any effect of the cGMP/PRKG1 (PKG) pathway modulators on the onset of hyperactivated sperm motility. Our results suggest that NO stimulates human sperm motility via the activation of sGC, the subsequent synthesis of cGMP, and the activation of cGMP-dependent protein kinases.

  9. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  10. Roles of ion transport in control of cell motility.

    PubMed

    Stock, Christian; Ludwig, Florian T; Hanley, Peter J; Schwab, Albrecht

    2013-01-01

    Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.

  11. Human Axonal Survival of Motor Neuron (a-SMN) Protein Stimulates Axon Growth, Cell Motility, C-C Motif Ligand 2 (CCL2), and Insulin-like Growth Factor-1 (IGF1) Production*

    PubMed Central

    Locatelli, Denise; Terao, Mineko; Fratelli, Maddalena; Zanetti, Adriana; Kurosaki, Mami; Lupi, Monica; Barzago, Maria Monica; Uggetti, Andrea; Capra, Silvia; D'Errico, Paolo; Battaglia, Giorgio S.; Garattini, Enrico

    2012-01-01

    Spinal muscular atrophy is a fatal genetic disease of motoneurons due to loss of full-length survival of motor neuron protein, the main product of the disease gene SMN1. Axonal SMN (a-SMN) is an alternatively spliced isoform of SMN1, generated by retention of intron 3. To study a-SMN function, we generated cellular clones for the expression of the protein in mouse motoneuron-like NSC34 cells. The model was instrumental in providing evidence that a-SMN decreases cell growth and plays an important role in the processes of axon growth and cellular motility. In our conditions, low levels of a-SMN expression were sufficient to trigger the observed biological effects, which were not modified by further increasing the amounts of the expressed protein. Differential transcriptome analysis led to the identification of novel a-SMN-regulated factors, i.e. the transcripts coding for the two chemokines, C-C motif ligands 2 and 7 (CCL2 and CCL7), as well as the neuronal and myotrophic factor, insulin-like growth factor-1 (IGF1). a-SMN-dependent induction of CCL2 and IGF1 mRNAs resulted in increased intracellular levels and secretion of the respective protein products. Induction of CCL2 contributes to the a-SMN effects, mediating part of the action on axon growth and random cell motility, as indicated by chemokine knockdown and re-addition studies. Our results shed new light on a-SMN function and the underlying molecular mechanisms. The data provide a rational framework to understand the role of a-SMN deficiency in the etiopathogenesis of spinal muscular atrophy. PMID:22669976

  12. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    SciTech Connect

    Wickramasinghe, Caroline M; Domaschenz, Renae; Amagase, Yoko; Williamson, Daniel; Missiaglia, Edoardo; Shipley, Janet; Murai, Kasumi; Jones, Philip H

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  13. SUSCEPTIBILITY AND PROTECTIVE MECHANISMS OF MOTILE AND NON MOTILE CELLS OF HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) TO PHOTOOXIDATIVE STRESS(1).

    PubMed

    Han, Danxiang; Wang, Junfeng; Sommerfeld, Milton; Hu, Qiang

    2012-06-01

    The life cycle of the unicellular green alga Haematococcus pluvialis consists of motile and nonmotile stages under typical growing conditions. In this study, we observed that motile cells were more susceptible than nonmotile cells to high light, resulting in a decrease in population density and photo-bleaching. Using two Haematococcus strains, CCAP 34/12 (a motile cell dominated strain) and SAG 34/1b (a nonmotile cell dominated strain), as model systems we investigated the cause of cell death and the protective mechanisms of the cells that survived high light. The death of motile cells under high light was attributed to the generation of excess reactive oxygen species (ROS), which caused severe damage to the photosynthetic components and the membrane system. Motile cells were able to dissipate excess light energy by nonphotochemical quenching and to relax ROS production by a partially up-regulated scavenging enzyme system. However, these strategies were not sufficient to protect the motile cells from high light stress. In contrast, nonmotile cells were able to cope with and survive under high light by (i) relaxing the over-reduced photosynthetic electron transport chain (PETC), thereby effectively utilizing PETC-generated NADPH to produce storage starch, neutral lipid, and astaxanthin, and thus preventing formation of excess ROS; (ii) down-regulating the linear electron transport by decreasing the level of cytochrome f; and (iii) consuming excess electrons produced by PSII via a significantly enhanced plastid terminal oxidase pathway.

  14. Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism.

    PubMed

    García-Rincón, Juan; Darszon, Alberto; Beltrán, Carmen

    2016-04-01

    Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it.

  15. A novel tachykinin NK2 receptor antagonist prevents motility-stimulating effects of neurokinin A in small intestine

    PubMed Central

    Lördal, Mikael; Navalesi, Giovanni; Theodorsson, Elvar; Maggi, Carlo A; Hellström, Per M

    2001-01-01

    MEN 11420 (nepadutant) is a potent, selective and competitive antagonist of tachykinin NK2 receptors. The objective of the present study was to assess the capability of the drug to antagonize the stimulatory effects of neurokinin A (NKA) on gastrointestinal motility, as well as to change the fasting migrating motor complex (MMC). Thirty-four male volunteers were randomized to treatment with either placebo or MEN 11420 in a double-blinded manner. Effects of MEN 11420 (8 mg intravenously) were evaluated as changes in phases I, II and III of MMC, as well as contraction frequency, amplitude and motility index during baseline conditions and during stimulation of motility using NKA (25 pmol kg−1 min−1 intravenously). NKA preceded by placebo increased the fraction of time occupied by phase II, increased contraction frequency, amplitude and motility index. MEN 11420 effectively antagonized the motility-stimulating effects of NKA. MEN 11420 reduced the phase II-stimulating effect of NKA. In addition, the stimulatory effect of NKA on contraction frequency and amplitude, as well as motility index were inhibited by MEN 11420. MEN 11420 did not affect the characteristics of MMC during saline infusion. Plasma levels of MEN 11420 peaked during the first hour after infusion and decreased to less than half during the first 2 h. In conclusion, intravenous MEN 11420 effectively inhibited NKA-stimulated, but not basal gastrointestinal motility, and was well tolerated by all subjects. PMID:11522614

  16. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. © 2013 Wiley Periodicals, Inc.

  17. Paxillin mediates sensing of physical cues and regulates directional cell motility by controlling lamellipodia positioning.

    PubMed

    Sero, Julia E; Thodeti, Charles K; Mammoto, Akiko; Bakal, Chris; Thomas, Sheila; Ingber, Donald E

    2011-01-01

    Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.

  18. Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning

    PubMed Central

    Sero, Julia E.; Thodeti, Charles K.; Mammoto, Akiko; Bakal, Chris; Thomas, Sheila; Ingber, Donald E.

    2011-01-01

    Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices. PMID

  19. Hyperswarming adaptations in a bacterium improve collective motility without enhancing single cell motility

    PubMed Central

    Deforet, Maxime; van Ditmarsch, Dave; Carmona-Fontaine, Carlos; Xavier, Joao B.

    2014-01-01

    Pseudomonas aeruginosa is a monoflagellated bacterium that can use its single polar flagellum to swim through liquids and move collectively over semisolid surfaces, a behavior called swarming. Previous studies have shown that experimental evolution in swarming colonies leads to the selection of hyperswarming bacteria with multiple flagella. Here we show that the advantage of such hyperswarmer mutants cannot be explained simply by an increase in the raw swimming speed of individual bacteria in liquids. Cell tracking of time-lapse microscopy to quantify single-cell swimming patterns reveals that both wild-type and hyperswarmers alternate between forward and backward runs, rather than doing the run-and-tumble characteristic of enteric bacteria such as E. coli. High-throughput measurement of swimming speeds reveals that hyperswarmers do not swim faster than wild-type in liquid. Wild-type reverses swimming direction in sharp turns without a significant impact on its speed, whereas multiflagellated hyperswarmers tend to alternate fast and slow runs and have wider turning angles. Nonetheless, macroscopic measurement of swimming and swarming speed in colonies shows that hyperswarmers expand faster than wild-type on surfaces and through soft agar matrices. A mathematical model explains how wider turning angles lead to faster spreading when swimming through agar. Our study describes for the first time the swimming patterns in multiflagellated P. aeruginosa mutants and reveals that collective and individual motility in bacteria are not necessarily correlated. Understanding bacterial adaptations to surface motility, such as hyperswarming, requires a collective behavior approach. PMID:24622509

  20. Cell Motility Resulting form Spontaneous Polymerization Waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2014-03-01

    The crawling of living cells on solid substrates is often driven by the actin cytoskeleton, a network of structurally polar filamentous proteins that is intrinsically driven by the hydrolysis of ATP. How cells organize their actin network during crawling is still poorly understood. A possible general mechanism underlying actin organization has been offered by the observation of spontaneous actin polymerization waves in various different cell types. We use a theoretical approach to investigate the possible role of spontaneous actin waves on cell crawling. To this end, we develop a meanfield framework for studying spatiotemporal aspects of actin assembly dynamics, which helped to identify possible origins of self-organized actin waves. The impact of these waves on cell crawling is then investigated by using a phase-field approach to confine the actin network to a cellular domain. We find that spontaneous actin waves can lead to directional or amoeboidal crawling. In the latter case, the cell performs a random walk. Within our deterministic framework, this behavior is due to complex spiral waves inside the cell. Finally, we compare the seemingly random motion of our model cells to the dynamics of cells of the human immune system. These cells patrol the body in search for infected cells and we discuss possible implications of our theory for the search process' efficiency. Work was funded by the DFG through KR3430/1, GK1276, and SFB 1027.

  1. Different effects of G-protein-coupled receptor 120 (GPR120) and GPR40 on cell motile activity of highly migratory osteosarcoma cells.

    PubMed

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Node, Yusuke; Inui, Karin; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-03-11

    G-protein-coupled receptor 120 (GPR120) and GPR40 are members of free fatty acid (FFA) receptors and mediate a variety of biological responses through binding of medium- and long-chain FFAs. Recently, it has been reported that GPR120 and GPR40 regulated cellular functions of cancer cells. In the present study, to assess whether GPR120 and GPR40 are involved in the enhancement of cell motile activity of osteosarcoma cells, we established highly migratory (MG63-R7) cells from osteosarcoma MG-63 cells. The expression level of GPR120 gene was significantly higher in MG63-R7 cells than in MG-63 cells, while no change of GPR40 expression was observed. In cell motility assay, the cell motile activity of MG63-R7 cells was approximately 200 times higher than that of MG-63 cells. The cell motile activity of MG63-R7 cells was stimulated by GW9508, which is an agonist of GPR120 and GPR40. Moreover, a GPR40 antagonist GW1100 elevated the cell motile activity of MG63-R7 cells in the presence of GW9508. To confirm the effects of GPR120 and GPR40 on the cell motile activity of MG63-R7 cells, GPR120 knockdown cells were generated from MG63-R7 cells. The cell motile activity of MG63-R7 cells was markedly suppressed by GPR120 knockdown. These results indicated that GPR120 enhanced and GPR40 inhibited the cell motile activity of highly migratory osteosarcoma cells.

  2. ATP and related purines stimulate motility, spatial congregation, and coalescence in red algal spores.

    PubMed

    Huidobro-Toro, Juan P; Donoso, Verónica; Flores, Verónica; Santelices, Bernabé

    2015-04-01

    Adenosine 5'-triphosphate (ATP) is a versatile extracellular signal along the tree of life, whereas cAMP plays a major role in vertebrates as an intracellular messenger for hormones, transmitters, tastants, and odorants. Since red algal spore coalescence may be considered analogous to the congregation process of social amoeba, which is stimulated by cAMP, we ascertained whether exogenous applications of ATP, cAMP, adenine, or adenosine modified spore survival and motility, spore settlement and coalescence. Concentration-response studies were performed with carpospores of Mazzaella laminarioides (Gigartinales), incubated with and without added purines. Stirring of algal blades released ADP/ATP to the cell media in a time-dependent manner. 10-300 μM ATP significantly increased spore survival; however, 1,500 μM ATP, cAMP or adenine induced 100% mortality within less than 24 h; the exception was adenosine, which up to 3,000 μM, did not alter spore survival. ATP exposure elicited spore movement with speeds of 2.2-2.5 μm · s(-1) . 14 d after 1,000 μM ATP addition, spore abundance in the central zone of the plaques was increased 2.7-fold as compared with parallel controls. Likewise, 1-10 μM cAMP or 30-100 μM adenine also increased central zone spore abundance, albeit these purines were less efficacious than ATP; adenosine up to 3,000 μM did not influence settlement. Moreover, 1,000 μM ATP markedly accelerated coalescence, the other purines caused a variable effect. We conclude that exogenous cAMP, adenine, but particularly ATP, markedly influence red algal spore physiology; effects are compatible with the expression of one or more membrane purinoceptor(s), discarding adenosine receptor participation. © 2015 Phycological Society of America.

  3. Extending the molecular clutch beyond actin-based cell motility

    PubMed Central

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the “molecular clutch” description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of Major Sperm Protein (MSP), which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. PMID:25383039

  4. Extending the molecular clutch beyond actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  5. Where to Go: Breaking the Symmetry in Cell Motility

    PubMed Central

    2016-01-01

    Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433

  6. Diversification of caldesmon-linked actin cytoskeleton in cell motility

    PubMed Central

    Mayanagi, Taira

    2011-01-01

    The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD's structural features and functions. PMID:21350330

  7. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate, pro-motile/invasive gene program and phenotype in epithelial cells

    PubMed Central

    Doehn, Ulrik; Hauge, Camilla; Frank, Scott R.; Jensen, Claus J.; Duda, Katarzyna; Nielsen, Jakob V.; Cohen, Michael S.; Johansen, Jens V.; Winther, Benny R.; Lund, Leif R.; Winther, Ole; Taunton, Jack; Hansen, Steen H.; Frödin, Morten

    2013-01-01

    SUMMARY The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during embryonic development, tissue regeneration and carcinoma progression. Yet many mechanisms by which ERK exerts this control remain elusive. Here, we demonstrate that the ERK-activated kinase RSK is necessary to induce motility and invasive capacities in non-transformed epithelial cells and carcinoma cells. RSK is moreover sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK is to induce transcription of potent pro-motile/invasive gene program by FRA1-dependent and independent mechanisms. Strikingly, the program enables RSK to coordinately modulate the extracellular environment, the intracellular motility apparatus, and receptors mediating communication between these compartments to stimulate motility and invasion. These findings uncover a general mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanates multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties. PMID:19716794

  8. Prediction of traction forces of motile cells

    PubMed Central

    Roux, Clément; Laurent, Valérie M.; Michel, Richard; Peschetola, Valentina

    2016-01-01

    When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell ‘footprint’ is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only. PMID:27708765

  9. Cancer cell motility: lessons from migration in confined spaces

    PubMed Central

    Paul, Colin D.; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-01-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis. PMID:27909339

  10. Cancer cell motility: lessons from migration in confined spaces.

    PubMed

    Paul, Colin D; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-02-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.

  11. Biochemistry of actomyosin-dependent cell motility (a review).

    PubMed Central

    Korn, E D

    1978-01-01

    Actins and myosins similar to the major proteins of muscle are the major molecular components of intricate mechanochemical systems that perform numerous vital motility and structural functions in all eukaryotic cells. In this article, after a brief summary of the morphological distribution and ultrastructure of actin, myosin, and interrelated proteins of nonmuscle cells, our present knowledge of their biochemistry is critically appraised from the perspective that understanding complex cellular processes depends ultimately on the identification, purification, and biochemical characterization of the proteins involved. Although few conclusions are reached, possible molecular mechanisms for cellular regulation of actin polymerization, filament association, actomyosin ATPase activity, and mechanochemical coupling are discussed and a number of potentially fruitful directions for further research are suggested. These include comparative biochemical investigations and the study of the interaction of heterologous proteins, but particular emphasis is given to the need for quantitative studies at the molecular level of motility proteins purified from a single cellular source. PMID:147464

  12. The influence of electric field and confinement on cell motility.

    PubMed

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  13. The Influence of Electric Field and Confinement on Cell Motility

    PubMed Central

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C.

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D. PMID:23555674

  14. Membrane tension and cytoskeleton organization in cell motility

    NASA Astrophysics Data System (ADS)

    Sens, Pierre; Plastino, Julie

    2015-07-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  15. Modelling cell motility and chemotaxis with evolving surface finite elements.

    PubMed

    Elliott, Charles M; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-11-07

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html.

  16. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility.

    PubMed

    Riemann, A; Schneider, B; Gündel, D; Stock, C; Gekle, M; Thews, O

    2016-01-01

    The tumor microenvironment is characterized by hypoxia, acidosis as well as other metabolic and biochemical alterations. Its role in cancer progression is increasingly appreciated especially on invasive capacity and the formation of metastasis. The effect of acidosis on metastasis formation of two rat carcinoma cell lines was studied in the animal model. In order to analyze the pH dependency of different steps of metastasis formation, invasiveness, cell adhesion and migration of AT-1 prostate cancer cells as well as possible underlying cell signaling pathways were studied in vitro. Acidosis significantly increased the formation of lung metastases of both tumor cell lines in vivo. In vitro, extracellular acidosis neither enhanced invasiveness nor affected cell adhesion to a plastic or to an endothelial layer. However, cellular motility was markedly elevated at pH 6.6 and this effect was sustained even when extracellular pH was switched back to pH 7.4. When analyzing the underlying mechanism, a prominent role of ROS in the induction of migration was observed. Signaling through the MAP kinases ERK1/2 and p38 as well as Src family kinases was not involved. Thus, cancer cells in an acidic microenvironment can acquire enhanced motility, which is sustained even if the tumor cells leave their acidic microenvironment e.g. by entering the blood stream. This increase depended on elevated ROS production and may contribute to the augmented formation of metastases of acidosis-primed tumor cells in vivo.

  17. Membrane tension and cytoskeleton organization in cell motility.

    PubMed

    Sens, Pierre; Plastino, Julie

    2015-07-15

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  18. Enhanced motility of alveolar cancer cells induced by CpG-ODN-functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Rother, Jan; Pietuch, Anna; Koll, Kerstin; Schladt, Thomas D.; Köhler, Oskar; Schick, Isabel; Tremel, Wolfgang; Janshoff, Andreas

    2013-12-01

    Lysosomal TLR-9 is stimulated in A549 lung epithelial cells through administration of nanoparticles (NPs) either based on γ-Fe2O3 or MnO. Synthetic single-stranded immunostimulatory CpG-oligodeoxynucleotides (CpG-ODN) are covalently attached to fluorescently labelled γ-Fe2O3- and MnO-NPs in order to monitor the impact of TLR-9 activation on motility and cell morphology employing time-resolved impedance spectroscopy. In contrast to cytotoxic MnO-based particles, particles made from Fe2O3 are non-toxic carriers for pathogen-mimicking CpG-ODNs, which efficiently stimulate endogenous TLR-9, resulting in enhanced micromotility and a loss of barrier properties. Compared to neat CpG-ODNs administered in the absence of particles, the nucleotides displayed by NPs are found to be considerably more efficient in stimulating A549 cells attributed to a larger local concentration of ligands on the particles' surface. The study shows that particle-based CpG-ODNs added to tumour cells increase their motility even further and therefore might also enhance their invasiveness and metastatic potential, foiling the original strategy of immunotherapy.

  19. The motile response of alveolar macrophages. An experimental study using single-cell and cell population approaches.

    PubMed

    Glasgow, J E; Farrell, B E; Fisher, E S; Lauffenburger, D A; Daniele, R P

    1989-02-01

    In this report, we studied the applicability of a random walk model of individual cell motility in predicting the motile behavior of alveolar macrophage populations under agarose. The migration of a population of cells in the absence of a chemotactic or chemokinetic gradient can be characterized by the random motility coefficient, mu, which is analogous to a particle diffusion coefficient. Random walk theory relates this latter coefficient to particle speed and collision time (equivalent to the time between changes in particle direction). By analogy, according to a similar random walk theory for cell migration, mu for a cell population is a function of the speed and persistence time (with direction changes governed by cell behavioral processes rather than by collisions) of individual cells. To test the model, normal guinea pig alveolar macrophages were incubated in the presence or absence of uniform concentrations of the chemotactic tripeptide formyl-norleucyl leucyl phenylalanine (FNLLP) to elicit different levels of motile activity. Mu was calculated from cell population density profiles obtained by fixing and staining cultures after 2, 3, or 4 days. In parallel experiments, individual cell speeds and persistence times were measured from 1-h, time-lapse video microscopy recordings. The value of mu calculated from single-cell measurements was in good agreement with that from population studies for stimulated random migration (at 10(-7) to 10(-11) M FNLLP), but not in the absence of stimulant. Overall, these results support the applicability of the random walk model of individual cell migration to randomly migrating alveolar macrophage populations.

  20. Attenuation of cell motility observed with high doses of sphingosine 1-phosphate or phosphorylated FTY720 involves RGS2 through its interactions with the receptor S1P.

    PubMed

    Kohno, Takayuki; Igarashi, Yasuyuki

    2008-07-01

    Sphingosine 1-phosphate (S1P) stimulation enhances cell motility via the G-protein coupled S1P receptor S1P1. This ligand-induced, receptor-mediated cell motility follows a typical bell-shaped dose-response curve, that is, stimulation with low concentrations of S1P enhances cell motility, whereas excess ligand stimulation does not enhance it. So far, the attenuation of the response at higher ligand concentrations has not been explained. We report here that S1P1 interacts with the regulator of G protein signaling (RGS)-2 protein, which is a GTPase-activating protein (GAP) for heterotrimeric G proteins, in a concentration dependent manner. The RGS2-S1P1 complex dissociated at higher ligand concentrations, yet it was unaffected at low concentrations, suggesting that the dissociated RGS2 is involved in the concurrent decrease of cell motility. In RGS2 knockdown cells, the decrease of cell motility induced by high ligand concentrations was rescued. S1P1 internalization was not implicated in the attenuation of the response. Similar results were observed upon stimulation with the phosphorylated form of FTY720 (FTYP), which is an S1P1 agonist. In conclusion, the suppressed response in cell motility induced by excess S1P or FTYP via S1P1 is regulated by RGS2 functioning through a mechanism that is independent of S1P1 internalization.

  1. Membrane tension feedback on shape and motility of eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  2. Polymorphonuclear cell motility, ankylosing spondylitis, and HLA B27.

    PubMed Central

    Pease, C T; Fordham, J N; Currey, H L

    1984-01-01

    Polymorphonuclear leucocyte (PMN) function was studied in 29 subjects with ankylosing spondylitis (AS). Of these, 20 were HLA B27+ve and 9 B27-ve. There were 30 controls and, of these, 15 were B27+ve. Random and directed cell migration was measured by 2 techniques: migration through a micropore filter and migration under an agar film. The chemo-attractant was either case in-activated serum or zymosan-activated serum. By both techniques directed motility was increased in subjects with B27 or with AS when compared to the B27-ve controls. This suggests that the disease AS and the possession of B27 are both associated with increased PMN motility. PMID:6608924

  3. Polymorphonuclear cell motility, ankylosing spondylitis, and HLA B27.

    PubMed

    Pease, C T; Fordham, J N; Currey, H L

    1984-04-01

    Polymorphonuclear leucocyte (PMN) function was studied in 29 subjects with ankylosing spondylitis (AS). Of these, 20 were HLA B27+ve and 9 B27-ve. There were 30 controls and, of these, 15 were B27+ve. Random and directed cell migration was measured by 2 techniques: migration through a micropore filter and migration under an agar film. The chemo-attractant was either case in-activated serum or zymosan-activated serum. By both techniques directed motility was increased in subjects with B27 or with AS when compared to the B27-ve controls. This suggests that the disease AS and the possession of B27 are both associated with increased PMN motility.

  4. Quantification of Cell Edge Velocities and Traction Forces Reveals Distinct Motility Modules during Cell Spreading

    PubMed Central

    Cai, Yunfei; Xenias, Harry; Spielman, Ingrid; Shneidman, Anna V.; David, Lawrence A.; Döbereiner, Hans-Günther; Wiggins, Chris H.; Sheetz, Michael P.

    2008-01-01

    Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments – spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters – a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together

  5. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells.

    PubMed

    Wang, Chiuhui Mary; Ploia, Cristina; Anselmi, Fabio; Sarukhan, Adelaida; Viola, Antonella

    2014-06-17

    Organization of immune responses requires exchange of information between cells. This is achieved through either direct cell-cell contacts and establishment of temporary synapses or the release of soluble factors, such as cytokines and chemokines. Here we show a novel form of cell-to-cell communication based on adenosine triphosphate (ATP). ATP released by stimulated T cells induces P2X4/P2X7-mediated calcium waves in the neighboring lymphocytes. Our data obtained in lymph node slices suggest that, during T-cell priming, ATP acts as a paracrine messenger to reduce the motility of lymphocytes and that this may be relevant to allow optimal tissue scanning by T cells.

  6. Immobilization of motile bacterial cells via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Nyamjav, Dorjderem; Rozhok, Sergey; Holz, Richard C.

    2010-06-01

    A strategy to bind bacterial cells to surfaces in a directed fashion via dip-pen nanolithography (DPN) is presented. Cellular attachment to pre-designed DPN generated microarrays was found to be dependent on the shape and size of the surface feature. While this observation is likely due in part to a dense, well formed mercaptohexadecanoic acid (MHA) monolayer generated via DPN, it may also simply be due to the physical shape of the surface structure. Motile Pseudomonas aeruginosa bacterial cells were observed to bind to DPN generated mercaptohexadecanoic acid/poly-L-lysine (MHA/PLL) line patterns, 'blocks' made up of eight lines with 100 nm spacings, with ~ 80% occupancy. Cellular binding to these 'block' surface structures occurs via an electrostatic interaction between negatively charged groups on the bacterial cell surface and positively charged poly-L-lysine (PLL) assemblies. These data indicate that these DPN generated 'block' surface structures provide a promising footprint for the attachment of motile bacterial cells that may find utility in cell based biosensors or single cell studies.

  7. ZF21 protein regulates cell adhesion and motility.

    PubMed

    Nagano, Makoto; Hoshino, Daisuke; Sakamoto, Takeharu; Kawasaki, Noritaka; Koshikawa, Naohiko; Seiki, Motoharu

    2010-07-02

    Cell migration on an extracellular matrix (ECM) requires continuous formation and turnover of focal adhesions (FAs) along the direction of cell movement. However, our knowledge of the components of FAs and the mechanism of their regulation remains limited. Here, we identify ZF21, a member of a protein family characterized by the presence of a phosphatidylinositol 3-phosphate-binding FYVE domain, to be a new regulator of FAs and cell movement. Knockdown of ZF21 expression in cells increased the number of FAs and suppressed cell migration. Knockdown of ZF21 expression also led to a significant delay in FA disassembly following induction of synchronous disassembly of FAs by nocodazole treatment. ZF21 bound to focal adhesion kinase, localized to FAs, and was necessary for dephosphorylation of FAK at Tyr(397), which is important for disassembly of FAs. Thus, ZF21 represents a new component of FAs, mediates disassembly of FAs, and thereby regulates cell motility.

  8. Functional association between proximal and distal gastric motility during fasting and duodenal nutrient stimulation in humans.

    PubMed

    Nguyen, N Q; Fraser, R J; Bryant, L K; Holloway, R H

    2007-08-01

    A functional integration exists between proximal and distal gastric motor activity in dogs but has not been demonstrated in humans. To determine the relationship between proximal and distal gastric motor activity in humans. Concurrent proximal (barostat) and distal (antro-pyloro-duodenal (APD) manometry) gastric motility were recorded in 10 healthy volunteers (28 +/- 3 years) during (i) fasting and (ii) two 60-min duodenal infusions of Ensure((R)) (1 and 2 kcal min(-1)) in random order. Proximal and APD motor activity and the association between fundic and propagated antral waves (PAWs) were determined. During fasting, 32% of fundic waves (FWs) were followed by a PAW. In a dose-dependent fashion, duodenal nutrients (i) increased proximal gastric volume, (ii) reduced fundic and antral wave (total and propagated) activity, and (iii) increased pyloric contractions. The proportion of FWs followed by a distal PAW was similar between both infusions and did not differ from fasting. During nutrient infusion, nearly all PAWs were antegrade, propagated over a shorter distance and less likely to traverse the pylorus, compared with fasting. In humans, a functional association exists between proximal and distal gastric motility during fasting and duodenal nutrient stimulation. This may have a role in optimizing intra-gastric meal distribution.

  9. Learning and memory: an emergent property of cell motility.

    PubMed

    Baudry, Michel; Bi, Xiaoning

    2013-09-01

    In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.

  10. Lattice-free models of directed cell motility

    NASA Astrophysics Data System (ADS)

    Irons, Carolyn; Plank, Michael J.; Simpson, Matthew J.

    2016-01-01

    Directed cell migration often occurs when individual cells move in response to an external chemical stimulus. Cells can respond by moving in either the direction of increasing (chemoattraction) or decreasing (chemorepulsion) concentration. Many previous models of directed cell migration use a lattice-based framework where agents undergo a lattice-based random walk and the direction of nearest-neighbour motility events is biased in a preferred direction. Such lattice-based models can lead to unrealistic configurations of agents, since the agents always move on an artificial lattice structure which is never observed experimentally. We present a lattice-free model of directed cell migration that incorporates two key features. First, agents move on a continuous domain, with the possibility that there is some preferred direction of motion. Second, to be consistent with experimental observations, we enforce a crowding mechanism so that motility events that would lead to agent overlap are not permitted. We compare simulation data from the new lattice-free model with a more traditional lattice-based model. To provide additional insight into the lattice-free model, we construct an approximate conservation statement which corresponds to a nonlinear advection-diffusion equation in the continuum limit. The solution of this mean-field model compares well with averaged data from the individual-based model.

  11. Loss of SNAP29 Impairs Endocytic Recycling and Cell Motility

    PubMed Central

    Rapaport, Debora; Lugassy, Yevgenia; Sprecher, Eli; Horowitz, Mia

    2010-01-01

    Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility. PMID:20305790

  12. Simultaneous optical measurements of cell motility and growth.

    PubMed

    Sridharan, Shamira; Mir, Mustafa; Popescu, Gabriel

    2011-10-01

    It has recently been shown that spatial light interference microscopy (SLIM) developed in our laboratory can be used to quantify the dry mass growth of single cells with femtogram sensitivity [M. Mir et al., Proc. Nat. Acad. Sci. 108, 32 (2011)]. Here we show that it is possible to measure the motility of single cells in conjunction with the dry mass measurements. Specifically the effect of poly-L-lysine substrate on the dry mass growth of Drosophila S2 cells is studied. By measuring the mean square displacement of single cells and clusters it is shown that cells that adhere better to the surface are unable to grow. Using such a technique it is possible to measure both growth and morphogenesis, two of the cornerstones of developmental biology.

  13. Traveling waves in actin dynamics and cell motility

    PubMed Central

    Allard, Jun; Mogilner, Alex

    2012-01-01

    Much of current understanding of cell motility arose from studying steady treadmilling of actin arrays. Recently, there have been a growing number of observations of a more complex, non-steady, actin behavior, including self-organized waves. It is becoming clear that these waves result from activation and inhibition feedbacks in actin dynamics acting on different scales, but the exact molecular nature of these feedbacks and respective roles of biomechanics and biochemistry are still unclear. Here, we review recent advances achieved in experimental and theoretical studies of actin waves and discuss mechanisms and physiological significance of wavy protrusions. PMID:22985541

  14. Rock `N' Rho in Outer Hair Cell Motility

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Kalinec, G.; Kalinec, F.; Billadeau, D. D.; Urrutia, R.

    2003-02-01

    RhoA, Cdc42 and Rac1, small GTPases of the Rho family, are crucial regulators of the actin cytoskeleton and mediate different types of cell motility. They also help to maintain cellular homeostasis, actively regulating the structure and mechanical properties of the cells. We investigated the expression in the guinea-pig cochlea of the serine/threonine kinase ROCK, a well-known effector of RhoA, and measured electromotile amplitude in outer hair cells (OHCs) internally perfused with C3 and Y-27632, pharmacological inhibitors of RhoA and ROCK respectively, and dominant-negative mutants of Rac1 and Cdc42. We found that a RhoA/ROCK-mediated signaling pathway is important for mechanical homeostasis of cochlear OHCs, and identified ROCK as a potential target to selectively modulate outer hair cell electromotility.

  15. Mathematics of cell motility: have we got its number?

    PubMed Central

    2010-01-01

    Mathematical and computational modeling is rapidly becoming an essential research technique complementing traditional experimental biological methods. However, lack of standard modeling methods, difficulties of translating biological phenomena into mathematical language, and differences in biological and mathematical mentalities continue to hinder the scientific progress. Here we focus on one area—cell motility—characterized by an unusually high modeling activity, largely due to a vast amount of quantitative, biophysical data, ‘modular’ character of motility, and pioneering vision of the area’s experimental leaders. In this review, after brief introduction to biology of cell movements, we discuss quantitative models of actin dynamics, protrusion, adhesion, contraction, and cell shape and movement that made an impact on the process of biological discovery. We also comment on modeling approaches and open questions. PMID:18461331

  16. GABA(B) receptors mediate motility signals for migrating embryonic cortical cells.

    PubMed

    Behar, T N; Smith, S V; Kennedy, R T; McKenzie, J M; Maric, I; Barker, J L

    2001-08-01

    During development, postmitotic neurons migrate from germinal regions into the cortical plate (cp), where lamination occurs. In rats, GABA is transiently expressed in the cp, near target destinations for migrating neurons. In vitro GABA stimulates neuronal motility, suggesting cp cells release GABA, which acts as a chemoattractant during corticogenesis. Pharmacological studies indicate GABA stimulates migration via GABA(B)-receptor (GABA(B)-R) activation. Using immunohistochemistry, RT-PCR and Western blotting, we examined embryonic cortical cell expression of GABA(B)-Rs in vivo. At E17, GABA(B)-R1(+) cells were identified in the ventricular zone (vz) and cp. RT-PCR and Western blotting demonstrated the presence of GABA(B)-R1a and GABA(B)-R1b mRNA and proteins. Using immuno- cytochemistry, GABA(B)-R expression was examined in vz and cp cell dissociates before and after migration to GABA in an in vitro chemotaxis assay. GABA-induced migration resulted in an increase of GABA(B)-R(+) cells in the migrated population. While <20% of each starting dissociate was GABA(B)-R(+), >70% of migrated cells were immunopositive. We used a microchemotaxis assay to analyze cp cell release of diffusible chemotropic factor(s). In vitro, cp dissociates induced vz cell migration in a cell density-dependent manner that was blocked by micromolar saclofen (a GABA(B)-R antagonist). HPLC demonstrated cp cells release micromolar levels of GABA and taurine in several hours. Micromolar levels of both molecules stimulated cell migration that was blocked by micromolar saclofen. Thus, migratory cortical cells express GABA(B)-Rs, cp cells release GABA and taurine, and both molecules stimulate cortical cell movement. Together these findings suggest GABA and/or taurine act as chemoattractants for neurons during rat cortical histogenesis via mechanisms involving GABA(B)-Rs.

  17. SDZ HTF 919 stimulates canine colonic motility and transit in vivo.

    PubMed

    Nguyen, A; Camilleri, M; Kost, L J; Metzger, A; Sarr, M G; Hanson, R B; Fett, S L; Zinsmeister, A R

    1997-03-01

    Effects of the nonbenzamide 5-hydroxytryptamine4 agonist SDZ HTF 919 on gastrointestinal motility are unclear. Our aim was to assess the in vivo effects on gastrointestinal and colonic transit of radiolabeled residue and on colonic phasic contractility. In six female dogs, transit was measured over a period of 2 days by radioscintigraphy and colonic motility was measured by pneumohydraulic perfusion manometry of the proximal and distal colon. SDZ HTF 919 was administered initially by bolus i.v. infusion, followed by s.c. injection 8 and 16 hr later. Doses tested were 0.03, 0.1 and 0.3 mg/kg, and isotonic saline and vehicle served as controls in each dog. Stomach and small bowel transit was not significantly altered by SDZ HTF 919. Overall, i.v. SDZ HTF 919 accelerated colonic transit during the first 1 hr, compared with controls. These effects were significant even with the lowest dose of SDZ HTF 919. Responses to higher infusion doses were more variable. SDZ HTF 919 did not cause significant changes in quantitative pressure indices, such as amplitude or motor index, in the small bowel or colon. Prolonged postprandial colonic contractions, each lasting >30 sec, were noted after each i.v. agent and were significantly more frequent with the 0.03 mg/kg dose than with control (vehicle) treatment. Thus, SDZ HTF 919 accelerates canine colonic transit in vivo during the first 1 hr after i.v. administration. SDZ HTF 919 appears to be a promising agent for stimulation of mammalian colonic transit.

  18. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility.

    PubMed

    Sugio, Shouta; Nagasawa, Masami; Kojima, Itaru; Ishizaki, Yasuki; Shibasaki, Koji

    2017-04-01

    We have previously reported that transient receptor potential vanilloid 2 (TRPV2) can be activated by mechanical stimulation, which enhances axonal outgrowth in developing neurons; however, the molecular mechanisms that govern the contribution of TRPV2 activation to axonal outgrowth remain unclear. In the present study, we examined this mechanism by using PC12 cells as a neuronal model. Overexpression of TRPV2 enhanced axonal outgrowth in a mechanical stimulus-dependent manner. Accumulation of TRPV2 at the cell surface was 4-fold greater in the growth cone compared with the soma. In the growth cone, TRPV2 is not static, but dynamically accumulates (within ∼100 ms) to the site of mechanical stimulation. The dynamic and acute clustering of TRPV2 can enhance very weak mechanical stimuli via focal accumulation of TRPV2. Focal application of mechanical stimuli dramatically increased growth cone motility and caused actin reorganization via activation of TRPV2. We also found that TRPV2 physically interacts with actin and that changes in the actin cytoskeleton are required for its activation. Here, we demonstrated for the first time to our knowledge that TRPV2 clustering is induced by mechanical stimulation generated by axonal outgrowth and that TRPV2 activation is triggered by actin rearrangements that result from mechanical stimulation. Moreover, TRPV2 activation enhances growth cone motility and actin accumulation to promote axonal outgrowth. Sugio, S., Nagasawa, M., Kojima, I., Ishizaki, Y., Shibasaki, K. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility. © FASEB.

  19. A cell number-counting factor regulates the cytoskeleton and cell motility in Dictyostelium.

    PubMed

    Tang, Lei; Gao, Tong; McCollum, Catherine; Jang, Wonhee; Vicker, Michael G; Ammann, Robin R; Gomer, Richard H

    2002-02-05

    Little is known about how a morphogenetic rearrangement of a tissue is affected by individual cells. Starving Dictyostelium discoideum cells aggregate to form dendritic streams, which then break up into groups of approximately 2 x 10(4) cells. Cell number is sensed at this developmental stage by using counting factor (CF), a secreted complex of polypeptides. A high extracellular concentration of CF indicates that there is a large number of cells, which then causes the aggregation stream to break up. Computer simulations indicated that stream breakup could be caused by CF decreasing cell-cell adhesion and/or increasing cell motility, and we observed that CF does indeed decrease cell-cell adhesion. We find here that CF increases cell motility. In Dictyostelium, motility is mediated by actin and myosin. CF increases the amounts of polymerized actin and the ABP-120 actin-crosslinking protein. Partially inhibiting motility by using drugs that interfere with actin polymerization reduces stream dissipation, resulting in fewer stream breaks and thus larger groups. CF also potentiates the phosphorylation and redistribution of myosin while repressing its basal level of assembly. The computer simulations indicated that a narrower distribution of group sizes results when a secreted factor modulates both adhesion and motility. CF thus seems to induce the morphogenesis of streams into evenly sized groups by increasing actin polymerization, ABP-120 levels, and myosin phosphorylation and decreasing adhesion and myosin polymerization.

  20. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.

  1. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  2. The interplay between cell motility and tissue architecture

    NASA Astrophysics Data System (ADS)

    Tanner, Kandice

    2013-03-01

    Glandular tissue form arboreal networks comprised of acini and tubes. Loss of structure is concomitant with the in vivo pathologic state. In vitro models have been shown to recapitulate the functional units of the mammary gland and other organs. Despite our much improved understanding gleaned from both in vitro and in vivo interrogation, the mechanisms by which cells are able to achieve the correct tissue organization remain elusive. How do single mammary epithelial cells form polarized acini when cultured in a surrogate basement membrane gel but not on 2D surfaces? Simply put, how does a cell know which way is up? Why do malignant breast cells show a differential response in that they form non-polarized aggregates? Recently, it was determined that non-malignant cells undergo multiple rotations to establish acini while tumor cells are randomly motile during tumor formation. Can it be that a tumor cell has simply lost its way. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

  3. Motility, viability, and calcium in the sperm cells.

    PubMed

    Parodi, Jorge

    2014-04-01

    Sperm cells are complicated in vitro models. Their viability is limited, and physiology is complex. The study of their properties is of great application in the animal production as viable and functional gametes are essential. It has been shown that the decrease of sperm cell viability parallels an increase of the reactive oxygen species (ROS). Reactive oxygen species is secondary to normal metabolic processes of the cell-like flagellar movement. There is evidence of strategies that reduce ROS levels by using exogenous or endogenous antioxidants with the intention that seminal plasma protects the sperm cells and increases viability. Perhaps viability can increase by reducing that flagellar movement which is regulated by calcium. The phenomenon has not been fully characterized, but it is established that in certain mammalian models, the entrance of calcium via specific channels such as CATsper or voltage-dependent channels, signals flagellar movement. Previous reports have indicated that a change in the concentration of calcium or if the temperature is altered, the function of mammal sperm cells is reduced or blocked and viability prolonged. Fish sperm can remain immobile for several weeks but when activated the number of mobile and viable sperm is reduced at a faster rate. However, if the cells are not mobilized the semen can be preserved for longer periods. As presented in this paper, this supports the notion that by modulating calcium channels to reduce motility the viability of these cells can increase.

  4. A cell number-counting factor regulates the cytoskeleton and cell motility in Dictyostelium

    PubMed Central

    Tang, Lei; Gao, Tong; McCollum, Catherine; Jang, Wonhee; Vicker, Michael G.; Ammann, Robin R.; Gomer, Richard H.

    2002-01-01

    Little is known about how a morphogenetic rearrangement of a tissue is affected by individual cells. Starving Dictyostelium discoideum cells aggregate to form dendritic streams, which then break up into groups of ≈2 × 104 cells. Cell number is sensed at this developmental stage by using counting factor (CF), a secreted complex of polypeptides. A high extracellular concentration of CF indicates that there is a large number of cells, which then causes the aggregation stream to break up. Computer simulations indicated that stream breakup could be caused by CF decreasing cell–cell adhesion and/or increasing cell motility, and we observed that CF does indeed decrease cell–cell adhesion. We find here that CF increases cell motility. In Dictyostelium, motility is mediated by actin and myosin. CF increases the amounts of polymerized actin and the ABP-120 actin-crosslinking protein. Partially inhibiting motility by using drugs that interfere with actin polymerization reduces stream dissipation, resulting in fewer stream breaks and thus larger groups. CF also potentiates the phosphorylation and redistribution of myosin while repressing its basal level of assembly. The computer simulations indicated that a narrower distribution of group sizes results when a secreted factor modulates both adhesion and motility. CF thus seems to induce the morphogenesis of streams into evenly sized groups by increasing actin polymerization, ABP-120 levels, and myosin phosphorylation and decreasing adhesion and myosin polymerization. PMID:11818526

  5. Changes in small intestinal motility and related hormones by acupuncture stimulation at Zusanli (ST 36) in mice.

    PubMed

    Jang, Jung-Hee; Lee, Deuk-Joo; Bae, Chang-Hwan; Ha, Ki-Tae; Kwon, Sunoh; Park, Hi-Joon; Hahm, Dae-Hyun; Lee, Hyejung; Kim, Seungtae

    2017-03-01

    To clarify the effects of acupuncture stimulation at Zusanli (ST 36) on the hormonal changes. Eight-week-old male C57BL/6 mice received acupuncture stimulation at acupoint ST 36 or Quchi (LI 11) once a day for 3 or 5 days in the acupuncture-stimulated groups, but not received in the normal group (n=6 in each group). On day 3 or 5, animals were given 0.1 mL of charcoal orally with a bulbed steel needle, 30 min after the last acupuncture stimulation. Ten minutes later, mice were anesthetized, and the intestinal transit and the concentrations of vasoactive intestinal peptide (VIP), motilin, ghrelin and gastrin in the serum were measured. Compared to no acupuncture stimulation, acupuncture stimulation at ST 36 for 5 days increased the intestinal transit and down-regulated the concentration of VIP and up-regulated the concentrations of motilin, ghrelin and gastrin (P<0.05 or 0.01), whereas acupuncture stimulation at LI 11 did not change them signifificantly (P>0.05). Acupuncture stimulation at ST 36 for 5 days enhances the small intestinal motility and regulates the secretion of hormones related to small intestinal motility.

  6. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    PubMed Central

    Shrout, Joshua D.; Tolker-Nielsen, Tim; Givskov, Michael; Parsek, Matthew R.

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically, we describe quorum sensing and surface motility exhibited by the bacterium Pseudomonas aeruginosa, a ubiquitous environmental organism that acts as an opportunistic human pathogen in immunocompromised individuals. P. aeruginosa uses acyl-homoserine lactone signals during quorum sensing to synchronize gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P. aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces. PMID:22053126

  7. Membrane tension feedback on shape and motility of eukaryotic cells

    SciTech Connect

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell’s two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane’s bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables — the cell’s velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  8. IQGAP3 Is Essential for Cell Proliferation and Motility During Zebrafish Embryonic Development

    PubMed Central

    Fang, Xiaolan; Zhang, Bianhong; Thisse, Bernard; Bloom, George S.; Thisse, Christine

    2015-01-01

    IQGAPs are scaffolding proteins that regulate actin assembly, exocyst function, cell motility, morphogenesis, adhesion and division. Vertebrates express 3 family members: IQGAP1, IQGAP2 and IQGAP3. IQGAP1 is known to stimulate nucleation of branched actin filaments through N-WASP and the Arp2/3 complex following direct binding to cytoplasmic tails of ligand-activated growth factor receptors, including EGFR, VEGFR2 and FGFR1. By contrast, little is known about functions of IQGAP2 or IQGAP3. Using in situ hybridization on whole mount zebrafish (Danio rerio) embryos, we show that IQGAP1 and IQGAP2 are associated with discrete tissues and organs, while IQGAP3 is mainly expressed in proliferative cells throughout embryonic and larval development. Morpholino knockdowns of IQGAP1 and IQGAP2 have little effect on embryo morphology while loss of function of IQGAP3 affects both cell proliferation and cell motility. IQGAP3 morphant phenotypes are similar to those resulting from overexpression of dominant negative forms of Ras or of Fibroblast Growth Factor Receptor 1 (FGFR1), suggesting that IQGAP3 plays a role in FGFR1-Ras-ERK signaling. In support of this hypothesis, dominant negative forms of FGFR1 or Ras could be rescued by co-injection of zebrafish IQGAP3 mRNA, strongly suggesting that IQGAP3 acts as a downstream regulator of the FGFR1-Ras signaling pathway. PMID:26286209

  9. Bisphenol A Inhibits Cell Proliferation and Reduces the Motile Potential of Murine LM8 Osteosarcoma Cells.

    PubMed

    Kidani, Teruki; Yasuda, Rie; Miyawaki, Joji; Oshima, Yusuke; Miura, Hiromasa; Masuno, Hiroshi

    2017-04-01

    The aim of this study was to examine the effect of bisphenol A (BPA) on the proliferation and motility potential of murine LM8 osteosarcoma cells. LM8 cells were treated for 3 days with or without 80 μM BPA. The effect of BPA on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine (BrdU) incorporation study. Ethanol-fixed cells were stained with hematoxylin-eosin (H&E) to visualize cell morphology. Cell motility was assayed using inserts with uncoated membranes in invasion chambers. Expression of cell division cycle 42 (CDC42) was determined by immunofluorescence staining and western blotting. BPA reduced the DNA content of cultures and the number of BrdU-positive cells. BPA induced a change in morphology from cuboidal with multiple filopodia on the cell surface to spindle-shaped with a smooth cell surface. BPA-treated cells expressed less CDC42 and were less motile than untreated cells. BPA inhibited DNA replication and cell proliferation. BPA inhibited filopodia formation and motile potential by inhibiting CDC42 expression in LM8 cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Cell motility and thermodynamic fluctuations tailoring quantum mechanics for biology.

    PubMed

    Matsuno, K

    2001-01-01

    Cell motility underlying muscle contraction is an instance of thermodynamics tailoring quantum mechanics for biology. Thermodynamics is intrinsically multi-agential in admitting energy consumers in the form of energy-deficient thermodynamic fluctuations. The onset of sliding movement of an actin filament on myosin molecules in the presence of ATP molecules to be hydrolyzed demonstrates that thermodynamic fluctuations transform their nature so as to accommodate themselves to energy transduction subject to the first law of thermodynamics. The transition from transversal to longitudinal fluctuations of an actin filament with the increase of ATP concentration coincides with the change in the nature of energy consumers acting upon thermal energy in the light of the first law, eventually embodying a uniform sliding movement of an actin filament.

  11. Automated cell tracking tools for quantitative motility studies

    NASA Astrophysics Data System (ADS)

    Zimmer, Christophe; Zhang, Bo; Blazquez, Samantha; Labruyère, Elisabeth; Frischknecht, Freddy; Ménard, Robert; Guillén, Nancy; Olivo-Marin, Jean-Christophe

    2005-03-01

    Optical microscopy in 2 or 3 dimensions allows extensive observations of the motility and morphology of living cells, in culture or in tissue. This leads to an exploding accumulation of imaging data and shifts the bottleneck from data acquisition to data analysis. Manual image analysis is often either impossible or exceedingly time-consuming and subject to uncontrollable user bias and errors. Computerized methods promise to ensure fast, accurate and reproducible processing, but the basic image analysis functions available in standard commercial software are generally not adapted to the complexity of biological images. For this reason, we develop methods based on active contours, a powerful and flexible technique to segment and track objects, that has become very popular in computer vision research. Here, we describe the main benefits and limitations of active contours for our application, and our efforts to adapt and improve these methods for the analysis of cellular dynamics.

  12. Anti-stress effects of transcutaneous electrical nerve stimulation (TENS) on colonic motility in rats.

    PubMed

    Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku

    2012-05-01

    Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.

  13. Correlating single cell motility with population growth dynamics for flagellated bacteria.

    PubMed

    Arora, Sucheta; Bhat, Vidya; Mittal, Aditya

    2007-08-15

    Many bacteria used for biotechnological applications are naturally motile. Their "bio-nanopropeller" driven movement allows searching for better environments in a process called chemotaxis. Since bacteria are extremely small in size compared to the bulk fluid volumes in bioreactors, single cell motility is not considered to influence bioreactor operations. However, with increasing interest in localized fluid flow inside reactors, it is important to ask whether individual motility characteristics of bacteria are important in bioreactor operations. The first step in this direction is to try to correlate single cell measurements with population data of motile bacteria in a bioreactor. Thus, we observed the motility behavior of individual bacterial cells, using video microscopy with 33 ms time resolution, as a function of population growth dynamics of batch cultures in shake flasks. While observing the motility behavior of the most intensively studied bacteria, Escherichia coli, we find that overall bacterial motility decreases with progression of the growth curve. Remarkably, this is due to a decrease in a specific motility behavior called "running". Our results not only have direct implications on biofilm formations, but also provide a new direction in bioprocess design research highlighting the role of individual bacterial cell motility as an important parameter.

  14. LPP is Required for TGF-Beta Induced Motility and Invasion of Neu/ErbB-2 Expressing Breast Cancer Cells

    DTIC Science & Technology

    2012-09-01

    induced motility and invasion of ErbB2 expressing mammary tumor cells. LPP is a nucleo -cytoplasmic protein that mediates processes such as signal...after 60s following laser ablation in ErbB2(NT) cells under basal conditions, which increased significantly to 92% following TGFβ stimulation (Fig

  15. Distortion component analysis of outer hair cell motility-related gating charge.

    PubMed

    Takahashi, S; Santos-Sacchi, J

    1999-06-01

    The underlying Boltzmann characteristics of motility-related gating currents of the outer hair cell (OHC) are predicted to generate distortion components in response to sinusoidal transmembrane voltages. We studied this distortion since it reflects the mechanical activity of the cell that may contribute to peripheral auditory system distortion. Distortion components in the OHC electrical response were analyzed using the whole-cell voltage clamp technique, under conditions where ionic conductances were blocked. Single or double-sinusoidal transmembrane voltage stimulation was delivered at various holding voltages, and distortion components of the current responses were detected by Fourier analysis. Current response magnitude and phase of each distortion component as a function of membrane potential were compared with characteristics of the voltage-dependent capacitance, obtained by voltage stair-step transient analysis or dual-frequency admittance analysis. The sum distortion was most prominent among the distortion components at all holding voltages. Notches in the sum (f1+f2), difference (f2-f1) and second harmonic (2f) components occur at the voltage where peak voltage-dependent capacitance resides (VpkCm). Rapid phase reversals also occurred at VpkCm, but phase remained fairly stable at more depolarized and hyperpolarized potentials. Thus, it is possible to extract Boltzmann parameters of the motility-related charge movement from these distortion components. In fact, we have developed a technique to follow changes in the voltage dependence of OHC motility and charge movement by tracking the voltage at phase reversal of the f2-f1 product. When intracellular turgor pressure was changed, VpkCm and distortion notch voltages shifted in the same direction. These data have important implications for understanding cochlear nonlinearity, and more generally, indicate the usefulness of distortion analysis to study displacement currents.

  16. Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells.

    PubMed

    Lee, Dong Eun; Chung, Min-Yu; Lim, Tae Gyu; Huh, Won Bum; Lee, Hyong Joo; Lee, Ki Won

    2013-09-01

    Cell metastasis is a major cause of death from cancer and can arise from excessive levels of oxidative stress. The objective of this study was to investigate whether the natural flavonoid quercetin can inhibit matrix metalloproteinase (MMP)-2 and -9 activities through the attenuation of reactive oxygen species (ROS) formation, an event expected to lead to the inhibition of cell motility. To induce sustained ROS formation, cells were treated with phenazine methosulfate (PMS; 1 μM). Noncytotoxic concentrations of quercetin inhibited PMS-induced increases in cell motility in HT1080 human fibrosarcoma (HT1080) cells. While nearly 100% of cells were observed to migrate after 24 h of PMS treatment, quercetin significantly (P < 0.01) suppressed this effect. We also found that quercetin, up to 10 μg/mL, attenuated PMS-induced MMP-2 activation. We then investigated whether the decreased levels of MMP-2 activation could be attributable to lower levels of ROS formation by quercetin. We found that quercetin treatments significantly attenuated PMS-induced ROS formation (P < 0.01) and resulted in decreased cell motility associated with a reduction in MMP-2 and -9 activitiy in HT1080 cells, even in the absence of PMS treatment. Collectively, these results suggest that quercetin inhibits cell motility via the inhibition of MMP activation in HT1080 cells in the presence and absence of PMS. This is likely to be a result of the suppression of intracellular ROS formation by quercetin. © 2013 Institute of Food Technologists®

  17. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    PubMed

    Rajeev Chaudhari, Pratik; Emlit Charles, Silvania; D'Souza, Zinia Charlotte; Murlidhar Vaidya, Milind

    2017-08-31

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quantitative single-cell motility analysis of platelet-rich plasma-treated endothelial cells in vitro.

    PubMed

    Kawase, Tomoyuki; Tanaka, Takaaki; Okuda, Kazuhiro; Tsuchimochi, Makoto; Oda, Masafumi; Hara, Toshiaki

    2015-05-01

    Platelet-rich plasma (PRP) has been widely applied in regenerative therapy due to its high concentration of growth factors. Previous in vitro and in vivo studies have provided evidence supporting the angiogenic activity of PRP. To more directly demonstrate how PRP acts on endothelial cells, we examined the PRP-induced changes in the motility of human umbilical vein endothelial cells by examining the involvement of VEGF. Time-lapse quantitative imaging demonstrated that in the initial phase (∼2 h) of treatment, PRP substantially stimulated cell migration in a wound-healing assay. However, this effect of PRP was not sustained at significant levels beyond the initial phase. The average net distance of cell migration at 10 h was 0.45 ± 0.16 mm and 0.82 ± 0.23 mm in control and PRP-stimulated cells, respectively. This effect was also demonstrated with recombinant human VEGF and was significantly attenuated by a neutralizing anti-VEGF antibody. Immunofluorescent examination of paxillin and actin fibers demonstrated that PRP concomitantly up-regulated focal adhesion and cytoskeletal formation. Western blotting analysis of phosphorylated VEGFR2 demonstrated that PRP mainly stimulated the phosphorylation of immature VEGFR2 in a dose- and time-dependent manner, an action that was completely blocked by the neutralizing antibody. Taken together, these data suggest that PRP acts directly on endothelial cells via the activation of VEGFR2 to transiently up-regulate their motility. Thus, the possibility that PRP desensitizes target endothelial cells for a relatively long period of time after short-term activation should be considered when the controlled release system of PRP components is designed.

  19. Transposon insertions in the Flavobacterium johnsoniae ftsX gene disrupt gliding motility and cell division.

    PubMed

    Kempf, M J; McBride, M J

    2000-03-01

    Flavobacterium johnsoniae is a gram-negative bacterium that exhibits gliding motility. To determine the mechanism of flavobacterial gliding motility, we isolated 33 nongliding mutants by Tn4351 mutagenesis. Seventeen of these mutants exhibited filamentous cell morphology. The region of DNA surrounding the transposon insertion in the filamentous mutant CJ101-207 was cloned and sequenced. The transposon was inserted in a gene that was similar to Escherichia coli ftsX. Two of the remaining 16 filamentous mutants also carried insertions in ftsX. Introduction of the wild-type F. johnsoniae ftsX gene restored motility and normal cell morphology to each of the three ftsX mutants. CJ101-207 appears to be blocked at a late stage of cell division, since the filaments produced cross walls but cells failed to separate. In E. coli, FtsX is thought to function with FtsE in translocating proteins involved in potassium transport, and perhaps proteins involved in cell division, into the cytoplasmic membrane. Mutations in F. johnsoniae ftsX may prevent translocation of proteins involved in cell division and proteins involved in gliding motility into the cytoplasmic membrane, thus resulting in defects in both processes. Alternatively, the loss of gliding motility may be an indirect result of the defect in cell division. The inability to complete cell division may alter the cell architecture and disrupt gliding motility by preventing the synthesis, assembly, or functioning of the motility apparatus.

  20. Functions of LIM proteins in cell polarity and chemotactic motility.

    PubMed

    Khurana, Bharat; Khurana, Taruna; Khaire, Nandkumar; Noegel, Angelika A

    2002-10-15

    LimC and LimD are two novel LIM proteins of Dictyostelium, which are comprised of double and single LIM domains, respectively. Green fluorescent protein-fused LimC and LimD proteins preferentially accumulate at areas of the cell cortex where they co-localize with actin and associate transiently with cytoskeleton-dependent dynamic structures like phagosomes, macropinosomes and pseudopods. Furthermore, both LimC and LimD interact directly with F-actin in vitro. Mutant cells that lack either LimC or LimD, or both, exhibit normal growth. They are, however, significantly impaired in growth under stress conditions and are highly sensitive to osmotic shock, suggesting that LimC and LimD contribute towards the maintenance of cortical strength. Moreover, we noted an altered morphology and F-actin distribution in LimD(-) and LimC(-)/D(-) mutants, and changes in chemotactic motility associated with an increased pseudopod formation. Our results reveal both unique and overlapping roles for LimC and LimD, and suggest that both act directly on the actin cytoskeleton and provide rigidity to the cortex.

  1. Functions of LIM proteins in cell polarity and chemotactic motility

    PubMed Central

    Khurana, Bharat; Khurana, Taruna; Khaire, Nandkumar; Noegel, Angelika A.

    2002-01-01

    LimC and LimD are two novel LIM proteins of Dictyostelium, which are comprised of double and single LIM domains, respectively. Green fluorescent protein-fused LimC and LimD proteins preferentially accumulate at areas of the cell cortex where they co-localize with actin and associate transiently with cytoskeleton-dependent dynamic structures like phagosomes, macropinosomes and pseudopods. Furthermore, both LimC and LimD interact directly with F-actin in vitro. Mutant cells that lack either LimC or LimD, or both, exhibit normal growth. They are, however, significantly impaired in growth under stress conditions and are highly sensitive to osmotic shock, suggesting that LimC and LimD contribute towards the maintenance of cortical strength. Moreover, we noted an altered morphology and F-actin distribution in LimD– and LimC–/D– mutants, and changes in chemotactic motility associated with an increased pseudopod formation. Our results reveal both unique and overlapping roles for LimC and LimD, and suggest that both act directly on the actin cytoskeleton and provide rigidity to the cortex. PMID:12374734

  2. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  3. Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism.

    PubMed

    Sisson, Joseph H; Pavlik, Jacqueline A; Wyatt, Todd A

    2009-04-01

    Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Alcohol rapidly and sequentially activates the eNOS-->NO-->GC-->cGMP-->PKG and sAC-->cAMP--> PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol

  4. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    SciTech Connect

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2007-05-04

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.

  5. Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Bresler, Yony; Wirtz, Denis; Grant, Martin

    2015-07-01

    We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.

  6. Intracellular Theileria annulata Promote Invasive Cell Motility through Kinase Regulation of the Host Actin Cytoskeleton

    PubMed Central

    Ma, Min; Baumgartner, Martin

    2014-01-01

    The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. PMID:24626571

  7. Theory of deformable substrates for cell motility studies.

    PubMed Central

    Peterson, M A

    1996-01-01

    Linear theory is used to relate the tractions F applied by a cell to the resulting deformation of fluid, viscoelastic, or solid substrates. The theory is used to fit data in which the motion of a fluid surface in the neighborhood of a motile keratocyte is visualized with the aid of embedded beads. The data are best fit by modeling the surface layer as a two-dimensional, nearly incompressible fluid. The data favor this model over another plausible model, the planar free boundary of a three-dimensional fluid. In the resulting diagrams for the distribution of F, it is found that both curl F and div F are concentrated in the lateral extrema of the lamellipodium. In a second investigation, a nonlinear theory of weak wrinkles in a solid substrate is proposed. The in-plane stress tensor plays the role of a metric. Compression wrinkles are found in regions where this metric is negative definite. Tension wrinkles arise, in linear approximation, at points on the boundary between positive definite and indefinite regions, and are conjectured to be stabilized by nonlinear effects. Data for the wrinkles that would be produced by keratocyte traction are computed, and these agree qualitatively with observed keratocyte wrinkles. Images FIGURE 7 PMID:8842205

  8. Brain-derived neurotrophic factor regulates cell motility in human colon cancer.

    PubMed

    Huang, Ssu-Ming; Lin, Chingju; Lin, Hsiao-Yun; Chiu, Chien-Ming; Fang, Chia-Wei; Liao, Kuan-Fu; Chen, Dar-Ren; Yeh, Wei-Lan

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.

  9. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  10. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    PubMed

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  11. Actin-based motility drives baculovirus transit to the nucleus and cell surface.

    PubMed

    Ohkawa, Taro; Volkman, Loy E; Welch, Matthew D

    2010-07-26

    Most viruses move intracellularly to and from their sites of replication using microtubule-based mechanisms. In this study, we show that nucleocapsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus undergo intracellular motility driven by actin polymerization. Motility requires the viral P78/83 capsid protein and the host Arp2/3 complex. Surprisingly, the virus directs two sequential and coordinated phases of actin-based motility. Immediately after cell entry, motility enables exploration of the cytoplasm and collision with the nuclear periphery, speeding nuclear entry and the initiation of viral gene expression. Nuclear entry itself requires transit through nuclear pore complexes. Later, after the onset of early gene expression, motility is required for accumulation of a subpopulation of nucleocapsids in the tips of actin-rich surface spikes. Temporal coordination of actin-based nuclear and surface translocation likely enables rapid transmission to neighboring cells during infection in insects and represents a distinctive evolutionary strategy for overcoming host defenses.

  12. Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro.

    PubMed

    Lund, Dane K; McAnulty, Patrick; Siegel, Ashley L; Cornelison, Ddw

    2017-01-01

    Motility and/or chemotaxis of satellite cells has been suggested or observed in multiple in vitro and in vivo contexts. Satellite cell motility also affects the efficiency of muscle regeneration, particularly in the context of engrafted exogenous cells. Consequently, there is keen interest in determining what cell-autonomous and environmental factors influence satellite cell motility and chemotaxis in vitro and in vivo. In addition, the ability of activated satellite cells to relocate in vivo would suggest that they must be able to invade and transit through the extracellular matrix (ECM), which is supported by studies in which alteration or addition of matrix metalloprotease (MMP) activity enhanced the spread of engrafted satellite cells. However, despite its potential importance, analysis of satellite cell motility or invasion quantitatively even in an in vitro setting can be difficult; one of the most powerful techniques for overcoming these difficulties is timelapse microscopy. Identification and longitudinal evaluation of individual cells over time permits not only quantification of variations in motility due to intrinsic or extrinsic factors, it permits observation and analysis of other (frequently unsuspected) cellular activities as well. We describe here three protocols developed in our group for quantitatively analyzing satellite cell motility over time in two dimensions on purified ECM substrates, in three dimensions on a living myofiber, and in three dimensions through an artificial matrix.

  13. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  14. Vaccinia locomotion in host cells: evidence for the universal involvement of actin-based motility sequences ABM-1 and ABM-2.

    PubMed

    Zeile, W L; Condit, R C; Lewis, J I; Purich, D L; Southwick, F S

    1998-11-10

    Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 microM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.

  15. Effects of cochlear loading on the motility of active outer hair cells

    PubMed Central

    Ó Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2013-01-01

    Outer hair cells (OHCs) power the amplification of sound-induced vibrations in the mammalian inner ear through an active process that involves hair-bundle motility and somatic motility. It is unclear, though, how either mechanism can be effective at high frequencies, especially when OHCs are mechanically loaded by other structures in the cochlea. We address this issue by developing a model of an active OHC on the basis of observations from isolated cells, then we use the model to predict the response of an active OHC in the intact cochlea. We find that active hair-bundle motility amplifies the receptor potential that drives somatic motility. Inertial loading of a hair bundle by the tectorial membrane reduces the bundle’s reactive load, allowing the OHC’s active motility to influence the motion of the cochlear partition. The system exhibits enhanced sensitivity and tuning only when it operates near a dynamical instability, a Hopf bifurcation. This analysis clarifies the roles of cochlear structures and shows how the two mechanisms of motility function synergistically to create the cochlear amplifier. The results suggest that somatic motility evolved to enhance a preexisting amplifier based on active hair-bundle motility, thus allowing mammals to hear high-frequency sounds. PMID:23509256

  16. The interplay between G protein-coupled receptor kinase 2 (GRK2) and histone deacetylase 6 (HDAC6) at the crossroads of epithelial cell motility

    PubMed Central

    Lafarga, Vanesa; Mayor, Jr, Federico; Penela, Petronila

    2012-01-01

    G protein-coupled receptor kinase 2 (GRK2) is emerging as a key integrative node in cell migration control. In addition to its canonical role in the desensitization of G protein-coupled receptors involved in chemotaxis, novel recently identified GRK2 substrates and interacting partners appear to mediate the GRK2-dependent modulation of diverse molecular processes involved in motility, such as gradient sensing, cell polarity or cytoskeletal reorganization. We have recently identified an interaction between GRK2 and histone deacetylase 6 (HDAC6), a major cytoplasmic α-tubulin deacetylase involved in cell motility and adhesion. GRK2 dynamically associates with and phosphorylates HDAC6 to stimulate its α-tubulin deacetylase activity at specific cellular localizations such as the leading edge of migrating cells, thus promoting local tubulin deacetylation and enhanced motility. This GRK2-HDAC6 functional interaction may have important implications in pathological contexts related to aberrant epithelial cell migration. PMID:23076141

  17. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T. )

    1991-09-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes.

  18. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

    PubMed

    Takebayashi, T; Iwamoto, M; Jikko, A; Matsumura, T; Enomoto-Iwamoto, M; Myoukai, F; Koyama, E; Yamaai, T; Matsumoto, K; Nakamura, T

    1995-06-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

  19. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes

    PubMed Central

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities. PMID:7775584

  20. Cell division resets polarity and motility for the bacterium Myxococcus xanthus.

    PubMed

    Harvey, Cameron W; Madukoma, Chinedu S; Mahserejian, Shant; Alber, Mark S; Shrout, Joshua D

    2014-11-01

    Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups of cells growing on solid medium by time-lapse microscopy. A total of 558 cell divisions were identified among approximately 12,000 cells. We found an interconnection of division, motility, and polarity in the bacterium Myxococcus xanthus. For every division event, motile cells stop moving to divide. Progeny cells of binary fission subsequently move in opposing directions. This behavior involves M. xanthus Frz proteins that regulate M. xanthus motility reversals but is independent of type IV pilus "S motility." The inheritance of opposing polarity is correlated with the distribution of the G protein RomR within these dividing cells. The constriction at the point of division limits the intracellular distribution of RomR. Thus, the asymmetric distribution of RomR at the parent cell poles becomes mirrored at new poles initiated at the site of division.

  1. Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells.

    PubMed

    Hofbauer, Sebastian W; Krenn, Peter W; Ganghammer, Sylvia; Asslaber, Daniela; Pichler, Ulrike; Oberascher, Karin; Henschler, Reinhard; Wallner, Michael; Kerschbaum, Hubert; Greil, Richard; Hartmann, Tanja N

    2014-04-03

    Signals from the tumor microenvironment promote the migration, survival, and proliferation of chronic lymphocytic leukemia (CLL) cells. Rho GTPases control various signaling pathways downstream of microenvironmental cues. Here, we analyze the function of Rac1 in the motility and proliferation of CLL cells. We found decreased transcription of the Rac guanine nucleotide exchange factors Tiam1 and Vav1 in unstimulated peripheral blood CLL cells with almost complete loss of Tiam1 but increased transcription of the potential Rac antagonist RhoH. Consistently, stimulation of CLL cells with the chemokine CXCL12 induced RhoA but not Rac1 activation, whereas chemokine-induced CLL cell motility was Rac1-independent. Coculture of CLL cells with activated T cells induced their activation and subsequent proliferation. Here, Tiam1 expression was induced in the malignant cells in line with increased Ki-67 and c-Myc expression. Rac1 or Tiam1 knockdown using siRNA or treatment with the Tiam1/Rac inhibitor NSC-23766 attenuated c-Myc transcription. Furthermore, treatment of CLL cells with NSC-23766 reduced their proliferation. Rac inhibition also antagonized the chemoresistance of activated CLL cells toward fludarabine. Collectively, our data suggest a dynamic regulation of Rac1 function in the CLL microenvironment. Rac inhibition could be of clinical use by selectively interfering with CLL cell proliferation and chemoresistance.

  2. Swimming motility plays a key role in the stochastic dynamics of cell clumping

    NASA Astrophysics Data System (ADS)

    Qi, Xianghong; Nellas, Ricky B.; Byrn, Matthew W.; Russell, Matthew H.; Bible, Amber N.; Alexandre, Gladys; Shen, Tongye

    2013-04-01

    Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.

  3. The shift in GH3 cell shape and cell motility is dependent on MLCK and ROCK.

    PubMed

    Ávila-Rodríguez, Dulce; Solano Agama, Carmen; González-Pozos, Sirenia; Vicente Méndez-Méndez, Juan; Ortiz Plata, Alma; Arreola-Mendoza, Laura; Mendoza-Garrido, María E

    2017-05-01

    Cytoskeletal organization, actin-myosin contractility and the cell membrane together regulate cell morphology in response to the cell environment, wherein the extracellular matrix (ECM) is an indispensable component. Plasticity in cell shape enables cells to adapt their migration mode to their surroundings. GH3 endocrine cells respond to different ECM proteins, acquiring different morphologies: a rounded on collagen I-III (C I-III) and an elongated on collagen IV (C IV). However, the identities of the molecules that participate in these responses remain unknown. Considering that actin-myosin contractility is crucial to maintaining cell shape, we analyzed the participation of MLCK and ROCK in the acquisition of cell shape, the generation of cellular tension and the cell motility mode. We found that a rounded shape with high cortical tension depends on MLCK and ROCK, whereas in cells with an elongated shape, MLCK is the primary protein responsible for cell spreading. Further, in cells with a slow and directionally persistent motility, MLCK predominates, while rapid and erratic movement is ROCK-dependent. This behavior also correlates with GTPase activation. Cells on C I-III exhibited higher Rho-GTPase activity than cells on C IV and vice versa with Rac-GTPase activity, showing a plastic response of GH3 cells to their environment, leading to the generation of different cytoskeleton and membrane organizations and resulting in two movement strategies, rounded and fibroblastoid-like. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Putrescine importer PlaP contributes to swarming motility and urothelial cell invasion in Proteus mirabilis.

    PubMed

    Kurihara, Shin; Sakai, Yumi; Suzuki, Hideyuki; Muth, Aaron; Phanstiel, Otto; Rather, Philip N

    2013-05-31

    Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.

  5. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity.

    PubMed

    Kandel, Judith; Chou, Philip; Eckmann, David M

    2015-07-01

    Current methodologies used for mitochondrial motility analysis tend to either overlook individual mitochondrial tracks or analyze only peripheral mitochondria instead of mitochondria in all regions of the cell. Furthermore, motility analysis of an individual mitochondrion is usually quantified by establishing an arbitrary threshold for "directed" motion. In this work, we created a custom, publicly available computational algorithm based on a previously published approach (Giedt et al., 2012. Ann Biomed Eng 40:1903-1916) in order to characterize the distribution of mitochondrial movements at the whole-cell level, while still preserving information about single mitochondria. Our technique is easy to use, robust, and computationally inexpensive. Images are first pre-processed for increased resolution, and then individual mitochondria are tracked based on object connectivity in space and time. When our method is applied to microscopy fields encompassing entire cells, we reveal that the mitochondrial net distances in fibroblasts follow a lognormal distribution within a given cell or group of cells. The ability to model whole-cell mitochondrial motility as a lognormal distribution provides a new quantitative paradigm for comparing mitochondrial motility in naïve and treated cells. We further demonstrate that microtubule and microfilament depolymerization shift the lognormal distribution in directions which indicate decreased and increased mitochondrial movement, respectively. These findings advance earlier work on neuronal axons (Morris and Hollenbeck, 1993. J Cell Sci 104:917-927) by relating them to a different cell type, applying them on a global scale, and automating measurement of mitochondrial motility in general.

  6. The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility

    PubMed Central

    de la Vega, Michelle; Kelvin, Alyson A.; Dunican, Dara J.; McFarlane, Cheryl; Burrows, James F.; Jaworski, Jakub; Stevenson, Nigel J.; Dib, Karim; Rappoport, Joshua Z.; Scott, Christopher J.; Long, Aideen; Johnston, James A.

    2011-01-01

    Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks chemokine-induced cell migration and cytoskeletal rearrangements. Using live cell imaging, we demonstrate that USP17 is required for both elongated and amoeboid motility, in addition to chemotaxis. USP17 has previously been reported to disrupt Ras localization and we now find that USP17 depletion blocks chemokine-induced subcellular relocalization of GTPases Cdc42, Rac and RhoA, which are GTPases essential for cell motility. Collectively, these results demonstrate that USP17 has a critical role in cell migration and may be a useful drug target for both inflammatory and metastatic disease. PMID:21448158

  7. Cell Shapes and Traction Forces Determine Stress in Motile Confluent Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Xingbo; Bi, Dapeng; Czajkowski, Michael; Manning, Lisa; Marchetti, Cristina

    Collective cell migration is a highly regulated process involved in wound healing, cancer metastasis and morphogenesis. The understanding of the regulatory mechanism requires the study of mechanical interactions among cells that coordinate their active motion. To this end, we develop a method that determines cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces. This approach allows us for the first time to calculate membrane tensions and hydrostatic pressures at a cellular level in collective migrating cell layers out of equilibrium. It helps us understand the mechanical origin of tissue stresses as previous inferred using Traction Force Microscopy (TFM). We test this approach on a new model of motile confluent tissue, which we term Self-propelled Voronoi Model (SPV) that incorporates cell elasticity, Contractility and motility. With the model, we explore the mechanical properties of confluent motile tissue as a function of cell activities and cell shapes in various geometries.

  8. Automated single-cell motility analysis on a chip using lensfree microscopy

    NASA Astrophysics Data System (ADS)

    Pushkarsky, Ivan; Lyb, Yunbo; Weaver, Westbrook; Su, Ting-Wei; Mudanyali, Onur; Ozcan, Aydogan; di Carlo, Dino

    2014-04-01

    Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm2) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility.

  9. Bidirectional Bacterial Gliding Motility Powered by the Collective Transport of Cell Surface Proteins

    NASA Astrophysics Data System (ADS)

    Wada, Hirofumi; Nakane, Daisuke; Chen, Hsuan-Yi

    2013-12-01

    The gliding motility of Flavobacterium johnsoniae is driven by moving surface adhesive proteins. Recently, these motility components were observed to travel along a closed loop on the cell surface. The mechanism by which such moving surface adhesins give rise to cell motion remains unknown. On the basis of the unique motility properties of F. johnsoniae, we present a generic model for bidirectional motion of rigidly coupled adhesins, which are propelled in opposite directions. Using analytical and numerical methods, we demonstrate that, for a sufficiently large adhesin speed, bidirectional motion arises from spontaneous symmetry breaking. The model also predicts that, close to the bifurcation point, a weak asymmetry in the binding dynamics is sufficient to facilitate directed motility, indicating that the direction of motion could be sensitively regulated internally in response to inhomogeneity of the environment.

  10. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.

    PubMed

    Zhang, Jing; Lu, Shaohua; Zhou, Ye; Meng, Kun; Chen, Zhipeng; Cui, Yizhi; Shi, Yunfeng; Wang, Tong; He, Qing-Yu

    2017-07-01

    Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Are Primo Vessels (PVs) on the Surface of Gastrointestine Involved in Regulation of Gastric Motility Induced by Stimulating Acupoints ST36 or CV12?

    PubMed Central

    Wang, Xiaoyu; Shi, Hong; Shang, Hongyan; Su, Yangshuai; Xin, Juanjuan; He, Wei; Jing, Xianghong; Zhu, Bing

    2012-01-01

    Previous studies showed primo vessels (PVs), which were referred to as Bonhan ducts (BHDs) and a part of circulatory system by Kim, located in different places of the body. The BHDs system was once considered as the anatomical basis of classical acupuncture meridian but not clearly identified by other investigators. In the present study, we tried to address the relationship between PVs and meridians through detecting the modulation of gastric motility by stimulating the PVs on the surface of stomach or intestine, as well as acupoints Zusanli (ST36) and Zhongwan (CV12). The results showed electric stimulation of the PVs had no effect on the gastric motility. While stimulating CV12 inhibited gastric motility significantly in PVs-intact and PVs-cut rats, there is no significant difference between the inhibition rate of the PVS-intact and the PVS-cut rats. Stimulating at ST36 increased gastric motility significantly in both the PVs-intact and the PVs-cut rats, yet there was no significant difference between the facilitation rate of the both groups. Taken together, the PVs on the surface of stomach or intestine did not mediate the regulation of gastric motility induced by stimulating at the acupoints ST36 or CV12. PMID:23091558

  12. Computer-assisted quantification of motile and invasive capabilities of cancer cells

    PubMed Central

    Kumar, Karthiga Santhana; Pillong, Max; Kunze, Jens; Burghardt, Isabel; Weller, Michael; Grotzer, Michael A.; Schneider, Gisbert; Baumgartner, Martin

    2015-01-01

    High-throughput analysis of cancer cell dissemination and its control by extrinsic and intrinsic cellular factors is hampered by the lack of adequate and efficient analytical tools for quantifying cell motility. Oncology research would greatly benefit from such a methodology that allows to rapidly determine the motile behaviour of cancer cells under different environmental conditions, including inside three-dimensional matrices. We combined automated microscopy imaging of two- and three-dimensional cell cultures with computational image analysis into a single assay platform for studying cell dissemination in high-throughput. We have validated this new approach for medulloblastoma, a metastatic paediatric brain tumour, in combination with the activation of growth factor signalling pathways with established pro-migratory functions. The platform enabled the detection of primary tumour and patient-derived xenograft cell sensitivity to growth factor-dependent motility and dissemination and identified tumour subgroup-specific responses to selected growth factors of excellent diagnostic value. PMID:26486848

  13. The MIG-2/integrin interaction strengthens cell-matrix adhesion and modulates cell motility.

    PubMed

    Shi, Xiaohua; Ma, Yan-Qing; Tu, Yizeng; Chen, Ka; Wu, Shan; Fukuda, Koichi; Qin, Jun; Plow, Edward F; Wu, Chuanyue

    2007-07-13

    Integrin-mediated cell-matrix adhesion plays an important role in control of cell behavior. We report here that MIG-2, a widely expressed focal adhesion protein, interacts with beta1 and beta3 integrin cytoplasmic domains. Integrin binding is mediated by a single site within the MIG-2 FERM domain. Functionally, the MIG-2/integrin interaction recruits MIG-2 to focal adhesions. Furthermore, using alphaIIbbeta3 integrin-expressing Chinese hamster ovary cells, a well described model system for integrin activation, we show that MIG-2 promotes integrin activation and enhances cell-extracellular matrix adhesion. Although MIG-2 is expressed in many cell types, it is deficient in certain colon cancer cells. Expression of MIG-2, but not of an integrin binding-defective MIG-2 mutant, in MIG-2-null colon cancer cells strengthened cell-matrix adhesion, promoted focal adhesion formation, and reduced cell motility. These results suggest that the MIG-2/integrin interaction is an important element in the cellular control of integrin-mediated cell-matrix adhesion and that loss of this interaction likely contributes to high motility of colon cancer cells.

  14. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    PubMed Central

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F.; He, Rong-Qiao

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation. PMID:27029216

  15. Daucus carota Pentane/Diethyl Ether Fraction Inhibits Motility and Reduces Invasion of Cancer Cells.

    PubMed

    Zgheib, Perla; Daher, Costantine F; Mroueh, Mohamad; Nasrallah, Anita; Taleb, Robin I; El-Sibai, Mirvat

    2014-01-01

    Daucus carota (DC) is a herb used in folklore medicine in Lebanon to treat numerous diseases including cancer. Recent studies in our laboratory on DC oil and its fractions revealed potent anticancer activities in vitro and in vivo. The present study aims to investigate the effect of the most potent DC fraction, pentane/diethyl ether (50:50), on lung, skin, breast and glioblastoma cancer cell motility and invasion. Upon treatment, a pronounced decrease in cancer cell motility was observed in the 4 cell lines. The treatment also led to a decrease in cancer cell invasion and an increased cell adhesion. Additionally, the DC fraction caused a decrease in the activation of the ρ-GTPases Rac and CDC42, a finding that may partially explain the treatment-induced decrease in cell motility. The current study demonstrates a crucial effect of the DC pentane/diethyl ether fraction on cancer cell motility and metastasis, making it a potential candidate for cancer therapy specifically targeting cancer motility and metastasis. © 2015 S. Karger AG, Basel.

  16. Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion.

    PubMed

    Moeton, Martina; Kanski, Regina; Stassen, Oscar M J A; Sluijs, Jacqueline A; Geerts, Dirk; van Tijn, Paula; Wiche, Gerhard; van Strien, Miriam E; Hol, Elly M

    2014-07-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in astrocytes and neural stem cells. The GFAP gene is alternatively spliced, and expression of GFAP is highly regulated during development, on brain damage, and in neurodegenerative diseases. GFAPα is the canonical splice variant and is expressed in all GFAP-positive cells. In the human brain, the alternatively spliced transcript GFAPδ marks specialized astrocyte populations, such as subpial astrocytes and the neurogenic astrocytes in the human subventricular zone. We here show that shifting the GFAP isoform ratio in favor of GFAPδ in astrocytoma cells, by selectively silencing the canonical isoform GFAPα with short hairpin RNAs, induced a change in integrins, a decrease in plectin, and an increase in expression of the extracellular matrix component laminin. Together, this did not affect cell proliferation but resulted in a significantly decreased motility of astrocytoma cells. In contrast, a down-regulation of all GFAP isoforms led to less cell spreading, increased integrin expression, and a >100-fold difference in the adhesion of astrocytoma cells to laminin. In summary, isoform-specific silencing of GFAP revealed distinct roles of a specialized GFAP network in regulating the interaction of astrocytoma cells with the extracellular matrix through laminin.-Moeton, M., Kanski, R., Stassen, O. M. J. A., Sluijs, J. A., Geerts, D., van Tijn, P., Wiche, G., van Strien, M. E., Hol, E. M. Silencing GFAP isoforms in astrocytoma cells disturbs laminin dependent motility and cell adhesion. © FASEB.

  17. Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation.

    PubMed

    Cameron, Jenifer M; Gabrielsen, Mads; Chim, Ya Hua; Munro, June; McGhee, Ewan J; Sumpton, David; Eaton, Philip; Anderson, Kurt I; Yin, Huabing; Olson, Michael F

    2015-06-01

    Mesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles.

  18. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  19. A novel role for BRCA1 in regulating breast cancer cell spreading and motility

    PubMed Central

    Coene, Elisabeth D.; Gadelha, Catarina; White, Nicholas; Malhas, Ashraf; Thomas, Benjamin; Shaw, Michael

    2011-01-01

    BRCA1 C-terminal (BRCT) domains in BRCA1 are essential for tumor suppressor function, though the underlying mechanisms remain unclear. We identified ezrin, radixin, and moesin as BRCA1 BRCT domain–interacting proteins. Ezrin–radixin–moesin (ERM) and F-actin colocalized with BRCA1 at the plasma membrane (PM) of cancer cells, especially at leading edges and focal adhesion sites. In stably expressing cancer cells, high levels of enhanced green fluorescent protein (EGFP)-BRCA11634–1863 acted as a dominant-negative factor, displacing endogenous BRCA1 from the PM. This led to delayed cell spreading, increased spontaneous motility, and irregular monolayer wound healing. MCF-7 cells (intact BRCA1) showed lower motility than HCC1937 cells (truncated BRCA1), but expression of EGFP-BRCA11634–1863 in MCF-7 increased motility. Conversely, full-length BRCA1 expression in HCC1937 decreased motility but only if the protein retained ubiquitin ligase activity. We conclude that full-length BRCA1 is important for complete tumor suppressor activity via interaction of its BRCT domains with ERM at the PM, controlling spreading and motility of cancer cells via ubiquitin ligase activity. PMID:21282464

  20. Phosphoinositide 3-kinase signaling is critical for ErbB3-driven breast cancer cell motility and metastasis

    PubMed Central

    Smirnova, Tatiana; Zhou, Zhen Ni; Flinn, Rory J.; Wyckoff, Jeffrey; Boimel, Pamela J.; Pozzuto, Maria; Coniglio, Salvatore J.; Backer, Jonathan M.; Bresnick, Anne R.; Condeelis, John S.; Hynes, Nancy E.; Segall, Jeffrey E.

    2011-01-01

    Many malignancies show increased expression of the EGF receptor family member ErbB3 (HER3). ErbB3 binds beta-1 (HRGβ1), and forms a heterodimer with other ErbB family members, such as ErbB2 (HER2) or EGFR (HER1), enhancing phosphorylation of specific C terminal tyrosine residues and activation of downstream signaling pathways. ErbB3 contains six YXXM motifs that bind the p85 subunit of PI3-kinase. Previous studies demonstrated that overexpression of ErbB3 in mammary tumor cells can significantly enhance chemotaxis to HRGβ1 and overall metastatic potential. We tested the hypothesis that ErbB3-mediated PI3-kinase signaling is critical for heregulin-induced motility, and therefore crucial for ErbB3-mediated invasion, intravasation and metastasis. The tyrosines in the six YXXM motifs on the ErbB3 C-terminus were replaced with phenylalanine. In contrast to overexpression of the wild-type ErbB3, overexpression of the mutant ErbB3 did not enhance chemotaxis towards HRGβ1 in vitro or in vivo. We also observed reduced tumor cell motility in the primary tumor by multiphoton microscopy, as well as a dramatically reduced ability of these cells to cross the endothelium and intravasate into the circulation. Moreover, while mutation of the ErbB3 C-terminus had no effect on tumor growth, it had a dramatic effect on spontaneous metastatic potential. Treatment with the PI3-kinase inhibitor PIK-75 similarly inhibited motility and invasion in vitro and in vivo. Our results indicate that stimulation of the early metastatic steps of motility and invasion by ErbB3 requires activation of the PI3-kinase pathway by the ErbB3 receptor. PMID:21725367

  1. Microfabricated systems and assays for studying the cytoskeletal organization, micromechanics, and motility patterns of cancerous cells

    SciTech Connect

    Huda, Sabil; Pilans, Didzis; Makurath, Monika; Hermans, Thomas M.; Kandere-Grzybowska, Kristiana; Grzybowski, Bartosz A.

    2014-08-28

    Cell motions are driven by coordinated actions of the intracellular cytoskeleton – actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this paper, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting of FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cell types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Finally, together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.

  2. Microfabricated systems and assays for studying the cytoskeletal organization, micromechanics, and motility patterns of cancerous cells

    DOE PAGES

    Huda, Sabil; Pilans, Didzis; Makurath, Monika; ...

    2014-08-28

    Cell motions are driven by coordinated actions of the intracellular cytoskeleton – actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this paper, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting ofmore » FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cell types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Finally, together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.« less

  3. Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells

    PubMed Central

    Huda, Sabil; Pilans, Didzis; Makurath, Monika; Hermans, Thomas

    2015-01-01

    Cell motions are driven by coordinated actions of the intracellular cytoskeleton – actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this review, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting of FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cells types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior. PMID:26900544

  4. Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments.

    PubMed

    Tuson, Hannah H; Copeland, Matthew F; Carey, Sonia; Sacotte, Ryan; Weibel, Douglas B

    2013-01-01

    Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming--increases in cell length and flagellum density--and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD(4)C(2), the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters.

  5. Dispersal evolution in neoplasms: The role of disregulated metabolism in the evolution of cell motility

    PubMed Central

    Aktipis, C. Athena; Maley, Carlo C.; Pepper, John W.

    2011-01-01

    Here we apply the theoretical framework of dispersal evolution to understand the emergence of invasive and metastatic cells. We investigate whether the disregulated metabolism characteristic of cancer cells may play a causal role in selection for cell motility, and thus to the tissue invasion and metastasis that define cancer. Using an agent-based computational model, we demonstrate that cells with higher metabolism evolve to have higher rates of movement and that ‘neoplastic’ cells with higher metabolism rates are able to persist in a population of ‘normal’ cells with low metabolic rates, but only if increased metabolism is accompanied by increased motility. This is true even when the cost of motility is high. These findings suggest that higher rates of cell metabolism lead to selection for motile cells in pre-malignant neoplasms, which may pre-adapt cells for subsequent invasion and metastasis. This has important implications for understanding the progression of cancer from less invasive to more invasive cell types. PMID:21930797

  6. Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    The compound 3-bromopyruvate (3BP) is an analogue of pyruvate, which is the final product of glycolysis that enters the citric acid cycle. The present study aimed to investigate the suppressive effects of 3BP on the proliferation and motility of hepatocellular carcinoma (HCC) cells. HLF and PLC/PRF/5 cells were cultured with 3BP and subjected to an MTS assay. Apoptosis was analyzed by hematoxylin and eosin staining. Cell motility was analyzed using a scratch assay. Real-time quantitative polymerase chain reaction (PCR) was performed to determine the expression levels of cyclin D1 and matrix metalloproteinase (MMP)9. Proliferation of both cell lines was significantly suppressed by 3BP at 100 µM (P<0.05). The expression level of cyclin D1 was decreased after 3BP treatment at 100 µM in both cell lines (P<0.05). Pyknotic nuclei were observed in the cells cultured with 3BP at 100 µM. These results revealed that 3BP suppressed cell proliferation, decreased the expression of cyclin D1, and induced apoptosis in HCC cells. 3BP significantly suppressed motility in both cell lines (P<0.05). The expression level of MMP9 was significantly decreased (P<0.05). 3BP suppressed the proliferation and motility of HCC cells by decreasing the expression of cyclin D1 and MMP9.

  7. Regulation of breast cancer cell motility by T-cell lymphoma invasion and metastasis-inducing protein

    PubMed Central

    2010-01-01

    Introduction T-cell lymphoma invasion and metastasis-inducing protein (Tiam1) is an Ras-related C3 botulinum toxin substrate (Rac)-specific guanine nucleotide exchange factor that was isolated based on its ability to induce a metastatic phenotype. In polarized migrating keratinocytes, Tiam1 is found at the leading edge, where it cooperates with the protease-activated receptor 1 (Par1) complex to establish front-to-rear polarity. Although a positive correlation has been observed between Tiam1 expression and tumor grade in a variety of human malignancies, including breast, its role in breast cancer cells has not yet been examined. Methods Tiam1 expression and Rac activity were examined in a panel of human breast cancer cell lines that exhibit different degrees of cell motility. The contribution of Tiam1 to cell motility was directly examined by using transwell motility and wound-healing assays. Results Although we observed a striking, positive correlation between Tiam1 expression and cell motility in the panel of breast cancer cell lines, we did not observe a correlation between Tiam1 expression and overall levels of Rac activity. Consistent with this, small interfering ribonucleic acid (siRNA)-mediated suppression of Tiam1 expression limits the motility of cell lines in which Tiam1 expression is high (MDA-MB-231 and MDA-MB-453) but does not substantially alter the overall levels of activated Rac. Tiam1 overexpression is also not sufficient to increase the motility of more poorly motile cells (T-47D) or to increase Rac activity. Immunofluorescence and cellular fractionations indicate that Tiam1 is found predominantly in the Golgi of breast cancer cells, and in the latter case, Tiam1 was shown to co-fractionate with a limited pool of Rac1. Consistent with this Golgi localization, Tiam1 supports cell motility and Golgi reorientation in response to serum in a wound-healing assay using MDA-MB-231 and MDA-MB-435S cells. Conclusions Tiam1 expression correlates with cell

  8. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells

    PubMed Central

    YANG, XIAORONG; ZHOU, WENLAI; LIU, SHIQING

    2016-01-01

    Sperm-associated antigen 9 (SPAG9) is an oncoprotein involved in the progression of various human malignancies; however, its role in osteosarcoma (OS) remains poorly evaluated. The present study used Matrigel™ cell migration and invasion assays, tube formation assay, Cell Counting kit-8, quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay to investigate the role of SPAG9 in OS cell motility, invasion and angiogenesis. The results of the present study demonstrated that SPAG9 expression was upregulated in OS tissues, as compared with adjacent normal tissues, and knockdown of SPAG9 in an OS cell line inhibited cell motility and invasion via inactivation of metalloproteinase (MMP)-2 and MMP-9. Furthermore, the present study demonstrated that silencing of SPAG9 in OS cells inhibited tube formation, the proliferation of human umbilical vascular endothelial cells, and suppressed vascular endothelial growth factor (VEGF) expression and secretion, contributing to a reduction in angiogenesis. The results of the present study indicated that SPAG9 may be an important regulator in OS and may be involved in metastasis. Therefore SPAG9 may be a promising target for the treatment of metastatic OS. PMID:26893659

  9. A new method to process testicular sperm: combining enzymatic digestion, accumulation of spermatozoa, and stimulation of motility.

    PubMed

    Wöber, Martina; Ebner, Thomas; Steiner, Sarah L; Strohmer, Heinz; Oppelt, Peter; Plas, Eugen; Obruca, Andreas

    2015-03-01

    In azoospermia processing of the TESE material often results in a sample of reduced purity. This prospective study was set up to clarify whether a combination of enzymatic digestion, density gradient centrifugation and stimulation of motility (where indicated) is a feasible option in TESE patients. A total of 63 samples (showing spermatozoa) were processed by the present tripartite processing method. The resulting sperm sample of high purity was directly used for ICSI and subsequent cryopreservation when quality of the accumulated sperm sample allowed for it (n = 39 cycles). Compared to the control group blastocyst formation rate in the present tripartite processing technique was significantly (P < 0.01) higher (55.2 vs. 43.7%). Fertilization rates differed significantly (P < 0.001) between cases in which motile sperm could be used (58.4%) compared to ICSI with immotile sperm (45.0%). Clinical pregnancy rate per transfer was 40.0% (24/60) using fresh and 21.6% (8/37) with cryopreserved TESE material. The calculated live birth rates were 31.7 and 21.6%, respectively. Thirty-five healthy children were born. A comparison with a control group suggests that the present approach using standardized ready-to-use products is efficient and reliable. Presumably healthy live births further indicate the safety of the procedure.

  10. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo

    PubMed Central

    Bénazéraf, Bertrand; Francois, Paul; Baker, Ruth E.; Denans, Nicolas; Little, Charles D.; Pourquie, Olivier

    2011-01-01

    Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) plays a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient 1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (Blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data suggest that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements. PMID:20613841

  11. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

    PubMed Central

    Melillo, Rosa Marina; Castellone, Maria Domenica; Guarino, Valentina; De Falco, Valentina; Cirafici, Anna Maria; Salvatore, Giuliana; Caiazzo, Fiorina; Basolo, Fulvio; Giannini, Riccardo; Kruhoffer, Mogens; Orntoft, Torben; Fusco, Alfredo; Santoro, Massimo

    2005-01-01

    In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade. PMID:15761501

  12. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  13. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    PubMed

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer.

  14. Metabolic activity of sperm cells: correlation with sperm cell concentration, viability and motility in the rabbit.

    PubMed

    Sabés-Alsina, Maria; Planell, Núria; Gil, Sílvia; Tallo-Parra, Oriol; Maya-Soriano, Maria José; Taberner, Ester; Piles, Miriam; Sabés, Manel; Lopez-Bejar, Manel

    2016-10-01

    The resazurin reduction test (RRT) is a useful technique to assess the metabolic rate of sperm cells. RRT depends on the ability of metabolically active cells to reduce the non-fluorescent dye resazurin to the fluorescent resorufin. The aim of this study was to develop a vital fluorometric method to evaluate metabolic activity of rabbit sperm cells. Twenty-five rabbit males were included in the study. Viability and morphology, motility and metabolic activity were evaluated using an eosin-nigrosin staining, a computer-assisted semen analysis (CASA) and the RRT, respectively. Spearman rank correlation analysis was used to determine the correlation between RRT and semen parameters. After evaluation, a concentration of 10 × 106 sperm cells/ml was selected for further experiments with RRT. No significant correlation was found between the RRT results and the motility parameters. However, after RRT a significant positive correlation between relative fluorescence units and the percentage of alive spermatozoa (r = 0.62; P = 0.001) and a negative one with the percentage of sperm cells with acrosomic abnormalities (r = -0.45; P < 0.05) were detected. The vital assessment of metabolic rate of sperm cells by RRT could provide more information about semen quality than other routine semen analysis, correlating with sperm viability and acrosome status information.

  15. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  16. Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism

    PubMed Central

    Bettiga, Arianna; Aureli, Massimo; Colciago, Giorgia; Murdica, Valentina; Moschini, Marco; Lucianò, Roberta; Canals, Daniel; Hannun, Yusuf; Hedlund, Petter; Lavorgna, Giovanni; Colombo, Renzo; Bassi, Rosaria; Samarani, Maura; Montorsi, Francesco; Salonia, Andrea; Benigni, Fabio

    2017-01-01

    The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC). CB expression on human normal and BC specimens was tested by immunohistochemistry. Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling. CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour. Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism. Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements. CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (−50 ± 3%) and sphingosine 1-phosphate (S1P, −40 ± 4%), which ended up to reduction in cell motility (−46 ± 5%) with inhibition of p-SRC. CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility. CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility. PMID:28191815

  17. The Interplay between Signaling and Metabolism in Breast Cancer Cell Motility and Metastasis

    NASA Astrophysics Data System (ADS)

    Tsarfaty, Ilan

    2013-03-01

    The initiation and growth of tumor metastases require tumor cells go through a transition between collective-to-individual cell migration. Understanding the molecular, cellular and physical mechanisms of these different migration modes is limited. We focus on the tumor cell migration induced by Hepatocyte Growth Factor / Scatter Factor (HGF/SF) - Met-signaling, a master regulator of cell motility in normal and malignant processes. Met has been implicated in tumorigenesis and metastasis and several Met targeting agents have been introduced into the clinic, and are currently in all phases of clinical trials Our analysis demonstrates that Met signaling dramatically alter the morpho-kinetic dynamics of collective migration of tumor cells. It induce a ``wave'' of increasing velocities that propagates back from the leading edge, increases cells' orientation and cooperation capabilities. In parallel Met signaling induces amoeboid cell motility that increased cell individuality. The decision making regarding the motility mode is dependent on the extent of activation of unique signal and metabolic cues. We present a combination of molecular imaging, conceptual and modeling framework for the analysis and assessment of the collective mesenchymal to epithelial versus amoeboid motility. Combined together our analysis can contribute to the understanding of metastasis and personalizing anti Met targeted therapy.

  18. Treatment of GnRHa-implanted Senegalese sole (Solea senegalensis) with 11-ketoandrostenedione stimulates spermatogenesis and increases sperm motility.

    PubMed

    Agulleiro, Maria J; Scott, Alexander P; Duncan, Neil; Mylonas, Constantinos C; Cerdà, Joan

    2007-08-01

    The effect of 11-ketoandrostenedione (OA) on plasma concentrations of sexual steroids and spermatogenesis of Senegalese sole (Solea senegalensis) implanted with gonadotropin-releasing hormone agonist (GnRHa) was investigated. Males were treated with saline (control) or with GnRHa implants (50 mug kg(-1)) in the presence or absence of OA (2 or 7 mg kg(-1)) during twenty eight days. Treatment with GnRHa alone slightly stimulated spermatogenesis and milt production with respect to controls, and this was associated with a transient elevation of plasma 11-ketotestosterone (11-KT) at day seven and an increase of 5beta-reduced metabolite(s) of 17,20beta-dihydroxy-pregn-4-en-3-one (17,20betaP) at day twenty eight. However, treatment with GnRHa+OA increased plasma concentrations of 11-KT and free+sulphated 5beta-reduced metabolites of 17,20betaP at days seven, fourteen and twenty one. After twenty eight days, the testis of GnRHa+OA-treated fish showed a lower number of spermatogonia B and spermatocytes I, and a higher number of spermatids, than fish treated with GnRHa alone. In addition, the motility of spermatozoa produced by GnRHa+OA males was enhanced by 2-fold with respect to controls or GnRHa males. These results suggest that treatment of Senegalese sole with GnRHa+OA stimulates spermatogenesis resulting in more motile sperm. Such effects could be mediated by an increased synthesis of 11-KT and/or 17,20betaP in the testis but further studies will be required to elucidate the specific mechanism involved.

  19. A quantitative evaluation of cell migration by the phagokinetic track motility assay.

    PubMed

    Nogalski, Maciej T; Chan, Gary C T; Stevenson, Emily V; Collins-McMillen, Donna K; Yurochko, Andrew D

    2012-12-04

    Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14

  20. Fascin, an Actin-bundling Protein, Induces Membrane Protrusions and Increases Cell Motility of Epithelial Cells

    PubMed Central

    Yamashiro, Shigeko; Yamakita, Yoshihiko; Ono, Shoichiro; Matsumura, Fumio

    1998-01-01

    Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery. PMID:9571235

  1. A Comparison of Computational Models for Eukaryotic Cell Shape and Motility

    PubMed Central

    Holmes, William R.; Edelstein-Keshet, Leah

    2012-01-01

    Eukaryotic cell motility involves complex interactions of signalling molecules, cytoskeleton, cell membrane, and mechanics interacting in space and time. Collectively, these components are used by the cell to interpret and respond to external stimuli, leading to polarization, protrusion, adhesion formation, and myosin-facilitated retraction. When these processes are choreographed correctly, shape change and motility results. A wealth of experimental data have identified numerous molecular constituents involved in these processes, but the complexity of their interactions and spatial organization make this a challenging problem to understand. This has motivated theoretical and computational approaches with simplified caricatures of cell structure and behaviour, each aiming to gain better understanding of certain kinds of cells and/or repertoire of behaviour. Reaction–diffusion (RD) equations as well as equations of viscoelastic flows have been used to describe the motility machinery. In this review, we describe some of the recent computational models for cell motility, concentrating on simulations of cell shape changes (mainly in two but also three dimensions). The problem is challenging not only due to the difficulty of abstracting and simplifying biological complexity but also because computing RD or fluid flow equations in deforming regions, known as a “free-boundary” problem, is an extremely challenging problem in applied mathematics. Here we describe the distinct approaches, comparing their strengths and weaknesses, and the kinds of biological questions that they have been able to address. PMID:23300403

  2. Multiple Proteins Mediate IQGAP1-Stimulated Cell Migration

    PubMed Central

    Mataraza, Jennifer M.; Zhigang, Li; Jeong, Ha-Won; Brown, Matthew D.; Sacks, David B.

    2007-01-01

    Cell migration, a highly complex physiological phenomenon that requires the co-ordinated and tightly regulated function of several proteins, is mediated by a number of signalling pathways. Elucidation of the molecular mechanisms of cell migration impacts our comprehension of numerous cell functions, ranging from development and immune surveillance to angiogenesis and metastasis. The scaffold protein IQGAP1, which binds multiple proteins and regulates their functions, promotes cell motility. Many of the IQGAP1 binding proteins have been implicated in cell migration. In this study, we employed a multifaceted strategy to identify proteins that contribute to IQGAP1-stimulated cell migration. Using specific IQGAP1 point mutant constructs, an interaction with actin was shown to be essential for IQGAP1 to increase cell migration. In contrast, eliminating the binding of Ca2+/calmodulin, but not Ca2+-free calmodulin, augmented the ability of IQGAP1 to stimulate cell migration. Consistent with these findings, selective inhibition of calmodulin function at the plasma membrane with a specific peptide inhibitor enhanced cell migration mediated by IQGAP1. Interestingly, immunofluorescence staining and confocal microscopy suggest that localization of Cdc42 at the leading edge is not necessary for maximal migration of epithelial cells. Coupled with the observations that Cdc42 and Rac1 contribute to IQGAP1-stimulated cell migration, these data suggest that IQGAP1 serves as a junction to integrate multiple signalling molecules to facilitate cell migration. PMID:17544257

  3. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity.

    PubMed

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z; Sastry, Sarita K

    2014-02-01

    Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.

  4. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    PubMed Central

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  5. SWAP-70 identifies a transitional subset of actin filaments in motile cells.

    PubMed

    Hilpelä, Pirta; Oberbanscheidt, Pia; Hahne, Penelope; Hund, Martin; Kalhammer, Georg; Small, J Victor; Bähler, Martin

    2003-08-01

    Functionally different subsets of actin filament arrays contribute to cellular organization and motility. We report the identification of a novel subset of loose actin filament arrays through regulated association with the widely expressed protein SWAP-70. These loose actin filament arrays were commonly located behind protruding lamellipodia and membrane ruffles. Visualization of these loose actin filament arrays was dependent on lamellipodial protrusion and the binding of the SWAP-70 PH-domain to a 3'-phosphoinositide. SWAP-70 with a functional pleckstrin homology-domain lacking the C-terminal 60 residues was targeted to the area of the loose actin filament arrays, but it did not associate with actin filaments. The C-terminal 60 residues were sufficient for actin filament association, but they provided no specificity for the subset of loose actin filament arrays. These results identify SWAP-70 as a phosphoinositide 3-kinase signaling-dependent marker for a distinct, hitherto unrecognized, array of actin filaments. Overexpression of SWAP-70 altered the actin organization and lamellipodial morphology. These alterations were dependent on a proper subcellular targeting of SWAP-70. We propose that SWAP-70 regulates the actin cytoskeleton as an effector or adaptor protein in response to agonist stimulated phosphatidylinositol (3,4)-bisphosphate production and cell protrusion.

  6. Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Callan-Jones, Andrew; Smutny, Michael; Morita, Hitoshi; Sako, Keisuke; Barone, Vanessa; Ritsch-Marte, Monika; Sixt, Michael; Voituriez, Raphaël; Heisenberg, Carl-Philipp

    2015-01-01

    Summary 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. PMID:25679761

  7. Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity

    PubMed Central

    Wilkinson, S.; Hou, Y.; Zoine, J. T.; Saltz, J.; Zhang, C.; Chen, Z.; Cooper, L. A. D.; Marcus, A. I.

    2017-01-01

    Cell motility requires the precise coordination of cell polarization, lamellipodia formation, adhesion, and force generation. LKB1 is a multi-functional serine/threonine kinase that associates with actin at the cellular leading edge of motile cells and suppresses FAK. We sought to understand how LKB1 coordinates these multiple events by systematically dissecting LKB1 protein domain function in combination with live cell imaging and computational approaches. We show that LKB1-actin colocalization is dependent upon LKB1 farnesylation leading to RhoA-ROCK-mediated stress fiber formation, but membrane dynamics is reliant on LKB1 kinase activity. We propose that LKB1 kinase activity controls membrane dynamics through FAK since loss of LKB1 kinase activity results in morphologically defective nascent adhesion sites. In contrast, defective farnesylation mislocalizes nascent adhesion sites, suggesting that LKB1 farnesylation serves as a targeting mechanism for properly localizing adhesion sites during cell motility. Together, we propose a model where coordination of LKB1 farnesylation and kinase activity serve as a multi-step mechanism to coordinate cell motility during migration. PMID:28102310

  8. MDM2 promotes cell motility and invasiveness through a RING-finger independent mechanism.

    PubMed

    Polański, Radosław; Warburton, Hazel E; Ray-Sinha, Arpita; Devling, Timothy; Pakula, Hubert; Rubbi, Carlos P; Vlatković, Nikolina; Boyd, Mark T

    2010-11-19

    Recent studies connect MDM2 with increased cell motility, invasion and/or metastasis proposing an MDM2-mediated ubiquitylation-dependent mechanism. Interestingly, in renal cell carcinoma (RCC) p53/MDM2 co-expression is associated with reduced survival which is independently linked with metastasis. We therefore investigated whether expression of p53 and/or MDM2 promotes aggressive cell phenotypes. Our data demonstrate that MDM2 promotes increased motility and invasiveness in RCC cells (N.B. similar results are obtained in non-RCC cells). This study shows for the first time both that endogenous MDM2 significantly contributes to cell motility and that this does not depend upon the MDM2 RING-finger, i.e. is independent of ubiquitylation (and NEDDylation). Our data suggest that protein-protein interactions provide a likely mechanistic basis for MDM2-promoted motility which may constitute future therapeutic targets. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Actin-based motility drives baculovirus transit to the nucleus and cell surface

    PubMed Central

    Ohkawa, Taro; Volkman, Loy E.

    2010-01-01

    Most viruses move intracellularly to and from their sites of replication using microtubule-based mechanisms. In this study, we show that nucleocapsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus undergo intracellular motility driven by actin polymerization. Motility requires the viral P78/83 capsid protein and the host Arp2/3 complex. Surprisingly, the virus directs two sequential and coordinated phases of actin-based motility. Immediately after cell entry, motility enables exploration of the cytoplasm and collision with the nuclear periphery, speeding nuclear entry and the initiation of viral gene expression. Nuclear entry itself requires transit through nuclear pore complexes. Later, after the onset of early gene expression, motility is required for accumulation of a subpopulation of nucleocapsids in the tips of actin-rich surface spikes. Temporal coordination of actin-based nuclear and surface translocation likely enables rapid transmission to neighboring cells during infection in insects and represents a distinctive evolutionary strategy for overcoming host defenses. PMID:20660627

  10. Effects of Hedera helix L. extracts on rat prostate cancer cell proliferation and motility

    PubMed Central

    Gumushan-Aktas, Hatice; Altun, Seyhan

    2016-01-01

    Hedera helix L., a member of Araliaceae family, has antiproliferative, cytotoxic, antimicrobial, antifungal, antiprotozoal and anti-inflammatory effects, and is used in cosmetics. The aim of the present study was to investigate the effect of treatment with extracts of leaves and unripened fruits of H. helix on rat prostate cancer cell lines with markedly different metastatic potentials: Mat-LyLu cells (strongly metastatic) and AT-2 cells (weakly metastatic). The effects of the extracts on cell kinetics and migration were determined. Tetrodotoxin was used to block the voltage-gated sodium channels (VGSCs) associated specifically with Mat-LyLu cells. Cell proliferation was detected spectrophotometrically using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. The mitotic index was determined using the Feulgen staining method. Lateral motility was quantified by wound-healing assays. The results of the present study demonstrated that cell kinetics (proliferation and mitotic activity) and motility were inhibited by ethanolic leaf extract of H. helix. The ethanolic extract of H. helix fruit suppressed Mat-LyLu cell migration, with no effect on proliferation. The opposite effects were observed in AT-2 cells; migration was not affected but proliferation was inhibited. In conclusion, the ethanolic fruit extract of H. helix may inhibit the cell migration of Mat-LyLu cells by blocking VGSCs. However, the effect of ethanolic leaf extract of H. helix treatment on the lateral motility of the cancer cells is unclear. PMID:27698887

  11. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway.

    PubMed

    Hu, Haixia; Li, Zuanfang; Zhu, Xiaoqin; Lin, Ruhui; Peng, Jun; Tao, Jing; Chen, Lidian

    2013-12-01

    Microglial activation plays an important role in neroinflammation following ischemic stroke. Activated microglial cells can then migrate to the site of injury to proliferate and release substances which induce secondary brain damage. It has been shown that microglial migration is associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathways. The Chinese formula, GuaLou GuiZhi decoction (GLGZD), has long been administered in clinical practice for the treatment of post-stroke disabilities, such as muscular spasticity. In a previous study, we demonstrated that the anti-inflammtory effects of GLGZD were mediated by the TLR4/NF-κB pathway in lipopolysaccharide (LPS)-stimulated microglial cells. Therefore, in this study, we evaluated the role of GLGZD in microglial migration by performing scratch wound assays and migration assays. We wished to elucidate the cellular and molecular mechanisms elicited by this TCM formula in microglial-induced inflammation by evaluating the release and expression of chemotactic cytokines [monocyte chemo-attractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and interleukin (IL)-8] by ELISA and quantitative PCR. Our results revealed that the migration of microglial cells was enhanced in the presence of LPS (100 ng/ml); however, GLGZD (100 µg/ml) significantly inhibited cell motility and the production of chemokines through the inhibition of the activation of the p38 and c-Jun N-terminal protein kinase (JNK) signaling pathway. We demonstrate the potential of GLGZD in the modulation of microglial motility by investigating the effects of GLGZD on microglial migration induced by LPS. Taken together, our data suggest that GLGZD per se cannot trigger microglial motility, whereas GLGZD impedes LPS-induced microglial migration through the activation of the MAPK signaling pathway. These results provide further evidence of the anti-inflammatory effects of GLGZD and its potential for use in

  12. LAP2 Is Widely Overexpressed in Diverse Digestive Tract Cancers and Regulates Motility of Cancer Cells

    PubMed Central

    Han, Myoung-Eun; Baek, Sungmin; Sim, Hey-Eun; Yoon, Sik; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jeong-Hwan; Kim, Seon-Young; Oh, Sae-Ock

    2012-01-01

    Background Lamina-associated polypeptides 2 (LAP2) is a nuclear protein that connects the nuclear lamina with chromatin. Although its critical roles in genetic disorders and hematopoietic malignancies have been described, its expression and roles in digestive tract cancers have been poorly characterized. Methods To examine the expression of LAP2 in patient tissues, we performed immunohistochemistry and real-time PCR. To examine motility of cancer cells, we employed Boyden chamber, wound healing and Matrigel invasion assays. To reveal its roles in metastasis in vivo, we used a liver metastasis xenograft model. To investigate the underlying mechanism, a cDNA microarray was conducted. Results Immunohistochemistry in patient tissues showed widespread expression of LAP2 in diverse digestive tract cancers including stomach, pancreas, liver, and bile duct cancers. Real-time PCR confirmed that LAP2β is over-expressed in gastric cancer tissues. Knockdown of LAP2β did not affect proliferation of most digestive tract cancer cells except pancreatic cancer cells. However, knockdown of LAP2β decreased motility of all tested cancer cells. Moreover, overexpression of LAP2β increased motility of gastric and pancreatic cancer cells. In the liver metastasis xenograft model, LAP2β increased metastatic efficacy of gastric cancer cells and mortality in tested mice. cDNA microarrays showed the possibility that myristoylated alanine-rich C kinase substrate (MARCKS) and interleukin6 (IL6) may mediate LAP2β-regulated motility of cancer cells. Conclusions From the above results, we conclude that LAP2 is widely overexpressed in diverse digestive tract cancers and LAP2β regulates motility of cancer cells and suggest that LAP2β may have utility for diagnostics and therapeutics in digestive tract cancers. PMID:22745766

  13. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    SciTech Connect

    Chen, Na; Sato, Daisuke; Saiki, Yuriko; Sunamura, Makoto; Fukushige, Shinichi; Horii, Akira

    2014-05-09

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.

  14. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells

    PubMed Central

    Shiraishi, Takumi; Verdone, James E.; Huang, Jessie; Kahlert, Ulf D.; Hernandez, James R.; Torga, Gonzalo; Zarif, Jelani C.; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H.; Mooney, Steven M.; An, Steven S.; Pienta, Kenneth J.

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease. PMID:25426557

  15. Increased count, motility, and total motile sperm cells collected across three consecutive ejaculations within 24 h of oocyte retrieval: implications for management of men presenting with low numbers of motile sperm for assisted reproduction.

    PubMed

    Said, Al-Hasen; Reed, Michael L

    2015-07-01

    The purpose of this study was to quantitate changes in seminal volume, sperm count, motility, qualitative forward progression, and total motile sperm cells per ejaculate, across three consecutive ejaculates collected from individuals within 24 h preceding an IVF cycle. Men presenting with oligoasthenozoospermia or asthenozoospemia attempted three ejaculates within 24 h preceding IVF. Ejaculate 1 was produced the afternoon prior to oocyte retrieval, and ejaculates 2 and 3 were produced the morning of oocyte retrieval with 2-3 h between collections. Ejaculates 1 and 2 were extended 1:1 v/v with room temperature rTYBS. Test tubes were placed into a beaker of room temperature water, then placed at 4 °C for gradual cooling. Ejaculate 3 was not extended, but pooled with ejaculates 1 and 2 and processed for intracytoplasmic sperm injection (ICSI). Out of 109 oocyte retrievals, 28 men were asked to attempt multiple consecutive ejaculations. Among this population, 25/28 (89.3 %) were successful, and 3/28 men (10.7 %) could only produce two ejaculates. Mean volumes for ejaculates 1, 2, and 3 were significantly different from each other (p < 0.01); the volume decreased for each ejaculate. Mean sperm counts, motility, qualitative forward progression, and total motile cells per ejaculate for the ejaculates1, 2, and 3 demonstrated the following: ejaculates 2 and 3 were not significantly different, but counts, motility, and total motile sperm were improved over ejaculate 1 (p < 0.01). Pooling three consecutive ejaculates within 24 h increased the numbers of available motile sperm in this population by 8-fold compared to the first ejaculate alone, facilitating avoidance of sperm cryopreservation and additional centrifugation steps that could affect sperm viability and/or function.

  16. Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates

    PubMed Central

    Sharma, Ved P.; Beaty, Brian T.; Patsialou, Antonia; Liu, Huiping; Clarke, Michael; Cox, Dianne; Condeelis, John S.; Eddy, Robert J.

    2014-01-01

    In mammary tumors, intravital imaging techniques have uncovered an essential role for macrophages during tumor cell invasion and metastasis mediated by an epidermal growth factor (EGF)/colony stimulating factor-1 (CSF-1) paracrine loop. It was previously demonstrated that mammary tumors in mice derived from rat carcinoma cells (MTLn3) exhibited high velocity migration on extracellular matrix (ECM) fibers. These cells form paracrine loop-dependent linear assemblies of alternating host macrophages and tumor cells known as “streams.” Here, we confirm by intravital imaging that similar streams form in close association with ECM fibers in a highly metastatic patient-derived orthotopic mammary tumor (TN1). To understand the in vivo cell motility behaviors observed in streams, an in vitro model of fibrillar tumor ECM utilizing adhesive 1D micropatterned substrates was developed. MTLn3 cells on 1D fibronectin or type I collagen substrates migrated with higher velocity than on 2D substrates and displayed enhanced lamellipodial protrusion and increased motility upon local interaction and pairing with bone marrow-derived macrophages (BMMs). Inhibitors of EGF or CSF-1 signaling disrupted this interaction and reduced tumor cell velocity and protrusion, validating the requirement for an intact paracrine loop. Both TN1 and MTLn3 cells in the presence of BMMs were capable of co-assembling into linear arrays of alternating tumor cells and BMMs that resembled streams in vivo, suggesting the stream assembly is cell autonomous and can be reconstituted on 1D substrates. Our results validate the use of 1D micropatterned substrates as a simple and defined approach to study fibrillar ECM-dependent cell pairing, migration and relay chemotaxis as a complementary tool to intravital imaging. PMID:24634804

  17. PTP-PEST controls motility, adherens junction assembly, and Rho GTPase activity in colon cancer cells

    PubMed Central

    Espejo, Rosario; Rengifo-Cam, William; Schaller, Michael D.; Evers, B. Mark

    2010-01-01

    An important step in carcinoma progression is loss of cell-cell adhesion leading to increased invasion and metastasis. We show here that the protein tyrosine phosphatase, PTP-PEST, is a critical regulator of cell-cell junction integrity and epithelial cell motility. Using colon carcinoma cells, we show that the expression level of PTP-PEST regulates cell motility. Either transient small interfering RNA or stable short hairpin RNA knockdown of PTP-PEST enhances haptotactic and chemotactic migration of KM12C colon carcinoma cells. Furthermore, KM12C cells with stably knocked down PTP-PEST exhibit a mesenchymal-like phenotype with prominent membrane ruffles and lamellae. In contrast, ectopic expression of PTP-PEST in KM20 or DLD-1 cells, which lack detectable endogenous PTP-PEST expression, suppresses haptotactic migration. Importantly, we find that PTP-PEST localizes in adherens junctions. Concomitant with enhanced motility, stable knockdown of PTP-PEST causes a disruption of cell-cell junctions. These effects are due to a defect in junctional assembly and not to a loss of E-cadherin expression. Adherens junction assembly is impaired following calcium switch in KM12C cells with stably knocked down PTP-PEST and is accompanied by an increase in the activity of Rac1 and a suppression of RhoA activity in response to cadherin engagement. Taken together, these results suggest that PTP-PEST functions as a suppressor of epithelial cell motility by controlling Rho GTPase activity and the assembly of adherens junctions. PMID:20519451

  18. Tyrosyl Phosphorylated Serine-Threonine Kinase PAK1 is a Novel Regulator of Prolactin-Dependent Breast Cancer Cell Motility and Invasion

    PubMed Central

    Hammer, Alan

    2015-01-01

    Despite efforts to discover the cellular pathways regulating breast cancer metastasis, little is known as to how prolactin (PRL) cooperates with extracellular environment and cytoskeletal proteins to regulate breast cancer cell motility and invasion. We implicated serine-threonine kinase p21-activated kinase 1 (PAK1) as a novel target for PRL-activated Janus-kinase 2 (JAK2). JAK2-dependent PAK1 tyrosyl phosphorylation plays a critical role in regulation of both PAK1 kinase activity and scaffolding properties of PAK1. Tyrosyl phosphorylated PAK1 facilitates PRL-dependent motility via at least two mechanisms: formation of paxillin/GIT1/βPIX/pTyr-PAK1 complexes resulting in increased adhesion turnover and phosphorylation of actin-binding protein filamin A. Increased adhesion turnover is the basis for cell migration and phosphorylated filamin A stimulates the kinase activity of PAK1 and increases actin-regulating activity to facilitate cell motility. Tyrosyl phosphorylated PAK1 also stimulates invasion of breast cancer cells in response to PRL and three-dimensional (3D) collagen IV via transcription and secretion of MMP-1 and MMP-3 in a MAPK-dependent manner. These data illustrate the complex interaction between PRL and the cell microenvironment in breast cancer cells and suggest a pivotal role for PRL/PAK1 signaling in breast cancer metastasis. PMID:25472536

  19. Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells.

    PubMed Central

    Sheng, S; Carey, J; Seftor, E A; Dias, L; Hendrix, M J; Sager, R

    1996-01-01

    Maspin, a novel serine protease inhibitor (serpin), inhibits tumor invasion and metastasis of mammary carcinoma. We show here that recombinant maspin protein blocks the motility of these carcinoma cells in culture over 12 h, as demonstrated by time-lapse video microscopy. Lamellopodia are withdrawn but ruffling continues. Both exogenous recombinant maspin and maspin expressed by tumor transfectants exhibit inhibitory effects on cell motility and cell invasion as shown in modified Boyden chamber assays. In addition, three prostatic cancer cell lines treated with recombinant maspin exhibited similar inhibition of both invasion and motility, suggesting a similar mode of maspin action in these two glandular epithelial cancers. When mammary carcinoma cells were treated with recombinant maspin, the protein was shown by immunostaining to bind specifically to the cell surface, suggesting that maspin activity is membrane associated. When pretreated with antimaspin antibody, maspin loses its inhibitory effects on both invasion and motility. However, when maspin is added to these cells preceding antibody treatment, the activity of maspin is no longer inhibited by subsequent addition of the antibody. It is concluded therefore that the inhibition of invasion and motility by maspin is initially localized to the cell surface. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 PMID:8876194

  20. Glucose Promotes a Pro-Oxidant and Pro-Inflammatory Stromal Microenvironment Which Favors Motile Properties in Breast Tumor Cells.

    PubMed

    Kallens, Violeta; Tobar, Nicolás; Molina, Jessica; Bidegain, Arantzazú; Smith, Patricio C; Porras, Omar; Martínez, Jorge

    2017-05-01

    Chronic inflammation and metabolic reprogramming have been proposed as hallmarks of cancer development. Currently, many of the functional clues between these two phenomena are studied under the integrative view of functional stroma-epithelia interaction. It has been proposed that stromal cells, due to their abundance and avidity for glucose, are able to modify the metabolic behavior of an entire solid tumor. In the present study, using a mammary stromal cell line derived from healthy tissue subjected to long-term culture in low (5 mM) or high (25 mM) glucose, we found that the hyperglycemic condition favors the establishment of a pro-inflammatory and pro-oxidant environment characterized by the induction of the COX-2/PGE2 axis. In this condition, epithelial migration was stimulated. Moreover, we also found that stromal-derived PGE2, acting as a stimulator of IL-1 epithelial expression was one of the factors that promote the acquisition of motile properties by epithelial cells and the maintenance of a COX-2/PGE2-dependent inflammatory condition. Overall, our work provides experimental evidence that glucose stimulates a tumor inflammatory environment that, as a result of a functional cross-talk between stroma and epithelia, may be responsible for tumor progression. J. Cell. Biochem. 118: 994-1002, 2017. © 2016 Wiley Periodicals, Inc.

  1. Regulation of Breast Cancer Cell Motility by Golgi-Mediated Signaling

    DTIC Science & Technology

    2011-09-01

    localized to the Golgi apparatus (Figure 4A) where it interfered with Dbs function, and limited Cdc42 activation. Next we determined whether this was...in the Golgi apparatus is required to support directed migration, but not overall cell movement, per se. Since Golgi reorientation is thought to be...Motility by Golgi -Mediated Signaling PRINCIPAL INVESTIGATOR: Ian Paul Whitehead, Ph.D

  2. Characterisation of chicken TES and its role in cell spreading and motility.

    PubMed

    Griffith, Elen; Coutts, Amanda S; Black, Donald M

    2004-03-01

    Previously we identified TES as a candidate tumour suppressor gene that is located at human chromosome 7q31.1. More recently, we and others have shown TES to encode a novel LIM domain protein that localises to focal adhesions. Here, we present the cloning and functional analysis of the chicken orthologue of TES, cTES. The TES proteins are highly conserved between chicken and human, showing 89% identity at the amino acid level. We show that the cTES protein localised at focal adhesions, actin stress fibres, and sites of cell-cell contact, and GST-cTES can pull-down zyxin and actin. To investigate a functional role for cTES, we looked at the effect of its overexpression on cell spreading and cell motility. Cells overexpressing cTES showed increased cell spreading on fibronectin, and decreased cell motility, compared to RCAS vector transfected control cells. The data from our studies with cTES support our previous findings with human TES and further implicate TES as a member of a complex of proteins that function together to regulate cell adhesion and additionally demonstrate a role for TES in cell motility. Copyright 2004 Wiley-Liss, Inc.

  3. Involvement of oncogenic K-ras on cell migration stimulated by lysophosphatidic acid receptor-2 in pancreatic cancer cells.

    PubMed

    Yoshikawa, Kyohei; Tanabe, Eriko; Shibata, Ayano; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-02-01

    Lysophosphatidic acid (LPA) mediates a variety of cellular responses with atleast six G protein-coupled transmembrane receptors (LPA receptor-1 (LPA(1)-LPA(6))). The interaction between LPA receptors and other cellular molecules on the biological function is not fully understood. Recently, we have reported that LPA(1) suppressed and LPA(3) stimulated cell migration of pancreatic cancer cells. In the present study, to evaluate the function of LPA(2) on motile and invasive activities of pancreatic cancer cells, we generated Lpar2 knockdown (HPD-sh2) cells from hamster pancreatic cancer cells and measured their cell migration ability. In cell motility and invasive assays with an uncoated Cell Culture Insert, HPD-sh2 cells showed significantly lower intrinsic activity than control (HPD-GFP) cells. Since K-ras mutations were frequently detected in pancreatic cancer, we next investigated whether oncogenic K-ras is involved in cell migration induced by LPA(2) using K-ras knockdown (HPD-K2) cells. The cell motile ability of HPD-K2 cells was significantly lower than that of control cells. To confirm LPA(2) increases cell migration activity, cells were pretreated with dioctylglycerol pyrophosphate (DGPP) which is the antagonist of LPA(1)/LPA(3). The cell motile and invasive abilities of DGPP -treated HPD-GFP cells were markedly higher than those of untreated cells, but DGPP did not stimulate cell migration of HPD-K2 cells. These results suggest that cell migration activity of pancreatic cancer cells stimulated by LPA(2) may be enhanced by oncogenic K-ras. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cell migration in schizophrenia: Patient-derived cells do not regulate motility in response to extracellular matrix.

    PubMed

    Tee, Jing Yang; Sutharsan, Ratneswary; Fan, Yongjun; Mackay-Sim, Alan

    2017-03-09

    Schizophrenia is a highly heritable psychiatric disorder linked to a large number of risk genes. The function of these genes in disease etiology is not fully understood but pathway analyses of genomic data suggest developmental dysregulation of cellular processes such as neuronal migration and axon guidance. Previous studies of patient-derived olfactory cells show them to be more motile than control-derived cells when grown on a fibronectin substrate, motility that is dependent on focal adhesion kinase signaling. The aim of this study was to investigate whether schizophrenia patient-derived cells are responsive to other extracellular matrix (ECM) proteins that bind integrin receptors. Olfactory neurosphere-derived cells from nine patients and nine matched controls were grown on ECM protein substrates at increasing concentrations and their movement was tracked for 24h using automated high-throughput imaging. Control-derived cells increased their motility as the ECM substrate concentration increased, whereas patient-derived cell motility was little affected by ECM proteins. Patient and control cells had appropriate integrin receptors for these ECM substrates and detected them as shown by increases in focal adhesion number and size in response to ECM proteins, which also induced changes in cell morphology and cytoskeleton. These observations indicate that patient cells failed to translate the detection of ECM proteins into appropriate changes in cell motility. In a sense, patient cells act like a moving car whose accelerator is jammed, moving at the same speed without regard to the external environment. This focuses attention on cell motility regulation rather than speed as key to impairment of neuronal migration in the developing brain in schizophrenia.

  5. Merkel Cell Polyomavirus Small T Antigen Mediates Microtubule Destabilization To Promote Cell Motility and Migration

    PubMed Central

    Knight, Laura M.; Stakaityte, Gabriele; Wood, Jennifer, J.; Abdul-Sada, Hussein; Griffiths, David A.; Howell, Gareth J.; Wheat, Rachel; Blair, G. Eric; Steven, Neil M.; Macdonald, Andrew; Blackbourn, David J.

    2014-01-01

    ABSTRACT Merkel cell carcinoma (MCC) is an aggressive skin cancer of neuroendocrine origin with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) causes the majority of MCC cases due to the expression of the MCPyV small and large tumor antigens (ST and LT, respectively). Although a number of molecular mechanisms have been attributed to MCPyV tumor antigen-mediated cellular transformation or replication, to date, no studies have investigated any potential link between MCPyV T antigen expression and the highly metastatic nature of MCC. Here we use a quantitative proteomic approach to show that MCPyV ST promotes differential expression of cellular proteins implicated in microtubule-associated cytoskeletal organization and dynamics. Intriguingly, we demonstrate that MCPyV ST expression promotes microtubule destabilization, leading to a motile and migratory phenotype. We further highlight the essential role of the microtubule-associated protein stathmin in MCPyV ST-mediated microtubule destabilization and cell motility and implicate the cellular phosphatase catalytic subunit protein phosphatase 4C (PP4C) in the regulation of this process. These findings suggest a possible molecular mechanism for the highly metastatic phenotype associated with MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer with a high metastatic potential. However, the molecular mechanisms leading to virally induced cancer development have yet to be fully elucidated. In particular, no studies have investigated any potential link between the virus and the highly metastatic nature of MCC. We demonstrate that the MCPyV small tumor antigen (ST) promotes the destabilization of the host cell microtubule network, which leads to a more motile and migratory cell phenotype. We further show that MCPyV ST induces this process by regulating the phosphorylation status of the cellular microtubule

  6. Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors.

    PubMed

    Schwenke, Maren; Knöfler, Martin; Velicky, Philipp; Weimar, Charlotte H E; Kruse, Michelle; Samalecos, Annemarie; Wolf, Anja; Macklon, Nick S; Bamberger, Ana-Maria; Gellersen, Birgit

    2013-01-01

    Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of

  7. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  8. Improved method for the quantification of motility in glia and other morphologically complex cells.

    PubMed

    Sild, Mari; Chatelain, Robert P; Ruthazer, Edward S

    2013-01-01

    Cells such as astrocytes and radial glia with many densely ramified, fine processes pose particular challenges for the quantification of structural motility. Here we report the development of a method to calculate a motility index for individual cells with complex, dynamic morphologies. This motility index relies on boxcar averaging of the difference images generated by subtraction of images collected at consecutive time points. An image preprocessing step involving 2D projection, edge detection, and dilation of the raw images is first applied in order to binarize the images. The boxcar averaging of difference images diminishes the impact of artifactual pixel fluctuations while accentuating the group-wise changes in pixel values which are more likely to represent real biological movement. Importantly, this provides a value that correlates with mean process elongation and retraction rates without requiring detailed reconstructions of very complex cells. We also demonstrate that additional increases in the sensitivity of the method can be obtained by denoising images using the temporal frequency power spectra, based on the fact that rapid intensity fluctuations over time are mainly due to imaging artifact. The MATLAB programs implementing these motility analysis methods, complete with user-friendly graphical interfaces, have been made publicly available for download.

  9. Role of the RNA-binding protein IMP-2 in muscle cell motility.

    PubMed

    Boudoukha, Selim; Cuvellier, Sylvain; Polesskaya, Anna

    2010-12-01

    Insulin-like growth factor 2 (IGF-2) mRNA-binding proteins (IMPs) are a family of posttranscriptional regulatory factors with well-understood roles in embryonic development and cancer but with poorly characterized functions in normal adult cells and tissues. We now show that IMP-2, the most ubiquitously expressed member of the family, is abundant in human and mouse adult skeletal myoblasts, where it is indispensable for cell motility and for stabilization of microtubules. To explore the functions of IMP-2, we analyzed the transcripts that were differentially regulated in IMP-2-depleted myoblasts and bound to IMP-2 in normal myoblasts. Among them were the mRNAs of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein. By gain- and loss-of-function assays and gel shift experiments, we show that IMP-2 regulates the expression of PINCH-2 and MURF-3 proteins via direct binding to their mRNAs. Upregulation of PINCH-2 in IMP-2-depleted myoblasts is the key event responsible for their decreased motility. Our data reveal how the posttranscriptional regulation of gene expression by IMP-2 contributes to the control of adhesion structures and stable microtubules and demonstrate an important function for IMP-2 in cellular motility.

  10. Cross-Phosphorylation and Interaction between Src/FAK and MAPKAP5/PRAK in Early Focal Adhesions Controls Cell Motility

    PubMed Central

    Dwyer, Sheila Figel; Gelman, Irwin H

    2015-01-01

    P38-regulated and activated kinase (PRAK/MAPKAPK5) is a serine/threonine kinase which lies downstream of the p38 and ERK3/4 MAP kinase pathways. PRAK plays diverse roles in the processes of cell growth, nutrient starvation response, programmed cell death, senescence and motility. PRAK has been shown to both promote and inhibit cell motility in different contexts. The pro-motility functions of PRAK are attributed mainly to cytoskeletal rearrangement occurring downstream of its phosphorylated substrate HSP27; however, it was recently shown that PRAK is required for motility in endothelial cells upstream of Focal adhesion kinase (FAK). Along with Src, FAK functions as a mediator of motility signaling through the phosphorylation of substrates in focal adhesions. Here, we show that PRAK, initially identified as a FAK substrate in an in situ/ kinase overlay assay, is a Src substrate, the phosphorylation of which directs PRAK to focal adhesions. Focal adhesion localization of PRAK was not found to affect cell motility, however transient over expression of PRAK inhibited motility in HeLa cells. This effect requires PRAK kinase activity and proceeds through an impairment of FAK activation via phosphorylation on Y861. Our studies demonstrate for the first time that PRAK is regulated by tyrosine phosphorylation, localizes to focal adhesions, and interacts physically with and can phosphorylate FAK/Src. Further we provide a novel mechanism for the inhibition of motility downstream of PRAK. PMID:26042227

  11. Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g.

    PubMed

    Gérard, Audrey; Patino-Lopez, Genaro; Beemiller, Peter; Nambiar, Rajalakshmi; Ben-Aissa, Khadija; Liu, Yin; Totah, Fadi J; Tyska, Matthew J; Shaw, Stephen; Krummel, Matthew F

    2014-07-31

    To mount an immune response, T lymphocytes must successfully search for foreign material bound to the surface of antigen-presenting cells. How T cells optimize their chances of encountering and responding to these antigens is unknown. T cell motility in tissues resembles a random or Levy walk and is regulated in part by external factors including chemokines and lymph-node topology, but motility parameters such as speed and propensity to turn may also be cell intrinsic. Here we found that the unconventional myosin 1g (Myo1g) motor generates membrane tension, enforces cell-intrinsic meandering search, and enhances T-DC interactions during lymph-node surveillance. Increased turning and meandering motility, as opposed to ballistic motility, is enhanced by Myo1g. Myo1g acts as a "turning motor" and generates a form of cellular "flânerie." Modeling and antigen challenges show that these intrinsically programmed elements of motility search are critical for the detection of rare cognate antigen-presenting cells.

  12. Oxytocin stimulates migration and invasion in human endothelial cells

    PubMed Central

    Cattaneo, M G; Chini, B; Vicentini, L M

    2007-01-01

    Background and purpose: It has recently been reported that oxytocin is produced by some tumour cell types, and that oxytocin receptors, belonging to the G-protein-coupled receptor (GPCR) family, are expressed in a variety of cell types. Among these, human umbilical vein endothelial cells (HUVECs) respond to oxytocin with an increased proliferation, suggesting a possible role for the hormone in the regulation of angiogenesis. Experimental approach: We employed chemotaxis and chemoinvasion assays to characterize the effect of oxytocin on HUVEC motility, and immunoblot analysis to study its molecular mechanisms of action. Key results: We showed that oxytocin stimulates migration and invasion in HUVECs via oxytocin receptor activation. Searching for the molecular mechanism(s) responsible for oxytocin's pro-migratory effect, we identified the Gq coupling of oxytocin receptors and phospholipase C (PLC) as the main effectors of oxytocin's action in HUVECs. We also found that oxytocin stimulates the phosphorylation of endothelial nitric oxide synthase (eNOS) via the phosphatidylinositol-3-kinase (PI-3-K)/AKT pathway, and that the activation of PI-3-K and formation of nitric oxide (NO) are required for the pro-migratory effect of oxytocin. Conclusions and implications: The ability of oxytocin to stimulate HUVEC motility and invasion suggests that the hormone can participate in physiopathological processes where activation of endothelial cells plays an important role, for example, in angiogenesis. Interestingly, both the AKT and eNOS phosphorylation induced by oxytocin receptor activation depended on PLC activity, thus suggesting the existence of a still undefined mechanism connecting PLC to the PI-3-K/AKT pathway, upon oxytocin stimulation. PMID:18059319

  13. miR-155 regulates HGAL expression and increases lymphoma cell motility

    PubMed Central

    Dagan, Liat Nadav; Jiang, Xiaoyu; Bhatt, Shruti; Cubedo, Elena; Rajewsky, Klaus

    2012-01-01

    HGAL, a prognostic biomarker in patients with diffuse large B-cell lymphoma and classic Hodgkin lymphoma, inhibits lymphocyte and lymphoma cell motility by activating the RhoA signaling cascade and interacting with actin and myosin proteins. Although HGAL expression is limited to germinal center (GC) lymphocytes and GC-derived lymphomas, little is known about its regulation. miR-155 is implicated in control of GC reaction and lymphomagenesis. We demonstrate that miR-155 directly down-regulates HGAL expression by binding to its 3′-untranslated region, leading to decreased RhoA activation and increased spontaneous and chemoattractant-induced lymphoma cell motility. The effects of miR-155 on RhoA activation and cell motility can be rescued by transfection of HGAL lacking the miR-155 binding site. This inhibitory effect of miR-155 suggests that it may have a key role in the loss of HGAL expression on differentiation of human GC B cells to plasma cell. Furthermore, this effect may contribute to lymphoma cell dissemination and aggressiveness, characteristic of activated B cell–like diffuse large B-cell lymphoma typically expressing high levels of miR-155 and lacking HGAL expression. PMID:22096245

  14. Knockdown of Golgi phosphoprotein 2 inhibits hepatocellular carcinoma cell proliferation and motility

    PubMed Central

    Liu, Yiming; Zhang, Xiaodi; Sun, Ting; Jiang, Junchang; Li, Ying; Chen, Mingliang; Wei, Zhen; Jiang, Weiqin; Zhou, Linfu

    2016-01-01

    Golgi phosphoprotein 2 (GP73) is highly expressed in hepatocellular carcinoma (HCC) cells, where it serves as a biomarker and indicator of disease progression. We used MTS assays, anchorage-independent cell colony formation assays and a xenograft tumor model to show that GP73-specific siRNAs inhibit HCC proliferation in HepG2, SMMC-7721, and Huh7 cell lines and in vivo. Following GP73 silencing, levels of p-Rb, a factor related to metastasis, were reduced, but cell cycle progression was unaffected. Our results suggest that GP73 silencing may not directly suppress proliferation, but may instead inhibit cell motility. Results from proliferation assays suggest GP73 reduces expression of epithelial mesenchymal transition (EMT)-related factors and promotes cell motility, while transwell migration and invasion assays indicated a possible role in metastasis. Immunofluorescence co-localization microscopy and immunoblotting showed that GP73 decreases expression of N-cadherin and E-cadherin, two key factors in EMT, which may in turn decrease intracellular adhesive forces and promote cell motility. This study confirmed that GP73 expression leads to increased expression of EMT-related proteins and that GP73 silencing reduces HCC cell migration in vitro. These findings suggest that GP73 silencing through siRNA delivery may provide a novel low-toxicity therapy for the inhibition of tumor proliferation and metastasis. PMID:26870893

  15. GAR22β regulates cell migration, sperm motility, and axoneme structure

    PubMed Central

    Gamper, Ivonne; Fleck, David; Barlin, Meltem; Spehr, Marc; Sayad, Sara El; Kleine, Henning; Maxeiner, Sebastian; Schalla, Carmen; Aydin, Gülcan; Hoss, Mareike; Litchfield, David W.; Lüscher, Bernhard; Zenke, Martin; Sechi, Antonio

    2016-01-01

    Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β−/− Sertoli cells moved faster than wild-type cells. In addition, GAR22β−/− cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β−/− cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes. PMID:26564797

  16. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    PubMed Central

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  17. Oriented cell motility and division underlie early limb bud morphogenesis.

    PubMed

    Wyngaarden, Laurie A; Vogeli, Kevin M; Ciruna, Brian G; Wells, Mathew; Hadjantonakis, Anna-Katerina; Hopyan, Sevan

    2010-08-01

    The vertebrate limb bud arises from lateral plate mesoderm and its overlying ectoderm. Despite progress regarding the genetic requirements for limb development, morphogenetic mechanisms that generate early outgrowth remain relatively undefined. We show by live imaging and lineage tracing in different vertebrate models that the lateral plate contributes mesoderm to the early limb bud through directional cell movement. The direction of cell motion, longitudinal cell axes and bias in cell division planes lie largely parallel to one another along the rostrocaudal (head-tail) axis in lateral plate mesoderm. Transition of these parameters from a rostrocaudal to a mediolateral (outward from the body wall) orientation accompanies early limb bud outgrowth. Furthermore, we provide evidence that Wnt5a acts as a chemoattractant in the emerging limb bud where it contributes to the establishment of cell polarity that is likely to underlie the oriented cell behaviours.

  18. Vimentin as a Marker of Early Differentiating, Highly Motile Corneal Epithelial Cells.

    PubMed

    Castro-Muñozledo, Federico; Meza-Aguilar, Diana G; Domínguez-Castillo, Rocío; Hernández-Zequinely, Veremundo; Sánchez-Guzmán, Erika

    2017-04-01

    Vimentin (Vim), a cytoskeletal intermediate filament, is part of a naturally occurring reversible program, the Epithelial-Mesenchymal Transition (EMT), which converts epithelial cells into mesenchymal-like derivatives. Based on previous results showing that epithelial cells co-express Vim and keratin (Krt) as part of a cytoskeletal network which confers them a highly motile phenotype, we explored the role of Vim in rabbit corneal epithelial cells or RCE1(5T5) cells, an established model of corneal epithelial differentiation. Vim and keratin filaments were co-expressed in cells localized at the proliferative/migratory rim of the growing colonies, but not in basal cells from the center of the colonies nor at suprabasal cell layers. Flow cytometry and qPCR demonstrated that there was a decrease in Krt(+) /Vim(+) cell number and ΔNp63α expression when cells reached confluence and formed a 4-5 layered epithelium, while there was a concomitant increase of both Pax-6 expression and Krt(+) /Vim(-) cells. Inhibition of cell proliferation with mitomycin C did not modify cell motility nor the expression of Vim. We studied the distribution and expression of α6 integrin, a protein also involved in cell migration. The results demonstrated that α6 integrin had a distribution which was, in part, co-linear with Vim at the proliferative/migratory rim of cell colonies, suggesting an indirect interaction between these proteins. Immunoprecipitation and immunostaining assays indicated that plectin might be mediating such interaction. These data suggest that Vim expression in corneal epithelium is found in a cell population composed of highly motile cells with a Vim(+) /Krt(+) /ΔNp63α(+) /Pax-6(low) /α6 integrin(+) phenotype. J. Cell. Physiol. 232: 818-830, 2017. © 2016 Wiley Periodicals, Inc.

  19. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility.

    PubMed

    Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña; Francois, Joshua; del Álamo, Juan C; Firtel, Richard A; Lasheras, Juan C

    2014-03-17

    Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell's mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior-posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA(-) and abp120(-) cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.

  20. Cell motility and drug gradients in the emergence of resistance to chemotherapy

    PubMed Central

    Wu, Amy; Loutherback, Kevin; Lambert, Guillaume; Estévez-Salmerón, Luis; Tlsty, Thea D.; Austin, Robert H.; Sturm, James C.

    2013-01-01

    The emergence of resistance to chemotherapy by cancer cells, when combined with metastasis, is the primary driver of mortality in cancer and has proven to be refractory to many efforts. Theory and computer modeling suggest that the rate of emergence of resistance is driven by the strong selective pressure of mutagenic chemotherapy and enhanced by the motility of mutant cells in a chemotherapy gradient to areas of higher drug concentration and lower population competition. To test these models, we constructed a synthetic microecology which superposed a mutagenic doxorubicin gradient across a population of motile, metastatic breast cancer cells (MDA-MB-231). We observed the emergence of MDA-MB-231 cancer cells capable of proliferation at 200 nM doxorubicin in this complex microecology. Individual cell tracking showed both movement of the MDA-MB-231 cancer cells toward higher drug concentrations and proliferation of the cells at the highest doxorubicin concentrations within 72 h, showing the importance of both motility and drug gradients in the emergence of resistance. PMID:24046372

  1. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2016-07-09

    Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.

  2. Automated single-cell motility analysis on a chip using lensfree microscopy.

    PubMed

    Pushkarsky, Ivan; Liu, Yunbo; Lyb, Yunbo; Weaver, Westbrook; Su, Ting-Wei; Mudanyali, Onur; Ozcan, Aydogan; Di Carlo, Dino

    2014-04-17

    Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm(2)) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility.

  3. Automated single-cell motility analysis on a chip using lensfree microscopy

    PubMed Central

    Pushkarsky, Ivan; Lyb, Yunbo; Weaver, Westbrook; Su, Ting-Wei; Mudanyali, Onur; Ozcan, Aydogan; Di Carlo, Dino

    2014-01-01

    Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm2) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility. PMID:24739819

  4. p85 beta-PIX is required for cell motility through phosphorylations of focal adhesion kinase and p38 MAP kinase.

    PubMed

    Lee, Jangsoon; Jung, In Duk; Chang, Won Keun; Park, Chang Gyo; Cho, Do Yeun; Shin, Eun-Young; Seo, Dong Wan; Kim, Yong Kee; Lee, Hyang Woo; Han, Jeung-Whan; Lee, Hoi Young

    2005-07-15

    Lysophosphatidic acid (LPA) mediates diverse biological responses, including cell migration, through the activation of G-protein-coupled receptors. Recently, we have shown that LPA stimulates p21-activated kinase (PAK) that is critical for focal adhesion kinase (FAK) phosphorylation and cell motility. Here, we provide the direct evidence that p85 beta-PIX is required for cell motility of NIH-3T3 cells by LPA through FAK and p38 MAP kinase phosphorylations. LPA induced p85 beta-PIX binding to FAK in NIH-3T3 cells that was inhibited by pretreatment of the cells with phosphoinositide 3-kinase inhibitor, LY294002. Furthermore, the similar inhibition of the complex formation was also observed, when the cells were transfected with either p85 beta-PIX mutant that cannot bind GIT or dominant negative mutants of Rac1 (N17Rac1) and PAK (PAK-PID). Transfection of the cells with specific p85 beta-PIX siRNA led to drastic inhibition of LPA-induced FAK phosphorylation, peripheral redistribution of p85 beta-PIX with FAK and GIT1, and cell motility. p85 beta-PIX was also required for p38 MAP kinase phosphorylation induced by LPA. Finally, dominant negative mutant of Rho (N19Rho)-transfected cells did not affect PAK activation, while the cells stably transfected with p85 beta-PIX siRNA or N17Rac1 showed the reduction of LPA-induced PAK activation. Taken together, the present data suggest that p85 beta-PIX, located downstream of Rac1, is a key regulator for the activations of FAK or p38 MAP kinase and plays a pivotal role in focal complex formation and cell motility induced by LPA.

  5. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    PubMed

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 (FN1), lysyl oxidase-like 2 (LOXL2), and urokinase plasminogen activator receptor (uPAR). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A. Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  6. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells

    PubMed Central

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-01-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 (FN1), lysyl oxidase-like 2 (LOXL2), and urokinase plasminogen activator receptor (uPAR). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A. Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway. PMID:28257048

  7. Morphed and moving: TNFα-driven motility promotes cell dissemination through MAP4K4-induced cytoskeleton remodeling

    PubMed Central

    Ma, Min; Baumgartner, Martin

    2014-01-01

    Cell dissemination from an initial site of growth is a highly coordinated and controlled process that depends on cell motility. The mechanistic principles that orchestrate cell motility, namely cell shape control, traction and force generation, are highly conserved between cells of different origins. Correspondingly, the molecular mechanisms that regulate these critical aspects of migrating cells are likely functionally conserved too. Thus, cell motility deregulation of unrelated pathogenesis could be caused and maintained by similar mechanistic principles. One such motility deregulation disorder is the leukoproliferative cattle disease Tropical Theileriosis, which is caused by the intracellular, protozoan parasite Theileria annulata. T. annulata transforms its host cell and promotes the dissemination of parasite-infected cells throughout the body of the host. An analogous condition with a fundamentally different pathogenesis is metastatic cancer, where oncogenically transformed cells disseminate from the primary tumor to form distant metastases. Common to both diseases is the dissemination of motile cells from the original site. However, unlike metastatic cancer, host cell transformation by Theileria parasites can be reverted by drug treatment and cell signaling be analyzed under transformed and non-transformed conditions. We have used this reversible transformation model and investigated parasite control of host cell motile properties in the context of inflammatory signaling in Ma M. et al. [PLoS Pathog (2014) 10: e1004003]. We found that parasite infection promotes the production of the inflammatory cytokine TNFα in the host macrophage. We demonstrated that increased TNFα triggers motile and invasive properties by enhancing actin cytoskeleton remodeling and cell motility through the ser/thr kinase MAP4K4. We concluded that inflammatory conditions resulting in increased TNFα could facilitate cell dissemination by activating the actin cytoskeleton regulatory

  8. Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines.

    PubMed Central

    Russell, R. L.; Pedersen, A. N.; Kantor, J.; Geisinger, K.; Long, R.; Zbieranski, N.; Townsend, A.; Shelton, B.; Brünner, N.; Kute, T. E.

    1998-01-01

    Low expression of the antimetastatic gene nm23 has been associated with shorter overall survival in breast cancer. To better understand the mechanism(s) of action of this protein, we compared the levels of the nm23 protein in 152 breast cancer samples with other factors known to be involved in metastasis or related to prognosis. There was no significant relationship between either of the nm23 isoforms and cathepsin D (Cat-D), urokinase plasminogen activator (uPA), its inhibitor (PAI-1), steroid hormone receptors or ploidy status. A marginal inverse correlation was observed between per cent S-phase and nm23-H1 expression (r = -0.193, P = 0.047) and a positive correlation was observed between uPA receptor (uPAR) and both nm23-H1 (r = 0.263, P = 0.0018) and nm23-H2 (r = 0.230, P = 0.0064). The nm23-H1 gene was transfected into MDA-MB-231 human breast cancer cells and 12 clones were selected, of which two were characterized extensively. We found no significant differences in Cat-D, uPA, PAI-1 or uPAR, as a function of nm23 expression in either the MDA-MB-231 cells or the transfected clones. Compared with the parent cell line, we did observe a dose-dependent decrease in growth factor-stimulated motility and a decrease in metastatic potential in two clones with four- and eightfold elevated nm23-H1 expression, whereas the proliferative activities were similar. We conclude that the decreased metastatic potential might be related to down-regulation of growth factor-stimulated motility. PMID:9743288

  9. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility

    PubMed Central

    Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña; Francois, Joshua; del Álamo, Juan C.; Lasheras, Juan C.

    2014-01-01

    Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell’s mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior–posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA− and abp120− cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells. PMID:24637328

  10. Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells.

    PubMed

    Xu, Jimin; Chen, Cheng; Jiang, Xuemei; Xu, Rong; Tambe, Dhananjay; Zhang, Xiaojuan; Liu, Lina; Lan, Bo; Cai, Kaiyong; Deng, Linhong

    2011-12-02

    Geometric features such as size and shape of the microenvironment are known to alter cell behaviors such as growth, differentiation, apoptosis, and migration. Little is known, however, about the effect of curvature on cell behaviors despite that many cells reside in curved space of tubular organs such as the bronchial airways. To address this question, we fabricated micropatterned strips that mimic airway walls with varying curvature. Then, we cultured airway smooth muscle cells (ASMCs) on these strips and investigated the cells' motility and mechanical properties using time-lapse imaging microscopy and optical magnetic twisting cytometry (OMTC). We found that both motility and mechanical properties of the ASMCs were influenced by the curvature. In particular, when the curvature increased from 0 to 1/150 μm(-1), the velocity of cell migration first decreased (0-1/750 μm(-1)), and then increased (1/750-1/150 μm(-1)). In contrast, the cell stiffness increased and then decreased. Thus, at the intermediate curvature (1/750 μm(-1)) the ASMCs were the least motile, but most stiff. The contractility instead decreased consistently as the curvature increased. The level of F-actin, and vinculin expression within the ASMCs appeared to correlate with the contractility and motility, respectively, in relation to the curvature. These results may provide valuable insights to understanding the heterogeneity of airway constrictions in asthma as well as the developing and functioning of other tubular organs and tissue engineering. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Complex patterns formed by motile cells of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Budrene, Elena O.; Berg, Howard C.

    1991-02-01

    WHEN chemotactic strains of the bacterium Escherichia coli are inoculated on semi-solid agar containing mixtures of amino acids or sugars, the cells swarm outwards in a series of concentric rings: they respond to spatial gradients of attractants generated by uptake and catabolism1-3. Cells also drift up gradients generated artificially, for example by diffusion from the tip of a capillary tube4 or by mixing5. Here we describe conditions under which cells aggregate in response to gradients of attractant which they excrete themselves. When cells are grown in semi-solid agar on intermediates of the tricarboxylic acid cycle, they form symmetrical arrays of spots or stripes that arise sequentially. When cells in a thin layer of liquid culture are exposed to these compounds, spots appear synchronously, more randomly arrayed. In either case, the patterns are stationary. The attractant is a chemical sensed by the aspartate receptor. Its excretion can be triggered by oxidative stress. As oxygen is limiting at high cell densities, aggregation might serve as a mechanism for collective defence.

  12. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility.

    PubMed

    Szulcek, Robert; Bogaard, Harm Jan; van Nieuw Amerongen, Geerten P

    2014-03-28

    Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.

  13. Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility

    PubMed Central

    Szulcek, Robert; Bogaard, Harm Jan; van Nieuw Amerongen, Geerten P.

    2014-01-01

    Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells. PMID:24747269

  14. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning.

    PubMed

    Gaylo, Alison; Schrock, Dillon C; Fernandes, Ninoshka R J; Fowell, Deborah J

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.

  15. Cell motility: an interplay between local and non-local measurement.

    PubMed

    Matsuno, K

    1989-01-01

    The bending motions of an ATP-activated actin filament and a flagellar axoneme of starfish spermatozoon exhibit a one-to-many correspondence between the displacement of the medium and the force actualized in the medium, demonstrating sharp contrast to the one-to-one correspondence in classical mechanics. Uniqueness of the actualized forces is lacking. Cell motility suggests the absence of a completely specifiable boundary condition that would unambiguously control the dynamics of generating mechanical forces in motile cells. The one-to-many relationship between the displacement of the medium and the force actualized in the medium necessitates a materialistic capacity for making choices on the part of molecules and cells in transforming future possibilities into actualized reality, the latter of which again serves as the source of the further future possibilities.

  16. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells

    PubMed Central

    Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.

    2016-01-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  17. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression

    PubMed Central

    Hwang, Chang-Il; Matoso, Andres; Corney, David C.; Flesken-Nikitin, Andrea; Körner, Stefanie; Wang, Wei; Boccaccio, Carla; Thorgeirsson, Snorri S.; Comoglio, Paolo M.; Hermeking, Heiko; Nikitin, Alexander Yu.

    2011-01-01

    Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network. PMID:21831840

  18. miR-17 regulates melanoma cell motility by inhibiting the translation of ETV1.

    PubMed

    Cohen, Ronit; Greenberg, Eyal; Nemlich, Yael; Schachter, Jacob; Markel, Gal

    2015-08-07

    Melanoma is an aggressive malignancy with a high metastatic potential. microRNA-17 (miR-17) is a member of the oncogenic miR-17/92 cluster. Here we study the effect of miR-17 on melanoma cell motility. Over expression of the mature or pri-microRNA form of miR-17 in WM-266-4 and 624mel melanoma lines enhances cell motility, evident in both wound healing and transwell migration assays. TargetScan algorithm predicts the PEA3-subfamily member ETV1 as a direct target of miR-17. Indeed, a 3-4-fold decrease of ETV1 protein levels are observed following miR-17 transfection into the various melanoma lines, with no significant change in ETV1 mRNA expression. Dual luciferase experiments demonstrate direct binding of miR-17 to the 3'-untranslated region of ETV1, confirmed by abolishing point mutations in the putative binding site. These combined results suggest regulation of ETV1 by miR-17 by a direct translational repression. Further, in both melanoma cell lines ETV1 knockdown by selective siRNA successfully pheno-copies the facilitated cell migration, while overexpression of ETV1 inhibits cell motility and migration. Altered ETV1 expression does not affect melanoma net-proliferation. In conclusion, we show a new role for miR-17 in melanoma, facilitating cell motility, by targeting the translation of ETV1 protein, which may support the development of metastasis.

  19. Mechanochemical symmetric breaking in cell motility of slime mold

    NASA Astrophysics Data System (ADS)

    Guy, Robert; Zhang, Shun; Del Alamo, Juan Carlos

    2016-11-01

    The cytoplasm of the true slime mold Physarum polycephalum exhibits regular rhythmic periodic shuttle streaming though the cell in the direction of motion. The fluid motion is driven by the periodic contraction of an actin-myosin gel that is regulated by a calcium oscillation. When the organism is small (< 100 microns) there is no shuttle streaming, but beyond this size, regular back-and-forth streaming appears and the cell begins to migrate. In this talk we analyze a mechanochemical model of the cell which includes the intracellular fluid, the active contractile cytoskeleton, the adhesion to the substrate, and the dynamics of a chemical oscillator. We use this analysis along with experimental data to identify the instability related to the onset of streaming in order to bring insight into how contraction, flow, and adhesion are coordinated during locomotion.

  20. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.

    PubMed

    Williams, Norman E; Tsao, Che-Chia; Bowen, Josephine; Hehman, Gery L; Williams, Ruth J; Frankel, Joseph

    2006-03-01

    A previously identified Tetrahymena thermophila actin gene (C. G. Cupples and R. E. Pearlman, Proc. Natl. Acad. Sci. USA 83:5160-5164, 1986), here called ACT1, was disrupted by insertion of a neo3 cassette. Cells in which all expressed copies of this gene were disrupted exhibited intermittent and extremely slow motility and severely curtailed phagocytic uptake. Transformation of these cells with inducible genetic constructs that contained a normal ACT1 gene restored motility. Use of an epitope-tagged construct permitted visualization of Act1p in the isolated axonemes of these rescued cells. In ACT1Delta mutant cells, ultrastructural abnormalities of outer doublet microtubules were present in some of the axonemes. Nonetheless, these cells were still able to assemble cilia after deciliation. The nearly paralyzed ACT1Delta cells completed cleavage furrowing normally, but the presumptive daughter cells often failed to separate from one another and later became reintegrated. Clonal analysis revealed that the cell cycle length of the ACT1Delta cells was approximately double that of wild-type controls. Clones could nonetheless be maintained for up to 15 successive fissions, suggesting that the ACT1 gene is not essential for cell viability or growth. Examination of the cell cortex with monoclonal antibodies revealed that whereas elongation of ciliary rows and formation of oral structures were normal, the ciliary rows of reintegrated daughter cells became laterally displaced and sometimes rejoined indiscriminately across the former division furrow. We conclude that Act1p is required in Tetrahymena thermophila primarily for normal ciliary motility and for phagocytosis and secondarily for the final separation of daughter cells.

  1. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning

    PubMed Central

    Gaylo, Alison; Schrock, Dillon C.; Fernandes, Ninoshka R. J.; Fowell, Deborah J.

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell’s antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function. PMID:27790220

  2. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro.

    PubMed

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2014-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression.

  3. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro

    PubMed Central

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2015-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression. PMID:26273699

  4. Annexin A6 - a multifunctional scaffold in cell motility.

    PubMed

    Grewal, Thomas; Hoque, Monira; Conway, James R W; Reverter, Meritxell; Wahba, Mohamed; Beevi, Syed S; Timpson, Paul; Enrich, Carlos; Rentero, Carles

    2017-01-06

    Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca(2+)) -dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behaviour in health and disease.

  5. Annexin A6-A multifunctional scaffold in cell motility.

    PubMed

    Grewal, Thomas; Hoque, Monira; Conway, James R W; Reverter, Meritxell; Wahba, Mohamed; Beevi, Syed S; Timpson, Paul; Enrich, Carlos; Rentero, Carles

    2017-01-06

    Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca(2+)) -dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.

  6. The integrin inhibitor cilengitide affects meningioma cell motility and invasion.

    PubMed

    Wilisch-Neumann, Annette; Kliese, Nadine; Pachow, Doreen; Schneider, Thomas; Warnke, Jan-Peter; Braunsdorf, Werner Ek; Böhmer, Frank-Dietmar; Hass, Peter; Pasemann, Diana; Helbing, Cornelia; Kirches, Elmar; Mawrin, Christian

    2013-10-01

    Meningiomas are frequent intracranial or spinal neoplasms, which recur frequently and can show aggressive clinical behaviour. We elucidated the impact of the integrin inhibitor cilengitide on migration, proliferation, and radiosensitization of meningioma cells. We analyzed integrin expression in tissue microarrays of human meningiomas and the antimeningioma properties of cilengitide in cell cultures, subcutaneous and intracranial nude mouse models by measuring tumor volumes and survival times. αvβ5 was the predominantly expressed integrin heterodimer in meningiomas, whereas αvβ3 was mainly detected in tumor blood vessels. Application of up to 100 μg/mL cilengitide resulted in only mildly reduced proliferation/survival of meningioma cell lines. Effects on cell survival could be enhanced by irradiation. One μg/mL cilengitide was sufficient to significantly inhibit meningioma cell migration and invasion in vitro. A daily dosage of 75 mg/kg did neither affect tumor volumes nor overall survival (P = 0.813, log-rank test), but suppressed brain invasion in a significant fraction of treated animals. A combination of 75 mg/kg cilengitide daily and irradiation (2 × 5 Gy) led to a 67% reduction of MRI-estimated tumor volumes in the intracranial model (P < 0.01), whereas the corresponding reduction reached by irradiation alone was only 55% (P < 0.05). These data show that a monotherapy with cilengitide is not likely to achieve major responses in rapidly growing malignant meningiomas, although brain invasion may be reduced because of the strong antimigratory properties of the drug. The combination with radiotherapy warrants further attention. ©2013 AACR.

  7. Expression of beta 1B integrin isoform in CHO cells results in a dominant negative effect on cell adhesion and motility.

    PubMed

    Balzac, F; Retta, S F; Albini, A; Melchiorri, A; Koteliansky, V E; Geuna, M; Silengo, L; Tarone, G

    1994-10-01

    The integrin subunit beta 1B, a beta 1 isoform with a unique sequence at the cytoplasmic domain, forms heterodimers with integrin alpha chains and binds fibronectin, but it does not localize to focal adhesion sites (Balzac, F., A. Belkin, V. Koteliansky, Y. Balabanow, F. Altruda, L. Silengo, and G. Tarone. 1993. J. Cell Biol. 121:171-178). Here we analyze the functional properties of human beta 1B by expressing it in hamster CHO cells. When stimulated by specific antibodies, beta 1B does not trigger tyrosine phosphorylation of a 125-kD cytosolic protein, an intracellular signalling pathway that is activated both by the endogenous hamster or the transfected human beta 1A. Moreover, expression of beta 1B results in reduced spreading on fibronectin and laminin, but not on vitronectin. Expression of beta 1B also results in severe reduction of cell motility in the Boyden chamber assay. Reduced cell spreading and motility could not be accounted for by preferential association of beta 1B with a given integrin alpha subunit. These data, together with our previous results, indicate that beta 1B interferes with beta 1A function when expressed in CHO cells resulting in a dominant negative effect on cell adhesion and migration.

  8. Expression of beta 1B integrin isoform in CHO cells results in a dominant negative effect on cell adhesion and motility

    PubMed Central

    1994-01-01

    The integrin subunit beta 1B, a beta 1 isoform with a unique sequence at the cytoplasmic domain, forms heterodimers with integrin alpha chains and binds fibronectin, but it does not localize to focal adhesion sites (Balzac, F., A. Belkin, V. Koteliansky, Y. Balabanow, F. Altruda, L. Silengo, and G. Tarone. 1993. J. Cell Biol. 121:171-178). Here we analyze the functional properties of human beta 1B by expressing it in hamster CHO cells. When stimulated by specific antibodies, beta 1B does not trigger tyrosine phosphorylation of a 125- kD cytosolic protein, an intracellular signalling pathway that is activated both by the endogenous hamster or the transfected human beta 1A. Moreover, expression of beta 1B results in reduced spreading on fibronectin and laminin, but not on vitronectin. Expression of beta 1B also results in severe reduction of cell motility in the Boyden chamber assay. Reduced cell spreading and motility could not be accounted for by preferential association of beta 1B with a given integrin alpha subunit. These data, together with our previous results, indicate that beta 1B interferes with beta 1A function when expressed in CHO cells resulting in a dominant negative effect on cell adhesion and migration. PMID:7523423

  9. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    NASA Technical Reports Server (NTRS)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  10. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    NASA Technical Reports Server (NTRS)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  11. Automated tracking and laser micromanipulation of motile cells

    NASA Astrophysics Data System (ADS)

    Stuhrmann, B.; Gögler, M.; Betz, T.; Ehrlicher, A.; Koch, D.; Käs, J.

    2005-03-01

    Control over neuronal growth is a prerequisite for the creation of defined in vitro neuronal networks as assays for the elucidation of interneuronal communication. Neuronal growth has been directed by focusing a near-infrared laser beam at a nerve cell's leading edge [A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Käs, Proc. Natl. Acad. Sci. U.S.A. 99, 16024 (2002)]. The setup reported by Ehrlicher et al. was limited to local laser irradiation and relied on a great deal of subjective interaction since the laser beam could only be steered manually. To overcome the drawbacks of the reported setup, we developed and here present a fully automated low-contrast edge detection software package, which responds to detected cell morphological changes by rapidly actuating laser steering devices, such as acousto-optical deflectors or moving mirrors, thus enabling experiments with minimum human interference. The resulting radiation patterns can be arbitrary functions of space, time, and cell morphology, and are calculated by experiment specific feedback routines. Data processing is repeated on the order of 1s allowing rapid reactions to morphological changes. The strengths of our program are the combination of real-time low contrast shape detection with complex feedback mechanisms, as well as easy adaptability due to a modular programming concept. In this article we demonstrate automated optical guidance; however, the software is easily adaptable to other problems requiring automated rapid responses of equipment to changes in the morphology of low contrast objects.

  12. Keratins mediate localization of hemidesmosomes and repress cell motility.

    PubMed

    Seltmann, Kristin; Roth, Wera; Kröger, Cornelia; Loschke, Fanny; Lederer, Marcell; Hüttelmaier, Stefan; Magin, Thomas M

    2013-01-01

    The keratin (K)-hemidesmosome (HD) interaction is crucial for cell-matrix adhesion and migration in several epithelia, including the epidermis. Mutations in constituent proteins cause severe blistering skin disorders by disrupting the adhesion complex. Despite extensive studies, the role of keratins in HD assembly and maintenance is only partially understood. Here we address this issue in keratinocytes in which all keratins are depleted by genome engineering. Unexpectedly, such keratinocytes maintain many characteristics of their normal counterparts. However, the absence of the entire keratin cytoskeleton leads to loss of plectin from the hemidesmosomal plaque and scattering of the HD transmembrane core along the basement membrane zone. To investigate the functional consequences, we performed migration and adhesion assays. These revealed that, in the absence of keratins, keratinocytes adhere much faster to extracellular matrix substrates and migrate approximately two times faster compared with wild-type cells. Reexpression of the single keratin pair K5 and K14 fully reversed the above phenotype. Our data uncover a role of keratins, which to our knowledge is previously unreported, in the maintenance of HDs upstream of plectin, with implications for epidermal homeostasis and pathogenesis. They support the view that the downregulation of keratins observed during epithelial-mesenchymal transition supports the migratory and invasive behavior of tumor cells.

  13. Keratins mediate localization of hemidesmosomes and repress cell motility

    PubMed Central

    Seltmann, Kristin; Roth, Wera; Loschke, Fanny; Lederer, Marcell; Hüttelmaier, Stefan; Magin, Thomas M.

    2013-01-01

    The keratin-hemidesmosome interaction is crucial for cell-matrix adhesion and migration in several epithelia including the epidermis. Mutations in constituent proteins cause severe blistering skin disorders by disrupting the adhesion complex. Despite extensive studies, the role of keratins in hemidesmosome assembly and maintenance is only partially understood. Here, we address this issue in keratinocytes in which all keratins are depleted by genome engineering. Unexpectedly, such keratinocytes maintain many characteristics of normal counterparts. The absence of the entire keratin cytoskeleton, however, leads to loss of plectin from the hemidesmosomal plaque and scattering of the hemidesmosome transmembrane core along the basement membrane zone. To investigate the functional consequences, we performed migration and adhesion assays. These revealed that in the absence of keratins, keratinocytes adhere much faster to ECM substrates and migrate ~2 times faster compared to wildtype cells. Re-expression of the single keratin pair K5 and K14 fully reversed the above phenotype. Our data uncover a novel role of keratins in the maintenance of hemidesmosomes upstream of plectin with implications for epidermal homeostasis and pathogenesis. They support the view that the downregulation of keratins observed during epithelial-mesenchymal transition supports the migratory and invasive behavior of tumor cells. PMID:22895363

  14. Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1

    PubMed Central

    Xie, Jianling; Wang, Hua; Xie, Chanlu; Lee, C.Soon; Fahey, Paul; Dong, Qihan; Xu, Hongxi

    2016-01-01

    Hepatocellular carcinoma (HCC) is an aggressive malignancy and the 5-year survival rate of advanced HCC is < 10%. Guttiferone K (GUTK) isolated from the Garcinia genus inhibited HCC cells migration and invasion in vitro and metastasis in vivo without apparent toxicity. Proteomic analysis revealed that actin-binding protein profilin 1 (PFN1) was markedly increased in the presence of GUTK. Over-expression of PFN1 mimicked the effect of GUTK on HCC cell motility and metastasis. The effect of GUTK on cell motility was diminished when PFN1 was over-expressed or silenced. Over-expression of PFN1 or incubation with GUTK decreased F-actin levels and the expression of proteins involved in actin nucleation, branching and polymerization. Moreover, a reduction of PFN1 protein levels was common in advanced human HCC and associated with poor survival rate. In conclusion, GUTK effectively suppresses the motility and metastasis of HCC cells mainly by restoration of aberrantly reduced PFN1 protein expression. PMID:27494863

  15. Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Nam, Seong-Won; Hwang, Hyundoo; Park, Sungsu; Park, Je-Kyun

    2008-10-01

    This paper describes a grayscale optoelectronic tweezers (OET) which allows adjustment of the electric field strength at each position of OET. A grayscale light image was used to pattern vertical electric field strength on an OET. As an electric field depends on the brightness at each point, the brighter light patterns generate the stronger electric field in the OET. Its feasibility for application to cell manipulation was demonstrated by aligning highly motile protozoan cells in vertical direction. Depending on the brightness of each pixel, the behaviors of aligned cells varied due to the different electric field strength to each cell.

  16. Bacterial tracking of motile algae assisted by algal cell's vorticity field.

    PubMed

    Locsei, J T; Pedley, T J

    2009-07-01

    Previously published experimental work by other authors has shown that certain motile marine bacteria are able to track free-swimming algae by executing a zigzag path and steering toward the algae at each turn. Here, we propose that the apparent steering behaviour could be a hydrodynamic effect, whereby an algal cell's vorticity and strain-rate fields rotate a pursuing bacterial cell in the appropriate direction. Using simplified models for the bacterial and algal cells, we numerically compute the trajectory of a bacterial cell and demonstrate the plausibility of this hypothesis.

  17. Tensile stress stimulates microtubule outgrowth in living cells

    NASA Technical Reports Server (NTRS)

    Kaverina, Irina; Krylyshkina, Olga; Beningo, Karen; Anderson, Kurt; Wang, Yu-Li; Small, J. Victor

    2002-01-01

    Cell motility is driven by the sum of asymmetric traction forces exerted on the substrate through adhesion foci that interface with the actin cytoskeleton. Establishment of this asymmetry involves microtubules, which exert a destabilising effect on adhesion foci via targeting events. Here, we demonstrate the existence of a mechano-sensing mechanism that signals microtubule polymerisation and guidance of the microtubules towards adhesion sites under increased stress. Stress was applied either by manipulating the body of cells moving on glass with a microneedle or by stretching a flexible substrate that cells were migrating on. We propose a model for this mechano-sensing phenomenon whereby microtubule polymerisation is stimulated and guided through the interaction of a microtubule tip complex with actin filaments under tension.

  18. Tensile stress stimulates microtubule outgrowth in living cells

    NASA Technical Reports Server (NTRS)

    Kaverina, Irina; Krylyshkina, Olga; Beningo, Karen; Anderson, Kurt; Wang, Yu-Li; Small, J. Victor

    2002-01-01

    Cell motility is driven by the sum of asymmetric traction forces exerted on the substrate through adhesion foci that interface with the actin cytoskeleton. Establishment of this asymmetry involves microtubules, which exert a destabilising effect on adhesion foci via targeting events. Here, we demonstrate the existence of a mechano-sensing mechanism that signals microtubule polymerisation and guidance of the microtubules towards adhesion sites under increased stress. Stress was applied either by manipulating the body of cells moving on glass with a microneedle or by stretching a flexible substrate that cells were migrating on. We propose a model for this mechano-sensing phenomenon whereby microtubule polymerisation is stimulated and guided through the interaction of a microtubule tip complex with actin filaments under tension.

  19. The green tea catechin epigallocatechin gallate (EGCG) blocks cell motility, chemotaxis and development in Dictyostelium discoideum.

    PubMed

    McQuade, Kyle J; Nakajima, Akihiko; Ilacqua, April N; Shimada, Nao; Sawai, Satoshi

    2013-01-01

    Catechins, flavanols found at high levels in green tea, have received significant attention due to their potential health benefits related to cancer, autoimmunity and metabolic disease, but little is known about the mechanisms by which these compounds affect cellular behavior. Here, we assess whether the model organism Dictyostelium discoideum is a useful tool with which to characterize the effects of catechins. Epigallocatechin gallate (EGCG), the most abundant and potent catechin in green tea, has significant effects on the Dictyostelium life cycle. In the presence of EGCG aggregation is delayed, cells do not stream and development is typically stalled at the loose aggregate stage. The developmental effects very likely result from defects in motility, as EGCG reduces both random movement and chemotaxis of Dictyostelium amoebae. These results suggest that catechins and their derivatives may be useful tools with which to better understand cell motility and development in Dictyostelium and that this organism is a useful model to further characterize the activities of catechins.

  20. Modelling cell motility and pathways that signal to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Edelstein-Keshet, Leah

    2007-03-01

    Gradient sensing, polarization, and motility of rapidly moving cells such as neutrophils involves the actin cytoskeleton, and regulatory modules such as membrane bound phosphoinositides (PIs), kinases/phosphatases, and proteins of the Rho family (Rho GTPases). I describe recent work in my group in which we have modeled components of these modules, their interconversions, interactions, and action in the context of protrusive cell motility. By connecting three modules, we find that Rho GTPases work as a spatial switch, and that PIs filter noise, and define the front vs. back. Relatively fast PI diffusion also leads to selection of a unique pattern of Rho distribution from a collection of possible patterns. We use the model to explore the importance of specific hypothesized interactions, to explore mutant phenotypes, and to study the role of actin polymerization in the maintenance of the PI asymmetry. Collaborators on this work include A.T. Dawes, A. Jilkine, and A.F.M. Maree.

  1. Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility

    PubMed Central

    Dufour, Sylvie; Beauvais-Jouneau, Alice; Delouvée, Annie; Thiery, Jean Paul

    1999-01-01

    Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both β-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7–mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin–mediated rather than cadherin-7–mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7–expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7–expressing cells may also be important in the control of cell motility. PMID:10427101

  2. Intraocular BDNF promotes ectopic branching, alters motility and stimulates abnormal collaterals in regenerating optic fibers.

    PubMed

    Dawson, Amy J; Miotke, Jill A; Meyer, Ronald L

    2015-07-10

    A great deal of effort has been invested in using trophic factors and other bioactive molecules to promote cell survival and axonal regeneration in the adult central nervous system. Far less attention has been paid to investigating potential effects that trophic factors may have that might interfere with recovery. In the visual system, BDNF has been previously reported to prevent regeneration. To test if BDNF is inherently incompatible with regeneration, BDNF was given intraocularly during optic nerve regeneration in the adult goldfish. In vivo imaging and anatomical analysis of selectively labeled axons were used as a sensitive assay for effects on regeneration within the tectum. BDNF had no detectable inhibitory effect on the ability of axons to regenerate. Normal numbers of axons regenerated into the tectum, exhibited dynamic growth and retractions similar to controls, and were able to navigate to their correct target zone in the tectum. However, BDNF was found to have additional effects that adversely affected the quality of regeneration. It promoted premature branching at ectopic locations, diminished the growth rate of axons through the tectum, and resulted in the formation of ectopic collaterals. Thus, although BDNF has robust effects on axonal behavior, it is, nevertheless, compatible with axonal regeneration, axon navigation and the formation of terminal arbors.

  3. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling.

    PubMed

    Wu, Jianguo; Ivanov, Andrei I; Fisher, Paul B; Fu, Zheng

    2016-03-22

    Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling.

  4. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling

    PubMed Central

    Wu, Jianguo; Ivanov, Andrei I; Fisher, Paul B; Fu, Zheng

    2016-01-01

    Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling. DOI: http://dx.doi.org/10.7554/eLife.10734.001 PMID:27003818

  5. Role of prostatic interstitial cells in prostate motility

    PubMed Central

    Lang, Richard J; Hashitani, Hikaru

    2017-01-01

    Abstract The prostate is a gland whose secretions contribute to the seminal fluids ejaculated upon activation of autonomic sympathetic nerves. In elder males, the prostate undergoes an increase in stroma mass and myogenic tone, leading to benign prostatic hyperplasia that occludes the proximal urethra and the presentation of various lower urinary tract symptoms that decrease their quality of life. This review summarises the role of prostatic interstitial cells (PICs) in the generation of the spontaneous tone in the prostate. It presents current knowledge of the role of Ca2+ plays in PIC pacemaking, as well as the mechanisms by which this spontaneous activity triggers slow wave generation and stromal contraction. PICs display a small T-type Ca2+ current (ICaT) and a large L-type Ca2+ current (ICaL). In contrast to other interstitial cells in the urinary and gastrointestinal tracts, spontaneous Ca2+ signalling in PICs is uniquely dependent on Ca2+ influx through ICaL channels. A model of prostatic pacemaking is presented describing how ICaL can be triggered by an initial membrane depolarization evoked upon the selective opening of Ca2+-activated Cl– channels by Ca2+ flowing only through ICaT channels. The resulting current flow through ICaL results in release of Ca2+ from internal stores and the summation of Cl–-selective spontaneous transient depolarizations (STDs) to form pacemaker potentials that propagate passively into the prostatic stroma to evoke regenerative action potentials and excitation-contraction coupling. PMID:28652517

  6. On an evolution equation in a cell motility model

    NASA Astrophysics Data System (ADS)

    Mizuhara, Matthew S.; Berlyand, Leonid; Rybalko, Volodymyr; Zhang, Lei

    2016-04-01

    This paper deals with the evolution equation of a curve obtained as the sharp interface limit of a non-linear system of two reaction-diffusion PDEs. This system was introduced as a phase-field model of (crawling) motion of eukaryotic cells on a substrate. The key issue is the evolution of the cell membrane (interface curve) which involves shape change and net motion. This issue can be addressed both qualitatively and quantitatively by studying the evolution equation of the sharp interface limit for this system. However, this equation is non-linear and non-local and existence of solutions presents a significant analytical challenge. We establish existence of solutions for a wide class of initial data in the so-called subcritical regime. Existence is proved in a two step procedure. First, for smooth (H2) initial data we use a regularization technique. Second, we consider non-smooth initial data that are more relevant from the application point of view. Here, uniform estimates on the time when solutions exist rely on a maximum principle type argument. We also explore the long time behavior of the model using both analytical and numerical tools. We prove the nonexistence of traveling wave solutions with nonzero velocity. Numerical experiments show that presence of non-linearity and asymmetry of the initial curve results in a net motion which distinguishes it from classical volume preserving curvature motion. This is done by developing an algorithm for efficient numerical resolution of the non-local term in the evolution equation.

  7. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  8. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    NASA Astrophysics Data System (ADS)

    Becker, Matthew W.; Collins, Samantha A.; Metge, David W.; Harvey, Ronald W.; Shapiro, Allen M.

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  9. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater.

    PubMed

    Becker, Matthew W; Collins, Samantha A; Metge, David W; Harvey, Ronald W; Shapiro, Allen M

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  10. BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

    PubMed Central

    de Jesus Perez, Vinicio A.; Ali, Ziad; Alastalo, Tero-Pekka; Ikeno, Fumiaki; Sawada, Hirofumi; Lai, Ying-Ju; Kleisli, Thomas; Spiekerkoetter, Edda; Qu, Xiumei; Rubinos, Laura H.; Ashley, Euan; Amieva, Manuel; Dedhar, Shoukat

    2011-01-01

    We present a novel cell-signaling paradigm in which bone morphogenetic protein 2 (BMP-2) consecutively and interdependently activates the wingless (Wnt)–β-catenin (βC) and Wnt–planar cell polarity (PCP) signaling pathways to facilitate vascular smooth muscle motility while simultaneously suppressing growth. We show that BMP-2, in a phospho-Akt–dependent manner, induces βC transcriptional activity to produce fibronectin, which then activates integrin-linked kinase 1 (ILK-1) via α4-integrins. ILK-1 then induces the Wnt–PCP pathway by binding a proline-rich motif in disheveled (Dvl) and consequently activating RhoA-Rac1–mediated motility. Transfection of a Dvl mutant that binds βC without activating RhoA-Rac1 not only prevents BMP-2–mediated vascular smooth muscle cell motility but promotes proliferation in association with persistent βC activity. Interfering with the Dvl-dependent Wnt–PCP activation in a murine stented aortic graft injury model promotes extensive neointima formation, as shown by optical coherence tomography and histopathology. We speculate that, in response to injury, factors that subvert BMP-2–mediated tandem activation of Wnt–βC and Wnt–PCP pathways contribute to obliterative vascular disease in both the systemic and pulmonary circulations. PMID:21220513

  11. GAR22β regulates cell migration, sperm motility, and axoneme structure.

    PubMed

    Gamper, Ivonne; Fleck, David; Barlin, Meltem; Spehr, Marc; El Sayad, Sara; Kleine, Henning; Maxeiner, Sebastian; Schalla, Carmen; Aydin, Gülcan; Hoss, Mareike; Litchfield, David W; Lüscher, Bernhard; Zenke, Martin; Sechi, Antonio

    2016-01-15

    Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β(-/-) Sertoli cells moved faster than wild-type cells. In addition, GAR22β(-/-) cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β(-/-) cells reduced cell motility and focal adhesion turnover. GAR22β-actin interaction was stronger than GAR22β-microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β-EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes. © 2016 Gamper et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Low-cost motility tracking system (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation.

    PubMed

    Lynch, Adam E; Triajianto, Junian; Routledge, Edwin

    2014-01-01

    Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6×. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8×). In preliminary cell culture experiments using our system, velocities (mean µm/min ± SE) of 0.81 ± 0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17 ± 0.004 (MDA-MB-231 breast cancer cells), 1.24 ± 0.006 (SC5 mouse Sertoli cells) and 2.21 ± 0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers.

  13. Low-Cost Motility Tracking System (LOCOMOTIS) for Time-Lapse Microscopy Applications and Cell Visualisation

    PubMed Central

    Lynch, Adam E.; Triajianto, Junian; Routledge, Edwin

    2014-01-01

    Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6×. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8×). In preliminary cell culture experiments using our system, velocities (mean µm/min ± SE) of 0.81±0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17±0.004 (MDA-MB-231 breast cancer cells), 1.24±0.006 (SC5 mouse Sertoli cells) and 2.21±0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers. PMID:25121722

  14. Oncofetal Chondroitin Sulfate Glycosaminoglycans are Key Players in Integrin Signaling and Tumor Cell Motility

    PubMed Central

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Christensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M.; Grem, Jean L.; Hollingsworth, Michael A.; Holst, Peter J.; Theander, Thor; Sorensen, Poul H.; Daugaard, Mads; Salanti, Ali

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum. We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion and anchorage-independent growth of tumor cells in vitro. Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns, revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin β1 (ITGB1) and integrin α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core CS synthesis enzymes Beta-1,3-Glucuronyltransferase 1 (B3GAT1) and Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and pre-incubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. Implications The cancer specific expression of oncofetal chondroitin sulfate aids in metastatic phenotypes and is a candidate target for therapy. PMID:27655130

  15. Implications of caveolae in testicular and epididymal myoid cells to sperm motility.

    PubMed

    Oliveira, Regiana L; Parent, Adam; Cyr, Daniel G; Gregory, Mary; Mandato, Craig A; Smith, Charles E; Hermo, Louis

    2016-06-01

    Seminiferous tubules of the testis and epididymal tubules in adult rodents are enveloped by contractile myoid cells, which move sperm and fluids along the male reproductive tract. Myoid cells in the testis influence Sertoli cells by paracrine signaling, but their role in the epididymis is unknown. Electron microscopy revealed that elongated myoid cells formed several concentric layers arranged in a loose configuration. The edges of some myoid cells in a given layer closely approximated one another, and extended small foot-like processes to cells of overlying layers. Gap junction proteins, connexins 32 and 43, were detected within the myoid cell layers by immunohistochemistry. These myoid cells also had caveolae that contained caveolin-1 and cavin-1 (also known as PTRF). The number of caveolae per unit area of plasma membrane was significantly reduced in caveolin-1-deficient mice (Cav1(-/-) ). Morphometric analyses of Cav1-null testes revealed an enlargement in whole-tubule and epithelial profile areas, whereas these parameters were slightly reduced in the epididymis. Although sperm are non-motile as they pass through the proximal epididymis, statistical analyses of cauda epididymidis sperm concentrations revealed no significant differences between wild-type and Cav1(-/-) mice. Motility analyses, however, indicated that sperm velocity parameters were reduced while beat cross frequency was higher in gametes of Cav1(-/-) mice. Thus while caveolae and their associated proteins are not necessary for myoid cell contractility, they appear to be crucial for signaling with the epididymal epithelium to regulate the proper acquisition of sperm motility. Mol. Reprod. Dev. 83: 526-540, 2016. © 2016 Wiley Periodicals, Inc.

  16. Orientation of actin filaments in teleost retinal pigment epithelial cells, and the effect of the lectin, Concanavalin A, on melanosome motility.

    PubMed

    King-Smith, Christina; Vagnozzi, Ronald J; Fischer, Nicole E; Gannon, Patrick; Gunnam, Satya

    2014-01-01

    Retinal pigment epithelial cells of teleosts contain numerous melanosomes (pigment granules) that exhibit light-dependent motility. In light, melanosomes disperse out of the retinal pigment epithelium (RPE) cell body (CB) into long apical projections that interdigitate with rod photoreceptors, thus shielding the photoreceptors from bleaching. In darkness, melanosomes aggregate through the apical projections back into the CB. Previous research has demonstrated that melanosome motility in the RPE CB requires microtubules, but in the RPE apical projections, actin filaments are necessary and sufficient for motility. We used myosin S1 labeling and platinum replica shadowing of dissociated RPE cells to determine actin filament polarity in apical projections. Actin filament bundles within RPE apical projections are uniformly oriented with barbed ends toward the distal tips. Treatment of RPE cells with the tetravalent lectin, Concanavalin A, which has been shown to suppress cortical actin flow by crosslinking of cell-surface proteins, inhibited melanosome aggregation and stimulated ectopic filopodia formation but did not block melanosome dispersion. The polarity orientation of F-actin in apical projections suggests that a barbed-end directed myosin motor could effect dispersion of melanosomes from the CB into apical projections. Inhibition of aggregation, but not dispersion, by ConA confirms that different actin-dependent mechanisms control these two processes and suggests that melanosome aggregation is sensitive to treatments previously shown to disrupt actin cortical flow.

  17. Lipopolysaccharide-induced α-catenin downregulation enhances the motility of human colorectal cancer cells in an NF-κB signaling-dependent manner

    PubMed Central

    Cheng, Guoping; Yang, Shifeng; Zhang, Gu; Xu, Yanxia; Liu, Xiaoling; Sun, Wenyong; Zhu, Liang

    2016-01-01

    α-Catenin is an important molecule involved in the maintenance of cell–cell adhesion and a prognostic marker in cancer since its expression is essential for preventing cancer metastasis. However, the mechanism that leads to the downregulation of α-catenin in cancer progression remains unclear. The present study revealed that lipopolysaccharide (LPS)-induced NF-κB signaling activation suppressed α-catenin expression and motility in SW620 colorectal cancer (CRC) cells, using real-time polymerase chain reaction, Western blotting, and transwell migration assays. LPS treatment reduced both the mRNA and protein expression of α-catenin and thereby enhanced cell motility. Conversely, incubating cells with an NF-κB inhibitor disrupted these effects. Furthermore, the ectopic expression of p65 alone mimicked the effects of LPS stimulation. In CRC tissues, the presence of enteric bacterial LPS-related neutrophil-enriched foci was correlated with α-catenin downregulation. Collectively, these findings suggest that LPS-induced NF-κB signaling is related to α-catenin suppression and enhanced cell motility in CRC. Therefore, NF-κB is a novel potential therapeutic target for CRC metastasis. PMID:28008274

  18. Reassessing the mechanics of parasite motility and host-cell invasion

    PubMed Central

    2016-01-01

    The capacity to migrate is fundamental to multicellular and single-celled life. Apicomplexan parasites, an ancient protozoan clade that includes malaria parasites (Plasmodium) and Toxoplasma, achieve remarkable speeds of directional cell movement. This rapidity is achieved via a divergent actomyosin motor system, housed within a narrow compartment that lies underneath the length of the parasite plasma membrane. How this motor functions at a mechanistic level during motility and host cell invasion is a matter of debate. Here, we integrate old and new insights toward refining the current model for the function of this motor with the aim of revitalizing interest in the mechanics of how these deadly pathogens move. PMID:27573462

  19. Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide

    PubMed Central

    Rychter, Jakub; Espín, Francisco; Gallego, Diana; Vergara, Patri; Jiménez, Marcel

    2014-01-01

    Otilonium bromide (OB) is a spasmolytic compound of the family of quaternary ammonium derivatives and has been successfully used in the treatment of patients with irritable bowel syndrome (IBS) due to its specific pharmacodynamic effects on motility patterns in the human colon and the contractility of colonic smooth muscle cells. This article examines how. OB inhibits the main patterns of human sigmoid motility in vitro, which are spontaneous rhythmic phasic contractions, smooth muscle tone, contractions induced by stimulation of excitatory motor neurons and contractions induced by direct effect of excitatory neurotransmitters. It does this mainly by blocking calcium influx through L-type calcium channels and interfering with mobilization of cellular calcium required for smooth muscle contraction, thereby limiting excessive intestinal contractility and abdominal cramping. OB also inhibits T-type calcium channels and muscarinic responses. Finally, OB inhibits tachykinin receptors on smooth muscle and primary afferent neurons which may have the joint effect of reducing motility and abdominal pain. All these mechanisms mediate the therapeutic effects of OB in patients with IBS and might be useful in patients with other spastic colonic motility disorders such as diverticular disease. PMID:25057296

  20. Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide.

    PubMed

    Rychter, Jakub; Espín, Francisco; Gallego, Diana; Vergara, Patri; Jiménez, Marcel; Clavé, Pere

    2014-07-01

    Otilonium bromide (OB) is a spasmolytic compound of the family of quaternary ammonium derivatives and has been successfully used in the treatment of patients with irritable bowel syndrome (IBS) due to its specific pharmacodynamic effects on motility patterns in the human colon and the contractility of colonic smooth muscle cells. This article examines how. OB inhibits the main patterns of human sigmoid motility in vitro, which are spontaneous rhythmic phasic contractions, smooth muscle tone, contractions induced by stimulation of excitatory motor neurons and contractions induced by direct effect of excitatory neurotransmitters. It does this mainly by blocking calcium influx through L-type calcium channels and interfering with mobilization of cellular calcium required for smooth muscle contraction, thereby limiting excessive intestinal contractility and abdominal cramping. OB also inhibits T-type calcium channels and muscarinic responses. Finally, OB inhibits tachykinin receptors on smooth muscle and primary afferent neurons which may have the joint effect of reducing motility and abdominal pain. All these mechanisms mediate the therapeutic effects of OB in patients with IBS and might be useful in patients with other spastic colonic motility disorders such as diverticular disease.

  1. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm

    PubMed Central

    Berne, Cécile; Kysela, David T.; Brun, Yves V.

    2010-01-01

    In natural systems, bacteria form complex, surface-attached communities known as biofilms. This lifestyle presents numerous advantages compared to unattached or planktonic life, such as exchange of nutrients, protection from environmental stresses and increased tolerance to biocides. Despite such benefits, dispersal also plays an important role in escaping deteriorating environments and in successfully colonizing favorable, unoccupied habitat patches. The α-proteobacterium Caulobacter crescentus produces a motile swarmer cell and a sessile stalked cell at each cell division. We show here that C. crescentus extracellular DNA (eDNA) inhibits the ability of its motile cell type to settle in a biofilm. eDNA binds to the polar holdfast, an adhesive structure required for permanent surface attachment and biofilm formation, thereby inhibiting cell attachment. Since stalked cells associate tightly with the biofilm through their holdfast, we hypothesize that this novel mechanism acts on swarmer cells born in a biofilm, where eDNA can accumulate to a sufficient concentration to inhibit their ability to settle. By targeting a specific cell type in a biofilm, this mechanism modulates biofilm development and promotes dispersal without causing a potentially undesirable dissolution of the existing biofilm. PMID:20598083

  2. Motile activities of Dictyostelium discoideum differ from those in Protista or vertebrate animal cells.

    PubMed

    Waligórska, Agnieszka; Wianecka-Skoczeń, Magdalena; Korohoda, Włodzimierz

    2007-01-01

    Cell movement in the amoebae Dictyostelium discoideum has been examined in media differing in monovalent cation concentration (i.e. Na+ and K+). Under isotonic or even slightly hypertonic conditions, the cells move equally well in solutions in which either potassium or sodium ions dominate. However, in strongly hypertonic solutions the amoebae showed motility in a 2% potassium chloride solution, but remained motionless in a hypertonic 2% sodium chloride solution. This inhibition of D. discoideum amoebae movement in a hypertonic sodium chloride solution was fully reversible. Such behaviour corresponds to that of plant, fungi, and some invertebrate animal cells rather than protozoan or vertebrate cells. These observations suggest that studies using D. discoideum as a model for cell motility in vertebrate animal tissue cells should be considered with caution, and would seem to confirm the classification of cellular slime moulds as related rather to Fungi than to Protista. This also shows that the cell membrane models should consider the asymmetry in sodium/potassium ion concentrations found in vertebrate animal cells as one of various possibilities.

  3. Molecular dissection of zyxin function reveals its involvement in cell motility.

    PubMed

    Drees, B E; Andrews, K M; Beckerle, M C

    1999-12-27

    Spatially controlled actin filament assembly is critical for numerous processes, including the vectorial cell migration required for wound healing, cell- mediated immunity, and embryogenesis. One protein implicated in the regulation of actin assembly is zyxin, a protein concentrated at sites where the fast growing ends of actin filaments are enriched. To evaluate the role of zyxin in vivo, we developed a specific peptide inhibitor of zyxin function that blocks its interaction with alpha-actinin and displaces it from its normal subcellular location. Mislocalization of zyxin perturbs cell migration and spreading, and affects the behavior of the cell edge, a structure maintained by assembly of actin at sites proximal to the plasma membrane. These results support a role for zyxin in cell motility, and demonstrate that the correct positioning of zyxin within the cell is critical for its physiological function. Interestingly, the mislocalization of zyxin in the peptide-injected cells is accompanied by disturbances in the distribution of Ena/VASP family members, proteins that have a well-established role in promoting actin assembly. In concert with previous work, our findings suggest that zyxin promotes the spatially restricted assembly of protein complexes necessary for cell motility.

  4. The role of filament-packing dynamics in powering amoeboid cell motility

    PubMed Central

    Miao, Long; Vanderlinde, Orion; Liu, Jun; Grant, Richard P.; Wouterse, Alan; Shimabukuro, Katsuya; Philipse, Albert; Stewart, Murray; Roberts, Thomas M.

    2008-01-01

    Although several models have been proposed to account for how cytoskeleton polymerization drives protrusion in cell motility, the precise mechanism remains controversial. Here, we show that, in addition to force exerted directly against the membrane by growing filaments, the way elongating filaments pack also contributes to protrusion by generating an expansion of the cytoskeleton gel. Tomography shows that filament packing in the major sperm protein (MSP) -based nematode sperm-motility machinery resembles that observed with rigid rods. Maximum rod-packing density decreases dramatically as the rods lengthen. Therefore, as filaments elongate, the cytoskeleton gel expands to accommodate their packing less densely. This volume expansion combines with polymerization to drive protrusion. Consistent with this hypothesis, an engineered MSP mutant that generates shorter filaments shows higher filament-packing density and slower movement. PMID:18385381

  5. The role of filament-packing dynamics in powering amoeboid cell motility.

    PubMed

    Miao, Long; Vanderlinde, Orion; Liu, Jun; Grant, Richard P; Wouterse, Alan; Shimabukuro, Katsuya; Philipse, Albert; Stewart, Murray; Roberts, Thomas M

    2008-04-08

    Although several models have been proposed to account for how cytoskeleton polymerization drives protrusion in cell motility, the precise mechanism remains controversial. Here, we show that, in addition to force exerted directly against the membrane by growing filaments, the way elongating filaments pack also contributes to protrusion by generating an expansion of the cytoskeleton gel. Tomography shows that filament packing in the major sperm protein (MSP) -based nematode sperm-motility machinery resembles that observed with rigid rods. Maximum rod-packing density decreases dramatically as the rods lengthen. Therefore, as filaments elongate, the cytoskeleton gel expands to accommodate their packing less densely. This volume expansion combines with polymerization to drive protrusion. Consistent with this hypothesis, an engineered MSP mutant that generates shorter filaments shows higher filament-packing density and slower movement.

  6. Modulation of mammalian sperm motility by quercetin.

    PubMed

    Nass-Arden, L; Breitbart, H

    1990-04-01

    The flavonoid quercetin inhibits collective motility of ejaculated ram spermatozoa in the first 2 hr of incubation; during the next 3-4 hr motility is stimulated. To explain this interesting effect, we followed the influence of quercetin on sperm glycolysis, extracellular pH, ATP content, mitochondrial respiration, and lipid peroxidation. The collective motility of untreated cells is decreased to about 40% of the original motility during two hours of incubation. During this time, the rate of glycolysis is constant, respiration rate is increasing, there is no change in ATP content, the rate of lipid peroxidation is very slow, and the extracellular pH became very acidic (pH 5.5). It is concluded that motility is decreased due to this acidification. This acidification is prevented to some extent by quercetin, which indirectly inhibits glycolysis. Quercetin inhibits motility due to the inhibition of the plasma membrane calcium pump, as we showed previously (Breitbart et al., J Biol Chem 260:11548-11553, 1985). The motility of untreated cells is arrested after 3.5 hr of incubation, whereas quercetin-treated cells show high motility, which continues for additional 2-3 hr. After 3.5 hr, the control cells show no glycolytic activity, ATP content and respiration rates are decreased, and rate of lipid peroxidation is highly increased. At this time, quercetin-treated cells show no glycolytic activity, only a small decrease in ATP content and respiratory rate, and a very low rate of lipid peroxidation. Based on these data it is concluded that sperm motility after 3.5 hr of incubation is dependent mainly on mitochondrial respiration.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility.

    PubMed Central

    Takaishi, K; Kikuchi, A; Kuroda, S; Kotani, K; Sasaki, T; Takai, Y

    1993-01-01

    Evidence is accumulating that rho p21, a ras p21-related small GTP-binding protein (G protein), regulates the actomyosin system. The actomyosin system is known to be essential for cell motility. In the present study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein (named rho GDI), its stimulatory GDP/GTP exchange protein (named smg GDS), and Clostridium botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in cell motility (chemokinesis) of Swiss 3T3 cells. We quantitated the capacity of cell motility by measuring cell tracks by phagokinesis. Microinjection of the GTP gamma S-bound active form of rhoA p21 or smg GDS into Swiss 3T3 cells did not affect cell motility, but microinjection of rho GDI into the cells did inhibit cell motility. This rho GDI action was prevented by comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 but not with the same form of rhoA p21 lacking the C-terminal three amino acids which was not posttranslationally modified with lipids. The rho GDI action was not prevented by Ki-rasVal-12 p21 or any of the GTP gamma S-bound form of other small GTP-binding proteins including rac1 p21, G25K, and smg p21B. Among these small G proteins, rhoA p21, rac1 p21, and G25K are known to be substrates for rho GDI. The rho GDI action was not prevented by comicroinjection of rho GDI with smg GDS. Microinjection of C3 into Swiss 3T3 cells also inhibited cell motility. These results indicate that the rho GDI-rho p21 system regulates cell motility, presumably through the actomyosin system. Images PMID:8417362

  8. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells

    PubMed Central

    Stelma, Tamara; Leaner, Virna D.

    2017-01-01

    Karyopherin β1 is a nuclear import protein involved in the transport of proteins containing a nuclear localisation sequence. Elevated Karyopherin β1 expression has been reported in cancer and transformed cells and is essential for cancer cell proliferation and survival. Transcription factors such as NFĸB and AP-1 contain a nuclear localisation sequence and initiate the expression of multiple factors associated with inflammation and cancer cell biology. Our study investigated the effect of inhibiting nuclear import via Karyopherin β1 on cancer cell motility and inflammatory signaling using siRNA and the novel small molecule, Inhibitor of Nuclear Import-43, INI-43. Inhibition of Karyopherin β1 led to reduced migration and invasion of cervical cancer cells. Karyopherin β1 is essential for the translocation of NFĸB into the nucleus as nuclear import inhibition caused its cytoplasmic retention and decreased transcriptional activity. A similar decrease was seen in AP-1 transcriptional activity upon Karyopherin β1 inhibition. Consequently reduced interleukin-6, interleukin-1 beta, tumour necrosis factor alpha and granulocyte macrophage colony stimulating factor expression, target genes of NFkB and AP-1, was observed. Migration studies inhibiting individual transcription factors suggested that INI-43 may affect a combination of signaling events. Our study provides further evidence that inhibiting KPNB1 has anti-cancer effects and shows promise as a chemotherapeutic target. PMID:28427184

  9. Choreography of Cell Motility and Interaction Dynamics Imaged by Two-Photon Microscopy in Lymphoid Organs

    PubMed Central

    Cahalan, Michael D.; Parker, Ian

    2009-01-01

    The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production. PMID:18173372

  10. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs.

    PubMed

    Cahalan, Michael D; Parker, Ian

    2008-01-01

    The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production.

  11. Vascular Smooth Muscle Cell Motility Is Mediated by a Physical and Functional Interaction of Ca2+/Calmodulin-dependent Protein Kinase IIδ2 and Fyn*

    PubMed Central

    Ginnan, Roman; Zou, Xiaojing; Pfleiderer, Paul J.; Mercure, Melissa Z.; Barroso, Margarida; Singer, Harold A.

    2013-01-01

    In vascular smooth muscle (VSM) cells, Ca2+/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility. Confocal immunofluorescence microscopy indicated that CaMKIIδ2 and Fyn selectively (compared with Src) co-localized with the Golgi in quiescent cultured VSM cells. Stimulation with PDGF resulted in a rapid (<5 min) partial redistribution and co-localization of both kinases in peripheral membrane regions. Furthermore, CaMKIIδ2 and Fyn selectively (compared with Src) co-immunoprecipitated, suggesting a physical interaction in a signaling complex. Stimulation of VSM cells with ionomycin, a calcium ionophore, resulted in activation of CaMKIIδ2 and Fyn and disruption of the complex. Pretreatment with KN-93, a pharmacological inhibitor of CaMKII, prevented activation-dependent disruption of CaMKIIδ2 and Fyn, implicating CaMKIIδ2 as an upstream mediator of Fyn. Overexpression of constitutively active CaMKII resulted in the dephosphorylation of Fyn at Tyr-527, which is required for Fyn activation. Taken together, these data demonstrate a dynamic interaction between CaMKIIδ2 and Fyn in VSM cells and indicate a mechanism by which CaMKIIδ2 and Fyn may coordinately regulate VSM cell motility. PMID:24003228

  12. Vascular smooth muscle cell motility is mediated by a physical and functional interaction of Ca2+/calmodulin-dependent protein kinase IIδ2 and Fyn.

    PubMed

    Ginnan, Roman; Zou, Xiaojing; Pfleiderer, Paul J; Mercure, Melissa Z; Barroso, Margarida; Singer, Harold A

    2013-10-11

    In vascular smooth muscle (VSM) cells, Ca(2+)/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility. Confocal immunofluorescence microscopy indicated that CaMKIIδ2 and Fyn selectively (compared with Src) co-localized with the Golgi in quiescent cultured VSM cells. Stimulation with PDGF resulted in a rapid (<5 min) partial redistribution and co-localization of both kinases in peripheral membrane regions. Furthermore, CaMKIIδ2 and Fyn selectively (compared with Src) co-immunoprecipitated, suggesting a physical interaction in a signaling complex. Stimulation of VSM cells with ionomycin, a calcium ionophore, resulted in activation of CaMKIIδ2 and Fyn and disruption of the complex. Pretreatment with KN-93, a pharmacological inhibitor of CaMKII, prevented activation-dependent disruption of CaMKIIδ2 and Fyn, implicating CaMKIIδ2 as an upstream mediator of Fyn. Overexpression of constitutively active CaMKII resulted in the dephosphorylation of Fyn at Tyr-527, which is required for Fyn activation. Taken together, these data demonstrate a dynamic interaction between CaMKIIδ2 and Fyn in VSM cells and indicate a mechanism by which CaMKIIδ2 and Fyn may coordinately regulate VSM cell motility.

  13. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression.

    PubMed

    Kim, Sangmin; Han, Jeonghun; Jeon, Myeongjin; You, Daeun; Lee, Jeongmin; Kim, Hee Jung; Bae, Sarang; Nam, Seok Jin; Lee, Jeong Eon

    2016-08-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates many biological events including cell motility and angiogenesis. Here, we investigated the role of elevated TGF-β2 level in triple negative breast cancer (TNBC) cells and the inhibitory effect of silibinin on TGF-β2 action in TNBC cells. Breast cancer patients with high TGF-β2 expression have a poor prognosis. The levels of TGF-β2 expression increased significantly in TNBC cells compared with those in non-TNBC cells. In addition, cell motility-related genes such as fibronectin (FN) and matrix metalloproteinase-2 (MMP-2) expression also increased in TNBC cells. Basal FN, MMP-2, and MMP-9 expression levels decreased in response to LY2109761, a dual TGF-β receptor I/II inhibitor, in TNBC cells. TNBC cell migration also decreased in response to LY2109761. Furthermore, we observed that TGF-β2 augmented the FN, MMP-2, and MMP-9 expression levels in a time- and dose-dependent manner. In contrast, TGF-β2-induced FN, MMP-2, and MMP-9 expression levels decreased significantly in response to LY2109761. Interestingly, we found that silibinin decreased TGF-β2 mRNA expression level but not that of TGF-β1 in TNBC cells. Cell migration as well as basal FN and MMP-2 expression levels decreased in response to silibinin. Furthermore, silibinin significantly decreased TGF-β2-induced FN, MMP-2, and MMP-9 expression levels and suppressed the lung metastasis of TNBC cells. Taken together, these results suggest that silibinin suppresses metastatic potential of TNBC cells by inhibiting TGF-β2 expression in TNBC cells. Thus, silibinin may be a promising therapeutic drug to treat TNBC.

  14. Role of α6β4 integrin in cell motility, invasion and metastasis of mammary tumors.

    PubMed

    Soung, Young Hwa; Gil, Hyea Jin; Clifford, John L; Chung, Jun

    2011-02-01

    Integrin α6β4 is the receptor for the laminin family of extracellular matrix proteins and is widely expressed in most epithelial tissues and Schwann cells. The expression of this integrin is up-regulated in most epithelial tumors, suggesting the role of α6β4 in their progression. The tumor microenvironment is also known to enhance the signaling competence of α6β4 through functional and physical interactions with other receptors. In this review, we discuss the biological mechanisms by which integrin α6β4 promotes carcinoma cell motility and invasion that leads to mammary tumor progression.

  15. Live cell imaging of neuronal growth cone motility and guidance in vitro

    PubMed Central

    Suter, Daniel M.

    2013-01-01

    Summary The neuronal growth cone, a highly motile structure at the tip of neuronal processes, is an excellent model system for studying directional cell movements. While biochemical and genetic approaches unveiled molecular interactions between ligand, receptor, signaling and cytoskeleton-associated proteins controlling axonal growth and guidance, in vitro live cell imaging has emerged as a crucial approach for dissecting cellular mechanisms of growth cone motility and guidance. Important insights into these mechanisms have been gained from studies using the large growth cones elaborated by Aplysia californica neurons, an outstanding model system for live cell imaging for a number of reasons. Identified neurons can be isolated and imaged at room temperature. Aplysia growth cones are 5–10 times larger than growth cones from other species, making them suitable for quantitative high-resolution imaging of cytoskeletal protein dynamics and biophysical approaches. Lastly, protein, RNA, fluorescent probes and small molecules can be microinjected into the neuronal cell body for localization and functional studies. The following chapter describes culturing of Aplysia bag cell neurons, live cell imaging of neuronal growth cones using differential interference contrast and fluorescent speckle microscopy as well as the restrained bead interaction assay to induce adhesion-mediated growth cone guidance in vitro. PMID:21748670

  16. Cathepsin E Deficiency Ameliorates Graft-versus-Host Disease and Modifies Dendritic Cell Motility

    PubMed Central

    Mengwasser, Jörg; Babes, Liane; Cordes, Steffen; Mertlitz, Sarah; Riesner, Katarina; Shi, Yu; McGearey, Aleixandria; Kalupa, Martina; Reinheckel, Thomas; Penack, Olaf

    2017-01-01

    Microbial products influence immunity after allogeneic hematopoietic stem cell transplantation (allo-SCT). In this context, the role of cathepsin E (Ctse), an aspartate protease known to cleave bacterial peptides for antigen presentation in dendritic cells (DCs), has not been studied. During experimental acute graft-versus-host disease (GVHD), we found infiltration by Ctse-positive immune cells leading to higher Ctse RNA- and protein levels in target organs. In Ctse-deficient allo-SCT recipients, we found ameliorated GVHD, improved survival, and lower numbers of tissue-infiltrating DCs. Donor T cell proliferation was not different in Ctse-deficient vs. wild-type allo-SCT recipients in MHC-matched and MHC-mismatched models. Furthermore, Ctse-deficient DCs had an intact ability to induce allogeneic T cell proliferation, suggesting that its role in antigen presentation may not be the main mechanism how Ctse impacts GVHD. We found that Ctse deficiency significantly decreases DC motility in vivo, reduces adhesion to extracellular matrix (ECM), and diminishes invasion through ECM. We conclude that Ctse has a previously unrecognized role in regulating DC motility that possibly contributes to reduced DC counts and ameliorated inflammation in GVHD target organs of Ctse-deficient allo-SCT recipients. However, our data do not provide definite proof that the observed effect of Ctse−/− deficiency is exclusively mediated by DCs. A contribution of Ctse−/−-mediated functions in other recipient cell types, e.g., macrophages, cannot be excluded. PMID:28298913

  17. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  18. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway

    PubMed Central

    Romano, Gabriele; Cadamuro, Massimiliano; Bazzoni, Riccardo; Butta, Valentina; Paoletta, Laura; Dalprà, Leda; Strazzabosco, Mario; Lavitrano, Marialuisa; Giovannoni, Roberto; Bentivegna, Angela

    2017-01-01

    Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common form of malignant brain tumor in adults. GBM remains one of the most fatal and least successfully treated solid tumors: current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. Glioma Stem Cells (GSCs) are believed to be the real driving force of tumor initiation, progression and relapse. Therefore, better therapeutic strategies GSCs-targeted are needed. Resveratrol is a polyphenolic phytoalexin found in fruits and vegetables displaying pleiotropic health benefits. Many studies have highlighted its chemo-preventive and chemotherapeutic activities in a wide range of solid tumors. In this work, we analyzed the effects of Resveratrol exposure on cell viability, proliferation and motility in seven GSC lines isolated from GBM patients. For the first time in our knowledge, we investigated Resveratrol impact on Wnt signaling pathway in GSCs, evaluating the expression of seven Wnt signaling pathway-related genes and the protein levels of c-Myc and β-catenin. Finally, we analyzed Twist1 and Snail1 protein levels, two pivotal activators of epithelial-mesenchymal transition (EMT) program. Results showed that although response to Resveratrol exposure was highly heterogeneous among GSC lines, generally it was able to inhibit cell proliferation, increase cell mortality, and strongly decrease cell motility, modulating the Wnt signaling pathway and the EMT activators. Treatment with Resveratrol may represent a new interesting therapeutic approach, in order to affect GSCs proliferation and motility, even if further investigations are needed to deeply understand the GSCs heterogeneous response. PMID:28081224

  19. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway.

    PubMed

    Cilibrasi, Chiara; Riva, Gabriele; Romano, Gabriele; Cadamuro, Massimiliano; Bazzoni, Riccardo; Butta, Valentina; Paoletta, Laura; Dalprà, Leda; Strazzabosco, Mario; Lavitrano, Marialuisa; Giovannoni, Roberto; Bentivegna, Angela

    2017-01-01

    Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common form of malignant brain tumor in adults. GBM remains one of the most fatal and least successfully treated solid tumors: current therapies provide a median survival of 12-15 months after diagnosis, due to the high recurrence rate. Glioma Stem Cells (GSCs) are believed to be the real driving force of tumor initiation, progression and relapse. Therefore, better therapeutic strategies GSCs-targeted are needed. Resveratrol is a polyphenolic phytoalexin found in fruits and vegetables displaying pleiotropic health benefits. Many studies have highlighted its chemo-preventive and chemotherapeutic activities in a wide range of solid tumors. In this work, we analyzed the effects of Resveratrol exposure on cell viability, proliferation and motility in seven GSC lines isolated from GBM patients. For the first time in our knowledge, we investigated Resveratrol impact on Wnt signaling pathway in GSCs, evaluating the expression of seven Wnt signaling pathway-related genes and the protein levels of c-Myc and β-catenin. Finally, we analyzed Twist1 and Snail1 protein levels, two pivotal activators of epithelial-mesenchymal transition (EMT) program. Results showed that although response to Resveratrol exposure was highly heterogeneous among GSC lines, generally it was able to inhibit cell proliferation, increase cell mortality, and strongly decrease cell motility, modulating the Wnt signaling pathway and the EMT activators. Treatment with Resveratrol may represent a new interesting therapeutic approach, in order to affect GSCs proliferation and motility, even if further investigations are needed to deeply understand the GSCs heterogeneous response.

  20. 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells

    PubMed Central

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2017-01-01

    Cancer cells consume more glucose than normal cells, mainly due to their increased rate of glycolysis. 2-Deoxy-d-glucose (2DG) is an analogue of glucose, and sorafenib is a kinase inhibitor and molecular agent used to treat hepatocellular carcinoma (HCC). The present study aimed to demonstrate whether combining 2DG and sorafenib suppresses tumor cell proliferation and motility more effectively than either drug alone. HLF and PLC/PRF/5 HCC cells were incubated with sorafenib with or without 1 µM 2DG, and subjected to a proliferation assay. A scratch assay was then performed to analyze cell motility following the addition of 2DG and sorafenib in combination, and each agent alone. RNA was isolated and subjected to reverse transcription-quantitative polymerase chain reaction to analyze the expression of cyclin D1 and matrix metalloproteinase-9 (MMP9) following the addition of 2DG and sorafenib in combination and each agent alone. Proliferation was markedly suppressed in cells cultured with 1 µM 2DG and 30 µM sorafenib compared with cells cultured with either agent alone (P<0.05). In addition, levels of Cyclin D1 expression decreased in cells exposed to 3 µM sorafenib and 1 µM 2DG compared with cells exposed to 2DG or sorafenib alone (P<0.05). Scratch assay demonstrated that the distance between the growing edge of the cell sheet and the scratched line was shorter in cells cultured with sorafenib and 2DG than in cells cultured with 2DG or sorafenib alone (P<0.05). Levels of MMP9 expression decreased more in cells treated with both sorafenib and 2DG than in cells treated with 2DG or sorafenib alone (P<0.05). Therefore, 2DG and sorafenib in combination suppressed the proliferation and motility of HCC cells more effectively than 2DG or sorafenib alone, and a cancer treatment combining both drugs may be more effective than sorafenib alone. PMID:28356961

  1. Eph/ephrin interactions modulate muscle satellite cell motility and patterning

    PubMed Central

    Stark, Danny A.; Karvas, Rowan M.; Siegel, Ashley L.; Cornelison, D. D. W.

    2011-01-01

    During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin ‘stripe’ assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle. PMID:22071104

  2. A microfluidic perfusion platform for cultivation and screening study of motile microalgal cells

    PubMed Central

    Eu, Young-Jae; Park, Hye-Sun; Kim, Dong-Pyo; Wook Hong, Jong

    2014-01-01

    Systematic screening of algal cells is getting huge interest due to their capability of producing lipid-based biodiesel. Here, we introduce a new microfluidic platform composed of an array of perfusion chambers designed for long-term cultivation and preliminary screening of motile microalgal cells through loading and releasing of cells to and from the chambers. The chemical environment in each perfusion chamber was independently controlled for 5 days. The effect of nitrogen-depletion on the lipid production, phototaxis behavior in the absence of Ca2+, and cytotoxic effect of herbicide on microalgal cells was successfully monitored and compared with simultaneous control experiments on the platform. The present methodology could be extended to effective screening of algal cells and various cell lines for the production of biodiesel and other useful chemicals. PMID:24803962

  3. Toll-like receptor 2 (TLR2), transforming growth factor-β, hyaluronan (HA), and receptor for HA-mediated motility (RHAMM) are required for surfactant protein A-stimulated macrophage chemotaxis.

    PubMed

    Foley, Joseph P; Lam, David; Jiang, Hongmei; Liao, Jie; Cheong, Naeun; McDevitt, Theresa M; Zaman, Aisha; Wright, Jo Rae; Savani, Rashmin C

    2012-10-26

    The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA-mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2(-/-) mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44(-/-) mice had similar responses to SPA, whereas those from RHAMM(-/-) mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix.

  4. Toll-like Receptor 2 (TLR2), Transforming Growth Factor-β, Hyaluronan (HA), and Receptor for HA-mediated Motility (RHAMM) Are Required for Surfactant Protein A-stimulated Macrophage Chemotaxis*

    PubMed Central

    Foley, Joseph P.; Lam, David; Jiang, Hongmei; Liao, Jie; Cheong, Naeun; McDevitt, Theresa M.; Zaman, Aisha; Wright, Jo Rae; Savani, Rashmin C.

    2012-01-01

    The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA- mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2−/− mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44−/− mice had similar responses to SPA, whereas those from RHAMM−/− mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix. PMID:22948158

  5. A20 inhibits the motility of HCC cells induced by TNF-α.

    PubMed

    Wang, Xianteng; Ma, Chao; Zong, Zhaoyun; Xiao, Ying; Li, Na; Guo, Chun; Zhang, Lining; Shi, Yongyu

    2016-03-22

    Metastasis of hepatocellular carcinoma (HCC) can be facilitated by TNF-α, a prototypical inflammatory cytokine in the HCC microenvironment. A20 is a negative regulator of NF-κB signaling pathway. In the present study we ask whether A20 plays a role in HCC metastasis. We found that A20 expression was downregulated in the invasive cells of microvascular invasions (MVI) compared with the noninvasive cells in 89 tissue samples from patients with HCC by immunochemistry methods. Overexpression of A20 in HCC cell lines inhibited their motility induced by TNF-α. Furthermore, the overexpression of A20 inhibited epithelial-mesenchymal transition (EMT), FAK activation and RAC1 activity. By contrast, knockdown of A20 in one HCC cell line results in the converse. In addition, the overexpression of A20 restrained the formation of MVI in HCC xenograft in nude mice treated with TNF-α. All the results suggested that A20 functioned as a negative regulator in motility of HCC cells induced by TNF-α.

  6. Protein-tyrosine Pseudokinase 7 (PTK7) Directs Cancer Cell Motility and Metastasis*

    PubMed Central

    Golubkov, Vladislav S.; Prigozhina, Natalie L.; Zhang, Yong; Stoletov, Konstantin; Lewis, John D.; Schwartz, Phillip E.; Hoffman, Robert M.; Strongin, Alex Y.

    2014-01-01

    It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer. PMID:25006253

  7. Regulation of vesicle transport and cell motility by Golgi-localized Dbs

    PubMed Central

    Fitzpatrick, Ethan R; Hu, Tinghui; Ciccarelli, Bryan T; Whitehead, Ian P

    2014-01-01

    DBS/MCF2L has been recently identified as a risk locus for osteoarthritis. It encodes a guanine nucleotide exchange factor (Dbs) that has been shown to regulate both normal and tumor cell motility. In the current study, we have determined that endogenous Dbs is predominantly expressed as 2 isoforms, a 130 kDa form (Dbs-130) that is localized to the Golgi complex, and an 80 kDa form (Dbs-80) that is localized to the endoplasmic reticulum (ER). We have previously described an inhibitor that binds to the RhoGEF domain of Dbs and blocks its transforming activity. Here we show that the inhibitor localizes to the Golgi, where it specifically interacts with Dbs-130. Inhibition of endogenous Dbs-130 activity is associated with reduced levels of activated Cdc42, enlarged Golgi, and resistance to Brefeldin A-mediated Golgi dispersal, suggesting a role for Dbs in vesicle transport. Cells treated with the inhibitor exhibit normal protein transport from the ER to the Golgi, but are defective in transport from the Golgi to the plasma membrane. Inhibition of Dbs-130 in MDA-MB-231 human breast tumor cells limits motility in both transwell and wound healing assays, but appears to have no effect on the organization of the microtubule cytoskeleton. The reduced motility is associated with a failure to reorient the Golgi toward the leading edge. This is consistent with the Golgi localization, and suggests that the Dbs-130 regulates aspects of the secretory pathway that are required to support cell polarization during directed migration. PMID:25483302

  8. The Aeromonas caviae AHA0618 gene modulates cell length and influences swimming and swarming motility.

    PubMed

    Lowry, Rebecca C; Parker, Jennifer L; Kumbhar, Ramhari; Mesnage, Stephane; Shaw, Jonathan G; Stafford, Graham P

    2014-12-17

    Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral flagella system used for swarming on solid surfaces. The polar flagellum also has a role in cellular adherence and biofilm formation. The two subunits of the polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked glycosylation with pseudaminic acid on 6-8 serine and threonine residues within the central region of these proteins. This modification is essential for the formation of the flagellum. Aeromonas caviae possesses the simplest set of genes required for bacterial glycosylation currently known, with the putative glycosyltransferase, Maf1, being described recently. Here, we investigated the role of the AHA0618 gene, which shares homology (37% at the amino acid level) with the central region of a putative deglycosylation enzyme (HP0518) from the human pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an AHA0618 A. caviae mutant revealed increased swimming and swarming motility compared to the wild-type strain but without any detectable effects on the glycosylation status of the polar flagellins when analyzed by western blot analysis or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demonstrated homology to a family of l,d-transpeptidases involved in cell wall biology and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy (SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-mutant A. caviae strains revealed the mutant to be subtly but significantly shorter than wild-type cells; a phenomenon that could be recovered when either AHA0618 or H. pylori HP0518 were introduced. We can therefore conclude that AHA0618 does not affect A. caviae behavior by altering polar flagellin glycosylation levels but is likely to have a role in peptidoglycan processing at the bacterial cell wall, consequently altering

  9. The Aeromonas caviae AHA0618 gene modulates cell length and influences swimming and swarming motility

    PubMed Central

    Lowry, Rebecca C; Parker, Jennifer L; Kumbhar, Ramhari; Mesnage, Stephane; Shaw, Jonathan G; Stafford, Graham P

    2015-01-01

    Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral flagella system used for swarming on solid surfaces. The polar flagellum also has a role in cellular adherence and biofilm formation. The two subunits of the polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked glycosylation with pseudaminic acid on 6–8 serine and threonine residues within the central region of these proteins. This modification is essential for the formation of the flagellum. Aeromonas caviae possesses the simplest set of genes required for bacterial glycosylation currently known, with the putative glycosyltransferase, Maf1, being described recently. Here, we investigated the role of the AHA0618 gene, which shares homology (37% at the amino acid level) with the central region of a putative deglycosylation enzyme (HP0518) from the human pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an AHA0618 A. caviae mutant revealed increased swimming and swarming motility compared to the wild-type strain but without any detectable effects on the glycosylation status of the polar flagellins when analyzed by western blot analysis or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demonstrated homology to a family of l,d-transpeptidases involved in cell wall biology and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy (SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-mutant A. caviae strains revealed the mutant to be subtly but significantly shorter than wild-type cells; a phenomenon that could be recovered when either AHA0618 or H. pylori HP0518 were introduced. We can therefore conclude that AHA0618 does not affect A. caviae behavior by altering polar flagellin glycosylation levels but is likely to have a role in peptidoglycan processing at the bacterial cell wall, consequently altering

  10. Rab5 Isoforms Orchestrate a “Division of Labor” in the Endocytic Network; Rab5C Modulates Rac-Mediated Cell Motility

    PubMed Central

    Chen, Pin-I; Schauer, Kristine; Kong, Chen; Harding, Andrew R.; Goud, Bruno; Stahl, Philip D.

    2014-01-01

    Rab5, the prototypical Rab GTPase and master regulator of the endocytic pathway, is encoded as three differentially expressed isoforms, Rab5A, Rab5B and Rab5C. Here, we examined the differential effects of Rab5 isoform silencing on cell motility and report that Rab5C, but neither Rab5A nor Rab5B, is selectively associated with the growth factor-activation of Rac1 and with enhanced cell motility. Initial observations revealed that silencing of Rab5C expression, but neither Rab5A nor Rab5C, led to spindle-shaped cells that displayed reduced formation of membrane ruffles. When subjected to a scratch wound assay, cells depleted of Rab5C, but not Rab5A or Rab5B, demonstrated reduced cell migration. U937 cells depleted of Rab5C also displayed reduced cell motility in a Transwell plate migration assay. To examine activation of Rac, HeLa cells stably expressing GFP-Rac1 were independently depleted of Rab5A, Rab5B or Rab5C and seeded onto coverslips imprinted with a crossbow pattern. 3-D GFP-Rac1 images of micro-patterned cells show that GFP-Rac1 was less localized to the cell periphery in the absence of Rab5C. To confirm the connection between Rab5C and Rac activation, HeLa cells depleted of Rab5 isoforms were starved and then stimulated with EGF. Rac1 pull-down assays revealed that EGF-stimulated Rac1 activity was significantly suppressed in Rab5C-suppressed cells. To determine whether events upstream of Rac activation were affected by Rab5C, we observed that EGF-stimulated Akt phosphorylation was suppressed in cells depleted of Rab5C. Finally, since spatio-temporal assembly/disassembly of adhesion complexes are essential components of cell migration, we examined the effect of Rab5 isoform depletion on the formation of focal adhesion complexes. Rab5C-depleted HeLa cells have significantly fewer focal adhesion foci, in accordance with the lack of persistent lamellipodial protrusions and reduced directional migration. We conclude that Rab5 isoforms selectively oversee the

  11. A genome-wide RNAi screen for microtubule bundle formation and lysosome motility regulation in Drosophila S2 cells

    PubMed Central

    Jolly, Amber L.; Luan, Chi-Hao; Dusel, Brendon E.; Dunne, Sara Fernandez; Winding, Michael; Dixit, Vishrut J.; Robins, Chloe; Saluk, Jennifer L.; Logan, David J.; Carpenter, Anne E.; Sharma, Manu; Dean, Deborah; Cohen, Andrew R.; Gelfand, Vladimir I.

    2016-01-01

    Summary Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo”) occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins; the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naïve Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes, and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels and signaling proteins having a role in lysosome motility regulation, and find an unexpected relationship between the dynein motor, Rab7a and lysosome motility regulation. PMID:26774481

  12. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells.

    PubMed

    Jolly, Amber L; Luan, Chi-Hao; Dusel, Brendon E; Dunne, Sara F; Winding, Michael; Dixit, Vishrut J; Robins, Chloe; Saluk, Jennifer L; Logan, David J; Carpenter, Anne E; Sharma, Manu; Dean, Deborah; Cohen, Andrew R; Gelfand, Vladimir I

    2016-01-26

    Long-distance intracellular transport of organelles, mRNA, and proteins ("cargo") occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.

  13. Pulse Width-Dependent Effects of Intestinal Electrical Stimulation for Obesity: Role of Gastrointestinal Motility and Hormones.

    PubMed

    Li, Shiying; Chen, Jiande D Z

    2017-01-01

    The goals of this experiment were to study therapeutic potential of intestinal electrical stimulation (IES) for obesity, its mechanisms involving gastrointestinal motility and hormones, and role of pulse width in diet-induced obese rats. In a 4-week study, rats equipped with one pair of electrodes at the duodenum were assigned to receive either a sham or IES of varied pulse widths in a sequential way. Food intake was measured daily and body weight measured weekly. Blood samples were collected for the measurement of glucagon-like peptide-1 (GLP-1). Solid gastric emptying (GE) and small bowel transit (SIT) tests were performed at the end of the experiment. The results of the study were as follows: (1) Daily food intake, not affected by IES of 0.3 ms, was pulse width-dependently reduced by 1.9 g with 1 ms and by 5.7 g with 3 ms. Accordingly, body weight was pulse width-dependently reduced by 2.4 g with 1 ms and by 12.8 g with 3 ms compared to a gain of 5.6 g in sham. (2) GLP-1 level was elevated by both 0.3 and 3 ms at 15 min, but was elevated only with 3 ms at 60 min. (3) GE was delayed to 52.3 % by IES of 3 ms but not 0.3 ms, compared to that at 64.4 % with sham IES. (4) Compared to the geometric center of 7.0 with sham IES, SIT was accelerated by 3 ms to 7.8 but not by 0.3 ms. IES pulse width-dependently reduces food intake and body weight, attributed to the delay of gastric emptying and the acceleration of small bowel transit, as well as the enhancement of GLP-1 secretion.

  14. Identification of the cglC, cglD, cglE, and cglF Genes and Their Role in Cell Contact-Dependent Gliding Motility in Myxococcus xanthus

    PubMed Central

    Pathak, Darshankumar T.

    2012-01-01

    Within Myxococcus xanthus biofilms, cells actively move and exchange their outer membrane (OM) lipoproteins and lipids. Between genetically distinct strains, OM exchange can regulate recipient cell behaviors, including gliding motility and development. Although many different proteins are thought to be exchanged, to date, only two endogenous OM lipoproteins, CglB and Tgl, are known to be transferred. Protein exchange requires the TraAB proteins in recipient and donor cells, where they are hypothesized to facilitate OM fusion for transfer. To better understand the types of proteins exchanged, we identified the genes for the remaining set of cgl gliding motility mutants. These mutants are unique because their motility defect can be transiently restored by physical contact with donor cells that encode the corresponding wild-type protein, a process called stimulation. Similar to CglB and Tgl, the cglC and cglD genes encode type II signal sequences, suggesting that they are also lipoproteins. Surprisingly, the cglE and cglF genes instead encode type I signal sequences, suggesting that nonlipoproteins are also exchanged. Consistent with this idea, the addition of exogenous synthetic CglF protein (71 amino acids) to a cglF mutant rescued its motility defect. In contrast to a live donor cell, stimulation with purified CglF protein occurred independently of TraA. These results also indicate that CglF may localize to the cell surface. The implications of our findings on OM exchange are discussed. PMID:22343295

  15. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    PubMed Central

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  16. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    PubMed Central

    Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2013-01-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871

  17. A tunable sequential and periodic pattern formed by coupling cell motility with density

    NASA Astrophysics Data System (ADS)

    Huang, Jiandong

    2011-03-01

    The ability of living organisms to form patterns is an untapped resource for synthetic biology. We aim to generate unique patterns by rewiring the genetic circuitry controlling cell motility. Specifically, E. coli cells are programmed to regulate their movement by sensing local cell density. Interesting patterns are formed by newly engineered cells. An engineered low-density mover strain spreads outwards and autonomously forms a sequential and periodic pattern. Moreover, we build a theoretical model that satisfactorily fits our current experimental data, and also predicts some parameters which may significantly affect the pattern formation. The study of this self-organized spatial distribution of cells may help us to probe the principles underlying the formation of natural biological patterns, and to prepare for future engineering of biological structures.

  18. Coupling actin flow, adhesion, and morphology in a computational cell motility model

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2014-03-01

    Eukaryotic cells crawl by means of the coordinated spatiotemporal dynamics of an active polymer gel, consisting of actin, myosin and regulators thereof. Motility is necessarily coupled to shape, as the force generating mechanisms such as polymerization-based protrusions interact with the elasticity of the cell membrane and thereby determine the cell morphology. We have introduced a ``phase-field'' model of crawling cells, utilizing a mathematical approach originally developed for morphology problems arising in the field of liquid-solid phase transitions. Our model can be used to explain the pattern of traction forces applied to the substrate as well as some recent observations concerning oscillatory instabilities of cells moving on one-dimensional fiber tracks.

  19. MiR-25 promotes gastric cancer cells growth and motility by targeting RECK.

    PubMed

    Zhao, Hongying; Wang, Yu; Yang, Liu; Jiang, Rongke; Li, Wenqing

    2014-01-01

    Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Recently, accumulating evidence suggests that microRNAs (miRNAs) play prominent roles in tumorigenesis and metastasis. Here, we confirmed that miR-25 was significantly increased in human GC tissues and cell lines. Forced expression of miR-25 remarkably enhanced cell proliferation, migration, and invasion in GC cells, whereas inhibition of miR-25 by inhibitor caused significant suppression of proliferation and significant increase of apoptosis. Moreover, inhibition of miR-25 significantly decreased migration and invasion of GC cells. Finally, reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was found to be a target of miR-25. Overexpression of RECK could significantly reverse the oncogenic effect of miR-25. Taken together, miR-25 might promote GC cells growth and motility partially by targeting RECK.

  20. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen

    PubMed Central

    Lambert Emo, Kris; Hyun, Young-min; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo

    2016-01-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089

  1. Dose dependent side effect of superparamagnetic iron oxide nanoparticle labeling on cell motility in two fetal stem cell populations.

    PubMed

    Diana, Valentina; Bossolasco, Patrizia; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2013-01-01

    Multipotent stem cells (SCs) could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn), routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI). In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS). Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies.

  2. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    SciTech Connect

    Tamm, Christoffer Galito, Sara Pijuan Anneren, Cecilia

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.

  3. The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model.

    PubMed

    Li, Jonathan F; Lowengrub, John

    2014-02-21

    There are numerous biological examples where genes associated with migratory ability of cells also confer the cells with an increased fitness even though these genes may not have any known effect on the cell mitosis rates. Here, we provide insight into these observations by analyzing the effects of cell migration, compression, and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model (CPM) in a monolayer geometry. This is a follow-up of a previous study (Thalhauser et al. 2010) in which a Moran-type model was used to study the interaction of cell proliferation, migratory potential and death on the emergence of invasive phenotypes. Here, we extend the study to include the effects of cell size and shape. In particular, we investigate the interplay between cell motility and compressibility within the CPM and find that the CPM predicts that increased cell motility leads to smaller cells. This is an artifact in the CPM. An analysis of the CPM reveals an explicit inverse-relationship between the cell stiffness and motility parameters. We use this relationship to compensate for motility-induced changes in cell size in the CPM so that in the corrected CPM, cell size is independent of the cell motility. We find that subject to comparable levels of compression, clusters of motile cells grow faster than clusters of less motile cells, in qualitative agreement with biological observations and our previous study. Increasing compression tends to reduce growth rates. Contact inhibition penalizes clumped cells by halting their growth and gives motile cells an even greater advantage. Finally, our model predicts cell size distributions that are consistent with those observed in clusters of neuroblastoma cells cultured in low and high density conditions. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  4. A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii.

    PubMed

    Ji, Xiaofei; Xu, Yuanxi; Zhang, Cong; Chen, Ning; Lu, Xuemei

    2012-10-01

    Cytophaga hutchinsonii is a Gram-negative gliding bacterium, which can rapidly degrade crystalline cellulose via a novel strategy without any recognizable processive cellulases. Its mechanism of cellulose binding and degradation is still a mystery. In this study, the mutagenesis of C. hutchinsonii with the mariner-based transposon HimarEm3 and gene complementation with the oriC-based plasmid carrying the antibiotic resistance gene cfxA or tetQ were reported for the first time to provide valuable tools for mutagenesis and genetic manipulation of the bacterium. Mutant A-4 with a transposon mutation in gene CHU_0134, which encodes a putative thiol-disulfide isomerase exhibits defects in cell motility and cellulose degradation. The cellulose binding ability of A-4 was only half of that of the wild-type strain, while the endo-cellulase activity of the cell-free supernatants and on the intact cell surface of A-4 decreased by 40%. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins binding to cellulose in the outer membrane showed that most of them were significantly decreased or disappeared in A-4 including some Gld proteins and hypothetical proteins, indicating that these proteins might play an important role in cell motility and cellulose binding and degradation by the bacterium.

  5. The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion.

    PubMed

    Sharma, Anup; Mendonca, Janet; Ying, James; Kim, Hea-Soo; Verdone, James E; Zarif, Jelani C; Carducci, Michael; Hammers, Hans; Pienta, Kenneth J; Kachhap, Sushant

    2017-06-01

    Experimental and clinical evidence suggests that N-myc downregulated gene 1 (NDRG1) functions as a suppressor of prostate cancer metastasis. Elucidating pathways that drive survival and invasiveness of NDRG1-deficient prostate cancer cells can help in designing therapeutics to target metastatic prostate cancer cells. However, the molecular mechanisms that lead NDRG1-deficient prostate cancer cells to increased invasiveness remain largely unknown. In this study, we demonstrate that NDRG1-deficient prostate tumors have decreased integrin expression and reduced cell adhesion and motility. Our data indicate that loss of NDRG1 differentially affects Rho GTPases. Specifically, there is a downregulation of active RhoA and Rac1 GTPases with a concomitant upregulation of active Cdc42 in NDRG1-deficient cells. Live cell imaging using a fluorescent sensor that binds to polymerized actin revealed that NDRG1-deficient cells have restricted actin dynamics, thereby affecting cell migration. These cellular and molecular characteristics are in sharp contrast to what is expected after loss of a metastasis suppressor. We further demonstrate that NDRG1-deficient cells have increased resistance to anoikis and increased invasiveness which is independent of its elevated Cdc42 activity. Furthermore, NDRG1 regulates expression and glycosylation of EMMPRIN, a master regulator of matrix metalloproteases. NDRG1 deficiency leads to an increase in EMMPRIN expression with a concomitant increase in matrix metalloproteases and thus invadopodial activity. Using a three-dimensional invasion assay and an in vivo metastasis assay for human prostate xenografts, we demonstrate that NDRG1-deficient prostate cancer cells exhibit a collective invasion phenotype and are highly invasive. Thus, our findings provide novel insights suggesting that loss of NDRG1 leads to a decrease in actin-mediated cellular motility but an increase in cellular invasion, resulting in increased tumor dissemination which

  6. In vitro motility of cells from human epidermoid carcinomas. A study by phase-contrast and reflection-contrast cinematography.

    PubMed

    Haemmerli, G; Sträuli, P

    1981-05-15

    The motile behavior of six cell lines derived from human squamous carcinomas (two from the larynx, four from the tongue) was studied by cinematography under phase- and reflection-contrast illumination. The recorded cell activities consist in spreading, stationary and translocation motility, and aggregate formation. Within this common pattern, quantitative modifications ("sub-pattern") are stable properties of the individual cells lines. Such modifications are particularly evident with regard to the dynamic texture of the aggregates which ranges from loose, netlike structures to compact islands with smooth borders. Accordingly, the intensity of cell traffic within and around the aggregates varies considerably. It is discussed to what extent the in vitro motility of the carcinoma cell populations reflects their behavior in the organism and thus the significance of cell movements for invasion.

  7. Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP.

    PubMed

    Lv, Xiao-Qin; Qiao, Xin-Ran; Su, Ling; Chen, Shu-Zhen

    2016-12-01

    Honokiol (HNK) is a natural compound isolated from the magnolia plant with numerous pharmacological activities, including inhibiting epithelial-mesenchymal transition (EMT), which has been proposed as an attractive target for anti-tumor drugs to prevent tumor migration. In this study we investigated the effects of HNK on EMT in human NSCLC cells in vitro and the related signaling mechanisms. TNF-α (25 ng/mL) in combination with TGF-β1 (5 ng/mL) was used to stimulate EMT of human NSCLC A549 and H460 cells. Cell proliferation was analyzed using a sulforhodamine B assay. A wound-healing assay and a transwell assay were performed to examine cell motility. Western blotting was used to detect the expression levels of relevant proteins. siRNAs were used to knock down the gene expression of c-FLIP and N-cadherin. Stable overexpression of c-FLIP L (H157-FLIP L) or Lac Z (H157-Lac Z) was also performed. Treatment with TNF-α+TGF-β1 significantly enhanced the migration of A549 and H460 cells, increased c-FLIP, N-cadherin (a mesenchymal marker), snail (a transcriptional modulator) and p-Smad2/3 expression, and decreased IκB levels in the cells; these changes were abrogated by co-treatment with HNK (30 μmol/L). Further studies demonstrated that expression level of c-FLIP was highly correlated with the movement and migration of NSCLC cells, and the downstream effectors of c-FLIP signaling were NF-κB signaling and N-cadherin/snail signaling, while Smad signaling might lie upstream of c-FLIP. HNK inhibits EMT-mediated motility and migration of human NSCLC cells in vitro by targeting c-FLIP, which can be utilized as a promising target for cancer therapy, while HNK may become a potential anti-metastasis drug or lead compound.

  8. MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility

    SciTech Connect

    Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya; Yanagisawa, Kiyoshi; Suzuki, Motoshi; Takahashi, Takashi

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer MYBPH inhibits NMHC IIA assembly and cell motility. Black-Right-Pointing-Pointer MYBPH interacts to assembly-competent NM IIA. Black-Right-Pointing-Pointer MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosin heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.

  9. Rap1 controls cell adhesion and cell motility through the regulation of myosin II

    PubMed Central

    Jeon, Taeck J.; Lee, Dai-Jen; Merlot, Sylvain; Weeks, Gerald; Firtel, Richard A.

    2007-01-01

    We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1–guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin–mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell. PMID:17371831

  10. Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells.

    PubMed

    Sassano, Antonella; Mavrommatis, Evangelos; Arslan, Ahmet Dirim; Kroczynska, Barbara; Beauchamp, Elspeth M; Khuon, Satya; Chew, Ten-Leong; Green, Kathleen J; Munshi, Hidayatullah G; Verma, Amit K; Platanias, Leonidas C

    2015-08-01

    We provide evidence that human SLFN5, an interferon (IFN)-inducible member of the Schlafen (SLFN) family of proteins, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of the matrix metalloproteinase 1 gene (MMP-1), MMP-13, and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells

    PubMed Central

    Sassano, Antonella; Mavrommatis, Evangelos; Arslan, Ahmet Dirim; Kroczynska, Barbara; Beauchamp, Elspeth M.; Khuon, Satya; Chew, Ten-Leong; Green, Kathleen J.; Munshi, Hidayatullah G.; Verma, Amit K.

    2015-01-01

    We provide evidence that human SLFN5, an interferon (IFN)-inducible member of the Schlafen (SLFN) family of proteins, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of the matrix metalloproteinase 1 gene (MMP-1), MMP-13, and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression. PMID:26012550

  12. Disruption of myoblast alignment by highly motile rhabdomyosarcoma cell in tissue structure.

    PubMed

    Li, Menglu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-02-01

    Rhabdomyosarcoma (RMS) is a highly malignant tumor type of skeletal muscle origin, hallmarked by local invasion. Interaction between invasive tumor cells and normal cells plays a major role in tumor invasion and metastasis. Culturing tumor cells in a three-dimensional (3D) model can translate tumor malignancy relevant cell-cell interaction. To mimic tumor heterogeneity in vitro, a co-culture system consisting of a malignant embryonal rhabdomyosarcoma (ERMS) cell line RD and a normal human skeletal muscle myoblast (HSMM) cell line was established by cell sheet technology. Various ratios of RDs to HSMMs were employed to understand the quantitative effect on intercellular interactions. Disruption of sheet structure was observed in heterogeneous cell sheets having a low ratio of RDs to HSMMs, whereas homogeneous HSMM or RD sheets maintained intact structure. Deeper exploration of dynamic tumor cell behavior inside HSMM sheets revealed that HSMM cell alignment was disrupted by highly motile RDs. This study demonstrated that RMS cells are capable of compromising their surrounding environment through induced decay of HSMMs alignment in a cell-based 3D system. This suggests that muscle disruption might be a major consequence of RMS cell invasion into muscles, which could be a promising target to preventing tumor invasion. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold.

    PubMed

    Wang, Jing; Quach, Andy; Brasch, Megan E; Turner, Christopher E; Henderson, James H

    2017-09-01

    In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heparin regulates B6FS cell motility through a FAK/actin cytoskeleton axis

    PubMed Central

    Voudouri, Kallirroi; Nikitovic, Dragana; Berdiaki, Aikaterini; Papachristou, Dionysios J.; Tsiaoussis, John; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Tzanakakis, George N.

    2016-01-01

    Soft tissue sarcomas are rare, heterogeneous tumors of mesenchymal origin with an aggressive behavior. Heparin is a mixture of heavily sulfated, linear glycosaminoglycan (GAG) chains, which participate in the regulation of various cell biological functions. Heparin is considered to have significant anticancer capabilities, although the mechanisms involved have not been fully defined. In the present study, the effects of unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) on B6FS fibrosarcoma cell motility were examined. Both preparations of heparin were shown to both enhance B6FS cell adhesion (p<0.01 and p<0.05), and migration (p<0.05), the maximal effect being evident at the concentration of 10 µg/ml. The utilization of FAK-deficient cells demonstrated that the participation of FAK was obligatory for heparin-dependent fibrosarcoma cell adhesion (p<0.05). The results of confocal microscopy indicated that heparin was taken up by the B6FS cells, and that UFH and LMWH induced F-actin polymerization. Heparitinase digestion demonstrated that the endogenous heparan sulfate (HS) chains did not affect the motility of the B6FS cells (p>0.05, not significant). In conclusion, both UFH and LMWH, through a FAK/actin cytoskeleton axis, promoted the adhesion and migration of B6FS fibrosarcoma cells. Thus, our findings indicate that the responsiveness of fibrosarcoma cells to the exogenous heparin/HS content of the cancer microenvironment may play a role in their ability to become mobile and metastasize. PMID:27572115

  15. Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma

    PubMed Central

    Aquino, Jorge B.; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Andriani, Oscar; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo

    2014-01-01

    Background and Aims Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC. Methods Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated. Results AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro. Conclusion AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation. PMID:24736611

  16. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments

    PubMed Central

    Martinez, Laura E.; Hardcastle, Joseph M.; Wang, Jeffrey; Pincus, Zachary; Tsang, Jennifer; Hoover, Timothy R.; Bansil, Rama; Salama, Nina R.

    2016-01-01

    Summary The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7–21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 vs. 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10–30% among strains. However, quantitative comparisons suggest RFT underestimates the influence of cell body shape on speed for helical shaped bacteria. PMID:26365708

  17. QUANTITATIVE CELL MOTILITY FOR IN VITRO WOUND HEALING USING LEVEL SET-BASED ACTIVE CONTOUR TRACKING.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit K; Baskin, Tobias I; Dong, Gang

    2006-04-06

    Quantifying the behavior of cells individually, and in clusters as part of a population, under a range of experimental conditions, is a challenging computational task with many biological applications. We propose a versatile algorithm for segmentation and tracking of multiple motile epithelial cells during wound healing using time-lapse video. The segmentation part of the proposed method relies on a level set-based active contour algorithm that robustly handles a large number of cells. The tracking part relies on a detection-based multiple-object tracking method with delayed decision enabled by multi-hypothesis testing. The combined method is robust to complex cell behavior including division and apoptosis, and to imaging artifacts such as illumination changes.

  18. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments.

    PubMed

    Martínez, Laura E; Hardcastle, Joseph M; Wang, Jeffrey; Pincus, Zachary; Tsang, Jennifer; Hoover, Timothy R; Bansil, Rama; Salama, Nina R

    2016-01-01

    The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.

  19. Targeting tumor cell motility as a strategy against invasion and metastasis.

    PubMed

    Wells, Alan; Grahovac, Jelena; Wheeler, Sarah; Ma, Bo; Lauffenburger, Douglas

    2013-05-01

    Advances in diagnosis and treatment have rendered most solid tumors largely curable if they are diagnosed and treated before dissemination. However, once they spread beyond the initial primary location, these cancers are usually highly morbid, if not fatal. Thus, current efforts focus on both limiting initial dissemination and preventing secondary spread. There are two modes of tumor dissemination - invasion and metastasis - each leading to unique therapeutic challenges and likely to be driven by distinct mechanisms. However, these two forms of dissemination utilize some common strategies to accomplish movement from the primary tumor, establishment in an ectopic site, and survival therein. The adaptive behaviors of motile cancer cells provide an opening for therapeutic approaches if we understand the molecular, cellular, and tissue biology that underlie them. Herein, we review the signaling cascades and organ reactions that lead to dissemination, as these are non-genetic in nature, focusing on cell migration as the key to tumor progression. In this context, the cellular phenotype will also be discussed because the modes of migration are dictated by quantitative and physical aspects of the cell motility machinery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. FIBULIN-3 IS UNIQUELY UPREGULATED IN MALIGNANT GLIOMAS AND PROMOTES TUMOR CELL MOTILITY AND INVASION

    PubMed Central

    Hu, Bin; Thirtamara-Rajamani, Keerthi K.; Sim, Hosung; Viapiano, Mariano S.

    2013-01-01

    Malignant gliomas are highly invasive tumors with an almost invariably rapid and lethal outcome. Surgery and chemoradiotherapy fail to remove resistant tumor cells that disperse within normal tissue, which are a major cause for disease progression and therapy failure. Infiltration of the neural parenchyma is a distinctive property of malignant gliomas compared to other solid tumors. Thus, glioma cells are thought to produce unique molecular changes that remodel the neural extracellular matrix and form a microenvironment permissive for their motility. Here we describe the unique expression and pro-invasive role of fibulin-3, a mesenchymal matrix protein specifically upregulated in gliomas. Fibulin-3 is downregulated in peripheral tumors and thought to inhibit tumor growth. However, we found fibulin-3 highly upregulated in gliomas and cultured glioma cells, although the protein was undetectable in normal brain or cultured astrocytes. Overexpression and knockdown experiments revealed that fibulin-3 did not seem to affect glioma cell morphology or proliferation, but enhanced substrate-specific cell adhesion and promoted cell motility and dispersion in organotypic cultures. Moreover, orthotopic implantation of fibulin-3-overexpressing glioma cells resulted in diffuse tumors with increased volume and rostrocaudal extension compared to controls. Tumors and cultured cells overexpressing fibulin-3 also showed elevated expression and activity of matrix metalloproteases, such as MMP-2/9 and ADAMTS-5. Taken together, our results suggest that fibulin-3 has a unique expression and pro-tumoral role in gliomas, and could be a potential target against tumor progression. Strategies against this glioma-specific matrix component could disrupt invasive mechanisms and restrict dissemination of these tumors. PMID:19887559

  1. Extracellular matrix composition and interstitial pH modulate NHE1-mediated melanoma cell motility.

    PubMed

    Vahle, Anne-Kristin; Domikowsky, Britta; Schwöppe, Christian; Krähling, Hermann; Mally, Sabine; Schäfers, Michael; Hermann, Sven; Shahin, Victor; Haier, Jörg; Schwab, Albrecht; Stock, Christian

    2014-01-01

    The activity of the Na+/H+ exchanger NHE1 is required for human melanoma cell adhesion and migration. The goal of the present study was to suppress mouse melanoma (B16V) cell invasion in vivo by inhibiting NHE1. Intravital observations in mobilized left liver lobes of laparotomized male Sprague-Dawley rats disclosed that five minutes after intra-arterial administration of the B16V cell suspension, cells adhered to the endothelia of liver sinusoidal capillaries and started to migrate into the surrounding liver tissue. In the presence of the NHE1-specific inhibitor cariporide, migration/invasion was reduced by about 50% while adhesion was not lowered. Time-lapse video microscopy and adhesion/invasion assays revealed that in vitro, blockade of NHE1 by cariporide i) significantly decreased the migratory speed of the cells and ii) completely inhibited the invasive behavior of both an artificial, basement membrane-like and a dermis-like matrix. Cells were more motile on the basement membrane and more invasive on the dermis-like matrix. Small-animal PET (positron-emission tomography) analyses of B16V metastasis in female C57BL/6 mice showed that, although NHE1 inhibition hardly affected the percentage of animals developing metastases or relapses, metastases seem to get directed to the lungs in cariporide-treated animals while animals feeding on the standard diet show metastases spread all over the body. We conclude that i) B16V cells prefer to invade a dermis-like rather than a basement membrane-like matrix; ii) the extracellular matrix (ECM) composition strongly impacts on NHE1-dependent in vitro cell motility and invasion; and iii) the lungs are metastasis‑prone and impair the efficiency of cariporide due to their ECM composition and the pulmonary interstitial (extravascular) pH.

  2. HMGA2 regulates CD44 expression to promote gastric cancer cell motility and sphere formation

    PubMed Central

    Sun, Junying; Sun, Baocun; Zhu, Dongwang; Zhao, Xiulan; Zhang, Yanhui; Dong, Xueyi; Che, Na; Li, Jing; Liu, Fang; Zhao, Nan; Zhang, Danfang; Liu, Tieju; Lin, Xian

    2017-01-01

    High mobility group AT-hook 2 (HMGA2) is a transcriptional modulator that mediates motility and self-renewal in cancer stem cells. Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC contains a population of stem-like cells that promote tumor invasion and resistance to therapy. In the current study, we investigated the expression of HMGA2 and the cancer stem cell marker CD44 in 200 GC samples and found that HMGA2 and CD44 were significantly associated with distant metastasis, histological differentiation and poor prognosis in GC patients. Positive clinical correlations of HMGA2 with CD44 were also observed in tissue sections. In vitro, overexpression of HMGA2 promoted GC sphere formation and migration in MKN74/MKN28 cells, whereas downregulation of HMGA2 decreased GC sphere formation and migration in MKN45/MGC803 cells. In addition, western blot and immunofluorescent analyses showed that HMGA2 increased the expression of the stem cell markers CD44, ALDH1, Sox2, and Oct4 and the EMT-related factors Snail and β-catenin. In a xenograft mouse model, overexpression of HMGA2 promoted tumor growth. Further immunohistochemical (IHC) analysis showed that HMGA2 increased the expression of CD44 and β-catenin, resulting in the promotion of tumor growth. Taken together, our findings indicate that HMGA2 promotes GC cancer stem cell induction and cell motility by regulating the expression of CD44. Therefore, targeting HMGA2 in GC may be therapeutically beneficial. PMID:28337375

  3. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro

    PubMed Central

    2010-01-01

    Background Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARα) that can switch energy metabolism from glycolysis to fatty acid β-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. Methods The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR) signaling, PPARα activity, reactive oxygen species (ROS) metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. Results Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARα-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC), restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. Conclusions Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARα-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells. PMID:20569465

  4. Interaction of pathogenic bacteria with rabbit appendix M cells: bacterial motility is a key feature in vivo.

    PubMed

    Marchetti, Marta; Sirard, Jean Claude; Sansonetti, Philippe; Pringault, Eric; Kernéis, Sophie

    2004-05-01

    Rabbit appendix consists mainly of lymphoid follicles (LF) covered by M cells, the specialized antigen-sampling cells of the mucosal immune system, and surrounded by glandular epithelium. Until now, these M cells have been characterized morphologically and histologically by using cellular markers. Here, the adhesion and transport of pathogenic bacteria were investigated to assess the function of M cells of the appendix. We used the enteroinvasive motile Salmonella typhimurium and the rabbit enteropathogenic non-motile Escherichia coli RDEC-1, which are known to target specifically rabbit M cells of Peyer's patches (PPs). We found that S. typhimurium efficiently attached and was transported through appendix M cells in vivo. In contrast to S. typhimurium, RDEC-1 targeted M cells only ex vivo, when bacteria were allowed to have direct contact with the surface of the follicle. The difference in interaction of the two bacteria with appendix M cells led us to investigate whether this could be correlated with the lack of motility of RDEC-1. We used an aflagellate mutant of S. typhimurium and found that it had the same infection phenotype as RDEC-1. Gene complementation restored the efficiency of infection to that of S. typhimurium wild-type strain. In conclusion, we show that M cells of the appendix display features of the canonical M cells of PP, since they efficiently sample luminal pathogenic bacteria. However, due to the morphology of the appendix, motile bacteria appear to be more potent in their interactions with appendix M cells.

  5. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation

    PubMed Central

    Xiao, Lihai; Lee, Kenneth Ka Ho

    2016-01-01

    ABSTRACT The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion. PMID:26740569

  6. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation.

    PubMed

    Xiao, Lihai; Lee, Kenneth Ka Ho

    2016-01-06

    The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7(+) satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion.

  7. The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion

    PubMed Central

    Jackson, Allison J.; Whitelaw, Jamie A.; Pall, Gurman; Black, Jennifer Ann; Ferguson, David J. P.; Tardieux, Isabelle; Mogilner, Alex; Meissner, Markus

    2014-01-01

    Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility. PMID:24632839

  8. PHA665752 inhibits the HGF-stimulated migration and invasion of cells by blocking PI3K/AKT pathway in human cell line uveal melanoma.

    PubMed

    Wang, Z; He, C; Liu, L; Ma, N; Chen, X; Zheng, D; Qiu, G H

    2017-03-03

    HGF/c-MET is frequently associated with tumor metastasis in many cancers, including uveal melanoma (UM). PHA665752, a selective c-MET inhibitor, exhibits anticancer activity through inhibiting cell motility in some cancers. In this study, we investigated the effects of PHA665752 on UM cell lines M17 and SP6.5. Our data show that HGF stimulated the motility of UM cells, and induced the activation of both c-MET and PI3K/AKT, but not ERK1/2. Moreover, consistent with the amount of c-MET within the nucleus, PHA665752 significantly inhibited HGF-promoted cell motility and suppressed the phosphorylation of c-MET and PI3K/AKT, but not ERK1/2 induced by HGF. Additionally, the effects of PHA665752 on both the inhibition of HGF-induced cell motility and the suppression of active AKT are similar to those of PI3K inhibitor LY294002. In xenograft models, PHA665752 significantly inhibited tumor growth in nude mice and similarly suppressed the phosphorylation of c-MET and PI3K/AKT. Our current findings, combined with previous results, demonstrate that PHA665752 inhibits HGF-induced motility via the inhibition of PI3K/AKT. This study suggests that targeting HGF/c-MET could be a promising therapeutic strategy for UM by preventing cell motility.

  9. Protein Kinase D Controls Actin Polymerization and Cell Motility through Phosphorylation of Cortactin*

    PubMed Central

    Eiseler, Tim; Hausser, Angelika; De Kimpe, Line; Van Lint, Johan; Pfizenmaier, Klaus

    2010-01-01

    We here identify protein kinase D (PKD) as an upstream regulator of the F-actin-binding protein cortactin and the Arp actin polymerization machinery. PKD phosphorylates cortactin in vitro and in vivo at serine 298 thereby generating a 14-3-3 binding motif. In vitro, a phosphorylation-deficient cortactin-S298A protein accelerated VCA-Arp-cortactin-mediated synergistic actin polymerization and showed reduced F-actin binding, indicative of enhanced turnover of nucleation complexes. In vivo, cortactin co-localized with the nucleation promoting factor WAVE2, essential for lamellipodia extension, in the actin polymerization zone in Heregulin-treated MCF-7 cells. Using a 3-dye FRET-based approach we further demonstrate that WAVE2-Arp and cortactin prominently interact at these structures. Accordingly, cortactin-S298A significantly enhanced lamellipodia extension and directed cell migration. Our data thus unravel a previously unrecognized mechanism by which PKD controls cancer cell motility. PMID:20363754

  10. Four-dimensional motility tracking of biological cells by digital holographic microscopy

    PubMed Central

    Yu, Xiao; Hong, Jisoo; Liu, Changgeng; Cross, Michael; Haynie, Donald T.; Kim, Myung K.

    2014-01-01

    Abstract. Three-dimensional profiling and tracking by digital holography microscopy (DHM) provide label-free and quantitative analysis of the characteristics and dynamic processes of objects, since DHM can record real-time data for microscale objects and produce a single hologram containing all the information about their three-dimensional structures. Here, we have utilized DHM to visualize suspended microspheres and microfibers in three dimensions, and record the four-dimensional trajectories of free-swimming cells in the absence of mechanical focus adjustment. The displacement of microfibers due to interactions with cells in three spatial dimensions has been measured as a function of time at subsecond and micrometer levels in a direct and straightforward manner. It has thus been shown that DHM is a highly efficient and versatile means for quantitative tracking and analysis of cell motility. PMID:24699632

  11. Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer

    PubMed Central

    Sedgwick, Alanna E.; D’Souza-Schorey, Crislyn

    2016-01-01

    The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease. PMID:27589803

  12. DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach.

    PubMed

    Goel, A; Chhabra, R; Ahmad, S; Prasad, A K; Parmar, V S; Ghosh, B; Saini, N

    2012-10-11

    DAMTC (7,8-diacetoxy-4-methylcoumarin) is a thioderivative of 4-methyl coumarin, and previously we have shown that DAMTC is a potent inhibitor of cell growth and an inducer of apoptosis in non-small cell lung cancer (A549) cells. It induces apoptosis through mitochondrial pathway by modulating NF-κB, mitogen-activated protein kinase (MAPK) and p53 pathways. Herein, we explored the genome-wide effects of DAMTC in A549 cells using the concerted approach of transcriptomics and proteomics. In addition to apoptotic pathways, which have been validated earlier, the bioinformatic analysis of microarray data identified small GTPase-mediated signal transduction among the significantly altered biological processes. Interestingly, we observed significant downregulation of some members of the Rho family GTPases in the proteomics data too. Downregulation of Rho GTPases (RhoGDIα (Rho GDP dissociation inhibitor-α, also known as ARHGDIA), Ras homolog family member A, Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42) was validated by western blotting. The Rho protein family is implicated in maintaining the actin filament assembly and cell motility, and we also observed that DAMTC treatment causes actin cytoskeletal reorganization, promotes filopodia formation and inhibits cell motility in A549 cells. The effect of DAMTC treatment on cytoskeleton was reversed after the overexpression of RhoGDIα. In addition, DAMTC augmented the apoptotic effect of etoposide, a proapoptotic chemotherapeutic drug. This elucidation of the mechanism behind DAMTC-induced apoptosis and inhibition of cell motility in A549 cells may make it a potential therapeutic for lung cancer.

  13. Approaches to myosin modelling in a two-phase flow model for cell motility

    NASA Astrophysics Data System (ADS)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  14. Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion

    PubMed Central

    Lin, Yihan; Crosson, Sean; Scherer, Norbert F

    2010-01-01

    Sensor histidine kinases underlie the regulation of a range of physiological processes in bacterial cells, from chemotaxis to cell division. In the gram-negative bacterium Caulobacter crescentus, the membrane-bound histidine kinase, DivJ, is a polar-localized regulator of cell cycle progression and development. We show that DivJ localizes to the cell pole through a dynamic diffusion and capture mechanism rather than by active localization. Analysis of single C. crescentus cells in microfluidic culture demonstrates that controlled expression of divJ permits facile tuning of both the mean and noise of the cell division period. Simulations of the cell cycle that use a simplified protein interaction network capture previously measured oscillatory protein profiles, and recapitulate the experimental observation that deletion of divJ increases the cell cycle period and noise. We further demonstrate that surface adhesion and swarming motility of C. crescentus in semi-solid media can also be tuned by divJ expression. We propose a model in which pleiotropic control of polar cell development by the DivJ–DivK–PleC signaling pathway underlies divJ-dependent tuning of cell swarming and adhesion behaviors. PMID:21179017

  15. Piperine inhibits the growth and motility of triple-negative breast cancer cells.

    PubMed

    Greenshields, Anna L; Doucette, Carolyn D; Sutton, Kimberly M; Madera, Laurence; Annan, Henry; Yaffe, Paul B; Knickle, Allison F; Dong, Zhongmin; Hoskin, David W

    2015-02-01

    Piperine, an alkaloid from black pepper, is reported to have anticancer activities. In this study, we investigated the effect of piperine on the growth and motility of triple-negative breast cancer (TNBC) cells. Piperine inhibited the in vitro growth of TNBC cells, as well as hormone-dependent breast cancer cells, without affecting normal mammary epithelial cell growth. Exposure to piperine decreased the percentage of TNBC cells in the G2 phase of the cell cycle. In addition, G1- and G2-associated protein expression was decreased and p21(Waf1/Cip1) expression was increased in piperine-treated TNBC cells. Piperine also inhibited survival-promoting Akt activation in TNBC cells and caused caspase-dependent apoptosis via the mitochondrial pathway. Interestingly, combined treatment with piperine and γ radiation was more cytotoxic for TNBC cells than γ radiation alone. The in vitro migration of piperine-treated TNBC cells was impaired and expression of matrix metalloproteinase-2 and -9 mRNA was decreased, suggesting an antimetastatic effect by piperine. Finally, intratumoral administration of piperine inhibited the growth of TNBC xenografts in immune-deficient mice. Taken together, these findings suggest that piperine may be useful in the treatment of TNBC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. No Correlates for Somatic Motility in Freeze-Fractured Hair-Cell Membranes of Lizards and Birds

    NASA Astrophysics Data System (ADS)

    Köppl, C.; Forge, A.; Manley, G. A.

    2003-02-01

    It is not known whether active processes in mammals and non-mammals are due to the same underlying mechanism. To address this, we studied the size and density of particles in hair-cell membranes in mammals, in a lizard, the Tokay gecko, and in a bird, the barn owl. We surmised that if the prominent particles described in mammalian outer-hair-cell membranes are responsible for cochlear motility, a similar occurrence in non-mammalian hair cells would argue for similar mechanisms. Particle densities differed, however, substantially from those of mammals, suggesting that non-mammals have no membrane-based motility.

  17. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that

  18. Cell stimulation with optically manipulated microsources

    PubMed Central

    Kress, Holger; Park, Jin-Gyu; Mejean, Cecile O; Forster, Jason D; Park, Jason; Walse, Spencer S; Zhang, Yong; Wu, Dianqing; Weiner, Orion D; Fahmy, Tarek M; Dufresne, Eric R

    2010-01-01

    Molecular gradients are important for various biological processes including the polarization of tissues and cells during embryogenesis and chemotaxis. Investigations of these phenomena require control over the chemical microenvironment of cells. We present a technique to set up molecular concentration patterns that are chemically, spatially and temporally flexible. Our strategy uses optically manipulated microsources, which steadily release molecules. Our technique enables the control of molecular concentrations over length scales down to about 1 µm and timescales from fractions of a second to an hour. We demonstrate this technique by manipulating the motility of single human neutrophils. We induced directed cell polarization and migration with microsources loaded with the chemoattractant formyl-methionine-leucine-phenylalanine. Furthermore, we triggered highly localized retraction of lamellipodia and redirection of polarization and migration with microsources releasing cytochalasin D, an inhibitor of actin polymerization. PMID:19915561

  19. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  20. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan

    PubMed Central

    1993-01-01

    TGF-beta is a potent stimulator of motility in a variety of cell types. It has recently been shown that hyaluronan (HA) can directly promote locomotion of cells through interaction with the HA receptor RHAMM. We have investigated the role of RHAMM and HA in TGF-beta-stimulated locomotion and show that TGF-beta triggers the transcription, synthesis and membrane expression of the RHAMM receptor and the secretion of HA coincident with the induction of the locomotory response. This was demonstrated by both incubating cells with exogenous TGF-beta 1 and by stimulating the production of bioactive TGF-beta 1 in tumor cells transfected with TGF-beta 1 under the control of the metallothionein promoter. TGF-beta 1-induced locomotion was suppressed by antibodies that prevented HA/RHAMM interaction, using polyclonal antibodies to either RHAMM fusion protein or RHAMM peptides, or mAbs to purified RHAMM. Peptides corresponding to the HA-binding motif of RHAMM also suppressed TGF-beta 1-induced increases in motility rate. Spontaneous locomotion of fibrosarcoma cells was blocked by neutralizing secreted TGF-beta with panspecific TGF-beta antibodies and by inhibition of TGF- beta 1 secretion with antisense oligonucleotides. Polyclonal anti-RHAMM fusion protein antibodies and peptide from the RHAMM HA-binding motif also suppressed the spontaneous motility rate of fibrosarcoma cells. These data suggest that fibrosarcoma cell locomotion requires TGF-beta, and the pathway by which TGF-beta stimulates locomotion uses the HA receptor RHAMM and HA. PMID:7693717

  1. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan.

    PubMed

    Samuel, S K; Hurta, R A; Spearman, M A; Wright, J A; Turley, E A; Greenberg, A H

    1993-11-01

    TGF-beta is a potent stimulator of motility in a variety of cell types. It has recently been shown that hyaluronan (HA) can directly promote locomotion of cells through interaction with the HA receptor RHAMM. We have investigated the role of RHAMM and HA in TGF-beta-stimulated locomotion and show that TGF-beta triggers the transcription, synthesis and membrane expression of the RHAMM receptor and the secretion of HA coincident with the induction of the locomotory response. This was demonstrated by both incubating cells with exogenous TGF-beta 1 and by stimulating the production of bioactive TGF-beta 1 in tumor cells transfected with TGF-beta 1 under the control of the metallothionein promoter. TGF-beta 1-induced locomotion was suppressed by antibodies that prevented HA/RHAMM interaction, using polyclonal antibodies to either RHAMM fusion protein or RHAMM peptides, or mAbs to purified RHAMM. Peptides corresponding to the HA-binding motif of RHAMM also suppressed TGF-beta 1-induced increases in motility rate. Spontaneous locomotion of fibrosarcoma cells was blocked by neutralizing secreted TGF-beta with panspecific TGF-beta antibodies and by inhibition of TGF-beta 1 secretion with antisense oligonucleotides. Polyclonal anti-RHAMM fusion protein antibodies and peptide from the RHAMM HA-binding motif also suppressed the spontaneous motility rate of fibrosarcoma cells. These data suggest that fibrosarcoma cell locomotion requires TGF-beta, and the pathway by which TGF-beta stimulates locomotion uses the HA receptor RHAMM and HA.

  2. Coupling actin flow, adhesion, and morphology in a computational cell motility model.

    PubMed

    Shao, Danying; Levine, Herbert; Rappel, Wouter-Jan

    2012-05-01

    Cell migration is a pervasive process in many biology systems and involves protrusive forces generated by actin polymerization, myosin dependent contractile forces, and force transmission between the cell and the substrate through adhesion sites. Here we develop a computational model for cell motion that uses the phase-field method to solve for the moving boundary with physical membrane properties. It includes a reaction-diffusion model for the actin-myosin machinery and discrete adhesion sites which can be in a "gripping" or "slipping" mode and integrates the adhesion dynamics with the dynamics of the actin filaments, modeled as a viscous network. To test this model, we apply it to fish keratocytes, fast moving cells that maintain their morphology, and show that we are able to reproduce recent experimental results on actin flow and stress patterns. Furthermore, we explore the phase diagram of cell motility by varying myosin II activity and adhesion strength. Our model suggests that the pattern of the actin flow inside the cell, the cell velocity, and the cell morphology are determined by the integration of actin polymerization, myosin contraction, adhesion forces, and membrane forces.

  3. A genetic strategy for the dynamic and graded control of cell mechanics, motility, and matrix remodeling.

    PubMed

    MacKay, Joanna L; Keung, Albert J; Kumar, Sanjay

    2012-02-08

    Cellular mechanical properties have emerged as central regulators of many critical cell behaviors, including proliferation, motility, and differentiation. Although investigators have developed numerous techniques to influence these properties indirectly by engineering the extracellular matrix (ECM), relatively few tools are available to directly engineer the cells themselves. Here we present a genetic strategy for obtaining graded, dynamic control over cellular mechanical properties by regulating the expression of mutant mechanotransductive proteins from a single copy of a gene placed under a repressible promoter. With the use of constitutively active mutants of RhoA GTPase and myosin light chain kinase, we show that varying the expression level of either protein produces graded changes in stress fiber assembly, traction force generation, cellular stiffness, and migration speed. Using this approach, we demonstrate that soft ECMs render cells maximally sensitive to changes in RhoA activity, and that by modulating the ability of cells to engage and contract soft ECMs, we can dynamically control cell spreading, migration, and matrix remodeling. Thus, in addition to providing quantitative relationships between mechanotransductive signaling, cellular mechanical properties, and dynamic cell behaviors, this strategy enables us to control the physical interactions between cells and the ECM and thereby dictate how cells respond to matrix properties. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    PubMed

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.

  5. Nanopattern-induced changes in morphology and motility of smooth muscle cells.

    PubMed

    Yim, Evelyn K F; Reano, Ron M; Pang, Stella W; Yee, Albert F; Chen, Christopher S; Leong, Kam W

    2005-09-01

    Cells are known to be surrounded by nanoscale topography in their natural extracellular environment. The cell behavior, including morphology, proliferation, and motility of bovine pulmonary artery smooth muscle cells (SMC) were studied on poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) surfaces comprising nanopatterned gratings with 350 nm linewidth, 700 nm pitch, and 350 nm depth. More than 90% of the cells aligned to the gratings, and were significantly elongated compared to the SMC cultured on non-patterned surfaces. The nuclei were also elongated and aligned. Proliferation of the cells was significantly reduced on the nanopatterned surfaces. The polarization of microtubule organizing centers (MTOC), which are associated with cell migration, of SMC cultured on nanopatterned surfaces showed a preference towards the axis of cell alignment in an in vitro wound healing assay. In contrast, the MTOC of SMC on non-patterned surfaces preferentially polarized towards the wound edge. It is proposed that this nanoimprinting technology will provide a valuable platform for studies in cell-substrate interactions and for development of medical devices with nanoscale features.

  6. Impact of a mutator phenotype on motility and cell adherence in Salmonella Heidelberg.

    PubMed

    Le Bars, Hervé; Le Gall-David, Sandrine; Renoux, Virginie Madeleine; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne; Bousarghin, Latifa

    2012-09-14

    In this study, we investigated adherence and motility of the hypermutator Salmonella enterica Heidelberg B182 bovine strain related to a 12bp deletion in mutS. This mutator phenotype was associated with increased adherence to epithelial cells and with high expression of fimA as shown by real-time RT-PCR. Motility studies showed that fliC were up-regulated in the B182 strain, while fljA and fljB were down-regulated. In order to determine if mutated mutS is implicated in this genes expression, isogenic strains, derived from a WT strain, containing the 12bp deletion in mutS (Δ12bpmutS) or an inactivated mutS (ΔmutS) were generated. Δ12bpmutS and ΔmutS strains showed a spontaneous mutation rate similar to the environmental strain B182, but exhibited lower adherence capacity and fimA expression. In contrast to the fimbriae genes, in Δ12bpmutS, fliC expression was up-regulated, but fljA and fljB expression were decreased, as in the B182 strain. Only fljB expression was increased in ΔmutS mutants. Taken together, our data suggest that mutS alteration does not influence fimbriae expression but can impact flagella genes.

  7. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea

    PubMed Central

    Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

    2013-01-01

    Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

  8. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    PubMed Central

    2010-01-01

    Background Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion. PMID:20377912

  9. Rho GTPase isoforms in cell motility: Don't fret, we have FRET

    PubMed Central

    Donnelly, Sara K; Bravo-Cordero, Jose Javier; Hodgson, Louis

    2014-01-01

    The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated. PMID:25482645

  10. Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis.

    PubMed

    Cencetti, Francesca; Bruno, Gennaro; Blescia, Sabrina; Bernacchioni, Caterina; Bruni, Paola; Donati, Chiara

    2014-10-01

    Regulation of the motility of skeletal muscle precursor cells, such as satellite cells, is critically important for their proper recruitment at the site of tissue damage, and ultimately for its correct repair. Here we show that lysophosphatidic acid (LPA), which is well-recognized as a powerful bioactive agent, strongly stimulates cell migration of activated murine satellite cells. The biological effect exerted by LPA was found to be induced via activation of LPA1 and LPA3 , being abolished by cell treatment with the antagonist Ki16425, and severely impaired by siRNA-mediated down-regulation of the two receptor isoforms. In contrast, silencing of LPA2 potentiated the stimulation of cell motility by LPA, suggesting that it is negatively coupled to cell migration. Pharmacological inhibition of both sphingosine kinase (SK) isoforms using VPC96047, or the selective blocking of SK1 using VPC96091, abolished cell responsiveness to LPA; in agreement, gene silencing of SK1 or SK2 significantly reduced the biological effect of LPA. Moreover, the LPA-dependent stimulation of cell chemotaxis was found to be impaired by down-regulation of the sphingosine 1-phosphate (S1P) receptors S1P1 or S1P4 by specific siRNAs. In summary, the results obtained support the notion that the sphingosine kinase/sphingosine 1-phosphate (SK/S1P) axis is critically involved in the mechanism by which LPA elicits its pro-migratory action. This study provides compelling new information on the regulatory mechanisms of satellite cell motility, and reinforces the view that the SK/S1P signaling pathway plays a crucial role in the control of skeletal muscle precursor cell biology. © 2014 FEBS.

  11. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions.

    PubMed

    Borghi, Nicolas; Lowndes, Molly; Maruthamuthu, Venkat; Gardel, Margaret L; Nelson, W James

    2010-07-27

    During normal development and in disease, cohesive tissues undergo rearrangements that require integration of signals from cell adhesions to neighboring cells and to the extracellular matrix (ECM). How a range of cell behaviors is coordinated by these different adhesion complexes is unknown. To analyze epithelial cell motile behavior in response to combinations of cell-ECM and cell-cell adhesion cues, we took a reductionist approach at the single-cell scale by using unique, functionalized micropatterned surfaces comprising alternating stripes of ECM (collagenIV) and adjustable amounts of E-cadherin-Fc (EcadFc). On these surfaces, individual cells spatially segregated integrin- and cadherin-based complexes between collagenIV and EcadFc surfaces, respectively. Cell migration required collagenIV and did not occur on surfaces functionalized with only EcadFc. However, E-cadherin adhesion dampened lamellipodia activity on both collagenIV and EcadFc surfaces and biased the direction of cell migration without affecting the migration rate, all in an EcadFc concentration-dependent manner. Traction force microscopy showed that spatial confinement of integrin-based adhesions to collagenIV stripes induced anisotropic cell traction on collagenIV and migration directional bias. Selective depletion of different pools of alphaE-catenin, an E-cadherin and actin binding protein, identified a membrane-associated pool required for E-cadherin-mediated adhesion and down-regulation of lamellipodia activity and a cytosolic pool that down-regulated the migration rate in an E-cadherin adhesion-independent manner. These results demonstrate that there is crosstalk between E-cadherin- and integrin-based adhesion complexes and that E-cadherin regulates lamellipodia activity and cell migration directionality, but not cell migration rate.

  12. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    SciTech Connect

    Fibbi, G.; Ziche, M.; Morbidelli, L. ); Magnelli, L.; Del Rosso, M. )

    1988-12-01

    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  13. Cell-sized liposomes that mimic cell motility and the cell cortex.

    PubMed

    Lemière, Joël; Carvalho, Kevin; Sykes, Cécile

    2015-01-01

    Cells move and change shape by dynamically reorganizing their cytoskeleton next to the plasma membrane. In particular, actin assembly generates forces and stresses that deform the cell membrane. Cell-sized liposomes are designed to mimic this function. The activation of actin polymerization at their membrane is able to push the membrane forward, thus reproducing the mechanism of lamellipodium extension at the cell front. Moreover, the cell cortex, a submicrometer-thick actin shell right beneath the cell membrane can be reproduced; it contributes to cell tension with the action of molecular motors. We will describe experimental methods to prepare liposomes that mimic the inside geometry of a cell, and that reproduce actin-based propulsion of the liposome using an outside geometry. Such systems allow to study how actin-related proteins control and affect actin cortex assembly and can produce forces that drive cell shape changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. FGFR4 GLY388 isotype suppresses motility of MDA-MB-231 breast cancer cells by EDG-2 gene repression.

    PubMed

    Stadler, Christiane Regina; Knyazev, Pjotr; Bange, Johannes; Ullrich, Axel

    2006-06-01

    Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA-MB-231 human breast cancer cell model. cDNA array analysis showed the ability of FGFR4 G388 to suppress expression of specific genes involved in invasiveness and motility. Further investigations concentrating on cell signalling and motility revealed an abrogation of phosphatidylinositol-3-kinase-dependent LPA-induced Akt activation and cell migration due to downregulation of the LPA receptor Edg-2 in FGFR4 G388-expressing MDA-MB-231 cells. Moreover, FGFR4 G388 expression attenuated the invasivity of the breast cancer cell line and decreased small Rho GTPase activity. We conclude that FGFR4 G388 suppresses cell motility of invasive breast cancer cells by altering signalling pathways and the expression of genes that are required for metastasis. Therefore, the positive effect of FGFR4 R388 on disease progression appears to result from a loss of the tumour suppressor activity displayed by FGFR4 G388 rather than the acquisition or enhancement of oncogenic potential.

  15. Stonin1 mediates endocytosis of the proteoglycan NG2 and regulates focal adhesion dynamics and cell motility

    PubMed Central

    Feutlinske, Fabian; Browarski, Marietta; Ku, Min-Chi; Trnka, Philipp; Waiczies, Sonia; Niendorf, Thoralf; Stallcup, William B.; Glass, Rainer; Krause, Eberhard; Maritzen, Tanja

    2015-01-01

    Cellular functions, ranging from focal adhesion (FA) dynamics and cell motility to tumour growth, are orchestrated by signals cells receive from outside via cell surface receptors. Signalling is fine-tuned by the exo–endocytic cycling of these receptors to control cellular responses such as FA dynamics, which determine cell motility. How precisely endocytosis regulates turnover of the various cell surface receptors remains unclear. Here we identify Stonin1, an endocytic adaptor of unknown function, as a regulator of FA dynamics and cell motility, and demonstrate that it facilitates the internalization of the oncogenic proteoglycan NG2, a co-receptor of integrins and platelet-derived growth factor receptor. Embryonic fibroblasts obtained from Stonin1-deficient mice display a marked surface accumulation of NG2, increased cellular signalling and defective FA disassembly as well as altered cellular motility. These data establish Stonin1 as a specific adaptor for the endocytosis of NG2 and as an important factor for FA dynamics and cell migration. PMID:26437238

  16. Signaling networks and cell motility: a computational approach using a phase field description.

    PubMed

    Marth, Wieland; Voigt, Axel

    2014-07-01

    The processes of protrusion and retraction during cell movement are driven by the turnover and reorganization of the actin cytoskeleton. Within a reaction-diffusion model which combines processes along the cell membrane with processes within the cytoplasm a Turing type instability is used to form the necessary polarity to distinguish between cell front and rear and to initiate the formation of different organizational arrays within the cytoplasm leading to protrusion and retraction. A simplified biochemical network model for the activation of GTPase which accounts for the different dimensionality of the cell membrane and the cytoplasm is used for this purpose and combined with a classical Helfrich type model to account for bending and stiffness effects of the cell membrane. In addition streaming within the cytoplasm and the extracellular matrix is taken into account. Combining these phenomena allows to simulate the dynamics of cells and to reproduce the primary phenomenology of cell motility. The coupled model is formulated within a phase field approach and solved using adaptive finite elements.

  17. Dose Dependent Side Effect of Superparamagnetic Iron Oxide Nanoparticle Labeling on Cell Motility in Two Fetal Stem Cell Populations

    PubMed Central

    Diana, Valentina; Bossolasco, Patrizia; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2013-01-01

    Multipotent stem cells (SCs) could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn), routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI). In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS). Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies. PMID:24244310

  18. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions

    PubMed Central

    Borghi, Nicolas; Lowndes, Molly; Maruthamuthu, Venkat; Gardel, Margaret L.; Nelson, W. James

    2010-01-01

    During normal development and in disease, cohesive tissues undergo rearrangements that require integration of signals from cell adhesions to neighboring cells and to the extracellular matrix (ECM). How a range of cell behaviors is coordinated by these different adhesion complexes is unknown. To analyze epithelial cell motile behavior in response to combinations of cell–ECM and cell–cell adhesion cues, we took a reductionist approach at the single-cell scale by using unique, functionalized micropatterned surfaces comprising alternating stripes of ECM (collagenIV) and adjustable amounts of E-cadherin-Fc (EcadFc). On these surfaces, individual cells spatially segregated integrin- and cadherin-based complexes between collagenIV and EcadFc surfaces, respectively. Cell migration required collagenIV and did not occur on surfaces functionalized with only EcadFc. However, E-cadherin adhesion dampened lamellipodia activity on both collagenIV and EcadFc surfaces and biased the direction of cell migration without affecting the migration rate, all in an EcadFc concentration-dependent manner. Traction force microscopy showed that spatial confinement of integrin-based adhesions to collagenIV stripes induced anisotropic cell traction on collagenIV and migration directional bias. Selective depletion of different pools of αE-catenin, an E-cadherin and actin binding protein, identified a membrane-associated pool required for E-cadherin–mediated adhesion and down-regulation of lamellipodia activity and a cytosolic pool that down-regulated the migration rate in an E-cadherin adhesion-independent manner. These results demonstrate that there is crosstalk between E-cadherin– and integrin-based adhesion complexes and that E-cadherin regulates lamellipodia activity and cell migration directionality, but not cell migration rate. PMID:20566866

  19. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish.

    PubMed

    Hartigan, A; Estensoro, I; Vancová, M; Bílý, T; Patra, S; Eszterbauer, E; Holzer, A S

    2016-12-16

    Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein- actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique "dancing" behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari's microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins.

  20. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish

    PubMed Central

    Hartigan, A.; Estensoro, I.; Vancová, M.; Bílý, T.; Patra, S.; Eszterbauer, E.; Holzer, A. S.

    2016-01-01

    Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein– actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique “dancing” behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari’s microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins. PMID:27982057

  1. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin.

    PubMed

    More, Shyam K; Chiplunkar, Shubhada V; Kalraiya, Rajiv D

    2016-05-01

    Secreted galectin-3 often gets incorporated into extracellular matrix and is utilized by cancer cells for spreading, movement, and metastatic dissemination. Here we investigate molecular mechanisms by which galectin-3 brings about these effects and compare it with fibronectin. Imaging of cells spread on fibronectin showed stress fibers throughout cell body, however, galectin-3-induced formation of parallel actin bundles in the lamellipodial region resulting in unique morphological features. FRAP analysis showed that the actin turnover in the lamellipodial region was much higher in cells spread on galectin-3 as compared to that on fibronectin. Rac1 activation is correlated with lamellipodial organization on bot