Science.gov

Sample records for stimulated luminescence properties

  1. Thermoluminescence and optically stimulated luminescence properties of natural barytes.

    PubMed

    Kitis, G; Kiyak, N G; Polymeris, G S

    2010-12-01

    Heavy, baryte-loaded, concrete is commonly used as radiation shielding material around high energy particle accelerators. Concrete samples received from a shielding block located at CERN cite contain many crystalline inclusions which were identified as barytes by X-ray diffraction analysis and separated by their color, classified as white, orange and green. Basic properties of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals of these barytes samples such as thermal and optical stability, repeatability and mainly the linearity of both their luminescence responses were investigated as a function of beta dose. These results are also discussed regarding detailed investigation on the correlation between TL and OSL signals and their implications for retrospective dosimetry.

  2. On the photo and thermally stimulated luminescence properties of U doped SrBPO{sub 5}

    SciTech Connect

    Kumar, Mithlesh Mohapatra, M.; Natarajan, V.

    2014-12-15

    Highlights: • Synthesis of SrBPO{sub 5}:U phosphor by solid state route. • Confirmed the stabilization of uranium as UO{sub 2}{sup 2+}. • Evaluation of order of kinetics and trap parameters of the system. • ESR-TSL correlation of the observed glow peak. • Probable mechanism proposed for the TSL glow peak. - Abstract: Un-doped and uranium doped SrBPO{sub 5} samples were synthesized using solid-state reaction route and investigated for their photo and luminescence properties. Photoluminescence (PL) spectrum of uranium doped sample showed five peaks at 502, 524, 547, 569 and 597 nm. The average frequency of symmetric stretching of O=U=O in the ground electronic state was found to be about 757 cm{sup −1}. PL decay time measurements on the system confirmed the stabilization of uranium as UO{sub 2}{sup 2+} in the matrix. Thermally stimulated luminescence (TSL) measurements carried out on gamma irradiated SrBPO{sub 5}:U sample showed a glow peak at 390 °K, whose spectral characteristics was found to be typical of UO{sub 2}{sup 2+}. The trap parameters were evaluated using different heating rate method. Room temperature EPR data suggested the formation of borate and oxygen based radical centers in the gamma-irradiated sample. Detailed EPR-TSL correlation studies confirmed the destruction of the oxygen radical to be responsible for the observed glow peak.

  3. Optical, scintillation and thermally stimulated luminescence properties of Ce-doped yttrium-aluminum-indium garnet

    NASA Astrophysics Data System (ADS)

    Mori, Masaki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-01-01

    We have investigated the photoluminescence (PL), scintillation and thermally stimulated luminescence (TSL) properties of 1 mol % Ce-doped Y3(Al X In1- X )5O12 (X = 0-1 Ce:YAING). These samples showed strong and broad PL emission by Ce3+ ion appeared in the spectral range from 480 to 620 nm. The PL decay profiles can be represented by a first-order exponential function with the decay time ranging 39-62 ns. Furthermore, the scintillation spectra showed similar features with those observed in PL. The scintillation decay time profiles were approximated by second or third order exponential decay functions, and we observed 26-61 ns component due to Ce3+ emission. The X-ray induced afterglow levels of Ce:YAING were worse than that of Ce:Y3Al5O12. The pulse height spectra of Ce:Y3(Al0.26In0.74)5O12 showed a clear photoabsorption peak, and that of the scintillation light yield was around 6,700 photons/MeV. In TSL glow curves, Ce:YAING show the glow peak at around 110 °C.

  4. Luminescence properties of BaTiO{sub 3}:Eu{sup 3+} obtained via microwave stimulated hydrothermal method

    SciTech Connect

    Pazik, R.; Wiglusz, R.J.; Strek, W.

    2009-06-03

    BaTiO{sub 3} nanocrystalline powders doped with the Eu{sup 3+} ions have been prepared using microwave stimulated hydrothermal method (MSHM). Structure, average grain size and morphology of the BaTiO{sub 3}:Eu{sup 3+} were analyzed by means of the X-ray powder diffraction measurements, Raman spectroscopy and SEM microscopy. The luminescence properties and decay times of the hydrothermal BT:Eu{sup 3+} nanocrystalline powders have been investigated as a function of the grain size, dopant concentration, preparation conditions and sintering temperature. It was found that the studied properties are strongly dependent on the grain size of BaTiO{sub 3}:Eu{sup 3+} nano-crystallites.

  5. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  6. Thermally stimulated luminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O.; Drobchak, O.

    2008-05-01

    The thermally stimulated luminescence (TSL) of normal and pathological urine was studied. The presence of pathological salts leads to extinguishing of TSL intensity and to the appearance of additional stripes with maxima nearly 118 and 205K, except of characteristic stripes with the maxima nearly 173 and 260K. TSL stripes depend on urine constituents. The comparison of TSL intensity of normal and pathological urine is carried out and energies of thermal activation are determined for most intensive TSL stripes.

  7. Thermoluminescence and optically stimulated luminescence properties of the 0.5P₂O₅-xBaO-(0.5-x)Li₂O glass systems.

    PubMed

    Timar-Gabor, A; Ivascu, C; Vasiliniuc, S; Daraban, L; Ardelean, I; Cosma, C; Cozar, O

    2011-05-01

    Thermoluminescence and optically stimulated luminescence properties of phosphate glasses doped with BaO and Li(2)O at various concentrations were studied. Lithium-doped glasses show a broad TL peak in the 200-300°C region with poor dosimetric characteristics. Barium-doped glasses feature at least two TL peaks, approximately at 200 and 400°C, which were attributed to Ba(2+) ions. They also produce a fast-decaying OSL signal correlated with the lower-temperature TL peak. Responses of both TL emissions to radiation doses up to 100 Gy are linear (R² >0.99). Due to its encouraging characteristics such as acceptable batch homogeneity, good measurement reproducibility and weak signal fading, the P₂O₅-xBaO glass can be considered as a candidate material for dosimetry in the high-dose range (>10 Gy).

  8. Thermally stimulated luminescence of urine salts

    NASA Astrophysics Data System (ADS)

    Bordun, O. M.; Drobchak, O. Z.

    2007-07-01

    We investigated thermally stimulated luminescence (TSL) of urine salts in the normal state and with oxalate, urate, and phosphate salts. We found that the presence of pathological salts leads to a decrease of TSL intensity and to the appearance of additional TLS bands with maxima at 118 and 205 K in addition to the characteristic bands at 173 and 260 K. The TLS bands are related to the urine components. The TSL intensities of urine salts of different chemical composition are compared. The thermal activation energy of the strongest TSL bands is determined.

  9. Luminescent solar concentrators utilizing stimulated emission.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  10. Luminescent solar concentrator improvement by stimulated emission

    NASA Astrophysics Data System (ADS)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W.; Schmidt, Timothy W.; Argyros, Alexander

    2015-12-01

    Luminescent solar concentrators (LSCs) offer the prospect of reducing the cost of solar energy, and are a promising candidate for building integrated photovoltaic (PV) structures. However, the realization of commercially viable efficiency of LSCs is currently hindered by reabsorption losses. In this work, a method is introduced for reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire length of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption, and directed by the seed laser towards a small target PV cell. A mathematical model of such a system is presented which identifies different physical parameters responsible for the power conversion efficiency and gives the net effective output power.

  11. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  12. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    NASA Astrophysics Data System (ADS)

    José Guidelli, Eder; Ramos, Ana Paula; Baffa, Oswaldo

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films.

  13. Luminescence properties of a Fibonacci photonic quasicrystal.

    PubMed

    Passias, V; Valappil, N V; Shi, Z; Deych, L; Lisyansky, A A; Menon, V M

    2009-04-13

    An active one-dimensional Fibonacci photonic quasi-crystal is realized via spin coating. Luminescence properties of an organic dye embedded in the quasi-crystal are studied experimentally and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in good agreement with the theoretical calculations for steady-state luminescence spectra.

  14. Optically stimulated luminescence dosimetry with gypsum wallboard (drywall).

    PubMed

    Thompson, Jeroen W; Burdette, Kevin E; Inrig, Elizabeth L; Dewitt, Regina; Mistry, Rajesh; Rink, W Jack; Boreham, Douglas R

    2010-09-01

    Gypsum wallboard (drywall) represents an attractive target for retrospective dosimetry by optically stimulated luminescence (OSL) in the event of a radiological accident or malicious use of nuclear material. In this study, wallboard is shown to display a radiation-induced luminescence signal (RIS) as well as a natural background signal (NS), which is comparable in intensity to the RIS. Excitation and emission spectra show that maximum luminescence intensity is obtained for stimulation with blue light-emitting diodes (470 nm) and for detection in the ultraviolet region (290-370 nm). It is necessary to decrease the optical stimulation power dramatically in order to adequately separate the RIS from the interfering background signal. The necessary protocols are developed for accurately measuring the absorbed dose as low as 500 mGy and demonstrate that the RIS decays logarithmically with storage time, with complete erasure expected within 1-4 d.

  15. Monolithic Integrated Radiation Sensor Using Stimulated Luminescence From Alumina

    NASA Technical Reports Server (NTRS)

    McKeever, S. W. S.; Yukihara, E. G.; Stoebe, T. G.; Chen, T.-C.

    2005-01-01

    The project goal was to design and test a monolithic integrated device for radiation sensing, using optically stimulated luminescence (OSL) from Al2O3:C. The device would consist of GaN/InGaN-based components epitaxially grown on each side of a A12O3:C substrate. Radiation energy stored in the substrate would be stimulated by visible emission from a GaN light-emitting diode (LED) grown on one side of the device, and the OSL emission from the substrate (in the blue region of the spectrum) would be detected by the InGaN pi-n diode grown on the other side of the substrate. The primary application of the device would be in space radiation environments. Thus, two major research thrusts were launched during this project. Firstly, research at Oklahoma State University (Dr. Stephen W.S. McKeever and Dr. E.G. Yukihara) concentrated on characterization of the OSL properties of Al2O3:C in radiation fields typical of those experienced in low-Earth orbit. Secondly, research at the University of Washington (Co-Is, Dr. T.G. Stoebe and Dr. T. Chen) focused of device development and GaN/InGaN epitaxial growth. While progress in each line of research has been substantial, the ultimate goal (that of producing a working prototype device) has not yet been reached. We detail the research progress and identify outstanding issues in this paper.

  16. Emergency Optically Stimulated Luminescence Dosimetry Using Different Materials

    PubMed Central

    Sholom, S; DeWitt, R; Simon, SL; Bouville, A; McKeever, SWS

    2011-01-01

    Several materials were tested as possible individual emergency dosimeters using Optically Stimulated Luminescence (OSL) as means to assess the exposure. Materials investigated included human nails, business cards and plastic buttons. The OSL properties of these materials were studied in comparison with those of teeth. Most samples revealed OSL signals only after exposure to ionizing radiation; some samples of business cards, however, displayed a strong initial “native” signal (i.e. existing in the samples prior to irradiation). The sensitivity (minimum measurable dose) of the samples was found to vary significantly from sample to sample of the same material and was in the range from several tens of mGy to a few dozens of Gy. The dose response curves were linear for doses below 10 Gy. Fading of the OSL signals was estimated for different lenghts of times and found to be ~95%, 45%, 30% and 15% for samples of teeth, business cards, buttons and nails, respectively, following storage at room temperature in the dark for a period of 3 weeks after exposure. For samples stored under routine laboratory light, fading was much faster and the radiation-induced signals almost disappeared after a few hours of such illumination. It was concluded that the tested materials could be used in triage situations to detect and estimate the possible overexposure of individuals if the measurements can be performed soon enough after exposure. PMID:22125409

  17. Luminescence properties of a nanoporous freshwater diatom.

    PubMed

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay.

  18. Optically Stimulated Luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure

    PubMed Central

    Yukihara, E.G.; Mittani, J.; McKeever, S.W.S.; Simon, S.L.

    2009-01-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed. PMID:19623269

  19. Optically Stimulated Luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure.

    PubMed

    Yukihara, E G; Mittani, J; McKeever, S W S; Simon, S L

    2007-07-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed.

  20. Luminescence properties of silicon-cellulose nanocomposite

    NASA Astrophysics Data System (ADS)

    Pikulev, Vitaly; Loginova, Svetlana; Gurtov, Valery

    2012-07-01

    We have characterized the structure and luminescence properties for two-component material composed of nanocrystalline cellulose and nanocrystalline (less to 100 nm) silicon powder. An efficient and stable photoluminescence of nanocomposite, resistant to the influence of gas-phase oxidants, has been found. The obtained material has electret-like properties and demonstrates the possibility of multiple-recharging in an electric field near 5·103 V/cm at temperatures ranging from -70°C to 100°C. The presence of the electric field, as well as ozone or low-temperature plasma treatment, does not change the luminescence spectrum due to quantum size properties of silicon nanoparticles. We believe that these particles may appear in two states: both embedded in a cellulose matrix and in the form of mechanical mixture.

  1. Identifying irradiated flours by photo-stimulated luminescence technique

    SciTech Connect

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  2. Identifying irradiated flours by photo-stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-01

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  3. Protocols for Thermoluninescence and Optically Stimulated Luminescence Research at DOSAR

    SciTech Connect

    Bernal, SM

    2004-10-11

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research at the Dosimetry Applications Research (DOSAR) facility complex. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and materials testing in a variety of radiation environments. Collaborations with the University of Tennessee-Knoxville (UTK) have also led to important contributions in the area of archaeometry, particularly as it relates to the use of radiation dosimetry to date archaeological artifacts. This manual is to serve as the primary instruction and operation manual for dosimetric and archaeometric research at DOSAR involving thermoluminescence (TL) and optically stimulated luminescence (OSL). Its purpose is to (1) provide protocols for common practices associated with the research, (2) outline the relevant organizational structure, (3) identify the Quality Assurance plan, and (4) describe all the procedures, operations, and responsibilities for safe and proper operation of associated equipment. Each person who performs research at DOSAR using TL/OSL equipment is required to read the latest revision of this manual and be familiar with its contents, and to sign and date the manual's master copy indicating that the manual has been read and understood. The TL/OSL Experimenter is also required to sign the manual after each revision to signify that the changes are understood. Each individual is responsible for completely understanding the proper operation of the TL/OSL equipment used and for following the guidance contained within this manual. The instructions, protocols, and operating procedures in this manual do not replace, supersede, or alter the hazard mitigation controls identified in the Research Safety Summary (''Thermoluminescence/Optically Stimulated

  4. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  5. Optimized readout system for cooled optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1990-09-01

    Cooled Optically Stimulated Luminescence (COSL) in CaF2:Mn is an ionizing radiation dosimetry method recently developed at the Pacific Northwest Laboratory (PNL). In this method CaF2:Mn crystals irradiated by gamma radiation at room temperature are cooled to liquid nitrogen temperature (77 K), stimulated by ultraviolet laser light at 326 nm, and allowed to warm to room temperature. Light emission proportional to the gamma exposure occurs as the TLD warms from liquid nitrogen temperature to room temperature. The new method is an example of a highly sensitive phototransfer technique which could form the basis for future radiation dosimetry applications. Measurements to date have shown high potential for measuring gamma exposures in the range of 10 microR. The high sensitivity of the COSL technique is due in part to the larger quantum efficiency of radiative recombination at low temperatures and to the complete absence of the incandescent background associated with conventional thermoluminescent readout methods. Along with the potential for a system which is more sensitive than thermoluminescent readers, multiple COSL readouts can be performed with minimal reduction in the COSL intensity. The multiple readout capability can serve as a possible permanent dosimetry record, thus allowing the reanalysis of a questionable reading. In an attempt to optimize the sensitivity of the COSL method, a new readout system is being developed.

  6. X-ray and thermally stimulated luminescence in YAG

    SciTech Connect

    Smol'skaya, L.P.; Martynovich, E.F.; Davydchenko, A.G.; Smirnova, S.A.

    1987-07-01

    Yttrium aluminum garnet Y/sub 3/Al/sub 5/O/sub 12/ (YAG) crystals with rare earth ion (REI) impurities are widely used in laser technology and also in the capacity of cathode luminophors. Recently they have attracted the attention of researchers for their possible use as x-ray luminophors, scintillators, and thermoluminescent detectors. However, research in these areas is not very comprehensive. This work compares the intensity of x-ray luminescence (XRL) and the inertial characteristics of YAG monocrystals that are activated by REI (Ce/sup 3 +/, Sm/sup 3 +/, Dy/sup 3 +/, Tm/sup 3 +/, and Er/sup 3 +/), with the x-ray luminophore CsI-Tl. Since the existence of deep capture levels exerts a significant influence on the useful properties of x-ray luminophores, YAG thermoluminescence was also studied.

  7. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    SciTech Connect

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-07-31

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  8. Optically Stimulated Luminescence Response of Commercial SiO2 Optical Fiber

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2008-01-01

    The use of Optically Stimulated Luminescence (OSL) for radiation dosimetry has become increasingly popular in recent years. The OSL method is based on luminescence emitted from semiconductor materials stimulated with specific wavelengths of light, after being exposed to ionizing radiation. The OSL intensity is a function of the radiation dose absorbed by the material. This work complements previous studies by the authors of the thermoluminescence (TL) response by SiO{sub 2} commercial optical fiber exposed to ionizing radiation and provides preliminary results describing some of the material's OSL properties. Linear OSL response to beta-radiation dose, along with a consistent shape of the photon emission curve with time, were observed using a green/blue OSL excitation laser. The reproducibility of OSL response after repeated irradiations and the change in intensity with time were also examined. The search for and characterization of materials that exhibit this OSL response, in parallel with the continued development of OSL methodology and instrumentation, is an important scientific and commercial issue.

  9. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl

  10. Thermoluminescence and optically stimulated luminescence in various phases of doped Na2SO4

    NASA Astrophysics Data System (ADS)

    Gaikwad, S. U.; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2016-02-01

    The dependence of optically stimulated luminescence (OSL) and thermoluminescence (TL) response due to crystal phase in Cu and Cu,Mg-doped Na2SO4 was studied. Study shows that the slowly cooled samples which crystallize in phase V show good OSL sensitivity whereas the quenched samples of Na2SO4 which crystallize in phase III irrespective of doping show no OSL sensitivity. However, during storage when phase III samples get converted to phase V, samples show OSL sensitivity comparable to freshly prepared samples in phase V. Hence, it is observed that TL-OSL properties of doped Na2SO4 are phase dependent .This study will be helpful in developing OSL phosphors in which phase plays an important role in deciding the desired properties.

  11. Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation.

    PubMed

    Bernal, R; Souza, D N; Valerio, M E G; Cruz-Vázquez, C; Barboza-Flores, M

    2006-01-01

    Optically stimulated luminescence (OSL) has become the technique of choice in many areas of dosimetry. Natural materials like topaz are available in large quantities in Brazil and other countries. They have been studied to investigate the possibility of use its thermoluminescence (TL) properties for dosimetric applications. In this work, we investigate the possibility of utilising the OSL properties of natural Brazilian topaz in dosimetry. Bulk topaz samples were exposed to doses up to 100 Gy of beta radiation and the integrated OSL as a function of the dose showed linear behaviour. The fading occurs in the first 20 min after irradiation but it is <6% of the integrated OSL measured shortly after exposure. We conclude that natural colourless topaz is a very suitable phosphor for OSL dosimetry.

  12. Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.

    PubMed

    He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue

    2015-03-01

    An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence.

  13. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  14. Luminescence and structural properties of oxyorthosilicate and Al2O3 nanophosphors

    SciTech Connect

    Blair, Michael W; Jacobsohn, Luiz G; Bennett, Bryan L; Tornga, Stephanie C; Muenchausen, Ross E; Yukihara, Eduardo G

    2008-01-01

    A large amount of research has been conducted on semiconducting quantum dots exploring quantum confinement effects. On the other hand, nanophosphors -- inorganic insulating nanostructured luminescent materials -- have received considerably less attention. Our research involving nanomaterials has then focused on the question: How does reduced dimensionality affect the physical and chemical behavior of nanophosphors? In order to partially answer this fundamental question, we have produced numerous oxides, among them Lu{sub 2}SiO{sub 5}Ce (LSO), Y{sub 2}SiO{sub 5}:Ce (YSO), Gd{sub 2}SiO{sub 5}:Ce (GSO), and Al{sub 2}O{sub 3}, and characterized their structural and luminescent properties. Structure, grain size, phase purity and chemical homogeneity in the nanoscale were determined using x-ray diffraction, transmission electron microscopy, and electron paramagnetic resonance. The luminescent properties of the nanophosphors were characterized by thermoluminescence, radioluminescence, photoluminescence, and optically stimulated luminescence. In this work, we present an overview of the nascent field of nanophosphors, and summarize the results obtained in our laboratory with particular emphasis on the luminescent properties.

  15. Luminescent properties of cadmium selenide quantum dots in fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Lipatova, Zh. O.; Kolobkova, E. V.; Babkina, A. N.

    2016-11-01

    The optical properties of fluorophosphate glasses with CdSe quantum dots are studied. Secondary heat treatment at a temperature exceeding the glass transition temperature resulted in the formation of quantum dots with sizes of 3.7-6.2 nm. The influence of the semiconductor component concentration on the spectral-luminescent characteristics of glasses is shown. It is experimentally demonstrated that glasses with a lower CdSe concentration have a higher absolute luminescence quantum yield.

  16. Donor characterization in ZnO by thermally stimulated luminescence

    SciTech Connect

    Ji, jianfeng; Boatner, Lynn A; Selim, F. A.

    2014-01-01

    Low temperature thermo-luminescence (TL) was applied to measurements of the ionization energy of donors in ZnO. Three hydrogen-related donors were characterized with ionization energies of 36, 47 and 55 meV - values that are in complete agreement with previous reports. The donor types can be switched by relevant thermal treatments. These measurements also revealed the presence of two distinct sources for the green luminescence in ZnO. This work indicates that TL can be used to measure the donor energies in luminescent semiconductors. This approach can be particularly useful for thin-film investigations when the results of Hall-effect measurements are obscured by contributions from conductive interfaces or substrates.

  17. Optically stimulated luminescence dating of cave deposits at the Xiaogushan prehistoric site, northeastern China.

    PubMed

    Zhang, Jia-Fu; Huang, Wei-Wen; Yuan, Bao-Yin; Fu, Ren-Yi; Zhou, Li-Ping

    2010-11-01

    The Xiaogushan cave site is one of the most important prehistoric sites in North China. The stone and bone artifacts found in the cave are similar to European contemporaneous artifacts. Cave deposits consist of five layers that have been dated from 46,353 ± 1179 to 4229 ± 135 cal. yr BP, using radiocarbon dating techniques on charcoal and bone samples collected from Layers 2-5. In this paper, optically stimulated luminescence (OSL) techniques were applied to date six samples taken from Layers 1-3. The luminescence properties of the fine-grained and coarse-grained quartz extracts indicate that the materials are suitable for OSL dating using a single-aliquot regeneration-dose (SAR) protocol. The OSL ages obtained are broadly consistent with the stratigraphy and the associated calibrated radiocarbon ages. The dating results show that the cave was first occupied by humans about 70 ka. The human occupation of the cave may be related to climate change. An occupation hiatus is inferred to between ∼ 17 to ∼ 10 ka. The stone and bone artifacts found in Layers 2 and 3 may indicate the Middle to Upper Paleolithic transitions in the region.

  18. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    PubMed Central

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  19. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    SciTech Connect

    Lye, Jessica Dunn, Leon; Kenny, John; Alves, Andrew; Lehmann, Joerg; Williams, Ivan; Kron, Tomas; Oliver, Chris; Butler, Duncan; Johnston, Peter; Franich, Rick

    2014-03-15

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectors are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3

  20. Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures.

    PubMed

    Miyata, Kohei; Nakagawa, Tetsuya; Kawakami, Ryuhei; Kita, Yuki; Sugimoto, Katsufumi; Nakashima, Takuya; Harada, Takashi; Kawai, Tsuyoshi; Hasegawa, Yasuchika

    2011-01-10

    The distorted coordination structures and luminescence properties of novel lanthanide complexes with oxo-linked bidentate phosphane oxide ligands--4,5-bis(diphenylphosphoryl)-9,9-dimethylxanthene (xantpo), 4,5-bis(di-tert-butylphosphoryl)-9,9-dimethylxanthene (tBu-xantpo), and bis[(2-diphenylphosphoryl)phenyl] ether (dpepo)--and low-vibrational frequency hexafluoroacetylacetonato (hfa) ligands are reported. The lanthanide complexes exhibit characteristic square antiprism and trigonal dodecahedron structures with eight-coordinated oxygen atoms. The luminescence properties of these complexes are characterized by their emission quantum yields, emission lifetimes, and their radiative and nonradiative rate constants. Lanthanide complexes with dodecahedron structures offer markedly high emission quantum yields (Eu: 55-72 %, Sm: 2.4-5.0 % in [D(6)]acetone) due to enhancement of the electric dipole transition and suppression of vibrational relaxation. These remarkable luminescence properties are elucidated in terms of their distorted coordination structures.

  1. Long persistent and optically stimulated luminescence behaviors of calcium aluminates with different trap filling processes

    SciTech Connect

    Zhang, Buhao; Xu, Xuhui; Li, Qianyue; Wu, Yumei; Qiu, Jianbei; Yu, Xue

    2014-09-15

    Properties of long persistent luminescence (LPL) and optically stimulated luminescence (OSL) of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} (R=Nd, Dy, Tm) materials were investigated. The observed phenomenon indicates that R{sup 3+} ions (R=Nd, Dy, Tm) have different effects on trap properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}. The greatly improved LPL performance was observed in Nd{sup 3+} co-doped samples, which indicates that the incorporation of Nd{sup 3+} creates suitable traps for LPL. While co-doping Tm{sup 3+} ions, the intensity of high temperature of thermoluminescence band in CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors is enhanced for the formation of the most suitable traps which benefits the intense and stable OSL. These results suggest that the effective traps contributed to the LPL/OSL are complex, of which could be an aggregation formation with shallow and deep traps other than simple traps from co-doped R{sup 3+} ions. The mechanism presented in the end potentially provides explanations of why the OSL of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} exhibits different read-in/read-out performance as well. - Graphical abstract: OSL emission spectra of Ca{sub 0.995}Al{sub 2}O{sub 4}:0.0025Eu{sup 2+}, 0.0025R{sup 3+} (R=Nd, Dy, Tm) taken under varying stimulation time (0, 25, 50, 75, 100 s). Inset: Blue emission pictures under varying stimulation time. - Highlights: • The LPL and OSL properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} were investigated. • An alternative approach to control the trap depth of CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphor was proposed. • A new oxide ETM phosphor exhibiting intense and stable OSL was explored.

  2. Detection of UV light based on chemically stimulated luminescence of crystal phosphors

    NASA Astrophysics Data System (ADS)

    Grankin, D. V.; Grankin, V. P.; Martysh, M. A.

    2016-06-01

    High-efficiency accommodation of heterogeneous-reaction energy via an electronic channel and the possibility of using this effect to design an ionizing (UV) radiation detector based on chemically stimulated luminescence have been investigated. Preliminary irradiation of a ZnS sample by UV light is found to cause a luminescence flash under subsequent exposure of the sample surface to a flux of hydrogen atoms. The flash intensity depends on the UV excitation level and increases by several orders of magnitude in comparison with an unirradiated sample. It is shown that a new method for detecting UV light using chemically stimulated luminescence of crystal phosphors accumulating light yield can be developed based on this effect.

  3. Structural and luminescent properties of electron-irradiated silicon

    SciTech Connect

    Sobolev, N. A.; Loshachenko, A. S.; Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V.; Shtel'makh, K. F.; Vdovin, V. I.; Xiang, Luelue; Yang, Deren

    2014-02-21

    Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 μm in the room-temperature electroluminescence spectrum.

  4. [Synthesis, characterization and NIR luminescence properties of erbium organic complexes].

    PubMed

    Wang, Huai-shan; Qian, Guo-dong; Wang, Min-quan; Luo, Yong-shi; Lin, Jiu-ling

    2005-03-01

    Several erbium organic complexes, hydrated erbium binary complexes with acetylacetone (AcAc) or dibenzoylmethane (DBM), erbium ternary complexes derived from 1,10-phenanthroline (Phen) with acetylacetone (AcAc), dibenzoylmethane (DBM) or trifluoroacetylacetone (TFA), were synthesized and identified by elemental analysis. The UV-Vis absorption and FTIR spectra measurements have been employed for all the erbium complexes. Near infrared (NIR) photoluminescence properties, such as luminescence intensity and effective bandwidth, of the erbium complexes were also studied. As a result, the erbium ternary complex with AcAc and Phen exhibits the most excellent luminescence properties among those investigated complexes.

  5. Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters

    NASA Astrophysics Data System (ADS)

    Kolobkova, E. V.; Kukushkin, D. S.; Nikonorov, N. V.; Sidorov, A. I.; Shakhverdov, T. A.

    2015-02-01

    It is experimentally shown that, prior to the formation of CdSe quantum dots in fluorophosphate glasses with cadmium and selenium ions in the process of synthesis, subnanosized molecular clusters (CdSe) n are formed, which exhibit luminescence in the visible spectral region upon UV excitation. Heat treatment of the glasses increases the size of molecular clusters and makes their optical properties closer to the optical properties of CdSe semiconductor quantum dots. An increase in the sample temperature from 20 to 250°C leads to reversible thermal quenching of the luminescence.

  6. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  7. Persistent luminescence properties of SrMg2(PO4)2:Eu2+,Tb3+

    NASA Astrophysics Data System (ADS)

    Ju, Guifang; Hu, Yihua; Chen, Li; Wang, Xiaojuan; Hung, Lihua

    2014-03-01

    We investigate the persistent luminescence in europium-doped SrMg2(PO4)2 upon codoping with auxiliary terbium. Luminescence properties of the phosphors, including photoluminescence, luminescence decay and thermoluminescence, are systematically studied. SrMg2(PO4)2:Eu2+ shows only a weak persistent luminescence, and codoping with Tb3+ is necessary to obtain considerable persistent luminescence. An energy level scheme is constructed to convey reasonable trapping and detrapping processes in the material.

  8. X-ray luminescence based spectrometer for investigation of scintillation properties

    SciTech Connect

    Varney, C. R.; Khamehchi, M. A.; Ji, Jianfeng; Selim, F. A.

    2012-10-15

    A new x-ray luminescence based spectrometer was developed and installed to examine the scintillation properties of materials while revealing the origins of luminescence and investigating trapping defects. Measurements were performed on a number of undoped and Ce doped yttrium aluminum garnet crystals and various luminescence centers were characterized. The measured x-ray luminescence spectra provide information about the spectral range and the scintillation efficiency and linearity. The efficiency of charge-carriers production due to x ray, their energy transfer to the luminescence centers, and the efficiency of luminescence are all reflected in the efficiency of x-ray luminescence.

  9. Dependence of the stimulated luminescence threshold in ZnO nanocrystals on their geometric shape

    SciTech Connect

    Gruzintsev, A. N. Redkin, A. N.; Barthou, C.

    2010-05-15

    The effect of the shape and dimensions of zinc oxide nanocrystals on the spontaneous luminescence decay times and the thresholds of stimulated luminescence in the ultraviolet spectral region is studied. It is shown that the columnar nanocrystals with hexagonal faceting exhibit the lowest threshold power of optical excitation for the diameters of the nanocavities are 100-200 nm, comparable to the absorption length for the excitation light. Different mechanisms of lasing are established for nanocrystals shaped as prisms and pyramids with a hexagonal base. Variations in the decay times and lasing thresholds can be attributed to different local densities of photon states in regularly shaped nanocrystals.

  10. Detection of surface impurity phases in high T.sub.C superconductors using thermally stimulated luminescence

    DOEpatents

    Cooke, D. Wayne; Jahan, Muhammad S.

    1989-01-01

    Detection of surface impurity phases in high-temperature superconducting materials. Thermally stimulated luminescence has been found to occur in insulating impurity phases which commonly exist in high-temperature superconducting materials. The present invention is sensitive to impurity phases occurring at a level of less than 1% with a probe depth of about 1 .mu.m which is the region of interest for many superconductivity applications. Spectroscopic and spatial resolution of the emitted light from a sample permits identification and location of the impurity species. Absence of luminescence, and thus of insulating phases, can be correlated with low values of rf surface resistance.

  11. Evaluation of environmental dose at JCO using luminescence from quartz stimulated by blue light.

    PubMed

    Hong, D G; Galloway, R B; Takano, M; Hashimoto, T

    2001-01-01

    The environmental dose due to the recent nuclear accident at JCO, Japan, was estimated using luminescence optically stimulated from unheated quartz. Two methods originally developed for dating analysis, the single aliquot additive dose method and the single aliquot regeneration added dose method, were employed to confirm the dose rate. Consistent results were obtained from both methods and from thermoluminescence measurements. Although the dose rate values had lower precision than can be obtained from heated materials, it is suggested that luminescence from sedimentary quartz can usefully be employed in retrosepective dosimetry.

  12. Use of an airborne Fraunhofer line discriminator for the detection of solar stimulated luminescence

    USGS Publications Warehouse

    Watson, Robert D.; Hemphill, William R.

    1976-01-01

    Future work will include the integration of the FLO with a line scan imaging system in order to assess the contribution of two-dimensional spatial resolution to the interpretability and usefulness of luminescence data. It should also include 1) investigation of luminescence polarization of some materials, particularly metal stressed plants, 2) an assessment of the use of pulsed lasers to stimulate phosphorescence decay time in the nanosecond and microsecond ranges; and 3) a study to determine the feasibility of conducting an FLO experiment from the Space Shuttle or other spacecraft.

  13. Luminescent properties of diamond single crystals of pyramidal shape

    NASA Astrophysics Data System (ADS)

    Alekseev, A. M.; Tuyakova, F. T.; Obraztsova, E. A.; Korostylev, E. V.; Klinov, D. V.; Prusakov, K. A.; Malykhin, S. A.; Ismagilov, R. R.; Obraztsov, A. N.

    2016-11-01

    The luminescence properties of needle-like crystals of diamond, obtained by selective oxidation of textured polycrystalline diamond films, are studied. Diamond films were grown by chemical vapor deposition from a methane-hydrogen mixture activated by a DC discharge. The spectra of photo- and cathodoluminescence and the spatial distribution of the intensity of radiation at different wavelengths are obtained for individual needle-like crystals. Based on the spectral characteristics, conclusions are made about the presence of optically active defects containing nitrogen and silicon impurities in their structure, as well as the significant effect of structural defects on their luminescence spectra.

  14. Molecule-based electrorheological material with luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Liao, Fu-Hui; Shang, Yan-Li; Jia, Yun-Ling; Li, Jun-Ran

    2013-02-01

    Molecule-based electrorheological (ER) materials with luminescence property, based on β-cyclodextrin [(C6O5H10)7, β-CD] inclusion compounds between β-CD (host) and the rare earth (RE) (RE=Tb, Eu) complex (guest), have been synthesized as a novel type of ER materials using β-CD, Tb(NO3)3, Eu(NO3)3, sulphosalicylic acid (C7H6O6S·2H2O, SSA) and m-phthalic acid (C8H6O4, MPA) as original materials. The composition, ER performance, luminescence property and dielectric property of the materials have been studied. The results show that the rare earth complex in the cavity of β-CD may enhance the ER performance of β-CD, and the complex (Tb-SSA) of Tb3+ can improve more effectively the ER activity of β-CD than that (Eu-MPA) of Eu3+ among both of the complexes. The composition and structure are the dominant factors in improving the ER effect. The fluorescence intensity, fluorescence lifetime and emission quantum yield of the particle materials and their suspensions in silicone oil have been tested, and fine luminescence performance has been detected. The material with ER activity and luminescence performance is a novel multifunctional material which would have wide application prospect.

  15. Structure and spectral-luminescent properties of polymethine dyes

    NASA Astrophysics Data System (ADS)

    Ishchenko, Aleksandr A.

    1991-08-01

    The review considers the influence of the length of the polymethine chain, the structures of the hetero-radicals, the nature of substituents, electronic asymmetry, interactions of chromophores, structures of ion-pairs, photochemical reactions with proton transfer, and concentration, on the spectral-luminescent properties of polymethine dyes. The characteristic features of these properties in low-polarity media, including polymeric matrices, are discussed. Solvatochromism and solvatofluorochromism of polymethines are considered. Major factors influencing changes in the spectral-luminescent properties of cyanines, in relation to their structure and the nature of the medium, are revealed. Possible applications of polymethines to the solution of various problems connected with the transformation of light energy are discussed. The bibliography includes 231 references.

  16. Characterization and modeling of relative luminescence efficiency of optically stimulated luminescence detectors exposed to heavy charged particles

    NASA Astrophysics Data System (ADS)

    Sawakuchi, Gabriel Oliveira

    Scope and method of study. This work investigates the optically stimulated luminescence (OSL) response of carbon-doped aluminum oxide Al2O3:C detectors exposed to heavy charged particles (HCPs) with energies relevant to radiation protection in space, and cancer therapy. This investigation includes ground-based experiments in accelerators and theoretical studies of the detector's response. These theoretical studies are based on the track structure model (TSM) and require information of the spatial pattern of energy deposition around the HCP path---the radial dose distribution (RDD). Thus, RDDs were obtained using six analytical models, and Monte Carlo (MC) simulations with the code GEANT4. In addition, we propose a modified analytical model to improve the agreement between calculated and experimental efficiency values. Findings and conclusions. Dose response experiments showed that beta rays and H 1000 MeV radiations produced similar responses in the detectors and we concluded that the H 1000 MeV and beta radiations deposit energy similarly. We observed a common trend of decreasing the relative luminescence efficiency (etaHCP,gamma ) as increasing the unrestricted linear energy transfer in water ( LH2Oinfinity ) for all the detectors. For Luxel(TM) detectors the eta HCP,gamma was close to unit for particles with LH2Oinfinity lower than 3 keV/mum. TSM using the RDD from Chatterjee and Schaefer, Butts and Katz, Waligorski et al., Fageeha et al., Kiefer and Straaten, and Geibeta et al. models failed to predict the etaHCP,gamma values. We proposed a modified version of the RDD from Butts and Katz model, which agreed within 20% with relative luminescence efficiency experimental data. This was the first time that such agreement was achieved for a wide range of HCPs of different energies. MC simulations with GEANT4 agreed within 35% with etaHCP,gamma experimental data. Finally, we suggested a correction method, based on the calculation of etaHCP,gamma using the TSM

  17. Photoelectric and luminescent properties of dysprosium-doped silver chloride

    SciTech Connect

    Novikov, G. F. Rabenok, E. V.; Bocharov, K. V.; Lichkova, N. V.; Ovchinnikov, O. V.; Latyshev, A. N.

    2011-02-15

    The influence of dysprosium doping on the photoelectric and luminescent properties of AgCl crystals is studied by methods of microwave photoconductivity and photoluminescence. Doping affects both the loss kinetics of photogenerated electrons and luminescence spectra and parameters of photostimulated burst of luminescence. It is shown that the charged [Dy{sub Ag}{sup {center_dot}{center_dot}} {center_dot} V Prime {sub Ag}]{sup {center_dot}} or neutral [Dy{sub Ag}{sup {center_dot}{center_dot}} {center_dot} 2V Prime {sub Ag}]{sup x} complexes are responsible for a new luminescence band peaked at 470 nm, which manifests itself at weight concentrations of the doping additive >10{sup -6}%. The long-wavelength shoulder at 570 nm in the photoluminescence spectra is attributed to intracenter transitions in the Dy{sup 3+} ions. The rate constant of the reaction of electron capture into the traps forming upon introduction of the dopant, k{sub t} = (3-5) Multiplication-Sign 10{sup -8} cm{sup 3} s{sup -1}, is evaluated. It is assumed that the traps are Dy{sup 3+} dysprosium ions.

  18. Spectral-luminescent and lasing properties of pyridylaryloxazoles

    SciTech Connect

    Alekseeva, V.I.

    1986-09-01

    This paper studies the spectral-luminescent and lasing properties of several new 2-(4-pyridyl)-5-aryloxazoles with a varying substituent in the 5-phenyl radical, and their quarternary salts (II). The spectral-luminescent properties of the compounds synthesized were investigated by using a SF-4A spectrophotometer and a fluorescent apparatus based on a ZMR-3 monochromator with photoelectric recording. The absolute fluorescence quantum yields were determined by the equal absorption method. The absorption spectra of compounds I in 96% ethanol are not different in their character from an absorption spectrum of unsubstituted 2,5-diphenyloxazole (PPO). It is shown that the compounds studied are prospective for lasing emission in the 16,130-20,410 cm/sup -1/ region.

  19. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    SciTech Connect

    Song, Xue-Qin Lei, Yao-Kun; Wang, Xiao-Run; Zhao, Meng-Meng; Peng, Yun-Qiao; Cheng, Guo-Quan

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversities indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.

  20. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    NASA Astrophysics Data System (ADS)

    Thalbitzer Andersen, Martin; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-08-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (˜700-1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also measure dose-response curves with different wavelengths and at different stimulation temperatures so as to be able to distinguish between traps based on their electron trapping cross-sections. Our data suggest that the dosimetric signals, IRSL, and the post IR-IRSL in K-feldspars arise from a single electron trapping centre.

  1. Luminescent and thermochromic properties of tellurium(IV) halide complexes with cesium

    NASA Astrophysics Data System (ADS)

    Sedakova, T. V.; Mirochnik, A. G.

    2016-02-01

    The spectral-luminescent and thermochromic properties of complex compounds of the composition Cs2TeHal6 (Hal = Cl, Br, I) are studied. The interrelation between the geometric structure and spectral-luminescent properties is studied using the example on complex compounds of tellurium(IV) halides with cesium. The Stokes shift and the luminescence intensity of Te(IV) ions with island octahedral coordination are found to depend on the position of the A band in the luminescence excitation spectra, the diffuse reflection, and the energy of the luminescent 3 P 1 → 1 S 0 transition of the tellurium(IV) ion. The maximum luminescence intensity and the minimum Stokes shift at 77 and 300 K are observed for Cs2TeCl6. The geometrical and electronic factors responsible for luminescence intensification in Te(IV) complexes under study are analyzed.

  2. Analysis of thermally stimulated luminescence and conductivity without quasi-equilibrium approximation

    NASA Astrophysics Data System (ADS)

    Opanowicz, A.

    2007-08-01

    Thermally stimulated luminescence (TSL) and conductivity (TSC) are considered using the classical insulator model that assumes one kind of active trap, one kind of inactive deep trap and one kind of recombination centre. Kinetic equations describing the model are solved numerically without and with the use of quasi-equilibrium (QE) approximation. The QE state is characterized by the parameter qI = (dnc/dt)/Ie, where dnc/dt is the rate of change of free electron density, and Ie is the TSL intensity. The QE state parameter qI, the relative recombination probability γ = Ie/(Ie + It) (It is the trapping intensity) and a new parameter called a quasi-stationary (QS) state parameter q* = qIγ = (dnc/dt)/(Ie + It) are used for the analysis of the TSL and TSC. The QE and QS states are determined by conditions |qI| Lt 1 and, respectively, |q*| Lt 1. The TSL and TSC curves and the temperature dependences of qI, q*, γ the recombination lifetime and the occupancies of active traps and recombination centres are numerically calculated for five sets of kinetic parameters and different heating rates. These calculation results show that (1) the upper limit of the heating rate for the presence of the QS state appears at a higher heating rate than that for the QE state when the retrapping process is present, and (2) the TSL (TSC) curves in the QS state have properties similar to those for the TSL (TSC) curves in the QE state. Approximate formulae for calculation of the parameters qI and q* in the initial range of the TSL and TSC curves are derived and used in the heating-rate methods, proposed in this work, for determination of those parameters from the calculated TSL curves.

  3. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen.

    PubMed

    Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B

    2014-01-01

    The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered.

  4. Laser stimulated plasma-induced luminescence for on-air material analysis

    NASA Astrophysics Data System (ADS)

    Veltri, S.; Barberio, M.; Liberatore, C.; Scisciò, M.; Laramée, A.; Palumbo, L.; Legaré, F.; Antici, P.

    2017-01-01

    In this work, we present a method for performing analysis of the chemical composition and optical properties of materials using In-Air Plasma-Induced Luminescence. This is achieved by interaction of a focused high-energy laser with air, an interaction that produces a sub-millimetric plasma. The energetic electrons generated and accelerated in the plasma at energies higher than 5 keV reach the target surface of the sample to be analyzed, causing luminescence emission and plasmonic resonance. Each material is characterized by different chemical and optical properties that can be determined with the above-described technique. As such, our method allows obtaining an exact analysis of the sample, covering surfaces in the range of tens of mm2, in only a few minutes. We show that the acquired information with our method is identical to what obtained with more sophisticated methods, such as SEM-cathodoluminescence and photoluminescence.

  5. Charge trapping induced by plasma in alumina electrode surface investigated by thermoluminescence and optically stimulated luminescence

    SciTech Connect

    Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ligonzo, T.; Augelli, V.

    2009-02-02

    The plasma of a dielectric barrier discharge can fill traps in the alumina that cover the electrode. Trap energies and lifetimes are estimated by thermoluminescence and optically stimulated luminescence. Comparison with similar results for traps created by other radiation sources clarifies the mechanisms regulating this effect. Alumina's trap energies are approximately 1 eV, and the traps remain active for several days after plasma exposure. These results could be important to keep dielectric barrier discharge plasmas uniform since a trapped charge can be an electron reservoir.

  6. Optically stimulated luminescence in NaMgF{sub 3}:Eu{sup 2+}

    SciTech Connect

    Dotzler, C.; Williams, G. V. M.; Rieser, U.; Edgar, A.

    2007-09-17

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) measurements were performed on polycrystalline NaMgF{sub 3}:Eu{sup 2+} as well as sintered and quenched NaMgF{sub 3}:Eu{sup 2+} after exposure to ionizing radiation. The authors find a range of TL traps and the sintering and quenching process reduces the concentration of shallow traps. The resultant time integrated OSL intensity is linear from microgray dose levels to approximately 100 Gy, and hence this material is suitable for a personal and environmental dosimetry, where low dose levels are encountered and high sensitivity is required.

  7. A luminescent coordination polymer based on a π-conjugated ligand: Syntheses, structure and luminescent property

    NASA Astrophysics Data System (ADS)

    Li, Dan-Yang; Xie, Hua; Yao, Xiao-Qiang; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng

    2017-04-01

    A new cadmium coordination polymer [Cd(DPFE)(adip)0.5(NO3)]n (1) has been synthesized hydrothermally from the self-assembly of the Cd2+ ion with a new π-conjugated rigid ligand DPFE and the adipic acid, where DPFE = 2,7-di(pyridin-4-yl)-9H-fluorene and H2adip = adipic acid. The structure of 1 was full characterized by elemental analysis, FT-IR spectroscopy and single crystal X-ray diffraction. Structural analysis reveals compound 1 is a dinuclear Cd(II) based two-dimensional (4,4) layer and two kinds of strong intramolecular π-π stacking interactions exist between pyridyl rings and benzene rings. In addition, the thermogravimetric analysis and solid-state luminescent properties have also been investigated.

  8. Stimulation of luminescence of mycelium of luminous fungus Neonothopanus nambi by ionizing radiation.

    PubMed

    Kobzeva, Tatiana V; Melnikov, Anatoly R; Karogodina, Tatiana Y; Zikirin, Samat B; Stass, Dmitri V; Molin, Yuri N; Rodicheva, Emma K; Medvedeva, Svetlana E; Puzyr, Alexey P; Burov, Andrey A; Bondar, Vladimir S; Gitelson, Joseph I

    2014-11-01

    The luminescent system of higher luminous fungi is not fully understood and the enzyme/substrate pair of the light emission reaction has not been isolated. It was suggested that luminescence of fungi involves oxidase-type enzymes, and reactive oxygen species are important for fungal light production. Generation of reactive oxygen species can be stimulated by ionizing irradiation, which has not been studied for luminous fungi. We report the effect of X-irradiation on the luminescence of fungus Neonothopanus nambi. Experiments were performed with mycelium on a home-built setup based on an X-ray tube and monochromator/photomultiplier tube. Application of X-rays does not change the emission spectrum, but after approximately 20 min of continuous irradiation, light production from unsupported mycelium starts growing and increases up to approximately five times. After peaking, its level decreases irrespective of the presence of X-irradiation. After staying at a certain level, light production collapses to zero, which is not related to the drying of the mycelium or thermal impact of radiation. The observed shape of kinetics is characteristic of a multistage and/or chain reaction. The time profile of light production must reflect the current levels of radicals present in the system and/or the activity of enzyme complexes involved in light production.

  9. New multifunction materials with both electrorheological performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Shang, Yan-Li; Jia, Yun-Ling; Dong, Xiang-Yu; Ren, Jing; Li, Jun-Ran

    2017-02-01

    Novel multifunctional materials, the composites AlOOH-NaYFTb5 and AlOOH-NaYFTb10, containing AlO(OH) and β-NaYF4:5%Tb3+, have been synthesized via a facile hydrothermal route and a simple grinding method. The boehmite [AlO(OH)], yttrium nitrate [Y(NO3)3·6H2O], terbium nitrate, [Tb(NO3)3·6H2O], sodium citrate (Na3C6H5O7·2H2O) and sodium fluoride (NaF) were used as starting materials. The composition, electrorheological (ER) performance, and luminescence property of the functional materials were studied. Our results show that the composites not only have good electrorheological (ER) performance, but also have good optics property. The relative shear stress τ r ( τ r = τ E/ τ 0, τ E and τ 0 are the shear stresses at the electric field strength E = 4 and 0 kV/mm, respectively) values of the suspension (25 wt.%) of AlOOHNaYFTb5 material in silicone oil are all larger than 50 in a shear rate ranging from 0.06 to 26 s-1, the τr value reaches 1333 at a shear rate of 0.06 s-1. The material with such high ER activity and favorable luminescence performance is advantageous in its application as a multifunctional material.

  10. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of

  11. A thermo-responsive supramolecular organogel: dual luminescence properties and luminescence conversion induced by Cd(2+).

    PubMed

    Ma, Xinxian; Zhang, Jinjin; Tang, Ning; Wu, Jincai

    2014-12-14

    A simple dual luminescent acylhydrazone-functionalized benzimidazole derivative (L) was blended with ethylene glycol affording a thermo-responsive green-light-emitting supramolecular gel (G-gel). This G-gel can convert to a blue-light-emitting gel (B-gel) by strongly increasing the luminescence of the benzimidazole moiety upon addition of one equivalent of Cd(2+).

  12. Tuning luminescence properties of silicon nanocrystals by lithium doping

    NASA Astrophysics Data System (ADS)

    Klimešová, E.; Kůsová, K.; Vacík, J.; Holý, V.; Pelant, I.

    2012-09-01

    Doping silicon nanocrystals (SiNCs) provides a new way to modify their luminescence properties and tailor them for a particular application. We prepared Li-doped SiNCs and characterized them by neutron depth profiling and x-ray diffraction. Our SiNC samples are doped with around 10-100 Li atoms per one nanocrystal and their lattice slightly expands after lithium insertion. We show that the photoluminescence (PL) properties of Li-doped SiNCs are distinctly modified compared to the undoped case. The PL maximum shifts to shorter wavelengths and the PL decay time decreases, both these features being favorable for applications in photonics. The spectral blue-shift is attributed to the tensile strain in SiNCs induced by doping with lithium.

  13. Photo- and thermally stimulated luminescence of polyminerals extracted from herbs and spices

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Marcazzó, J.; Chernov, V.

    2012-08-01

    Ionizing radiation processing is a widely employed method for preservative treatment of foodstuffs. Usually it is possible to detect irradiated herbs and spices by resorting to luminescence techniques, in particular photo- and thermostimulated luminescence. For these techniques to be useful, it is necessary to characterize the response to radiation of each particular herb or spice. In this work, the thermoluminescence (TL) and photostimulated luminescence (PSL) properties of inorganic polymineral fractions extracted from commercial herbs and spices previously irradiated for disinfestation purposes have been analyzed. Samples of mint, cinnamon, chamomile, paprika, black pepper, coriander and Jamaica flower were irradiated from 50 to 400 Gy by using a beta source. The X-ray diffraction (XRD) analysis has shown that the mineral fractions consist mainly of quartz and feldspars. The PSL and TL response as a function of the absorbed dose, and their fading at room temperature have been determined. The TL glow curves have been deconvolved in order to obtain characteristic kinetics parameters in each case. The results of this work show that PSL and TL are reliable techniques for detection and analysis of irradiated foodstuffs.

  14. Synthesis and luminescence properties of KSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The KSrPO4:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO4:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO4:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al2O3:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  15. Effect of irradiation and thermal annealing on quartz materials luminescence

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Ananyeva, L. G.

    2017-01-01

    X-ray and gamma-quanta irradiation of radiation-resistant quartz materials including natural and synthetic quartz crystals and high-purity quartzite causes the luminescence in the ultraviolet range (365 nm), thermally stimulated luminescence and radiofrequency electromagnetic emission. Preliminary radiation and thermal annealing improves luminescence properties of quartz materials.

  16. A methodology for on-board CBCT imaging dose using optically stimulated luminescence detectors.

    PubMed

    Mail, Noor; Yusuf, Muhammad; Alothmany, Nazeeh; Kinsara, A Abdulrahman; Abdulkhaliq, Fahad; Ghamdi, Suliman M; Saoudi, Abdelhamid

    2016-09-08

    Cone-beam computed tomography CBCT systems are used in radiation therapy for patient alignment and positioning. The CBCT imaging procedure for patient setup adds substantial radiation dose to patient's normal tissue. This study pre-sents a complete procedure for the CBCT dosimetry using the InLight optically-stimulated-luminescence (OSL) nanoDots. We report five dose parameters: the mean slice dose (DMSD); the cone beam dose index (CBDIW); the mean volume dose (DMVD); point-dose profile, D(FOV); and the off-field Dose. In addition, CBCT skin doses for seven pelvic tumor patients are reported. CBCT-dose mea-surement was performed on a custom-made cylindrical acrylic body phantom (50cm length, 32cm diameter). We machined 25 circular disks (2 cm thick) with grooves and holes to hold OSL-nanoDots. OSLs that showed similar sensitivities were selected and calibrated against a Farmer-type ionization-chamber (0.6 CT) before being inserted into the grooves and holes. For the phantom scan, a standard CBCT-imaging protocol (pelvic sites: 125 kVp, 80 mA and 25 ms) was used. Five dose parameters were quantified: DMSD, CBDIW, DMVD, D(FOV), and the off-field dose. The DMSD for the central slice was 31.1 ± 0.85 mGy, and CBDIW was 34.5± 0.6 mGy at 16cm FOV. The DMVD was 25.6 ± 1.1 mGy. The off-field dose was 10.5 mGy. For patients, the anterior and lateral skin doses attributable to CBCT imaging were 39.04 ± 4.4 and 27.1 ± 1.3 mGy, respectively.OSL nanoDots were convenient to use in measuring CBCT dose. The method of selecting the nanoDots greatly reduced uncertainty in the OSL measurements. Our detailed calibration procedure and CBCT dose measurements and calculations could prove useful in developing OSL routines for CBCT quality assessment, which in turn gives them the property of high spatial resolution, meaning that they have the potential for measurement of dose in regions of severe dose-gradients.

  17. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligands featuring salicylamide arms.

    PubMed

    Song, Xue-Qin; Dong, Wen-Kui; Zhang, Yu-Jie; Liu, Wei-Sheng

    2010-01-01

    A series of luminescent lanthanide complexes with a new tripodal ligand featuring salicylamide arms, 2,2',2''-nitrilotris(2-furfurylaminoformylphenoxy)triethylamine (L), were synthesized and characterized by elemental analysis, IR and molar conductivity measurements. Photophysical properties of the complexes were studied by means of UV-vis absorption and steady-state luminescence spectroscopy. Excited-state luminescence lifetimes and quantum yield of the complexes were determined. Luminescence studies demonstrated that the tripodal ligand featuring salicylamide arms exhibits a good antennae effect with respect to the Tb(III) and Dy(III) ion due to efficient intersystem crossing and ligand to metal energy transfer. From a more general perspective, this work offers interesting perspectives for the development of efficient luminescent stains and enlarges the arsenal for developing novel luminescent lanthanide complexes of salicylamide derivatives.

  18. Luminescence properties of Si-containing porous matrix–PbS nanoparticle systems

    SciTech Connect

    Tarasov, S. A. Aleksandrova, O. A.; Lamkin, I. A.; Maksimov, A. I.; Maraeva, E. V.; Mikhailov, I. I.; Moshnikov, V. A.; Musikhin, S. F.; Nalimova, S. S.; Permyakov, N. V.; Spivak, Yu. M.; Travkin, P. G.

    2015-12-15

    The luminescence properties of systems that contain lead-sulfide nanoparticles deposited onto substrates fabricated from porous silicon, oxidized porous silicon, and porous (tin-oxide)–(silicon-oxide) layers are studied. It is shown that the structure and composition of the matrix induce a strong effect on the luminescence spectra of colloidal quantum dots, defining their emission wavelength.

  19. Luminescence and stimulated emission in zinc oxide nanoparticles, films, and crystals

    NASA Astrophysics Data System (ADS)

    Xiong, G.; Wilkinson, J.; Lyles, J.; Ucer, K. B.; Williams, R. T.

    2003-01-01

    ZnO has attracted attention as a candidate material for ultraviolet light-emitting devices. Its 3.37-eV band gap is comparable to that of GaN, and single crystal substrates can be grown. Control of p-type conductivity in ZnO is under study in several laboratories including ours. We report streak camera measurements of time-resolved luminescence and stimulated emission excited in single crystal, film, and. particle samples under excitation by 300 fs laser pulses at temperatures from 17 K to 295 K. We also describe p-n junctions formed by control of oxygen pressure in reactive sputtering of ZnO films, and results of introducing nitrogen during reactive sputtering.

  20. Independent evaluation of optically stimulated luminescence (OSL) 'dot' dosemeters for environmental monitoring.

    PubMed

    Timilsina, Bindu; Gesell, Thomas F

    2011-01-01

    Optically stimulated luminescence (OSL) 'dot' dosemeters (manufactured by Landauer®) are reported to have a high degree of environmental stability, high level of sensitivity and provide wide range of dose measuring capabilities from 0.05 mGy to 100 Gy. The optical read out method is fast and relatively simple and permits repeated read out, but few studies have been performed about its application in monitoring radiation in the environment. This study was initiated to independently test the performance of OSL dot dosemeters for the application of measuring doses of radiation in the outdoor environment. Testing was performed in the laboratory to evaluate reproducibility and stability and in the field to evaluate accuracy relative to calibrated high-pressure ionisation chambers. The results showed that OSL dot dosemeters had good reproducibility and stability in both laboratory and field tests and met the performance requirements of standards of the American National Standards Institute.

  1. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    NASA Astrophysics Data System (ADS)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-01

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  2. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    SciTech Connect

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-03

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  3. Role of band potential roughness on the luminescence properties of InGaN quantum wells grown by MBE on bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Ž, A.

    Role of band potential roughness on luminescence decay time and stimulated emission in InGaN quantum wells (QWs) grown by rf plasma-assisted molecular beam epitaxy (MBE) on bulk GaN substrates was studied. A high-photoexcitation regime used ensured conditions similar to those in operating laser diodes. Standard deviation of the potential fluctuations in different thickness InGaN QWs was found to vary in the range of 13-22 meV as revealed by Monte Carlo simulation of localized exciton hopping. A negligible influence of this variation on the luminescence decay time (?700 ps) and stimulated emission threshold (?30 kW/cm2) was observed. We attribute this insensitivity to the low density of localized states (?1 × 1018 cm-3) estimated in our high-quality QWs grown by MBE, and therefore, assign extended states to be mainly responsible for the properties of highly-excited luminescence.

  4. WE-E-18A-04: Precision In-Vivo Dosimetry Using Optically Stimulated Luminescence Dosimeters and a Pulsed-Stimulating Dose Reader

    SciTech Connect

    Chen, Q; Herrick, A; Hoke, S; Burns, J

    2014-06-15

    Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from the calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the manufacturer

  5. Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers.

    PubMed

    Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf

    2011-03-01

    We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.

  6. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    SciTech Connect

    Li, Xufan; Budai, John D.; Liu, Feng; Chen, Yu-Sheng; Howe, Jane Y.; Sun, Chengjun; Tischler, Jonathan Zachary; Meltzer, Richard; Pan, Zhengwei

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (0luminescent, monoclinic Sr1-xEuxAl2O4 (0luminescent, hexagonal Sr1-xEuxAl2O4 (0luminescence properties were investigated. These one-dimensional SEAO luminescent nanoribbons can function as both light generators and waveguides, and thus have promising potential as the building blocks in miniaturized photonic circuitry.

  7. Luminescence, electron paramagnetic resonance, and optical properties of lunar material.

    PubMed

    Geake, J E; Dollfus, A; Garlick, G F; Lamb, W; Walker, C; Steigmann, G A; Titulaer, C

    1970-01-30

    Dust samples have been found to luminesce weakly under proton excitation, but not under ultraviolet. Damage, recovery, and heating effects have been investigated. Chips of breccia show luminescence, from white inclusions only, under ultraviolet and protons. Some rock chips show general luminescence, mainly from plagioclase. No natural or excited thermoluminescence has been found for dust or chips. The electron paramagnetic resonance spectrum shows the same broad Fe(3+) dipole resonance for dust and for some chips; other chips show no response. The polarization characteristics of dust are found to be identical to those of the Sea of Tranquillity, independently of proton damage. Chips show characteristics unlike any part of the lunar surface.

  8. Investigation of spectroscopic properties, structure and luminescence spectra of Sm3+ doped zinc bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Pal, I.; Agarwal, A.; Sanghi, S.; Aggarwal, M. P.

    2013-01-01

    The glasses with compositions 20ZnO·(79.5 - x)Bi2O3·xSiO2·0.5Sm2O3 (10 ⩽ x ⩽ 50, mol%) have been synthesized using normal melt-quench technique. Optical absorption and fluorescence spectra of the glasses were recorded at ambient temperature. Judd-Ofelt (J-O) theory has been successfully applied to characterize the absorption and luminescence spectra of these glasses. From the measured intensities of absorption bands of these glasses, the Judd-Ofelt parameters, Ωλ (λ = 2, 4, 6) have been evaluated. The variation of Ω2 with Bi2O3 content has been attributed to changes in the asymmetry of the ligand field at the rare earth (RE) ion site (due to structural change) and to changes in RE-O covalency, whereas the variation of Ω6 is found to be strongly dependent on nephlauxetic effect. The shift of the hypersensitive band shows that the covalency of the RE-O decreases with decrease in Bi2O3 content in the host glass. Also, using J-O theory various radiative properties like spontaneous emission probability (Arad), radiative life time (τr), fluorescence branching ratio (βr) and stimulated emission cross-section (σ) for various emission bands of these glasses in the visible spectral region have been determined. A close correlation is observed between the Bi2O3 content and the spectroscopic, radiative and structural properties of the prepared glasses. The values of radiative properties indicated that 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions responsible for orange luminescence might be used in the development of materials for LED's and other optical devices in the visible region.

  9. Nature of heteroatom and luminescence properties of pyrilocyanine dyes

    SciTech Connect

    Ishchenko, A.A.

    1994-11-01

    Effect of the heteroatom nature on the luminescence properties of tetraphenyl-substituted pyrilo-2- and pyrilo-4-cyanines and their sulfur-, selen-, and nitrogen-containing analogs is studied. The substitution of S and Se atoms and the NMe group for oxygen atoms in isomeric pyrilocyanines results in a considerable increase in the Stokes shift. Based on the quantum-mechanical calculation of bond orders in the ground and the excited states of the dyes studied, this increase is explained by the decrease in the angle between phenyl groups and the chromophore plane upon excitation. Formulas are obtained relating the width, asymmetry, and excess of vibronic bands to the frequency and shape of the chromophore vibrations responsible for the long-wavelength {pi}-{pi}* transition. It is shown, using these relations, that the change in the absorption and fluorescence band shapes upon going from pyrilo- to thiopyrilo- and pyridocyanines is mainly caused by vibronic coupling, and to selenopyrilocyanines, by the heavy atom effect. 15 refs., 3 tabs.

  10. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  11. Photoluminescence and Optically Stimulated Luminescence Studies of LiAlO2 and LiGaO2 Crystals

    DTIC Science & Technology

    2015-03-26

    insight into the defects formed in LiGaO2. The green thermoluminescence caused by excitation with 325 nm light in both the as-grown and copper...Optically stimulated luminescence and thermoluminescence of terbium-activated silicates and aluminates, Radiation Measurements 43, 323 (2008). 12. B...Adamiv, Y. Burak, and L. Halliburton, EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

  12. Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation

    NASA Astrophysics Data System (ADS)

    Cruz-v&Ázquez, C.; Burruel-Ibarra, S. E.; Grijalva-Monteverde, H.; Chernov, V.; Bernal, R.

    In this work, we report on the thermoluminescence (TL) and the optically stimulated luminescence (OSL) of ZnO nanophosphors obtained by thermal annealing of ZnS powders synthesized by precipitation in a chemical bath deposition reaction. To obtain nanocrystalline ZnO, ZnS pellet-shaped samples were subjected to a sintering process at 700 °C during 24 h exposed to air at atmospheric pressure. Some samples were exposed to beta particles in the 0.15-10.15 kGy dose range and the integrated TL as a function of dose increased with dose level, with no saturation indication for the tested dose levels. Computerized glow-curve deconvolution of the experimental glow curves in individual peaks revealed a second-order kinetics. In order to test the OSL response, samples were irradiated with beta particles with doses up to 600 Gy, and an increasing intensity as dose increased was observed. We conclude that the new ZnO phosphors under investigation are good candidates to be used as dosimetric materials.

  13. Characterization of optically stimulated luminescence dosemeters to measure organ doses in diagnostic radiology

    PubMed Central

    Endo, A; Katoh, T; Kobayashi, I; Joshi, R; Sur, J; Okano, T

    2012-01-01

    Objective The aim of this study was to assess the characteristics of an optically stimulated luminescence dosemeter (OSLD) for use in diagnostic radiology and to apply the OSLD in measuring the organ doses by panoramic radiography. Methods The dose linearity, energy dependency and angular dependency of aluminium oxide-based OSLDs were examined using an X-ray generator to simulate various exposure settings in diagnostic radiology. The organ doses were then measured by inserting the dosemeters into an anthropomorphic phantom while using three panoramic machines. Results The dosemeters demonstrated consistent dose linearity (coefficient of variation<1.5%) and no significant energy dependency (coefficient of variation<1.5%) under the applied exposure conditions. They also exhibited negligible angular dependency (≤10%). The organ doses of the X-ray as a result of panoramic imaging by three machines were calculated using the dosemeters. Conclusion OSLDs can be utilized to measure the organ doses in diagnostic radiology. The availability of these dosemeters in strip form proves to be reliably advantageous. PMID:22116136

  14. Spectroscopic studies on the lanthanide sensitized luminescence and chemiluminescence properties of fluoroquinolone with different structure.

    PubMed

    Sun, Chunyan; Ping, Hong; Zhang, Minwei; Li, Hongkun; Guan, Fengrui

    2011-11-01

    Lanthanide sensitized luminescence and chemiluminescence (CL) are of great importance because of the unique spectral properties, such as long lifetime, large Stokes shifts, and narrow emission bands characteristic to lanthanide ions (Ln(3+)). With the fluoroquinolone (FQ) compounds including enoxacin (ENX), norfloxacin (NFLX), lomefloxacin (LMFX), fleroxacin (FLRX), ofloxacin (OFLX), rufloxacin (RFX), gatifloxacin (GFLX) and sparfloxacin (SPFX), the luminescence and CL properties of Tb(3+)-FQ and Eu(3+)-FQ complexes have been investigated in this contribution. Ce(4+)-SO(3)(2-) in acidic conditions was taken as the CL system and sensitized CL intensities of Tb(3+)-FQ and Eu(3+)-FQ complexes were determined by flow-injection analysis. The luminescence and CL spectra of Tb(3+)-FQ complexes show characteristic peaks of Tb(3+) at 490 nm, 545 nm, 585 nm and 620 nm. Complexes of Tb(3+)-ENX, Tb(3+)-NFLX, Tb(3+)-LMFX and Tb(3+)-FLRX display relatively strong emission intensity compared with Tb(3+)-OFLX, Tb(3+)-RFX, Tb(3+)-GFLX and Tb(3+)-SPFX. Quite weak peaks with unique characters of Eu(3+) at 590 nm and 617 nm appear in the luminescence and CL spectra of Eu(3+)-ENX, but no notable sensitized luminescence and CL of Eu(3+) could be observed when Eu(3+) is added into other FQ. The distinct differences on emission intensity of Tb(3+)-FQ and Eu(3+)-FQ might originate from the different energy gap between the triplet levels of FQ and the excited levels of the Ln(3+). The different sensitized luminescence and CL signals among Tb(3+)-FQ complexes could be attributed to different optical properties and substituents of these FQ compounds. The detailed mechanism involved in the luminescence and CL properties of Tb(3+)-FQ and Eu(3+)-FQ complexes has been investigated by analyzing the luminescence and CL spectra, quantum yields, and theoretical calculation results.

  15. Space radiation dosimetry: An optically stimulated luminescence radiation detector for low-Earth orbit

    NASA Astrophysics Data System (ADS)

    Gaza, Ramona

    Scope and method of study. The purpose of this study was to investigate Al2O3:C as a potential optically stimulated luminescence (OSL) radiation detector for Low-Earth Orbit. The OSL response of Al2O3:C was characterized in terms of its luminescence efficiency for a variety of heavy charged particles (HCPs) with features similar to those found in space. The HCP irradiations were performed using the HIMAC accelerator at Chiba (Japan), the proton facility at Loma Linda (CA) and the NSRL facility at Brookhaven (NY). The OSL curves were further investigated to obtain information about the 'mean efficiency' and 'mean LET', parameters that needed to assess the absorbed dose and the dose equivalent. This analysis was applied for simulated mixed radiation fields (ICCHIBAN) and actual space radiation exposures (i.e., STS-105, BRADOS, and TRACER). In parallel, the thermoluminescence response of dosimetry materials LiF:Mg,Ti and CaF2:Tm was also studied. Findings and conclusions. The OSL efficiency of Al2O 3:C exposed to HCPs was found to decrease with increasing linear energy transfer (LET) for the investigated LET range (i.e., from 0.4 keV/mum to 459 keV/mum). For simulated mixed radiation fields with a strong low-LET component, the results indicated that the OSL calibration methods (i.e., tau-method and R-method) can be used with good accuracy to obtain information about the absorbed dose and the dose equivalent. Nevertheless, for mixed fields with a strong high-LET component these methods will give larger errors when estimating the absorbed dose and the dose equivalent. For actual space radiation exposures, the results indicated that different materials/calibration methods (i.e., the LiF:Mg,Ti/HTR-method and the CaF2:Tm/peak 5 + 6/peak 3-method) give different results in terms of 'mean efficiency' and 'mean LET'. This was explained by suggesting that none of the above calibration methods can give information about the true average LET of the incident radiation, but rather

  16. Ce(3+)-Doped garnet phosphors: composition modification, luminescence properties and applications.

    PubMed

    Xia, Zhiguo; Meijerink, Andries

    2017-01-03

    Garnets have the general formula of A3B2C3O12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce(3+)-doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging. Garnet phosphors are unique in their tunability of the luminescence properties through variations in the {A}, [B] and (C) cation sublattice. The flexibility in phosphor composition and the tunable luminescence properties rely on design and synthesis strategies for new garnet compositions with tailor-made luminescence properties. It is the aim of this review to discuss the variation in luminescence properties of Ce(3+)-doped garnet materials in relation to the applications. This review will provide insight into the relation between crystal chemistry and luminescence for the important class of Ce(3+)-doped garnet phosphors. It will summarize previous research on the structural design and optical properties of garnet phosphors and also discuss future research opportunities in this field.

  17. Synthesis and luminescence properties of 2-(benzylcarbamoyl)phenyl derivatives and their europium complexes.

    PubMed

    Guo, Dongcai; He, Wei; Liu, Bang; Gou, Lining; Li, Ruixia

    2013-01-01

    Six novel 2-(benzylcarbamoyl)phenyl derivatives were synthesized and characterized by (1) H-NMR, mass spectrometry, infrared spectra and elemental analysis. Their europium complexes were prepared and characterized by elemental analysis, EDTA titrimetric analysis, IR and UV spectra as well as molar conductivity measurements. The luminescence properties of these complexes were investigated and results show that 2-(benzylcarbamoyl)phenyl derivatives possess high selectivity and good coordination with the europium ion. Complex Eu-2-(benzylcarbamoyl)phenyl-2-phenylacetate showed green luminescence that was emitted by the ligand of 2-(benzylcarbamoyl)phenyl-2-phenylacetate, while other complexes showed the characteristic red luminescence of europium ion and also possessed high luminescence intensity.

  18. Electronic structure and luminescence properties of Ca2Ge7O16:Dy3+

    NASA Astrophysics Data System (ADS)

    Leonidov, I. I.; Ishchenko, A. V.; Konstantinova, E. I.; Petrov, V. P.; Chernyshev, V. A.; Nikiforov, A. E.

    2016-12-01

    The present report represents an overview of the results of a combined experimental-computational study of electronic structure, thermoluminescence (TL) and afterglow properties of Ca2Ge7O16:Dy3+ synthesized for the first time. Afterglow curves of Ca2Ge7O16:Dy3+ at 575 nm showing persistent luminescence have been described in Becquerel law. The TL measurements reveal at least one TL band at 326 K and two luminescence bands at 475 and 535 nm. Persistent luminescence in Ca2Ge7O16:Dy3+ originates from relatively shallow charge traps with high probability of charge carriers recapture. The model of energy processes, configurations of traps and luminescence centers has been proposed with the aid of ab initio calculations performed using the LCAO approximation and several hybrid functionals.

  19. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    PubMed

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC).

  20. Optically- and thermally-stimulated luminescences of Ce-doped SiO2 glasses prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Okada, Go; Kasap, Safa; Yanagida, Takayuki

    2016-11-01

    Rare-earth doped phosphors have been used in many applications including radiation measurements. In the latter applications, the radiation photons are converted to light so that we can indirectly detect the radiation using a conventional photodetector. In this work, we have prepared and characterized a Ce-doped SiO2 glass for dosimeter applications. Unlike conventional techniques such as sol-gel synthesis, the sample was prepared by spark plasma sintering. Although the PL emission seems to be only from the Ce3+ ions in the structure, due to the X-ray induced luminescence, we have also observed optically-stimulated luminescence (OSL), and thermally-stimulated luminescence (TSL), owing to a pair of silylenes and a set of dioxasilirane and silylene in addition to Ce3+. We have measured the detector response vs irradiation dose for both the OSL and TSL. The detector response in both cases is linear over the dose range from at least 1 mGy to 2 Gy. Particularly, the sensitivity of TSL is so high that it should be considered to be a good candidate for practical applications.

  1. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures.

    PubMed

    Ding, George X; Malcolm, Arnold W

    2013-09-07

    There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.

  2. Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey

    NASA Astrophysics Data System (ADS)

    Dogan, Tamer; Cetin, Hasan; Yegingil, Zehra; Topaksu, Mustafa; Yüksel, Mehmet; Duygun, Fırat; Nur, Necmettin; Yegingil, İlhami

    2015-07-01

    In this study, the optically stimulated luminescence dating technique was used to determine the time of deposition of alluvial sediment samples from the Türkoğlu-Antakya segment of the East Anatolian Fault System (EAFS) in Turkey. The double-single aliquot regenerative dose protocol on fine grain samples was used to estimate equivalent doses (De). Annual dose rate was computed using elemental concentration of uranium (U) and thorium (Th) determined by using thick-source alpha counting and potassium (K) concentrations using X-ray fluorescence and/or atomic absorption spectroscopy. The environmental dose was measured in situ using α-Al2O3:C chips inside plastic tubes for a year. The two different bulk sediment samples collected from the Islahiye trench yielded ages of 4.54 ± 0.28 and 2.91 ± 0.23 ka. We also obtained a 2.60 ± 0.18 ka age for the alluvial deposit in the Kıranyurdu trench and 2.31 ± 0.14 ka age for an excavation area called Malzeme Ocağı. These ages were consistent with the corresponding calibrated Carbon-14 (14C) ages of the region. The differences between the determined ages were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation in the region. They provide a record of alluvial aggradation in the region and may determine undocumented historical earthquake events.

  3. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    SciTech Connect

    Young, L; Yang, F; Sandison, G; Woodworth, D; McCormick, Z

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  4. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    USGS Publications Warehouse

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  5. Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams

    PubMed Central

    Ponmalar, Y. Retna; Manickam, Ravikumar; Sathiyan, S.; Ganesh, K. M.; Arun, R.; Godson, Henry Finlay

    2017-01-01

    Response of Al2O3:C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout.

  6. Use of Optically Stimulated Luminescence Imaging Plates and Reader for Arms Control Applications

    SciTech Connect

    Miller, Steven D.; Tomeraasen, Paul L.; Burghard, Brion J.; Traub, Richard J.

    2001-07-05

    Optically Stimulated Luminescence (OSL) technology has been pioneered at the Pacific Northwest National Laboratory (PNNL) for applications in personnel radiation dosimetry and commercially has become highly successful in replacing older technologies such as Thermoluminescence Dosimeters (TLDs) and film. OSL phosphors are used to measure radiation exposure by illuminating them with light after ionizing radiation exposure and measuring the amount of light emitted by the OSL phosphor. By using a two-dimensional plate of OSL material and raster scanning a light beam across the OSL plate a radiation pattern or image can be measured. The Arms Control community requires an electrons-free medium to measure the attributes of extent and symmetry on Pu pits in storage containers. OSL technology, used in the two-dimensional imaging mode, provides a means to measure these attributes with exposure times on the order of an hour. A special OSL reader has been built by PNNL to measure OSL imaging plates with a size of 20 cm by 30 cm. The reader uses 10 light emitting diode clusters with 10 corresponding photomultiplier tubes to measure an OSL imaging plate in less than 5 minutes. The resolution of each of the 10 measurement assemblies is 1 square-centimeter. A collimator assembly employing a Venetian-blind type collimator is used in conjunction with the OSL film to image the Pu pit within the storage container. The output of the OSL reader is a two dimensional array of intensities that will be used with the appropriate information barriers to measure extent and symmetry. This device also clearly distinguishes the difference between a point source and a distributed source. Details of the OSL technology, OSL reader system, collimator design, and system performance will be presented.

  7. Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds

    NASA Astrophysics Data System (ADS)

    Manam, J.; Das, S.

    Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.

  8. Rare earth fluoride nano-/microstructures: hydrothermal synthesis, luminescent properties and applications.

    PubMed

    Zhao, Qian; Xu, Zhenhe; Sun, Yaguang

    2014-02-01

    Rare earth fluoride materials have attracted wide interest and come to the forefront in nanophotonics due to their distinct electrical, optical and magnetic properties as well as their potential applications in diverse fields such as optical telecommunication, lasers, biochemical probes, infrared quantum counters, and medical diagnostics. This review presents a comprehensive overview of the flourishing field of rare earth fluorides materials in the past decade. We summarize the recent research progress on the preparation, morphology, luminescent properties and application of rare earth fluoride-based luminescent materials by hydrothermal systems. Various rare earth fluoride materials are obtained by fine-tuning of experimental conditions, such as capping agents, fluoride source, acidity, temperature and reaction time. The controlled morphology, luminescent properties and application of the rare earth fluorides are briefly discussed with typical examples.

  9. Luminescence properties of Yb:Er:KY3F10 nanophosphor and thermal treatment effects

    NASA Astrophysics Data System (ADS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M. D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Baldochi, Sonia Licia

    2016-04-01

    In this work, we present the spectroscopic properties of KY3F10 nanocrystals activated with erbium and codoped with ytterbium ions. The most important processes that lead to the erbium upconversion of green and red emissions of Er3+ were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays of 4S3/2 and 4F9/2 excited levels of Er3+ and to determine the upconversion processes and the luminescence efficiencies of erbium in the visible. Analysis of the luminescence kinetics in Yb:Er:KY3F10 shows a rapid upconversion (Up1) for the green emission with a time constant of 0.31 μs after pulsed laser excitation at 972 nm for as synthesized nanocrystals, which is faster than the time constant measured for the bulk crystal (23 μs). In addition, it is observed a second upconversion process (non-resonant) (Up2) responsible for the red emission (Er3+), which competes with Up1 process. However, the luminescence efficiency of the green emission (4S3/2) is observed to be very low (1.6%) for the as synthesized nanocrystal (25 °C). Nevertheless, it increases with the nanopowder heat treatment reaching an efficiency of 99% (T = 550 °C) relative to the bulk crystal. Similar luminescence behavior was observed for the 4F9/2 level (Er3+) that emits red emission. X-ray diffraction analysis of nanopowder by Rietveld method reveled that the mean crystallite size remains unchanged (8.3-12.3 nm) after thermal treatments with T ∼ 400 °C, while the 4S3/2 luminescence efficiency strongly increases to 20%. The luminescence dynamics indicates that Er3+ ions distribution plays a determinant role in the luminescence efficiency of green and red emissions of Er3+ besides also the strong influence on the upconversions processes. The observed luminescence effect is caused by the non-uniform Er3+ (and Yb3+) ions distribution due to the nanocrystal grown, which introduces a concentration gradient that increases towards the nanoparticle

  10. Application of optically stimulated luminescence technique to evaluate simultaneously accumulated and single doses with the same dosimeter

    NASA Astrophysics Data System (ADS)

    Malthez, Anna Luiza M. C.; Freitas, Marcelo B.; Yoshimura, Elisabeth M.; Button, Vera L. S. N.

    2014-02-01

    Optically stimulated luminescence dosimeters (OSLD) can be read several times with a negligible loss (degradation) of signal. In this work, we explore this OSL property to estimate simultaneously the accumulated and single doses using a unique Al2O3 dosimeter, irradiated repeated times along over 4 months. This was done through several irradiations of OSLD (Landauer Luxel Dots) with two energies (28 keV X-rays and 1.25 MeV Co-60 gamma rays) and several doses distributed over time. Thermoluminescent dosimeters (TLD) were used as a reference to compare the estimated doses obtained with OSLD. For each irradiation, and both energies, a calibration curve was evaluated with OSLD and TLD to estimate the dose values. The OSL readouts were made with a MicroStar (Landauer) OSL reader. To estimate background (BG) over time, a set of OSLD and TLD (Bycron TLD100) was not irradiated and BG was monitored at each readout section. After irradiations, the OSL and TL signals were converted to dose and values were compared. As a set of OSLD suffered no bleaching after the readouts, it was possible to estimate simultaneously the accumulated and single doses with a unique OSLD. Each single dose was estimated through the subtraction of successive accumulated doses determined for each single OSLD. We concluded that the single doses determined by OSL and TL techniques were compatible, and that the accumulated dose, obtained with OSL technique was comparable to the sum of single doses determined with TLD. We can conclude that using OSL technique and Al2O3 dosimeters it is possible to estimate simultaneously accumulated and single doses with the same dosimeter irradiated with low or high energy photons.

  11. Luminescent Properties of Terbium Aminobenzoates in Condensed Media

    NASA Astrophysics Data System (ADS)

    Meshkova, S. B.; Doga, P. G.; Kiriyak, A. V.; Kucher, A. A.

    2015-07-01

    The decrease in nonradiative deactivation of the luminescence excitation energy in a series of condensed media (true complex solution, viscous solution of water-soluble polymer, polymer fi lm) was studied using terbium complexes with aminobenzoic acids as examples. It was established that the infl uence of the water-soluble polymer was caused by the coordination of Tb3+ to it and the solution viscosity.

  12. Luminescent properties of Eu3+-doped yttrium or gadolinium phosphates

    NASA Astrophysics Data System (ADS)

    Tuan, D. C.; Olazcuaga, R.; Guillen, F.; Garcia, A.; Moine, B.; Fouassier, C.

    2005-03-01

    After an investigation of the formation conditions of the intermediate phases existing in the systems Y{2}O{3}-P{2}O{5} and Gd{2}O{3}-P{2}O{5} (R/P = 4/1, 3/1, 1, 1/2, 1/3 and 1/5 (R = Y or Gd)) the luminescence characteristics of the Eu3+ ion substituted for the Y3+ or Gd3+ ions have been determined. The position of the O2-toEu3+ charge transfer band shifts to higher energies with increasing P content, which results in high quantum efficiencies for several P-rich phosphates. With increasing P content the probability of the electric dipole transitions is reduced, in particular for the hypersensitive 5D{0}to 7F{2} transition. This causes a shift of the colour point to the orange and lengthens the luminescence lifetime. The luminescence characteristics are compared with those of the red phosphors for display.

  13. Structure and luminescent properties of complex compounds of tellurium(IV) with ammonium bases

    NASA Astrophysics Data System (ADS)

    Sedakova, T. V.; Mirochnik, A. G.

    2015-07-01

    Using tellurium(IV) complex compounds with outer-sphere ammonium cations as an example, we have studied the interrelation between their geometric structure and spectral-luminescent properties. In the series of compounds of tellurium(IV), which are characterized by the island octahedral coordination of Te(IV) ions, the luminescence intensity has been found to depend on the degree of distortion of the coordination polyhedron of the Te(IV) ion, the position of the A band in diffuse reflection spectra, and the energy of the luminescence transition 3 P 1 → 1 S 0 of the tellurium(IV) ion. We have revealed that the considered Te(IV) complexes possess reversible thermochromic properties.

  14. Photophysical properties of luminescent silicon nanoparticles surface-modified with organic molecules via hydrosilylation.

    PubMed

    Miyano, Mari; Kitagawa, Yuichi; Wada, Satoshi; Kawashima, Akira; Nakajima, Ayako; Nakanishi, Takayuki; Ishioka, Junya; Shibayama, Tamaki; Watanabe, Seiichi; Hasegawa, Yasuchika

    2016-01-01

    Luminescent silicon nanoparticles have attracted considerable attention for their potential uses in various applications. Many approaches have been reported to protect the surface of silicon nanoparticles and prevent their easy oxidation. Various air-stable luminescent silicon nanoparticles have been successfully prepared. However, the effect of interactions of the π-electron system with the silicon surface on the excited state properties of silicon nanoparticles is unclear. In this study, we have successfully prepared silicon nanoparticles protected with three organic compounds (styrene, 1-decene, and 1-vinyl naphthalene) and have examined their photophysical properties. The ligand π-electron systems on the silicon surface promoted the light harvesting ability for the luminescence through a charge transfer transition between the protective molecules and silicon nanoparticles and also enhanced the radiative rate of the silicon nanoparticles.

  15. Synthesis and luminescence properties of salicylaldehyde isonicotinoyl hydrazone derivatives and their europium complexes.

    PubMed

    Shan, Wenfei; Liu, Fen; Liu, Jiang; Chen, Yanwen; Yang, Zehui; Guo, Dongcai

    2015-09-01

    Four novel salicylaldehyde isonicotinoyl hydrazone derivatives and their corresponding europium ion complexes were synthesized and characterized, while the luminescence properties and the fluorescence quantum yields of the target complexes were investigated. The results indicated that the ligands favored energy transfers to the emitting energy level of europium ion, and four target europium complexes showed the characteristic luminescence of central europium ion. Besides the luminescence intensity of the complex with methoxy group, which possessed the highest fluorescence quantum yield (0.522), was stronger than that of other complexes. Furthermore, the electrochemical properties of the target complexes were further investigated by cyclic voltammetry, the results indicated that the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels and the oxidation potential of the complexes with electron donating group increased, however, that of the complexes with accepting electron group decreased.

  16. Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures

    NASA Astrophysics Data System (ADS)

    Hubáček, T.; Hospodková, A.; Oswald, J.; Kuldová, K.; Pangrác, J.

    2017-04-01

    We have optimized technology of GaN buffer layer growth with respect to the application in fast scintillation structures. The deep defect luminescence so called yellow band (YB) with decay time up to tens of microseconds is undesired for these applications and should be suppressed or at least the ratio of intensities of excitonic to YB maximum has to be considerably increased. The required photoluminescence properties were achieved by optimization of growth parameters of nucleation and coalescence layer on sapphire substrate. We have shown that decrease of NH3 flow, decrease of coalescence temperature, increase of nucleation time and nucleation pressure lead to improvement of the structure and luminescence properties of the buffer layer. Results indicate a significant increased ratio of excitonic/YB luminescence intensity.

  17. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  18. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.01–0.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  19. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-01

    We report a strategy to investigate O vacancy (VO) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y2O3:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of VO(0/+). In the following cross relaxation, energy transfer from VO to the excitation energy level of Tb3+ in ZnO:Tb core area. While in Y2O3:Eu shell area, energy transfer to the excitation energy level of Eu3+. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu3+ or Tb3+ in the range of 0.01-0.05, chromaticity coordinates of ZnO:Tb/Y2O3:Eu nanocable stably stays at yellow region in color space except ZnO:Tb0.01/Y2O3:Eu0.01. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  20. Peculiarities of luminescent and scintillation properties of YAG:Ce phosphor prepared in different crystalline forms

    NASA Astrophysics Data System (ADS)

    Zorenko, Y.; Zorenko, T.; Gorbenko, V. V.; Voznyak, T.; Savchyn, V.; Bilski, P.; Twardak, A.

    2012-06-01

    In this work, we have performed the comparative analysis of the luminescent and scintillation properties of Y3Al5O12:Ce (YAG:Ce) single crystals (SC), single crystalline films (SCF) and transparent optical ceramics (OС) using the traditional spectral methods as well as the luminescence spectroscopy under excitation by pulsed synchrotron radiation in the fundamental absorption range of YAG host. We have shown that the properties of YAG:Ce OC are rather closer to the properties of SCF counterpart where YAl antisite defects are completely absent than to the properties of SC of this garnet with large concentration of YAl antisite defects. At the same time, the luminescence spectra of YAG:Ce OC and SC show the emission bands in the 200-450 nm range related to YAl antisite defects and charged oxygen vacancies (F+ and F-centers). YAG:Ce ОС also possesses significantly higher thermoluminescence in the range above room temperature and large contribution of slow components in the Ce3+ luminescence decay under high-energy excitation in comparison with SC and SCF of this garnet. The mentioned properties of YAG:Ce OC are caused by the participation of antisite defects and charged oxygen vacancies located in OC mainly on the boundaries of grains, as trapping centers in the energy transfer processes from the host to the Ce3+ ions.

  1. Constraining Middle Pleistocene Glaciations in Birmingham, England; Using Optical Stimulated Luminescence (OSL) Dating.

    NASA Astrophysics Data System (ADS)

    Gibson, S. M.; Gibbard, P. L.; Bateman, M. D.; Boreham, S.

    2014-12-01

    Birmingham is built on a complex sequence of Middle Pleistocene sediments, representing at least three lowland glaciations (MIS12, MIS6, and MIS2). British Geological Survey mapping accounts 75% of the land mass as Quaternary deposits; predominantly glacial-sandy tills, glacial-fluvial sands, clays and organic silts and peats. Understanding the age of fluvial-glacial outwash, related to specific glaciations, is critical in establishing a Geochronology of Birmingham. Shotton (1953) found a series of Middle Pleistocene glacial sediments, termed the Wolstonian, intermediate in age between MIS11 and MIS5e Interglacial's. Uncertainty surrounding the relation to East Anglian sequences developed by Rose (1987) implies Birmingham sequences should be referred to MIS12. Despite this, younger Middle Pleistocene glacial sequences occur in Birmingham, yet uncertainty has deepened over our understanding of the complex, inaccessible sediments, especially as deposits have similar extent with MIS2 sequences. Five Optical Stimulated Luminescence (OSL) dates from three sites around Birmingham have been sampled. East of Birmingham, ice advanced from the Irish Sea and later the North East. In Wolston, a sample of outwash sand, associated with the Thurssington Till, is dated. In Meriden, two samples of outwash sands, associated with a distal Oadby Till, are dated. West of Birmingham, ice advanced from the Welsh Ice Sheet. In Seisdon, two samples of an Esker and outwash sand, associated with a Ridgeacre Till, are dated. Correlation of OSL dates provide an important constraint on understanding the history of Birmingham. Using GSI3D modeling to correlate geochronology and sedimentology, the significance of OSL dating can be understood within the complex sequences (and regional stratigraphy), complimented by Cosmogenic and Palynology dates taken in South West and North East. OSL dating on Birmingham's outwash sands, deposited by extensive repeated Middle Pleistocene glaciations, asserts the

  2. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°.

  3. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    PubMed Central

    Pradhan, A. S.; Lee, J. I.; Kim, J. L.

    2008-01-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose

  4. Luminescent solar concentrators. I. Concentrators based on mixtures of dyes in PMMA. Spectral and luminescent properties, reabsorption and energy transfer

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Lapin, I. N.; Vaitulevich, E. A.; Biryukov, A. A.

    2013-07-01

    Spectral and luminescent properties of efficient and stable commercial organic dyes in solutions and polymethylmetacrilate (PMMA), absorbing and emitting in wavelength ranges 300-680 nm and 390-750 nm, respectively, are investigated. Using different excitation and registration schemes, it is demonstrated that spectral shifts of initial radiation caused by reabsorption are observed at wavelengths around 1.5 cm. The process of excitation energy transfer from the UV range to the red range of the spectrum is investigated in mixtures of 4-6 dyes of different compositions. The maximum efficiency of radiation transfer from 300 nm to 560-580 nm, exceeding the efficiency of individual fluorophores by a factor of >1.6 is obtained for mixtures of four dyes POPOP(bis-MSB)-Coumarin 30-DCM-Pyrromethene 580 (Rhodamine 11B) in PMMA.

  5. Synthesis and optical properties of luminescent core-shell structured silicate and phosphate nanoparticles

    NASA Astrophysics Data System (ADS)

    Dembski, Sofia; Rupp, Sabine; Milde, Moritz; Gellermann, Carsten; Dyrba, Marcel; Schweizer, Stefan; Batentschuk, Miroslaw; Osvet, Andres; Winnacker, Albrecht

    2011-05-01

    Monodisperse, luminescent core-shell structured inorganic nanoparticles were synthesized by sol-gel technology. They exhibit an amorphous SiO 2 core and a crystalline luminescent shell. Zn 2SiO 4:Mn 2+ and Ca 10(PO 4) 6OH:Eu 3+ shell materials are investigated. The influence of the doping concentration on optical and structural properties was studied. The resulting nanoparticles were characterized by X-ray diffraction analysis, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, and photoluminescence spectroscopy.

  6. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs

    SciTech Connect

    Luo Yongsong Xia Xiaohong; Liang Ying; Zhang Yonggang; Ren Qinfeng; Li Jialin Jia Zhijie; Tang Yiwen

    2007-06-15

    Luminescence of the short multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups has been studied. The results show that the carboxyl-functionalized short MWNTs could emit luminescence and the emission peak appears at 500 nm with a corresponding optimal excitation wavelength centering at 310 nm. When the short MWNTs are filtered through 0.15 {mu}m polytetrafluoroethylene (PTFE) membrane, the ultrashort MWNTs are obtained from the filtrate. An interesting feature for the ultrashort MWNTs is that the emission intensity is strengthened and the peak is slightly blue shifted to 460 nm. This result indicates that the luminescence properties of MWNTs are strongly affected by the tube length. After chemical oxidization cutting, defects and carboxylic acid groups at the tube end and/or sidewall can be produced; the more shorten of MWNTs, the better dispersion and carboxylic passivation of the nanotubes, and the more intense luminescence emissions. The broad emissions are logically attributed to the trapping of excitation energy by defect sites in the carboxyl-functionalized nanotube structure. - Graphical abstract: Luminescence of the short and ultrashort multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups, which is logically attributed to the trapping of excitation energy by defect sites, has been studied.

  7. Influence of intermolecular hydrogen bonds on the luminescence properties of {alpha}-substituted cinnamonitriles

    SciTech Connect

    Mikhlina, Ya. A.; Bolotin, B. M.; Uzhinov, B. M. Volchkov, V. V.; Kuz'mina, L. G.

    2013-03-15

    In view of the dramatic difference in the spectral-luminescence properties of {alpha}-(p-chlorobenzoyl)-4-diethylaminocinnamonitrile and {alpha}-ethoxycarbonyl-4-diethylaminocinnamonitrile in solutions and in the crystalline state, X-ray diffraction analysis has been applied to study crystals of these compounds. The intermolecular C-H...N and C-H...O hydrogen bonds are found to contribute to the quinoidization of molecules, which leads to a bathochromic shift in the absorption and fluorescence spectra. A spectral-luminescence study of the aforementioned compounds has revealed that the solvent temperature and polarity affect the position of absorption and luminescence peaks: a decrease in these parameters causes a hypsochromic shift.

  8. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were  <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was  <10% up to ~2-4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  9. Photoluminescence, optically stimulated luminescence, and thermoluminescence study of RbMgF{sub 3}:Eu{sup 2+}

    SciTech Connect

    Dotzler, C.; Williams, G. V. M.; Robinson, J.; Rieser, U.

    2009-01-15

    Optically stimulated luminescence (OSL) and thermoluminescence are observed in polycrystalline RbMgF{sub 3}:Eu{sup 2+} after x-ray, {gamma}-ray, or {beta} irradiation. The main electron traps are F-centers but there are other unidentified traps. The main hole traps at room temperature are probably Eu{sup 3+} and thermal or optical stimulation leads to electron-hole recombination at the Eu{sup 3+} site and Eu{sup 2+} emissions arising from {sup 6}P{sub J} to {sup 8}S{sub 7/2} and 4f{sup 5}d(E{sub g}) to {sup 8}S{sub 7/2} transitions. We find that some of the electron traps can be emptied by infrared stimulation and all of the electron traps can be emptied by white light stimulation. The OSL dark decay is long and exceeds 5 days for traps that are emptied by white light stimulation after initial infrared bleaching. Our results show that this compound can be used as a radiation dosimeter for intermediate dose levels where the {sup 87}Rb self-dose does not significantly affect the dose reading.

  10. Variation of Spectra Luminescence Emission of Moganite under Different Stimulation Sources

    NASA Astrophysics Data System (ADS)

    Garcia-Guinea, J.; Bustillo, M. A.; Crespo-Feo, E.; Tormo, L.; Finch, A. A.; Hole, D. E.; Townsend, P. D.; Correcher, V.

    2009-08-01

    This work focuses on a characterization of various type of luminescence in Moganite-rich silica minerals from Mogan (Gran Canaria, Spain). The silica minerals formed by complicated hydrous processes exhibit luminescence emissions, which depend on sample temperature and type of an irradiation for excitation such as heat, laser, ion-beam, X-ray, incident electron beam and so on. Here we examined thermoluminescence (TL), ion beam luminescence (IBL), radioluminescence (RL), cathodoluminescence (CL) of moganite aliquots combined with Raman spectroscopy for clarification of relationship between lattice defects and the spectral luminescence emissions. The spatially-resolved CL spectroscopy coupled to the environmental scanning electron microscopy (ESEM-CL) displays different luminescence spectral signals between the moganite veined core (dull emission) and the rim (bright emission) together with larger porosity and additional ions in the outer part, suggesting a later alteration process with alkali, metals and volatile ions for the moganite formation. RL and IBL spectra of silica minerals in core and rim mainly show a progressive increase in intensity of RL emission band at 470-500 nm with decrease in sample temperature, which is caused by cryogenic stress on the [AlO4]0 centers. Continuous H+ ion beam implantation on samples at room temperature produces a subtle diminishing of blue emission and a quite brightening of red emission at 700 nm assigned to Fe3+ point defects. The white turbid rim with opaline SiO2 in cavities emits bright CL emission in panchromatic CL image, and has spectral emission bands at 290 nm with high intensity (100 000 a.u.) and one at 520 nm which are probably related to H2O(Si-OH) groups, H+, Na+ and metallic ions such as Fe3+, Ti4+ and Nb4+. Moganite core zones only display emission bands at 390 nm and 670 nm (8500 a.u.) attributed to [AlO4/Na+]0 centers and silanol groups, respectively.

  11. Luminescent properties of Mn2+ doped apatite nanophosphors

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    2016-05-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn2+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn2+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn2+ doped CLHA nanophosphors.

  12. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  13. The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster

    SciTech Connect

    Chen, Yen-Han; Tsai, Yun-Fan; Lee, Gene-Hsian; Yang, En-Che

    2012-01-15

    The synthesis and characterization of [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} (1), a new tetranuclear dysprosium (III) complex, is described. The compound was characterized by its X-ray structure, magnetic properties as well as the luminescent spectra. The compound crystallizes in a P1-bar space group with a zig-zag linear form of geometry. The ac magnetic susceptibilities of the molecule indicate that it is a magnetic molecule with a slow magnetization relaxation. The molecule also exhibits an emission spectrum that was confirmed to be ligand based. These results indicate that this molecule has both a slow magnetization relaxation (that could be potentially a SMM) and luminescent properties. - Graphical Abstract: A new tetranuclear dysprosium (III) complex [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} is synthesized and reported in this paper. This molecule has luminescence and can potentially act as a SMM. Highlights: Black-Right-Pointing-Pointer A new designed ligand (dhampH{sub 5}) was syntheisized. Black-Right-Pointing-Pointer A new tetra-dysprosium cluster [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} was made. Black-Right-Pointing-Pointer Slow magnetization relaxation phenomenon was observed. Black-Right-Pointing-Pointer Ligand-based luminescence was observed.

  14. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligand featuring N-thenylsalicylamide arms.

    PubMed

    Song, Xue-Qin; Zheng, Qing-Fang; Wang, Li; Liu, Wei-Sheng

    2012-01-01

    To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N-thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV - visible absorption and steady-state luminescence spectroscopy. The results of UV - vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited-state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand - Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry.

  15. Localized excitons and defects in PbWO4 single crystals: a luminescence and photo-thermally stimulated disintegration study

    NASA Astrophysics Data System (ADS)

    Krasnikov, A.; Nikl, M.; Zazubovich, S.

    The cover picture refers to the article by Aleksei Krasnikov et al., that was selected as Editor's Choice [1]. It depicts a fragment of a lead tungstate (PbWO4) crystal lattice structure and illustrates the complex anion (WO4)2- tetrahedra bonded to the Pb2+ cation. Perturbation of the (WO4)2- tetrahedra by defects nearby results in exciton localization near the defects and a slightly different emission spectrum, which is shown in the diagram. Localized excitons are evidenced for the first time in the PbWO4 structure. Under selective irradiation of PbWO4 crystals in the ultraviolet spectral region, the decay of various localized excitons into stable defects takes place, which can be detected by a sensitive thermally stimulated luminescence method. Aleksei Krasnikov is a PhD student at the University of Tartu, Estonia. Martin Nikl holds a position as a senior scientist and head of the Laboratory of Luminescence and Scintillation Materials at the Institute of Physics of the Czech Academy of Sciences. Svetlana Zazubovich is a senior scientist at the Institute of Physics, University of Tartu. The research groups of Martin Nikl and Svetlana Zazubovich have been collaborating closely for the last 15 years mainly in the field of optical spectroscopy of wide band-gap scintillation materials

  16. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.; Soares, C. G.

    2004-01-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  17. X-ray induced luminescence properties of (Y,Eu)AlO3 single crystals

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Nakauchi, Daisuke; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-02-01

    We investigated photoluminescence, scintillation and dosimeter properties of (Y1-x Eux)AlO3 (x = 0.001, 0.5 and 1) single crystals (hereafter denoted as Eu:YAP for x = 0.001, EYAP for x = 0.5 and EAP for x = 1). The samples were prepared by the Floating Zone method. In photoluminescence (PL), we observed a broad emission around 300-400 nm due to host under excitation of 280 nm, and emissions due to the 4f state transitions of Eu3+ appeared around 590 nm and 615 nm. Scintillation spectra also show emission peaks around 590 and 615 nm due to the 4f state transitions of Eu3+ in all the samples. In addition, emissions around 300-400 nm due to YAP host and around 550-700 nm due to 5d-4f transitions of Eu2+ appeared in Eu:YAP. The PL and scintillation decay time profiles consisted of several exponential decay components. The fast (ns) component group was possibly due to host emission, and especially Eu:YAP demonstrated a very fast PL decay time of 16 ns. The intermediate (μs) component group was due to the 5d-4f transitions of Eu2+. The slow (ms) component group was ascribed to the 4f state transitions of Eu3+ ion. The Eu:YAP sample showed intense thermally-stimulated luminescence (TSL) with peaks at 46, 155, 255 and 443 °C. The intensity was much higher than those of EAP and EYAP. In particular, the peak at 254 °C, which showed the highest intensity, was due to doping with Eu. The TSL dose response function showed a good linearity (R2 > 0.99) over a wide dose range from 0.1 mGy to 100 mGy for Eu:YAP, which showed the highest sensitivity among the present samples.

  18. Synthesis and optical properties of macrocyclic lanthanide(III) chelates as new reagents for luminescent biolabeling.

    PubMed

    Deslandes, Sébastien; Galaup, Chantal; Poole, Robert; Mestre-Voegtlé, Béatrice; Soldevila, Stéphanie; Leygue, Nadine; Bazin, Hervé; Lamarque, Laurent; Picard, Claude

    2012-11-14

    The convenient and efficient synthesis of two macrocyclic ligands (15- and 18-membered) based on a dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) or 2,2':6',2''-terpyridine (tpy) heterocycle and a DTTA (diethylenetriaminetriacetic acid) skeleton is described. In these ligands the DTTA skeleton contains an additional extracyclic functionality (NH(2) group) suitable for covalent attachment to bioactive molecules. These octa- and nonadentate ligands form very stable and luminescent neutral lanthanide complexes in aqueous solutions at physiological pH. The corresponding Eu(III) and Tb(III) complexes are characterized by a maximum absorption wavelength compatible with nitrogen laser excitation (337 nm) and attractive lifetimes and quantum yields. Further introduction of a maleimide bioconjugatable handle in the Eu(III) complexes was investigated and a valuable luminescence brightness above 1500 dm(3) mol(-1) cm(-1) at 337 nm was obtained with the corresponding Eu(III) tpy-derivative. Finally, these two luminescent chelates were grafted onto thiol residues of a model antibody (Mab GSS11) without loss of their luminescent properties.

  19. Luminescent Properties of Arylpolyene Organic Dyes and Cross-Conjugated Ketones Promising for Quantum Optics and Nanophotonics Applications

    NASA Astrophysics Data System (ADS)

    Naumova, N. L.; Vasilyeva, I. A.

    2015-09-01

    The spectral-luminescent properties of some dyes of substituted arylpolyenes and cross-conjugated ketones class in Shpolsky matrices, promising for using in solving quantum optics and nanophotonics, were studied.

  20. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    PubMed

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was <1 %. For the 6-MV photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  1. Design, Properties, and In Vivo Behavior of Super-paramagnetic Persistent Luminescence Nanohybrids.

    PubMed

    Teston, Eliott; Lalatonne, Yoann; Elgrabli, Dan; Autret, Gwennhael; Motte, Laurence; Gazeau, Florence; Scherman, Daniel; Clément, Olivier; Richard, Cyrille; Maldiney, Thomas

    2015-06-10

    With the fast development of noninvasive diagnosis, the design of multimodal imaging probes has become a promising challenge. If many monofunctional nanocarriers have already proven their efficiency, only few multifunctional nanoprobes have been able to combine the advantages of diverse imaging modalities. An innovative nanoprobe called mesoporous persistent luminescence magnetic nanohybrids (MPNHs) is described that shows both optical and magnetic resonance imaging (MRI) properties intended for in vivo multimodal imaging in small animals. MPNHs are based on the assembly of chromium-doped zinc gallate oxide and ultrasmall superparamagnetic iron oxide nanoparticles embedded in a mesoporous silica shell. MPNHs combine the optical advantages of persistent luminescence, such as real time imaging with highly sensitive and photostable detection, and MRI negative contrast properties that ensure in vivo imaging with rather high spatial resolution. In addition to their imaging capabilities, these MPNHs can be motioned in vitro with a magnet, which opens multiple perspectives in magnetic vectorization and cell therapy research.

  2. Structural, spectral-luminescent, and lasing properties of nanostructured Tm : CaF{sub 2} ceramics

    SciTech Connect

    Ryabochkina, P A; Lyapin, A A; Osiko, Vyacheslav V; Fedorov, Pavel P; Ushakov, S N; Kruglova, M V; Sakharov, N V; Garibin, E A; Gusev, P E; Krutov, M A

    2012-09-30

    The structure and the spectral-luminescent properties of CaF{sub 2} - TmF{sub 3} fluoride ceramics and single crystals are studied. AFM investigations revealed a layered nanostructure of grains, which was not observed in reference samples of single crystals. It is found that the spectral-luminescent properties of CaF{sub 2} - TmF{sub 3} ceramics and single crystals are similar. Lasing at the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in CaF{sub 2} - TmF{sub 3} ceramics (wavelength 1898 nm) under diode pimping is obtained for the first time. (laser applications and other topics in quantum electronics)

  3. Surface contamination detection by means of near-infrared stimulation of thermal luminescence

    SciTech Connect

    Carrieri, Arthur H.; Roese, Erik S

    2006-02-01

    A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.

  4. Effect of ultrasonic treatment on photoelectric and luminescent properties of ZnSe crystals

    SciTech Connect

    Zobov, E. M. Zobov, M. E.; Gabibov, F. S.; Kamilov, I. K.; Manyakhin, F. I.; Naimi, E. K.

    2008-03-15

    The results of the effect of ultrasonic treatment of ZnSe crystals on the structure of the energy spectrum of electronic states of centers with deep levels forming photoelectric and luminescent properties of this compound are presented. It is for the first time proved experimentally that the climb of edge dislocations under the effect of ultrasound leads to regrouping and generation of defects forming deep levels, which manifest themselves in phenomena of photosensitivity and radiative recombination.

  5. Luminescence Properties of Sm3+/Eu3+ Co-Doped ZnO Quantum Dots.

    PubMed

    Liu, Fengyi; Li, Hong; Hu, Yajing; Na, Jin; Mou, Yun; Yang, Kun; Ye, Zuhu; Li, Mingyue; Xie, Ya-Hong

    2016-04-01

    In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol-gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5-6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism.

  6. Preparation and luminescence properties of organogel doped with Eu(TTA)3phen complex

    NASA Astrophysics Data System (ADS)

    Cocca, M.; Di Lorenzo, M. L.; Avella, M.; Gentile, G.; Aubouy, L.; Della Pirreira, M.; Gutiérrez-Tauste, D.; Kennedy, M.; Doran, J.; Norton, B.

    2012-07-01

    In this contribution we report the preparation and the luminescence property of Eu(TTA)3phen complex doped toluene gels. Gels were prepared by using either a low molecular weight gelator, 12-hydroxystearic acid (HSA), or a macromolecular gelator, syndiotactic polymethylmethacrylate (s-PMMA). The gelation properties and their reversible behavior from solid-like to liquid systems have been investigated. In addition, photophysical investigations, as well as morphology, thermal properties and ageing behavior of the gels were analyzed as a function of composition of the gels.

  7. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Nedeoglo, Natalia; Sushkevich, Konstantin; Huhtinen, Hannu; Nedeoglo, Dmitrii; Paturi, Petriina

    2016-12-01

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5-300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  8. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  9. A study on the near-infrared luminescent properties of xerogel materials doped with dysprosium complexes.

    PubMed

    Feng, Jing; Zhou, Liang; Song, Shu-Yan; Li, Zhe-Feng; Fan, Wei-Qiang; Sun, Li-Ning; Yu, Ying-Ning; Zhang, Hong-Jie

    2009-09-07

    A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect. The NIR luminescent properties of the dysprosium complexes and xerogels were compared, respectively. The evidence showed that the neutral ligand triphenyl phosphine oxide (TPPO) could increase the emission intensity of the dysprosium complex while 1,10-phenanthroline (phen) gave the negative effect. In addition, the coordinated water molecules affect the emission intensity of the dysprosium complex doped xerogel without the neutral ligand.

  10. Differentiation of natural and synthetic gem-quality diamonds by luminescence properties

    NASA Astrophysics Data System (ADS)

    Lindblom, Joachim; Hölsä, Jorma; Papunen, Heikki; Häkkänen, Heikki; Mutanen, Jarkko

    2003-10-01

    Laser-excited time-resolved and UV-excited static photoluminescence (PL) as well as cathodoluminescence (CL) techniques were applied to identify the origin of diamonds. Samples represented natural faced and rough diamonds from diamond market and different kimberlites as well as the most common high pressure-high temperature (HPHT) and as-grown synthetic diamonds. The time-resolved PL spectra of natural and synthetic diamonds display clear mutual differences. The static PL and CL spectra of natural diamonds revealed emission bands caused by complex nitrogen-vacancy (N-V)-aggregates whereas the bands of synthetic diamonds reflect simple N-V-aggregates and nickel-containing defects. The luminescence properties depended on the excitation method and also changed during the excitation. The study of PL colors revealed information about the emission distribution of the PL spectra giving possibilities for future applications. The results indicated the sensitivity of luminescence techniques and revealed interesting structural information about diamond materials.

  11. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  12. Comparison of the luminescent properties of LuAG:Pr nanopowders, crystals and films using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Gorbenko, V.; Zych, E.; Voznyak, T.; Nizankovskiy, S.; Zorenko, T.; Zorenko, Yu.

    2017-04-01

    Comparison of the luminescent properties of nanopowder, single crystal and single crystalline film of Pr3+ doped Pr-doped Lu3Al5O12 garnet (LuAG:Pr) prepared by the different technological methods is performed in this work using the time-resolved emission spectroscopy under excitation by synchrotron radiation with an energy of 3.7-25 eV at 300 K and 10 K. The notable differences in the properties of the Pr3+ luminescence are observed in LuAG:Pr crystals and films caused by involving the LuAl antisite defects and oxygen vacancies in crystals and Pb2+ flux related dopant in films in the excitation processes of the Pr3+ luminescence. At the same time, we have also found that the influence of host defects on the Pr3+ luminescence is significantly smaller in the LuAG:Pr nanopowders.

  13. Spherical Lu2O2S:Eu3+ micro/nano-structure: Controlled synthesis and luminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Zou, Haifeng; Dai, Yunzhi; Guan, Hongxia; Song, Yanhua; Zheng, Keyan; Zhou, Xiuqing; Shi, Zhan; Sheng, Ye

    2017-02-01

    Monodisperse and uniform Lu2O2S:Eu3+ luminescent spheres have been successfully synthesized through a facile hydrothermal method followed by a subsequent calcination process. The sizes of the spheres can be tuned in the range of 65 nm-295 nm by only changing the pH value of the system. It is indicated that the luminescence properties of the spherical phosphors were strongly influenced by size of the spheres. Such a size-sensitive luminescence property was interpreted from the structures of the spheres, including the degree of crystallinity, band gap energy, crystal field symmetry around Eu3+. We expected that this study not only can provide important information for size-controlled synthesis of spherical phosphors, but also can give a reference for exploration of size-dependent luminescence.

  14. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  15. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  16. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    PubMed

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  17. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    PubMed Central

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning. PMID:28067299

  18. Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Burdette, K.; Mahan, S.; Brook, G.

    2008-01-01

    Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2??ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26??m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2??ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism. ?? 2007 University of Washington.

  19. Statistical properties of ionospheric stimulated electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Karlsson, R. L.; Carozzi, T. D.; Norin, L.; Bergman, J. E. S.; Thidé, B.

    2006-08-01

    We have analysed the statistical properties of the stimulated electromagnetic emissions (SEE) spectral features in the steady state, reached after a long period of continuous HF pumping of the ionosphere in experiments performed at the Sura ionospheric radio research facility in Russia. Using a digital filter bank method, we have been able to analyse complex valued signals within narrow frequency bands. Each of the SEE spectral features are thereby separated into a number of narrow spectral components. Statistical tests were performed for all these spectral components and the distributions of the spectral amplitudes and phases were evaluated. Also, a test for sinusoidal components was performed. These tests showed that all observed SEE features were indistinguishable from coloured Gaussian noise. The test results exclude that the SEE features can be the result of a single isolated coherent process, but does not rule out that there could be many statistically independent parametric wave-wave processes taking place simultaneously at various parts of the HF-pumped ionosphere, as long as the superposition from all these is incoherent. Furthermore, from the test results, we cannot exclude the possibility that the waveforms of some, or all, of the SEE features may be chaotic.

  20. Synthesis and Thermally Stimulated Luminescence of Polycrystalline Sr{sub 1-x}Eu{sub x}B{sub 4}O{sub 7}

    SciTech Connect

    Dubovik, M.F.; Korshikova, T.I.; Parkhomenko, S.V.; Tolmachev, A.V.

    2005-12-15

    Specific features of the solid-phase synthesis of Sr{sub 1-x}Eu{sub x}B{sub 4}O{sub 7} (x 0-0.15) in air are studied. The photo- and thermally stimulated luminescence of Sr{sub 1-x}Eu{sub x}B{sub 4}O{sub 7} is investigated in the range of Eu content 0.01 < x < 0.15. The main energy parameters of traps are determined. It is shown that the peak of thermally stimulated luminescence at T = 380 K can be related to the decomposition and radiative relaxation of the [Eu{sup 3+}{sub Sr{sup 2}{sup +}} F{sup +} center] pair.

  1. Research on the spectral properties of luminescent carbon dots

    NASA Astrophysics Data System (ADS)

    Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Zhang, Li-Hong; Lin, Chang-Qing; Li, Zhi-Ming; Liu, Jia-Ming

    This paper is trying to research the developing status of carbon dots (CDs), and the results show that the simple, rapid and high yield synthetic methods for CDs and the application of CDs in biological science and analysis field will certainly become an inevitable development trend in the future. The CDs obtained by microwave possess excellent optical properties including UV-Vis absorption, fluorescence and room temperature phosphorescence. Under the conditions of 30 °C and 10 min, the fluorescence signal (F) of CDs not only could be enhanced by hexadecyltrimethylammonium bromide (CTAB), Triton X-100, Na2S, Na2C2O4 and NH3.H2O, but also could be quenched by sodium dodecyl sulfate, KBrO3, K2S2O8, NaIO4, ascorbic acid, NaBH4, HNO3, HCl, H2SO4, CH3COOH and most metal ions, with the λemmax blue or red shifting in varying degrees, indicating the potential values of CDs in analytical application. Besides, the sensitive response of F to pH showed the promise of developing a new pH sensor with CDs.

  2. Morphological, luminescence and structural properties of nanocrystalline silicon thin films

    SciTech Connect

    Ali, Atif Mossad; Kobayashi, Hikaru; Inokuma, Takao; Al-Hajry, Ali

    2013-03-15

    Highlights: ► The PL spectra showed two stronger peaks and one weaker peak. ► The PL peak energies and optical band-gap values were found higher than 1.12 eV. ► The structural change from an amorphous to nanocrystalline with increasing [SiH{sub 4}]. - Abstract: Nanocrystalline silicon (nc-Si) thin films deposited by plasma-enhanced chemical vapor deposition at various silane flow rates ([SiH{sub 4}]) are studied. The characterization of these films by high-resolution transmission electron microscopy, Raman spectroscopy and X-ray diffraction reveals that no film and very thin film is deposited at [SiH{sub 4}] = 0.0 and 0.1 sccm, respectively. In addition, the structural change from an amorphous to a nanocrystalline phase occurs at around [SiH{sub 4}] = 0.2 sccm. In this study, the importance of arriving species at surfaces and precursors is clearly demonstrated by the effect of a small addition of SiH{sub 4} on the frequency and width of a Raman peak and the structure of the grown film. The infrared spectroscopic analysis shows no hydrogen incorporation in the nc-Si film deposited at the low value of [SiH{sub 4}]. However, the intensity of the peak around 2100 cm{sup −1} due to SiH decreases with increasing [SiH{sub 4}]. All fabricated films give photoluminescence in the range between 1.7 and 2.4 eV at room temperature, indicating enlargement of the band-gap energy. The presence of very small crystallites leads to the appearance of quantum confinement effects. The variations of the photoluminescence energy and spectral width are well correlated with the structural properties of the films such as crystallite size, crystalline volume fraction, and the density of Si-H bonds.

  3. Luminescence properties of Lu2O3: Tb film prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Shen, Siqing; Wang, Jian; Xu, Zhibin; Xie, Jianjun; Shi, Ying

    2011-02-01

    Uniform and crack free Tb3+ doped lutetium oxide (Lu2O3:Tb) films were prepared by Pechini sol-gel method combined with the spin-coating technique. The influence of the different substrate (monocrystalline silicon (111) and silica glass) and atmosphere (N2 and Air) on the luminescence properties of films was investigated. According to the emission spectra, we found that the luminous intensity was higher on silica glass substrate. Moreover, it was found that the luminous intensity calcined in N2 was higher almost twice as that calcined in air.

  4. Luminescence properties of Lu2O3: Tb film prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Shen, Siqing; Wang, Jian; Xu, Zhibin; Xie, Jianjun; Shi, Ying

    2010-10-01

    Uniform and crack free Tb3+ doped lutetium oxide (Lu2O3:Tb) films were prepared by Pechini sol-gel method combined with the spin-coating technique. The influence of the different substrate (monocrystalline silicon (111) and silica glass) and atmosphere (N2 and Air) on the luminescence properties of films was investigated. According to the emission spectra, we found that the luminous intensity was higher on silica glass substrate. Moreover, it was found that the luminous intensity calcined in N2 was higher almost twice as that calcined in air.

  5. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins

    NASA Astrophysics Data System (ADS)

    Brevet, Julien; Claret, Francis; Reiller, Pascal E.

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu 3+ at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components τ1 and τ2 are in the same order of magnitude for all the samples, i.e., 40 ≤ τ1 (μs) ≤ 60, and 145 ≤ τ2 (μs) ≤ 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The 5D 0 → 7F 2 transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu 3+ ( λmax = 615.4 nm), and the humic samples share almost the same λmax ≈ 614.5 nm. The main differences between the samples reside in a shoulder around λ ≈ 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around λ ≈ 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I612.5/ I614.7 = 1.1, KFA/KHA/SRHA share almost the same ratio I612.5/ I614.7 = 1.2-1.3, whilst the LHA

  6. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins.

    PubMed

    Brevet, Julien; Claret, Francis; Reiller, Pascal E

    2009-10-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu(3+) at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components tau(1) and tau(2) are in the same order of magnitude for all the samples, i.e., 40 luminescent properties of Eu(III) within each group. The (5)D(0) --> (7)F(2) transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu(3+) (lambda(max) = 615.4 nm), and the humic samples share almost the same lambda(max) approximately 614.5 nm. The main differences between the samples reside in a shoulder around lambda approximately 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around lambda approximately 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I(612.5)/I(614.7) = 1.1, KFA

  7. Luminescent and scintillation properties of YAG:Tm and YAG:Ce,Tm single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Suchocki, A.; Wrzesinski, H.; Walczyk, K.; Fabisiak, K.; Bilski, P.; Twardak, A.

    2014-08-01

    The paper is dedicated to studying the luminescent and scintillation properties of the single crystalline films (SCF) of Tm and Tm-Ce doped Y3Al5O12 garnets grown by the liquid phase epitaxy method. We have found that the effective Tm → Ce energy transfer is observed in YAG:Ce,Tm SCF. As a result of such transfer, the scintillation light yield of YAG:Ce,Tm SCF under α-particles excitation can be large in comparison with YAG:Ce SCF counterpart.

  8. A laboratory inter-comparison of quartz optically stimulated luminescence (OSL) results

    NASA Astrophysics Data System (ADS)

    Rees-Jones, J.; Hall, S. J. B.; Rink, W. J.

    In this study three sediment samples were used which came from two cave sites situated on the coast of Gibraltar, Gorham's Cave and Vanguard Cave. Both caves contain silts, sands and breccia deposits from the last interglacial through to the post-glacial period, from which beach sands were sampled for dating. The three sediment sample cores were each divided into two sub-samples, which were independently measured at McMaster University and Oxford University using quartz OSL. Similar sample preparation and measurement procedures were used at both laboratories, but different measurement equipment was employed in each. It was therefore hoped to identify any factors that may result in systematic differences between laboratories. The data showed very good agreement in results when a narrow wavelength band was used for stimulation, from either an argon-ion laser (514.5 nm) or a filtered halogen lamp (514±17 nm). This indicates that slight differences in factors such as laboratory lighting, measurement time, additive dose levels, detection filters, stimulation source and power did not produce differences in results. However, when a wide wavelength band from the halogen lamp was used for stimulation (440-560 nm) significantly different results were obtained, suggesting care needs to be taken with the waveband used.

  9. Feasibility study of an optically-stimulated luminescent nanodot dosimeter (OSLnD) in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Park, Sung-Kwang; Kim, Yon-Lae; Suh, Tae-Suk; Shin, Jung-Wook; Oh, Kyoung-Min; Nam, Sang-Hee; Kim, Jong-Eon; Min, Byung-In; Jo, Sun-Mi; Oh, Won-Young

    2014-10-01

    In-vivo dosimetry is essential to verify the position and the intensity of the radiation therapy, such as cranio-spinal irradiation (CSI) and total body irradiation (TBI). Various kinds of devices, such as a thermo-luminesence dosimeters (TLDs), metal-oxide semiconductor field effect transistors (MOSFETs), semiconductor diodes, and gafchromic films, are used in in-vivo dosimetry, and these have their respective pros and cons. An optically-stimulated luminescent nanodot dosimeter (OSLnD) made of Al2O3: C was developed to measure the radiation dose during diagnostics, but it is now used for clinical purposes. In this study, the characteristics of the OSLnD, such as its dose rate dependency, dose linearity, angular dependency, and field junction, were investigated under a 6 MV X-ray beam. The OSLnD showed a linear response at doses from 20 to 300 cGy in the dose linearity test. Also, the dose rate dependency was shown to be less than 3%, angular dependency to be less than 2%. The experimental results proved the OSLnD to be useful for measurements of the external dose and for intensity modulated radiotherapy (IMRT) in clinical radiotherapy.

  10. Radiation dose measurements of an on-board imager X-ray unit using optically-stimulated luminescence dosimeters.

    PubMed

    Smith, Leon; Haque, Mamoon; Morales, Johnny; Hill, Robin

    2015-12-01

    Cone beam computed tomography (CBCT) is now widely used to image radiotherapy patients prior to treatment for the purpose of accurate patient setup. However each CBCT image delivered to a patient increases the total radiation dose that they receive. The measurement of the dose delivered from the CBCT images is not readily performed in the clinic. In this study, we have used commercially available optically stimulated luminescence (OSLD) dosimeters to measure the dose delivered by the Varian OBI on a radiotherapy linear accelerator. Calibration of the OSLDs was achieved by using a therapeutic X-ray unit. The dose delivered by a head CBCT scan was found to be 3.2 ± 0.3 mGy which is similar in magnitude to the dose of a head computed tomography (CT) scan. The results of this study suggest that the radiation hazard associated with CBCT is of a similar nature to that of conventional CT scans. We have also demonstrated that the OSLDs are suitable for these low X-ray dose measurements.

  11. Optically stimulated luminescence dating of late Holocene raised strandplain sequences adjacent to Lakes Michigan and Superior, Upper Peninsula, Michigan, USA

    USGS Publications Warehouse

    Argyilan, Erin P.; Forman, Steven L.; Johnston, John W.; Wilcox, Douglas A.

    2005-01-01

    This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.

  12. Supramolecular assembly of borate with quaternary ammonium: Crystal structure and tunable luminescent properties

    SciTech Connect

    Liang, Jie; Wang, Yong-gang; Wang, Ying-xia; Liao, Fu-hui; Lin, Jian-hua

    2013-04-15

    A new borate [C{sub 6}H{sub 16}N][B{sub 5}O{sub 6}(OH){sub 4}] (1) is synthesized hydrothermally by the reaction of isopropyltrimethylammonium hydroxide with boric acid. It crystallizes in the triclinic space group P-1 with the parameters a=9.1578(10) Å, b=9.372(9) Å, c=9.9812(10) Å, α=66.508(2)°, β=74.751(2)°, γ=81.893(2)°. The [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions are interlinked via hydrogen bonding forming a 3D supramolecular network containing large cavities, where reside the (CH{sub 3}){sub 3}(i-C{sub 3}H{sub 7}) N{sup +} cations. This borate shows tunable luminescent properties with temperature, heating-treatment, exciting-light, and solvents. The fluorescent intensity of 1 enhances 6-fold with decreasing the temperature from 25 K to 78 K. By treatment under different temperatures, the luminescence of 1 shifted from blue to white and the sample treated at 230 °C emits bright white light to naked eyes. The hybrid borate can disperse in different solvents, and shows a red-shifted and intense emission in polar solvents. - Graphical abstract: The new quaternary ammonium borate [C{sub 6}H{sub 17}N][B{sub 5}O{sub 6}(OH){sub 4}] contains a 3D supramolecular network formed by hydrogen bond linked [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions and shows tunable luminescent properties with temperature, excitation light, and solvents. Highlights: ► A novel quaternary ammonium borate was synthesized. ► It possesses a supramolecular network fomed by H-bonded [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions. ► This borate shows tunable luminescent properties with temperature, heating treatment, excitation light, and solvents.

  13. Concentration dependent luminescence properties of Dy3+ doped lead free zinc phosphate glasses for visible applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2016-10-01

    Dysprosium (Dy3+) doped lead free zinc phosphate glasses with chemical compositions (60 - x) NH4H2PO4 + 20ZnO + 10BaF2 + 10NaF + xDy2O3 (where x = 0.5, 1.0, 1.5, 2.0 mol%) have been prepared by melt quenching technique. The functional groups of vibrational bands have been assigned and clearly elucidated by FTIR and Raman spectral profiles for all these glass samples. Judd-Ofelt (J-O) intensity parameters (Ωλ: λ = 2, 4, 6) have been obtained from spectral intensities of different absorption bands of Dy3+ doped glasses. Radiative properties such as radiative transition probabilities ( A R ), radiative lifetimes ( τ R ), branching ratios ( β R ) and integrated absorption cross-sections ( Σ) for different excited states are calculated by using J-O parameters. Luminescence spectra exhibit three emission bands (from 4F9/2 level to 6H15/2, 6H13/2 and 6H11/2) for all the concentrations of Dy3+ ions before and after gamma irradiation. Various luminescence properties have been studied by varying the Dy3+ concentration for the three spectral profiles. Fluorescence decay curves of 4F9/2 level have been recorded. The energy transfer mechanism that leads to quenching of 4F9/2 state lifetime has been discussed by the variation of Dy3+ concentration. These glasses are expected to be useful for yellow luminescent materials.

  14. Synthesis, characterization and luminescent properties of new highly luminescent organic ligand and complexes of trivalent rare earth.

    PubMed

    Xi, Peng; Gu, XiaoHua; Chen, CaoFeng; He, YuXian; Huang, XiangAn

    2007-03-01

    A novel ligand with two carboxylic groups has been synthesized. The composition and structure of the ligand were characterized by IR, (1)H NMR and MS spectrometry. The highly luminescent intensity complexes were prepared with the ligand and phen. The IR, solid state (13)C NMR and fluorescent spectra of the complex were studied. IR absorption spectra indicate that the ligand is coordinated to the Eu(3+) ion, and chemical bonds are formed between Eu(3+) ion and nitrogen atoms of phen. The fluorescent spectra illustrate that the complex has an excellent luminescence, indicating the ligand favors energy transfer to the emitting energy level of Eu(3+). The influences of pH and reaction solvent on the fluorescence intensity of the complex were also discussed.

  15. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    SciTech Connect

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  16. Correlation between the different therapeutic properties of Chinese medicinal herbs and delayed luminescence.

    PubMed

    Pang, Jingxiang; Fu, Jialei; Yang, Meina; Zhao, Xiaolei; van Wijk, Eduard; Wang, Mei; Fan, Hua; Han, Jinxiang

    2016-03-01

    In the practice and principle of Chinese medicine, herbal materials are classified according to their therapeutic properties. 'Cold' and 'heat' are the most important classes of Chinese medicinal herbs according to the theory of traditional Chinese medicine (TCM). In this work, delayed luminescence (DL) was measured for different samples of Chinese medicinal herbs using a sensitive photon multiplier detection system. A comparison of DL parameters, including mean intensity and statistic entropy, was undertaken to discriminate between the 'cold' and 'heat' properties of Chinese medicinal herbs. The results suggest that there are significant differences in mean intensity and statistic entropy and using this method combined with statistical analysis may provide novel parameters for the characterization of Chinese medicinal herbs in relation to their energetic properties.

  17. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-01

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO4:Eu3+ for red SSL and Bi1.4Y0.6MoO6, Y6MoO12 for optical filtering, prepared by one step combustion synthesis.

  18. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    DOE PAGES

    Li, Xufan; Budai, John D.; Liu, Feng; ...

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (01-xEuxAl2O4 (01-xEuxAl2O4 (0

  19. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Schnell, E.; Ahmad, S.; Yukihara, E. G.

    2016-10-01

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) ‘pixel bleeding’ caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and 12C beams (430 MeV u-1). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a 12C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  20. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films.

    PubMed

    Ahmed, M F; Schnell, E; Ahmad, S; Yukihara, E G

    2016-10-21

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) 'pixel bleeding' caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and (12)C beams (430 MeV u(-1)). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a (12)C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  1. Comparative study of the solid-matrix luminescence properties of perdeuterated phenanthrene and phenanthrene adsorbed on several solid matrices

    SciTech Connect

    Ramasamy, S.M.; Hurtubise, R.J.

    1996-09-01

    Temperature was varied over a wide range to determine its effect on the luminescence properties of deuterated phenanthrene and phenanthrene adsorbed on a number of solid matrices. Not only were insights into the effects of temperature and solid matrices on the luminescence properties acquired but also the deuterium isotope effect revealed unique information about the role played by the solid matrix in the luminescence of the model compounds. In addition, comparisons of nonradiative rate constants and the efficiencies of intersystem crossing revealed important differences among the solid matrices in altering these parameters. The perdeuterated phenanthrene and phenanthrene proved to be useful probes for investigating the effects of solid matrices on the excited triplet state of phosphors because the excited singlet state of the lumiphor was affected very little by the solid matrices, and the rate constants of phosphorescence for the two phosphors are essentially the same. {copyright} {ital 1996 Society for Applied Spectroscopy.}

  2. Site characterization using a portable optically stimulated luminescence reader: delineating disrupted stratigraphy in Holocene eolian deposits on the Canadian Great Plains

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Gilliland, K.; Gibson, T.; Plumb, E.

    2012-12-01

    The use of portable optically stimulated luminescence (POSL) readers to elucidate on complex depositional sequences has been demonstrated in a number of recent studies. POSL readers are robust versions of the traditional lab-bound luminescence readers and they can be used in the field, allowing for rapid decisions to be made when collecting samples for dating. Furthermore, in contrast with lab-bound readers, POSL readers can perform measurements on bulk samples, negating the need to carry out time-intensive mineralogical separations. The POSL reader is equipped with both infra-red and blue light (OSL) stimulating sources such that signal separation during measurement can be carried out by selectively exciting feldspar using the IR source (IRSL) after which a quartz dominant signal is obtained from the same sample using post-IR blue OSL. The signals obtained are then plotted to give luminescence profiles that depict the variation of the luminescence signal with depth. Signal intensities depend on mineralogical concentrations, grain luminescence sensitivities, dose rates as well as on burial ages of the grains. Where all these variables, apart from the burial age, are held constant up the depositional sequence the luminescence profile serves as a proxy for the chronostratigraphy. As a contribution to a growing archive of studies that have employed POSL readers to unravel complex depositional sequences, this study uses a POSL system developed by the Scottish Universities Environmental Research Centre to characterize the stratigraphy at an archaeological site that lies next to an oilfield plant located on a Holocene fossil dune landscape in southern Alberta, Canada. Oilfield activity was initiated at the site several decades ago and it involved the laying of pipelines below ground which disturbed considerable archaeological deposits. Subsequent work led to the discovery of the archeological site which was previously occupied by ancestral indigenous peoples at various

  3. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    NASA Astrophysics Data System (ADS)

    Si, Zhen-Xiu; Xu, Wei; Zheng, Yue-Qing

    2016-07-01

    An uranium coordination polymer, namely [(UO2(pydc)(H2O)]·H2O (1) (H2pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO22+ ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O-H···O hydrogen bond interactions and π-π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as well as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed.

  4. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties.

    PubMed

    Chen, Pangkuan; Li, Qiaochu; Grindy, Scott; Holten-Andersen, Niels

    2015-09-16

    We have developed model light-emitting metallogels functionalized with lanthanide metal-ligand coordination complexes via a terpyridyl-end-capped four-arm poly(ethylene glycol) polymer. The optical properties of these highly luminescent polymer networks are readily modulated over a wide spectrum, including white-light emission, simply by tuning of the lanthanide metal ion stoichiometry. Furthermore, the dynamic nature of the Ln-N coordination bonding leads to a broad variety of reversible stimuli-responsive properties (mechano-, vapo-, thermo-, and chemochromism) of both sol-gel systems and solid thin films. The versatile functional performance combined with the ease of assembly suggests that this lanthanide coordination polymer design approach offers a robust pathway for future engineering of multi-stimuli-responsive polymer materials.

  5. Optimized luminescence properties of Mn doped ZnS nanoparticles for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Le Donne, Alessia; Kanti Jana, Sourav; Banerjee, Sangam; Basu, Sukumar; Binetti, Simona

    2013-01-01

    Mn2+ doped ZnS nanoparticles (ZnS:Mn2+ NPs) are non-toxic systems known for their attractive light emitting properties. This paper discusses the luminescence properties of ZnS:Mn2+ NPs prepared by wet chemical synthesis with the objective of using them as down-shifters. A modification of the incident solar spectrum inducing improved exploitation of the UV region was expected to increase the efficiency of single junction cells with an optimal absorber band gap around 1.1 eV. The potential of ZnS:Mn2+ NPs as down-shifters was therefore demonstrated on both Si and Cu(In,Ga)Se2 solar cells.

  6. SU-E-T-600: In Vivo Dosimetry for Total Body and Total Marrow Irradiations with Optically Stimulated Luminescence Dosimeters

    SciTech Connect

    Niedbala, M; Save, C; Cygler, J

    2014-06-01

    Purpose: To evaluate the feasibility of using optically stimulated luminescence dosimeters (OSLDs) for in-vivo dosimetry of patients undergoing Total Body and Total Marrow Irradiations (TBI and TMI). Methods: TBI treatments of 12 Gy were delivered in 6 BID fractions with the patient on a moving couch under a static 10 MV beam (Synergy, Elekta). TMI treatments of 18 Gy in 9 BID fractions were planned and delivered using a 6 MV TomoTherapy unit (Accuray). To provide a uniform dose to the entire patient length, the treatment was split into 2 adjacent fields junctioned in the thigh region. Our standard clinical practice involves in vivo dosimetry with MOSFETs for each TBI fraction and TLDs for at least one fraction of the TMI treatment for dose verification. In this study we also used OSLDs. Individual calibration coefficients were obtained for the OSLDs based on irradiations in a solid water phantom to the dose of 50 cGy from Elekta Synergy 10 MV (TBI) and 6 MV (TMI) beams. Calibration coefficients were calculated based on the OSLDs readings taken 2 hrs post-irradiation. For in vivo dosimetry OSLDs were placed alongside MOSFETs for TBI patients and in approximately the same locations as the TLDs for TMI patients. OSLDs were read 2 hours post treatment and compared to the MOSFET and TLD results. Results: OSLD measured doses agreed within 5% with MOSFET and TLD results, with the exception of the junction region in the TMI patient due to very high dose gradient and difficulty of precise and reproducible detector placement. Conclusion: OSLDs are useful for in vivo dosimetry of TBI and TMI patients. The quick post-treatment readout is an advantage over TLDs, allowing the results to be obtained between BID fractions, while wireless detectors are advantageous over MOSFETs for treatments involving a moving couch.

  7. Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors.

    PubMed

    Sawakuchi, Gabriel O; Sahoo, Narayan; Gasparian, Patricia B R; Rodriguez, Matthew G; Archambault, Louis; Titt, Uwe; Yukihara, Eduardo G

    2010-09-07

    In this work we present a methodology and proof of concept to experimentally determine average linear energy transfer (LET) of therapeutic proton beams using the optically stimulated luminescence (OSL) of small Al(2)O(3):C detectors. Our methodology is based on the fact that the shape of the OSL decay curve of Al(2)O(3):C detectors depends on the LET of the radiation field. Thus, one can use the shape of the OSL decay curves to establish an LET calibration curve, which in turn permits measurements of LET. We performed irradiations at the M D Anderson Cancer Center Proton Therapy Center, Houston (PTCH), with passive scattering beams. We determined the average LET of the passive scattering beams using a validated Monte Carlo model of the PTCH passive scattering nozzle and correlated them with the shape of the OSL decay curve to obtain an LET calibration curve. Using this calibration curve and OSL measurements, we determined the averaged LET at various water-equivalent depths for therapeutic spread-out Bragg peaks and compared the results with averaged LETs determined using the Monte Carlo simulations. Agreement between measured and simulated fluence-averaged LET was within 24% for low energy spread-out Bragg peak (SOBP) fields and within 14% for high energy SOBP fields. Agreement between measured and simulated dose-averaged LET was within 12% for low energy SOBP fields and within 47% for high energy SOBP fields. The data presented in this work demonstrated the correlation between the OSL decay curve shapes and the average LET of the radiation fields, providing proof of concept of the feasibility of using OSL from Al(2)O(3):C detectors to measure average LET of therapeutic proton beams.

  8. Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Whitley, V. H.; McKeever, S. W. S.; Akselrod, A. E.; Akselrod, M. S.

    2004-01-01

    This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al2O3:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F+ -centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al2O3:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed. c2004 Elsevier Ltd. All rights reserved.

  9. Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors

    NASA Astrophysics Data System (ADS)

    Sawakuchi, Gabriel O.; Sahoo, Narayan; Gasparian, Patricia B. R.; Rodriguez, Matthew G.; Archambault, Louis; Titt, Uwe; Yukihara, Eduardo G.

    2010-09-01

    In this work we present a methodology and proof of concept to experimentally determine average linear energy transfer (LET) of therapeutic proton beams using the optically stimulated luminescence (OSL) of small Al2O3:C detectors. Our methodology is based on the fact that the shape of the OSL decay curve of Al2O3:C detectors depends on the LET of the radiation field. Thus, one can use the shape of the OSL decay curves to establish an LET calibration curve, which in turn permits measurements of LET. We performed irradiations at the M D Anderson Cancer Center Proton Therapy Center, Houston (PTCH), with passive scattering beams. We determined the average LET of the passive scattering beams using a validated Monte Carlo model of the PTCH passive scattering nozzle and correlated them with the shape of the OSL decay curve to obtain an LET calibration curve. Using this calibration curve and OSL measurements, we determined the averaged LET at various water-equivalent depths for therapeutic spread-out Bragg peaks and compared the results with averaged LETs determined using the Monte Carlo simulations. Agreement between measured and simulated fluence-averaged LET was within 24% for low energy spread-out Bragg peak (SOBP) fields and within 14% for high energy SOBP fields. Agreement between measured and simulated dose-averaged LET was within 12% for low energy SOBP fields and within 47% for high energy SOBP fields. The data presented in this work demonstrated the correlation between the OSL decay curve shapes and the average LET of the radiation fields, providing proof of concept of the feasibility of using OSL from Al2O3:C detectors to measure average LET of therapeutic proton beams.

  10. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  11. Excitation Dependent Phosphorous Property and New Model of the Structured Green Luminescence in ZnO.

    PubMed

    Ye, Honggang; Su, Zhicheng; Tang, Fei; Wang, Mingzheng; Chen, Guangde; Wang, Jian; Xu, Shijie

    2017-02-02

    The copper induced green luminescence (GL) with two sets of fine structures in ZnO crystal has been found for several decades (i.e., R. Dingle, Phys. Rev. Lett. 23, 579 (1969)), but the physical origin of the doublet still remains as an open question up to now. In this paper, we provide new insight into the mechanism of the structured GL band in terms of new experimental findings and theoretical calculations. It is found, for the first time, that the GL signal exhibits persistent afterglow for tens of minutes after the switch-off of below-band-gap excitation light but it cannot occur under above-band-gap excitation. Such a phosphorous property may be interpreted as de-trapping and feeding of electrons from a shallow trapping level via the conduction band to the Cu-related luminescence centers where the Cu(3+) ion is proposed to work as the final state of the GL emission. From first-principles calculation, such a Cu(3+) ion in wurtzite ZnO prefers a high spin 3d(8) state with two non-degenerated half-filled orbitals due to the Jahn-Teller effect, probably leading to the double structures in photoluminescence spectrum. Therefore, this model gives a comprehensively new understanding on the mechanism of the structured GL band in ZnO.

  12. Excitation Dependent Phosphorous Property and New Model of the Structured Green Luminescence in ZnO

    PubMed Central

    Ye, Honggang; Su, Zhicheng; Tang, Fei; Wang, Mingzheng; Chen, Guangde; Wang, Jian; Xu, Shijie

    2017-01-01

    The copper induced green luminescence (GL) with two sets of fine structures in ZnO crystal has been found for several decades (i.e., R. Dingle, Phys. Rev. Lett. 23, 579 (1969)), but the physical origin of the doublet still remains as an open question up to now. In this paper, we provide new insight into the mechanism of the structured GL band in terms of new experimental findings and theoretical calculations. It is found, for the first time, that the GL signal exhibits persistent afterglow for tens of minutes after the switch-off of below-band-gap excitation light but it cannot occur under above-band-gap excitation. Such a phosphorous property may be interpreted as de-trapping and feeding of electrons from a shallow trapping level via the conduction band to the Cu-related luminescence centers where the Cu3+ ion is proposed to work as the final state of the GL emission. From first-principles calculation, such a Cu3+ ion in wurtzite ZnO prefers a high spin 3d8 state with two non-degenerated half-filled orbitals due to the Jahn-Teller effect, probably leading to the double structures in photoluminescence spectrum. Therefore, this model gives a comprehensively new understanding on the mechanism of the structured GL band in ZnO. PMID:28150699

  13. Hydrothermal synthesis and luminescence properties of KLa):Eu3+ phosphor

    NASA Astrophysics Data System (ADS)

    Yang, Zaifa; Sun, Yumei; Han, Liu; Xu, Denghui; Sun, Jiayue

    2016-04-01

    KLa):Eu3+ phosphors were prepared by the hydrothermal method. The after tuning of synthesis time and the ratio of the ethylene glycol to water ratio made the phosphor present different morphologies, including peanut-like shape and spheres. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), diffuse reflectance spectrum, and fluorescence spectrum. Under the excitation of 397 nm near-ultraviolet, the typical red emission produced by Eu3+ ions can be observed. And the phosphors show strong red light around 612 nm, attributed to D→F transition of Eu ion. The luminescence properties of the as-prepared phosphors were studied based on changing the synthesis condition. It is found that the synthesis time and the changing of the ratio of ethylene glycol to water play the crucial role in the formation of morphology. The optimum dopant concentration of Eu ions in KLa):Eu3+ is around 7 mol. %. Moreover, the fluorescence decay curve and thermal stability of luminescence were also investigated in detail. The Commission International de I'Eclairage coordinates of KLa):0.07Eu3+ located in the red reddish region. All the results suggest that KLa):0.07Eu3+ might be a promising reddish-orange emitting phosphor used in white light-emitting diodes (w-LED).

  14. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: Synthesis, characterization and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln2(BPB)3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln2(BPB)3 and Ln(DBM)3 on their photoluminescent properties.

  15. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(III)-ruthenium(II) DNA imaging probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; Turton, David; Adams, Harry; Roseveare, Thomas M; Smythe, Carl; Su, Xiaodi; Thomas, Jim A

    2014-10-20

    The synthesis of two new luminescent dinuclear Ir(III)-Ru(II) complexes containing tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated Ir(III) moieties, these complexes display good water solubility, allowing the first cell-based study on Ir(III)-Ru(II) bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a Ru(II) excited state and both complexes display significant in vitro DNA-binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA-imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2-(4-fluorophenyl)pyridine ligands around its Ir(III) centre is enhanced in comparison to the non-fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition-metal bioprobes.

  16. Luminescence and scintillation properties of BaF2sbnd Ce transparent ceramic

    NASA Astrophysics Data System (ADS)

    Luo, Junming; Sahi, Sunil; Groza, Michael; Wang, Zhiqiang; Ma, Lun; Chen, Wei; Burger, Arnold; Kenarangui, Rasool; Sham, Tsun-Kong; Selim, Farida A.

    2016-08-01

    Cerium doped Barium Fluoride (BaF2sbnd Ce) transparent ceramic was fabricated and its luminescence and scintillation properties were studied. The photoluminescence shows the emission peaks at 310 nm and 323 nm and is related to the 5d-4f transitions in Ce3+ ion. Photo peak at 511 keV and 1274 keV were obtained with BaF2sbnd Ce transparent ceramic for Na-22 radioisotopes. Energy resolution of 13.5% at 662 keV is calculated for the BaF2sbnd Ce transparent ceramic. Light yield of 5100 photons/MeV was recorded for BaF2sbnd Ce(0.2%) ceramic and is comparable to its single crystal counterpart. Scintillation decay time measurements shows fast component of 58 ns and a relatively slow component of 434 ns under 662 keV gamma excitation. The slower component in BaF2sbnd Ce(0.2%) ceramic is about 200 ns faster than the STE emission in BaF2 host and is associated with the dipole-dipole energy transfer from the host matrix to Ce3+ luminescence center.

  17. Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical

    SciTech Connect

    Wang, Ya-Li; Gao, Yuan-Yuan; Ma, Yue; Wang, Qing-Lun; Li, Li-Cun; Liao, Dai-Zheng

    2013-06-01

    Five novel Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized, characterized structurally and magnetically: [Ln(hfac)₃(NITPh-3-Br-4-OMe)₂] (Ln(III)=Eu(1), Gd(2), Tb(3), Dy(4), Ho(5); hfac=hexafluoroacetylacetonate; and NITPh-3-Br-4-OMe=2-3´-Br-4´-methoxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide). The single-crystal structures analyses show that these complexes have similar mononuclear tri-spin structures, in which central Ln(III) ions are all eight coordinated by three hfac molecules and two NITPh-3-Br-4-OMe radicals. The variable-temperature magnetic susceptibility studies reveal the antiferromagnetic interactions between the paramagnetic ions (Ln(III) and radicals) in complexes 1, 2, 3 and 5 and ferromagnetic interaction in complex 4. The luminescence characterizations of complexes Eu(1), Tb(3) and Dy(4) are also studied in this paper. - Graphical abstract: Using a novel halogen phenyl-substituted nitronyl-nitroxide radical, we obtained and characterized five isostructural lanthanide mononuclear tri-spin compounds. Highlights: • A new halogen phenyl-substituted nitronyl-nitroxide radical was designed. • Five new Ln(III) radical complexes have been synthesized and characterized. • The reasonable evaluation the magnetic interactions between Ln(III) ions and radical is meaningful. • These complexes show good luminescent properties.

  18. Two novel 2D lanthanide sulfate frameworks: Syntheses, structures, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yi; Zhang, Chi; Zhang, Fu-Li; Zhang, Fu-Qiang; Zhang, Xiang-Fei; Li, Su-Zhi; Cao, Guang-Xiu; Zhai, Bin

    2016-03-01

    Two novel lanthanide-sulfate compounds, [Ln2(SO4)3(H2O)8] (Ln = Tb (1) and Dy (2)), have been synthesized under hydrothermal reactions. X-ray crystal structure analyses reveal that 1 and 2 are isomorphous and crystallize in monoclinic C2/c pace group, showing a layered structure. The layers bear a rare quasi-honeycomb metal arrangement, which is fastened by μ3 = η1:η1:η1 and μ2 = η1:η1 sulfates. If assigning the μ3 = η1:η1:η1 sulfate as a 3-connected node and the Ln3+ ion as a 4-connected node, the network can be rationalized as a binodal (3,4)-connected V2O5 topology with a Schäfli symbol of (42·63·8) (42·6). In addition, the infrared, thermogravimetric analysis and luminescent properties were also studied. Complexes 1 and 2 exhibit outstanding thermal stability and characteristic terbium and dysprosium luminescence.

  19. Excitation Dependent Phosphorous Property and New Model of the Structured Green Luminescence in ZnO

    NASA Astrophysics Data System (ADS)

    Ye, Honggang; Su, Zhicheng; Tang, Fei; Wang, Mingzheng; Chen, Guangde; Wang, Jian; Xu, Shijie

    2017-02-01

    The copper induced green luminescence (GL) with two sets of fine structures in ZnO crystal has been found for several decades (i.e., R. Dingle, Phys. Rev. Lett. 23, 579 (1969)), but the physical origin of the doublet still remains as an open question up to now. In this paper, we provide new insight into the mechanism of the structured GL band in terms of new experimental findings and theoretical calculations. It is found, for the first time, that the GL signal exhibits persistent afterglow for tens of minutes after the switch-off of below-band-gap excitation light but it cannot occur under above-band-gap excitation. Such a phosphorous property may be interpreted as de-trapping and feeding of electrons from a shallow trapping level via the conduction band to the Cu-related luminescence centers where the Cu3+ ion is proposed to work as the final state of the GL emission. From first-principles calculation, such a Cu3+ ion in wurtzite ZnO prefers a high spin 3d8 state with two non-degenerated half-filled orbitals due to the Jahn-Teller effect, probably leading to the double structures in photoluminescence spectrum. Therefore, this model gives a comprehensively new understanding on the mechanism of the structured GL band in ZnO.

  20. Microsphere morphology tuning and photo-luminescence properties of monoclinic Y2WO6

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Bai, Yulong; Zhang, Junying; Tang, Zilong

    2015-04-01

    Effects of the solution pH value and reaction time on the precursor morphology and photoluminescence properties are investigated for hydrothermally prepared monoclinic Y2WO6 phosphors. In the near-neutral environment, sodium dodecyl benzene sulfonate (SDBS) surfactant forms small microspheres micelles as template to synthesize microspherical precursor. H+ ions concentration affects the arrangement of negative ionic surfactant SDBS. As a result, jujube-liked and popcorn-like loose microspheres formed at low pH value. When the pH value is 5.2 and the hydrothermal reaction time reaches 24 h, respectively, the strongest luminescent intensity can be obtained. Under this condition, the precursor presented regular microsphere with diameter of 4.0 μm. After high-temperature heat treatment, the obtained phosphor particles still exhibit microsphere-like shape. Therefore, we provide an effective method to tune the morphology of Y2WO6 phosphors and study the relationship between morphology and luminescent performance.

  1. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: synthesis, characterization and photoluminescent properties.

    PubMed

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln(2)(BPB)(3) (Ln=Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln(2)(BPB)(3) and Ln(DBM)(3) on their photoluminescent properties.

  2. Thermally stimulated luminescence of Mg-doped ZnO Nanophosphors

    NASA Astrophysics Data System (ADS)

    Cruz-Vázquez, C.; Borbón-Nuñez, H. A.; Bernal, R.; Gaspar-Armenta, J. A.; Castaño, V. M.

    2014-05-01

    Nanosized ZnO:Mg phosphors were synthesized through a controlled chemical reaction. X-ray diffraction patterns confirmed that Mg entered in a substitutive way in Zn sites. To investigate their thermoluminescence (TL) properties, some samples were exposed to beta-particle irradiation. The results reported here show that Mg doping improves ZnO TL features that are important for TL dosimetry applications, such as the shape of the glow curve, the temperature at which the maximum TL intensity is observed, and the TL fading and reproducibility. No saturation clues of the TL response as a function of the dose is observed for doses below 1600 Gy.

  3. Significantly improved luminescence properties of nitrogen-polar (0001̅) InGaN multiple quantum wells grown by pulsed metalorganic chemical vapor deposition.

    PubMed

    Song, Jie; Chang, Shih-Pang; Zhang, Cheng; Hsu, Ta-Cheng; Han, Jung

    2015-01-14

    We have demonstrated nitrogen-polar (0001̅) (N-polar) InGaN multiple quantum wells (MQWs) with significantly improved luminescence properties prepared by pulsed metalorganic chemical vapor deposition. During the growth of InGaN quantum wells, Ga and N sources are alternately injected into the reactor to alter the surface stoichiometry. The influence of flow duration in pulsed growth mode on the luminescence properties has been studied. We find that use of pulsed-mode creates a high density of hexagonal mounds with an increased InGaN growth rate and enhanced In composition around screw-type dislocations, resulting in remarkably improved luminescence properties. The mechanism of enhanced luminescence caused by the hexagonal mounds is discussed. Luminescence properties of N-polar InGaN MQWs grown with short pulse durations have been significantly improved in comparison with a sample grown by a conventional continuous growth method.

  4. Re-evaluating the tephrochronology of the Palouse Loess, Washington State, using optically stimulated luminescence dating and single-shard major- and trace-element analyses

    NASA Astrophysics Data System (ADS)

    King, G. E.; Roberts, H. M.; Pearce, N. J.; Gaylord, D.; Sweeney, M.; Duller, G. A.; Smith, V.

    2013-12-01

    Tephra derived from Mount St Helens (MSH) are a critical component of the tephrochronology of the Palouse Loess region, Washington State, USA. New analyses of both source-proximal and -distal tephra units from Washington State using paired major-element and LA-ICP-MS trace-element geochemistry have been undertaken. These analyses reveal that MSH tephra commonly employed to constrain the timing of loess deposition, including tephra from MSH eruptive sets S (~16 ka) and M (~22 ka), cannot be differentiated using major-element chemistry alone. Further, some distal tephra in the Palouse Loess which were previously assigned as MSH Set S on the basis of major-element geochemistry or stratigraphy are now suggested through trace-element analysis to be other tephra, including MSH Set M. Additional support for this re-evaluation of these Palouse Loess tephra units has been provided by luminescence dating of loess that brackets the tephra units. Single-aliquot optically stimulated luminescence (OSL) methods developed for quartz (e.g. Wintle and Murray, 2006), and a new method proposed for dating feldspars (Thomsen et al., 2008; using the ';post-IR IRSL' signal) have been applied at several sites. The ages generated are stratigraphically consistent within each site, and show agreement between the two luminescence methods. Whilst these newly generated luminescence ages are not consistent in all cases with previously published tephra assignments, they are consistent with the revised tephrochronology proposed on the basis of new trace-element geochemistry. This combination of major- plus trace-element geochemistry and luminescence chronology provides a coherent picture of the tephrochronology of the sites examined in the Palouse. More broadly, this highlights the importance of combining both detailed geochemistry and geochronology in areas where tephra are geochemically indistinct. References Wintle A.G. and Murray, A.S., 2006. A review of quartz optically stimulated luminescence

  5. Photoluminescence properties of green and red luminescence from natural and heat-treated sodalite

    NASA Astrophysics Data System (ADS)

    Kaiheriman, Muyasier; Maimaitinaisier, Alitunguli; Rehiman, Aziguli; Aierken Sidike

    2014-03-01

    The sodalite sample used in this investigation did not exhibit the characteristic orange-yellow luminescence due to the center, because there was no trace of sulfur impurity. The heat-treated samples exhibited green and red luminescence with maximum intensity at 496 and 687 nm, respectively, under 264 nm excitation at room temperature. Their luminescence intensities were extensively dependent on the treatment temperature. The green luminescence efficiency of the sample heat-treated at 900 °C was 6.5 times higher than that of unheated natural sodalite. At 8.5 K, the green luminescence showed a vibronic structure. After heating at 1,300 °C, the crystal structure of sodalite was transformed to NaAlSiO4 (carnegieite), and the intense red luminescence was exhibited in the NaAlSiO4 sample. The peak wavelength of the red luminescence shifted from 687 nm at 300 K to 726 nm at 8.5 K. The luminescence lifetimes of the green and red luminescence at room temperature were 2.1 and 5.1 ms, respectively. It was proposed that the origin of the green luminescence is Mn2+ replacing Na+, and that of the red luminescence is Fe3+ replacing Al3+ in sodalite or NaAlSiO4 (carnegieite).

  6. Quasi-spherical LuBO{sub 3} nanoparticles: Synthesis, formation, and luminescence properties

    SciTech Connect

    Gao, Yu; Yang, Feng; Han, Wenchi; Fang, Qinghong; Xu, Zhenhe

    2014-03-01

    Graphical abstract: Quasi-spherical LuBO3 nanoparticles have been prepared via a facile hydrothermal route. The possible growth mechanism and the luminescent properties of the as-prepared microcrystals have been discussed. - Highlights: • LuBO{sub 3} nanoparticles were prepared by a facile hydrothermal route. • The Eu{sup 3+} and Tb{sup 3+}-doped LuBO{sub 3} products show strong red and green emissions. • This method may be more widely applicable in the design of other rare-earth compounds. - Abstract: Quasi-spherical LuBO{sub 3} nanoparticles have been successfully synthesized by a designed hydrothermal conversion method. The Lu(OH)CO{sub 3} nanoparticles were first prepared by a simple homogeneous precipitation method. Subsequently, LuBO{sub 3} nanoparticles were synthesized at the expense of the Lu(OH)CO{sub 3} nanoparticles during a hydrothermal conversion process. The conversion process from the Lu(OH)CO{sub 3} precursor to LuBO{sub 3} nanoparticles was investigated by time-dependent experiments. Moreover, the as-obtained Eu{sup 3+} and Tb{sup 3+}-doped LuBO{sub 3} products show strong characteristic red and green emissions under ultraviolet excitation and low-voltage electron beam excitation, respectively. This work sheds some light on the knowledge of conversion of different kind of lutetium compounds, and the luminescent properties have potential applications in fluorescent lamps and field emission displays. More importantly, this simple method is expected to allow the large-scale production of other complex rare-earth compounds with controllable morphologies and sizes, and exploration of the morphology and photoluminescence properties.

  7. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2010-08-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.

  8. Luminescent properties of fluorine phosphate glasses doped with PbSe and PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Kolobkova, Elena; Lipatova, Zhanna; Abdrshin, Albert; Nikonorov, Nikolay

    2017-03-01

    Optical properties of the PbS/PbSe molecular clusters (MCs) and PbS/PbSe quantum dots (QDs) in fluorine phosphate glasses were studied. Luminescence of MCs (excited by UV radiation) was obtained in visible spectral region and it's absolute quantum yield was up to 10%. It was found, that PbS QDs with sizes 3 nm, 3.5 nm and 4.9 nm demonstrate strong luminescence at 970, 1300 and 1500 nm with Stokes shift 80 -50 meV. PbSe QDs with sizes 2.5, 2.6, 3.0, 3,7 and 5.1 nm have strong luminescence at 1050, 1100, 1300, 1500 and 1650 nm with Stokes shift 355-60 meV. Glasses doped with PbS(Se) QDs provide potential as robust materials for broadband optic amplifiers.

  9. Luminescence properties of compounds of europium(III) with quinaldic acid and phosphor-containing neutral ligands

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.

    2016-06-01

    Luminescent complex mixed-ligand compounds of europium(III) with quinaldic acid and phosphor- containing neutral ligands have been obtained. Their composition and structure have been determined. The thermal and spectral-luminescent properties of the obtained complex mixed-ligand compounds of europium( III) have been studied. It is shown that, during thermolysis, a water molecule and neutral ligand are detached in two stages with endothermic effects. It is established that quinaldinate ion is coordinated to europium(III) ion in a bidentate fashion. The Stark structure of the 5 D 0-7 F j ( j = 0, 1, 2) transitions in low-temperature luminescence spectra of complex compounds of europium(III) has been analyzed.

  10. Aqueous based synthesis of CdSe/ZnS Q-dots: Study on luminescence properties and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Painuly, Diksha; Bhatt, Anugya; Krishnan, V. Kalliyana

    2013-06-01

    Present study aims to modify the thioacid capped CdSe Quantum-dots (Q-dots) surface by ZnS coating by direct synthesis in aqueous medium. CS formation was confirmed by red shift as well as enhancement in the luminescence peak compared to bare Q-dots. Effects of processing parameters during the shell preparation such as core concentration and sulphur concentration on the luminescence properties of CS have been studied. Processing parameters have been optimized at maximum luminescence efficiency. Cytocompatibility behavior was found to be better for CS compared to their bare Q-dots counterpart after evaluation. Cytotoxicity of CS has been further evaluated by changing the sulphur concentration and after aging for 8 days.

  11. Density functional theory predictions for blue luminescence and nonlinear optical properties of carbon-doped gallium nitride

    NASA Astrophysics Data System (ADS)

    Hu, XiaoLin; Zhang, YongFan; Zhuang, NaiFeng; Li, JunQian

    2010-12-01

    The TD-B3LYP method and the plane-wave formalism of DFT method were applied to predict the blue luminescence and nonlinear optical effect of C-doped GaN, respectively. The introduction of carbon dopant will generate different acceptor or donor levels, which are mainly composed by p electronic state, within the energy gap of GaN. Exploring the calculated luminescence spectra based on the optimized excited-state structure, C N:GaN exhibits high luminescence intensity and has nice monochromatic property. In addition, the corresponding second-order nonlinear optical coefficients are considerable, χ(2)xzx=-15.07 pm/V and χ(2)zzz=26.91 pm/V, which are about 28 times and 50 times of the second-order optical coefficient of KDP crystal.

  12. Technical Performance of the Luxel Al2O3:C Optically Stimulated Luminescence Dosemeter Element at Radiation Oncology and Nuclear Accident Dose Levels

    SciTech Connect

    Miller, Steven D.; Murphy, Mark K.

    2006-12-12

    The dose ranges typical for radiation oncology and nuclear accident dosimetry are on the order of 2?70 Gy and 0.1?5 Gy, respectively. In terms of solid-state passive dosimetry; thermoluminescent (TL) materials historically have been used extensively for these two applications, with silver-halide, leuco-dye, and BaFBr:Eu-based films being used on a more limited basis than TL for radiation oncology. This present work provides results on the performance of a film based on an aluminum oxide, Al2O3:C, for these dosimetry applications, using the optically-stimulated luminescence (OSL) readout method. There have been few investigations of Al2O3:C performance at radiation oncology and nuclear accident dose levels, and these have included minimal dosimetric and environmental effects information. Based on investigations already published, the authors of this present study determined that overall improvements over film and TLDs for this Al2O3:C OSL technology at radiation oncology and nuclear accident dose levels may include (1) a more tissue-equivalent response to photons compared to X-ray film, (2) higher sensitivity, (3) ability to reread dosemeters, and (4) diagnostic capability using small-area imaging. The results of the present investigation indicate that additional favorable performance characteristics for the Al2O3:C dosemeter are a wide dynamic range(0.001 to 100 Gy), a response insensitive to temperature and moisture over a wide range, negligible dose rate dependence, and minimal change in post-irradiation response. As a radiation detection medium, this OSL phosphor offers an assortment of dosimetry properties that will permit it to compete with current radiation detection technologies such as silver-halide, leuco-dye, and photostimulable-phosphor based films, as well as TLDs.

  13. Technical performance of the Luxel Al(2)O(3):C optically stimulated luminescence dosemeter element at radiation oncology and nuclear accident dose levels.

    PubMed

    Miller, Steven D; Murphy, Mark K

    2007-01-01

    The dose ranges typical for radiation oncology and nuclear accident dosimetry are on the order of 2-70 Gy and 0.1-5 Gy, respectively. In terms of solid-state passive dosimetry, thermoluminescent (TL) materials historically have been used extensively for these two applications, with silver-halide, leuco-dye and BaFBr:Eu-based films being used on a more limited basis than TL for radiation oncology. This present work provides results on the performance of a film based on an aluminum oxide, Al(2)O(3):C, for these dosimetry applications, using the optically stimulated luminescence (OSL) readout method. There have been few investigations of Al(2)O(3):C performance at radiation oncology and nuclear accident dose levels, and these have included minimal dosimetric and environmental effects information. Based on investigations already published, the authors of this present study determined that overall improvements over film and TLDs for this Al(2)O(3):C OSL technology at radiation oncology and nuclear accident dose levels may include (1) a more tissue-equivalent response to photons compared to X-ray film, (2) higher sensitivity, (3) ability to reread dosemeters and (4) diagnostic capability using small-area imaging. The results of the present investigation indicate that additional favourable performance characteristics for the Al(2)O(3):C dosemeter are a wide dynamic range (0.001-100 Gy), a response insensitive to temperature and moisture over a wide range, negligible dose rate dependence, and minimal change in post-irradiation response. As a radiation detection medium, this OSL phosphor offers an assortment of dosimetry properties that will permit it to compete with current radiation detection technologies such as silver-halide, leuco-dye and photostimulable-phosphor-based films, as well as TLDs.

  14. Study of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-keratin protein found in human hairs and nails: potential use in radiation dosimetry.

    PubMed

    Mishra, D R; Soni, A; Rawat, N S; Bokam, G

    2016-05-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of human nails and hairs containing α-keratin proteins have been investigated. For the present studies, black hairs and finger nails were selectively collected from individuals with ages between 25 and 35 years. The collected hairs/nails were cut to a size of < 1 mm and cleaned with distilled water to remove dirt and other potential physical sources of contamination. All samples were optically beached with 470 nm of LED light at 60 mW/cm(2) intensity and irradiated by a (60)Co γ source. The hair and nail samples showed overlapping multiple TL glow peaks in the temperature range from 70 to 210 ° C. Continuous wave (CW)-OSL measurements of hair samples at a wavelength of 470 nm showed the presence of two distinct OSL components with photoionization cross section (PIC) values of about 1.65 × 10(-18) cm(2) and about 3.48 × 10(-19) cm(2), while measurements of nail samples showed PIC values of about 6.98 × 10(-18) cm(2) and about 8.7 × 10(-19) cm(2), respectively. This difference in PIC values for hair and nail samples from the same individual is attributed to different arrangement of α-keratin protein concentrations in the samples. The OSL sensitivity was found to vary ± 5 times among nail and hair samples from different individuals, with significant fading (60% in 11 h) at room temperature. The remaining signal (after fading) can be useful for dose estimation when a highly sensitive OSL reader is used. In the absorbed dose range of 100 mGy-100 Gy, both the TL and OSL signals of hair and nail samples showed linear dose dependence. The results obtained in the present study suggest that OSL using hair and nail samples may provide a supplementary method of dose estimation in radiological and nuclear emergencies.

  15. Effects of doping concentration and co-doping with cerium on the luminescence properties of Gd3Ga5O12:Cr3+ for thermometry applications

    NASA Astrophysics Data System (ADS)

    Pareja, Jhon; Litterscheid, Christian; Molina, Alejandro; Albert, Barbara; Kaiser, Bernhard; Dreizler, Andreas

    2015-09-01

    The accuracy of surface temperature measurements using thermographic phosphors relies on an extensive knowledge of the temperature-dependent properties of the phosphor. This paper addresses the effects of doping concentration and co-doping with cerium on the luminescence properties of the Gd3Ga5O12:Cr3+ phosphor. High-crystallinity Gd3Ga5O12:Cr3+,Ce3+ powder samples (GGG:Cr,Ce) with different Cr3+ and Ce3+ concentrations were synthesized, and their luminescence spectra as well as their decay lifetime properties were characterized after UV laser excitation. Results revealed that the concentration quenching decreases the luminescence lifetime at concentrations above 0.5 mol% Cr3+ while the emission spectrum remains independent of the Cr3+ concentration. Co-doping with small amounts of Ce3+ improves the temperature-dependent luminescence characteristics by reducing the afterglow and producing fairly mono-exponential luminescence decays without changing the lifetime.

  16. Photocatalytic and luminescent properties of three novel complexes based on a pyridine-pyrimidine-hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Zhouqing; Mao, Xianjie; Zhang, Peiling; Li, Huijun; Wang, Yuan; Liu, Miaomiao; Jia, Lei

    2017-01-01

    Three novel complexes, namely {[Zn3(L)2(SO4)2(H2O)4]·2H2O}n (1), {[Cd(L)(OAc)]}n (2) and [Hg2(L)(I)3]2 (3) (HL = N‧ - isonicotinoylpyrimidine -2- carbohydrazonamide), have been synthesized and characterized by elemental analyses, infrared spectra and single-crystal X-ray diffraction analyze. The 1D complex 1 and complex 2, and the binuclear complex 3 are expanded to 3D networkers by the strong hydrogen bonds and π-π stacking interactions. The photocatalytic degradation of methylene blue (MB) results indicate that complexes 1-3 are excellent candidates as photocatalysts in decomposing MB with the presence of H2O2. In addition, the luminescent properties of these three complexes have been studied in the solid state.

  17. The morphology, microstructure, and luminescent properties of CdS/CdTe films

    SciTech Connect

    Al-Jassim, M.M.; Dhere, R.G.; Jones, K.M.; Hasoon, F.S.; Sheldon, P.

    1998-09-01

    This paper is concerned with the characterization of CdS/CdTe polycrystalline thin films for solar cells. The morphology, microstructure, and luminescent properties are studied by a powerful array of characterization techniques. The presence of pinholes in 100-nm thick CdS is observed. The microstructure of CdS and CdTe films is shown to be heavily faulted polycrystalline. The effect of deposition temperature on the grain size and the microstructure is investigated. The interdiffusion of sulfur and tellurium at the CdS/CdTe interface is studied for the first time by a nanoprobe technique. Considerable amount of sulfur is detected in CdTe in the vicinity of the interface of samples deposited at 625 C. The recombination behavior of grain boundaries and intragrain defects is investigated in as-deposited and heat-treated samples.

  18. Luminescence properties of Dy3+ doped lanthanum-calcium-silicaborate glass scintillator

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ha, D. H.; Lee, S. W.; Chanthima, N.; Ruangtaweep, Y.; Kaewkhao, J.

    2016-09-01

    In this research Dy3+-doped lanthanum-calcium-silicaborate glass scintillators, with the formula 25La2O3: 10CaO: 10SiO2: (55-x)B2O3: xDy2O3, were fabricated by using the melt-quenching technique. For the Dy3+ doping concentrations from 0.05 mol% to 0.5 mol% studied the luminescence properties of the Dy3+-doped glass scintillators with various radiation sources, such as X-ray, photo-, laser, and proton. To understand the absorption state, we measured the transmittance spectrum. Furthermore, X-ray, photo- and proton-induced emission spectra were measured to study the transition states of Dy3+-doped glass scintillators. The laser-induced emission spectra were measured at low temperatures in the range from 10 K to 300 K.

  19. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

    PubMed Central

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL−1). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy. PMID:27621625

  20. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy.

    PubMed

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL(-1)). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy.

  1. Luminescence properties of Lu3Al5O12:Tb3+ nano-garnet

    NASA Astrophysics Data System (ADS)

    Praveena, R.; Shim, Jae Jeong; Cai, Peiqing; Seo, Hyo Jin; Chung, Wan-Young; Kwon, Tae Ha; Jayasankar, C. K.; Haritha, P.; Venkatramu, V.

    2014-06-01

    Trivalent terbium-doped lutetium-aluminate nano-garnet (Lu3Al5O12:Tb3+) powder was prepared by using the Pechini sol-gel process. The structure and crystallinity of the Lu3Al5O12:Tb3+ nano-garnet were characterized by using X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy. The green emission of Tb3+ ions is observed at 545 nm corresponding to the 5D4 → 7F5 transition under the 271-nm excitation. The temperature dependent luminescence properties of the Lu3Al5O12:Tb3+ nano-garnet are investigated. The results show that the present garnet exhibits better thermal stability than the other green emitting phosphors, hence, the Lu3Al5O12:Tb3+ phosphor is a promising candidate for light-emitting devices.

  2. Synthesis, characterization and luminescent properties of lanthanide complexes with a novel multipodal ligand.

    PubMed

    Yan, Zhen-Zhong; Hou, Na; Wang, Cong-Min

    2015-02-25

    Solid complexes of lanthanide nitrates with an novel multipodal ligand, 1,2,4,5-tetramethyl-3,6-bis{N,N-bis[((2'-furfurylaminoformyl)phenoxyl)ethyl]-aminomethyl}-benzene (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. The lowest triplet state energy level of the ligand indicates that the triplet state energy level (T1) of the ligand matches better the resonance level of Tb(III) than other lanthanide ions.

  3. Positional-dependent luminescence property of β-SiAlON:Eu2+ phosphor particle

    NASA Astrophysics Data System (ADS)

    Zhang, Chenning; Uchikoshi, Tetsuo; Liu, Lihong; Dierre, Benjamin; Sakka, Yoshio; Hirosaki, Naoto

    2014-01-01

    The relationship between the luminescence property and particle faces of the β-SiAlON:Eu2+ phosphors was investigated by performing the cathodoluminescence (CL) measurements on the tip and side faces of the rod-like phosphor particles. It was found a positional dependence of the CL intensity on the particle faces, that is, the side face possessed higher CL intensity than the tip face, probably due to uneven distribution of the Eu2+ sites in the β-SiAlON host particles: the Eu2+ ions more intensively concentrated at the side face of the particle, particularly at the central area of the side face, than at the tip face.

  4. Synthesis, characterisation, optical and luminescence properties of CoAl{sub 2}O{sub 4}

    SciTech Connect

    Agilandeswari, K.; Kumar, A. Ruban

    2015-06-24

    Solid state method has been used as an efficient method to synthesize blue pigment CoAl{sub 2}O{sub 4} at a temperature of 800°C. The products were characterized by powder X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FTIR), UV-Visible diffuse reflectance spectroscopy (DRS) and luminescent spectroscopy. X-ray diffraction pattern confirmed the formation of single phase CoAl{sub 2}O{sub 4}. Optical properties of CoAl{sub 2}O{sub 4} ceramic shows an energy band gap in the range of 3.10eV. The emission spectra of spinel CoAl{sub 2}O{sub 4} in the visible region confirmed the presence of tetrahedral coordinated Co{sup 2+} ions.

  5. Influence of substrate miscut angle on surface morphology and luminescence properties of AlGaN

    SciTech Connect

    Kusch, Gunnar Edwards, Paul R.; Bruckbauer, Jochen; Martin, Robert W.; Li, Haoning; Parbrook, Peter J.; Sadler, Thomas C.

    2014-03-03

    The influence of substrate miscut on Al{sub 0.5}Ga{sub 0.5} N layers was investigated using cathodoluminescence (CL) hyperspectral imaging and secondary electron imaging in an environmental scanning electron microscope. The samples were also characterized using atomic force microscopy and high resolution X-ray diffraction. It was found that small changes in substrate miscut have a strong influence on the morphology and luminescence properties of the AlGaN layers. Two different types are resolved. For low miscut angle, a crack-free morphology consisting of randomly sized domains is observed, between which there are notable shifts in the AlGaN near band edge emission energy. For high miscut angle, a morphology with step bunches and compositional inhomogeneities along the step bunches, evidenced by an additional CL peak along the step bunches, are observed.

  6. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    SciTech Connect

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-15

    A new tetrapodal ligand 1,1,1-tetrakis{l_brace}[(2'-(2-furfurylaminoformyl))phenoxyl]methyl{r_brace}methane (L) has been prepared and their coordination chemistry with Ln{sup III} ions has been investigated. The structure of {l_brace}[Ln{sub 4}L{sub 3}(NO{sub 3}){sub 12}].H{sub 2}O{r_brace}{sub i}nfinity (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8{sup 6}){sub 3}(8{sup 3}){sub 4} notation. [DyL(NO{sub 3}){sub 3}(H{sub 2}O){sub 2}].0.5CH{sub 3}OH and [ErL(NO{sub 3}){sub 3}(H{sub 2}O) (CH{sub 3}OH)].CH{sub 3}COCH{sub 3} is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H{sub 2}O){sub 6}].3ClO{sub 4}.3H{sub 2}O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu{sup III} complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  7. Structure and luminescence properties of thermally nitrided Ga{sub 2}O{sub 3} nanowires

    SciTech Connect

    Kim, Hyunsu; Jin, Changhyun; Park, Sunghoon; Lee, Wan In; Lee, Chongmu

    2013-02-15

    Graphical abstract: The as-synthesized Ga{sub 2}O{sub 3} nanowires exhibited a broad emission band at approximately 570 nm in the green region. In contrast, the thermally nitrided Ga{sub 2}O{sub 3} nanowires exhibited a much stronger emission band at approximately 455 nm in the blue region. Display Omitted Highlights: ► The structure and luminescence properties of thermally nitrided Ga{sub 2}O{sub 3} nanowires were examined. ► A uniform GaN shell layer was formed on the surface of the nanowires by thermal nitridation. ► The as-synthesized Ga{sub 2}O{sub 3} nanowires exhibited a broad yellow emission. ► The nitrided Ga{sub 2}O{sub 3} nanowires exhibited a much stronger blue emission band due to the GaN shell layer. -- Abstract: The structure and luminescence properties of thermally nitrided Ga{sub 2}O{sub 3} nanowires were examined. Transmission electron microscopy and X-ray diffraction confirmed the formation of a uniform GaN shell layer on the surface of the nanowires by thermal nitridation. The core and shell of the nitrided nanowires were monoclinic-structured single crystal Ga{sub 2}O{sub 3} and wurtzite-type hexagonal close-packed-structured single crystal GaN, respectively. The as-synthesized Ga{sub 2}O{sub 3} nanowires exhibited a broad emission band at approximately 570 nm in the yellow region. In contrast, the nitrided Ga{sub 2}O{sub 3} nanowires exhibited a much stronger emission band at approximately 455 nm in the blue region, which must originate from the newly formed GaN shell layer.

  8. Luminescent properties of YAlO3:Mn single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu; Gorbenko, V.; Savchyn, V.; Kuklinski, B.; Grinberg, M.; Bilski, P.; Gieszczyk, W.; Twardak, A.; Mandowski, A.; Mandowska, E.; Fedorov, A.

    2012-10-01

    The YAP:Mn single crystalline films (SCF) have been crystallized by liquid phase epitaxy (LPE) method onto YAP substrates. The cathode- (CL) and photo-luminescence (PL) spectra of the YAP:Mn SCF were analyzed for determination of the preferable valence states of manganese ions which are realized in these SCF depending on Mn content in the 0.01-0.81 at.% range. The thermoluminescence (TL) properties of YAP:Mn SCF with the different Mn content above the RT range were also examined in comparison with the properties of YAP:Mn single crystal counterpart. We show that YAP:Mn (0.01 at.%) SCF possesses effective TL properties both under α-particle and γ-quanta excitation with main TSL peaks at 130 and 195 °C. We assume that the different valence states of Mn ions are responsible for their TL properties, e.g. both emission and trapping centers in YAP:Mn are formed mainly by the different valence states of Mn ions.

  9. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    SciTech Connect

    Jursinic, Paul A.

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  10. Photoluminescence, thermally stimulated luminescence and electron paramagnetic resonance investigations of Tb{sup 3+} doped SrBPO{sub 5}

    SciTech Connect

    Kumar, Mithlesh; Seshagiri, T.K.; Kadam, R.M.; Godbole, S.V.

    2011-09-15

    Graphical abstract: EPR spectra of BOHC's in 2 kGy {gamma}-irradiated SrBPO{sub 5}:Tb sample using Receiver Gain RG = 4 x 10{sup 4}, Modulation Amplitude MA = 0.25 G, Microwave power setting 6.3 mW: (A) un-annealed sample recorded at 300 K, (B) un-annealed sample recorded at 100 K and (C) sample annealed at 550 K for 10 min and recorded at 100 K. Highlights: {yields} PL studies on Tb doped SrBPO{sub 5} phosphor have shown emission due to Tb{sup 3+} associated with {sup 5}D{sub 3} {yields} {sup 7}F{sub J} and {sup 5}D{sub 4} {yields} {sup 7}F{sub J} (J = 3, 4, 5 and 6) transitions. {yields} The EPR studies on {gamma}-irradiated samples revealed formation of three types of boron oxygen hole trapped centres viz., BOHC{sub 1}, BOHC{sub 2} and BOHC{sub 3} and an electron trapped centre. {yields} The TSL peak at 475 K was associated with the thermal destruction of BOHC{sub 2}. -- Abstract: Trap level spectroscopic studies were carried out on {gamma}-irradiated Tb (1 mole%) doped SrBPO{sub 5} were carried out using photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) techniques. The incorporation of Tb in the 3+ oxidation state was ascertained from PL studies. Life time for Tb{sup 3+} emission corresponding to the intense transition {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} at 543 nm was determined. The spectral characteristics of the TSL glows have shown that Tb{sup 3+} ions act as the emission center for the glow peak at 475 K. The trap parameters of the glow peak were determined. EPR investigations at room temperature/77 K revealed the stabilization of three boron oxygen hole trapped centers (BOHC's) and oxygen centered radicals such as O{sup -} and O{sub 2}{sup -} and trapped electrons in room temperature {gamma}-irradiated samples. TSL glow peak at 475 K was found to be associated with recombination of electron released from trapped electron center and the BOHC{sub 2} center.

  11. Luminescent properties of SrZn2(PO4)2:Tb3+ and its luminescence improvement by incorporating A+ (A=Li, Na, and K)

    NASA Astrophysics Data System (ADS)

    Li, Panlai; Wang, Zhijun; Yang, Zhiping; Guo, Qinglin

    2014-12-01

    A novel green phosphor SrZn2(PO4)2:Tb3+ is synthesized by a high temperature solid-state method, and its luminescent property is investigated. X-ray diffraction patterns of SrZn2(PO4)2:Tb3+ indicate a similarity crystalline phase to SrZn2(PO4)2. SrZn2(PO4)2:Tb3+ shows green emission under 369 nm excitation, and the prominent luminescence in green (544 nm) due to 5D4-7F5 transition of Tb3+. For the 544 nm emission, excitation spectrum has several excitation band from 200 nm to 400 nm. Emission intensity of SrZn2(PO4)2:Tb3+ is influenced by Tb3+ concentration, and concentration quenching effect of Tb3+ in SrZn2(PO4)2 is also observed. With incorporating A+ (A=Li, Na, and K) as compensator charge, the emission intensity of SrZn2(PO4)2:Tb3+ can be obviously enhanced. CIE color coordinates of SrZn2(PO4)2:Tb3+ locate in the green region. The results indicate this phosphor may be a potential application in white LEDs.

  12. High resolution shallow geologic characterization of a late Pleistocene eolian environment using ground penetrating radar and optically stimulated luminescence techniques: North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Mahan, S.; Moore, Christine

    2008-01-01

    Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).

  13. Luminescent properties of lithium-phosphate-borate glasses doped with Tb3+/ Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Stepanov, S. A.; Cong, Liu

    2016-02-01

    The luminescence of Li2O-B2O3-P2O5-CaF2 scintillation glass doped Tb3+, Eu3+ under different types of excitation sources are investigated. Changing the europium concentration of 0.5 to 1 wt% leads changes in luminescence intensity of Tb3+ ions. The luminescence spectrum of the Tb3+ ions are depend on the concentration of Eu3+. It was found, that the luminescence decay kinetics of terbium ion in the band 543 nm depending on the concentration of europium and from type of excitation. The difference in the nature of the luminescence decay kinetics of glasses under pulsed photo- and electronic excitation discussed.

  14. Effect of the parameters of pulsed anodic formation of porous silicon on its luminescent, paramagnetic, and electrotransport properties

    NASA Astrophysics Data System (ADS)

    Demidov, E. S.; Abrosimov, A. S.; Demidova, N. E.; Karzanov, V. V.

    2017-02-01

    We present the data on changes in the properties of porous silicon formed at the current pulse modulation in the range of 0.1-1 Hz with the aim to modulate the properties of porous silicon in a nanoscale range. It is demonstrated that the use of the pulsed mode of formation of porous silicon with a period of a few tenths of a second can dramatically affect the photoluminescence quantum yield and other properties of the material. There is a correlation of the luminescent, electrotransport, and paramagnetic properties of porous silicon formed under different modes.

  15. Influence of Gd3+ concentration on luminescence properties of Eu3+ ions in sol-gel materials

    NASA Astrophysics Data System (ADS)

    Szpikowska-Sroka, Barbara; Pawlik, Natalia; Pisarski, Wojciech A.

    2016-12-01

    The sol-gel powders doubly-doped with Gd3+/Eu3+ ions with different concentration of Gd3+ have been successfully obtained. The spectroscopic characterization of prepared samples was conducted based on excitation and emission spectra as well as luminescence decay analysis. Upon direct excitation of Eu3+ active ions, the characteristic 5D0 → 7F1 (orange) and 5D0 → 7F2 (red) emission bands were observed. The energy transfer from Gd3+ to Eu3+ ions was registered upon λexc = 273 nm excitation. An efficient conversion of ultraviolet radiation (UV) into visible luminescence was successfully observed. The energy transfer process from Gd3+ to Eu3+ led to longer luminescence decay from the 5D0 state in comparison to that obtained under direct excitation of Eu3+ ions (λexc = 393 nm). Generally, obtained results clearly indicated the beneficial influence of increasing concentration of Gd3+ ions on luminescence properties of Eu3+ in studied silica sol-gel phosphors.

  16. Effect of Er3+ concentration on the luminescence properties of Al2O3-ZrO2 powder

    NASA Astrophysics Data System (ADS)

    Clabel H., J. L.; Rivera, V. A. G.; Nogueira, I. C.; Leite, E. R.; Siu Li, M.; Marega, E.

    2016-12-01

    This manuscript reports on the effects of the luminescence properties of Er3+ on Al2O3-ZrO2 powder synthesized by the conventional solid-state method. The best conditions found for the calcinations were 1500 °C and 4 h. The structural dependence of the luminescence on Er3+:Al2O3-ZrO2 is associated with phase transformations of the Al2O3-ZrO2 host and presence of the OH group. Green and red emissions at room temperature from the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 levels of Er3+ ions were observed under 482 nm pumping. The green-to-red emission intensity ratios and CIE chromaticity coordinates were determined from emission spectra for the evaluation of light emitted as a function of the Er3+ concentration. The Er3+ luminescence quenching due to group OH and variation in the Er3+ concentration plays an important role in the definition of the luminescent response.

  17. Synthesis and luminescent properties of ternary complex Eu(UVA)3Phen in nano-TiO2

    NASA Astrophysics Data System (ADS)

    Lü, Yu-guang; Gong, Zhong-ping; Gao, Hong-bing; Zhou, Shu-jing; Lü, Kui-lin; Wang, Ying; A, Du; Du, Hao-ran; Zhang, Li; Zhang, Fu-jun

    2015-01-01

    By introducing 2-hydroxy-4-methoxy-benzophenone (UVA) and 1,10-phenanthroline (Phen) as the ligands, the ternary rare earth complex of Eu(UVA)3Phen is synthesized, and it is characterized by elemental analysis, mass spectra (MS) and infrared (IR) and ultraviolet (UV) spectroscopy. Results show that the Eu(III) in complex emits strong red luminescence when it is excited by UV light, and it has higher sensitized luminescent efficiency and longer lifetime. The organic-inorganic thin film of complex Eu(UVA)3Phen doped with nano-TiO2 is prepared, and the nano-TiO2 is used in the luminescence layer to change the luminescence property of Eu(UVA)3Phen. It is found that there is an efficient energy transfer process between ligands and metal ions. Moreover, in an indium tin oxide (ITO)/poly(N-vinylcar-bazole) (PVK)/Eu(UVA)3Phen/Al device, Eu3+ can be excited by intramolecular ligand-to-metal energy transfer process. The main peak of emission at 613 nm is attributed to 5D0→7F2 transition of the Eu3+, and this process results in the enhanced red emission.

  18. Luminescent properties of metal-organic framework MOF-5: relativistic time-dependent density functional theory investigations.

    PubMed

    Ji, Min; Lan, Xin; Han, Zhenping; Hao, Ce; Qiu, Jieshan

    2012-11-19

    The electronically excited state and luminescence property of metal-organic framework MOF-5 were investigated using relativistic density functional theory (DFT) and time-dependent DFT (TDDFT). The geometry, IR spectra, and UV-vis spectra of MOF-5 in the ground state were calculated using relativistic DFT, leading to good agreement between the experimental and theoretical results. The frontier molecular orbitals and electronic configuration indicated that the luminescence mechanism in MOF-5 follows ligand-to-ligand charge transfer (LLCT), namely, π* → π, rather than emission with the ZnO quantum dot (QD) proposed by Bordiga et al. The geometry and IR spectra of MOF-5 in the electronically excited state have been calculated using the relativistic TDDFT and compared with those for the ground state. The comparison reveals that the Zn4O13 QD is rigid, whereas the ligands BDC(2-) are nonrigid. In addition, the calculated emission band of MOF-5 is in good agreement with the experimental result and is similar to that of the ligand H2BDC. The combined results confirmed that the luminescence mechanism for MOF-5 should be LLCT with little mixing of the ligand-to-metal charge transfer. The reason for the MOF-5 luminescence is explained by the excellent coplanarity between the six-membered ring consisting of zinc, oxygen, carbon, and the benzene ring.

  19. Enhanced luminescence properties of CaTiO(3):Pr(3+) phosphor with addition of SiO(2) by solid-state reaction.

    PubMed

    Chen, Rui; Chen, Donghua

    2014-06-05

    Red phosphors CaTiO3:Pr(3+) with addition of SiO2 were prepared by solid-state reaction technique (SS). The effect of SiO2 on the crystalline phase, surface morphology and luminescence properties of CaTiO3:Pr(3+) was studied by X-ray diffractometer, transmission electron microscope, brightness meter and photoluminescence spectrometer, respectively. The results indicated that the content of SiO2 has influence on luminescence intensity, initial brightness and persistent time of samples. The red phosphor CaTi0.5Si0.5O3:Pr(3+) exhibited the optimal luminescence properties.

  20. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Zhang, Shaowei

    2016-01-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties. PMID:26940294

  1. Tuning luminescent properties of CdSe nanoclusters by phosphine surface passivation

    NASA Astrophysics Data System (ADS)

    Lysova, Iryna; Anton, Halina; Dmitruk, Igor; Mely, Yves

    2016-12-01

    Appropriate surface ligands are required for tuning the physicochemical and photophysical properties of nanoclusters (NCs). These surface ligands are especially critical for passivating the small (CdSe)33,34 NCs where the majority of atoms are at the NC surface. In this study, triphenylphosphine (TPP), trioctylphosphine (TOP) and tris(pentafluorophenyl)phosphine (TPFP) have been tested as capping agents for alkylamine-coated CdSe NCs. TPP and TOP compounds are found to increase the quantum yield of photoluminescence (PL) from 0.15% to 0.6% and 0.53%, respectively, and to preserve this increased PL with time, probably by preventing charge leakage as a result of their binding to Se atoms. Since no dramatic change in the shape of NCs’ PL spectrum occurs after surface treatment, both the exciton band and the low-energy broad band in magic NCs are thought to describe the intrinsic luminescence properties of the NCs. As a result, the PL increase due to Se passivation is thought to be mainly caused by a decrease in the efficiency of the NC nonradiative pathways.

  2. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    PubMed

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-04-28

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

  3. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  4. Two lanthanide-hydroxo clusters with different nuclearity: Synthesis, structures, luminescent and magnetic properties

    NASA Astrophysics Data System (ADS)

    Li, Xi-Li; Zhu, Cancan; Zhang, Xue-Li; Hu, Ming; Wang, Ai-Ling; Xiao, Hong-Ping

    2017-01-01

    Under the identical reaction conditions, two new TbIII and SmIII-hydroxo clusters with different nuclearity have been prepared and characterized by X-ray crystallography, spectroscopic methods and magnetic measurements. Solid-state structure analyses reveal that the TbIII cluster shows a pentanuclear square pyramidal shape of the composition [Tb5(μ3-OH)4(μ4-OH)(dbm)10]·2H2O (1, dbm- = dibenzoylmethanate) with the dbm ligands presenting two types of coordination modes [η2-and (μ-O)-η2-]. The SmIII species presents a tetranuclear parallelogram structure formulated as [Sm4(μ3-OH)2(dbm)10]·12H2O (2), and three types of coordination modes [η2-, (μ-O)-η2- and (μ-O)2-η2-] for dbm ligands are observed. The measurements of magnetic properties indicate that the direct-current (dc) magnetic behaviors of two clusters mainly result from the thermal depopulation of the Stark sublevels of the TbIII and SmIII ions, respectively. Meanwhile, alternating current (ac) magnetic susceptibility of 1 is also assessed. Investigations on luminescence properties show that 2 displays characteristic emission of the SmIII ion in visible range, while 1 does not exhibit any detectable emission. The interpretations of different emission behaviors for 1 and 2 are also presented in detail.

  5. Structural, Magnetic and Luminescent Properties of Lanthanide Complexes with N-Salicylideneglycine

    PubMed Central

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-01-01

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)2(H2O)2]∙H2O (1–6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution. PMID:25927576

  6. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al{sub 2}O{sub 3}:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

    SciTech Connect

    Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.

    2008-12-15

    This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.

  7. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    SciTech Connect

    Dotsenko, V.P.; Berezovskaya, I.V.; Voloshinovskii, A.S.; Zadneprovski, B.I.; Efryushina, N.P.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions have been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  8. Luminescence properties of alkali europium double tungstates and molybdates AEuM/sub 2/O/sub 8/

    SciTech Connect

    van Vliet, J.P.M.; Blasse, G.; Brixner, L.H.

    1988-09-01

    The luminescence properties of AEuW/sub 2/O/sub 8/ and AEuMo/sub 2/O/sub 8/ (A/sup +/ = alkali metal ion) are reported. These properties depend on the crystal structure type. Vibronic coupling between the electronic transitions of the Eu/sup 3 +/ ion and the vibrational transitions of the tungstate of molybdate group is observed. The concentration quenching of the Eu/sup 3 +/ luminescence is weak. The analysis of the Eu/sup 3 +/ decay curves points to energy migration and shows the two-dimensionality of the Eu/sup 3 +/ sublattice in KEuMo/sub 2/O/sub 8/ and the one-dimensionality of the Eu/sup 3 +/ sublattice in KEuW/sub 2/O/sub 8/ and RbEuW/sub 2/O/sub 8/.

  9. Luminescent Properties of ZnxCa1-xTiO3:yPr3+ Long-Lasting Phosphors

    NASA Astrophysics Data System (ADS)

    Meng, Yanzhi; Wang, Xiaomin; Shen, Yi; Wei, Xiaoli; Han, Liying; Li, Fengfeng; Hou, Luyao

    2016-10-01

    The red long-lasting phosphors (LLPs) ZnxCa1-xTiO3:yPr3+ (ZCTP) were successfully prepared via the sol-gel method. The effects of Zn2+ content and Pr3+ molar concentration on the luminescent properties of ZCTP LLPs were characterized by X-ray diffraction, excitation and emission spectra, long-lasting decay curves and thermoluminescence (TL) curves. In this study, the results indicated that luminescent properties of Zn0.2Ca0.8TiO3:0.2 %Pr3+ phosphor was the best. In addition, when Pr3+ molar concentration reached 0.8 mol %, concentration quenching effect was obvious.

  10. An Infrared Stimulated Luminescence (IRSL) Procedure for Estimating the Transport Rate of Potassium-Feldspar Grains in a Fluvial Setting

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rhodes, E. J.

    2013-12-01

    The Mojave River and Santa Clara River of Southern California were chosen as field sites to assess the feasibility of implementing infrared stimulated luminescence (IRSL) techniques to determine sediment transport rate. Feldspar sand grains in the active channel of these rivers are expected to be incompletely (partially) bleached by sunlight exposure during transport, causing the grains to have inherited charge at the time of deposition. A modification of the Post-IR IRSL procedure developed by Buylaert et al. (2009) was used for K-Feldspar grains (175-200 μm) at temperature increments of 50, 95, 140, 185, 230 °C over multiple bleach and artificial dose cycles, providing 5 signals of different sensitivity to light exposure. The measurements show an exponential decrease in equivalent dose (De) with distance down the Mojave River, with relatively less bleaching downriver for higher temperature measurements. The equivalent dose for samples at 50 °C is roughly constant along the river, at a low value of approximately 0.7 Grays. The results for higher temperature measurements suggest cyclical bleaching and burial as grains are transported downriver and higher energy (deeper) traps are gradually vacated. However, this interpretation cannot be applied to the Santa Clara River, as no simple relationship exists between the location of samples and their equivalent dose. Possible explanations for this observation include significant sediment flux from catchments with different mineralogy and recent geologic history. For the Mojave River, the relationship between De and distance downriver can be used to constrain transport rate. A bleaching experiment was designed for the Mojave River samples to assess the rate of signal loss as a function of daylight exposure time for each of the different IRSL signal components. The results for each exposure time were fit to the general order kinetics equation, a function used to fit IRSL read-out, using a non-linear regression (Levenberg

  11. Synthesis and luminescence properties of Zn(Cu(0.01) Cd(0.02) Mg(0.02))S phosphor.

    PubMed

    Zhang, Wentao; Lee, Hong-Ro

    2011-01-01

    To improve the luminescence properties of ZnS : Cu, a multi-doped method was used to prepare Zn(Cu(0.01) Cd(0.02) Mg(0.02))S in this paper. As a new designed semiconductor compound, particular properties of Zn(Cu(0.01) Cd(0.02) Mg(0.02))S were investigated, especially luminescence intensity and lifetime. Structure and compositions of Zn(Cu(0.01) Cd(0.02) Mg(0.02))S phosphor were analyzed by XRD and TEM respectively. Luminescence intensity and luminescence lifetime of the prepared Zn(Cu(0.01) Cd(0.02) Mg(0.02))S phosphor were investigated by luminescence spectrometry. As a result, compared with pure ZnS or doped ZnS phosphors, Zn(Cu(0.01) Cd(0.02) Mg(0.02))S showed remarkably improved luminescence properties. The optimum ratio of three dopants was obtained for solving luminescence problems.

  12. Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence

    PubMed Central

    Guidelli, E. J.; Baffa, O.; Clarke, D. R.

    2015-01-01

    The optical properties of core-shell nanoparticles consisting of a ZnO shell grown on Ag and Au nanoparticle cores by a solution method have been investigated. Both the ZnO/Ag and ZnO/Au particles exhibit strongly enhanced near-band-edge UV emission from the ZnO when excited at 325 nm. Furthermore, the UV intensity increases with the metal nanoparticle concentration, with 60-fold and 17-fold enhancements for the ZnO/Ag and ZnO/Au, core-shell nanoparticles respectively. Accompanying the increase in UV emission, there is a corresponding decrease in the broad band defect emission with nanoparticle concentration. Nonetheless, the broad band luminescence increases with laser power. The results are consistent with enhanced exciton emission in the ZnO shells due to coupling with surface plasmon resonance of the metal nanoparticles. Luminescence measurements during and after exposure to X-rays also exhibit enhanced UV luminescence. These observations suggest that metal nanoparticles may be suitable for enhancing optical detection of ionizing radiation. PMID:26365945

  13. Preparation, characterization and luminescence properties of a new hydrous red phosphor CaB3 O5 (OH):Eu(3)(+) with different morphologies.

    PubMed

    Huang, H S; Tang, A J; Yang, C; Jin, H F

    2017-03-01

    A new borate phosphor CaB3 O5 (OH):Eu(3)(+) with different morphologies was synthesized using a hydrothermal method and its luminescence properties were studied. The effects of surfactants on the crystal structures, morphologies and luminescence properties of the samples were studied. The results showed that the surfactants play an important role in controlling the morphology and improving the luminescence properties of phosphors. The luminescence intensity and R/O(I615/I592) value were enhanced for the prepared sample by adding PEG4000. The prepared sample exhibited a higher R/O than some anhydrous calcium borate phosphors, indicating that this product could serve as a new potential red phosphor.

  14. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Gaza, R.; Yukihara, E. G.; McKeever, S. W. S.

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology. c2004 Elsevier Ltd. All rights reserved.

  15. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles.

    PubMed

    Gaza, R; Yukihara, E G; McKeever, S W S

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology.

  16. Luminescent properties of Tm3+/ Ho3+ co-doped LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shan-shan; Xia, Hai-ping; Dong, Yan-ming; Fu, Li; Gu, Xue-mei; Zhang, Jian-li; Wang, Dong-jie; Jiang, Hao-chuan; Chen, Bao-jiu

    2014-11-01

    Ho3+ with various concentrations and Tm3+ with molar concentration of 1.28% are co-doped in LiYF4 (YLF) single crystals. The luminescent properties of the crystals are investigated through emission spectra, emission cross section and decay curves under the excitation of 808 nm. The energy transfer from Tm3+ to Ho3+ and the optimum fluorescence emission of Ho3+ around 2.05 μm are investigated. The emission intensity at 2.05 μm keeps increasing with the molar concentration of Ho3+ improved from 0.50% to 1.51% when the molar concentration of Tm3+ is kept at 1.28%. Moreover, for the co-doped crystals in which the molar concentrations of Tm3+ and Ho3+ are 1.28% and 1.51%, respectively, the maximum emission cross section reaches 0.760×10-20 cm2 and the maximum fluorescence lifetime is 21.98 ms. All the parameters suggest that these materials have more advantages in the future 2.0 μm laser applications.

  17. Luminescence properties of the Ca-alpha-sialon:Eu solid solution

    NASA Astrophysics Data System (ADS)

    Pawlik, Tomasz; Michalik, Daniel; Sopicka-Lizer, Malgorzata; Lisiecki, Radosław; Adamczyk, Barbara; Pławecki, Materusz; Mieszczak, Łukasz; Walerczyk, Wiktoria

    2016-09-01

    The Ca,Eu-α-sialon powders with the mixed solid solution composition have been manufactured via the solid-state reaction process in flowing nitrogen in a graphite furnace at a relatively low temperature of 1650 °C without an external overpressure. XRD data with Rielveld refinement and XPS measurements were used for characterization of the lattice constants and the surface chemical composition. The monophase Ca-Eu-α-sialon was obtained with the nominal composition of Eu0.048Ca0.702Si7.75Al2.25O0.75N15.25. The highest emission intensity in a yellow-orange region at 590 nm and quantum efficiency of 66% was found for this pure Ca,Eu-α-sialon. Estimation of m,n values from the lattice constant and EDS results showed a small deviation from the nominal composition of designed α-sialon. XPS results demonstrated significant changes of the chemical composition in the oxidized surface of phosphor particles. Possible reasons of emission redshift and relationship between the actual solid solution composition and luminescence properties are discussed in terms of simultaneous presence of Eu2+ and Eu3+ ions in the sialon crystal lattice and residual oxynitride glass.

  18. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  19. Characterization and luminescence properties of Sr3Gd): Sm3+ orange-red phosphor

    NASA Astrophysics Data System (ADS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Sun, Yumei; Du, Haiyan

    2015-10-01

    Reddish-orange emitting phosphors, Sr3Gd): Sm3+, were successfully synthesized by a conventional solid-state reaction. The crystal structure of the phosphors was characterized by x-ray diffraction. The excitation spectra and emission spectra were utilized to characterize the luminescence properties of the as-prepared phosphors. The results show that the phosphor consisted of some sharp emission peaks of Sm3+ ions centered at 564, 600, 647, and 707 nm, respectively. The critical distance of Sr3Gd0.93): 0.07Sm3+ was calculated to be 19.18 Å and the lifetime value of the sample was 1.63 ms. The band gap of Sr3Gd) was estimated to be about 2.74 eV from the diffuse reflection spectrum. The optimum doping concentration is 7 mol. % and the quenching occurs via dipole-dipole interaction according to Dexter's theory. The Commission Internationale de L'Eclairage value of Sr3Gd): Sm3+ phosphors presented that it has high color purity. These results indicated that the Sr3Gd): Sm3+ may be a promising reddish-orange emitting phosphor for cost-effective near ultraviolet white light-emitting diodes.

  20. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  1. Structural and luminescent properties of KY(1-x)DyxBO3 phosphors

    NASA Astrophysics Data System (ADS)

    Sowjanya, G.; Rama Moorthy, L.; Basavapoornima, Ch.; Jayasankar, C. K.

    2017-01-01

    Yttrium borate phosphors (KY(1-x)DyxBO3) doped with Dy3+ ions were synthesized by the solid-state reaction method. The structural and morphological characteristics were studied by XRD, FTIR and SEM measurements. Luminescent properties of different concentrations of KY(1-x)DyxBO3 phosphors were investigated from the excitation, emission and decay analyses. The emission spectra exhibited characteristic blue (460-500 nm) and yellow (555-610 nm) bands of Dy3+ ions which combines to give white light. The evaluated color co-ordinates (x, y) were found to lie within the white light region of CIE chromaticity diagram. All the decay curves of Dy3+ ions exhibited non-exponential nature and the experimental lifetimes for the 4F9/2 excited level were found to decrease from 0.87, 0.47, 0.35, 0.26 and 0.13 ms with the increase of Dy3+ ion concentrations from 0.05, 0.1, 0.15, 0.2 and 0.3 mol%, respectively. In order to understand the energy transfer mechanism, the decay curves were fitted to Inokutti-Hirayama model and found that the energy transfer is of dipole-dipole type. From the results of these investigations, it is concluded that the KY(1-x)DyxBO3 phosphors are more useful for white light emitting diodes.

  2. Effect of structure, size and copper doping on the luminescence properties of ZnS

    SciTech Connect

    Kamal, Ch. Satya; Mishra, R.K.; Patel, Dinesh K.; Rao, K. Ramachandra; Sudarsan, V.; Vatsa, R.K.

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  3. New Insights To Simulate the Luminescence Properties of Pt(II) Complexes Using Quantum Calculations.

    PubMed

    Massuyeau, Florian; Faulques, Eric; Latouche, Camille

    2017-03-24

    The present manuscript reports a thorough quantum investigation on the luminescence properties of three monoplatinum(II) complexes. First, the simulated bond lengths at the ground state are compared to the observed ones, and the simulated electronic transitions are compared to the reported ones in the literature in order to assess our methodology. In a second time we show that geometries from the first triplet excited state are similar to the ground state ones. Simulations of the phosphorescence spectra from the first triplet excited states have been performed taking into account the vibronic coupling effects together with mode-mixing (Dushinsky) and solvent effects. Our simulations are compared with the observed ones already reported in the literature and are in good agreement. The calculations demonstrate that the normal modes of low energy are of great importance on the phosphorescence signature. When temperature effects are taken into account, the simulated phosphorescence spectra are drastically improved. An analysis of the computational time shows that the vibronic coupling simulation is cost-effective and thus can be extended to treat large transition metal complexes. In addition to the intrinsic importance of the investigated targets, this work provides a robust method to simulate phosphorescence spectra and to increase the duality experiment-theory.

  4. Middle-Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology

    NASA Astrophysics Data System (ADS)

    Tsodoulos, Ioannis M.; Stamoulis, Konstantinos; Caputo, Riccardo; Koukouvelas, Ioannis; Chatzipetros, Alexandros; Pavlides, Spyros; Gallousi, Christina; Papachristodoulou, Christina; Ioannides, Konstantinos

    2016-09-01

    The south-dipping Gyrtoni Fault defines the northeastern boundary of the Middle-Late Quaternary Tyrnavos Basin, Central Greece. The recognition and recent tectonic activity of the fault were previously based on mapping, remote sensing analyses and electrical resistivity tomography studies. To understand the Holocene seismotectonic behavior of the Gyrtoni Fault we excavated two paleoseismological trenches. To estimate the timing of past earthquakes using luminescence dating, we obtained twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks. We applied the Optically Stimulated Luminescence (OSL) dating to coarse grain quartz using the single-aliquot regenerative-dose (SAR) protocol. Our investigations of luminescence characteristics using various tests confirmed the suitability of the material for OSL dating. We found that the estimated OSL ages were internally consistent and agreed well with the available stratigraphical data, archaeological evidence and radiocarbon dates. The performed paleoseismological analysis emphasized the occurrence of three surface faulting events in a time span between 1.42 ± 0.06 ka and 5.59 ± 0.13 ka. Also, we recognized an earlier faulting event (fourth) has been also recognized to be older than 5.59 ± 0.13 ka. The mean throw per event value of 0.50-0.60 m could correspond to a ca. Mw 6.5 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/a and an average recurrence time of 1.39 ± 0.14 ka were also estimated. Our results suggest that the elapsed time from the most recent event (minimum age 1.42 ± 0.06 ka) is comparable with the mean return period.

  5. Near Infrared Luminescence Properties of Mn(5+): Ca5(PO4)3F

    NASA Technical Reports Server (NTRS)

    Davis, Valetta R.; Hoemmerich, Uwe; Loutts, George B.

    1997-01-01

    We report a spectroscopic investigation of Mn(5+) doped Ca5(PO4)(sub 3)F or FAP. Mn(5+) doped crystals have recently attracted world wide attention for potential solid-state laser applications. Following optical excitation of Mn: FAP with the 600 nm output of a Nd: YAG OPO laser system, we observed a strong near infrared luminescence centered at around 1150 nm. The room temperature luminescence decay time was measured to be approximately 635 microseconds. We attribute the infrared luminescence to the(1)E yields (3)A2 transition of tetrahedrally coordinated Mn5+ ions located in a strong crystal field environment. Absorption, luminescence and lifetime data of Mn: FAP will be presented and discussed.

  6. Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Savchyn, V.; Nizhankovskiy, S.; Dan'ko, A.; Puzikov, V.; Laguta, V.; Mares, J. A.; Nikl, M.; Nejezchleb, K.; Batentschuk, M.; Winnacker, A.

    2012-10-01

    The work is dedicated to growth by the liquid phase epitaxy method and study of the luminescence and scintillation properties of Sc3+ doped single crystalline films (SCF) of Lu3Al5O12 (LuAG) garnet. The scintillation properties of SCF are compared with single crystal (SC) analogues grown by the Horizontal Direct Crystallization and Czochralski methods. We consider the dependence of intensity of the Sc3+ emission in LuAG host on the activator concentration and influence of flux contamination on the light yield (LY) of the Sc3+ luminescence in LuAG:Sc SCF with respect to their SC counterparts and the reference YAP:Ce scintillator. From the NMR investigations of LuAG:Sc SCF we confirm the substitution by Sc3+ ions both the octahedral and dodecahedral positions of LuAG host and formation of the ScAl and ScLu related emission centers, respectively. We also show that the luminescence spectrum in the UV range and decay kinetics of LuAG:Sc SCF can be effectively tuned by changing the scandium content.

  7. Spectral-luminescent properties of silver molecular clusters and nanoparticles formed by ion exchange in antimony-doped photo-thermo-refractive glasses

    NASA Astrophysics Data System (ADS)

    Sgibnev, E. M.; Nikonorov, N. V.; Ignat'ev, A. I.

    2017-01-01

    The formation of silver molecular clusters and nanoparticles in photo-thermo-refractive (PTR) glasses with different antimony contents has been investigated using ion exchange with subsequent thermal treatment. The influence of the antimony oxide (Sb2O3) concentration and treatment temperature on the spectral-luminescent properties of silver molecular clusters and nanoparticles in glass has been investigated. It is shown that silver molecular clusters in PTR glasses are characterized by strong broadband luminescence in the visible and near-IR ranges and that the formation of silver nanoparticles leads to luminescence quenching.

  8. Luminescence properties of heterodinuclear Pt-Eu complexes from unusual nonadentate ligands.

    PubMed

    Kadjane, Pascal; Platas-Iglesias, Carlos; Ziessel, Raymond; Charbonnière, Loïc J

    2009-08-07

    The synthesis of ligand L(1), based on the tetramethyl ester of [4'-ethynyl-(6,6''-bis(aminomethyl))-2,2':6',2''-terpyridine]tetrakisacetate, and its acidic form L(2), are described. Using a Cu-assisted coupling reaction, L(1) was connected to the Pt atom of a [(tpy)Pt] precursor (tpy = 2,2':6',2''-terpyridine) to afford the [(tpy)PtL(1)](BF(4)) metallosynthon, from which a hydrolysis reaction gave Na(3)[(tpy)PtL(2)]. The photophysical properties of the metallosynthons were studied by means of absorption and steady state emission spectroscopic techniques in various solvents, which revealed a dramatic impact of the solvent polarity. DFT and TDDFT calculations (B3LYP) were used to investigate the absorption and emission properties of the [(tpy)PtL(1)](+) system both in vacuo and in different solvents. Spectrophotometric titrations of [(tpy)PtL(1)](+) with EuCl(3) x 6 H(2)O in acetonitrile revealed the formation of complicated mixtures of complexes with different [(tpyPt(1))(x)Eu(y)] stoichiometries, all of which display the typical Eu(III) centred luminescence upon excitation into the Pt centred (1)MLCT absorption band. The energy transfer from the Pt subunit of [(tpy)PtL(2)](3-) to Eu(III) is inefficient in polar solvents, but it is restored in a TFA-CH(2)Cl(2) mixture, together with the observation of a new emission band at 684 nm, likely arising from a charge transfer process involving reduction of Eu(III).

  9. Electrical conductivity and luminescence properties of two silver(I) coordination polymers with heterocyclic nitrogen ligands

    SciTech Connect

    Rana, Abhinandan; Kumar Jana, Swapan; Pal, Tanusri; Puschmann, Horst; Zangrando, Ennio; Dalai, Sudipta

    2014-08-15

    The synthesis and X-ray structural characterization of two novel silver(I) coordination polymers, [Ag(NO{sub 3})(quin)]{sub n} (1) and [Ag{sub 8}(HL){sub 2}(H{sub 2}O){sub 4}(mpyz)]·3H{sub 2}O (2) are reported, where quin=5,6,7,8-tetrahydroquinoxaline, H{sub 6}L=cyclohexane-1,2,3,4,5,6-hexacarboxylic acid and mpyz=2-methyl pyrazine. The single crystal diffraction analyses showed that complex 1 is a 2D layered structure, while 2 presents a 3D polymeric architecture. In complex 2 the network is stabilized by argentophilic interactions and hydrogen bonding. Electrical conductivity of order 3×10{sup −4} Scm{sup −1} (1) and 1.6×10{sup −4} Scm{sup −1} (2) is measured on thin film specimen at room temperature. The photoluminescence and thermal properties of the complexes have also been studied. - Graphical abstract: Two new 1D and 3D coordination polymers of Ag(I) have been synthesized and characterized by X-ray analysis. The electrical, luminescence and thermal properties have been studied. - Highlights: • 1 is 2D layered while 2 present a 3D polymeric architecture. • The network in 2 is stabilized by argentophilic interactions and hydrogen bonding. • Electrical conductivity measurement is quite interesting. • Argentophilic interaction and intra-ligand π{sup ⁎}–π CT explains emission behavior of 2.

  10. Preparation and luminescence properties of phosphors of rare earth complexes based on polyoxotungstates

    SciTech Connect

    Wen, He-Rui; Lu, Xiao-Neng; Liao, Jin-Sheng; Zhang, Cai-Wei; You, Hang-Ying; Liu, Cai-Ming

    2015-08-15

    Highlights: • Three new phosphors of rare earth complexes based on polyoxotungstates were synthesized. • [Eu(PW{sub 11}O{sub 39}){sub 2}]{sup 11−} (1) emits red light which used as potential red light materials. • [Sm(PW{sub 11}O{sub 39}){sub 2}] {sup 11−} (2) emits strong orange-red light at 598.7 nm. • [Dy(PW{sub 11}O{sub 39}){sub 2}] {sup 11−} (3) emits white light which used as potential white light materials. - Abstract: Three new phosphors of rare earth complexes based on polyoxotungstates, K{sub 3}Cs{sub 8}[Eu(PW{sub 11}O{sub 39}){sub 2}]·11H{sub 2}O (1), K{sub 3}Cs{sub 8}[Sm(PW{sub 11}O{sub 39}){sub 2}]·10H{sub 2}O (2), and K{sub 5}Cs{sub 6}[Dy(PW{sub 11}O{sub 39}){sub 2}]·15H{sub 2}O (3) have been prepared and characterized. The crystallographic analyses reveal that these compounds consist of two monovacant keggin anions [PW{sub 11}O{sub 39}]{sup 7−} connected by a rare earth ion in a sandwich structure. The investigations of photoluminescence properties show that phosphor 1 emits strong red light at 614 and 702 nm, 2 emits strong orange-red light at 598.7 nm, and 3 exists two strong emissions at 479 nm (blue) and 574 nm (orange). The luminescence properties suggest that the 1 can be applied as the potential red-emitting crystal phosphor, and the 3 may be regarded as a potential white light material for LEDs.

  11. Rare earth doped LiYbF{sub 4} phosphors with controlled morphologies: Hydrothermal synthesis and luminescent properties

    SciTech Connect

    Huang, Wenjuan; Lu, Chunhua; Jiang, Chenfei; Jin, Junyang; Ding, Mingye; Ni, Yaru; Xu, Zhongzi

    2012-06-15

    Highlights: ► LiYbF{sub 4} microparticles as an excellent upconverting materials. ► High temperature and long time can favor high crystalline LiYbF{sub 4} microparticles. ► The shape of LiYbF{sub 4} microparticles can be tuned by the molar ratio of EDTA to Yb{sup 3+}. ► Bright green emission can be obtained by changing the doping concentration of Er{sup 3+}. -- Abstract: High quality monodisperse LiYbF{sub 4} microparticles with shape of octahedron had been prepared via a facile hydrothermal route. The crystalline phase, size, morphology and luminescence properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra and Commission Internationale de L’Eclairage (CIE 1931) chromaticity coordinates, respectively. The influences of reaction temperature, reaction time and the molar ratio of EDTA to Yb{sup 3+} on the crystal phases and shapes of as-prepared products had been investigated in detail. The upconversion (UC) luminescence properties of LiYb{sub 1−x}F{sub 4}:xEr{sup 3+} (x =0.1, 0.2, 0.5, 1, 2, 5 and 10 mol%) particles with octahedral microstructures were studied under 976 nm excitation. The results showed that the luminescence colors of the corresponding products could be tuned to bright green by changing the doping concentration of Er{sup 3+} ion. The luminescence mechanisms for the doped Er{sup 3+} ion were thoroughly analyzed, showing great potential in applications such as biolabels, displays and other optical technologies.

  12. Synthesis, structure and luminescent property of a new hybrid solid based on Keggin anions and silver-organonitrogen fragments

    SciTech Connect

    Lue Jian; Xiao Fuxian; Shi Linxi; Cao Rong

    2008-02-15

    A new hybrid solid, {l_brace}Ag(phen){sub 2}{r_brace}{sub 2}{l_brace}[Ag(phen)]{sub 2}[PMo{sub 12}O{sub 40}]{r_brace} (phen=1,10-phenanthroline) 1, constructed from one-electron-reduced mono-supported {alpha}-Keggin polyanions and silver-phenanthroline fragments via either covalent bonds or supramolecular interactions, is described. In the structure of 1, mono-supported {l_brace}Ag(phen)[PMo{sub 12}O{sub 40}]{r_brace}{sup 3-} polyanions are connected by {l_brace}Ag(phen){r_brace}{sup +} linking fragments to form a hybrid chain structure with engrafted phen ligands. {l_brace}Ag(phen){sub 2}{r_brace}{sup +} counter-cations occur in pairs trapping in strong inter-chain {pi}-{pi} stacking to form a three-dimensional supramolecular framework. Luminescent investigation of the compound indicates that 1 displays fascinating orange luminescent property at ambient temperature. - Graphical abstract: A novel hybrid solid, {l_brace}Ag(phen){sub 2}{r_brace}{sub 2}{l_brace}[Ag(phen)]{sub 2}[PMo{sub 12}O{sub 40}]{r_brace} (phen=1,10-phenanthroline) 1, is reported. In the structure of 1, {l_brace}Ag(phen)[PMo{sub 12}O{sub 40}]{r_brace}{sup 3-} polyanions are connected by {l_brace}Ag(phen){r_brace}{sup +} fragments to form a hybrid chain structure. {l_brace}Ag(phen){sub 2}{r_brace}{sup +} counter-cations are involved in inter-chain {pi}-{pi} stacking to form a three-dimensional supramolecular framework. Luminescent investigation of 1 indicates that 1 displays fascinating orange luminescent property at ambient temperature.

  13. Dating human occupation at Toca do Serrote das Moendas, São Raimundo Nonato, Piauí-Brasil by electron spin resonance and optically stimulated luminescence.

    PubMed

    Kinoshita, Angela; Skinner, Anne R; Guidon, Niede; Ignacio, Elaine; Felice, Gisele Daltrini; Buco, Cristiane de A; Tatumi, Sonia; Yee, Márcio; Figueiredo, Ana Maria Graciano; Baffa, Oswaldo

    2014-12-01

    Excavation of Toca do Serrote das Moendas, in Piauí state, Brazil revealed a great quantity of fossil wild fauna associated with human remains. In particular, fossils of a cervid (Blastocerus dichotomus) were found, an animal frequently pictured in ancient rock wall paintings. In a well-defined stratum, two loose teeth of this species were found in close proximity to human bones. The teeth were independently dated by electron spin resonance (ESR) in two laboratories. The ages obtained for the teeth were 29 ± 3 ka (thousands of years) and 24 ± 1 ka. The concretion layer capping this stratum was dated by optically stimulated luminescence (OSL) of the quartz grains to 21 ± 3 ka. As these values were derived independently in three different laboratories, using different methods and equipment, these results are compelling evidence of early habitation in this area.

  14. New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: optically stimulated luminescence dating of quartz and feldspar grains.

    PubMed

    Gliganic, Luke A; Jacobs, Zenobia; Roberts, Richard G; Domínguez-Rodrigo, Manuel; Mabulla, Audax Z P

    2012-04-01

    The archaeological deposits at Mumba rockshelter, northern Tanzania, have been excavated for more than 70 years, starting with Margit and Ludwig Köhl-Larsen in the 1930s. The assemblages of Middle Stone Age (MSA) and Later Stone Age (LSA) artefacts collected from this site constitute the type sequences for these cultural phases in East Africa. Despite its archaeological importance, however, the chronology of the site is poorly constrained, despite the application since the 1980s of several dating methods (radiocarbon, uranium-series and amino acid racemisation) to a variety of materials recovered from the deposits. Here, we review these previous chronologies for Mumba and report new ages obtained from optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) measurements on single grains of quartz and multi-grain aliquots of potassium (K) feldspar from the MSA and LSA deposits. Measurements of single grains of quartz allowed the rejection of unrepresentative grains and the application of appropriate statistical models to obtain the most reliable age estimates, while measurements of K-feldspars allowed the chronology to be extended to older deposits. The seven quartz ages and four K-feldspar ages provide improved temporal constraints on the archaeological sequence at Mumba. The deposits associated with the latest Kisele Industry (Bed VI-A) and the earliest Mumba Industry (Bed V) are dated to 63.4 ± 5.7 and 56.9 ± 4.8 ka (thousands of years ago), respectively, thus constraining the time of transition between these two archaeological phases to ~60 ka. An age of 49.1 ± 4.3 ka has been obtained for the latest deposits associated with the Mumba Industry, which show no evidence for post-depositional mixing and contain ostrich eggshell (OES) beads and abundant microlithics. The Nasera Industry deposits (Bed III) contain large quantities of OES beads and date to 36.8 ± 3.4 ka. We compare the luminescence ages with the previous chronologies for

  15. Synthesis, crystal structure and luminescence properties of "paddle wheel" and "butterfly" shaped polynuclear complexes

    NASA Astrophysics Data System (ADS)

    Bai, Fenghua; Ni, Yulan; Jiang, Yang; Feng, Xuenan; Wuren, Tuya; Zhang, Liping; Su, Haiquan

    2017-03-01

    A series of metal cluster-based complexes were constructed from the reaction of metal ions (FeIII, CuII, ZnII) and ligand (2-({2-[2-carbosybenzoy])oxy]-ethoxy}carbonyal)benzoic acid) (H2L) in CH3CH2OH, CH3OH, (C2H5)3N and C2H3N. Two paddle wheel trinuclear clusters [Fe3(μ3-O)(μ2-η2-L)3(CH3OH)3]NO3·C2H5OH·CH3OH (1) and [Fe3(μ3-O)(μ2-η2-L)3(H2O)3]NO3·5CH3OH·H2O (2), one tetranuclear cluster [Cu2(μ2-L)2(C2H3N)2·2C2H3N]2 (3) and one butterfly shaped dinuclear cluster [Zn2(μ2-L)2(C2H5OH)2]·2CH3OH (4) were obtained. Complexes 1, 2, and 4 are further assembled by intermolecular hydrogen bonds to form supramolecular frameworks. In complex 3, the flexible benzoic acid ligand chelates with two CuII, which induces a decrease of Cusbnd Cu intermetallic separation (rang from 2.644 to 2.657 Å). The structures of the complexes are characterized by elemental analyses, Infrared spectroscopy (IR spectroscopy), thermal gravimetry (TG) analyses, single crystal X-ray diffraction and powder X-ray diffraction techniques (PXRD), and high resolution mass spectra (HRMS). The luminescent properties of the clusters 1-4 are also studied, the results show that the cluster 4 exhibits blue fluorescence at room temperature.

  16. Tb3+ ion doping into Al2O3: Solubility limit and luminescence properties

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2016-11-01

    Tb3+-activated Al2O3 phosphors with a molar ratio of \\text{Al}:\\text{Tb} = (1 - x):x are synthesized by metal organic decomposition (x = 0-0.15) and subsequent calcination at T c = 200-1200 °C for 1 h in air. The material properties of the synthesized phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) analyses, PL excitation spectroscopy, and luminescence lifetime measurements. At x = 0.015, the metastable phase of γ-Al2O3 is obtained by calcination at T c ˜ 300-1050 °C and a mixture of γ, θ, and α phases at T c ˜ 1050-1150 °C. The high-temperature stable phase of α-Al2O3 is obtained only at T c ≥ 1150 °C. Below T c ˜ 300 °C, the XRD data suggest the formation of boehmite (AlOOH). The solubility limit of Tb3+ in α-Al2O3 is also clearly determined to be x ˜ 0.015 (1.5%). The PL decay time of the Tb3+ green emission in α-Al2O3 is ˜1.1 ms for x < 0.015 and slowly decreases with further increase in x (Tb3+). The schematic energy-level diagram of Tb3+ in α-Al2O3 is proposed for a better understanding of the present phosphor system. Finally, the temperature dependence of the PL intensity is examined between T = 20 and 450 K, yielding quenching energies of E q ˜ 0.28 eV (α-Al2O3 and γ-Al2O3).

  17. Investigation on three new metal carboxydiphosphonates: Syntheses, structures, magnetic and luminescent properties

    SciTech Connect

    Tang Sifu; Pan Xiaobo; Lv Xiaoxia; Zhao Xuebo

    2013-01-15

    A new multifunctionalized phosphoric acid, (2-(diphosphonomethylamino)nicotinic acid, Py(COOH)(NHCH--(PO{sub 3}H{sub 2}){sub 2}), H{sub 5}L{sup 1}), has been employed as ligand for the construction of new metal phosphonates. By reacting it with different metal chlorides under hydrothermal condition, three new transition metal phosphonates, namely, [Co{sub 2}(HL{sup 1})(H{sub 2}O){sub 5}][H{sub 2}O]{sub 3} (1), Zn(H{sub 3}L{sup 1}) (2) and [Cd(H{sub 3}L{sup 1})(H{sub 2}O){sub 2}][H{sub 2}O] (3) were successfully obtained. The single-crystal structure measurements indicated that the coordination mode of ligand H{sub 5}L{sup 1} is metal-dependant and results in different structures. For compound 1, it features 2D layered structure. Whereas compounds 2 and 3 have 1D chain structures. Under the excitation of 250 nm light, both compounds 2 and 3 show intraligand and ligand to metal charge transfer (LMCT) emission bands at about 415 and 420 nm, respectively. Magnetic study shows that compound 1 displays antiferromagnetic behavior. - Graphical abstract: Three new metal phosphonates were synthesized from a multifunctionalized phosphonate ligand and different metal chlorides. Their structures, thermal stabilities, luminescent and magnetic properties were characterized. Highlights: Black-Right-Pointing-Pointer Three new metal phosphonates were synthesized under hydrothermal conditions. Black-Right-Pointing-Pointer Compound 1 exhibits 2D layered structure. Black-Right-Pointing-Pointer Compounds 2 and 3 have 1D infinite chain structures. Black-Right-Pointing-Pointer Compound 1 displays antiferromagnetic behavior. Black-Right-Pointing-Pointer Compounds 2 and 3 show intraligand and ligand to metal charge transfer emission bands.

  18. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-02-23

    The preparation of macroscopic materials from two-dimensional nanostructures represents a great challenge. Restacking and random aggregation to dense structures during processing prevents the preservation of the two-dimensional morphology of the nanobuilding blocks in the final body. Here we present a facile solution route to ultrathin, crystalline Y2O3 nanosheets, which can be assembled into a 3D network by a simple centrifugation-induced gelation method. The wet gels are converted into aerogel monoliths of macroscopic dimensions via supercritical drying. The as-prepared, fully crystalline Y2O3 aerogels show high surface areas of up to 445 m(2)/g and a very low density of 0.15 g/cm(3), which is only 3% of the bulk density of Y2O3. By doping and co-doping the Y2O3 nanosheets with Eu(3+) and Tb(3+), we successfully fabricated luminescent aerogel monoliths with tunable color emissions from red to green under UV excitation. Moreover, the as-prepared gels and aerogels exhibit excellent adsorption capacities for organic dyes in water without losing their structural integrity. For methyl blue we measured an unmatched adsorption capacity of 8080 mg/g. Finally, the deposition of gold nanoparticles on the nanosheets gave access to Y2O3-Au nanocomposite aerogels, proving that this approach may be used for the synthesis of catalytically active materials. The broad range of properties including low density, high porosity, and large surface area in combination with tunable photoluminescence makes these Y2O3 aerogels a truly multifunctional material with potential applications in optoelectronics, wastewater treatment, and catalysis.

  19. Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors

    NASA Astrophysics Data System (ADS)

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D. P.; Sao, Sanjay K.; Tigga, Shalinta

    2016-08-01

    A Dysprosium doped di-calcium di-aluminium silicate phosphor emitting long-lasting white light was prepared and investigated. Phosphors were synthesized by combustion-assisted method. The effect of doping concentration on the crystal structure and luminescence properties of Ca2Al2SiO7:Dy3+ phosphors were investigated. The phase structure, surface morphology, particle size, elemental analysis was analyzed by using X-ray diffraction (XRD), transmission electron microscope (TEM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) techniques. X-ray diffraction (XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2Al2SiO7 phase when the sample was annealed at 1100 °C. The increase in TL intensity indicates that the concentration of traps increases with UV irradiation. Under the UV-excitation, the Thermoluminescence (TL) emission spectra of Ca2Al2SiO7:Dy3+ phosphor shows the characteristic emission of Dy3+ peaking at 484 nm (blue), 583 nm (yellow) and 680 nm (red), originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2. Photoluminescence (PL) decay has also reported and it indicates that Ca2Al2SiO7:Dy3+ phosphor contains fast decay and slow decay process. The peak of Mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. The possible mechanism of Thermoluminescence (TL), Photoluminescence (PL) and Mechanoluminescence (ML) of this white light emitting long lasting phosphor is also investigated.

  20. Exceptional Oxygen Sensing Properties of New Blue Light-Excitable Highly Luminescent Europium(III) and Gadolinium(III) Complexes

    PubMed Central

    Borisov, Sergey M.; Fischer, Roland; Saf, Robert; Klimant, Ingo

    2016-01-01

    New europium(III) and gadolinium(III) complexes bearing 8-hydroxyphenalenone antenna combine efficient absorption in the blue part of the spectrum and strong emission in polymers at room temperature. The Eu(III) complexes show characteristic red luminescence whereas the Gd(III) dyes are strongly phosphorescent. The luminescence quantum yields are about 20% for the Eu(III) complexes and 50% for the Gd(III) dyes. In contrast to most state-of-the-art Eu(III) complexes the new dyes are quenched very efficiently by molecular oxygen. The luminescence decay times of the Gd(III) complexes exceed 1 ms which ensures exceptional sensitivity even in polymers of moderate oxygen permeability. These sensors are particularly suitable for trace oxygen sensing and may be good substitutes for Pd(II) porphyrins. The photophysical and sensing properties can be tuned by varying the nature of the fourth ligand. The narrow-band emission of the Eu(III) allows efficient elimination of the background light and autofluorescence and is also very attractive for use e.g. in multi-analyte sensors. The highly photostable indicators incorporated in nanoparticles are promising for imaging applications. Due to the straightforward preparation and low cost of starting materials the new dyes represent a promising alternative to the state-of-the-art oxygen indicators particularly for such applications as e.g. food packaging. PMID:27158252

  1. Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Rocha, Lucas A.; Freiria, Janaina do C.; Caiut, José Maurício A.; Ribeiro, Sidney J. L.; Messaddeq, Younes; Verelst, Marc; Dexpert-Ghys, Jeannette

    2015-08-01

    Ordered mesoporous, highly luminescent SiO2 particles have been synthesized by spray pyrolysis from solutions containing tetraethylorthosilicate (TEOS), Eu(NO3)3.6H2O, and cetyltrimethylammonium bromide (CTAB) as structure-directing agents. The 1,10-phenantroline (Phen) molecules were coordinated in a post-synthesis step by a simple wet impregnation method. In addition, other matrices were also prepared by the encapsulation of europium complex Eu(fod)3 (where fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato) into mesoporous silica, and then the Phen molecules were encapsulated by different impregnation steps, after which the luminescence properties were investigated. The obtained materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Powders with polydisperse spherical grains were obtained, displaying an ordered hexagonal array of mesochannels. Luminescence results revealed that Phen molecules had been successfully coordinated as an additional ligand in the Eu(fod)3 complex into the channels of the mesoporous particles without disrupting the structure.

  2. Investigation on upconversion luminescence properties of Gd2O3: Ho3+/Yb3+/Tm3+ nanotubes

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Fang, Yu; Liu, Xiao-bo; Xu, Fang; Song, Ying-lin

    2013-09-01

    Lanthanide doped oxides nano materials have novel optical, physical and structural properties. Cubic Ho3+-Yb3+-Tm3+ co-doped Gd2O3 nanotubes are synthetize by a simple wet-chemical route at low temperature and ambient pressure followed by subsequent annealing heat treatment in muffle furnace. Nanotubes are formed by adjusting the pH value of reacting solution. The introduction of Yb3+ leads to strong visible upconversion luminescence and change the intensity ratio of the green, blue and red luminescence. In trichromatic laser display, research of how to enhance blue light is in the bottleneck period. In the experiment, the blue emission has been successfully improved. In certain doping ratio, distinct enhancement of blue emission and obvious degradation of green light have been observed, which is discussed in detail. X-Ray powder diffraction (XRD), scanning electron microscope (SEM) and upconversion (UC) emission spectra are used to characterize the sample. Strong and adjusted upconversion luminescence determine that the nano material is a potential candidate for applications of biological probe, color displays, lighting and photonics.

  3. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Radić, Nenad; Stefanov, Plamen; Grbić, Boško; Vasilić, Rastko

    2015-11-01

    This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb2O5 hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  4. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-01-24

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), (1) H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN)3 -Eu(III) and the ternary complex PSF-(SAN)3 -Eu(III)-(Phen)1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA)3 -Tb(III) and the ternary complex PSF-(SCA)3 -Tb(III)-(Phen)1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III).

  5. X-ray excited optical luminescence : Understanding the light emission properties of silicon based nanostructures.

    SciTech Connect

    Sham, T.K.; Rosenberg, R. A.; Univ. of Western Ontario

    2007-01-01

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  6. Luminescent Properties and Mechanism of Gd1-x-yAlO3Eux,REy

    NASA Astrophysics Data System (ADS)

    Luo, Lan; Liu, Qing-Feng; Liu, Qian

    2005-01-01

    GAP:Eu,Re(Gd1-x-yAlO3:Eux, REy, RE=Pr or Ce) powders were prepared by a nitrate-citrate process. It is found that luminescent intensity decreases when GAP:Eu is co-doped with Pr or Ce. The phenomena of spectra prove that there is a resonant energy transfer between Eu and Pr, by the absorption and emission of lower-energy phonon, and also Ce sensitizer decreases the activator energy level from host→Eu. The two factors are considered to be the main reasons for decrease of the luminescent intensity for the co-doped GAP:Eu,Re.

  7. Structural and luminescence properties of Eu3+, Dy3+ and Tb3+ ions in lead germanate glasses obtained by conventional high-temperature melt-quenching technique

    NASA Astrophysics Data System (ADS)

    Żur, Lidia

    2013-06-01

    The subject of this paper is the structural and luminescence properties of selected rare earth ions in lead germanate glasses. Glasses were obtained by conventional high-temperature melt-quenching technique. Europium, dysprosium and terbium ions were chosen as active dopants. The spectroscopic parameters for Eu3+, Dy3+ and Tb3+ ions were determined based on excitation and emission measurements as well as luminescence decay analysis. Especially, the luminescence intensity ratios R/O (Eu3+), Y/B (Dy3+) and G/B (Tb3+) were calculated. Luminescence lifetimes for 5D0 state of Eu3+ ions, 4F9/2 state of Dy3+ ions and 5D4 state of Tb3+ ions were also determined. The amorphous nature and local structure of the studied lead germanate glass systems was confirmed by X-ray diffraction (XRD) and infrared (FT-IR) spectroscopy.

  8. Method of measuring luminescence of a material

    SciTech Connect

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  9. Optical properties of tris(cyclopentadienyl)gadolinium. Luminescence from an interligand triplet under ambient conditions

    NASA Astrophysics Data System (ADS)

    Strasser, Andreas; Vogler, Arnd

    2003-09-01

    The organometallic compound GdCp 3 (Cp=cyclopentadienyl) in ether solution shows a green luminescence ( λmax=523 nm, φ=0.2). It is suggested that this emission originates from a triplet of the Cp 33- moiety.

  10. Electronic and Optical Properties of Luminescent Centers in Halides and Oxides

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2014-03-01

    Luminescent materials, such as phosphors and scintillators, are widely used for fluorescent lighting, laser, medical imaging, nuclear material detection, etc. . The luminescence is usually activated by impurities (or activators), which act as luminescence centers. The activators are typically multi-valent ions that insert multiple electronic states in the band gap of the host material. In this talk, first-principles calculations of electronic structure and optical transitions are shown for a wide range of activators, including rare-earth ions (e.g., Ce3+, Eu2+) , ns2 ions (the ions that have outer electronic configurations of ns2, such as Tl+, Pb2+, Bi3+) , and transition-metal ions (e.g., Mn4+) , in a large number of halides and oxides. The results reveal how the activator-ligand hybridization affects the emission energy and the luminescence mechanism. New phosphors and scintillators are proposed based on the chemical trends emerging from the calculations of a large number of materials.

  11. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    SciTech Connect

    Red’ko, R. A. Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V. Egorov, S. V.; Eremeev, A. G.

    2015-07-15

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm{sup –2}; at 90 W cm{sup –2}, nonthermal effects are prevailing.

  12. Photoinduced (WO4)3--La3+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study

    NASA Astrophysics Data System (ADS)

    Laguta, V. V.; Martini, M.; Meinardi, F.; Vedda, A.; Hofstaetter, A.; Meyer, B. K.; Nikl, M.; Mihóková, E.; Rosa, J.; Usuki, Y.

    2000-10-01

    The localization of electrons at W6+ sites perturbed by lanthanum in PbWO4 is studied by electron spin resonance (ESR) and thermally stimulated luminescence (TSL) measurements. The (WO4)3--La3+ centers are created at the W6+ sites close to La3+ in two different ways: (i) direct trapping of electrons from the conduction band under ultraviolet or x-ray irradiation at T=60 K (ii) retrapping of electrons freed from unperturbed (WO4)3- centers after irradiation at T<40 K followed by heating up to T around 60 K. Electron transfer from La3+-perturbed to unperturbed W6+ sites stimulated by red light illumination is also observed. The proposed mechanism of electron localization at one of four equivalent tungstate ions close to La3+ is based on the pseudo-Jahn-Teller effect, which gives rise to a rhombic distortion of (WO4)3- complex. At T~95-98 K the (WO4)3--La3+ centers are thermally ionized giving rise to a TSL glow peak due to the recombination of detrapped electrons with localized holes. The emission spectrum of the TSL features one band peaking at 2.8 eV. The temperature dependence of both TSL and ESR intensity is analyzed in the frame of a general order recombination model. The thermal ionization energy of (WO4)3--La3+ centers has been calculated to be approximately 0.27 eV.

  13. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor

    NASA Astrophysics Data System (ADS)

    He, Can; Xia, Zhiguo; Liu, Quanlin

    2015-04-01

    Gd2-xO2S:xTb3+ phosphors were prepared by the microwave solid state method, and its phase formation and morphologies were studied by the X-ray powder diffraction (XRD) and scanning electron microscope (SEM) techniques. The photoluminescence (PL) properties, cathodoluminescence (CL) properties and PL thermal stability of the samples were investigated, which indicated that better luminescence properties can be obtained via the microwave method compared to the conventional high temperature solid-state method. The composition-optimized Gd1.85O2S:15%Tb3+ exhibited strong green emission peaking at 546 nm upon excitation at 254 nm with the CIE coordinates of (0.238, 0.382). Different electric voltage and current dependent CL spectra investigations of Gd1.85O2S:15%Tb3+ phosphor shows similar green spectral profile as PL emission and it also demonstrates the good luminescence stability suggesting its potential application as green emission component in cathode ray tube (CRT).

  14. The influence of silver ion exchange on the formation and luminescent properties of lead sulfide molecular clusters and quantum dots

    NASA Astrophysics Data System (ADS)

    Abdrshin, A. N.; Lipatova, Zh. O.; Kolobkova, E. V.; Sgibnev, E. M.; Nikonorov, N. V.

    2016-12-01

    PbS molecular clusters and quantum dots are formed by heat treatment in fluorophosphate glasses of the Na2O3-P2O5-Ga2O3-AlF3-ZnO(S)-PbF2 system with different lead concentrations. PbS molecular clusters are characterized by optical absorption in the range of 300-800 nm and low quantum yields, which decrease from 8.9 to 2.7% with a semiconductor component concentration. It is shown that the parameters of formation of quantum dots luminescing in the wavelength range of 1000-1500 nm are considerably different at different semiconductor component concentrations. The influence of silver ion exchange on the formation of PbS nanoparticles is studied. Introduction of silver stimulates the growth of molecular clusters, which is seen in the absorption spectra. A possible mechanism of interaction of silver nanoparticles with PbS quantum dots is presented.

  15. Crystal structures and luminescent properties of lanthanide nitrate coordination polymers with structurally related amide type bridging podands

    SciTech Connect

    Wang, Qing; Yan, Xuhuan; Zhang, Hongrui; Liu, Weisheng; Tang, Yu; Tan, Minyu

    2011-01-15

    A one-dimensional linear chain coordination polymer [ErL{sup I}(NO{sub 3}){sub 3}(CH{sub 3}CO{sub 2}Et)]{sub n} (L{sup I}=1,2-bis{l_brace}[(2'-furfurylaminoformyl)phenoxyl]methyl{r_brace}benzene) and a one-dimensional zig-zag coordination polymer {l_brace}[TbL{sup II}(NO{sub 3}){sub 3}(H{sub 2}O)].(H{sub 2}O){r_brace}{sub n} (L{sup II}=1,2-bis{l_brace}[2'-(2-pyridylmethylaminoformyl)phenoxyl]methyl{r_brace}benzene) were assembled by two structurally related bridging podands L{sup I} and L{sup II} which have uniform skeleton and different terminal groups. In {l_brace}[TbL{sup II}(NO{sub 3}){sub 3}(H{sub 2}O)].(H{sub 2}O){r_brace}{sub n}, the neutral chains were linked by the hydrogen bonding interactions between the free and coordinated water molecules from two different directions to interpenetrate into a 3D supramolecular structure. At the same time, the luminescent properties of the solid Tb(III) nitrate complexes of these podands were investigated at room temperature. The lowest triplet state energy levels T{sub 1} of the podands L{sup I} and L{sup II} indicate that the triplet state energy levels of the antennae are both above the lowest excited resonance level of {sup 5}D{sub 4} of Tb{sup 3+} ion. Thus the absorbed energy could be transferred from ligands to the central Tb{sup 3+} ions. And the influence of the hydrogen bonding on the luminescence efficiencies of the coordination polymers was also discussed. -- Graphical Abstract: Two one-dimensional lanthanide coordination polymers were assembled by two structurally related bridging podands, and the effects of the structures on luminescent properties of the solid Tb(III) nitrate complexes were investigated. Display Omitted Research highlights: > Two structurally related amide type bridging ligands were designed and synthesized. > Two one dimensional lanthanide nitrate coordination polymers were obtained. > The structure effects on luminescent properties of the terbium complexes were discussed.

  16. Effect of temperature and microstructure on the luminescent properties of europium-activated yttrium oxide thin films

    NASA Astrophysics Data System (ADS)

    Bosze, Eric Joseph

    2003-10-01

    The luminescent properties as a function of temperature for the red-emitting phosphor (Y1-mEum)2O3 were investigated. Phosphors which are used to measure the temperature of a device have their luminescent properties change predictably with temperature. A comprehensive study of (Y0.96Eu0.04)2O3 as a thermographic phosphor has not been undertaken and the differences and similarities between powders are quantified. The luminescent intensity, breadth, fluorescent decay time and change in peak locations as a function of temperature for powders (2 to 5 micron diameter) and thin films with thicknesses less than 300 nm, were measured and are quantified in this report. The intensity, breadth, and peak position of most of the 5D0 → 7FJ transitions were found to change linearly with temperature. The changes in these parameters were found to change similarly for the films and powders, suggesting that the mechanisms that affect these parameters are the same, even though the films exhibit crystallite sizes of approximately 50 nm compared with powders. The fluorescent decay time for powders was found to exhibit a single exponential decay while films exhibited a double exponential decay, possibly due to some monoclinic phase still being present in the films. The thickness of the films were found to affect the decay time once the quenching temperature has been exceeded, with the quenching rate of the decay time decreasing as a function of thickness. An equation was developed to quantify the change in the quenching rate of the decay time in excess of the quenching temperature for films and powders. For the first time, thermalization between the 5D1 and 5D0 energy levels of Eu3+ was found to occur and an equation that quantifies the ratio of these two energy levels as a function of temperature was found to be an excellent indicator of temperature between 100 and 700°C.

  17. A facile synthesis approach and impact of shell formation on morphological structure and luminescent properties of aqueous dispersible NaGdF4:Yb/Er upconversion nanorods

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Yadav, Ranvijay; Rai, S. B.

    2016-12-01

    A general facile synthesis approach was used for fabrication of highly emissive aqueous dispersible hexagonal phase upconversion luminescent NaGdF4:Yb/Er nanorods (core NRs) through metal complex decomposition process. An inert NaGdF4 and porous silica layers were grafted surrounding the surface of each and every NRs to enhance their luminescence efficiency and colloidal dispersibility in aqueous environment. Optical properties in terms of band gap energy of core, core/shell, and silica-coated core/shell/SiO2 nanorods were observed to investigate the influence of surface coating, which was gradually decreased after surface coating because of increase crystalline size after growth of inert and silica shells. The inert shell formation before silica surface grafting, upconversion luminescence intensity was greatly improved by about 20 times, owing to the effective surface passivation of the seed core and, therefore, protection of Er3+ ion in the core from the nonradiative decay caused by surface defects. Moreover, after silica coating, core/shell nanorods shows strong upconversion luminescence property similar to the hexagonal upconversion core NRs. It is expected that these NaGdF4:Yb/Er@NaGdF4@SiO2 (core/shell/SiO2) NRs including highly upconversion emissive and aqueous dispersible properties make them an ideal materials for various photonic-based potential applications such as in upconversion luminescent bioimaging, magnetic resonance imaging, and photodynamic therapy.

  18. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Yakimov, E. B.; Lee, In-Hwan; Pearton, S. J.

    2016-01-07

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 10{sup 6 }cm{sup −2}, while in the seed region it was 10{sup 8 }cm{sup −2}. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 10{sup 15 }cm{sup −3} range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  19. Structural and luminescence properties of Y(2-x)GeMoO8:REx (RE = Eu, Tb) phosphors.

    PubMed

    Li, Naixu; Zhou, Jiancheng; Sun, Yueming

    2014-08-01

    Y(2-x)GeMoO8:REx (RE = Eu, Tb) phosphors were synthesized using a facile sol-gel method. The morphology and structure of the phosphors were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD); while their luminescent properties were investigated by photoluminescence (PL) spectrometry. Our results reveal that all of these Y(2-x)GeMoO8:REx (RE = Eu, Tb) phosphors adopted the tetragonal phase, belonging to Scheelite (CaWO4 ) structure. The obtained YGeMoO8:Eu phosphors exhibit a strong emission in the red light range which can be assigned to the (5)D0  → (7)F2 transition of Eu(3+) when it is excited at 459 nm. Under 392 and 489 nm excitation, the YGeMoO8:Tb phosphors present predominant green emission ((5)D4  → (7)F5) at 540 nm. The highest emission of the phosphors can be achieved by adjusting the doping concentration to be 0.25 for Eu(3+) and 0.15 for Tb(3+), respectively. The promising luminescence properties of these materials indicate that they can be potentially applied to white-light-emitting diodes.

  20. Luminescence and electrical properties of solution-processed ZnO thin films by adding fluorides and annealing atmosphere

    SciTech Connect

    Choi, Sungho; Park, Byung-Yoon; Jung, Ha-Kyun

    2011-06-15

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as well as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.

  1. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Yakimov, E. B.; Lee, In-Hwan; Pearton, S. J.

    2016-01-01

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 106 cm-2, while in the seed region it was 108 cm-2. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 1015 cm-3 range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  2. Series d-f Heteronuclear Metal-Organic Frameworks: Color Tunability and Luminescent Probe with Switchable Properties.

    PubMed

    Feng, Xun; Feng, Yuquan; Guo, Nan; Sun, Yiling; Zhang, Tian; Ma, Lufang; Wang, Liya

    2017-02-06

    A series of five unique d-f heteronuclear luminescent metal-organic frameworks (MOFs) in an entangled polyrotaxane array and the light-harvesting block homonuclear zinc compound have been isolated successfully and characterized. The series of isostructural polymers feature 3,4-connected (4.8(2))(4.8(3).9(2))(6.8.9)2(6.9(2))(8(3)) topology and high stability, exhibiting diverse void spaces. By taking advantage of the isostructural MOFs 2 and 3, the intensities of red and green emissions can be modulated by adjusting the ratios of Eu(III) and Tb(III) ions correspondingly, and white-light emission can be generated by a combination of different doped Tb(III) and Eu(III) concentrations. The Tb-Zn-based framework {[Tb3Zn6(bipy2)2(Hmimda)7 (H2O)3]·5H2O}n (3; H3mimda = 2-methyl-1-H-imidazole-4,5-dicarboxylic acid and bipy = 4,4'-bipyridine) can detect trace Mg(II) ion with relatively high sensitivity and selectivity. Dehydrated MOF 3a shows a remarkable emission quenching effect through the introduction of I2 solids. Further investigation indicates that it exhibits turn on/off switchable properties for small solvent molecules or heavy-metal ions. Steady/transient-state near-IR luminescence properties for MOFs 1, 4, and 5 were investigated under visible-light excitation.

  3. Luminescence properties and compositions of contaminating inorganic minerals separated from gamma-irradiated fresh and white ginsengs from different areas

    PubMed Central

    Ahn, Jae-Jun; Akram, Kashif; Jeong, Mi-Seon; Kwak, Ji-Young; Park, Eun-Joo; Kwon, Joong-Ho

    2013-01-01

    Gamma-irradiation (0-7 kGy) of ginseng is permitted in Korea for the purpose of microbial decontamination; with strict labeling, traceability and monitoring requirements. An identification study was conducted to determine the photostimulated-luminescence (PSL) and thermoluminescence (TL) properties of gamma-irradiated fresh and white ginsengs cultivated in different areas. Dosedependent PSL-based screening was possible for white ginseng samples; however, inappropriate results from non-irradiated fresh ginseng samples were obtained, showing intermediate (700 to 5,000) or positive (T2 >5,000, irradiated) PSL counts due to the abundance of minerals on the surfaces of the samples. TL analysis of separated minerals from all non-irradiated samples gave TL glow curves of low intensity with a maximum peak after 300℃. However, well-defined irradiation-specific (high intensity with a maximum peak at about 200℃) glow curves were observed for all the irradiated samples, regardless of their type and origins. TL ratios (first glow curve /second glow curve) were also determined to confirm the irradiated (>0.1) and non-irradiated (<0.1) results. SEM-EDX (scanning electron microscope-energy dispersive X-ray) and XRD (X-ray diffraction) spectroscopic analyses showed that feldspar and quartz minerals were the main source for the typical radiation-specific luminescence properties. PMID:24235863

  4. Microstructural properties of Eu-doped GaN luminescent powders

    NASA Astrophysics Data System (ADS)

    Contreras, O.; Srinivasan, S.; Ponce, F. A.; Hirata, G. A.; Ramos, F.; McKittrick, J.

    2002-09-01

    GaN powders doped with europium have been prepared using Eu and Ga nitrates and N2H4 as reactants. The resulting particles have dimensions ranging from 0.5 to 1.0 mum. The crystalline structure was studied by transmission electron microscopy, and it consisted of single crystals with a hexagonal (wurtzite) structure containing small cubic domains (zinc blende) and a high density of stacking faults, all aligned along the 0001 and <111> directions, respectively. Cathodoluminescence measurements show strong light emission in the red region. This luminescence corresponds to transitions of Eu with the strongest emission in the 611 nm line, which is associated to the Eu3+ 4f transition from 5D0 to 7F2. These results demonstrate the feasibility of GaN:RE powders for luminescent applications.

  5. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  6. Near band-gap electronics properties and luminescence mechanisms of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Museur, L.; Kanaev, A.

    2015-08-01

    The deep ultraviolet luminescence (hν ≥ 5 eV) of multiwall boron nitride nanotubes (BNNTs) is studied with time- and energy-resolved photoluminescence spectroscopy. Two luminescence bands are observed at 5.35 and 5.54 eV. Both emissions undergo a large blue shift of several tens of meV with a linear slope Δ E l u m / Δ E e x c < 1 as the excitation energy Eexc increases. When E e x c ≥ 5.8 eV, the spectral band positions become fixed, which marks the transition between the excitation of donor-acceptor pairs and creation of free charge carriers. We assign the 5.35 eV band to quasi donor-acceptor pair transitions and the band at 5.54 eV to free-bound transitions. Boron and nitrogen atoms distributed along characteristic defect lines in BNNTs should be involved in the luminescence process. The presented results permit a revision of previous assignments of electronic transitions in BNNTs.

  7. Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Fond, Benoit; Abram, Christopher; Beyrau, Frank

    2015-12-01

    Thermographic phosphor particles are seeded into the flow as tracers for simultaneous temperature and velocity measurements in fluids. Several studies using different phosphors as gas-phase tracers have been published in recent years. However, little is known about their emission characteristics when they are dispersed as individual particles in the fluid. In this paper, the luminescence properties of BAM:Eu2+ particles, a phosphor with favourable characteristics (short luminescence lifetime, blue emission spectrum, high quantum efficiency), are thoroughly investigated in the gas phase. Using a recently developed particle-counting tool, the emission intensity per particle is measured over a wide range of conditions, including for various temperatures from 300 to 920 K, in air and in pure nitrogen. The luminescence emission per particle is shown to drop with temperature, but to be insensitive to the seeding density and to the oxygen content over the tested range. Together with a spectroscopic study, and a statistical error analysis, these results are used to predict the temperature precision of the technique under various conditions for different filter combinations and to assess the current upper temperature limit of this phosphor for practical applications. Potential additional sources of uncertainty are also investigated, including cross-dependencies of the measured intensity ratio on the seeding density, excitation fluence and oxygen partial pressure in the gas phase. Only a weak dependence on the laser fluence is observed, while the measured intensity ratio is shown to be insensitive to both seeding density and the oxygen volume fraction. Finally, the saturation behaviour of the phosphorescence emission is examined, through theoretical considerations and measurements performed with different excitation schemes in an attempt to increase signal levels. In conclusion, this paper confirms that BAM:Eu2+ is a very suitable tracer for measurements in turbulent flows

  8. X-ray photoemission spectroscopy investigation of CaTiO{sub 3}:Eu for luminescence property: effect of Eu{sup 3+} ion

    SciTech Connect

    Wang, Kaichen; Zhao, Baijun; Gao, Lu

    2016-06-15

    Graphical abstract: The influence on the photoluminescent performance due to the electronic structure change in Eu-doped CaTiO{sub 3} of the specific core-level and valence band spectrum via X-ray photoemission spectroscopy were characterized. - Highlights: • Single phase CaTiO{sub 3} and CaTiO{sub 3}: Eu crystals were prepared under mild hydrothermal method. • Crystal structure, doping level and the relations to their luminescent property were discussed. • Charge compensation mechanism was discussed via valance band spectrum by XPS. - Abstract: Charge compensation of on-site Eu 4f–5d transition that determines the luminescent performance was confirmed with valance band spectrum. Influence of photoelectrons from CaTiO{sub 3}: Eu to the corresponding luminescent performance was discussed based on the crystal structure, doping level and the relations to their luminescent property. This paper is important to further optimize the luminescent performance for improving the efficiency and reducing the cost in light emitting diode industry.

  9. Luminescence properties of 4-hydroxy-5-phenylpyrido[3,2,1-jk]carbazol-6-one: solvatochromism and sensitivity to amine solution.

    PubMed

    Lee, Hyo-Sung; Kim, Hyun-Joon; Kang, Jun-Gill

    2011-08-01

    A detailed photophysical analysis of 4-hydroxy-5-phenylpyrido[3,2,1-jk]carbazol-6-one (HPPCO) is presented. When exposed to UV light, the compound produced deep blue to green luminescence, depending on the solvent. The luminescence peak shifts with the Gutmann donor number (DN) of the solvent and the proton substitution affects luminescence; a correlation between quantum yield and decay time indicated that proton transfer plays a key role in the observed solvatochromism. The ground-state deprotonation of HPPCO was apparently evidenced from the absorption and/or the excitation spectra in the solvents with large DN values. DFT and ZINDO calculations on the structural and optical properties have shown that deprotonation increases the contribution of oxygen atoms to the HOMO, thereby lowering the transition energy from the HOMO to the LUMO. Because the luminescence properties of HPPCO depend on proton transfer, it may be used to detect and quantitate amines in solution. The sensitivity of the luminescence to various amines was ∼10(5) M(-1) and was more effective in ethanol than in methanol.

  10. Synthesis, characterization and luminescent properties of europium complexes with 2,4,6-tris-(2-pyridyl)-s-triazine as highly efficient sensitizers.

    PubMed

    Kang, Jie; Chen, Ying-Nan; Wang, Ai-Ling; Li, Hai-Yan; Qu, Yan-Rong; Zhang, Hai-Xia; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-12-01

    Using 2,4,6-tris-(2-pyridyl)-s-triazine (TPTZ) as a neutral ligand, and p-hydroxybenzoic acid, terephthalic acid and nitrate as anion ligands, five novel europium complexes have been synthesized. These complexes were characterized using elemental analysis, rare earth coordination titrations, UV/vis absorption spectroscopy and infrared spectroscopy. Luminescence spectra, luminescence lifetime and quantum efficiency were investigated and the mechanism discussed in depth. The results show that the complexes have excellent emission intensities, long emission lifetimes and high quantum efficiencies. The superior luminescent properties of the complexes may be because the triplet energy level of the ligands matches well with the lowest excitation state energy level of Eu(3+). Moreover, changing the ratio of the ligands and metal ions leads to different luminescent properties. Among the complexes, Eu2(TPTZ)2(C8H4O4)(NO3)4(C2H5OH)·H2O shows the strongest luminescence intensity, longest emission lifetime and highest quantum efficiency.

  11. Preparation and luminescent properties of lanthanide (Eu3+ and Tb3+) complexes grafted to 3-aminopropyltriethoxysilane by covalent bonds

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Haiyan

    2015-12-01

    A novel precursor PMA-Si was synthesized by modifying 1,2,4,5-benzene-tetracarboxylic acid (PMA) with 3-aminopropyltriethoxysilane (APTES). Then the hybrids were prepared by PMA-Si coordinating to lanthanide ions (Eu3+ and Tb3+) in sol-gel process. In order to improve luminescent efficiency, 1,10-Phenanthroline (Phen) was introduced to the system as the second ligand. As-prepared compounds in sol condition were coated on quartz plates to form a layer of thin film, which was different from other similar hybrids. The properties of the hybrids were characterized by FT-IR, fluorescence spectra, TG and SEM. The results showed that the obtained materials enhanced thermal stability, mechanical resistances, waterproofness as well as machining properties.

  12. Structure, optical and photoluminescence properties of LiGd1-xErx(WO4)2 green luminescence phosphor

    NASA Astrophysics Data System (ADS)

    Demiaï, A.; Derbal, M.; Guerbous, L.; Rekik, B.

    2017-03-01

    Double tungstate of lithium and trivalent gadolinium ions were prepared by mean of solid state reaction, and have been studied using X-ray diffraction, Raman scattering and photoluminescence analysis. The Er3+ concentration effects on the structural and optical properties were studied. The compounds crystallize in the scheelite like structure with space group I41/a, and Z = 2. Spectroscopic and structural properties of the Er3+ ions doping elements in LiGd(WO4)2 have been determined at room temperature. Steady and time resolved photoluminescence spectroscopies of the synthesized compounds are reported. Samples exhibit intense green emission of Er3+ (4S3/2 → 4I15/2 and 2H11/2 → 4I15/2 transitions) under 377 nm excitation wavelength and present luminescent quenching around 3 at% Er3+ concentration. The decay time decrease with increasing the Er3+ concentration.

  13. Effect of partial crystallization on the structural and Er3+ luminescence properties of phosphate-based glasses

    NASA Astrophysics Data System (ADS)

    Gestraud, C.; Glorieux, B.; Massera, J.; Petit, L.; Fargues, A.; Dussauze, M.; Cardinal, T.; Hupa, L.

    2017-02-01

    In this paper, the impact of B2O3, ZnO and TiO2 addition on the structure, Er3+ luminescence and crystallization of glasses in the Er2O3sbnd P2O5sbnd CaOsbnd SrOsbnd Na2O glass system is reported. The thermal properties of the as-prepared glasses were recorded using a DTA and the structure of the glasses prior to and after heat treatment was analyzed using Raman and IR spectroscopies. Crystallization of the glass after heat treatments was confirmed by the presence of sharp peaks in the XRD patterns. Based on the XRD pattern, two different crystalline phases are suspected to precipitate, the composition of which depends on the glass composition. From the spectroscopic properties of the glasses, the Er3+ ions are not suspected to be incorporated in the crystals.

  14. Luminescence nanothermometry

    NASA Astrophysics Data System (ADS)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  15. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  16. Intracavitary in vivo dosimetry based on multichannel fiber-coupled radioluminescence and optically stimulated luminescence of Al{sub 2}O{sub 3}:C

    SciTech Connect

    Spasic, E.; Magne, S.; Aubineau-Laniece, I.; De Carlan, L.; Malet, C.; Ginestet, C.; Ferdinand, P.

    2011-07-01

    Fiber Optic Dosimetric Catheters (FODCs) composed of chains of alumina crystals are investigated by the CEA LIST within the French ANR-INTRADOSE Project in the purpose of intracavitary in vivo dosimetry (IVD) during Brachytherapy (BT) with iridium sources and Intensity-Modulated Radiation Therapy (IMRT) with linear accelerators. A dedicated process involving PMMA fibers, cast altogether forming hexagonal bundle, is demonstrated. Optically Stimulated Luminescence (OSL) signals are recorded on-line after irradiation and absorbed doses are compared to planned dose distribution. Real-time dose measurements may also be performed by recording the Radioluminescence (RL), spontaneously emitted by the crystals during irradiation. In this case, a correction method is implemented to correct for stem effect influence (Cerenkov and scintillation generated within the fibers). For BT, the dual-fiber subtraction method is used (using a reference fiber) whereas the time discrimination method is used for IMRT. The experimental dose distribution leads to an underestimation of the source-sensor distance presumably due to energy dependence of the alumina crystal at low photon energy. At the time being, Monte-Carlo modeling of the FODC is performed with the aim to estimate this energy dependence and finally correct for it. Finally, metrological and preclinical validations are still running at Centre Leon Berard (Lyon (France)) in the purpose of checking the compliance of the FODC prototypes with treatment specifications and medical constraints. (authors)

  17. Synthesis and luminescence properties of MgO: Sm3+ phosphor for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kiran, Nallamala; Baker, A. P.; Wang, Gui-Gen

    2017-02-01

    MgO: xSm3+ (0.02 ≤ x ≤ 0.08) red phosphors are prepared by low temperature solution combustion method. The MgO: XSm3+ phosphor characterized by X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FE-SEM), luminescence and decay time measurements. The results of XRD and FE-SEM show that resultant samples are single phase. The vibration properties MgO phosphor was studied by Fourier transform infrared spectroscopy. The luminescence spectra exhibits four emission bands at 566, 603, 651 and 708 nm corresponding to the various transition from 4G5/2 ground state to lower lying levels 6H5/2, 6H7/2, 6H9/2 and 6H11/2 states, with an excitation wavelength at 404 nm. The chromaticity coordinates have been estimated from the emission spectra and the suitability of title phosphor for white light applications. The lifetime corresponding to the 4G5/2 level of the title phosphor has been found to decrease with the increase in Sm3+ ion concentration.

  18. Preparation and up-conversion luminescence properties of LaOBr:Yb3+/Er3+ nanofibers via electrospinning.

    PubMed

    Ma, Wenwen; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-11-01

    LaOBr:Yb(3+)/Er(3+) nanofibers were synthesized for the first time by calcinating electrospun PVP/[La(NO3)3 + Er(NO3)3 + Yb(NO3)3 + NH4 Br] composites. The morphology and properties of the final products were investigated in detail using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffractometry (XRD) and fluorescence spectroscopy. The results indicate that LaOBr:Yb(3+)/Er(3+) nanofibers are tetragonal in structure with a space group of P4/nmm. The diameter of LaOBr:Yb(3+)/Er(3+) nanofibers is ~ 147 nm. Under the excitation of a 980-nm diode laser, LaOBr:Yb(3+)/Er(3+) nanofibers emit strong green and red up-conversion emission centering at 519, 541 and 667 nm, ascribed to the (2)H11/2, (4)S3/2 → (4) I(15/2) and (4)F9/2 → (4)I(15/2) energy-level transitions of Er(3+) ions, respectively. The up-conversion luminescent mechanism of LaOBr:Yb(3+)/Er(3+) nanofibers is advanced. Moreover, near-infrared emission of LaOBr:Yb(3+)/Er(3+) nanofibers is obtained under the excitation of a 532-nm laser. The formation mechanism of LaOBr:Yb(3+)/Er(3+) nanofibers is proposed. LaOBr:Yb(3+)/Er(3+) nanofibers could be important up-conversion luminescent materials.

  19. Relative Study of Luminescent Properties with Judd-Ofelt Characterization in Trivalent Europium Complexes Comprising ethyl-(4-fluorobenzoyl) Acetate.

    PubMed

    Devi, Rekha; Chahar, Sangeeta; Khatkar, S P; Taxak, V B; Boora, Priti

    2017-03-13

    Five new europium(III) complexes Eu(p-EFBA)3.(H2O)2 (C1), Eu(p-EFBA)3.neo (C2), Eu(p-EFBA)3.batho (C3), Eu(p-EFBA)3.phen (C4), Eu(p-EFBA)3.bipy (C5) have been synthesized by using ethyl-(4-fluorobenzoyl) acetate (p-EFBA) as β-ketoester ligand and neocuproine (neo), bathophenanthroline (batho), 1,10-phenanthroline (phen) and 2,2-bipyridyl (bipy) as ancillary ligands. The synthesized complexes C1-C5 were characterized by elemental analysis, nuclear magnetic resonance spectroscopy ((1)H-NMR), infrared (IR) spectroscopy, thermogravimetric analysis (TG/DTG), UV-visible and photoluminescence (PL) spectroscopy. The relative study of luminescence spectra of complexes with the previously reported complexes of isomeric ligand (ortho and meta substituted ligand) indicate the higher luminescence properties of complexes as an effect of fluorine position on β-ketoester ligand. The para substituted ligand shows a remarkable effect on quantum efficiencies and Judd-Ofelt intensity parameters (Ω2, Ω4) of the complexes. The higher value of intensity parameter Ω2 associated with hypersensitive (5)D0 → (7)F2 transition of europium(III) ion revealing highly polarizable ligand field. The purposed energy transfer mechanism of complexes indicates the efficient energy transfer in complexes.

  20. Tuning the Luminescent Properties of a Ag/Au Tetranuclear Complex Featuring Metallophilic Interactions via Solvent-Dependent Structural Isomerization.

    PubMed

    Donamaría, Rocío; Gimeno, M Concepción; Lippolis, Vito; López-de-Luzuriaga, José M; Monge, Miguel; Olmos, M Elena

    2016-11-07

    In this paper the reaction products of the basic gold(I) species [Au(C6Cl5)2](-) against the acid salt Ag(OClO3) in the presence of the S-donor macrocyclic ligand 1,4,7-trithiacyclononane ([9]aneS3) are studied in different solvents. Two different isomers of stoichiometry [{Au(C6Cl5)2}Ag([9]aneS3)]2 were isolated depending on the solvent used, dichloromethane or tetrahydrofuran, which show different luminescence in the solid state. X-ray diffraction studies of these compounds reveals that both show the same heteropolynuclear Ag···Au···Au···Ag system but with different Au···Au interaction distances and different relative positions of the cationic fragment [Ag([9]aneS3)](+) in the structure with respect the bimetallic Au···Au core. This work includes a study of the optical properties of both isomers, as well as time-dependent density functional theory calculations that were performed to determine the origin of their different luminescence.

  1. Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors

    NASA Astrophysics Data System (ADS)

    Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun

    2016-02-01

    Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).

  2. Synthesis and luminescent properties of complexes of Eu(III) with 2-thienyltrifluoroacetonate, terephthalic acid and phenanthroline

    NASA Astrophysics Data System (ADS)

    Zhao, X. H.; Huang, K. L.; Jiao, F. P.; Liu, S. Q.; Liu, Z. G.; Hu, S. Q.

    2007-09-01

    This work reports the synthesis and luminescent properties of complexes of europium(III) with 2-thienyltrifluoroacetonate (HTTA), terephthalic acid (TPA) and phenanthroline (Phen), in the solid state. The new complexes were characterized by elemental analysis, infrared (IR) spectroscopy, scanning electronic microscopy (SEM) and thermal stability analysis. Both binuclear complex Eu2(TPA)(TTA)4Phen2 and polynuclear complex Eu(TPA)(TTA)Phen present better thermal stability than the mononuclear complex Eu(TTA)3Phen does. The formation of the binuclear/polynuclear structure of the complexes appears to be responsible for the enhancement of the thermal stability. The emission spectra show narrow emission bands that arise from the 5D0→7FJ (J=0 4) transition of the Eu3+ ion. The spectral data of the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 present only one sharp peak in the region of the 5D0→7F0 transition indicating that only one Eu3+ ion species is present in each sample. In addition, the luminescence decay curves of the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 fit a single-exponential decay law. The values of quantum efficiencies of the emitting 5D0 level for the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 are 29% and 28%, respectively.

  3. Several (4,4)- and (5,6,8)-connected lanthanide-organic frameworks: structures, luminescence and magnetic properties.

    PubMed

    Zhao, Xiao-Qing; Liu, Xu-Hui; Zhao, Bin

    2013-10-01

    A series of lanthanide-based organic frameworks with formulas of {[PrL(H2O)2]·2H2O}n () and {[Ln3L3(H2O)2]·2H2O}n (Ln = Eu (), Gd (), Tb (), Dy (), Ho (), Er (); H3L = 4-(carboxymethoxy)isophthalic acid), were hydrothermally synthesized and structurally characterized. It is the first time that 4-(carboxymethoxy)isophthalic acid is employed in producing lanthanide compounds. The seven compounds exhibit two types of structures with the decreasing radius of the lanthanide ions, representing the lanthanide contraction effect. Compound with the large Pr(3+) ion displays a 2D layered structure with a binodal (4,4)-connected topology with the Schläfli symbol of (3(3)6(3))2, whereas compounds with small Ln(3+) ions feature a 3D framework constructed from carboxyl groups with a (5,6,8)-connected topology with the Schläfli symbol of (3(2)4(4)5(4))·(3(4)4(4)5(4)6(3))·(3(4)4(8)5(6)6(9)8). The luminescence and magnetic properties were investigated, and the results indicate that the H3L ligand can sensitize the lanthanide luminescence in compounds , and and makes a contribution to the antiferromagnetic interactions in compound or the uncertain magnetic interactions in compounds . Additionally, the thermal analyses suggest the high thermal stability of compounds .

  4. Structures, luminescent and magnetic properties of a series of (3,6)-connected lanthanide-organic frameworks.

    PubMed

    Hou, Yin-Ling; Cheng, Rui-Rui; Xiong, Gang; Cui, Jian-Zhong; Zhao, Bin

    2014-01-28

    Through hydrothermal reactions with corresponding lanthanide nitrates and 4-(4-carboxyphenylsulfonyloxy)-3-metnoxybenzoic acid (H2vspc), seven novel three-dimensional (3D) lanthanide-organic frameworks ([Ln(vspc)(Hvspc)(H2O)]n [Ln = Pr (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6) and Er (7)]) have been synthesized and structurally characterized. All of them are isostructural and crystallize in the monoclinic crystal system, P21/c space group. Their structures feature a (3,6)-connected topological network, in which Ln(3+) were connected by carboxylate groups to give a 1D lanthanide chain, and the adjacent chains are further spanned by vspc(2-) and Hvspc(-) anions to form a 3D framework. The luminescent properties and lifetimes of 2 (Eu(III)), 4 (Tb(III)), and 5 (Dy(III)) have been studied, and the corresponding luminescent lifetimes are 0.53, 0.99 and 0.014 ms, respectively. The magnetic investigations reveal that compound displays weak antiferromagnet interaction, 4 and 5 exhibit ferromagnetic coupling, and compound 5 exhibits slow magnetic relaxation behavior.

  5. Influence of Surface Ligands on the Luminescent Properties of Cadmium Selenide Quantum Dots in a Polymethylmethacrylate Matrix

    NASA Astrophysics Data System (ADS)

    Zvaigzne, M.; Martynov, I.; Samokhvalov, P.; Mochalov, K.; Chistyakov, A.

    The photophysical properties of colloid semiconductor quantum dots (QDs) and QD-containing composites attract increasing interest. The possibility of tuning of the luminescence wavelength by varying the QD size, their broad absorption spectrum and feasibility of obtaining QD-based thin layers and composites offer great prospects for application in photonics and optoelectronics. Some emerging trends in the development of QD-based light-emitting diodes and solar cells require embedding of QDs into a polymer matrix. Although there is evidence that the photophysical characteristics of QDs in such systems depend on the type of their surface ligands, yet, there are only few studies on this subject. Here, the luminescence characteristics CdSe/ZnS/Cds/ZnS QDs coated with aliphatic or aromatic ligands, embedded in a polymethylmethacrylate (PMMA) matrix, have been studied. The quantum yield (QY) of the QD/PMMA composites containing QDs with aliphatic ligands has been found to be three times higher compared to those containing QDs with aromatic ligands. We assume that this effect is due to hole capture on TP aromatic π-orbital.

  6. Preparation and luminescence properties of orange-red Ba3Y(PO4)3:Sm3+ phosphors

    NASA Astrophysics Data System (ADS)

    Xu, Qiguang; Xu, Denghui; Sun, Jiayue

    2015-04-01

    Ba3Y(PO4)3:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties of the as-prepared phosphor. The results show that the phosphor can be efficiently excited by ultraviolet light and emit a satisfactory orange-red performance, nicely, fitting in well with the widely used UV LED chip. Under 403 nm excitation, the 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, and 11/2) emissions of Sm3+ are obviously observed. The optimum doping concentration is 5 mol% and corresponding quenching behavior is ascribed to be electric dipole-dipole interaction according to Dexter's theory. The temperature dependent luminescence of Ba3Y(PO4)3:Sm3+ phosphor is also discussed, and the activation energy for thermal quenching is calculated as 0.34 eV. Furthermore, the chromaticity coordinates of Ba3Y(PO4)3:Sm3+ phosphor are calculated to be (0.5558, 0.4380) and the lifetime values of Ba3Y0.995(PO4)3:0.005Sm3+ was 2.45 ms.

  7. Synthesis and luminescence properties of double perovskite Sr2ZnMoO6:Mn4+ deep red phosphor

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Ceng, Xiangfeng; Huang, Jijun; Ao, Hui; Zheng, Guotai; Yu, Xiaoguang; Zhang, Xinqin

    2016-12-01

    A double perovskite Sr2ZnMoO6:Mn4+ (SZM:Mn4+) phosphor is synthesized by high-temperature solid-state reaction method in air. Emission band peaking at ∼705 nm of SZM:Mn4+ phosphor in the range of 650-790 nm is attributed to the 2E → 4A2 transition of Mn4+ ion with activated different lattice vibration modes. Three excitation bands in the range of 210-610 nm are assigned to the O2- → Mn4+ charge transfer and the 4A2 → (4T1, 2T2, and 4T2) transition of Mn4+ ion. The optimal Mn4+ ion concentration is ∼0.8 mol% in SZM:Mn4+ phosphor. Fluorescence lifetime of SZM:Mn4+ phosphor decreases from ∼132 μs to 108 μs with increasing Mn4+ ion concentration in the range of 0.2-1.0 mol%. Time-resolved spectra and fluorescence lifetime data indicate that luminescent center is caused by Mn4+ ion. The luminous mechanism of SZM:Mn4+ phosphor is explained by Tanabe-Sugano energy level diagram of Mn4+ ion. The results are useful to understand the influences of the neighboring coordination environment around Mn4+ and host crystal structure to the luminescence properties of Mn4+ ion and develop other novel Mn4+-doped materials.

  8. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  9. Preparation and luminescent properties of GdOF:Ce, Tb nanoparticles and their transparent PMMA nanocomposites

    NASA Astrophysics Data System (ADS)

    Cai, Wen; Wang, Aiwu; Fu, Li; Hu, Jie; Rao, Tingke; Wang, Junqing; Zhong, Jiasong; Xiang, Weidong

    2015-05-01

    GdOF:Ce, Tb nanoparticles and their poly (methyl methacrylate) (PMMA) nanocomposites have been successfully prepared by a thermolysis route and thermal polymerization of methyl methacrylate (MMA) monomer, respectively. The obtained nanoparticles and nanocomposites are characterized by XRD, EDS, TEM, FTIR, TGA, UV-Vis and PL spectrum. The as-synthesized transparent GdOF:Ce, Tb/PMMA nanocomposites exhibit green photoluminescence under the irradiation of 254 nm UV lamp due to the incorporation of luminescent GdOF:Ce, Tb nanoparticles into the PMMA matrix. The present route would provide a general strategy to prepare other functional nanocomposites.

  10. Luminescent properties of the Sc3+ doped single crystalline films of (Y,Lu,La)3(Al,Ga)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Vasylkiv, Ya.

    2014-08-01

    The paper is dedicated to studying the luminescent and scintillation properties of the single crystalline films of Sc doped multi-component (Y,Lu,La)3(Al,Ga)5O12 garnets grown by the liquid phase epitaxy method.

  11. Optically stimulated luminescence (OSL) response of Al2O3:C, BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors.

    PubMed

    Kumar, Pratik; Bahl, Shaila; Sahare, P D; Kumar, Surender; Singh, Manveer

    2015-12-01

    This paper investigates the optically stimulated luminescence (OSL) response of BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors for different doses and bleaching durations. The results have also been compared with the commercially available Landauer Al2O3:C (Luxel®) dosemeter. Nanocrystalline K2Ca2(SO4)3:Eu is known to be a sensitive thermoluminescent phosphor, but its OSL response is hardly reported. At first, pellets of nanocrystalline K2Ca2(SO4)3:Eu powder were prepared by adding Teflon as a binder. Their OSL signal was compared with that of the material in pure form, i.e. without adding the binder (in 100:1 ratio). It was observed that adding the binder does not appreciably affect the OSL intensity. On comparison with the commercially available Al2O3:C from Landauer, it was found that K2Ca2(SO4)3:Eu is around 15 times less sensitive than Al2O3:C. 'Homemade' BaFCl:Eu phosphor has also been studied. The intensity of BaFCl:Eu was ∼20 times more than the standard Al2O3:C dosemeter and ∼200 times more sensitive than K2Ca2(SO4)3:Eu in the dose range of 13-200 cGy. OSL dosemeters are believed to give luminescence signal even if they are read before, i.e. multiple reading may be possible under suitable conditions after single exposure. This was also checked for all the prepared dosemeters and it was found that Al2O3:C showed the least decrease of <2 %, followed by BaFCl:Eu of 15 % and K2Ca2(SO4)3:Eu with 20 %. Finally, Al2O3:C and BaFCl:Eu phosphors were also studied for their optical bleaching durations to which the respective signals get completely removed so that the phosphor can be re-used. It was observed that BaFCl:Eu is bleached faster and more easily than Al2O3:C.

  12. Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials.

    PubMed

    Su, Liangbi; Zhou, Peng; Yu, Jun; Li, Hongjun; Zheng, Lihe; Wu, Feng; Yang, Yan; Yang, Qiuhong; Xu, Jun

    2009-08-03

    Spectroscopic properties of Bi-doped SrB(4)O(7) glasses, sintered compounds, polycrystalline materials, and single crystals were investigated. Broadband near-infrared luminescence was realized in Bi-doped SrB(4)O(7) glasses with basicity and polycrystalline materials with non-bridging oxygens. In Bi:SrB(4)O(7) single crystals, only visible luminescence of Bi(3+) and Bi(2+) was observed, but no near-infrared. The rigid three-dimensional network of SrB(4)O(7) crystal is proved to be unfavorable for accommodation of Bi(+) ions.

  13. Synthesis and Luminescent Properties of GaN and GaN-Mn Blue Nanocrystalline Thin-film Phosphor for FED

    SciTech Connect

    Bondar, V D; Felter, T E; Hunt, C E; Kucharsky, I Y; Chakhovskoi, A G

    2003-04-09

    The technologies of fabrication of thin film phosphors based on gallium nitride using rf-magnetron sputtering are developed and structural properties of films are studied. Luminescence and electron spin resonance (ESR) spectra of GaN and GaN-Mn thin films have been studied. The correlation between cathodoluminescence intensity and conductivity of GaN films has been found. The nature of emission centers in GaN and GaN-Mn thin films is discussed as well as mechanism of luminescence in these films is proposed.

  14. Relationship between crystal structure and luminescent properties of novel red emissive BiVO4:Eu3+ and its photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Qianming; Li, Yan; Zeng, Zhi; Pang, Shuting

    2012-08-01

    Crystalline BiVO4:Eu3+ nanomaterials have been successfully synthesized by four different methods: co-precipitation, hydrothermal, solvothermal, and reverse micelles. The relationship between crystal structure and luminescent properties was studied by X-ray diffraction and steady-state fluorescence. The data indicate that Eu3+ 5D0 → 7F2 red luminescence at 618 nm can be excited by visible light at 466 nm in BiVO4 host. Furthermore, it has been found that the encapsulation of europium(III) in tetragonal phase (BiVO4) results in enhanced luminescence intensities compared with monoclinic phase. Transmission electron microscopy showed rods with sizes ranging from nanometer to micrometer and nanospheres can be obtained under different experimental conditions.

  15. Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Jaroszewski, K.; Pedzinski, T.; Bursa, B.; Głuchowski, P.; Majchrowski, A.; Michalski, E.

    2015-09-01

    Nonlinear optical Bi2ZnOB2O6 single crystals doped with Pr3+ ions were grown using the Kyropoulos method. The absorption and luminescence properties of these new systems were investigated for the first time. The crystals are characterized by the large values of nonlinear optical coefficients. Effective luminescence of the Pr3+ ions makes this system an excellent candidate for the near-infrared (NIR) and/or ultraviolet (UV) to visible (VIS) laser converters. Based on the obtained experimental spectroscopic data, detailed analysis of the absorption and luminescence spectra was performed using the conventional Judd-Ofelt theory. Those transitions, which can be potentially used for laser applications of the Pr3+ ion, have been identified. In addition to the intensity parameters Ω2, Ω4, Ω6 the branching ratios and radiative lifetimes were estimated for all possible transitions in the studied spectral region.

  16. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    SciTech Connect

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro; Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro; Ishihara, Tsuguo; Izumi, Hirokazu

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  17. XPS analysis and luminescence properties of thin films deposited by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Dolo, J. J.; Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Dejene, B. F.

    2010-04-01

    This paper presents the effect of substrate temperature and oxygen partial pressure on the photoluminescence (PL) intensity of the Gd2O2S:Tb3 + thin films that were grown by using pulsed laser deposition (PLD). The PL intensity increased with an increase in the oxygen partial pressure and substrate temperature. The thin film deposited at an oxygen pressure of 900 mTorr and substrate temperature of 900°C was found to be the best in terms of the PL intensity of the Gd2O2S:Tb3 + emission. The main emission peak due to the 5D4-7F5 transition of Tb was measured at a wavelength of 545 nm. The stability of these thin films under prolonged electron bombardment was tested with a combination of techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Cathodoluminescence (CL) spectroscopy. It was shown that the main reason for the degradation in luminescence intensity under electron bombardment is the formation of a non-luminescent Gd2O3 layer, with small amounts of Gd2S3, on the surface.

  18. Preparation and luminescence properties of ZnO:Ga - polystyrene composite scintillator.

    PubMed

    Burešová, Hana; Procházková, Lenka; Turtos, Rosana Martinez; Jarý, Vítězslav; Mihóková, Eva; Beitlerová, Alena; Pjatkan, Radek; Gundacker, Stefan; Auffray, Etiennette; Lecoq, Paul; Nikl, Martin; Čuba, Václav

    2016-07-11

    Highly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H2 atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet. Luminescent spectral and kinetic characteristics of ZnO:Ga were preserved. Radioluminescence spectra corresponded purely to the ZnO:Ga scintillating phase and emission of polystyrene at 300-350 nm was absent. These features suggest the presence of non-radiative energy transfer from polystyrene host towards the ZnO:Ga scintillating phase which is confirmed by the measurement of X-ray excited scintillation decay with picosecond time resolution. It shows an ultrafast rise time below the time resolution of the experiment (18 ps) and a single-exponential decay with the decay time around 500 ps.

  19. Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S.

    2016-01-01

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS2 film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS2 covering an area as large as a few cm2 on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO2 coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS2 films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS2. In addition, a broad defect related luminescence band appears at ˜1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces.

  20. Luminescence properties of Tb3+ doped Sr2SnO4 green phosphor in UV/VUV regions.

    PubMed

    Srinivas, M; Rao, B Appa; Vithal, M; Rao, P Raghava

    2013-01-01

    Polycrystalline Sr2SnO4 phosphors doped with Tb(3+) were prepared by conventional solid-state reaction method. Materials were characterized by powder XRD and EDS techniques. The luminescence properties of these materials were investigated under UV and VUV excitation. Upon excitation at 272 nm, phosphors exhibited intense emissions at 492 and 543 nm due to (5)D4 → (7)F6 and (5)D4 → (7)F5 transitions of Tb(3+) ions, respectively. Materials also exhibited strong emissions from these transitions under VUV excitation at 147, 173 and 230 nm. Quantitative analysis of the spectra indicated probable applications of these phosphors for PDP and other display devices as green emitting phosphors.

  1. Hexagonal spherical Ln3+-doped NaGdF4: A facile double solvent hydrothermal synthesis and luminescent properties

    NASA Astrophysics Data System (ADS)

    Wu, Kelu; Huang, Zhuanzhuan; Yu, Qiao-He; Wang, Yi-Yan; Xia, Tian-Long

    2017-04-01

    Different sizes of hexagonal spherical NaGdF4:Eu3+ particles are synthesized via a facile hydrothermal method with the use of ethylene glycol (EG), propylene glycol (PG) or butylene glycol (BG) as another solvent. The particle size decreases with the addition of EG, PG or BG and the decreasing trend in BG/H2O system is significantly more than that in the other two systems. Meanwhile, results show that luminescent properties of NaGdF4:Eu3+ are enhanced along with the decrease of particle size. Besides, the energy transfer from Dy3+ to Eu3+ is directly observed in the PL spectra of NaGdF4:Eu3+/Dy3+.

  2. Luminescence and scintillation properties of Tl- and Ce-doped Cs2HfCl6 crystals

    NASA Astrophysics Data System (ADS)

    Saeki, Keiichiro; Fujimoto, Yutaka; Koshimizu, Masanori; Nakauchi, Daisuke; Tanaka, Hironori; Yanagida, Takayuki; Asai, Keisuke

    2017-02-01

    The luminescence and scintillation properties of Tl- and Ce-doped Cs2HfCl6 crystals were investigated by photoluminescence and radioluminescence spectroscopy. In the photoluminescence spectra, emission bands of the activators were observed at 500 nm for Tl-doped Cs2HfCl6, and at 340 and 380 nm for Ce-doped Cs2HfCl6. The radioluminescence bands were observed at 405 and 430 nm for Tl- and Ce-doped Cs2HfCl6, respectively. Scintillation decay time constants for the Tl- and Ce-doped Cs2HfCl6 were smaller than those for the corresponding undoped crystals. Scintillation light yields for Tl- and Ce-doped Cs2HfCl6 were estimated to be 23,700 and 15,700 photons/MeV, respectively.

  3. Study of the structure and luminescent properties of terbium complex intercalated Zn/Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Xie, Juan; Yin, Yaobing; Hao, Yongjing; Lian, Yiwei

    2016-01-01

    Terbium complex of ethylenediaminetetraacetate ([Tb(EDTA)]-) intercalated Zn/Al layered double hydroxide (LDH), as an inorganic-organic green-emitting phosphor, was synthesized through an ion exchange method. X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectra exhibit a successful intercalation of [Tb(EDTA)]- anions between the hydroxide sheets of the LDH. The basal spacing of 14.5 Å indicate a vertical arrangement of [Tb(EDTA)]- anions with the maximal dimension in the gallery is adopted. The luminescent properties of this material were studied by excitation and emission spectra. The results show that the strongest emission peak of Tb3+ ion occurs at 544 nm. This material may supply a candidate of green light emitting phosphor.

  4. Synthesis, crystal structure and luminescent properties of one coordination polymer of cadmium(II) with mixed thiocyanate and hexamethylenetetramine ligands.

    PubMed

    Bai, Yan; Shang, Wei-Li; Dang, Dong-Bin; Sun, Ji-De; Gao, Hui

    2009-03-01

    A novel Cd(II) coordination polymer [Cd(SCN)(2)(hmt)(1/2)(H(2)O)](2).H(2)O (hmt=hexamethylenetetramine) has been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Cd(II) atom has an distorted octahedral environment with an N(3)S(2)O donor set. Every six Cd(II) centers are linked by hmt and thiocyanato bridges to form a planar 2D coordination polymer containing hexagonal metallocyclic rings [Cd(6)(SCN)(8)(hmt)(2)]. A 2D layer structure is held together with its neighboring ones via a set of hydrogen-bonding interactions to form a 3D supramolecular structure. The luminescent properties of the title complex in the solid state were investigated.

  5. Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties

    NASA Astrophysics Data System (ADS)

    Zhang, Guo; Liu, Yanlan; Yuan, Qinghai; Zong, Chenghua; Liu, Jianhua; Lu, Lehui

    2011-10-01

    In vivo upconversion luminescence (UCL) imaging, exhibiting favorable characteristics such as high photostability, no blinking, sharp emission lines, and long lifetimes, is recognized as the excellent and significant photoluminescence imaging for the future. To develop the imaging system with high visual sensitivity and tissue penetration, the functional molecules with X-ray computed tomography (CT) contrast were grafted onto upconversion nanoparticles to obtain β-NaYF4:18% Yb3+,2%Er3+@SiO2-I/PEG (UCNPs@SiO2-I/PEG) nanoprobes. These nanoprobes are water-soluble, have low cytotoxicity, and possess excellent UCL and remarkable CT contrast. Of particular note is that, besides the element iodine, rare earth elements (Y, Yb, and Er) present in the nanoprobes also show CT contrast. Moreover, no background autofluorescence signal is found in in vivo UCL images. We believe that these nanoprobes with dual modal in vivo imaging of UCL and CT can serve as a promising platform for clinical diagnosis or biomedical studies.In vivo upconversion luminescence (UCL) imaging, exhibiting favorable characteristics such as high photostability, no blinking, sharp emission lines, and long lifetimes, is recognized as the excellent and significant photoluminescence imaging for the future. To develop the imaging system with high visual sensitivity and tissue penetration, the functional molecules with X-ray computed tomography (CT) contrast were grafted onto upconversion nanoparticles to obtain β-NaYF4:18% Yb3+,2%Er3+@SiO2-I/PEG (UCNPs@SiO2-I/PEG) nanoprobes. These nanoprobes are water-soluble, have low cytotoxicity, and possess excellent UCL and remarkable CT contrast. Of particular note is that, besides the element iodine, rare earth elements (Y, Yb, and Er) present in the nanoprobes also show CT contrast. Moreover, no background autofluorescence signal is found in in vivo UCL images. We believe that these nanoprobes with dual modal in vivo imaging of UCL and CT can serve as a promising

  6. Luminescence properties of lanthanide and ytterbium lanthanide titanate thin films grown by atomic layer deposition

    SciTech Connect

    Hansen, Per-Anders Fjellvåg, Helmer; Nilsen, Ola; Finstad, Terje G.

    2016-01-15

    Lanthanide based luminescent materials are highly suitable as down conversion materials in combination with a UV-absorbing host material. The authors have used TiO{sub 2} as the UV-absorbing host material and investigated the energy transfer between TiO{sub 2} and 11 different lanthanide ions, Ln{sup 3+} (Ln = La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in thin films grown by atomic layer deposition. They have also investigated the possibility to improve the overall energy transfer from TiO{sub 2} to Yb{sup 3+} with a second Ln{sup 3+}, in order to enhance down conversion. The films were grown at a substrate temperature of 300 °C, using the Ln(thd){sub 3}/O{sub 3} (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) and TiCl{sub 4}/H{sub 2}O precursor pairs. The focus of the work is to explore the energy transfer from TiO{sub 2} to Ln{sup 3+} ions, and the energy transfer between Ln{sup 3+} and Yb{sup 3+} ions, which could lead to efficient down conversion. The samples have been characterized by x-ray diffraction, x-ray fluorescence, spectroscopic ellipsometry, and photoluminescence. All films were amorphous as deposited, and the samples have been annealed at 600, 800, and 1000 °C in order to investigate the correlation between the crystallinity and luminescence. The lanthanum titanium oxide samples showed a weak and broad emission centered at 540 nm, which was absent in all the other samples, indicating energy transfer from TiO{sub 2} to Ln{sup 3+} in all other lanthanide samples. In the amorphous phase, all samples, apart from La, Tb, and Tm, showed a typical f-f emission when excited by a 325 nm HeCd laser. None of the samples showed any luminescence after annealing at 1000 °C due to the formation of Ln{sub 2}Ti{sub 2}O{sub 7}. Samples containing Nd, Sm, and Eu show a change in emission spectrum when annealed at 800 °C compared to the as-deposited samples, indicating that the smaller lanthanides crystallize in a different manner than the larger

  7. Optical and luminescence properties of Dy3+ ions in phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.

    2013-08-01

    Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.

  8. Luminescence properties of red-emission Mg4 Nb2 O9:Eu3+ phosphor.

    PubMed

    Cao, Renping; Cao, Chunyan; Yu, Xiaoguang; Qiu, Jianrong

    2015-03-01

    Red-emitting Mg4 Nb2 O9 :Eu(3+) phosphor is synthesized via a solid-state reaction method in air, and its crystal structure and luminescence are investigated. The phosphor can be excited efficiently by ~ 395 nm light, coupled well with a ~ 395 nm near-ultraviolet chip and emits red light at ~ 613 nm with sharp spectra due to (5) D0  → (7)  F2 transition of the Eu(3+) ion. Mg4 Nb2 O9 :Eu(3+) phosphor sintered at 1350 ºC shows Commission international de I'Eclairage (CIE) chromaticity coordinates of x = 0.6354, y = 0.3592, and is a potential red-emitting phosphor candidate for white light-emitting diodes (W-LEDs) under ~ 395 nm near-ultraviolet LED chip excitation.

  9. Luminescence and electrical properties of single ZnO/MgO core/shell nanowires

    SciTech Connect

    Grinblat, Gustavo; Comedi, David; Bern, Francis; Barzola-Quiquia, José; Esquinazi, Pablo; Tirado, Mónica

    2014-03-10

    To neutralise the influence of the surface of ZnO nanowires for photonics and optoelectronic applications, we have covered them with insulating MgO film and individually contacted them for electrical characterisation. We show that such a metal-insulator-semiconductor-type nanodevice exhibits a high diode ideality factor of 3.4 below 1 V. MgO shell passivates ZnO surface states and provides confining barriers to electrons and holes within the ZnO core, favouring excitonic ultraviolet radiative recombination, while suppressing defect-related luminescence in the visible and improving electrical conductivity. The results indicate the potential use of ZnO/MgO nanowires as a convenient building block for nano-optoelectronic devices.

  10. Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes.

    PubMed

    Goldstein, Daniel C; Peterson, Joshua R; Cheng, Yuen Yap; Clady, Raphael G C; Schmidt, Timothy W; Thordarson, Pall

    2013-07-26

    We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  11. Luminescent properties of ZrO2:Tb nanoparticles for applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Słońska, A.; Kaszewski, J.; Wolska-Kornio, E.; Witkowski, B.; Wachnicki, Ł.; Mijowska, E.; Karakitsou, V.; Gajewski, Z.; Godlewski, M.; Godlewski, M. M.

    2016-09-01

    In this paper a new generation of non-toxic nanoparticles based on the zirconium oxide doped with 0.5%Tb and co-doped by the range of 0-70% with Y was evaluated for the use as a fluorescent biomarker of neuronal trafficking. The ZrO2:Tb nanoparticles were created by microwave driven hydrothermal method. Influence of the yttrium content and thermal processing on the Tb3+ related luminescence emission was discussed. The higher intensities were achieved, when host was cubic and for the nanoparticles with 33 nm. Presence of yttrium was associated with the energy coupling of the host and dopant, wide excitation band is present at 309 and 322 nm before and after calcination respectively.

  12. Luminescence properties and optical dephasing in a glass-ceramic containing sodium-niobate nanocrystals

    NASA Astrophysics Data System (ADS)

    Almeida, E.; de S. Menezes, L.; de Araújo, Cid B.; Lipovskii, A. A.

    2011-06-01

    Photoluminescence (PL) and degenerate four-wave-mixing (DFWM) experiments were performed in a silica-niobic composite containing NaNbO3 nanocrystals. The PL results indicate the presence of in-gap states attributed to excitons in the nanocrystals and defect centers. The luminescence of the samples becomes more intense at low temperatures, indicating that nonradiative relaxations dominate the dynamics of the in-gap states. The DFWM experiments allowed for measurements of the homogeneous relaxation time, (20 ± 3) fs, of the third-order polarization at room temperature. The main contributions to the dynamics of the electronic response are attributed to the trapping of electrons in the in-gap states and to carrier and phonon scattering.

  13. Optical fiber spectroscopy: A study of the luminescent properties of the europium ion for thermal sensors

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin

    1992-01-01

    Recently, there has been interest in developing a distributed temperature sensor integrated into an optical fiber. Such a system would allow embedding of the optical fiber within or on a structural material to provide for continuous monitoring of the material's temperature. Work has already begun on the development of a temperature sensor using the temperature dependent emission spectra from the lanthanide rare earths doped into crystalline hosts. The lifetime, the linewidth and the integrated intensity of this emission are each sensitive to changes in the temperature and can provide a basis for thermometry. One concept for incorporating this phenomena into an optical fiber based sensor involves bonding the optically active material to the cladding of an optical fiber and allowing the luminescent light to couple into the the fiber by the evanescent wave. Experimental work developing this concept has already been reported. Measurements of the linewidth of Eu3+:Y2O3, diffused into a fiber, made by Albin clearly show a strong and regular dependence on temperature over the range of 300 to 1000 K. We report here on a study of the temperature dependence of the lineshape of the emission at 611 nm using the data in references. We focus attention on understanding the general behavior of the Eu3+:Y2O3 system. Building upon understanding of this system we will be able to establish the physical criterial for a good optical fiber based temperature sensor and then to examine available data on other lanthanide rare earths and transition metal ions to determine the best luminescent system for temperature sensing in an optical fiber.

  14. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  15. Optically Stimulated Luminescence Response to Ionizing Radiation of Red Bricks (SiO2, Al2O3, and Fe2O3) Used as Building Materials

    SciTech Connect

    Bogard, James S; Espinosa Garcia, Guillermo

    2007-01-01

    Quartz is the most common mineral in our environment. It is found in granite, hydrothermal veins and volcanic rocks, as well as in sedimentary deposits derived from such solid materials. These sediments are also made into building materials, such as bricks and pottery. Thus the potential use of a dose reconstruction technique based on quartz grains is enormous, whether as a dating tool in archaeology and quaternary geology, or in nuclear accident dosimetry. This work describes the Optically Stimulated Luminescence (OSL) response of red brick to ionizing radiation. The bricks, from the state of Puebla, Mexico, represent another class of materials that can be used in retrospective dosimetry following nuclear or radiological incidents. The chemical composition of fifteen bricks (three samples from five different brick factories) was determined, using energy dispersive spectroscopy (EDS), be primarily SiO{sub 2}, Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} and is believed to be representative for this common building material. Individual aliquots from these bricks were powdered in agate mortars and thermally annealed. Replicate samples of the aliquots were then irradiated with beta particles from a sealed source of {sup 90}Sr/{sup 90}Y. The OSL response was measured with a Daybreak Model 2200 High-Capacity OSL Reader System. We present here for this material the characteristic OSL response to beta particles; the reproducibility of the OSL response; the linearity of the response in the dose range 0.47 Gy to 47 Gy; and the fading characteristics.

  16. Characterization of optically stimulated luminescence dosimeters and investigating their potential for estimating pediatric organ doses in multi-slice computed tomography

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani Mohammed

    Recent epidemiologic studies have shown a strong association between the relatively high doses of pediatric CT and the risk of cancer. Quantifying organ doses, as a measure of the risk, is commonly based on either direct anthropomorphic phantom measurements or Monte Carlo simulation. The major disadvantage in the phantom approach is its high cost especially that, for pediatric CT dosimetry, various phantom sizes are required to represent different age groups of children. On the other hand, Monte Carlo simulation, although not considered costly, requires validation by anthropomorphic phantom measurements. The aim of this project was to develop two methods of organ dose estimation in pediatric CT: 1) from the measured surface dose using optically stimulated luminescence dosimeters (OSLDs) and 2) by measuring the circumference of the body part being scanned as well as knowing the scan parameters. The project was based on a study proposed by the surgery department to monitor radiation exposure to children during their CT examination in the ER. A total of 200 pediatric patients were enrolled in this study which used OSLDs to monitor the doses. Specific aim 1 of this project was to characterize the OSLDs in the diagnostic energy range. Specific aim 2(a) was to find relationships between the patients' doses from OSLDs and both scan CTDI and the measured circumference. In specific aim 2(b) we carried out measurements using CTDI phantoms to investigate the relationships studied in specific aim 2(a). Specific aim 3 was to come up with models to estimate select organ doses from measuring surface dose or by using the circumference of the body part. To do this, pediatric examinations were simulated using a set of pediatric anthropomorphic phantoms in which doses of select organs were measured.

  17. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nyirenda, A. N.; Chithambo, M. L.

    2017-04-01

    It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450-650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  18. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    SciTech Connect

    Han, S; Jung, H; Kim, M; Ji, Y; Kim, K; Choi, S; Park, S; Yoo, H; Yi, C

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulated dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.

  19. SU-E-T-585: Optically-Stimulated Luminescent Dosimeters for Monitoring Pacemaker Dose in Radiation Therapy

    SciTech Connect

    Apicello, L; Riegel, A; Jamshidi, A

    2015-06-15

    Purpose: A sufficient amount of ionizing radiation can cause failure to components of pacemakers. Studies have shown that permanent damage can occur after a dose of 10 Gy and minor damage to functionality occurs at doses as low as 2 Gy. Optically stimulated thermoluminescent dosimeters (OSLDs) can be used as in vivo dosimeters to predict dose to be deposited throughout the treatment. The purpose of this work is to determine the effectiveness of using OSLDs for in vivo dosimetry of pacemaker dose. Methods: As part of a clinical in vivo dosimetry experience, OSLDs were placed at the site of the pacemaker by the therapist for one fraction of the radiation treatment. OSLD measurements were extrapolated to the total dose to be received by the pacemaker during treatment. A total of 79 measurements were collected from November 2011 to December 2013 on six linacs. Sixty-six (66) patients treated in various anatomical sites had the dose of their pacemakers monitored. Results: Of the 79 measurements recorded, 76 measurements (96 %) were below 2 Gy. The mean and standard deviation were 50.12 ± 76.41 cGy. Of the 3 measurements that exceeded 2 Gy, 2 measurements matched the dose predicted in the treatment plan and 1 was repeated after an unexpectedly high Result. The repeated measurement yielded a total dose less than 2 Gy. Conclusion: This analysis suggests OSLDs may be used for in vivo monitoring of pacemaker dose. Further research should be performed to assess the effect of increased backscatter from the pacemaker device.

  20. C-Dot Generated Bioactive Organosilica Nanospheres in Theranostics: Multicolor Luminescent and Photothermal Properties Combined with Drug Delivery Capacity.

    PubMed

    Singh, Rajendra K; Patel, Kapil D; Mahapatra, Chinmaya; Kang, Min Sil; Kim, Hae-Won

    2016-09-21

    Biocompatible nanomaterials that allow for labeling cells and tissues with the capacity to load and deliver drug molecules hold great promise for the therapeutic-diagnostic purposes in tissue repair and disease cure. Here a novel nanoplatform, called C-dot bioactive organosilica nanosphere (C-BON), is introduced to have excellent theranostic potential, such as controlled drug delivery, visible-light imaging, and NIR photothermal activity. C-dots with a few nanometers were in situ generated in the Ca-containing organosilica mesoporous nanospheres through the sol-gel and thermal-treatment processes. The C-BON exhibited multicolor luminescence over a wide visible-light range with strong emissions and high photostability over time and against acidity and the possible in vivo optical imaging capacity when injected in rat subcutaneous tissues. Moreover, the C-BON showed a photothermal heating effect upon the irradiation of near-infrared. The C-BON, thanks to the high mesoporosity and existence of Ca(2+) ions, demonstrated excellent loading capacity of anticancer drug doxorubicin (as high as 90% of carrier weight) and long-term (over a couple of weeks) and pH/NIR-dependent release ability. The C-BON preserved the compositional merit of Ca-Si glass, having excellent bioactivity and cell compatibility in vitro. Taken all, the multifunctional properties of C-BON-multicolor luminescence, photothermal activity, and high drug loading and controlled release-together with its excellent bioactivity and cell compatibility potentiate the future applications in theranostics (chemotherapy and photothermal therapy with optical imaging).

  1. Development and characterization of remote radiation dosimetry systems using optically stimulated luminescence of alumina:carbon and potassium bromide:europium

    NASA Astrophysics Data System (ADS)

    Klein, David Matthew

    Scope and Method of Study. To develop and test the performance of two different dosimetry systems; one for in situ, high-sensitivity, inexpensive environmental monitoring, and another for near-real-time medical dosimetry. The systems are based on remote interrogation of the optically stimulated luminescence (OSL) from Al2O3:C and KBr:Eu single crystal dosimeters (exposed to environmental and medical radiation fields, respectively) via fiber optic cables. The environmental system was tested in lab conditions using various radioactive sources including 60Co, 90 Sr, 137Cs, and 226Ra, as well as with 232Th-enriched soil stimulant. The medical system was tested under various diagnostic x-ray systems, including fluoroscopy and computed tomography (CT) machines, as well as with high dose rate 192Ir brachytherapy sources and 232 MeV proton therapy beams under simulated treatment conditions. Findings and Conclusions. The environmental system was shown to achieve sensitivity high enough for measuring an OSL signal resulting from a dose of ˜1 muGy, which is equivalent to ˜12 hours of natural background radiation. This sensitivity allows for monitoring of the radiation characteristics of a natural environment more rapidly and/or less expensively than existing methods, such as soil sampling and in situ gamma spectroscopy. The KBr:Eu-based medical system results show that the near-real-time data acquisition during irradiation allows for rapid quality assurance (QA) measurements that benefits from high spatial resolution. These features are not present in most current standard dosimeters such as thermoluminescent detectors and pencil ionization chambers. The dosimeter does exhibit energy dependence, and a sensitization during high dose rate procedures. As a result, a model has been proposed that provides a description of the possible mechanisms that govern the transfer of electrons and holes within KBr:Eu during OSL measurement at room temperature. Correction factors for these

  2. Growth and luminescent properties of Lu 2SiO 5 and Lu 2SiO 5:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Nikl, M.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Kucerkova, R.; Sidletskiy, O.; Grynyov, B.; Fedorov, A.

    2011-04-01

    Single crystalline films (SCF) of Lu 2SiO 5 (LSO) and Lu 2SiO 5:Ce (LSO:Ce) silicates with thickness of 2.5-15 μm were crystallized by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B 2O 3 flux. The scintillation and luminescence properties of LSO:Ce SCF were compared with the properties of LSO:Ce single crystal. The peculiarities of luminescence properties of LSO:Ce SCF in comparison with crystal analog can be due to different distribution of Ce 3+ over the Lu1 and Lu2 positions of LSO host and are further influenced by Pb 2+ flux-originated contamination.

  3. Utilizing Nanofabrication to Construct Strong, Luminescent Materials

    SciTech Connect

    Chen, Wei; Huang, Gang; Lu, Hong B.; McCready, David E.; Joly, Alan G.; Bovin, Jan-Olov

    2006-05-28

    Luminescent materials have been utilized widely in applications from lighting to sensing. The new development of technologies based on luminescence properties requires the materials to have high luminescence efficiency and mechanical strength. In this article, we report the fabrication of luminescent materials possessing high mechanical strength by nanofabrication with polyvinyl alcohol used as a stabilizer or coupling agent. X-ray diffraction and high resolution transmission microscope observations reveal that the nanocomposite sample contains ZnS and ZnO nanoparticles as well as kozoite and sodium nitrate. The mechanical strength and hardness of these nanocomposite materials are higher than polycarbonate and some carbon nanotube reinforced nanocomposites. Strong luminescence is observed in the new nanocomposites and the luminescence intensity does not degrade following up to 30 minutes of X-ray irradiation. Our results indicate that nanofabrication may provide a good method to improve the mechanical strength of luminescent materials for some applications in which high strength luminescent materials are needed.

  4. Understanding the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals

    SciTech Connect

    Adhikari, Rajesh; Choi, Jinhyuk; Narro-García, R.; De la Rosa, E.; Sekino, Tohru; Lee, Soo Wohn

    2014-08-15

    In this paper we report the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals synthesized via microwave assisted sol–gel processing route. Structural, morphological and upconversion luminescence properties were investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and Upconversion Photoluminescence spectra analysis. Results revealed that the oval shaped BaMoO{sub 4} nanocrystals ranging in size from 40 to 60 nm having tetragonal scheelite crystal structure were obtained by sol–gel route. The infrared to visible upconversion luminescence has been investigated in Er{sup 3+}/Yb{sup 3+} co-doped in BaMoO{sub 4}with different Yb{sup 3+} concentrations. Intense green upconversion emissions around 528, 550 nm, and red emission at 657 nm corresponding to the {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} transitions, respectively to the {sup 4}I{sub 15/2} ground state were observed when excited by CW laser radiation at 980 nm. The green emissions were greatly enhanced after the addition of sensitizer (Yb{sup 3+} ions). The effect of Yb{sup 3+} on the upconversion luminescence intensity was analyzed and explained in terms of the energy transfer process based. The reported work establishes the understanding of molybdates as an alternative host material for upconversion luminescence. - Graphical abstract: Infrared to visible upconversion luminescence of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. - Highlights: • Nanocrystals were synthesized by microwave assisted sol–gel processing route. • Strong green emissions were observed in Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. • Provides an insight on Upconversion luminescence properties of oxides host materials.

  5. Synthesis and luminescence properties of encapsulated sol-gel glass samarium complexes.

    PubMed

    Zaitoun, M A; Momani, K; Jaradat, Q; Qurashi, I M

    2013-11-01

    Luminescence efficiency of lanthanide complexes generally largely depend on the choice of the organic ligand and the host matrix in which these complexes are doped. Two Sm(III) complexes, namely: Sm(III) dithicarbamate - Sm(L1)3B [L1=(R)2NCS2B, R=C2H5 and B=1,10-phenanthroline] and Sm(III) complex with the polytonic ligand L2=N', N'(2)-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide {Sm2-L2-(CH3COO)2; L2=C16H16N6O2} are synthesized, these complexes are then trapped in sol-gel glass. Room temperature luminescence of Sm(L1)3B and {Sm2-L2-(CH3COO)2} complexes encapsulated in sol-gel glass are studied using a spectrofluorometer. Up on excitation by a UV light, ligand L1B absorbs this light and transfers it into the Sm(III) ions and emission bands were observed in the visible region and were attributed to f-f transitions of Sm(III). The observed emission indicated an efficient L1B ligand as a sensitizer, while ligand L2 shows no ability to work as a sensitizer. The branching ratio I4G5/2→6H9/2/I4G5/2→6H7/2) of electric dipole transition to magnetic dipole transition was used as an effective spectroscopic probe to predict symmetry of the site in which Sm(III) is located. The encapsulation of the Samaium complexes was performed for three reasons: (i) before rare earth (RE)-doped sol-gel glasses can be used in applications such as laser materials, several fluorescence quenching mechanisms must be overcome, we show in this work that lanthanide fluorescence is greatly enhanced by chelation and selecting a suitable host matrix (sol-gel) to accommodate the lanthanide complex, (ii) to improve the stability of the phosphor with efficient and high color-purity characteristics under ultraviolet excitation and (iii) this work provides a framework for preparing transparent composite glasses that are robust hosts to study the fundamental interactions between nano-materials and light.

  6. Platinum diimine bis(acetylide) complexes: Synthesis, characterization, and luminescence properties

    SciTech Connect

    Hissler, M.; Connick, W.B.; Geiger, D.K.; McGarrah, J.E.; Lipa, D.; Lachicotte, R.J.; Eisenberg, R.

    2000-02-07

    A new set of luminescent platinum(II) diimine complexes has been synthesized and characterized. The anionic ligands in these complexes are arylacetylides. The complexes are brightly emissive in fluid solution with relative emission quantum yields {phi}{sub em} ranging from 3 x 10{sup {minus}3} to 10{sup {minus}1}. Two series of complexes have been investigated. The first has the formula Pt(Rphen)(C{equivalent{underscore}to}CC{sub 6}H{sub 5}){sub 2} where Rphen is 1,10-phenanthroline substituted in the 5-position with R = H, Me, Cl, Br, NO{sub 2}, or C{equivalent{underscore}to}CC{sub 6}H{sub 5}, while the second has the formula Pt(dbbpy)(C{equivalent{underscore}to}CC{sub 6}H{sub 4}X){sub 2} where dbbpy = 4,4{prime}-di(tert-butyl)bipyridine and X = H, Me, F, or NO{sub 2}. From NMR, IR, and electronic spectroscopies, all of the complexes are assigned a square planar coordination geometry with cis-alkynyl ligands. The crystal structure of Pt(phen)(C{equivalent{underscore}to}CC{sub 6}H{sub 4}CH{sub 3}){sub 2} confirms this assignment. All of the complexes exhibit an absorption band at ca. 400 nm that corresponds to a Pt d {r{underscore}arrow} {pi}{asterisk}{sub diimine} charge-transfer transition. The variation of {lambda}{sub max} for this band with substituent variation supports this assignment. From similar changes in the energy of the solution luminescence as a function of substituents R and X, the emissive excited state is also of MLCT origin, but with spin-forbidden character on the basis of excited-state lifetime measurements (0.01--5.6 {mu}s). The complexes undergo electron-transfer quenching, showing good Stern-Volmer behavior using 10-methylphenothiazine and N,N,N{prime},N{prime}-tetramethylbenzidine as reductive quenchers. Excited-state reduction potentials are estimated on the basis of a simple thermochemical analysis. Crystal data for Pt(phen)(C{equivalent{underscore}to}CC{sub 6}H{sub 4}CH{sub 3}){sub 2}: monoclinic, space group C2/c, a = 19

  7. Synthesis and luminescence properties of encapsulated sol-gel glass samarium complexes

    NASA Astrophysics Data System (ADS)

    Zaitoun, M. A.; Momani, K.; Jaradat, Q.; Qurashi, I. M.

    2013-11-01

    Luminescence efficiency of lanthanide complexes generally largely depend on the choice of the organic ligand and the host matrix in which these complexes are doped. Two Sm(III) complexes, namely: Sm(III) dithicarbamate - Sm(L1)3B [L1 = (R)2NCS2B, R = C2H5 and B = 1,10-phenanthroline] and Sm(III) complex with the polytonic ligand L2 = N‧, N‧2-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide {Sm2-L2-(CH3COO)2; L2 = C16H16N6O2} are synthesized, these complexes are then trapped in sol-gel glass. Room temperature luminescence of Sm(L1)3B and {Sm2-L2-(CH3COO)2} complexes encapsulated in sol-gel glass are studied using a spectrofluorometer. Up on excitation by a UV light, ligand L1B absorbs this light and transfers it into the Sm(III) ions and emission bands were observed in the visible region and were attributed to f-f transitions of Sm(III). The observed emission indicated an efficient L1B ligand as a sensitizer, while ligand L2 shows no ability to work as a sensitizer. The branching ratio I4G5/2→6H9/2/I4G5/2→6H7/2) of electric dipole transition to magnetic dipole transition was used as an effective spectroscopic probe to predict symmetry of the site in which Sm(III) is located. The encapsulation of the Samaium complexes was performed for three reasons: (i) before rare earth (RE)-doped sol-gel glasses can be used in applications such as laser materials, several fluorescence quenching mechanisms must be overcome, we show in this work that lanthanide fluorescence is greatly enhanced by chelation and selecting a suitable host matrix (sol-gel) to accommodate the lanthanide complex, (ii) to improve the stability of the phosphor with efficient and high color-purity characteristics under ultraviolet excitation and (iii) this work provides a framework for preparing transparent composite glasses that are robust hosts to study the fundamental interactions between nano-materials and light.

  8. Thermally Stimulated Luminescence of hbox {Y}2{Si}{O}5{:} {Ce}^{3+} Commercial Phosphor Powder and Thin Films

    NASA Astrophysics Data System (ADS)

    Debelo, N. G.; Dejene, F. B.; Roro, Kittessa

    2016-07-01

    We report on the thermoluminescence (TL) properties of hbox {Y}2{Si}{O}5{:} {Ce}^{3+} phosphor powder and thin films. For the phosphor powder, the TL intensity increases with an increase in UV dose for up to 20 min and then decreases. The TL intensity peak shifts slightly to higher-temperature region at relatively high heating rates, but with reduced peak intensity. Important TL kinetic parameters, such as the activation energy ( E) and the frequency factor ( s), were calculated from the glow curves using a variable heating rate method, and it was found that the glow peaks obey first-order kinetics. For the films, broad TL emissions over a wide temperature range with reduced intensity relative to that of the powder were observed. The maxima of the TL glow peaks of the films deposited in oxygen ambient and vacuum shift toward higher temperature relative to the TL peak position of the film deposited in an argon environment. Vacuum environment resulted in the formation of a deep trap relative to oxygen and argon environments. Furthermore, the structure of hbox {Y}2{Si}{O}5{:} {Ce}^{3+} phosphor powder transformed from {x}2-monoclinic polycrystalline phase to {x}1-monoclinic polycrystalline phase, for deposition at low substrate temperature.

  9. Optical characterization, luminescence properties of Er3+ and Er3+/Yb3+ co-doped tellurite glasses for broadband amplification

    NASA Astrophysics Data System (ADS)

    Meruva, Seshadri; Carlos, Barbosa Luiz; Alberto Peres, Ferencz Junior Julio

    2014-03-01

    In the present paper, optical absorption and emission spectra and luminescence decay lifetimes of different concentrations, 0.1, 0.3, 0.5, 0.7 and 1.0 mol% of Er3+ and 0.1Er3+/0.5Yb3+ co-doped tellurite glasses (TeO2-Bi2O3-ZnONb2O5) were reported. Judd-Ofelt intensity parameters were determined and used to calculate spontaneous radiative transition probabilities (Arad), radiative lifetimes (τR), branching ratios (β) and stimulated emission cross-sections (σP) for certain emission transitions. NIR emission at 1.5μm and up-conversion spectra of Er3+ and Er3+/Yb3+ co-doped tellurite glasses were measured under excitation wavelength of 980 nm. The absorption, emission and gain cross-sections for 4I13/2→4I15/2 transition of Er3+ are determined. The peak emission cross-section of this transition is found to be higher (9.95×10-21 cm2) for 0.1 mol% of Er3+ and lower (6.81×10-21 cm2) for 1.0 mol% of Er3+ doped tellurite glasses, which is comparable to other oxide glasses. The larger peak emission cross-section for lower concentration of Er3+ is due to the high refractive index of glass matrix (2.1547), relation established from Judd-Ofelt theory. The observed full-widths at half maxima (FWHM) for lower and higher concentrations of Er3+ are 64nm and 96 nm respectively. The larger values of FWHM and peak emission cross-sections are potentially useful for optical amplification processes in the design of Erbium doped fiber amplifiers (EDFs). Under 980 nm excitation three strong up-conversion bands were observed at 530nm, 546nm and 665nm. The pump power dependent intensities and mechanisms involved in the up-conversion process have been studied. The luminescence decay profiles for 4I13/2 level were reported for all glass matrices.

  10. Template synthesis and luminescence properties of TiO{sub 2}:Eu{sup 3+} nanotubes

    SciTech Connect

    Zhao, Huan; Zheng, Keyan; Sheng, Ye; Li, Hongbo; Zhang, Hongguang; Qi, Xiaofei; Shi, Zhan; Zou, Haifeng

    2014-02-15

    Uniform TiO{sub 2}:Eu{sup 3+} nanotubes have been successfully synthesized through a simple solvothermal process with carbon nanotubes (CNTs) as templates, free of any surfactant or catalyst. X-ray diffraction (XRD) results demonstrate that the product is a pure anatase phase of TiO{sub 2}. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images indicate that the as-obtained TiO{sub 2}:Eu{sup 3+} nanotubes are uniform in size and distribution, and the thickness of the wall is about 8 nm. The possible formation mechanism has also been proposed. The luminescent spectrum shows that TiO{sub 2}:Eu{sup 3+} nanotubes exhibit a red emission at 612 nm due to the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. Furthermore, this synthetic route is promising for the preparation of other one-dimensional inorganic nanomaterials because of its simplicity and the low cost of the starting reagents. - Graphical abstract: This picture is the illustration for the formation process of TiO{sub 2}:Eu{sup 3+} nanotubes. Display Omitted - Highlights: • TiO{sub 2}:Eu{sup 3+} nanotubes have been prepared through a simple solvothermal process. • The TiO{sub 2}:Eu{sup 3+} nanotubes are uniform in size and distribution. • Under UV light excitation, the TiO{sub 2}:Eu{sup 3+} nanotubes show strong red emission.

  11. Preparation, characterization and luminescence properties of BiPO4 :Eu nanophosphors.

    PubMed

    Zhou, Xiaochun; Wang, Xiaojun

    2013-01-01

    A facile chemical method was employed to prepare fine BiPO4 :Eu(3+) phosphor particles calcined at the same temperature. Introducing lithium greatly affected the morphology of the samples and further affected the luminescence intensity. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. The XRD patterns of BiPO4 :Eu(3+) indicated a monoclinic phase. From the fluorescence spectra, the emission transition (5) D0  → (7) F1 is more prominent than the normal red emission transition (5) D0  → (7) F2 . Based on the intensity ratios of (5) D0  → (7) F2 to (5) D0  → (7) F1 in the emission spectra, it can be concluded that introducing Li(+) can improve the symmetry of the crystal lattice and modify the emission intensity. Sharp lines at 395 nm are the strongest of the f-f transitions and match well with near-UV LED chips.

  12. Nonstoichiometry and luminescent properties of ZnSe crystals grown from the melt at high pressures

    NASA Astrophysics Data System (ADS)

    Khanh, Tran; Mozhevitina, Elena; Khomyakov, Andrew; Avetisov, Roman; Davydov, Albert; Chegnov, Vladimir; Antonov, Vladimir; Kobeleva, Svetlana; Zhavoronkov, Nikolai; Avetissov, Igor

    2017-01-01

    50 mm diameter ZnSe crystals have been grown from the melt by a vertical Bridgman technique at 100 atm argon pressure in a graphite crucible. 3D impurities concentration and nonstoichiometry mappings of the grown crystals have been defined by ICP-MS and a direct physic-chemical method, correspondingly. Photoluminescence mapping of the analyzed crystal has been done. It was found out that along the crystal height the nonstoichiometry changed from Se excess over stoichiometrical composition in the cone (bottom) part to Zn excess in the tail (upper) part passing through the stoichiometrical composition in the cylindrical part of the crystal. Metal impurities concentrated in the upper part of the crystal. The gas-forming impurities (H, C, O, N, F) had stochastic distribution but Cl impurity concentrated in the crystal peripheral part (near the crucible walls). It was found out that the as-grown crystal had a single wide PL peal with maximum of 583 nm. A proposal about complex structure luminescent center based on Cl dopant an overstoichiometric Se has been made.

  13. Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Jang, H. S.; Won, Y.-H.; Jeon, D. Y.

    2009-06-01

    White light-emitting diodes (WLEDs) were fabricated by combining InGaN-based blue light-emitting diodes (LEDs) with highly luminescent Tb3Al5O12:Ce3+ (TAG:Ce), Y3Al5O12:Ce3+ (YAG:Ce), and Sr3SiO5:Eu2+ (SS:Eu). The TAG:Ce-based WLED showed a color rendering index ( R a ) of 79 and a luminous efficiency ( η L ) of 34.1 lm/W at 20 mA. The YAG:Ce-based WLED and the SS:Eu-based WLED showed low R a values of 75 and 57 but high luminous efficiency values of 38.9 and 41.3 lm/W at 20 mA, respectively. When a mixture of YAG:Ce and SS:Eu was coated on a blue LED and the resultant WLED operated at 20 mA, the WLED showed a highly bright white light similar to daylight ( η L =40.9 lm/W, color temperature T c =5,716 K, and R a =76). Moreover, the WLED showed stable color coordinates against a considerable variation of applied current.

  14. Synthesis and luminescent properties of novel BaGd2O4:Eu3+ scintillating phosphor.

    PubMed

    Sun, Xin-Yuan; Wang, Wen-Feng; Sun, Shou-Qiang; Lin, Liang-Wu; Li, De-Yi; Zhou, Ling-Ping

    2013-01-01

    BaGd2-x O4:xEu(3+) and Ba1-y Gd1.79-2y Eu0.21 Na3y O4 phosphors were synthesized at 1300°C in air by conventional solid-state reaction method. Phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and thermoluminescence (TL) spectra. Optimal PL intensity for BaGd2-x O4 :xEu(3+) and Ba1-y Gd1.79-2y Eu0.21 Na3y O4 phosphors at 276 nm excitation were found to be x = 0.24 and y = 0.125, respectively. The PL intensity of Eu(3+) emission could only be enhanced by 1.3 times with incorporation of Na(+) into the BaGd2 O4 host. Enhanced luminescence was attributed to the flux effect of Na(+) ions. However, when BaGd2 O4:Eu(3+) phosphors were codoped with Na(+) ions, the induced defects confirmed by TL spectra impaired the emission intensity of Eu(3+) ions.

  15. Structure and luminescence properties of eu3+-doped cubic mesoporous silica thin films.

    PubMed

    Lu, Qingshan; Wang, Zhongying; Wang, Peiyu; Li, Jiangong

    2010-02-11

    Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.

  16. Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence.

    PubMed

    Bosson, Johann; Labrador, Geraldine M; Pascal, Simon; Miannay, François-Alexandre; Yushchenko, Oleksandr; Li, Haidong; Bouffier, Laurent; Sojic, Neso; Tovar, Roberto C; Muller, Gilles; Jacquemin, Denis; Laurent, Adèle D; Le Guennic, Boris; Vauthey, Eric; Lacour, Jérôme

    2016-12-19

    The physicochemical properties of cationic dioxa (1), azaoxa (2), and diaza (3) [6]helicenes demonstrate a much higher chemical stability of the diaza adduct 3 (pKR+ =20.4, Ered1/2 =-0.72 V) compared to its azaoxa 2 (pKR+ =15.2, Ered1/2 =-0.45 V) and dioxa 1 (pKR+ =8.8, Ered1/2 =-0.12 V) analogues. The fluorescence of these cationic chromophores is established, and ranges from the orange to the far-red regions. From 1 to 3, a bathochromic shift of the lowest energy transitions (up to 614 nm in acetonitrile) and an enhancement of the fluorescence quantum yields and lifetimes (up to 31 % and 9.8 ns, respectively, at 658 nm) are observed. The triplet quantum yields and circularly polarized luminescence are also reported. Finally, fine tuning of the optical properties of the diaza [6]helicene core is achieved through selective and orthogonal post-functionalization reactions (12 examples, compounds 4-15). The electronic absorption is modulated from the orange to the far-red spectral range (560-731 nm), and fluorescence is observed from 591 to 755 nm with enhanced quantum efficiency up to 70 % (619 nm). The influence of the peripheral auxochrome substituents is rationalized by first-principles calculations.

  17. A series of novel lanthanide carboxyphosphonates with a 3D framework structure: synthesis, structure, and luminescent and magnetic properties.

    PubMed

    Chen, Kai; Dong, Da-Peng; Sun, Zhen-Gang; Jiao, Cheng-Qi; Li, Chao; Wang, Cheng-Lin; Zhu, Yan-Yu; Zhao, Yan; Zhu, Jiang; Sun, Shou-Hui; Zheng, Ming-Jing; Tian, Hui; Chu, Wei

    2012-08-28

    By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(III) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.

  18. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1–42 Species into Nontoxic Amyloid Fibers with Altered Properties*

    PubMed Central

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Kågedal, Katarina

    2016-01-01

    Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  19. Effect of potassium iodide on luminescent and photovoltaic properties of organic solar cells P3HT-PCBM

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh; Afanasyev, D. A.; Zhapabaev, K. A.

    2016-02-01

    It has been investigated spectral-luminescence properties of polymer films, doped with potassium iodide (KI). Using of KI didn't lead to the gradual changes of optical density of polymer films and the range of band gap semiconductor polymer P3HT. The fluorescence intensity of P3HT decreased and changed by use of KI. Using of 1% KI in polymer leaded to decrease of fluorescence lifetime. Influence of heavy atom on photovoltaic effect of organic solar cells has been investigated. 1% of KI in polymer film leaded to decrease of Isc and slightly decrease of Uoc. Investigation shows that magnetic field does not affect on photovoltaic properties of cells P3HT-PCBM. Magnetic field increased of open circuit voltage and short circuit current of solar cells with 1% of KI. Study of electrical impedance of cells revealed the magnetic sensivity of solar cells with KI additives. The lifetime of free charge carriers increased in the magnetic field for solar cells with KI additives.

  20. Effect of silver nanoparticles on luminescent and generation properties of rhodamine 6G in aqueous alcohol solutions

    NASA Astrophysics Data System (ADS)

    Zeinidenov, A. K.; Ibrayev, N. Kh.; Gladkova, V. K.

    2016-12-01

    The plasmon effect that silver nanoparticles have on the luminiscent and generation properties of rhodamine 6G molecules in aqueous alcohol solutions is studied. It is found that the intensities of absorption and emission increase when silver nanoparticles are added to aqueous solutions of rhodamine 6G. It is shown that upon the laser photoexcitation of aqueous solutions of rhodamine 6G dye, spontaneous fluorescence occurs that is converted into stimulated laser emission as the pump power grows. It is found that an increase in intensity and a drop in the generation threshold of stimulated emission are observed when silver nanoparticles are added to a solution of rhodamine 6G. It is shown that the dependence of absorbance, the intensity of fluorescence, and the dye's generation of stimulated emission on the concentration of silver nanoparticles in solution falls as the proportion of alcohol grows.

  1. Lanthanide coordination polymers based on 5-(2'-carboxylphenyl) nicotinate: syntheses, structure diversity, dehydration/hydration, luminescence and magnetic properties.

    PubMed

    Gu, Jin-Zhong; Wu, Jiang; Lv, Dong-Yu; Tang, Yu; Zhu, Kongyang; Wu, Jincai

    2013-04-14

    Twelve lanthanide coordination polymers associated with the organic ligand 5-(2′-carboxylphenyl) nicotinic acid (H2cpna): {[Ln(Hcpna)(cpna)(phen)]·H2O}n (Ln = Sm (1), Tb (2), Ho (3), phen = 1,10-phenanthroline), {[Sm(Hcpna)(cpna)(phen)]·2H2O}n (4), {[Ln2(cpna)3(H2O)3]·4H2O}n (Ln = Y (5), Tb(6), Dy (7), Ho (8)), [Lu2(cpna)3(H2O)2]n (9), {[Y2(cpna)3(phen)2(H2O)]·H2O}n (10), and [Ln(cpna)(phen)(NO3)]n (Ln = Tm (11), Lu (12)) have been prepared by hydrothermal methods and structurally characterized. The structure analyses reveal that complexes 1–3 are isostructural and possess unique three-dimensional (3D) frameworks based on the dodecanuclear Sm/Tb/Ho macrocycles. Complex 4 exhibits a one-dimensional (1D) wheel-chain structure, which further builds three-dimensional (3D) supramolecular architecture via O–HN hydrogen-bonding interactions. Complexes 5–8 are also isostructural and display three-dimensional (3D) open frameworks, which possess two types of channels along the a- and b-axis, respectively. Complexes 9 and 10 feature three-dimensional (3D) frameworks and are created from tetranuclear and dinuclear units, respectively. Complexes 11 and 12 are isostructural and demonstrate one-dimensional (1D) double chain structures, which further build three-dimensional (3D) supramolecular architecture via C–H···O hydrogen-bonding. The results show that the pH value of the reaction system, anion, auxiliary ligand and lanthanide contraction play a significant role in determining the structures of the complexes. In addition, the results of luminescent measurements for compounds 2 and 6 in the solid state at room temperature indicate that the different types of structures have a dissimilar influence on their characteristic luminescence. The magnetic properties of compounds 1, 3, 4, 7 and 11 have been investigated. Furthermore, thermal stabilities for 1–12 and the dehydration/hydration properties of compound 6 have also been studied.

  2. Luminescence quartz dating of lime mortars. A first research approach.

    PubMed

    Zacharias, N; Mauz, B; Michael, C T

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.

  3. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    SciTech Connect

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing Wang Tiegang

    2008-08-15

    A series of lanthanide coordination polymers, (Him){sub n}[Ln(ip){sub 2}(H{sub 2}O)]{sub n} [Ln=La(1), Pr(2), Nd(3) and Dy(4), H{sub 2}ip=isophthalic acid, im=imidazole] and [Y{sub 2}(ip){sub 3}(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him){sub n}[Ln(ip){sub 2}(H{sub 2}O)]{sub n} [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y{sub 2}(ip){sub 3}(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted.

  4. Spectroscopic properties of Dy(3+) doped ZnO for white luminescence applications.

    PubMed

    Amira, Guesmi; Chaker, Bouzidi; Habib, Elhouichet

    2017-04-15

    Undoped and Dy(3+) (0.25, 0.5, 0.8 and 1.5at.%) doped ZnO were elaborated by solid-state reaction method. The ZnO:Dy(3+) samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL). The XRD analysis confirms the wurtzite structure of ZnO. A slight shift to lower angles, of the (101) peak, is seen with Dy(3+) content, indicating the substitution of these ions into the ZnO lattice. Raman study indicates the good crystallinity of all ZnO:Dy(3+) samples and confirms the substitution of Zn(2+) by Dy(3+). The band gap energy was found to increase then decrease with Dy content. The PL excitation spectra (PLE) of Dy(3+) showed six excitation bands with hypersensitive at 346nm ((6)H15/2→(6)P7/2). PL spectra show principally three emission bands relatives to (4)F9/2→(6)H15/2 (476nm), (4)F9/2→(6)H13/2 (567nm) and (4)F9/2→(6)H11/2 (658nm) transitions. The concentration dependency of PL intensity indicates a quenching for Dy(3+) concentration above 0.5at.%. The PL lifetime of (4)F9/2 metastable state was measured and discussed for all Dy content in ZnO. The temperature dependency of PL intensity is investigated for ZnO:Dy (0.5%) sample and the activation energy is determined. The CIE chromaticity color coordinate shows that ZnO:Dy(3+) can be useful for white luminescence applications.

  5. Spectroscopic properties of Dy3 + doped ZnO for white luminescence applications

    NASA Astrophysics Data System (ADS)

    Amira, Guesmi; Chaker, Bouzidi; Habib, Elhouichet

    2017-04-01

    Undoped and Dy3 + (0.25, 0.5, 0.8 and 1.5 at.%) doped ZnO were elaborated by solid-state reaction method. The ZnO:Dy3 + samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL). The XRD analysis confirms the wurtzite structure of ZnO. A slight shift to lower angles, of the (101) peak, is seen with Dy3 + content, indicating the substitution of these ions into the ZnO lattice. Raman study indicates the good crystallinity of all ZnO:Dy3 + samples and confirms the substitution of Zn2 + by Dy3 +. The band gap energy was found to increase then decrease with Dy content. The PL excitation spectra (PLE) of Dy3 + showed six excitation bands with hypersensitive at 346 nm (6H15/2 → 6P7/2). PL spectra show principally three emission bands relatives to 4F9/2 → 6H15/2 (476 nm), 4F9/2 → 6H13/2 (567 nm) and 4F9/2 → 6H11/2 (658 nm) transitions. The concentration dependency of PL intensity indicates a quenching for Dy3 + concentration above 0.5 at.%. The PL lifetime of 4F9/2 metastable state was measured and discussed for all Dy content in ZnO. The temperature dependency of PL intensity is investigated for ZnO:Dy (0.5%) sample and the activation energy is determined. The CIE chromaticity color coordinate shows that ZnO:Dy3 + can be useful for white luminescence applications.

  6. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC

  7. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index

    SciTech Connect

    Vrieze, Thomas J.; Sturchio, Glenn M.; McCollough, Cynthia H.

    2012-11-15

    Purpose: To determine the precision and accuracy of CTDI{sub 100} measurements made using commercially available optically stimulated luminescent (OSL) dosimeters (Landaur, Inc.) as beam width, tube potential, and attenuating material were varied. Methods: One hundred forty OSL dosimeters were individually exposed to a single axial CT scan, either in air, a 16-cm (head), or 32-cm (body) CTDI phantom at both center and peripheral positions. Scans were performed using nominal total beam widths of 3.6, 6, 19.2, and 28.8 mm at 120 kV and 28.8 mm at 80 kV. Five measurements were made for each of 28 parameter combinations. Measurements were made under the same conditions using a 100-mm long CTDI ion chamber. Exposed OSL dosimeters were returned to the manufacturer, who reported dose to air (in mGy) as a function of distance along the probe, integrated dose, and CTDI{sub 100}. Results: The mean precision averaged over 28 datasets containing five measurements each was 1.4%{+-} 0.6%, range = 0.6%-2.7% for OSL and 0.08%{+-} 0.06%, range = 0.02%-0.3% for ion chamber. The root mean square (RMS) percent differences between OSL and ion chamber CTDI{sub 100} values were 13.8%, 6.4%, and 8.7% for in-air, head, and body measurements, respectively, with an overall RMS percent difference of 10.1%. OSL underestimated CTDI{sub 100} relative to the ion chamber 21/28 times (75%). After manual correction of the 80 kV measurements, the RMS percent differences between OSL and ion chamber measurements were 9.9% and 10.0% for 80 and 120 kV, respectively. Conclusions: Measurements of CTDI{sub 100} with commercially available CT OSL dosimeters had a percent standard deviation of 1.4%. After energy-dependent correction factors were applied, the RMS percent difference in the measured CTDI{sub 100} values was about 10%, with a tendency of OSL to underestimate CTDI relative to the ion chamber. Unlike ion chamber methods, however, OSL dosimeters allow measurement of the radiation dose profile.

  8. SU-D-304-06: Measurement of LET in Patient-Specific Proton Therapy Treatment Fields Using Optically Stimulated Luminescence Detectors

    SciTech Connect

    Granville, DA; Sahoo, N; Sawakuchi, GO

    2015-06-15

    Purpose: To investigate the use of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of dose-averaged linear energy transfer (LET) in patient-specific proton therapy treatment fields. Methods: We used Al{sub 2}O{sub 3}:C OSLDs made from the same material as commercially available nanoDot OSLDs from Landauer, Inc. We calibrated two parameters of the OSL signal as functions of LET in therapeutic proton beams: the ratio of the ultraviolet and blue emission intensities (UV/blue ratio) and the OSL curve shape. These calibration curves were created by irradiating OSLDs in passively scattered beams of known LET (0.96 to 3.91 keV/µm). The LET values were determined using a validated Monte Carlo model of the beamline. We then irradiated new OSLDs with the prescription dose (16 to 74 cGy absorbed dose to water) at the center of the spread-out Bragg peak (SOBP) of four patient-specific treatment fields. From readouts of these OSLDs, we determined both the UV/blue ratio and OSL curve shape parameters. Combining these parameters with the calibration curves, we were able to measure LET using the OSLDs. The measurements were compared to the theoretical LET values obtained from Monte Carlo simulations of the patient-specific treatments fields. Results: Using the UV/blue ratio parameter, we were able to measure LET within 3.8%, 6.2%, 5.6% and 8.6% of the Monte Carlo value for each of the patient fields. Similarly, using the OSL curve shape parameter, LET measurements agreed within 0.5%, 11.0%, 2.5% and 7.6% for each of the four fields. Conclusion: We have demonstrated a method to verify LET in patient-specific proton therapy treatment fields using OSLDs. The possibility of enhancing biological effectiveness of proton therapy treatment plans by including LET in the optimization has been previously shown. The LET verification method we have demonstrated will be useful in the quality assurance of such LET optimized treatment plans. DA Granville received

  9. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    SciTech Connect

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.; Followill, David; Alvarez, Paola; Lawyer, Ann

    2013-11-15

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance

  10. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters.

    PubMed

    Chan, Maria F; Song, Yulin; Dauer, Lawrence T; Li, Jingdong; Huang, David; Burman, Chandra

    2012-01-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar™ DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium (∼2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by ± 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., ∼d(max) of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  11. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    SciTech Connect

    Chan, Maria F.; Song, Yulin; Dauer, Lawrence T.; Li Jingdong; Huang, David; Burman, Chandra

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  12. Study of optical and luminescent properties of nanocrystals NaYF4:Tm3+, Yb3+ in the UV range in the application of integrated optics

    NASA Astrophysics Data System (ADS)

    Asharchuk, I. M.; Molchanova, S. I.; Rocheva, V. V.; Baranov, M. S.; Sarycheva, M. E.; Khaydukov, K. V.

    2016-12-01

    Studied the photoluminescence properties of synthesized nanocrystals doped with rare-earth ions NaYF4:Tm3+, Yb3+, measured luminescence spectra and absorption in the visible and near infrared regions of 300-1000 nm. Were measured the energy of phonons these nanocrystals, the average phonon energy was 332cm-1. Made optical waveguide impregnated with nanoparticles NaYF4: Yb3+, Tm3+ as the prospect of a compact source of radiation in the visible and UV range.

  13. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties.

    PubMed

    Mazuryk, Olga; Magiera, Katarzyna; Rys, Barbara; Suzenet, Franck; Kieda, Claudine; Brindell, Małgorzata

    2014-12-01

    Here, we examine the photophysical properties of five ruthenium(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and functionalized bipyridine (R₁bpy-R₂, where R₁= H or CH3, R₂= H, CH₃, COO⁻,4-[3-(2-nitro-1H-imidazol-1-yl)propyl] or 1,3-dicyclohexyl-1-carbonyl-urea) towards development of luminescence probes for cellular imaging. These complexes have been shown to interact with albumin and the formed adducts exhibited up to eightfold increase in the luminescence quantum yield as well as the average lifetime of emission. It was demonstrated that they cannot bind to DNA through the intercalation mode and its luminescence in the presence of DNA is quenching. Cell viability experiments indicated that all complexes possess significant dose-dependent cytotoxicity (with IC₅₀ 5-19 μM) on 4T1 breast cancer cell line and their anti-proliferative activity correlates very well with their lipophilicity. Cellular uptake was studied by measuring the ruthenium content in cells using ICP-MS technique. As expected, the better uptake is directly related to higher lipophilicity of doubly charged ruthenium complexes while uptake of monocationic one is much lower in spite of the highest lipophilicity. Additionally staining properties were assessed using flow cytometry and fluorescence microscopy. These experiments showed that complex with 1,3-dicyclohexyl-1-carbonyl-urea substituent exhibits the best staining properties in spite of the lowest luminescence quantum yield in buffered solution (pH 7.4). Our results point out that both the imaging and cytotoxic properties of the studied ruthenium complexes are strongly influence by the level of internalization and protein interaction.

  14. Luminescence properties of Eu-activated alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}

    SciTech Connect

    Wang, Jing; Huang, Yanlin; Wang, Xigang; Qin, Lin; Seo, Hyo Jin

    2014-07-01

    Highlights: • A novel yellow-emitting alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was first developed. • Under excitation with UV or near UV light the silicate presents broad emission band centered at 580 nm. - Abstract: Yellow-emitting phosphors of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was prepared by wet chemistry sol–gel method. X-ray powder diffraction and SEM measurements were applied to characterize the structure and morphology, respectively. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve (lifetimes), CIE coordinates and the internal quantum efficiencies. The excitation spectra can match well with the emission light of near UV-LED chips (360–400 nm). Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} presents a symmetric emission band from 4f{sup 6}5d{sup 1} ⟶ 4f{sup 7}({sup 8}S{sub 7/2}) transitions of Eu{sup 2+} ions on doping below 3.0 mol%. On increasing Eu-doping levels, the sample contains two kinds of emission centers, i.e., Eu{sup 2+} and Eu{sup 3+} ions, which present the characteristic broad band (5d ⟶ 4f) and narrower (4f ⟶ 4f) luminescence lines, respectively. The energy transfer, the luminescence thermal stability (activation energy ΔE for thermal quenching) and luminescence mechanism of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} phosphors were discussed by analyzing the relationship between the luminescence characteristics and the crystal structure.

  15. Growth and luminescent properties of Lu2SiO5 and Lu2SiO5:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu; Nikl, M.; Gorbenko, V.; Mares, J. A.; Savchyn, V.; Voznyak, T.; Solsky, I.; Grynyov, B.; Sidletskiy, O.; Kurtsev, D.; Beitlerova, A.; Kucerkova, R.

    2010-11-01

    Single crystalline films (SCF) of Lu2SiO5 (LSO) and Lu2SiO5:Ce (LSO:Ce) silicates with thickness of 2.5-21 μm were crystallised by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B2O3 flux. The luminescence and scintillation properties of LSO and LSO:Ce SCFs were compared with the properties of a reference LSO:Ce and LYSO:Ce crystals. The light yield (LY) of LSO and LSO:Ce SCF reaches up 30 % and 145 %, respectively, of that of a reference LSO:Ce crystal under excitation by α-particles of 241Am source (5.5 MeV). We found that the luminescence spectrum of LSO:Ce SCF is red-shifted with respect to the spectrum of a reference LSO:Ce crystal. Differences in luminescence properties of LSO:Ce SCF and single crystal are explained by the different distribution of Ce3+ over the Lu1 and Lu2 positions of LSO host and are also due to Pb2+ contamination in the former.

  16. Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system

    SciTech Connect

    Taoufyq, A.; Guinneton, F.; Valmalette, J-C.; Arab, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; and others

    2014-11-15

    In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanning electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0luminescence intensity for the composition x=0.8. - Highlights: • Solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} are elaborated from coprecipitation technique. • The structures of two types of solid solutions are refined using Rietveld method. • A maximum of luminescence is obtained for an intermediate composition x=0.8.

  17. Facile Template-Free Fabrication of the hollow sea cucumber-like TbF{sub 3} and luminescent properties

    SciTech Connect

    Gao, Yu; Shi, Shan; Fang, Qinghong; Yang, Feng; Xu, Zhenhe

    2014-12-15

    Graphical abstract: Hollow sea cucumber-like TbF{sub 3} has been prepared via a facile hydrothermal route. The possible growth mechanism and the luminescent properties of the as-prepared sample have been discussed. - Highlights: • TbF3 particles were prepared by a facile hydrothermal route. • TbF3 product show strong green emission. • This method may be more widely applicable in the design of other rare-earth compounds. - Abstract: Hollow sea cucumber-like TbF{sub 3} was successfully fabricated by a self-assembled hydrothermal method. The crystal structure, morphology and photoluminescence properties of the as-prepared TbF{sub 3} crystals were investigated. The results revealed that the as-prepared TbF{sub 3} sample has orthorhombic structure and composed of monodispersed 3D hollow sea cucumber-like particles. The possible formation mechanism for sea cucumber-like TbF{sub 3} is presented in detail. Additionally, the as-prepared sample possesses property of down-conversion photoluminescence. The excitation spectrum of TbF{sub 3} sample was obtained by monitoring the emission of Tb{sup 3+} at 545 nm was composed of the characteristics f–f transition lines within the Tb{sup 3+} 4f{sup 8} configuration. Under the UV light irradiation, the emission spectrum exhibited four obvious lines centered at 491, 545, 588, and 620 nm, which was corresponding to the {sup 5}D{sub 4} → {sup 7}F{sub J} (J = 6, 5, 4, 3) transitions of the Tb{sup 3+} ions in the TbF{sub 3} nanoparticles.

  18. X-ray photoelectron spectroscopy and luminescent properties of Y2O3:Bi3+ phosphor

    NASA Astrophysics Data System (ADS)

    Jafer, R. M.; Coetsee, E.; Yousif, A.; Kroon, R. E.; Ntwaeaborwa, O. M.; Swart, H. C.

    2015-03-01

    X-ray photoelectron spectroscopy (XPS) results provided proof for the blue and green emission of Bi3+ in the Y2O3:Bi3+ phosphor. The Y2O3:Bi3+ phosphor was successfully prepared by the combustion process during the investigation of down-conversion materials for Si solar cell application. The X-ray diffraction (XRD) patterns indicated that a single-phase cubic crystal structure with the Ia3 space group was formed. X-ray photoelectron spectroscopy (XPS) showed that the Bi3+ ion replaces the Y3+ ion in two different coordination sites in the Y2O3 crystal structure. The O 1s peak shows five peaks, two which correlate with the O2- ion in Y2O3 in the two different sites, two which correlate with O2- in Bi2O3 in the two different sites and the remaining peak relates to hydroxide. The Y 3d spectrum shows two peaks for the Y3+ ion in the Y2O3 structure in two different sites and the Bi 4f spectrum shows the Bi3+ ion in the two different sites in Bi2O3. The photoluminescence (PL) results showed three broad emission bands in the blue and green regions under ultraviolet excitation, which were also present for panchromatic cathodoluminescence (CL) results. These three peaks have maxima at ∼3.4, 3.0 and 2.5 eV. The PL emission ∼3.0 eV (blue emission) showed two excitation bands centered at ∼3.7 and 3.4 eV while the PL emission at ∼2.5 eV (green emission) showed a broad excitation band from ∼4 to 3.4 eV. The panchromatic CL images were obtained for selected wavelengths at (2.99 ± 0.08) eV (for blue emission) and (2.34 ± 0.06) eV (for green emission). These luminescence results correlate with the XPS results that show that there are two different Bi3+ sites in the host lattice.

  19. Synthesis, crystal structures, luminescence and catalytic properties of two d10 metal coordination polymers constructed from mixed ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-01

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph = homophthalic acid, H3btc = 1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively.

  20. Self-assembly of large-scale aggregates of porphyrin from its dimers and their absorption and luminescence properties

    NASA Astrophysics Data System (ADS)

    Udal'tsov, A. V.; Kazarin, L. A.; Sweshnikov, A. A.

    2001-05-01

    Properties of aggregates of protonated meso-tetraphenylporphine (TPP) dimers have been investigated by absorption and luminescence spectroscopies and scanning electron microscopy. It was found that the absorption and fluorescence spectra obtained at a low and several times higher concentration of porphyrin differ considerably. The changes in absorption spectra of TPP in the water-THF-glycerol (84:6:10, v/v) mixture in the presence of 0.4 N HCl with time and the appearance of a green precipitate after several days indicate aggregation of the porphyrin. The near IR emission at 1000 nm, which is assigned to the fluorescence of donor-acceptor water-porphyrin dimeric complex, is revealed in the fluorescence spectra of TPP in aqueous solution of THF in the presence of 0.4 N HCl at the low concentration of porphyrin on excitation at 465 nm. In contrast, the near IR emission is not observed in the solution with several times higher concentration of porphyrin, but a shoulder at ca 800 nm is appreciable in the corresponding spectrum. The large-scale aggregates of TPP with sizes approximately from 1 μm to several micrometers are found in thin films of the protonated porphyrin. It is proposed that the aggregates are formed as a result of self-assembly from different protonated porphyrin dimers and have an ordered structure.

  1. Synthesis and Luminescent Properties of Eu(3+) Doped CaGd4O7 Phosphors by Solvothermal Reaction Method.

    PubMed

    Seo, Yeon Woo; Noh, Hyeon Mi; Moon, Byung Kee; Jeong, Jung Hyun; Yang, Hyun Kyoung; Kim, Jung Hwan

    2015-10-01

    Eu(3+) doped CaGd4O7 phosphors have been newly synthesized using a solvothermal reaction method and sintered at 1400 °C. The phase, composition, morphologies, and photoluminescent properties of the phosphors have been well characterized by means of the X-ray diffraction (XRD) patterns, energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectroscopy, and decay curves, respectively. The XRD patterns of the as-prepared phosphors confirm their monoclinic structure and the FE-SEM images reveal flower-like morphology, formed through agglomeration. The calculated size of the crystallites was approximately 83 nm. The photoluminescence excitation (PLE) spectra of CaGd4O7:Eu(3+) phosphors consist of a broad band due to the charge transfer (CT) electronic transition, and several sharp peaks that can be attributed to the f-f transitions of Eu(3+) and Gd(3+). The PL spectra exhibited a stronger red emission corresponding to the (5)D0 --> (7)F2 transition. The CIE chromaticity coordinates of the phosphors were calculated and all the chromaticity coordinates have been placed in the red spectral region. These luminescent powders are expected to have potential applications for white light-emitting diodes (WLEDs) and optical display systems.

  2. Non-woven and aligned electrospun multicomponent luminescent polymer nanofibers: effects of aggregated morphology on the photophysical properties.

    PubMed

    Wang, Cheng-Ting; Kuo, Chi-Ching; Chen, Hsieh-Chih; Chen, Wen-Chang

    2009-09-16

    In this paper, the morphology and photophysical properties of non-woven and aligned ES nanofibers prepared from the ternary blends of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) / poly(2,3-dibutoxy-1,4-phenylene vinylene) (DB-PPV) / poly(methyl methacrylate) (PMMA) using a single-capillary spinneret are reported. Various PFO and DB-PPV phase-separated structures in the ES nanofibers were found by two different solvents: ellipsoidal DB-PPV (10-40 nm) and fiber-like PFO (20-40 nm) in the PMMA using chloroform, while fiber-like DB-PPV (10-20 nm) and fiber-like PFO (20-30 nm) using chlorobenzene. Such different PFO and DB-PPV structures resulted in various energy transfer/emission colors in the ES nanofibers. Moreover, highly aligned luminescence PFO/DB-PPV/PMMA blend ES nanofibers prepared from chlorobenzene showed a much higher polarized emission than the non-woven and the emission colors changed from blue to greenish-blue to green as the DB-PPV composition increased. The different polarized emission characteristics between PFO and DB-PPV in the ES nanofibers also led to varied emission colors at different angles. The present study suggests the morphologies and emission characteristics of the multicomponent ES nanofibers could be efficiently tuned through solvent types and blend ratios of semiconducting polymers.

  3. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    SciTech Connect

    Qin Junsheng; Du Dongying; Chen Lei; Sun Xiuyun; Lan Yaqian; Su Zhongmin

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studied in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.

  4. Preparation, crystal structures and luminescent properties of terbium and europium complexes with a new amino-alkenone type ligand.

    PubMed

    Xu, Jun; Ma, Yu-Fei; Liu, Wei-Sheng; Tang, Yu; Tan, Min-Yu

    2011-01-01

    Solid complexes of terbium and europium nitrates with an amino-alkenone type ligand, 1-[2-(6-methylpyridin-2-ylamino)-5,6-dihydro-4H-pyran-3-yl]ethanone (L) have been prepared and characterized by elemental analysis, conductivity measurements, and IR spectra. The crystal and molecular structures of the complexes [TbL(2)(NO(3))(3)(H(2)O)]·CHCl(3) (1) and [EuL(2)(NO(3))(3)(H(2)O)]·CH(3)CO(2)C(2)H(5) (2) have been determined by single crystal X-ray diffraction. And the coordination spheres of the complexes are similar. At the same time, the luminescent properties of the Tb(3+) complex in solid state and in solvents were investigated at room temperature. Under the excitation of UV light, Tb(III) complex exhibited characteristic emissions but not for the Eu(III) complex. The lowest triplet state energy level of the ligand in the complex matches better to the resonance level of Tb(III) than Eu(III) ion.

  5. Effect of size and composition fluctuations on the luminescent properties of ensemble of InGaAs nano-objects

    NASA Astrophysics Data System (ADS)

    Yakovliev, Artem; Holubenko, Roman

    2015-09-01

    The luminescent properties of InGaAs/GaAs heterostructures with InGaAs nanoscale objects were investigated. Multilayer heterostructures were grown using molecular beam epitaxy technique. The shapes of the photoluminescence spectra were studied in the temperature range from 10 K to 290 K. The electronic spectrum of heterosystems as well as the energy of interband transitions for InGaAs nano-objects were calculated for different sizes and InGaAs component composition. It is shown that the shape of the photoluminescence spectra is determined by the Gaussian distribution of the energy of band-to-band optical transitions between the ground states of the conduction band and valence band of nanoscale objects. The physical reason for the observed energy dispertion is the variation of sizes, heterogeneity of component composition and strain relief in the ensemble of InGaAs nano-objects. Non-monotonous temperature dependence of the width of the photoluminescence spectra indicates the existence of temperature-dependent redistribution of photoexcited charge carriers between neighbouring nanoislands having different energy of the ground states.

  6. Luminescence and energy transfer properties of Sr3Y(PO4)3:Ce3+, Mn2+ phosphors

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Hu, Yihua; Chen, Li; Wang, Zhonghua; Zhang, Shaoan

    2016-03-01

    A series of highly efficient Sr3-yY1-x(PO4)3:xCe3+,yMn2+(SYP:xCe3+, Mn2+) phosphors have been prepared via a solid state reaction. The XRD (X-ray diffraction) data, PL (photoluminescence) and PLE (photoluminescence excitation) properties and ET (energy transfer) mechanism of obtained phosphors were discussed. When prepared in air, the self-reducing process of turning Ce4+ into Ce3+ can be found in SYP:xCe3+ phosphor. A bright red light emission was presented in the Ce3+ and Mn2+ co-doping samples via the efficient ET from the sensitizer Ce3+ to Mn2+, which is ascribed to electric multipolar interaction between these two kinds of ions. The critical concentration of Ce3+ in SrY1-x(PO4)3:xCe3+ and Mn2+ in Sr3-yY1-x(PO4)3:xCe3+, yMn2+ are x=0.07 and y=0.15, respectively. In addition, the ET efficiency reach 51.6% when the luminescence intensity of Ce3+ is half of that in the absence of Mn2+ and the concentration of Mn2+ is 0.15. The emission color of the phosphors were also clarify by CIE coordinate briefly.

  7. Luminescence properties of a novel red-emitting phosphor LaBMO6: Pr3+ (M = W, Mo)

    NASA Astrophysics Data System (ADS)

    Xiong, F. B.; Lin, H. F.; Ma, Z.; Wang, Y. P.; Lin, H. Y.; Meng, X. G.; Shen, H. X.; Zhu, W. Z.

    2017-04-01

    A novel blue InGaN-chip-based red-emitting phosphor Pr3+: LaBMO6 (M = W, Mo) in pure phase were synthesized via conventional solid-state reaction in air and the photoluminescence properties of the phosphor were investigated for the application in white LEDs. The as-synthesized phosphors were characterized by the X-ray diffraction; diffuse reflection spectra, photoluminescence excitation and emission spectra, the Commission International de L'Eclairage (CIE) chromaticity coordinates and temperature-dependent emission spectra. Orangish red emission band around 575-625 nm was observed in Pr3+-doped LaBMO6 (M = W, Mo) upon 445 nm excitation. Fluorescence concentration quenching in Pr3+-doped LaBMoO6 were observed and the critical distance between Pr3+ ions for energy transfer was calculated to be 8.369 nm. The CIE chromaticity coordinates of Pr3+-doped LaBMoO6 were located in the red spectral region and the temperature-dependent luminescence spectra indicated that Pr3+-doped LaBMoO6 show good thermal stability. All results demonstrated the developed Pr3+-doped LaBMO6 (M = W, Mo) was a novel red phosphor.

  8. Tailoring luminescence properties of a sol–gel drivenTiO2 nanoparticles by ammonia treatment

    NASA Astrophysics Data System (ADS)

    Tsega, Moges; Dejene, F. B.

    2017-03-01

    Titanium dioxide (TiO2) nanopowders were prepared by the sol–gel process vie gelation at different pH values (6.8‑12.5) in ammonia solution calcined at 500 °C for 2 h. The x-ray diffraction patterns showed that all samples exhibited a tetragonal anatase TiO2 phase. The crystallite sizes increases from 10 to 14 nm and band gap energy ranges from 3.2 and 3.3 eV as the solution pH is increased from 6.8 to 12.5. The lattice constants increased with increasing the synthesized pH value, which implies also a decrease of the micro-strain. The highest blue emission peak centered at around 416 nm was observed for the pH 12.5 compared with low pH values in the photoluminescence spectra of the synthesized TiO2 powders. Experimental results showed that TiO2 nanoparticles synthesized at pH 12.5 exhibited the optimal structural and luminescence properties.

  9. Luminescence properties of Eu3+-doped Na3Gd(PO4)2 red-emitting nanophosphors for LEDs

    NASA Astrophysics Data System (ADS)

    Chengaiah, T.; Jamalaiah, B. C.; Rama Moorthy, L.

    2014-12-01

    Eu3+-doped Na3Gd(PO4)2 phosphors were synthesized by the modified citrate gel combustion technique. From the XRD pattern, structure of the compound was found to be orthorhombic with a particle size of 10-20 nm. The emission spectra revealed that the Na3Gd(PO4)2:Eu3+ phosphors can be excited effectively by 394 nm pump wavelength. From the concentration dependent photoluminescence studies, the optimum concentration for efficient luminescence of Eu3+ ions in Na3Gd(PO4)2 phosphor has been found to be 1.5 mol%. Decay curves of the 5D0 level of Eu3+ ions were recorded by monitoring the emission at 596 nm corresponding to 5D0 → 7F1 transition and are found to be single exponential for all the concentrations. The chromaticity properties for different concentrations of Na3Gd(PO4)2:Eu3+ nanophosphors were calculated from emission spectra and analyzed in the frame work of CIE color diagram.

  10. Structural and luminescence properties of heavily doped radio-frequency-sputtered ZnTe:Cu thin films

    SciTech Connect

    El Akkad, Fikry Mathai, Maneesh

    2015-09-07

    We report on the structural and luminescence properties of ZnTe:Cu films containing Cu concentrations up to 12 at. % and prepared using rf magnetron sputtering. The lattice parameters of the various crystalline phases prevailing at different Cu concentrations (cubic, hexagonal, and orthorhombic) are calculated and compared with literature results on films prepared using other techniques. Study of the steady state photoluminescence and excitation spectra revealed the presence of three donor impurities involved in the well-known band at ∼1.70 eV (peak L) attributed to self-activated transition. One of these donors is merging partially with the conduction band and the two others have mutually overlapping density of states with maxima at 0.29 eV and 0.45 eV below the conduction band edge. Another donor that is resonant with the conduction continuum is responsible for a higher energy emission band (peak H). The density of states of this donor has a maximum at 0.57 eV above the conduction band edge for a copper concentration of 8.2 at. %. The emission peak H undergoes a blue shift and its intensity increases sharply relative to the intensity of the L peak with the increase of Cu concentration. Moreover, the H emission extends to photon energies higher than the band gap. A possible interpretation of the behaviour of the peak H in terms of recombination involving the resonant states is suggested.

  11. Synthesis of Mg{sub 2}SiO{sub 4}:Dy{sup 3+} nanoparticles by hydrothermal method and investigation of their thermo and photo luminescence properties

    SciTech Connect

    Ghahari, M.; Mostafavi, K.

    2016-05-15

    Highlights: • Mg{sub 2}SiO{sub 4}:Dy{sup 3+} nanoparticles have been prepared by hydrothermal and combustion methods. • Thermo and photo luminescent behavior of Mg{sub 2}SiO{sub 4}:Dy{sup 3+} was studied. • The effect of synthesis method on TL properties of Mg{sub 2}SiO{sub 4}:Dy{sup 3+} was investigated. • The optimal dopant concentration for thermo-luminescent property was obtained. - Abstract: In this study, photo and thermo-luminescent properties of Nano crystalline Mg{sub 2}SiO{sub 4}:Dy{sup 3+} prepared by a hydrothermal method were studied and compared to those of nanoparticles prepared by combustion method. The synthesized sample was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence spectroscopy. The effect of Dy concentration on photo and thermoluminescent intensities was studied. The X-ray diffraction (XRD) patterns of the samples revealed that forsterite was formed as a major phase for all the samples. The crystallite size was found to be in the range of 20–50 nm. The thermo luminescent glow curve indicated that the hydrothermal sample was more efficient than the combustion sample. Two prominent TL bands located at 200 nm and 320 nm were recorded. The prepared nanoparticles exhibited a roughly linear dose response to absorbed dose of 1000 Gy received from 60Co gamma source, suggesting that nanomaterial could be a good candidate for high dose dosimetry.

  12. Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3:Yb/Er nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Yadav, Ranvijay; Rai, S. B.

    2016-07-01

    LaF3:Yb/Er (core), LaF3:Yb/Er@LaF3 (core/shell) and LaF3:Yb/Er@LaF3@SiO2 (core/shell/SiO2) nanoparticles were synthesized using citric-acid-based complexation process. X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, optical absorption, band-gap energy ( E g), Fourier transform infrared and upconversion emission spectroscopy were employed to investigate the structural, morphological and optical properties of the synthesized core and core/shell/SiO2 nanoparticles. These core/shell/SiO2 nanoparticles can be well dispersed in aqueous solvents to form clear colloidal solution. The optical band-gap energy was decreased after shell formation due to increase in the crystalline size. The growth of an inactive and porous silica layers simultaneously on the surface of luminescent core-nanoparticles resulting an increase in average crystalline size of the nanoparticles. As-prepared inert shell-coated core/shell nanoparticles show intensive upconversion-luminescence as compared to the seed-core and silica-surface-modified core/shell/SiO2 nanoparticles because luminescent ions (Yb3+ and Er3+) ions located at the particle surface were protected from the non-radiative decay arising from surface dangling bonds and capping agent. However, our study revealed that there was only a slight reduction in upconversion efficiency for the silica-modified core/shell nanoparticles, indicating that upconversion properties of the upconversion nanoparticles are largely preserved in the core/shell/SiO2 nanoparticles. Absorption and upconversion-luminescence properties were examined for future application in the development of optical devices as well as optical bioprobes.

  13. Synthesis, characterization and luminescent properties ofSr1-xPbxWO4 solid solution (x=0, 0.5 and 1)

    NASA Astrophysics Data System (ADS)

    Hallaoui, A.; Taoufyq, A.; Bakiz, B.; Guinneton, F.; Valmalette, J.-C.; Villain, S.; Arab, M.; Benlhachemi, A.; Bazzi, L.; Gavarri, J.-R.

    2017-03-01

    In this work, a study of the role of chemical substitution in the properties of the solid solution Sr1-xPbxWO4 (x = 0, 0.5 and 1) is presented. Polycrystalline samples were synthesized by solid state reaction at 1100°C. Using Rietveld method, the structural parameters of all samples were refined. All structures are of scheelite type Scanning electron microscopy showed that a high level of crystallization characterized the samples, with modifications in sizes and shapes depending on composition x. The Infrared and Raman spectroscopies were performed to characterize the evolution of vibrational modes with composition x. Finally, a systematic study of luminescence under X-ray and UV excitations was performed. The energies and intensities of luminescence depended on composition x and on the nature of excitations.

  14. Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film

    NASA Astrophysics Data System (ADS)

    He, Jiangling; He, Youling; Zhuang, Jianle; Zhang, Haoran; Lei, Bingfu; Liu, Yingliang

    2016-12-01

    In this work, blue-light-emitting carbon dots (CDs) were composited with red-light-emitting europium ions (Eu3+) solutions under the synergistic reaction of polyvinyl alcohol (PVA) to prepare the light conversion film. The formation mechanism of Eu3+/CDs/PVA film was detailedly discussed. It is the first report that this composite was synthesized through direct recombination of CDs and Eu3+ solutions instead of traditional methods based on Eu3+ coordination compound. Furthermore, tunable photoluminescence property can be successfully achieved by controlling the ratio of CDs to doped Eu3+, this property can meet the variable light component requirements for different species of plants.

  15. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue).

    PubMed

    Accorsi, Gianluca; Verri, Giovanni; Bolognesi, Margherita; Armaroli, Nicola; Clementi, Catia; Miliani, Costanza; Romani, Aldo

    2009-06-21

    Cuprorivaite (CaCuSi(4)O(10), also known as Egyptian blue) exhibits an exceptionally high emission quantum efficiency in the near-infrared region (lambda(max) = 910 nm, Phi(EM) = 10.5%) and a long excited state lifetime (107 mus); these properties make it appealing for several applications in the fields of biomedical analysis, telecommunications and lasers.

  16. Luminescence, Plasmonic and Magnetic Properties of Doped Semiconductor Nanocrystals: Current Developments and Future Prospects.

    PubMed

    Pradhan, Narayan; Adhikari, Samrat Das; Nag, Angshuman; Sarma, D D

    2017-02-02

    Introducing few atoms of impurities or dopants in semiconductor nanocrystals can drastically alter the existing or even introduce new properties. For example, mid-gap states created by doping tremendously affect photocatalytic activities and surface controlled redox reactions, generate new emission centres, show thermometric optical switching, make suitable FRET donors by enhancing the excited state lifetime and also create localized surface plasmon resonance induced low energy absorption. In addition, researchers have more recently started focusing their attention on doped nanocrystals as an important and alternative material for solar energy conversion in order to meet the current demand for renewable energy. Moreover, electrical as well as magnetic properties of the host are also strongly altered on doping. These dopant-induced beneficial changes in material properties suggest that doped nanocrystals with proper selections of dopant-host pairs may be helpful for generating designer materials for a wide range of current technological needs. Such exciting properties related to various aspects of doping a variety of semiconductor nanocrystals are summarized and reported in this mini review.

  17. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    SciTech Connect

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying

    2013-06-15

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight{sup TM} MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during

  18. Functional properties of flagellin as a stimulator of innate immunity

    PubMed Central

    Lu, Yuan; Swartz, James R.

    2016-01-01

    We report the development of a well-defined flagellin-based nanoparticle stimulator and also provide a new mechanism of action model explaining how flagellin-triggered innate immunity has evolved to favor localized rather than potentially debilitating systemic immune stimulation. Cell-free protein synthesis (CFPS) was used to facilitate mutational analysis and precisely orientated display of flagellin on Hepatitis B core (HBc) protein virus-like particles (VLPs). The need for product stability and an understanding of mechanism of action motivated investigations indicating that the D0 domain of flagellin is sensitive to amino acid sequence independent hydrolysis – apparently due to the need for structural flexibility during natural flagellin polymerization. When D0-stabilized flagellin was attached to HBc VLPs with the D0 domain facing outward, flagellin’s tendency to polymerize caused the VLPs to precipitate. However, attaching the D0 domain to the VLP surface produced a stable nanoparticle adjuvant. Surprisingly, attaching only 2 flagellins per VLP provided the same 1 pM potency as did VLPs with about 33 attached flagellins suggesting that the TLR5 receptor is highly effective in delivering its intracellular signal. These observations suggest that flagellin’s protease sensitivity, tendency to aggregate, and very high affinity for TLR5 receptors limit its systemic distribution to favor localized immune stimulation. PMID:26755208

  19. Polythiophenes based on pyrene as pendant group: Synthesis, structural characterization and luminescent properties

    NASA Astrophysics Data System (ADS)

    González-Juárez, E.; Güizado-Rodríguez, M.; Barba, V.; Melgoza-Ramírez, M.; Rodríguez, M.; Ramos-Ortíz, G.; Maldonado, J. L.

    2016-01-01

    Novel polythiophenes (PTs) derived from 3-alkylthiophenes (R = hexyl, octyl) and a thiophene functionalized with pyrene chromophore were synthesized. A homopolymer and copolymers were obtained by using different stoichiometric ratios, and their photophysical properties were investigated. Physicochemically characterized by FT-IR, 1H NMR, UV-vis, DSC-TGA and GPC as well as fluorescence spectroscopy, the new PTs reached moderate molecular weight distributions, exhibited good thermal properties and were easily processable for depositing films of satisfactory optical quality with third-order nonlinear optical susceptibilities of approximately 10-12 esu. The new PTs showed absorption and emission bands ranging from 346 to 430 nm, and from 450 to 570 nm, respectively, with quantum yields between 0.07 and 0.25. In addition, nanoparticles were obtained from the PTs by using the mini-emulsion technique. Their spectroscopic characteristics and morphology were determined by means of UV-vis spectroscopy and SEM analysis.

  20. UV-visible luminescence properties of the broad-band Yb:CALGO laser crystal

    NASA Astrophysics Data System (ADS)

    Jaffres, A.; Sharma, S. K.; Loiseau, P.; Viana, B.; Doualan, J. L.; Moncorgé, R.

    2015-03-01

    Yb:CALGO is now recognized to exhibit outstanding properties for the production of high-power and ultra-short laser pulses in the near infrared spectral range. However, various UV-visible absorption bands can be also observed due to different types of charge transfer mechanisms. Some of them are assigned to the formation of color centers due to small polarons and others to O2-→Yb3+ ligand-to-metal charge transfer (LMCT) transitions. The former can be removed by using adequate thermal treatments. The latter are intrinsic and they are very intense with cross sections of about two orders of magnitude larger that the near infrared ones. In fact, such LMCT absorption bands are responsible for relatively large changes of ionic polarizabilities and to non-negligible pseudo-nonlinear changes of refractive indices which should certainly affect the laser properties of Yb:CALGO at high pump power levels.

  1. Absorption, luminescent and lasing properties of laser dyes in silica gel matrices and thin gel films

    SciTech Connect

    Shaposhnikov, A A; Kuznetsova, Rimma T; Kopylova, T N; Maier, G V; Tel'minov, E N; Pavich, T A; Arabei, S M

    2004-08-31

    The absorption and emission properties of eight organic compounds in silica gel matrices of different chemical compositions and different types (bulk samples and thin films) are studied upon excitation by a XeCl laser and the second harmonic of a Nd:YAG laser. The mechanisms of the laser-induced changes in the spectral parameters of molecules in silica gel matrices are discussed and the photostability of the laser dyes in silica gel films is estimated. (active media)

  2. Synthesis, structure and physical properties of luminescent Pr(III) β-diketonate complexes

    NASA Astrophysics Data System (ADS)

    Pereira, V. M.; Costa, A. L.; Feldl, J.; Maria, T. M. R.; Seixas de Melo, J. S.; Martín-Ramos, P.; Martín-Gil, J.; Ramos Silva, M.

    2017-02-01

    Near infrared lanthanide(III)-based light conversion molecular devices (LCMDs) are emerging as a promising class of materials for organic light-emitting diodes (OLEDs) in some niche technologies. Three of these molecular materials -two highly coordinated Pr3+β-diketonate monomers and a dimer- are presented and their structure and properties are discussed. Particular emphasis is placed on the solid-to-solid transformation observed for the homodinuclear compound.

  3. Local transport properties investigation by correlating hyperspectral and confocal luminescence images

    NASA Astrophysics Data System (ADS)

    El-Hajje, G.; Ory, D.; Guillemoles, J.-F.; Lombez, L.

    2016-03-01

    In the present study, we develop a contactless optical characterization tool that quantifies and maps the trapping defects density within a thin film photovoltaic device. This is achieved by probing time-resolved photoluminescence and numerically reconstructing the experimental decays under several excitation conditions. The values of defects density in different Cu(In,Ga)Se2 solar cells were extracted and linked to photovoltaic performances such as the open-circuit voltage. In the second part of the work, the authors established a micrometric map of the trapping defects density. This revealed areas within the thin film CIGS solar cell with low photovoltaic performance and high trapping defects density. This proves that the developed tool can be used to qualify and quantify the buffer layer/absorber interface properties. The final part of the work was dedicated to finding the origin of the spatial fluctuations of the thin film transport properties. To do so, we started by establishing a micrometric map of the absolute quasi-Fermi levels splitting within the same CIGS solar cell, using the hyperspectral imager. A correlation is obtained between the map of quasi-Fermi levels splitting of and the map of the trapping defects density. The latter is found to be the origin of the frequently observed spatial fluctuations of thin film materials properties.

  4. Luminescent properties of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} and its luminescence improvement by incorporating A{sup +} (A=Li, Na, and K)

    SciTech Connect

    Li, Panlai Wang, Zhijun Yang, Zhiping; Guo, Qinglin

    2014-12-15

    A novel green phosphor SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} is synthesized by a high temperature solid-state method, and its luminescent property is investigated. X-ray diffraction patterns of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} indicate a similarity crystalline phase to SrZn{sub 2}(PO{sub 4}){sub 2}. SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} shows green emission under 369 nm excitation, and the prominent luminescence in green (544 nm) due to {sup 5}D{sub 4}–{sup 7}F{sub 5} transition of Tb{sup 3+}. For the 544 nm emission, excitation spectrum has several excitation band from 200 nm to 400 nm. Emission intensity of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} is influenced by Tb{sup 3+} concentration, and concentration quenching effect of Tb{sup 3+} in SrZn{sub 2}(PO{sub 4}){sub 2} is also observed. With incorporating A{sup +} (A=Li, Na, and K) as compensator charge, the emission intensity of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can be obviously enhanced. CIE color coordinates of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} locate in the green region. The results indicate this phosphor may be a potential application in white LEDs. - Graphical abstract: SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can produce green emission under near-UV excitation, and its luminescent properties can be improved by incorporating A{sup +} (A=Li, Na, and K). - Highlights: • SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can produce green emission under near-UV excitation. • Concentration quenching effect of Tb{sup 3+} in SrZn{sub 2}(PO{sub 4}){sub 2} is observed. • Emission intensities of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} are enhanced by codoped A{sup +} (A=Li, Na, K)

  5. Chiroptical properties of an optically pure dicopper(I) trefoil knot and its enantioselectivity in luminescence quenching reactions

    PubMed

    Meskers; Dekkers; Rapenne; Sauvage

    2000-06-16

    Chiroptical spectroscopy is used to investigate the properties of an optically pure dinuclear copper(I) trefoil knot. For the metal-to-ligand charge tranfer (MLCT) transition in the visible region (520 nm), the electric and magnetic transition dipole moments are determined from absorption and circular dichroism spectra: 2.8 Debye and 0.5 Bohr magneton (muB). Circular polarization in the luminescence (CPL) of the knot is determined and this allows the electric and magnetic transition dipole moments in emission to be calculated: 0.02 Debye and 0.003 muB. The large difference between the moments in absorption and emission shows that the emission observed does not originate directly from the 1MLCT state. Given the low probability for radiative decay we assign the long-lived emitting excited state to a 3MLCT state. The copper(I) trefoil knot is found to quench the emission from TbIII and EuIII(dpa)3(3)-(dpa = pyridine-2,6-dicarboxylate) with a bimolecular rate constant of 3.2 and 3.3 x 10(7)M(-1)S(-1), respectively, at room temperature in water-acetonitrile (1:1 by volume). Experimental results indicate that the (lambda)-knot preferentially quenches the lambda enantiomer of the lanthanide complex with an enantioselectivity (ratio of quenching rate constants for lambda and lambda: kqlambda/kqdelta) of 1.012+/-0.002 for EuIII and 1.0180+/-0.003 for TbIII.

  6. Improved properties of phosphor-filled luminescent down-shifting layers: reduced scattering, optical model, and optimization for PV application

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Krč, Janez; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.

    2015-12-01

    We studied the optical properties of polymer layers filled with phosphor particles in two aspects. First, we used two different polymer binders with refractive indices n = 1.46 and n = 1.61 (λ = 600 nm) to decrease Δn with the phosphor particles (n = 1.81). Second, we prepared two particle size distributions D50 = 12 μm and D50 = 19 μm. The particles were dispersed in both polymer binders in several volume concentrations and coated onto glass with thicknesses of 150 - 600 μm. We present further a newly developed optical model for simulation and optimization of such luminescent down-shifting (LDS) layers. The model is developed within the ray tracing framework of the existing optical simulator CROWM (Combined Ray Optics / Wave Optics Model), which enables simulation of standalone LDS layers as well as complete solar cells (including thick and thin layers) enhanced by the LDS layers for an improved solar spectrum harvesting. Experimental results and numerical simulations show that the layers of the higher refractive index binder with larger particles result in the highest optical transmittance in the visible light spectrum. Finally we proved that scattering of the phosphor particles in the LDS layers may increase the overall light harvesting in the solar cell. We used numerical simulations to determine optimal layer composition for application in realistic thin-film photovoltaic devices. Surprisingly LDS layers with lower measured optical transmittance are more efficient when applied onto the solar cells due to graded refractive index and efficient light scattering. Therefore, our phosphor-filled LDS layers could possibly complement other light-coupling techniques in photovoltaics.

  7. Influence of pitch on the morphology and luminescence properties of self-catalyzed GaAsSb nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Dingding; Huh, Junghwan; Dheeraj, Dasa L.; Weman, Helge; Fimland, Bjørn-Ove

    2016-12-01

    We report on the influence of hole pattern pitch lengths in the silicon oxide mask and specific nanowire (NW) locations on the morphology and luminescence properties of self-catalyzed GaAsSb NW arrays grown by molecular beam epitaxy. Due to stronger competition for the limited amount of Ga adatoms, the GaAsSb NWs in the center of arrays with short pitch lengths possess a smaller catalyst droplet contact angle than that of the NWs at the array edge. This smaller contact angle leads to a reduction in the collection of group V flux, bringing about shorter NWs in the center. For pitch lengths beyond the diffusion length of Ga adatoms on the mask, the GaAsSb NWs are taller with larger contact angles than in the case with short pitch lengths. Considering that Sb has a longer diffusion length on the side facets of the NWs than that of As, a reduction/increase of the contact angle will bring about an increase/reduction in the Sb/As ratio of the group-V fluxes collected by the catalyst droplets. By performing micro-photoluminescence (μ-PL) measurements on the GaAsSb NW arrays at the center of the array for different pitch lengths, a red shift of the μ-PL spectra was found with a decrease in pitch length. Our findings demonstrate that the Ga diffusion-induced contact angle difference is the main cause for the variations in NW morphology and composition with different pitch lengths and NW locations in the array, which provides guidance to optimize the design of NW array devices for advanced optoelectronic applications.

  8. Synthesis, crystal structures, magnetic and luminescent properties of unique 1D p-ferrocenylbenzoate-bridged lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Zhang, F. M.; Li, G. M.; Zhang, J. W.; Sun, W. B.; Suda, M.; Einaga, Y.

    2009-07-01

    Treatments of p-ferrocenylbenzoate [ p-NaOOCH 4C 6Fc, Fc=( η5-C 5H 5)Fe( η5-C 5H 4)] with Ln(NO 3) 3· nH 2O afford seven p-ferrocenylbenzoate lanthanide complexes {[ Ln(OOCH 4C 6Fc) 2( μ2-OOCH 4C 6Fc) 2(H 2O) 2](H 3O)} n [ Ln=Ce ( 1), Pr ( 2), Sm ( 3), Eu ( 4), Gd ( 5), Tb ( 6) and Dy ( 7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {[Ce(OOCH 4C 6Fc) 2( μ2-OOCH 4C 6Fc) 2(H 2O) 2](H 3O)} n ( 1) and {[Pr(OOCH 4C 6Fc) 2( μ2-OOCH 4C 6Fc) 2(H 2O) 2](H 3O)} n ( 2) form a unique 1D double-bridged infinite chain structure bridged by μ2-OOCH 4C 6Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC 6H 4COO - units, two terminal monodentate coordinated H 2O molecules and four μ2- -OOCH 4C 6Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5.

  9. Submicrometer-sized hierarchical hollow spheres of heavy lanthanide orthovanadates: sacrificial template synthesis, formation mechanism, and luminescent properties.

    PubMed

    Yang, Xiaoyan; Xu, Lin; Zhai, Zheng; Cheng, Fangfang; Yan, Zhenzhen; Feng, Xiaomiao; Zhu, Junjie; Hou, Wenhua

    2013-12-23

    Hollow spheres of heavy lanthanide orthovanadates (LnVO4, Ln = Tb, Dy, Er, Tm, Yb, Lu) and yolk-shell structures of Ho(OH)CO3@HoVO4 have been successfully prepared by employing Ln(OH)CO3 colloidal spheres as a sacrificial template and NH4VO3 as a vanadium source. In particular, the as-obtained LuVO4 hollow spheres are assembled from numerous hollow-structured elliptic nanoparticles, and their textural parameters such as the inner and outer diameters, shell thicknesses, and number of shells could be finely tuned through introducing different amounts of NH4VO3 and employing Lu(OH)CO3 templates with different sizes. The possible mechanisms for the formation of hollow spheres and yolk-shell structures, and also the hollow-structured elliptic nanoparticles of LuVO4, i.e., building blocks of LuVO4 hollow spheres, are proposed and discussed in detail. Under ultraviolet excitation, the obtained LuVO4:Eu(3+) hollow spheres show strong red emissions located in the saturated color region, and the modulation of emission intensity and color purity could be realized by tuning the textural parameters of the obtained hollow spheres. It was found that the nanostructure of the building blocks of LuVO4:Eu(3+) hollow spheres also had an effect on the luminescent properties of the as-obtained materials. Moreover, the quantum efficiency could be affected by the textural parameters of the as-obtained LuVO4:Eu(3+) hollow spheres, and the double-shelled LuVO4:Eu(3+) hollow sphere has the highest quantum efficiency. In addition, the excellent biocompatibility indicates the potential biological applications of LuVO4 hollow spheres.

  10. A series of 3D metal organic frameworks based on [24-MC-6] metallacrown clusters: structure, magnetic and luminescence properties.

    PubMed

    Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei

    2014-09-14

    Four isostructural metal organic frameworks (MOFs), namely [Co6(HipO)6]·6H2O (1), [Mn6(HipO)6]·6H2O (2), [Cd6(HipO)6]·6H2O (3) and [Zn6(HipO)6]·7H2O (4) (H3ipO = 2-hydroxyisophthalic acid), were synthesized and structurally characterized. They have a 3D (4,6)-connected framework based on [24-MC-6] metallacrown clusters ([24-MC-6]-based MOFs). The arrangements of the 24-MC-6 metallacrown SBUs show a regular change indicated by the orientation of their symmetry axes, resulting in a special dense packing mode different from other [24-MC-6]-based MOFs. The analysis of SQUID measurements reveal that compound 1 displays the dominant antiferromagnetic exchanges in 300-10 K between the adjacent Co(II) ions and a ferromagnetic-like behavior at lower temperatures, whereas compound 2 shows an antiferromagnetic interaction between the adjacent Mn(II) ions. Compound 1 exhibits a magnetocaloric effect (MCE) with the resulting entropy change (-ΔS(m)) of 15.20 J kg(-1) K(-1) for ΔH = 50 kG at 6 K, which is the highest value among the cobalt-based MOFs with MCE reported so far. The luminescence properties of compounds 3 and 4 were studied, both of them exhibit photoluminescence in the solid state at room temperature which can be ascribed to intraligand π→π* transitions.

  11. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    SciTech Connect

    Feng, Xun; Liu, Lang; Wang, Li-Ya; Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong; Ng, Seik-Weng

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  12. Structures, luminescent and magnetic properties of six lanthanide-organic frameworks: observation of slow magnetic relaxation behavior in the DyIII compound.

    PubMed

    Hou, Yin-Ling; Xiong, Gang; Shen, Bo; Zhao, Bin; Chen, Zhi; Cui, Jian-Zhong

    2013-03-14

    Six novel three-dimensional (3D) lanthanide metal-organic frameworks (LnMOFs), {[Ln(2)(ispc)(3)(H(2)O)(3)]·mH(2)O}(n) (Ln = Pr (1, m = 5); Eu (2, m = 5); Gd (3, m = 4); Tb (4, m = 5); Dy (5, m = 5) and Ho (6, m = 4)), ispc = 3-(4-carboxyphenylsulfonyloxy)-4-methoxybenzoic anion) have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction revealed they are isostructural and crystallize in the triclinic crystal system, space group P1[combining macron]. The investigations on luminescent properties and lifetimes of 2 (Eu(III)), 4 (Tb(III)), and 5 (Dy(III)) exhibit characteristic emissions of Eu(III), Tb(III) and Dy(III) ions and the corresponding luminescent lifetimes are 0.14 ms, 9.93 μs and 1.25 ms, respectively. The different luminescent intensities and lifetimes among them were further discussed. Furthermore, magnetic studies of 1-6 reveal that 3-6 exhibit ferromagnetic coupling, and 5 (Dy(III)) exhibits remarkably slow magnetic relaxation behavior with the energy barrier ΔE/k(B) = 49.2 K.

  13. Luminescence properties of phosphate phosphor Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+}

    SciTech Connect

    Yang, Fu; Liu, Yufeng; Tian, Xiaodong; Dong, Guoyi; Yu, Quanmao

    2015-05-15

    A series of reddish orange-emitting phosphate phosphors Ba{sub 3}Y{sub 1−x}(PO{sub 4}){sub 3}:xSm{sup 3+}(0.01≤x≤0.20) were synthesized by solid-state reaction. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of as-synthesized phosphors. The optimized phosphors Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} present several excitation bands from 300 to 500 nm, and exhibit intense reddish orange-emitting properties. The energy transfer type between Sm{sup 3+} ions was confirmed as d–d interaction by using Van Uitert model. The chromatic properties of the typical sample Ba{sub 3}Y(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor have been found to have chromaticity coordinates of (0.583, 0.405), which are located in reddish orange region under the excitation of 401 nm. These results indicated that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors have potential applications in the field of lighting and display due to their effective excitation in the near-ultraviolet range. - Graphical abstract: The color coordinates for 5 mol% Sm{sup 3+} doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphor were calculated to be (0.583, 0.405), which are located in reddish orange region under the excitation of 401 nm. The peaks of Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor with the highest emission intensity at 600 nm are broader than those of Y{sub 2}O{sub 3}:Eu{sup 3+} and Y{sub 2}O{sub 2}S:Eu{sup 3+} phosphors. All these characteristics suggest that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors are suitable for near-UV (370–410 nm) excitation and can be applicable to near UV-based WLEDs. ▪ - Highlights: • Different concentration Sm{sup 3+}-doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphors were fabricated by solid state method. • The optimized phosphors present the several excitation bands from 300 to 500 nm. • The Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} shows bright reddish orange

  14. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  15. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.

    PubMed

    Sham, Tsun-Kong; Rosenberg, Richard A

    2007-12-21

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  16. Radiation Induced Enhancement of Hydrogen Influence on Luminescent Properties of nc-Si/SiO2 Structures

    NASA Astrophysics Data System (ADS)

    Lisovskyy, Igor; Voitovych, Mariia; Litovchenko, Volodymyr; Voitovych, Vasyl; Nasieka, Iurii; Bratus, Viktor

    2016-12-01

    Using photo-luminescence, infrared spectroscopy, and electron spin resonance technique, the silicon dioxide films with embedded silicon nanocrystals (nc-Si/SiO2 structures) have been investigated after γ-irradiation with the dose 2 × 107 rad and subsequent annealing at 450 °C in hydrogen ambient. For the first time, it was shown that such a radiation-thermal treatment results in significant increase of the luminescence intensity, in a red shift of the photoluminescence spectra, and in disappearance of the electron-spin resonance signal related to silicon broken bonds. This effect has been explained by passivation of silicon broken bonds at the nc-Si-SiO2 interface with hydrogen and by generation of new luminescence centers, these centers being created at elevated temperatures due to transformation of radiation-induced defects.

  17. Characterization and luminescence properties of CaMgSi2O6:Eu2+ blue phosphor.

    PubMed

    Chandrakar, P; Baghel, R N; Bisen, D P; Chandra, B P

    2015-11-01

    A blue CaMgSi2O6:Eu(2+) phosphor was prepared by the solid-state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X-ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu(2+) -doped CaMgSi2 O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu(2+) phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity-induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu(2+) phosphors are discussed.

  18. Magnetic and luminescent properties of manganese-doped ZnSe crystals

    NASA Astrophysics Data System (ADS)

    Sirkeli, Vadim P.; Nedeoglo, Dmitrii D.; Nedeoglo, Natalia D.; Radevici, Ivan V.; Sobolevskaia, Raisa L.; Sushkevich, Konstantin D.; Lähderanta, Erkki; Lashkul, Alexander V.; Laiho, Reino; Biethan, Jens-Peter; Yilmazoglu, Oktay; Pavlidis, Dimitris; Hartnagel, Hans L.

    2012-09-01

    Magnetic and photoluminescent properties of manganese-doped ZnSe crystals with different impurity concentrations were investigated. The concentration of Mn2+ ions in ZnSe crystals has been varied from 0.01 to 0.3 at%. Magnetic and photoluminescent studies have confirmed the introduction of Mn in ZnSe crystals. It was established that Mn2+ ions are responsible for the emission bands with maximum at 616 nm and 633 nm, which correspond to 4T2→6A1 and 4T1→6A1 intracentre transitions of Mn2+ ions respectively. It was found that the concentration quenching of the photoluminescent bands is associated with Mn2+ ions, which are due to the formation of Mn-Mn clusters. Magnetic properties studies have shown that at high doping levels the manganese atoms form Mn-Mn clusters in ZnSe. From the temperature dependence of magnetic susceptibility of ZnSe:Mn crystals that follows the Curie-Weiss law, it was possible to estimate the Curie-Weiss temperature Θ(x) and the effective Mn-Mn antiferromagnetic exchange constant (J1).

  19. Luminescent and scintillation properties of composites based on sol-gel SiO2 matrices and organic scintillators

    NASA Astrophysics Data System (ADS)

    Vyagin, O. G.; Bespalova, I. I.; Masalov, A. A.; Zelenskaya, O. V.; Tarasov, V. A.; Malyukin, Yu. V.

    2014-11-01

    Luminescent composites based on SiO2 matrices synthesized using the sol-gel method and organic scintillators PPO and o-POPOP are produced, and their optical, luminescent, and scintillation characteristics are studied. It is shown that these composites generate an intense photoluminescence signal, possess a nanosecond decay time, and have a transparency in the range of 400-700 nm of no less than 70%. The absolute light output during excitation by α radiation with an energy of 5.46 MeV is 4400-5100 photon/MeV, and the amplitude resolution is 27-32%.

  20. Luminescence properties of Sm{sup 3+} impurities in strontium lithium bismuth borate glasses

    SciTech Connect

    Rajesh, D.; Ratnakaram, Y. C.; Seshadri, M.; Balakrishna, A.

    2012-06-05

    In the present work, different concentrations of Sm{sup 3+}-doped strontium lithium bismuth borate glasses (SLBiB) were prepared by melt quench technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Using the J-O intensity parameters, emission and decay measurements various radiative properties are studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in SLBiB glasses has been analyzed. The intensities of observed emission peaks and measured lifetimes decrease with the increase of Sm{sup 3+} ion concentration which may be due to energy transfer between excited Sm{sup 3+} ions through cross-relaxations and resonant energy channels.

  1. Synthesis and Luminescent Property of Poly(9-(3-vinyl-phenyl)-anthracene).

    PubMed

    Lee, Sunmi; Shin, Hwangyu; Park, Beom-Soo Michael; Lee, Jaehyun; Park, Jongwook

    2015-07-01

    Polymer light-emitting diodes (PLEDs) have attracted much attention from academia and industry field because of their various applications such as large area flat-panel displays and lightings. In this paper, we suggest new blue emitting polymer based on anthracene, Poly(9-(3-Vinyl-phenyl)-anthracene) (PVPA). From NMR data, vinyl group protons were disappeared and aromatic protons showed broad proton peaks because of polymer characteristics. PVPA had film property well and it exhibited vivid PL maximum values of 431, 455, 482 nm and broad PL spectrum. Three dopants for green, red, yellow were used to PVPA, all energy transfer was happened well. By using rubrene dopant of yellow emission, doped film provided white PL.

  2. Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites

    NASA Astrophysics Data System (ADS)

    Raleaooa, Pule V.; Roodt, Andreas; Mhlongo, Gugu G.; Motaung, David E.; Kroon, Robin E.; Ntwaeaborwa, Odireleng M.

    2017-02-01

    The structure, particle morphology, optical and magnetic properties of ZnO, ZnS and ZnO-ZnS nanoparticles prepared by the sol-gel method are reported. ZnO and ZnS were combined at room temperature by an ex situ synthetic route to prepare ZnO-ZnS nanocomposites. The nanocomposites exhibited particle morphology different from that of ZnO and ZnS nanoparticles. The ZnO and ZnS nanoparticles exhibited quantum confinement as inferred from the widening of their respective bandgap energies. The electron paramagnetic resonance data provided evidence for the existence of magnetic clusters near the surface, electron to nuclei interactions and defect states. The ZnO-ZnS nanocomposites exhibited tunable emission that was dependent on the ratio of ZnO to ZnS. These composites were evaluated for application in different types of light emitting devices.

  3. Lanthanide-based luminescence biolabelling.

    PubMed

    Sy, Mohamadou; Nonat, Aline; Hildebrandt, Niko; Charbonnière, Loïc J

    2016-04-14

    Luminescent lanthanide complexes display unrivalled spectroscopic properties, which place them in a special category in the luminescent toolbox. Their long-lived line-like emission spectra are the cornerstones of numerous analytical applications ranging from ultrasensitive homogeneous fluoroimmunoassays to the study of molecular interactions in living cells with multiplexed microscopy. However, achieving such minor miracles is a result of years of synthetic efforts and spectroscopic studies to understand and gather all the necessary requirements for the labels to be efficient. This feature article intends to survey these criteria and to discuss some of the most important examples reported in the literature, before explaining in detail some of the applications of luminescent lanthanide labels to bioanalysis and luminescence microscopy. Finally, the emphasis will be put on some recent applications that hold great potential for future biosensing.

  4. Scintillation and luminescent properties of undoped and Ce3+ doped Y2SiO5 and Lu2SiO5 single crystalline films grown by LPE method

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Gorbenko, V. V.; Nikl, M.; Mares, J. A.; Sidletskiy, O.; Grynyov, B.; Fedorov, A.; Fabisiak, K.; Paprocki, K.

    2012-10-01

    Single crystalline films (SCFs) of undoped and Ce3+ doped Y2SiO5 (YSO) and Lu2SiO5 (LSO) orthosilicates were crystallized for the first time by liquid phase epitaxy method onto undoped YSO substrates from melt-solution based on PbO-B2O3 flux. The scintillation and luminescent properties of YSO:Ce and LSO:Ce SCFs were compared with the properties of bulk single crystal counterparts. We show that the peculiarities of luminescent properties of YSO:Ce and LSO:Ce SCFs in comparison with the crystal analogues are caused by the different distribution of Ce3+ ions over Y1/Lu1 and Y2/Lu2 positions of YSO and LSO host and strong influence of Pb2+ flux-related impurity on luminescent properties of Ce3+ ions.

  5. Two anionic metal-organic frameworks with tunable luminescent properties induced by cations

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Mei; Chen, Yan-Fei; Liu, Liyang; Wen, Tian; Zhang, Hua-Bin; Zhang, Jian

    2016-03-01

    Two three-dimensional (3-D) MOFs, [(C2H5)4N)]3[H3O]2[Cd6Br(H2-DHBDC)8(DMF)4] (1; H4-DHBDC=2,5-dihydroxy-1,4-benzenedicarboxylic acid, DMF=N,N-dimethylformamide) and [(CH3)2NH2]2[Cd3(H2-DHBDC)4(DMF)2]·2DMF(2), are prepared from the self-assembly reactions between Cd(CH3COO)2 and H4-DHBDC, respectively. Both anionic frameworks consist of linear trinuclear Cd units (e.g., 1: [Cd3BrO2(CO2)7] and [Cd3O2(CO2)8]; 2: [Cd3O2(CO2)8]) linked by the H2-DHBDC ligands. The photoluminescent properties of compound 1 are tunable through cation-exchange with different metal ions. The results demonstrated an effective ion-exchange approach toward the functional modification of MOF materials.

  6. Optical Properties of the Defect State Luminescence of Zn2 SnO4 Nanowires

    NASA Astrophysics Data System (ADS)

    Yakami, Baichhabi; Paudyal, Uma; Nandyala, Shashank; Rimal, Gaurab; Cooper, Jason K.; Chen, Jiajun; Chien, Teyu; Wang, Wenyong; Pikal, Jon M.; Department of Electrical; Computer Engineering Team; Department of Physics; Astronomy Team

    Nanowires (NWs) are a promising option for sensitized solar cells, sensors & display technology. Most of the work thus far has focused on binary oxides for these NWs, but ternary oxides have advantages in additional control of optical and electronic properties. Here we report on the diffuse reflectance, Low Temperature (LT) and Room Temperature (RT) photoluminescence (PL), PL excitation and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) NWs grown by Chemical Vapor Deposition. Our results show two broad peaks centered at 640 nm & 450 nm. The complex emission spectra was studied by Time Resolved Emission Spectroscopy (TRES) and Intensity dependent PL. The intensity dependent TRPL shows that 640 nm states decay much slower than the 450 nm states. We propose an energy band model for the NWs containing donor and acceptor states in the band gap with the associated transitions between these states that are consistent with our results. The effect of annealing in air and vacuum is carried out to study the origin of defect states in these NWs. . Department of Energy.

  7. Tunable luminescence properties and energy transfer in LaAl₁₁O₁₈:Eu,Tb phosphor.

    PubMed

    Mendhe, M S; Puppalwar, S P; Dhoble, S J

    2016-05-01

    Eu(2+) and Tb(3+) singly doped and co-doped LaAl11O18 phosphors were prepared by a combustion method using urea as a fuel. The phase structure and photoluminescence (PL) properties of the prepared phosphors were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence excitation and emission spectra. When the content of Eu(2+) was fixed at 0.01, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb(3+) ions from 0.01 to 0.03 through an energy transfer (ET) process. The fluorescence data collected from the samples with different contents of Tb(3+) into LaAl11O18: Eu, show the enhanced green emission at 545 nm associated with (5)D(4)-(7)F(5) transitions of Tb(3+). The enhancement was attributed to ET from Eu(2+) to Tb(3+), and therefore Eu(2+) ion acts as a sensitizer (an energy donor) while Tb(3+) ion as an activator. The ET from Eu(2+) to Tb(3+) is performed through dipole-dipole interaction. The ET efficiency and critical distance were also calculated. The present Eu(2+)-Tb(3+) co-doped LaAl11O18 phosphor will have potential application for UV convertible white light-emitting diodes.

  8. Hollow GdPO4:Eu3+ microspheres: Luminescent properties and applications as drug carrier

    NASA Astrophysics Data System (ADS)

    Tang, Yanxia; Mei, Rui; Yang, Shaokun; Tang, Hongxia; Yin, Wenzhong; Xu, Yongchun; Gao, Yaping

    2016-04-01

    GdPO4:Eu3+ samples were synthesized by a hydrothermal process using melamine formaldehyde (MF) as template. The X-ray diffraction (XRD) patterns and the Fourier Transform Infrared (FTIR) spectrum suggested that GdPO4:Eu3+ has a hexagonal phase. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed that the obtained GdPO4:Eu3+ are hollow microspheres with diameters in the range of 1-1.5 μm. Under the excitation at 245 nm, hexagonal GdPO4:Eu3+ hollow microspheres showed emission bands originating from the 5D0 → 7FJ (J = 1, 2, 3 and 4) transitions of Eu3+. The drug release properties of hexagonal GdPO4:Eu3+ hollow microspheres were exhibited by the doxorubicin hydrochloride (DOX) release test. The biocompatibility of hexagonal GdPO4:Eu3+ hollow microsphere was tested by the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results indicated that hollow GdPO4:Eu3+ microspheres have potential applications in biomedicine fields.

  9. Synthesis and luminescence properties of iridium complexes chelated with coumarin ligands.

    PubMed

    Park, Hye Rim; Kim, Bo Young; Kim, Young Kwan; Ha, Yunkyoung

    2013-05-01

    According to a recent report, the organic light-emitting diodes (OLEDs) using the iridium complexes of coumarin derivatives as emissive dopants are highly efficient and stable. Unlike the other Ir(III) phopsphorescent dopants, these coumarin-based Ir(III) complexes can effectively trap and transport electrons in the emissive layer. We have prepared a series of phosphorescent cyclometalated Ir(III) complexes containing 3-(2-pyridinyl)coumarin (pc) as an ancillary ligand. The new heteroleptic iridium complexes, Ir(C--N)2(pc) (CAN = 2-(2,4-difluorophenyl)pyridine (F2-ppy), 2-phenylpyridine (ppy) and 2-phenylquinoline (pq)) were characterized by 1H NMR and mass spectrometer. As main ligands, F2-ppy, ppy and pq were employed, which should have the drastically different ligand molecular orbital energy levels. The iridium complexes showed various emission ranges from 560 to 610 nm, depending upon the relative energy levels of their main and ancillary ligands. The photoabsorption, photoluminescence and electroluminescence of the complexes were studied. We also investigated the electrochemical properties of the iridium complexes to compare the HOMO and LUMO energy levels of these phosphorescent materials.

  10. Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Nardi, Rachel Prado Russo Delorenzo; Braz, Celso Eduardo; de Camargo, Andrea S. S.; Ribeiro, Sidney J. L.; Rocha, Lucas A.; Cassanjes, Fábia Castro; Poirier, Gael

    2015-11-01

    Tungsten phosphate glasses are known to be promising materials for several applications in optics such as non linear optical properties, lower phonon energy or photochromic effects related with tungsten oxide incorporation inside the phosphate network. In this study, lead fluoride has been incorporated in a 60NaPO3-40WO3 glass composition according to the ternary molar compositions (100 - x)[0.6NaPO3-0.4WO3]-xPbF2 with x varying from 0 to 60 mol%. The structural changes as a function of composition were investigated by thermal analysis, UV-visible absorption, Raman spectroscopy, X-ray diffraction of the crystallized samples, and Eu3+ emission in the visible. While DSC analyzes points out a strong decrease in the glass network connectivity and higher crystallization tendency with increasing PbF2 contents, Raman spectra clearly identify a progressive incorporation of PbF2 in the phosphate network with the formation of terminal Psbnd F and Wsbnd F bonds. These results are also in agreement with the crystallization of β-PbF2 observed for the most lead fluoride concentrated samples. Investigation of Eu3+ emission data in the visible showed longer 5D0 excited state lifetime values and higher quantum efficiencies. These results are discussed in terms of the assumption of higher local symmetry around Eu3+ with increasing PbF2 contents.

  11. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  12. Preparation and Luminescent Properties of Sm3+-Doped High Thermal Stable Sodium Yttrium Orthosilicate Phosphor.

    PubMed

    Xue, Na; Hei, Zhoufei; Zhao, Ze; Wang, Jing; Wang, Ting; Li, Mengxue; Noh, Hyeon Mi; Jeong, Jung Hyun; Yu, Ruijin

    2016-04-01

    Orange-red-emitting sodium yttrium orthosilicate NaYSiO4:xSm3+ (x = 0.005, 0.01, 0.02, 0.05, 0.10, 0.15, and 0.20) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained by excitation into 406 nm contains exclusively the characteristic emissions of Sm3+ at 571 nm, 602 nm, 648 nm, and 710 nm, which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2, and 6H11/2 of Sm3+, respectively. The strongest one is located at 602 nm due to the 4G5/2 --> 6H7/2 transition of Sm3+, generating bright orange-red light. The optimum dopant concentration of Sm3+ ions in NaYSiO4:xSm3+ is around 2 mol%, and the critical transfer distance of Sm3+ is calculated as 23 Å. The thermal quenching temperature is above 500 K. The fluorescence lifetime of Sm3+ in NaYSiO4:0.02Sm3+ is 1.83 ms. The NaYSiO4:Sm3+ phosphors may be potentially used as red phosphors for white light emitting diodes.

  13. Luminescence properties of ZnS:Cu, Eu semiconductor nanocrystals synthesized by a hydrothermal process

    NASA Astrophysics Data System (ADS)

    Xin, Mei; Hu, Li-Zhong

    2013-08-01

    ZnS:Cu, Eu nanocrystals with an average diameter of ~ 80 nm are synthesized using a hydrothermal approach at 200 °C. The photoluminescence (PL) properties of the ZnS:Cu, Eu nanocrystals before and after annealing, as well as the doping form of Eu, are studied. The as-synthesized samples are characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma-atomic emission spectrometry, and the excitation and emission spectra (PL). The results show that both Cu and Eu are indeed incorporated into the ZnS matrix. Compared with the PL spectrum of the Cu mono-doped sample, the PL emission intensity of the Cu and Eu-codoped sample increases and a peak appears at 516 nm, indicating that Eu3+ ions, which act as an impurity compensator and activator, are incorporated into the ZnS matrix, forming a donor level. Compared with the unannealed sample, the annealed one has an increased PL emission intensity and the peak position has a blue shift of 56 nm from 516 nm to 460 nm, which means that Eu3+ ions reduce to Eu2+ ions, thereby leading to the appearance of Eu2+ characteristic emission and generating effective host-to-Eu2+ energy transfer. The results indicate the potential applications of ZnS:Cu, Eu nanoparticles in optoelectronic devices.

  14. Lanthanide luminescence for functional materials and bio-sciences.

    PubMed

    Eliseeva, Svetlana V; Bünzli, Jean-Claude G

    2010-01-01

    Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

  15. Single crystalline YAG:Ce phosphor for powerful solid-state sources of white light. The influence of production conditions on luminescence properties and lighting characteristics

    NASA Astrophysics Data System (ADS)

    Nizhankovskyi, S. V.; Tan'ko, A. V.; Savvin, Yu. N.; Krivonogov, S. I.; Budnikov, A. T.; Voloshin, A. V.

    2016-06-01

    It is shown that the spectral properties and spatial distribution of LED radiation with a YAG:Ce single crystalline luminescent converter significantly depend on the morphology of the converter surface. The variation of surface roughness enables one to obtain a light source with a wide range of color characteristics. As a result of optimization of converter parameters we demonstrate a possibility of creating a white light LED with correlated color temperature TCC ~ 5000-6500 K and color rendering index CRI ≈ 60-70.

  16. Effect of the dopant concentration on the luminescence properties of InGaAs/GaAs spin light-emitting diodes with a mn δ layer

    SciTech Connect

    Rykov, A. V. Dorokhin, M. V.; Malysheva, E. I.; Demina, P. B.; Vikhrova, O. V.; Zdoroveishev, A. V.

    2016-01-15

    The luminescence properties of light-emitting diodes based on GaAs/InGaAs heterostructures containing Mn-doped layers are studied. The dependences of the degree of electroluminescence circular polarization on the growth parameters, specifically, the Mn content and the hole concentration are obtained. A steady increase in the degree of electroluminescence circular polarization and in the Curie temperature of the ferromagnetic structure with increasing hole concentration is observed, and a change in sign of the degree of circular polarization under variations in the Mn content is revealed. The data are interpreted on the basis of well-known models of ferromagnetism in structures based on ferromagnetic semiconductors.

  17. Influence of dehydrated nanotubed titanic acid on charge transport and luminescent properties of polymer light-emitting diodes with fluorescent dye

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Bera, Debasis; Jin, Zhen-Sheng; Du, Zu-Liang; Xu, Zheng; Teng, Feng; Liu, Wei

    2007-09-01

    In this paper, we discuss the influence of dehydrated nanotubed titanic acid (DNTA) on charge transport and luminescent properties of polymer light-emitting diodes (PLEDs) doped with fluorescent dye. Photoluminescence results confirm the efficient energy transfer from PVK to 4-(dicyanom-ethylene)-2- t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris-(8-hydroxtquinoline) aluminum (Alq 3) in a DNTA-doped device. The device showed lower turn-on voltages and higher charge current by doping with DNTA, which also caused a shift in the exciton's recombination region.

  18. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  19. Preparation, characterization, and properties of PMMA-doped polymer film materials: a study on the effect of terbium ions on luminescence and lifetime enhancement.

    PubMed

    Zhang, Hui-Jie; Fan, Rui-Qing; Wang, Xin-Ming; Wang, Ping; Wang, Yu-Lei; Yang, Yu-Lin

    2015-02-14

    Poly(methylmethacrylate) (PMMA) doped with Tb-based imidazole derivative coordination polymer {[Tb(3)(L)(μ(3)-OH)(7)]·H(2)O}(n) (1) (L = N,N'-bis(acetoxy)biimidazole) was synthesized and its photophysical properties were studied. The L'(L' = N,N'-bis(ethylacetate)biimidazole) ligand was synthesized by an N-alkylation reaction process followed by ester hydrolysis to produce ligand L. Polymer 1 and ligand L' have been characterized by (1)H NMR and IR spectroscopy, elemental analysis, PXRD and X-ray single-crystal diffraction. Coordination polymer 1 is the first observation of a CdCl(2) structure constructed with hydroxy groups and decorated by ligand L in lanthanide N-heterocyclic coordination polymers. In the 2D layered structure of 1, each Tb3 metal center is connected with three Tb1 and three Tb2 metal centers by seven hydroxyl groups in different directions, resulting in a six-membered ring. After doping, not only the luminescence intensity and lifetime enhanced, but also their thermal stability was increased in comparison with 1. When 1 was doped into poly(methylmethacrylate) (1@PMMA), polymer film materials were formed with the PMMA polymer matrix (w/w = 2.5%-12.5%) acting as a co-sensitizer for Tb(3+) ions. The luminescence intensity of the Tb(3+) emission at 544 nm increases when the content of Tb(3+) was 10%. The lifetime of 1@PMMA (914.88 μs) is more than four times longer than that of 1 (196.24 μs). All τ values for the doped polymer systems are higher than coordination polymer 1, indicating that radiative processes are operative in all the doped polymer films. This is because PMMA coupling with the O-H oscillators from {[Tb(3)(L)(μ(3)-OH)(7)]·H(2)O}(n) can suppress multiphonon relaxation. According to the variable-temperature luminescence (VT-luminescence) investigation, 1@PMMA was confirmed to be a stable green luminescent polymer film material.

  20. Synthesis and Luminescence Properties of Rare Earth Activated Phosphors for near UV-Emitting LEDs for Efficacious Generation of White Light

    NASA Astrophysics Data System (ADS)

    Han, Jinkyu

    Solid state white-emitting lighting devices based on LEDs outperform conventional light sources in terms of lifetime, durability, and luminous efficiency. Near UV-LEDs in combination with blue-, green-, and red-emitting phosphors show superior luminescence properties over the commercialized blue-emitting LED with yellow-emitting phosphors. However, phosphor development for near UV LEDs is a challenging problem and a vibrant area of research. In addition, using the proper synthesis technique is an important consideration in the development of phosphors. In this research, efficient blue-, green-yellow, red-emitting, and color tunable phosphors for near UV LEDs based white light are identified and prepared by various synthetic methods such as solid state reaction, sol-gel/Pechini, co-precipitation, hydrothermal, combustion and spray-pyrolysis. Blue-emittingLiCaPO4:Eu2+, Green/yellow-emitting (Ba,Sr)2SiO4:Eu2+, color tunable solid solutions of KSrPO4-(Ba,Ca)2SiO4:Eu 2+, and red-emitting (Ba,Sr,Ca)3MgSi2O 8:Eu2+,Mn2+ show excellent excitation profile in the near UV region, high quantum efficiency, and good thermal stability for use in solid state lighting applications. In addition, different synthesis methods are analyzed and compared, with the goal of obtaining ideal phosphors, which should have not only have high luminous output but also optimal particle size (˜150--400 nm) and spherical morphology. For Sr2SiO 4:Eu2+, the sol-gel method appears to be the best method. For Ba2SiO4:Eu2+, the co-precipitation method is be the best. Lastly, the fabrication of core/SiO2 shell particles alleviate surface defects and improve luminescence output and moisture stability of nano and micron sized phosphors. For nano-sized Y2O 3:Eu3+, Y2SiO5:Ce3+,Tb 3+, and (Ba,Sr)2SiO4, the luminescence emission intensity of the core/shell particles were significantly higher than that of bare cores. Additionally, the moisture stability is also improved by SiO 2 shells, the luminescence output of

  1. Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation.

    PubMed

    Miocinovic, Svjetlana; Grill, Warren M

    2004-01-15

    Measurements of the chronaxies and refractory periods with extracellular stimuli have been used to conclude that large diameter axons are responsible for the effects of deep brain stimulation (DBS). We hypothesized that because action potential initiation by extracellular stimulation occurs in the axons of central nervous system (CNS) neurons, the chronaxies and refractory periods determined using extracellular stimulation would be similar for cells and axons. Computer simulation was used to determine the sensitivity of chronaxie and refractory period to the neural element stimulated. The results demonstrate that chronaxies and refractory periods were dependent on the polarity of the extracellular stimulus and the electrode-to-neuron distance, and indicate that there is little systematic difference in either chronaxies or refractory periods between local cells or axons of passage with extracellular stimulation. This finding points out the difficulty in drawing conclusions regarding which neuronal elements are activated based on extracellular measurements of temporal excitation properties.

  2. Luminescent detection of hydrazine and hydrazine derivatives

    DOEpatents

    Swager, Timothy M [Newton, MA; Thomas, III, Samuel W.

    2012-04-17

    The present invention generally relates to methods for modulating the optical properties of a luminescent polymer via interaction with a species (e.g., an analyte). In some cases, the present invention provides methods for determination of an analyte by monitoring a change in an optical signal of a luminescent polymer upon exposure to an analyte. Methods of the present invention may be useful for the vapor phase detection of analytes such as explosives and toxins. The present invention also provides methods for increasing the luminescence intensity of a polymer, such as a polymer that has been photobleached, by exposing the luminescent polymer to a species such as a reducing agent.

  3. Growth and luminescent properties of Lu 2SiO 5:Ce and (Lu 1- xGd x) 2SiO 5:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Grinyov, B.; Sidletskiy, O.; Kurtsev, D.; Fedorov, A.; Baumer, V.; Nikl, M.; Mares, J. A.; Beitlerova, A.; Prusa, P.; Kucera, M.

    2011-12-01

    Single crystalline films (SCF) of Lu 2SiO 5:Ce (LSO:Ce), (Lu 1- xGd x) 2SiO 5:Ce (LGSO:Ce) and LGSO:Ce,Tb orthosilicates with thickness of 2.5-21 μm were crystallized by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B 2O 3 flux. The concentration of Gd was varied in the range of x=0.2-0.7 formula units (f.u.). In the case of LGSO:Ce SCF growth we do not use any additional doping for reducing the misfit between the SCF and substrate lattices. The luminescence and scintillation properties of LSO:Ce, LGSO:Ce and LGSO:Ce,Tb SCFs were mutually compared and confronted with the performance of reference LSO:Ce and LYSO:Ce crystals. With increasing Gd content the luminescence spectrum of LGSO:Ce SCF is gradually red-shifted with respect to that of LSO:Ce SCF. The LY of (Lu 1- xGd x)SO:Ce SCF becomes lower in comparison with that for LSO:Ce SC at increasing Gd content in the range of x=0.2-0.7 f.u. The peculiarities of luminescence properties of LSO:Ce and LGSO:Ce SCFs in comparison with crystal analogs are explained by the different distribution of Ce 3+ over Lu1 and Lu2 positions of LSO host and by the influence of Pb 2+ contamination coming from the flux used for the film growth.

  4. Synthesis, crystal structures, magnetic and luminescent properties of unique 1D p-ferrocenylbenzoate-bridged lanthanide complexes

    SciTech Connect

    Yan, P.F.; Zhang, F.M.; Li, G.M.; Zhang, J.W.; Sun, W.B.; Suda, M.; Einaga, Y.

    2009-07-15

    Treatments of p-ferrocenylbenzoate [p-NaOOCH{sub 4}C{sub 6}Fc, Fc=(eta{sup 5}-C{sub 5}H{sub 5})Fe(eta{sup 5}-C{sub 5}H{sub 4})] with Ln(NO{sub 3}){sub 3}.nH{sub 2}O afford seven p-ferrocenylbenzoate lanthanide complexes {l_brace}[Ln(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} [Ln=Ce (1), Pr (2), Sm (3), Eu (4), Gd (5), Tb (6) and Dy (7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {l_brace}[Ce(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (1) and {l_brace}[Pr(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (2) form a unique 1D double-bridged infinite chain structure bridged by mu{sub 2}-OOCH{sub 4}C{sub 6}Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC{sub 6}H{sub 4}COO{sup -} units, two terminal monodentate coordinated H{sub 2}O molecules and four mu{sub 2}-{sup -}OOCH{sub 4}C{sub 6}Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5. - Graphical abstract: Seven p-ferrocenylbenzoate lanthanide coordination polymers were synthesized. Given is the perspective view of a unique 1D double-bridged infinite chain structure of 1, excitation and emission spectra of 6 and plots of chi{sub m}T vs. T and chi{sub m}{sup -1} vs. T of 5.

  5. Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41

    SciTech Connect

    Feng Jing; Song Shuyan; Xing Yan; Zhang Hongjie Li Zhefeng; Sun Lining; Guo Xianmin; Fan Weiqiang

    2009-03-15

    The crystal structure of a ternary Tm(DBM){sub 3}phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM){sub 3}phen C{sub 59}H{sub 47}N{sub 2}O{sub 7}Tm, monoclinic, P21/c, a=19.3216(12) A, b=10.6691(7) A, c=23.0165(15) A, {alpha}=90 deg., {beta}=91.6330(10) deg., {gamma}=90 deg., V=4742.8(5) A{sup 3}, Z=4. The properties of the Tm(DBM){sub 3}phen complex and the corresponding hybrid mesoporous material [Tm(DBM){sub 3}phen-MCM-41] have been studied. The results reveal that the Tm(DBM){sub 3}phen complex is successfully covalently bonded to MCM-41. Both Tm(DBM){sub 3}phen complex and Tm(DBM){sub 3}phen-MCM-41 display typical near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Tm{sup 3+} ion, an antenna effect. The full width at half maximum (FWHM) centered at 1474 nm in the emission spectrum of Tm(DBM){sub 3}phen-MCM-41 is 110 nm, which is the potential candidate of broadening amplification band from C band (1530-1560 nm) to S{sup +} band (1450-1480 nm) in optical area. - Graphical abstract: The crystal structure of Tm(DBM){sub 3}phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline). The complex is successfully covalently bonded to MCM-41 (Tm(DBM){sub 3}phen-MCM-41). After ligand-mediated excitation, the emission spectrum of Tm(DBM){sub 3}phen-MCM-41 shows the bands 802 and 1474 nm. The FWHM of the 1474-nm band for Tm(DBM){sub 3}phen-MCM-41 is 110 nm, such a broad spectrum enables a wide gain bandwidth for optical amplification.

  6. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair.

    PubMed

    Kingham, Paul J; Kolar, Mallappa K; Novikova, Liudmila N; Novikov, Lev N; Wiberg, Mikael

    2014-04-01

    In future, adipose-derived stem cells (ASC) might be used to treat neurological disorders. In this study, the neurotrophic and angiogenic properties of human ASC were evaluated, and their effects in a peripheral nerve injury model were determined. In vitro growth factor stimulation of the cells resulted in increased secretion of brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor-A (VEGF-A), and angiopoietin-1 proteins. Conditioned medium from stimulated cells increased neurite outgrowth of dorsal root ganglia (DRG) neurons. Similarly, stimulated cells showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. ASC were seeded into a fibrin conduit that was used to bridge a 10 mm rat nerve gap. After 2 weeks, the animals treated with control or stimulated ASC showed an enhanced axon regeneration distance. Stimulated cells evoked more total axon growth. Analysis of regeneration and apoptosis-related gene expression showed that both ASC and stimulated ASC enhanced GAP-43 and activating transcription factor 3 (ATF-3) expression in the spinal cord and reduced c-jun expression in the DRG. Caspase-3 expression in the DRG was reduced by stimulated ASC. Both ASC and stimulated ASC also increased the vascularity of the fibrin nerve conduits. Thus, ASC produce functional neurotrophic and angiogenic factors, creating a more desirable microenvironment for nerve regeneration.

  7. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea

    PubMed Central

    Tan, Xiaodong; Young, Hunter; Matic, Agnella Izzo; Zirkle, Whitney; Rajguru, Suhrud; Richter, Claus-Peter

    2015-01-01

    Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons. PMID:26311831

  8. Luminescent properties of Eu:Y1.8La0.2O3 transparent ceramics for potential white LED applications

    NASA Astrophysics Data System (ADS)

    Lu, Shenzhou; Yang, Qiuhong; Wang, Yonggang; Li, Yunhan; Huang, Dongdong

    2013-02-01

    (EuxY0.90-xLa0.1)2O3 (x = 0.01-0.12) transparent ceramics were fabricated by conventional ceramics processing, and their luminescent properties were investigated. Compared with Eu:Y2O3, Eu:(Y0.9La0.1)2O3 ceramics exhibit much stronger excitation peaks at 395, 466 and 535 nm, respectively. The strong excitation peak of Eu:(Y0.9La0.1)2O3 ceramics at 466 nm is in good agreement with the emissions of InGaN blue chips (λem = 450-470 nm). Eu:(Y0.9La0.1)2O3 ceramics can be effectively excited by the light of 466 nm, and show bright red emission at 613 nm. The influences of contents of Eu3+ on the luminescent properties were studied and their Judd-Ofelt parameters were also calculated. The results showed that Eu:Y1.8La0.2O3 transparent ceramics exhibit the potential to act as a red phosphor for blue chips excited white LEDs.

  9. Diversity of lanthanide(III)-organic extended frameworks with a 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid ligand: syntheses, structures, and magnetic and luminescent properties.

    PubMed

    Liu, Qing-Yan; Wang, Wu-Fang; Wang, Yu-Ling; Shan, Zeng-Mei; Wang, Ming-Sheng; Tang, Jinkui

    2012-02-20

    A sulfonate-carboxylate ligand, 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid (H(4)-DSNDA), and eight new lanthanide coordination polymers {[Pr(4)(OH)(4)(DSNDA)(2)(H(2)O)(12)](H(2)O)(10)}(n) (1), [Ln(H(2)-DSNDA)(0.5)(DSNDA)(0.5)(H(2)O)(5)](n) (Ln = La(2), Nd(3), Sm(4), Eu(5), Gd(6), and Dy(7)), and {[Er(H-DSNDA)(H(2)O)(4)](H(2)O)}(n) (8) have been synthesized. Detailed crystal structures of these compounds have been investigated. Compound 1 has a 3D framework featuring the unique cubane-shaped [Pr(4)(μ(3)-OH)(4)] clusters and is a binodal 4,8-connected network with (4(16)·6(12))(4(4)·6(2))(2) topology. Compounds 2-7 are isostructural and have 2D layered structures. Compound 8 is also a 2D layer but belongs to different structural types. The luminescence behavior of compound Eu(5) shows that the π-rich aromatic organic ligands efficiently transfer the absorbed light energy to the Eu(III) ions, thus enhancing the overall luminescent properties of compound Eu(5). The magnetic properties of all compounds except for the diamagnetic La(2) compound have been investigated. In addition, elemental analysis, IR spectra, and thermogravimetric analysis of these compounds are also described.

  10. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  11. Uranyl-glycine-water complexes in solution: comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties.

    PubMed

    Su, Jing; Zhang, Kai; Schwarz, W H Eugen; Li, Jun

    2011-03-21

    Comprehensive computational modeling of coordination structures, thermodynamic stabilities, and luminescence spectra of uranyl-glycine-water complexes [UO(2)(Gly)(n)aq(m)](2+) (Gly = glycine, aq = H(2)O, n = 0-2, m = 0-5) in aqueous solution has been carried out using relativistic density functional approaches. The solvent is approximated by a dielectric continuum model and additional explicit water molecules. Detailed pictures are obtained by synergic combination of experimental and theoretical data. The optimal equatorial coordination numbers of uranyl are determined to be five. The energies of several complex conformations are competitively close to each other. In non-basic solution the most probable complex forms are those with two water ligands replaced by the bidentate carboxyl groups of zwitterionic glycine. The N,O-chelation in non-basic solution is neither entropically nor enthalpically favored. The symmetric and antisymmetric stretch vibrations of the nearly linear O-U-O unit determine the luminescence features. The shapes of the vibrationally resolved experimental solution spectra are reproduced theoretically with an empirically fitted overall line-width parameter. The calculated luminescence origins correspond to thermally populated, near-degenerate groups of the lowest electronically excited states of (3)Δ(g) and (3)Φ(g) character, originating from (U-O)σ(u) → (U-5f)δ(u),ϕ(u) configurations of the linear [OUO](2+) unit. The intensity distributions of the vibrational progressions are consistent with U-O bond-length changes around 5 1/2 pm. The unusually high intensity of the short wavelength foot is explained by near-degeneracy of vibrationally and electronically excited states, and by intensity enhancement through the asymmetric O-U-O stretch mode. The combination of contemporary computational chemistry and experimental techniques leads to a detailed understanding of structures, thermodynamics, and luminescence of actinide compounds, including

  12. Structure and luminescence properties of silver-doped NaY(PO{sub 3}){sub 4} crystal

    SciTech Connect

    El Masloumi, M.; Jubera, V.; Pechev, S.; Chaminade, J.P.; Videau, J.J. Mesnaoui, M.; Maazaz, M.; Moine, B.

    2008-11-15

    Single crystals of NaY(PO{sub 3}){sub 4} and Ag{sub 0.07}Na{sub 0.93}Y(PO{sub 3}){sub 4} have been synthesized by flux method. These new compounds turned out to be isostructural to NaLn(PO{sub 3}){sub 4}, with Ln=La, Nd, Gd and Er [monoclinic, P2{sub 1}/n, a=7.1615(2) A, b=13.0077(1) A, c=9.7032 (3) A, {beta}=90.55 (1){sup o}, V=903.86(14) A{sup 3} and Z=4]. The structure is based upon long polyphosphate chains running along the shortest unit-cell direction and made up of PO{sub 4} tetrahedra sharing two corners, linked to yttrium and sodium polyhedra. Infrared and Raman spectra at room temperature confirms this atomic arrangement. The luminescence of silver ions was reported in metaphosphate of composition Ag{sub 0.07}Na{sub 0.93}Y(PO{sub 3}){sub 4}. One luminescent centre was detected and assigned to single Ag{sup +} ions. - Graphical abstract: The presence of only one Ag{sup +} luminescence centre is the result from the perfect isolation (Ag{sup +}-Ag{sup +}=5.90 A) of each oxygenated silver site (AgO{sub 8} polyhedra) sharing two faces and one corner with three yttrium polyhedra.

  13. Fabrication, microstructure and luminescence properties of Cr3+ doped Lu3A15O12 red scintillator ceramics

    NASA Astrophysics Data System (ADS)

    Shi, Yun; Zhao, Yu; Liu, Qiang; Cao, Maoqing; Ma, Peng; Chen, Haohong; Liu, Qian; Li, Jiang

    2017-04-01

    Cr3+ doped Lu3A15O12 transparent ceramics were developed as a new red scintillator ceramics. These ceramics were fabricated by a solid state reaction method under vacuum sintering at temperature range of 1550 °C-1890 °C for 10 h. The doping effect of different Cr3+ concentration (0, 0.1, 0.3 and 0.5 at. %) and air annealing effect were investigated as well. The transparent ceramics (70% @1 mm in visible light range) with dense microstructure were obtained when sintered at 1890 °C for 10 h, the average grain size of 0.3 at.% Cr:LuAG was calculated to be 7 μm. Photo-luminescence spectra revealed that there are two typical excitation bands at around 450 nm and 600 nm which were ascribed to the d-d transitions of Cr3+. 0.3 at. % Cr:LuAG exhibited the optimum photoluminescence intensity and fast decay. Radio-luminescence under X-ray excitation indicated a characteristic Cr3+ emission peaking at 687 nm and 706 nm respectively. The Lu3+Al antisite defects related emission at around 300 nm was observed to decrease with the doping of Cr3+. The steady luminescence efficiency (XEL spectrum integral) is around 20 times of the commercial BGO crystals, more important, the broad and continuous red emission between 600 nm and 800 nm demonstrated Cr:LuAG ceramics a prospective application as new red scintillators.

  14. Effects of electrical and optical properties of thickness condition of ZnO nanorod array layer for efficient electrochemical luminescence cell device

    NASA Astrophysics Data System (ADS)

    Choi, Hye Su; Chansri, Pakpoom; Sung, Youl Moon

    2016-02-01

    In this paper, we report on electrochemical luminescence (ECL) cells with a ZnO nanorod (ZNR) layer. The investigated ECL cells were composed of F-doped SnO2 (FTO) glass/Ru(II)/ZNRs/FTO glass, which used a ZNR layer as an electrode and the Ru(II) complex [Ru(bpy)32+] as a light-emitting material. The ECL cells were fabricated by changing the thickness of ZNRs from 5 to 12.5 µm. The luminescence property of the ECL cells was strongly affected by the variation in the thickness of the ZNR layer. The threshold voltage for the light emission from the ECL cells was 2 V for 10 µm thick ZNRs, which was lower than that of the thickness of the ECL cells without a ZNR layer. Also, the intensity of luminance from the ECL cells with ZNRs was much higher than that from the ECL cells without ZNRs at the same operating voltage. The efficiency of the ECL cells without ZNRs measured at 3 V was 0.0049 lm/W, while those of the ECL cells with ZNRs were 0.0121, 0.0157, 0.0354, and 0.024 lm/W for the ZNRs layer thicknesses 5, 7.5, 10, and 12.5 µm, respectively. However, the peak light intensity at the wavelength was 623 nm which had not affected the all ZNRs thicknesses. The best lifetime of the ECL cells with these thicknesses was 40 min for ZNRs 10 µm. The use of the ZNR layer in the ECL cells significantly improves the luminescence performance.

  15. Rigid rod-like dinuclear Ru(II)/Os(II) terpyridine-type complexes. Electrochemical behavior, absorption spectra, luminescence properties, and electronic energy transfer through phenylene bridges

    SciTech Connect

    Barigelletti, F.; Flamigni, L.; Balzani, V. ||

    1994-08-24

    The absorption spectra, the luminescence properties (at 293 and 77 K), and the electrochemical behavior of six dinuclear heterometallic compounds have been investigated. The compounds are made of Ru(tpy){sub 2}{sup 2+}- and Os(tpy){sub 2}{sup 2+}-type components (tpy = 2,2{prime}:6{prime},2 inches-terpyridine, which in some cases carries p-tolyl (Meph) or methylsulphone (MeO{sub 2}S) substituents in the 4{prime} position), connected by n phenylene (ph) spacers (n=0,1, and 2). In the resulting rigid rod-like structures of general formula (X{sub 1}tpy)Ru(tpy(ph){sub n}tpy)Os(tpyX{sub 2}){sup 4+} the metal-to-metal distance varies form 11 to 20 {Angstrom}. The absorption spectra of the two components are slightly perturbed in the dinuclear compounds, and metal-metal and ligand-ligand interactions are evidenced by the trends of the oxidation and reduction potentials. The luminescence of the Ru-based unit is quenched by the connected Os-based unit with practically unitary efficiency, regardless of the number of interposed phenylene spacers. Quenching is accompanied by quantitative sensitization of the Os-based luminescence. The rate of energy transfer at 293 K is larger than 10{sup 10} s{sup -1} in all cases. The Foerster (Coulombic) mechanism does not satisfactorily account for such a fast rate, particularly for the species with n=2. It is concluded that the observed energy-transfer processes take place most likely via a Dexter (electron exchange) mechanism. This is consistent with the strong electronic coupling of the Ru-based units in the compound with n=0, and with the relatively small insulating effect expected for the phenylene spacers. 37 refs., 7 figs., 3 tabs.

  16. Preparation of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors by a facile precursor method and their luminescent properties

    SciTech Connect

    Wang, Xia; Liang, Pan; Huang, Hong-Sheng; Liu, Zhi-Hong

    2014-04-01

    Graphical abstract: LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor was obtained by calcining the precursor which was synthesized by boric acid melting method. It (a) exhibits much stronger PL intensity than that (b) prepared by conventional solid state reaction method. - Highlights: • A calcining precursor method was used for preparation of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor. • Precursor was prepared by boric acid melting method. • The luminescence intensity of LaB{sub 3}O{sub 6}:Eu{sup 3+} was enhanced by the present method. - Abstract: The LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors were prepared by calcining the precursors which were synthesized by boric acid melting method using rare earth oxide and boric acid as raw materials, and they were characterized by EDS, XRD, IR, SEM and PL. The influences of reaction temperature for the preparation of precursor and subsequent calcination temperature and time of precursor on the luminescence properties of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor were investigated. The results showed that the LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors with maximum luminescent intensity were obtained by calcining precursor at 1000 °C for 6 h, in which the precursor was prepared at 200 °C for 72 h. Compared with the conventional high temperature solid-state reaction method, the pure LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor can be obtained at relatively lower calcination temperature by the precursor method and exhibits much stronger emission intensity.

  17. Luminescence and optical absorption properties of Nd(3+) ions in K-Mg-Al phosphate and fluorophosphate glasses.

    PubMed

    Surendra Babu, S; Babu, P; Jayasankar, C K; Joshi, A S; Speghini, A; Bettinelli, M

    2006-04-26

    Absorption and emission properties and fluorescence lifetimes for the [Formula: see text] transition of Nd(3+) ions embedded in P(2)O(5)-K(2)O-MgO-Al(2)O(3) (PKMA)-based glasses modified with AlF(3) and BaF(2) are reported at room temperature. The observed energy levels of Nd(3+) ions in these glasses have been analysed through a semi-empirical free-ion Hamiltonian model. The spin-orbit interaction and net electrostatic interaction experienced by the Nd(3+) ions follow the trend as PKMA>PKMA+AlF(3)> PKMA+BaF(2) glasses. Judd-Ofelt analysis has been carried out on the absorption spectra of 1.0 mol% Nd(3+)-doped glasses to predict the radiative properties for the fluorescent levels of the Nd(3+) ion. Branching ratios and stimulated emission cross-sections show that the [Formula: see text] transition of the glasses under investigation has the potential for laser applications. The Inokuti-Hirayama model has been applied to investigate the non-radiative relaxation of the Nd(3+) ion emitting state, (4)F(3/2). Based on the decay curve analysis, concentration quenching of the (4)F(3/2) emission has been attributed to a cross-relaxation process between the Nd(3+) ions.

  18. Co-precipitation synthesis and luminescence properties of K₂TiF₆:Mn⁴⁺ red phosphors for warm white light-emitting diodes.

    PubMed

    Liao, Jinsheng; Nie, Liling; Zhong, Laifu; Gu, Qingjie; Wang, Qi

    2016-05-01

    K2TiF6:Mn(4+) red phosphors with different Mn(4+) doping concentrations were obtained using the co-precipitation method. X-Ray diffraction, scanning electron microscopy, Raman spectra, Fourier transform infrared spectroscopy, photoluminescence excitation and emission spectra and decay curves were used to characterize the properties of K2TiF6:Mn(4+) phosphors. Under excitation at 470 nm, an intense red emission peak around 631 nm corresponding to the (2)E(g)-(4)A2 transition of Mn(4+) was observed for 2.48 mol% K2TiF6:Mn(4+) phosphors and was used as the optimum doping concentration. The excellent luminescent properties of K2TiF6:Mn(4+) suggest that this material might be a promising red phosphor for generating warm white light in phosphor-converted white light-emitting diodes.

  19. Luminescent properties of a di-hydrazone derived from the antituberculosis agent isoniazid: Potentiality as an emitting layer constituent for OLED fabrication

    NASA Astrophysics Data System (ADS)

    Moraes, Rafaela S.; Aderne, Rian E.; Cremona, Marco; Rey, Nicolás A.

    2016-02-01

    Hydrazones constitute a class of compounds presenting azomethine R‧R″Nsbnd Ndbnd CHsbnd R hydrogens, which show diverse properties and a wide range of applications. A hydrazone derived from the antituberculosis drug isoniazid, namely, N,N‧-diisonicotinoyl-2-hydroxy-5-methylisophthalaldehyde hydrazone (DMD) was synthesized and chemically characterized. Its luminescent properties were also investigated, as well as the possibility of using this compound as a constituent of the emitting layer for the fabrication of OLEDs. Co-deposited devices were fabricated using the organic molecule BSBF as matrix and DMD as dopant. All the devices presented a broad electroluminescence band, in which it was possible to recognize the DMD emission along with emissions of some of the other organic layers. The best results were obtained with 35% DMD doping, achieving a luminance of about 35 cd/m2.

  20. The influence of the polymer-stabilizer molecular weight on the spectral luminescence properties of composite sols and coatings containing PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Evstrop'ev, K. S.; Dukel'skii, K. V.; Gatchin, Yu. A.; Evstrop'ev, S. K.; Bondarenko, I. B.

    2016-12-01

    The influence of the polyvinylpyrrolidone (PVP) molecular weight on the stability and spectral luminescence properties of sols of lead sulfide nanocrystals and the related composite coatings has been studied. It is shown that the spectral properties of PbS sols stabilized with low-molecular (PVP) and the related coatings are determined to a great extent by the formation of large particle aggregates in these materials and, accordingly, high level of light scattering. It is effective to use low-molecular PVP for preparing powder materials containing PbS quantum dots (QDs), because it allows one to perform fast powder precipitation and form small semiconductor particles. High-molecular PVP provides high aggregative and sedimentation stabilities of semiconductor nanocrystal sols. This polymer is effective for use in preparing stable QD sols and homogeneous coatings transparent in the visible spectral range.

  1. Influence of conformational flexibility on self-assembly and luminescence properties of lanthanide coordination polymers with flexible exo-bidentate biphenol derivatives.

    PubMed

    Guo, Yanling; Dou, Wei; Zhou, Xiaoyan; Liu, Weisheng; Qin, Wenwu; Zang, Zhipeng; Zhang, Hongrui; Wang, Daqi

    2009-04-20

    To explore how nonplanar conformational distortions affect supramolecular self-assembly and properties of lanthanide complexes, we have designed and synthesized two new flexible exo-bidentate ligands derived from biphenol featuring two salicylamide pendant arms, 2,2'-bis{[(2'-benzylaminoformyl)phenoxyl]ethoxyl}-1,1'-biphenylene (L(I)) and 5,5'-dibromo-2,2'-bis{[(2'-benzylaminoformyl)phenoxyl]ethoxyl}-1,1'-biphenylene (L(II)). These two structurally related ligands can have different conformations and are used for constructing diverse lanthanide polymers with interesting luminescence properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, X-ray powder diffraction, and IR spectroscopy, four new coordination polymers have been determined using X-ray diffraction analysis. The coordination polymer type {Ln(2)(NO(3))(6)(L(I))(3).3H(2)O}(infinity) (Ln = Nd, Sm, Eu, Gd, Tb or Dy) displays a two-dimensional honeycomb-like framework in the ab plane, which can be regarded as a (6,3) topological network with neodymium atoms acting as "three-connected" centers. In contrast, the coordination polymer types {[Nd(NO(3))(3)(L(II))(CH(3)OH)] x CH(3)OH}(infinity) and [Ln(NO(3))(3)(L(II))(C(2)H(5)OH)](infinity) (Ln = Sm, Eu, Gd, Tb or Dy) possess single-stranded helix chains which can be further connected through intermolecular hydrogen bonds to form two-dimensional supramolecular sheets. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were investigated. The present work substantiates the claim that the supramolecular structure as well as the luminescence properties of the coordination polymer can be tuned by controlling the conformational distortion of a nonplanar flexible ligand in the supramolecular self-assembly.

  2. Multiple doping structures of the rare-earth atoms in β-SiAlON:Ce phosphors and their effects on luminescence properties.

    PubMed

    Gan, Lin; Xu, Fang-Fang; Zeng, Xiong-Hui; Li, Zuo-Sheng; Mao, Zhi-Yong; Lu, Ping; Zhu, Ying-Chun; Liu, Xue-Jian; Zhang, Lin-Lin

    2015-07-14

    The critical doping structures of rare-earth atoms in the promising β-SiAlON phosphors have long been argued owing to the lack of direct evidence. Here, the exact locations and coordination of the Ce rare-earth atoms in the β-SiAlON structure have been examined using an atom-resolved Cs-corrected scanning transmission electron microscope. Three different occupation sites for the Ce atoms have been directly observed: two of them are in the structural channel coordinated with six and nine N(O) atoms, respectively; the other one is the unexpected substitution site for Si(Al). The chemical valences and stabilities of the doping Ce ions at the different occupation sites have been evaluated using density functional calculations. Correlation of the different doping structures with the luminescence properties has been investigated by the aid of cathodoluminescence (CL) microanalysis, which verifies the different contribution of the interstitial trivalent Ce ions to the light emission while no luminescence is observed for the substitutional doping of quadrivalent Ce.

  3. Solid-state synthesis and luminescent properties of yellow-emitting phosphor NaY(MoO4)2:Dy3+ for white light-emitting diodes.

    PubMed

    Wang, Zhijun; Li, Panlai; Guo, Qinglin; Yang, Zhiping

    2015-09-01

    A yellow-emitting phosphor NaY(MoO4)2:Dy(3+) was synthesized using a solid-state reaction at 550 °C for 4 h, and its luminescent properties were investigated. Its phase formation was studied using X-ray powder diffraction analysis, and there were no crystalline phases other than NaY(MoO4)2. NaY(MoO4)2:Dy(3+) produced yellow emission under 386 or 453 nm excitation, and the prominent luminescence was yellow (575 nm) due to the (4) F9/2 → (6) H13/2 transition of Dy(3+). For the 575 nm emission, the excitation spectrum had one broad band and some narrow peaks; the peaks were located at 290, 351, 365, 386, 426, 453 and 474 nm. Emission intensities were influenced by the Dy(3+) doping content and a concentration quenching effect was observed; the phenomenon was also proved by the decay curves. Moreover, the Commission International de I'Eclairage chromaticity coordinates of NaY(MoO4)2:Dy(3+) showed similar values at different Dy(3+) concentrations, and were located in the yellow region.

  4. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Qing; Li, Ao-Ju; Guo, Wei; Tian, Peng-Hua; Yu, Xiao-Long; Liu, Zhong-Xin; Cao, Yang; Sun, Zhong-Liang

    2016-03-01

    In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form α-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

  5. Visible to near-infrared luminescence properties of Nd{sup 3+}-doped La{sub 2}BaZnO{sub 5} phosphor

    SciTech Connect

    Cao, Renping Cao, Chunyan; Yu, Xiaoguang; Sun, Xinyuan; Tang, Pengjie; Ao, Hui

    2014-07-01

    La{sub 2}BaZnO{sub 5}:Nd{sup 3+} phosphors are synthesized by a conventional high temperature solid state reaction method, and its crystal structure and luminescence properties are investigated. Photoluminescence bands peaking at ∼496, 540, 630, 670, 905, 1070, and 1350 nm of La{sub 2}BaZnO{sub 5}:Nd{sup 3+} phosphors are observed at room temperature due to f–f transition of Nd{sup 3+} ion. The optimum Nd{sup 3+} doped concentration is ∼0.03. Lifetimes of La{sub 1.97}BaZnO{sub 5}:0.03Nd{sup 3+} phosphor with 496 and 1070 nm monitoring wavelengths are ∼280 and 250 µs, respectively. The luminescence mechanism is explained by using simplified energy lever diagram of Nd{sup 3+} ion. La{sub 2}BaZnO{sub 5}:Nd{sup 3+} material can be applied to powerful solid-state lasers as high efficient light sources. - Graphical abstract: PL spectra of La{sub 2}BaZnO{sub 5}:Nd{sup 3+} phosphor in the visible and near-infrared regions and their corresponding to PLE at room temperature. - Highlights: • La{sub 2}BaZnO{sub 5}:Nd{sup 3+} phosphor is synthesized. • PL spectrum is observed in the visible region. • PL spectrum is observed in the near-infrared region.

  6. Construction and NIR luminescent property of hetero-bimetallic Zn Nd complexes from two chiral salen-type Schiff-base ligands

    NASA Astrophysics Data System (ADS)

    Bi, Wei-Yu; Lü, Xing-Qiang; Chai, Wen-Li; Song, Ji-Rong; Wong, Wai-Yeung; Wong, Wai-Kwok; Jones, Richard A.

    2008-11-01

    Two new near-infrared (NIR) luminescent Zn-Nd complexes [ZnL 1Nd(OAc)(NO 3) 2] ( 3) and [ZnL 2Nd(DMF) 2(NO 3) 3] ( 4) have been obtained with two salen-type Schiff-base ligands H 2L 1 and H 2L 2, ( H 2L 1 = N, N'-bis(3-methoxysalicylidene)-(1s, 2s)-(-)1,2-dipheneylethylenediamine and H 2L 2 = N, N'-bis(3-methoxysalicylidene)-(s)-2,2-diamine-1,1'-binaphthyl) from the reaction of different chiral diamines with o-vanillin. The X-ray crystal structure analysis reveals that both of them crystallize in the chiral space groups with P2(1), a = 10.1669(6), b = 19.3775(11), c = 17.4639(10) Å, β = 94.8710(10)°, V = 3428.1(3) Å 3, Z = 4 for 3, and C2, a = 22.1914(13), b = 9.7886(6), c = 22.0138(13) Å, β = 118.9590(10)°, V = 4372.5(4) Å 3, Z = 4 for 4. Complexes 3- 4 are both dinuclear Zn-Nd structures, while suitable choice of chiral Schiff-base ligands could induce the different complexions of ligands and metal ions, and the functional control of ligand character shows a potentially effective way to the fine-tuning properties of NIR luminescence from Nd ions.

  7. Vacuum ultraviolet and near-infrared excited luminescence properties of Ca 3(PO 4) 2: RE3+, Na + ( RE=Tb, Yb, Er, Tm, and Ho)

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Wang, Yuhua; Guo, Linna; Zhang, Feng; Wen, Yan; Liu, Bitao; Huang, Yan

    2011-08-01

    Tb 3+, Yb 3+, Tm 3+, Er 3+, and Ho 3+ doped Ca 3(PO 4) 2 were synthesized by solid-state reaction, and their luminescence properties were studied by spectra techniques. Tb 3+-doped samples can exhibit intense green emission under VUV excitation, and the brightness for the optimal Tb 3+ content is comparable with that of the commercial Zn 2SiO 4:Mn 2+ green phosphor. Under near-infrared laser excitation, the upconversion luminescence spectra of Yb 3+, Tm 3+, Er 3+, and Ho 3+ doped samples demonstrate that the red, green, and blue tricolored fluorescence could be obtained by codoping Yb 3+-Ho 3+, Yb 3+-Er 3+, and Yb 3+-Tm 3+ in Ca 3(PO 4) 2, respectively. Good white upconversion emission with CIE chromaticity coordinates (0.358, 0.362) is achieved by quadri-doping Yb 3+-Tm 3+-Er 3+-Ho 3+ in Ca 3(PO 4) 2, in which the cross-relaxation process between Er 3+ and Tm 3+, producing the 1D2- 3F4 transition of Tm 3+, is found. The upconversion mechanisms are elucidated through the laser power dependence of the upconverted emissions and the energy level diagrams.

  8. Influence of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu 2O 3:2%Yb, 0.2%Tm nanopowders

    NASA Astrophysics Data System (ADS)

    Li, Li; Xiaochun, Wang; xiantao, Wei; Yonghu, Chen; Changxin, Guo; Min, Yin

    2011-02-01

    Lutetium oxide nanopowders codoped with Tm 3+ and Yb 3+ were synthesized by the reverse-strike co-precipitation method. Effects of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu 2O 3:2%Yb, 0.2%Tm nanopowders had been investigated. The results show that pH value of the precipitant (NH 4HCO 3) solution has a significant effect on the particle size, morphology and upconversion emission intensity of the Lu 2O 3:2%Yb, 0.2%Tm nanopowders. All the samples obtained from different pH value of precipitant solution can be readily indexed to pure cubic phase of Lu 2O 3, indicating good crystallinity. The upconversion emission intensity of Lu 2O 3:2%Yb, 0.2%Tm nanopowders obtained from the precipitant solution with pH=11 is the strongest. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing the number of OH - groups and the enlarged nanopowder size. The strong blue, weak red and near infrared emissions from the prepared nanopowders were observed under 980 nm laser excitation, and attributed to the 1G 4→ 3H 6, 1G 4→ 3F 4 and 3H 4→ 3H 6 transitions of Tm 3+ ion, respectively.

  9. Effects of Ce doping on the luminescent property of Ca3 SiO4 Cl2 :Eu phosphor for green lighting.

    PubMed

    Chen, Jingsheng

    2015-03-01

    White light-emitting diodes (LEDs) for green lighting are new solutions for energy saving and environmental protection. Ca3 SiO4 Cl2 :Ce,Eu is an efficient phosphor for white LEDs. Effective energy transfer from Ce(3+) to Eu(2+) occurs in Ca3 SiO4 Cl2 :Ce,Eu due to good spectrum overlap between the emission band of Ca3 SiO4 Cl2 :Ce and the excitation band of Ca3 SiO4 Cl2 :Eu, and hues vary systematically from blue to green at different Ce concentrations. A great improvement in the luminescent property of Ca3 SiO4 Cl2 :Eu has been observed on Ce(3+) doping, which is attributed to energy transfer from Ce(3+) to Eu(2+) and an increase in the number of luminescent centers (Eu(2+) ) on Ce doping. The optimal sample has a quantum efficiency of up to 75%, and can be an efficient green phosphor for white LEDs.

  10. Luminescence properties of europium ions-doped yttrium silicate (Y2SiO5:Eu3+) nanocrystalline phosphors: effect of Eu3+ ion concentration and thermal annealing.

    PubMed

    Ko, Yeong Hwan; Lee, Soo Hyun; Yu, Jae Su

    2013-05-01

    The trivalent europium ions-doped yttrium silicate (Y2SiO5:Eu3+) nanocrystalline phosphors were synthesized via a sol-gel method, followed by post thermal annealing. The effects of thermal annealing temperature and doping concentration on the structural and luminescent properties of Y2SiO5:Eu3+ nanocrystalline phosphors were systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence measurements. The nanocrystalline phosphors with a high crystallinity were obtained at an annealing temperature of 1300 degrees C. The luminescent spectra were affected strongly by the Eu3+ ion concentration and annealing temperature. The Eu3+ ion concentration was optimized at 5 mol%, exhibiting excellent red emission (-612 nm) corresponding to the 5D0 --> 7F2 transition of Eu3+ ions at the excitation wavelengths of 262 and 396 nm. For the optimized Y2SiO5:Eu3+ nanocrystalline phosphors, the lifetimes were also estimated from the decay curves under the ultraviolet excitations.

  11. Measuring Brain Stimulation Induced Changes in Cortical Properties Using TMS-EEG.

    PubMed

    Chung, Sung Wook; Rogasch, Nigel C; Hoy, Kate E; Fitzgerald, Paul B

    2015-01-01

    Neuromodulatory brain stimulation can induce plastic reorganization of cortical circuits that persist beyond the period of stimulation. Most of our current knowledge about the physiological properties has been derived from the motor cortex. The integration of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a valuable method for directly probing excitability, connectivity and oscillatory dynamics of regions throughout the brain. Offering in depth measurement of cortical reactivity, TMS-EEG allows the evaluation of TMS-evoked components that may act as a marker for cortical excitation and inhibition. A growing body of research is using concurrent TMS and EEG (TMS-EEG) to explore the effects of different neuromodulatory techniques such as repetitive TMS and transcranial direct current stimulation on cortical function, particularly in non-motor regions. In this review, we outline studies examining TMS-evoked potentials and oscillations before and after, or during a single session of brain stimulation. Investigating these studies will aid in our understanding of mechanisms involved in the modulation of excitability and inhibition by neuroplasticity following different stimulation paradigms.

  12. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study

    PubMed Central

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J. M.

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  13. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study.

    PubMed

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J M

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation.

  14. Cyclic AMP stimulates neurite outgrowth of lamprey reticulospinal neurons without substantially altering their biophysical properties.

    PubMed

    Pale, T; Frisch, E B; McClellan, A D

    2013-08-15

    Reticulospinal (RS) neurons are critical for initiation of locomotor behavior, and following spinal cord injury (SCI) in the lamprey, the axons of these neurons regenerate and restore locomotor behavior within a few weeks. For lamprey RS neurons in culture, experimental induction of calcium influx, either in the growth cone or cell body, is inhibitory for neurite outgrowth. Following SCI, these neurons partially downregulate calcium channel expression, which would be expected to reduce calcium influx and possibly provide supportive conditions for axonal regeneration. In the present study, it was tested whether activation of second messenger signaling pathways stimulates neurite outgrowth of lamprey RS neurons without altering their electrical properties (e.g. spike broadening) so as to possibly increase calcium influx and compromise axonal growth. First, activation of cAMP pathways with forskolin or dbcAMP stimulated neurite outgrowth of RS neurons in culture in a PKA-dependent manner, while activation of cGMP signaling pathways with dbcGMP inhibited outgrowth. Second, neurophysiological recordings from uninjured RS neurons in isolated lamprey brain-spinal cord preparations indicated that dbcAMP or dbcGMP did not significantly affect any of the measured electrical properties. In contrast, for uninjured RS neurons, forskolin increased action potential duration, which might have increased calcium influx, but did not significantly affect most other electrical properties. Importantly, for injured RS neurons during the period of axonal regeneration, forskolin did not significantly alter their electrical properties. Taken together, these results suggest that activation of cAMP signaling by dbcAMP stimulates neurite outgrowth, but does not alter the electrical properties of lamprey RS neurons in such a way that would be expected to induce calcium influx. In conclusion, our results suggest that activation of cAMP pathways alone, without compensation for possible

  15. Preparation, characterization and luminescent properties of dense nano-silica hybrids loaded with 1,8-naphthalic anhydride.

    PubMed

    Wang, Jinpeng; Sun, Jihong; Li, Yuzhen; Wang, Feng

    2014-03-01

    Novel luminescent dense nano-silica hybrid materials (DNSS) modified with different amounts of (3-aminopropyl)triethoxysilane (APTES) and 1,8-naphthalic anhydride (NA) were successfully synthesized via two steps combined with post-grafting methods. Powder X-ray diffraction (XRD), N2-sorption analysis, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), photoluminescence (PL) spectroscopy and elemental analysis, as well as time-resolved decays were employed to characterize the resultant hybrid materials. The results revealed that luminescent organic molecules had been successfully loaded onto the amine-modified surface of nano-silica spheres. In addition, their fluorescence intensity and characteristic peak of emission spectra changed with increasing amount of APTES and NA additive. In particular, the characteristic peak showed a red shift from 390 to 450 nm, however, this was inconsistent with results calculated on the basis of the elemental analysis data, most probably because of the dispersion behaviors of NA molecules from the aggregating to the monolayer state. These observations demonstrated the existence of a quantum confinement effectiveness of NA-DNSS samples, and therefore a possible mechanism was put forward.

  16. Strictly monolayer large continuous MoS{sub 2} films on diverse substrates and their luminescence properties

    SciTech Connect

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S.

    2016-01-25

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS{sub 2} film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS{sub 2} covering an area as large as a few cm{sup 2} on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO{sub 2} coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS{sub 2} films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS{sub 2}. In addition, a broad defect related luminescence band appears at ∼1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces.

  17. Luminescence of thermally altered human skeletal remains.

    PubMed

    Krap, Tristan; Nota, Kevin; Wilk, Leah S; van de Goot, Franklin R W; Ruijter, Jan M; Duijst, Wilma; Oostra, Roelof-Jan

    2017-02-23

    Literature on luminescent properties of thermally altered human remains is scarce and contradictory. Therefore, the luminescence of heated bone was systemically reinvestigated. A heating experiment was conducted on fresh human bone, in two different media, and cremated human remains were recovered from a modern crematory. Luminescence was excited with light sources within the range of 350 to 560 nm. The excitation light was filtered out by using different long pass filters, and the luminescence was analysed by means of a scoring method. The results show that temperature, duration and surrounding medium determine the observed emission intensity and bandwidth. It is concluded that the luminescent characteristic of bone can be useful for identifying thermally altered human remains in a difficult context as well as yield information on the perimortem and postmortem events.

  18. Effects of composition modulation on the luminescence properties of Eu(3+) doped Li1-xAgxLu(MoO4)2 solid-solution phosphors.

    PubMed

    Cheng, Fangrui; Xia, Zhiguo; Molokeev, Maxim S; Jing, Xiping

    2015-11-07

    Double molybdate scheelite-type solid-solution phosphors Li1-xAgxLu1-y(MoO4)2:yEu(3+) were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors, the difference in the luminescence properties of Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1-xLu(MoO4)2 matrices and the activator Eu(3+), another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O(2-)-Mo(6+) and the 4f → 4f emissive transitions of Eu(3+). The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.

  19. Controllable synthesis, shape evolution, and luminescence properties of uniform and well-dispersed NaEuF{sub 4} microcrystals through hydrothermal route

    SciTech Connect

    Xu, Zhenhe Zhao, Qian; Ding, Fu; Sun, Yaguang

    2013-08-01

    Graphical abstract: Sodium europium fluorides NaEuF{sub 4} microcrystals have been prepared via a facile hydrothermal route. The possible growth mechanism and the luminescent properties of the as-prepared microcrystals have been discussed. - Highlights: • Sodium europium fluorides NaEuF{sub 4} microspheres were prepared by a facile hydrothermal route. • The as-prepared samples NaEuF{sub 4} and EuF{sub 3} exhibit respective red or orange-red emissions. • These finding may find potential applications in the fields of color display, UV laser and biomedicine. - Abstract: Sodium europium fluorides NaEuF{sub 4} microcrystals with uniform and well-dispersed shapes and dimensions have been prepared via a facile hydrothermal route using Na{sub 3}Cit as the chelating ligand and shape modifier. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), energy-dispersive X-ray (EDX) and photoluminescence spectra (PL) were taken to characterize the samples. A series of controlled experiments reveal that the trisodium citrate (Na{sub 3}Cit) content, pH value of the initial solution, and reaction time have an indispensable role on the phase, size, and morphology of the as-prepared microcrystals. Based on the experimental results, the possible growth mechanism of the microcrystals prepared under different conditions was proposed. Moreover, we systematically investigated the luminescent properties of the as-prepared microcrystals with different morphologies obtained under different amounts of Na{sub 3}Cit, which have potential application in the fields of color display, UV laser and biomedicine.

  20. Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties.

    PubMed

    Datcu, Angela; Roques, Nans; Jubera, Véronique; Imaz, Inhar; Maspoch, Daniel; Sutter, Jean-Pascal; Rovira, Concepció; Veciana, Jaume

    2011-03-21

    A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems.