Science.gov

Sample records for stimulated photon echoes

  1. Effect of Collisions on the Form of Stimulated Photon Echo in a Gas

    NASA Astrophysics Data System (ADS)

    Akhmedshina, E. N.; Nefediev, L. A.; Garnaeva, G. I.

    2015-09-01

    The spectral diffusion and time-frequency correlation of an inhomogeneously (Doppler) broadened line in a gas with velocity-changing collisions of particles in addition to the impact of spectral diffusion on the formation of stimulated photon echo (SPE) were investigated. It was shown that the frequency shift of the resonance transition of the gas atoms varied randomly with every velocity-changing collision of the atom. This led to uncorrelated inhomogeneous broadening in the gas at different time points and to a partial loss of the phase memory affecting the photon echo formation. This resulted in a distortion of the SPE temporal shape and; correspondingly, of the reproducibility of the information encoded in the temporal shape of a nonresident laser pulse.

  2. The optimal conditions for the correlation of object pulse temporary form with the stimulated photon echo response in the presence of external spatial inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Garnaeva, G. I.; Nefediev, L. A.; Hakimzyanova, E. I.; Nefedieva, K. L.

    2014-08-01

    The influence of external spatially inhomogeneous electric fields on the reproducibility of the information and effectiveness of stimulated photon echo responses locking at different encoding information in the object laser pulses are investigated.

  3. Frequency-time correlation of inhomogeneous broadening in a three-level system and the stimulated photon echo locking effect

    NASA Astrophysics Data System (ADS)

    Nefed'ev, L. A.; Nizamova, E. I.; Garnaeva, G. I.

    2016-07-01

    The frequency-time correlation of inhomogeneous broadening on different transitions in a threelevel resonant medium in the presence of external spatially nonuniform electric fields is considered. It is shown that, under a certain relationship between the magnitudes of gradients of external nonuniform electric fields acting at different moments of time, it is possible to control the magnitude of the frequency-time correlation on different frequency transitions. An increase in the frequency-time correlation coefficient with certain strengths of external spatially nonuniform electric fields leads to the recovery of the phase memory of the system and an increase in the stimulated photon echo intensity.

  4. Phase Memory Control in an Inhomogeneously Broadened Ensemble of Three-Level Systems and Stimulated Photon Echo Formation

    NASA Astrophysics Data System (ADS)

    Nefediev, L. A.; Garnaeva, G. I.; Nizamova, E. I.

    2016-09-01

    Phase memory in a three-level system that is associated with the correspondence of isochromates of inhomogeneously broadened lines excited by lasers at various resonant frequencies with a common energy level in different time intervals is studied. It is shown that external spatially inhomogeneous electric fields can control such phase memory and could be used to determine the optimum conditions for forming a stimulated photon echo in a threelevel system.

  5. Stimulated Anti-Echo Selection in Spatially Localized NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Ming; Smith, Ian C. P.

    1999-01-01

    Spectral localization using the stimulated-echo acquisition mode (STEAM) is one of the most popular methods in volume-localizedin vivoNMR spectroscopy. The localized volume signal is generated via stimulated echoes from spins excited by three 90° RF pulses, and the conventional STEAM sequence detects the stimulated-echo signal. From an analysis of the STEAM pulse sequence using the coherence transfer pathway formalism, stimulated anti-echoes are also formed by the same pulse sequence, which constitute the other half of the localized signal in the STEAM experiment. A new scheme of pulsed field gradients for the selection of stimulated anti-echoes was proposed, and localized spectroscopy in the stimulated anti-echo selection mode was achieved on a phantom and fromin vivorat brain.

  6. Free-electron lasers: Echoes of photons past

    NASA Astrophysics Data System (ADS)

    Campbell, Lawrence T.; McNeil, Brian W. J.

    2016-08-01

    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source.

  7. Impossibility of faithfully storing single photons with the three-pulse photon echo

    SciTech Connect

    Sangouard, Nicolas; Minar, Jiri; Afzelius, Mikael; Gisin, Nicolas; Riedmatten, Hugues de; Simon, Christoph; Tittel, Wolfgang; Chaneliere, Thierry; Le Goueet, Jean-Louis

    2010-06-15

    The three-pulse photon echo is a well-known technique to store intense light pulses in an inhomogeneously broadened atomic ensemble. This protocol is attractive because it is relatively simple and it is well suited for the storage of multiple temporal modes. Furthermore, it offers very long storage times, greater than the phase relaxation time. Here, we consider the three-pulse photon echo in both two- and three-level systems as a potential technique for the storage of light at the single-photon level. By explicit calculations, we show that the ratio between the echo signal corresponding to a single-photon input and the noise is smaller than one. This severely limits the achievable fidelity of the quantum state storage, making the three-pulse photon echo unsuitable for single-photon quantum memory.

  8. Code division in optical memory devices based on photon echo

    NASA Astrophysics Data System (ADS)

    Kalachev, Alexey A.; Vlasova, Daria D.

    2006-03-01

    The theory of multi-channel optical memory based on photon echo is developed. It is shown that under long-lived photon echo regime the writing and reading of information with code division is possible using phase modulation of reference and reading pulses. A simple method for construction of a system of noise-like signals, which is based on the segmentation of Frank sequence is proposed. It is shown that in comparison to the system of random biphase signals this system leads to the efficient decreasing of mutual influence of channels and increasing of random/noise ratio under reading of information.

  9. Demonstration of photon-echo rephasing of spontaneous emission.

    PubMed

    Beavan, Sarah E; Hedges, Morgan P; Sellars, Matthew J

    2012-08-31

    In this paper we report the first demonstration of "rephased amplified spontaneous emission" (RASE) with photon-counting detection. This protocol provides an all-in-one photon-pair source and quantum-memory that has applications as a quantum repeater node. The RASE protocol is temporally multimode, and in this demonstration the photon echo was generated in a way that is spatially multimode and includes intermediate storage between two potentially long-lived spin states. A correlation between spontaneous emission and its photon echo was observed, using an ensemble of Pr(3+) ions doped into a Y2SiO5 crystal. Alterations that would allow for the measurement of nonclassical correlations are identified. These should generally apply for future experiments in rare-earth ion crystals, which are promising systems for implementing highly-multiplexed quantum repeater operations.

  10. Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes.

    PubMed

    Ménager, L; Lorgeré, I; Gouët, J L; Mohan, R K; Kröll, S

    1999-07-15

    A photon echo experiment in Tm(3+):YAG is reported that shows, for the first time to the authors' knowledge, the time-domain equivalent of the transition from near- to far-field diffraction, including Talbot self-imaging effects. The experiment demonstrates the huge dispersion capability of photon echoes and opens the way to further exploration of space-time duality.

  11. Photon echo transients from an inhomogeneous ensemble of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Salewski, M.; Kapitonov, Yu. V.; Yugova, I. A.; Akimov, I. A.; Schneider, C.; Kamp, M.; Höfling, S.; Yakovlev, D. R.; Kavokin, A. V.; Bayer, M.

    2016-03-01

    An ensemble of quantum dot excitons may be used for coherent information manipulation. Due to the ensemble inhomogeneity any optical information retrieval occurs in the form of a photon echo. We show that the inhomogeneity can lead to a significant deviation from the conventional echo timing sequence. Variation of the area of the initial rotation pulse, which generates excitons in a dot subensemble only, reveals this complex picture of photon echo formation. We observe a retarded echo for π /2 pulses, while for 3 π /2 the echo is advanced in time as evidenced through monitoring the Rabi oscillations in the time-resolved photon echo amplitude from (In,Ga)As/GaAs self-assembled quantum dot structures and confirmed by detailed calculations.

  12. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences.

  13. Comparison of Twice Refocused Spin Echo versus Stimulated Echo Diffusion Tensor Imaging for Tracking Muscle Fibers

    PubMed Central

    Noehren, Brian; Andersen, Anders; Feiweier, Thorsten; Damon, Bruce; Hardy, Peter

    2014-01-01

    Purpose To compare the precision of measuring the pennation angle and fiber length in the Vastus Lateralis (VL) using two distinctly different diffusion tensor imaging sequences. Materials and Methods We imaged the thigh of ten normal subjects on a 3T MR imager with twice refocused spin echo (TRSE) and stimulated echo (STEAM) DTI-MRI techniques. Both techniques took the same total acquisition time, employed the same diffusion weighting and gradient directions. Using the diffusion tensor images produced by each sequence muscle fiber bundles were tracked from the aponeurosis by following the first eigenvector of the diffusion tensor. From these tracks we calculated the pennation angle and fiber length. Results The STEAM acquisition resulted in significantly higher SNR, lower ADC, higher FA values and longer fibers than the TRSE. Although no difference in the pennation angle between the two acquisitions was found, the TRSE sequence had a significantly greater within subject dispersion in the pennation angle of tracked fibers which may indicate a reduction in the coherence of fiber bundles. Conclusion Diffusion tensor imaging of muscle using a STEAM acquisition resulted in significant improvements in the SNR and FA, resulting in tracking a larger number of muscle fiber bundles over longer distances and with less within subject dispersion. PMID:24554376

  14. Relaxation of AB Spin Systems in Stimulated-Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Straubinger, Klaus; Schick, Fritz; Lutz, Otto

    1995-12-01

    The behavior of the strongly coupled AB spin system during the STEAM (stimulated echo acquisition mode) sequence was calculated analytically. Relaxation during the TM interval, in which longitudinal magnetization and zero-quantum coherences (ZQCs) occur, was accounted for by following the course of the different density-matrix terms. The result allows one to determine sequence timings to provide high signal intensities or signals resulting from certain coherences. Theoretically calculated spectra can be generated, using an analytical function. Series of proton spectra were recorded from a 0.1maqueous solution of citrate on a 1.5 T whole-body imager at 22°C. Spectra series with constant echo time TE were used to evaluate the longitudinal relaxation timeT1as well as the zero-quantum relaxation timeTZQby fitting the theoretically predicted curve to the experimental data. The evaluated proton relaxation timesT1andTZQin citrate differ strongly:T1= 770 ms,TZQ= 1300 ms.

  15. DENSE: Displacement Encoding with Stimulated Echoes in Cardiac Functional MRI

    NASA Astrophysics Data System (ADS)

    Aletras, Anthony H.; Ding, Shujun; Balaban, Robert S.; Wen, Han

    1999-03-01

    Displacement encoding with stimulated echoes (DENSE) was developed for high-resolution myocardial displacement mapping. Pixel phase is modulated by myocardial displacement and data spatial resolution is limited only by pixel size. 2D displacement vector maps were generated for the systolic action in canines with 0.94 × 1.9 mm nominal in-plane resolution and 2.3 mm/π displacement encoding. A radial strain of 0.208 was measured across the free left ventricular wall over 105 ms during systole. DENSE displacement maps require small first-order gradient moments for encoding. DENSE magnitude images exhibit black-blood contrast which allows for better myocardial definition and reduced motion-related artifacts.

  16. Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart

    PubMed Central

    von Deuster, Constantin; Stoeck, Christian T.; Genet, Martin; Atkinson, David

    2015-01-01

    Purpose To compare signal‐to‐noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration‐compensated spin‐echo (SE) and stimulated echo acquisition mode (STEAM) imaging. Methods Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50–450 s/mm2) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. Results In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt(SE/STEAM), was 2.84 ± 0.08 for all tested b‐values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b‐value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. Conclusion Cardiac DTI using motion‐compensated SE yields a 2.3–2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862–872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26445426

  17. Temporal compression of quantum-information-carrying photons using a photon-echo quantum memory approach

    SciTech Connect

    Moiseev, S. A.; Tittel, W.

    2010-07-15

    We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.

  18. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    NASA Astrophysics Data System (ADS)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  19. Photon echo without a free induction decay in a double-Λ system.

    PubMed

    Beavan, Sarah E; Ledingham, Patrick M; Longdell, Jevon J; Sellars, Matthew J

    2011-04-01

    We have characterized a novel photon-echo pulse sequence for a double-Λ-type energy level system where the input and rephasing transitions are different from the applied π pulses. We show that, despite having imperfect π-pulses associated with large coherent emission due to free induction decay (FID), the noise added in the echo mode is only 0.2 ± 0.1 photons per shot, compared to 4 × 10⁴ photons in the FID modes. Using this echo pulse sequence in the "rephased amplified spontaneous emission" (RASE) scheme [Phys. Rev. A 81, 012301 (2010)] will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr(3+):Y₂SiO₅ crystal.

  20. Transcranial magnetic stimulation-induced 'visual echoes' are generated in early visual cortex.

    PubMed

    Jolij, Jacob; Lamme, Victor A F

    2010-11-01

    Transcranial magnetic stimulation (TMS) of the early visual areas can trigger perception of a flash of light, a so-called phosphene. Here we show that a very brief presentation of a stimulus can modulate features of a subsequent TMS-induced phosphene, to a level that participants mistake phosphenes for real stimuli, inducing 'visual echoes' of a previously seen stimulus. These 'echoes' are modulated by visual context at the moment of magnetic stimulation, showing that they are generated in early visual areas, and that the brain processes these 'echoes' as if they are factually presented stimuli. This shows that TMS can re-activate weak visual representations in early visual areas. Based on the pattern of contextual modulation of visual echoes, we theorize that perception of these echoes is not a passive reactivation of residual activity in early visual cortex, but an active interpretation of the combined activity of TMS-induced neural noise and cortical state. PMID:20732388

  1. Influence of neighboring levels in three-pulse photon-echo processes

    SciTech Connect

    Villaeys, A. A.; Dappe, Y. J.; Liang, K. K.; Lin, S. H.

    2009-05-15

    It is the purpose of the present paper to study the dynamics underlying a three-pulse photon-echo process performed on a vibronic system coupled to non-Markovian baths, when a neighboring level enters into the global dynamical evolution because of broadband excitation required in these experiments. Particular emphasis is on the energy gap between the vibronic levels, but also on the fluctuation amplitudes and correlation times of their corresponding thermal baths. The photon-echo signal appears to be very sensitive to the additional interfering contributions introduced by the neighboring vibronic level. It is shown that these contributions associated to the pathways involving different vibronic states are modulated by their corresponding energy gap. As a consequence, these contributions to the integrated photon-echo signal strongly decrease for large energy gaps. Also, an oscillating behavior is observed on the time dependence of the photon-echo signal resulting from the summation of the contributions provided by the individual vibronic levels. Moreover, the influence of the non-Markovian character of the baths, accountable for inhomogeneous broadening, affects the amplitude and the time dependence of the photon-echo signal, as well as its dependence with the delay time of the laser pulses. Of course, for longer times a Markovian dynamical evolution is recovered.

  2. Spectroscopic Localization by Simultaneous Acquisition of the Double-Spin and Stimulated Echoes

    PubMed Central

    Tal, Assaf; Gonen, Oded

    2014-01-01

    Purpose To design a proton MR spectroscopy (1H-MRS) localization sequence that combines the signal-to-noise-ratio (SNR) benefits of Point Resolved Spectroscopy (PRESS) with the high pulse bandwidths, low chemical shift displacements (CSD), low specific absorption rates (SAR), short echo times (TE) and superior radio-frequency transmit field (B1+) immunity of Stimulated Echo Acquisition Mode (STEAM), by simultaneously refocusing and acquiring both the double-spin and stimulated echo coherence pathways from the volume of interest. Methods We propose a family of 1H-MRS sequences comprising three orthogonal spatially-selective pulses with flip angles 90°<α, β, γ<128°. The stimulated and double-spin echo are refocused in-phase simultaneously by altering the pulses’ phases, flip angles and timing, as well as the inter-pulse gradient spoiling moments. The ≈90° nutations of α, β, γ provide STEAM-like advantages (lower SAR, in-plane CSD and TE; greater B1+ immunity), but with SNRs comparable with PRESS. Results Phantom and in vivo brain experiments show that 83–100% of the PRESS SNR (metabolite-dependent) is achieved at under 75% of the SAR and 66% lower in-plane CSD. Conclusion The advantages of STEAM can be augmented with the higher SNR of PRESS by combining the spin and stimulated echoes. Quantification, especially of J-coupled resonances and intermediate and long TEs, must be carefully considered. PMID:24664399

  3. Three-pulse photon echo of finite numbers of molecules: single-molecule traces.

    PubMed

    Dong, Hui; Fleming, Graham R

    2013-09-26

    In conventional bulk nonlinear spectroscopy, the contribution from molecules with different environmental conditions sometimes conceals the properties of interest and prevents the assessment of the heterogeneity of complex systems. This is especially true when exploring mechanisms of coherence loss in multicomponent systems [Ishizaki and Fleming, J. Phys. Chem. B 2011, 115, 6227]. To avoid this drawback of ensemble measurements and evaluate single-molecule behavior, a quantum theory is proposed to study the three-pulse photon echo signal of a two-level system in a bath and reveal the fluctuations inherent to single molecules. The current method takes advantage of the coherent state representation to understand the photon echo experiment in a wave function formalism rather than the reduced density matrix. Information regarding the environmental degrees of freedom (DoF) is explicitly encoded in the initial state of the system plus bath. The thermal fluctuations of the initial states induce variation of the photon echo signal, which is clearly different from the ensemble average echo signal. We use our formalism to demonstrate the recovery of the conventional ensemble response signal from the single-molecule signal.

  4. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-05-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.

  5. Measurement of excited-state lifetime using two-pulse photon echoes in rubidium vapor

    SciTech Connect

    Rotberg, E. A.; Barrett, B.; Beattie, S.; Chudasama, S.; Weel, M.; Chan, I.; Kumarakrishnan, A.

    2007-03-15

    We report a measurement of the 5P{sub 3/2} excited-state lifetime using two-pulse photon echoes in Rb vapor. The measurement is precise to {approx}1% and agrees with the best measurement of atomic lifetime in Rb. The results suggest that a measurement precise to {approx}0.25% is possible through additional data acquisition and study of systematic effects. The experiment relies on short optical pulses generated from a cw laser using acousto-optic modulators. The excitation pulses are on resonance with the F=3{yields}F{sup '}=4 transition in {sup 85}Rb or the F=2{yields}F{sup '}=3 transition in {sup 87}Rb. The resulting photon echo signal is detected using a heterodyne detection technique. The excited-state lifetime is determined by measuring the exponential decay of the echo intensity as a function of the time between the excitation pulses. We also present a study of the echo intensity as a function of excitation pulse area and compare the results to simulations based on optical Bloch equations. The simulations include the effects of spontaneous emission as well as spatial and temporal variations of the intensities of excitation pulses.

  6. Storage and retrieval of time-bin qubits with photon-echo-based quantum memories

    SciTech Connect

    Gisin, Nicolas; Simon, Christoph; Moiseev, Sergey A.

    2007-07-15

    Quantum memories based on the photon-echo principle (with controlled reversible inhomogeneous broadening) allow in principle perfect reconstruction of the stored light. In the retrieval process, the envelope of the absorbed wave packet is reversed in time, but the evolution of the phase of the carrier wave is unchanged. We discuss the consequences of this fact for the relative phase of pulses with a certain time delay, and thus for the storage of time-bin qubits. As an illustration, we show that the combination of photon-echo-based memories and unbalanced interferometers leads to a counterintuitive interference effect, allowing one to measure a path length difference {delta}L using pulses that are much shorter than {delta}L.

  7. Generating Super Stimulated-Echoes in MRI and their Application to Hyperpolarized C-13 Diffusion Metabolic Imaging

    PubMed Central

    Larson, Peder E. Z.; Kerr, Adam B.; Reed, Galen D.; Hurd, Ralph E.; Kurhanewicz, John; Pauly, John M.; Vigneron, Daniel B.

    2011-01-01

    Stimulated-echoes in MR can be used to provide high sensitivity to motion and flow, creating diffusion and perfusion weighting as well as T1 contrast, but conventional approaches inherently suffer from a 50% signal loss. The super stimulated-echo, which uses a specialized radiofrequency (RF) pulse train, has been proposed in order to improve the signal while preserving motion and T1 sensitivity. This paper presents a novel and straightforward method for designing the super stimulated-echo pulse train using inversion pulse design techniques. This method can also create adiabatic designs with an improved response to RF transmit field variations. The scheme was validated in phantom experiments and shown in vivo to improve SNR. We have applied a super stimulated-echo to metabolic MRI with hyperpolarized 13C-labeled molecules. For spectroscopic imaging of hyperpolarized agents, several repetition times are required but only a single stimulated-echo encoding is feasible, which can lead to unwanted motion blurring. To address this, a super stimulated-echo preparation scheme was used in which the diffusion weighting is terminated prior to the acquisition, and we observed a SNR increases of 60% in phantoms and 49% in vivo over a conventional stimulated-echo. Experiments following injection of hyperpolarized [1-13C]-pyruvate in murine transgenic cancer models have shown improved delineation for tumors since signals from metabolites within tumor tissues are retained while those from the vasculature are suppressed by the diffusion preparation scheme. PMID:22027366

  8. The application of weak electric field pulses to measure the pseudo-Stark split by photon echo beating

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2016-07-01

    A novel scheme for determining the pseudo-Stark splitting of optical lines has been suggested and tested in experiment. The scheme allows one to observe the beating of a photon echo waveform under conditions of overlap in time between a weak electric pulse and its echo-pulse. The pseudo-Stark splitting is equal to the inverse average modulation period of the echo waveform. The photon echo beating of the R1-line in Ruby has been observed. The dependence of the inverse average modulation period of the echo waveform on the average value of the electric field over the optically excited volume has been found. The obtained values of the pseudo-Stark parameter are in good agreement with known literature data.

  9. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  10. Stimulated photon emission from the vacuum

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Shaisultanov, Rashid

    2015-06-01

    We study the effect of stimulated photon emission from the vacuum in strong space-time-dependent electromagnetic fields. We emphasize the viewpoint that the vacuum subjected to macroscopic electromagnetic fields with at least one nonzero electromagnetic field invariant, as, e.g., attainable by superimposing two laser beams, can represent a source term for outgoing photons. We believe that this view is particularly intuitive and allows for a straightforward and intuitive study of optical signatures of quantum vacuum nonlinearity in realistic experiments involving the collision of high-intensity laser pulses, and exemplify this view for the vacuum subjected to a strong standing electromagnetic wave as generated in the focal spot of two counterpropagating, linearly polarized, high-intensity laser pulses. Focusing on a comparably simple electromagnetic field profile, which should nevertheless capture the essential features of the electromagnetic fields generated in the focal spots of real high-intensity laser beams, we provide estimates for emission characteristics and the numbers of emitted photons attainable with present and near future high-intensity laser facilities.

  11. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    PubMed Central

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-01-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated. PMID:22612079

  12. Ultrafast Dynamics in Low Temperature Saccharide Glasses: A Photon Echo Study

    NASA Astrophysics Data System (ADS)

    Nagasawa, Yutaka; Nakagawa, Yukako; Mori, Yoshio; Muromoto, Takayuki; Okada, Tadashi

    2004-04-01

    Saccharides are used as protectant by many organisms such as insects and amphibians. The glass transition of the saccharides is considered to be the key factor in the protection of the biological tissue against freezing and dehydration. The molecular dynamics of saccharide glasses were studied by photon echo spectroscopy and it revealed that electronic dephasing time is much longer in saccharide glasses compared to artificial polymer glass, polyvinylalcohol (PVA), at temperature of 10 K. Critically damped oscillation which can be assigned to the phonon mode of the saccharide glass was also observed.

  13. Anomalous decay of photon echo in a quantum dot ensemble in the strong excitation regime

    SciTech Connect

    Suemori, Ryosuke; Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-12-04

    We investigated the coherent dynamics of exciton ground-state transitions in an 150-layer-stacked strain-compensated InAs quantum dot ensemble using photon echo (PE) technique in the strong excitation regime. The time delay dependence of PE signal intensity shows a drastic change depending on the excitation intensity and the aperture position placed in front of a detector. Our results suggest that the excitation-intensity-dependent spatial distribution of PE signal intensity plays an important role in observing PE signal decay in the strong excitation regime.

  14. Single-shot T1 mapping using simultaneous acquisitions of spin- and stimulated-echo-planar imaging (2D ss-SESTEPI).

    PubMed

    Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee

    2010-09-01

    The conventional stimulated-echo NMR sequence only measures the longitudinal component while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin echo, in addition to the stimulated echo. Two-dimensional single-shot spin- and stimulated-echo-planar imaging (ss-SESTEPI) is an echo-planar-imaging-based single-shot imaging technique that simultaneously acquires a spin-echo-planar image and a stimulated-echo-planar image after a single radiofrequency excitation. The magnitudes of the spin-echo-planar image and stimulated-echo-planar image differ by T(1) decay and diffusion weighting for perfect 90 degrees radiofrequency and thus can be used to rapidly measure T(1). However, the spatial variation of amplitude of radiofrequency field induces uneven splitting of the transverse magnetization for the spin-echo-planar image and stimulated-echo-planar image within the imaging field of view. Correction for amplitude of radiofrequency field inhomogeneity is therefore critical for two-dimensional ss-SESTEPI to be used for T(1) measurement. We developed a method for amplitude of radiofrequency field inhomogeneity correction by acquiring an additional stimulated-echo-planar image with minimal mixing time, calculating the difference between the spin echo and the stimulated echo and multiplying the stimulated-echo-planar image by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid single-shot T(1) mapping may be useful for various applications, such as dynamic T(1) mapping for real-time estimation of the concentration of contrast agent in dynamic contrast enhancement MRI.

  15. Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging

    PubMed Central

    Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.

    2013-01-01

    Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029

  16. Photon echo studies of biexcitons and coherences in colloidal CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Colonna, Anne E.; Yang, Xiujuan; Scholes, Gregory D.

    2005-04-01

    The cover picture shows the size-dependent photoluminescence from CdSe colloidal quantum dots that were investigated in the work [1]. Ultrafast photon echo experiments were undertaken in conjunction with simulations based on a realistic many-body theory, shown in the picture, to ascertain the significance of many-body contributions to the third-order nonlinear response.The first author Anne E. Colonna undertook this research during a summer internship in the Department of Chemistry, University of Toronto. She is currently pursuing graduate studies at École Polytechnique, Saclay, in the Laboratoire d'Optique et Biosciences.The author Gregory D. Scholes is an Assistant Professor in the Department of Chemistry, University of Toronto. His research interests include synthesis and shape control of quantum dots, as well as the application of ultrafast laser spectroscopy to investigate the electronic structure of inorganic and organic semiconductors.

  17. Why the two-pulse photon echo is not a good quantum memory protocol

    SciTech Connect

    Ruggiero, Jerome; Le Goueet, Jean-Louis; Chaneliere, Thierry; Simon, Christoph

    2009-05-15

    We consider in this paper a two-pulse photon echo sequence in the prospect of quantum light storage. We analyze the conditions where quantum storage could be realistically performed. We simply and analytically calculate the efficiency in that limit, and clarify the role of the exactly {pi}-rephasing pulse in the sequence. Our physical interpretation of the process is well supported by its experimental implementation in a Tm{sup 3+}:yttrium aluminum garnet crystal thanks to an accurate control of the rephasing pulse area. We finally address independently the fundamental limitations of the quantum fidelity. Our work allows us to point out on one side the real drawbacks of this scheme for quantum storage and on the other side its specificities which can be a source of inspiration to conceive more promising procedures with rare-earth ion doped crystals.

  18. Stimulated echoes and two-dimensional nuclear magnetic resonance spectra for solids with simple line shapes

    NASA Astrophysics Data System (ADS)

    Geil, Burkhard; Diezemann, Gregor; Böhmer, Roland

    2008-03-01

    Nuclear magnetic resonance (NMR) experiments on ion conductors often yield rather unstructured spectra, which are hard to interpret if the relation between the actual translational motion of the mobile species and the changes of the NMR frequencies is not known. In order to facilitate a general analysis of experiments on solids with such spectra, different models for the stochastic evolution of the NMR frequencies are considered. The treated models involve random frequency jumps, diffusive evolutions, or approximately fixed frequency jumps. Two-dimensional nuclear magnetic resonance spectra as well as stimulated-echo functions for the study of slow and ultraslow translational dynamics are calculated for Gaussian equilibrium line shapes. The results are compared with corresponding ones from rotational models and with experimental data.

  19. Collision-induced photon echo at the transition 0{r_reversible}1 in ytterbium vapor: Direct proof of depolarizing collision anisotropy

    SciTech Connect

    Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Reshetov, V. A.; Yevseyev, I. V.

    2011-09-15

    A collision-induced photon echo arising at the transition 0{r_reversible}1 of ytterbium in the presence of heavy atomic buffer is investigated. Collision-induced echo signal appears in the case of mutually orthogonal linear polarizations of exciting pulses and it is absent without buffer. Collision-induced echo power grows with buffer pressure up to the maximum value and decays exponentially at further buffer pressure growth. Collision-induced echo power is essentially less than that of the ordinary echo generated by pulses with parallel polarizations in the same mixture, and its polarization is linear with the polarization vector directed along that of the first exciting pulse. All the properties of collision-induced photon echo are explained on the basis of collision relaxation dependence on the direction of active atom velocity.

  20. Semiclassical model of stimulated Raman scattering in photonic crystals.

    PubMed

    Florescu, Lucia; Zhang, Xiang

    2005-07-01

    We study the stimulated Raman scattering (SRS) of light from an atomic system embedded in a photonic crystal and coherently pumped by a laser field. In our study, the electromagnetic field is treated classically and the atomic system is described quantum mechanically. Considering a decomposition of the pump and Stokes fields into the Bloch modes of the photonic crystals and using a multiscale analysis, we derive the Maxwell-Bloch equations for SRS in photonic crystals. These equations contain effective parameters that characterize the SRS gain, the nonlinear atomic response to the electromagnetic field, and the group velocity and that can be calculated in terms of the Bloch modes of the unperturbed photonic crystal. We show that if the pump laser frequency is tuned near a photonic band edge and the atomic system is carefully chosen such that the Stokes mode matches another photonic band edge, low-threshold, enhanced Raman amplification is possible. Possible physical realizations of SRS in photonic crystals are also discussed.

  1. Billiard-ball echo model

    NASA Astrophysics Data System (ADS)

    Beach, R.; Hartmann, S. R.; Friedberg, R.

    1982-05-01

    Photon echoes in gaseous media are explained with the use of a simple heuristic model in which the atoms behave like composite billiard balls. The laser providing the excitation pulses becomes an atom smasher which "splits" the atoms and then by judicious programming puts them back together again. The most general photon-echo reordering process is explained without recourse to formal analysis so that an intuitive feeling is obtained which works equally well for the ordinary two-pulse photon echo, the Raman echo, the trilevel echo, the grating echo, etc. A formal analysis of the billiard-ball echo model is presented in its support.

  2. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits

    PubMed Central

    Merklein, Moritz; Kabakova, Irina V.; Büttner, Thomas F. S.; Choi, Duk-Yong; Luther-Davies, Barry; Madden, Stephen J.; Eggleton, Benjamin J.

    2015-01-01

    On-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slow-light structures. This, however, often results in simultaneous enhancement of competing nonlinear processes, which limit the efficiency and can cause signal distortion. Here, we exploit the frequency dependence of the optical density-of-states near the edge of a photonic bandgap to selectively enhance or inhibit nonlinear interactions on a chip. We demonstrate this concept for one of the strongest nonlinear effects, stimulated Brillouin scattering using a narrow-band one-dimensional photonic bandgap structure: a Bragg grating. The stimulated Brillouin scattering enhancement enables the generation of a 15-line Brillouin frequency comb. In the inhibition case, we achieve stimulated Brillouin scattering free operation at a power level twice the threshold. PMID:25736909

  3. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Merklein, Moritz; Kabakova, Irina V.; Büttner, Thomas F. S.; Choi, Duk-Yong; Luther-Davies, Barry; Madden, Stephen J.; Eggleton, Benjamin J.

    2015-03-01

    On-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slow-light structures. This, however, often results in simultaneous enhancement of competing nonlinear processes, which limit the efficiency and can cause signal distortion. Here, we exploit the frequency dependence of the optical density-of-states near the edge of a photonic bandgap to selectively enhance or inhibit nonlinear interactions on a chip. We demonstrate this concept for one of the strongest nonlinear effects, stimulated Brillouin scattering using a narrow-band one-dimensional photonic bandgap structure: a Bragg grating. The stimulated Brillouin scattering enhancement enables the generation of a 15-line Brillouin frequency comb. In the inhibition case, we achieve stimulated Brillouin scattering free operation at a power level twice the threshold.

  4. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    PubMed Central

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  5. Photon stimulated desorption measurement of an extruded aluminum beam chamber for the Advanced Photon Source

    SciTech Connect

    Foerster, C.L.; Lanni, C.; Noonan, J.R.; Rosenberg, R.A.

    1995-12-31

    The Advanced Photon Source (APS), presently being commisioned, will produce X-ray s of unprecedented brightness. The high energy ring of the APS is a 7 GeV positron storage ring, 1104 meters in circumference designed to operate at less than 10{sup {minus}9} Torr with 300 ma of beam and a greater than 10 hour lifetime. The storage ring vacuum chamber is constructed from an extruded 6063 aluminum alloy. During the construction phase, a 2.34 m long section of the APS extruded aluminum chamber was set up on National Synchrotron Light Source (NSLS) X-ray Beamlline X28A and Photon Stimulated Desorption (PSD) was measured. Cleaning and preparation of the chamber was identical to that of the APS construction. In addition to the chamber, small samples of M, Be, and Cu were also exposed to white light having a critical energy of 5 keV. In addition to PSD, measurements were made of specular and diffuse scattering of photons. The chamber and samples were each exposed to a dose greater than 10{sup 23} photons per meter. Desorption yields for H{sub 2}, CO, CO{sub 2}, CH{sub 4} and H{sub 2}0 are reported as a function of accumulated flux, critical energy, incidence angle, and preparation. These results are compared with previous results for aluminum on NSLS Beamlline U1OB and PSD results of other laboratories published for aluminum.

  6. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adjei-Acheamfour, Mischa; Tilly, Julius F.; Beerwerth, Joachim; Böhmer, Roland

    2015-12-01

    Oxygen-17 stimulated-echo spectroscopy is a novel nuclear magnetic resonance (NMR) technique that allows one to investigate the time scale and geometry of ultraslow molecular motions in materials containing oxygen. The method is based on detecting orientationally encoded frequency changes within oxygen's central-transition NMR line that are caused by second-order quadrupolar interactions. In addition to the latter, the present theoretical analysis of various two-pulse echo and stimulated-echo pulse sequences takes also heteronuclear dipolar interactions into account. As an experimental example, the ultraslow water motion in polycrystals of tetrahydrofuran clathrate hydrate is studied via two-time oxygen-17 stimulated-echo correlation functions. The resulting correlation times and those of hexagonal ice are similar to those from previous deuteron NMR measurements. Calculations of the echo functions' final-state correlations for various motional models are compared with the experimental data of the clathrate hydrate. It is found that a six-site model including the oxygen-proton dipolar interaction describes the present results.

  7. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance

    SciTech Connect

    Adjei-Acheamfour, Mischa; Tilly, Julius F.; Beerwerth, Joachim; Böhmer, Roland

    2015-12-07

    Oxygen-17 stimulated-echo spectroscopy is a novel nuclear magnetic resonance (NMR) technique that allows one to investigate the time scale and geometry of ultraslow molecular motions in materials containing oxygen. The method is based on detecting orientationally encoded frequency changes within oxygen’s central-transition NMR line that are caused by second-order quadrupolar interactions. In addition to the latter, the present theoretical analysis of various two-pulse echo and stimulated-echo pulse sequences takes also heteronuclear dipolar interactions into account. As an experimental example, the ultraslow water motion in polycrystals of tetrahydrofuran clathrate hydrate is studied via two-time oxygen-17 stimulated-echo correlation functions. The resulting correlation times and those of hexagonal ice are similar to those from previous deuteron NMR measurements. Calculations of the echo functions’ final-state correlations for various motional models are compared with the experimental data of the clathrate hydrate. It is found that a six-site model including the oxygen-proton dipolar interaction describes the present results.

  8. Magnetic-field control of photon echo from the electron-trion system in a CdTe quantum well: shuffling coherence between optically accessible and inaccessible states.

    PubMed

    Langer, L; Poltavtsev, S V; Yugova, I A; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Akimov, I A; Bayer, M

    2012-10-12

    We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions.

  9. Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher.

    PubMed

    Saltarelli, Francesco; Kumar, Vikas; Viola, Daniele; Crisafi, Francesco; Preda, Fabrizio; Cerullo, Giulio; Polli, Dario

    2016-09-19

    Stimulated Raman scattering spectroscopy is a powerful technique for label-free molecular identification, but its broadband implementation is technically challenging. We introduce and experimentally demonstrate a novel approach based on photonic time stretch. The broadband femtosecond Stokes pulse, after interacting with the sample, is stretched by a telecom fiber to ≈15ns, mapping its spectrum in time. The signal is sampled through a fast analog-to-digital converter, providing single-shot spectra at 80-kHz rate. We demonstrate ≈10-5 sensitivity over ≈500cm-1 in the C-H region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics. PMID:27661870

  10. Two-Photon Holographic Stimulation of ReaChR

    PubMed Central

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  11. Investigation of molecular order and dynamics in liquid crystals confined in porous media using the dipolar-correlation effect on the stimulated echo.

    PubMed

    Grinberg, F; Kimmich, R; Stapf, S

    1996-01-01

    A new application of the stimulated echo pulse sequence is presented that permits the elucidation of molecular order and dynamics in a time scale between about 100 microseconds and the spin-lattice relaxation time. The technique exploits the influence of dipolar coupling on the quotient of the stimulated and primary echoes produced by the standard three 90 degrees-pulse sequence. Results obtained for a nematic liquid crystal in bulk and confined in porous glass (mean pore diameter 4 nm) are compared. In both cases the echo amplitude quotient oscillates as a function of the pulse spacing. In a bulk nematic crystal these oscillations originate from strong unaveraged dipolar interactions and directly reflect the molecular order in the material. In porous glass a real nematic order is absent. In this case, the oscillations can be attributed to spin exchange between inequivalent protons. Exchange rates are estimated.

  12. Photon echo spectroscopy of porphyrins and heme proteins: effects of quasidegenerate electronic structure on the peak shift decay.

    PubMed

    Cho, Byung Moon; Carlsson, C Fredrik; Jimenez, Ralph

    2006-04-14

    Three pulse photon echo peak shift spectroscopy and transient grating measurements on Zn-substituted cytochrome c, Zn-tetraphenylporphyrin, and Zn-protoporphyrin IX are reported. The effects of protein conformation, axial ligation, and solvent are investigated. Numerical simulations of the peak shift and transient grating experiments are presented. The simulations employed recently derived optical response functions for square-symmetric molecules with doubly degenerate excited states. Simulations exploring the effects of excited-state energy splitting, symmetric and asymmetric fluctuations, and excited-state lifetime show that the time scales of the peak shift decay in the three-level system largely reflect the same dynamics as in the two-level system. However, the asymptotic peak shift, which is a clear indicator of inhomogeneous broadening in a two-level system, must be interpreted more carefully for three-level systems, as it is also influenced by the magnitude of the excited-state splitting. The calculated signals qualitatively reproduce the data. PMID:16626243

  13. Detection of dark states in two-dimensional electronic photon-echo signals via ground-state coherence

    SciTech Connect

    Egorova, Dassia

    2015-06-07

    Several recent experiments report on possibility of dark-state detection by means of so called beating maps of two-dimensional photon-echo spectroscopy [Ostroumov et al., Science 340, 52 (2013); Bakulin et al., Ultrafast Phenomena XIX (Springer International Publishing, 2015)]. The main idea of this detection scheme is to use coherence induced upon the laser excitation as a very sensitive probe. In this study, we investigate the performance of ground-state coherence in the detection of dark electronic states. For this purpose, we simulate beating maps of several models where the excited-state coherence can be hardly detected and is assumed not to contribute to the beating maps. The models represent strongly coupled electron-nuclear dynamics involving avoided crossings and conical intersections. In all the models, the initially populated optically accessible excited state decays to a lower-lying dark state within few hundreds femtoseconds. We address the role of Raman modes and of interstate-coupling nature. Our findings suggest that the presence of low-frequency Raman active modes significantly increases the chances for detection of dark states populated via avoided crossings, whereas conical intersections represent a more challenging task.

  14. Quantitative assessment of myocardial strain with displacement encoding with stimulated echoes MRI in patients with coronary artery disease.

    PubMed

    Miyagi, Hideki; Nagata, Motonori; Kitagawa, Kakuya; Kato, Shingo; Takase, Shinichi; Sigfridsson, Andreas; Ishida, Masaki; Dohi, Kaoru; Ito, Masaaki; Sakuma, Hajime

    2013-12-01

    To determine the diagnostic performance and reproducibility of strain assessment with displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance (CMR) in identifying contractile abnormalities in myocardial segments with late gadolinium enhancement (LGE). DENSE CMR was obtained on short-axis planes of the left ventricle (LV) in 24 patients with suspected coronary artery disease. e1 and e2 strains of LV wall were quantified. Cine MRI was acquired to determine percent systolic wall thickening (%SWT), followed by (LGE) CMR. The diagnostic performance of e1, e2 and %SWT for predicting the presence of LGE was evaluated by receiver operating characteristics (ROC) analysis. Myocardial scar on LGE CMR was observed in 91 (24 %) of 384 segments. The area under ROC curve for predicting the segments with LGE was 0.874 by e1, 0.916 by e2 and 0.828 by %SWT (p = 0.001 between e2 and %SWT). Excellent inter-observer reproducibility was found for strain [Intraclass correlation coefficient (ICC) = 0.962 for e1, 0.955 for e2] as compared with %SWT (ICC = 0.790). DENSE CMR can be performed as a part of routine CMR study and allows for quantification of myocardial strain with high inter-observer reproducibility. Myocardial strain, especially e2 is useful in detecting altered abnormal systolic contraction in the segments with myocardial scar.

  15. Quantification of Left Ventricular Volumes, Mass and Ejection Fraction using Cine Displacement Encoding with Stimulated Echoes (DENSE) MRI

    PubMed Central

    Haggerty, Christopher M.; Kramer, Sage P.; Skrinjar, Oskar; Binkley, Cassi M.; Powell, David K.; Mattingly, Andrea C.; Epstein, Frederick H.; Fornwalt, Brandon K.

    2014-01-01

    Purpose To test the hypothesis that magnitude images from cine Displacement Encoding with Stimulated Echoes (DENSE) MRI can accurately quantify left ventricular (LV) volumes, mass, and ejection fraction. Materials and Methods Thirteen mice (C57BL/6J) were imaged using a 7T ClinScan MRI. A short-axis stack of cine T2-weighted black blood (BB) images was acquired for calculation of left ventricular volumes, mass, and ejection fraction (EF) using the gold standard sum-of-slices methodology. DENSE images were acquired during the same imaging session in three short-axis (basal, mid, apical) and two long-axis orientations. A custom surface fitting algorithm was applied to epicardial and endocardial borders from the DENSE magnitude images to calculate volumes, mass, and EF. Agreement between the DENSE-derived measures and BB-derived measures was assessed via coefficient of variation (CoV). Results 3D surface reconstruction was completed on the order of seconds from segmented images, and required fewer slices to be segmented. Volumes, mass, and EF from DENSE-derived surfaces matched well with BB data (CoVs ≤11%). Conclusion LV mass, volumes, and ejection fraction in mice can be quantified through sparse (5 slices) sampling with DENSE. This consolidation significantly reduces the time required to assess both mass/volume-based measures of cardiac function and advanced cardiac mechanics. PMID:24923710

  16. Ultrafast energy transfer in LHC-II revealed by three-pulse photon echo peak shift measurements

    SciTech Connect

    Agarwal, R.; Krueger, B.P.; Scholes, G.D.; Yang, M.; Yom, J.; Mets, L.; Fleming, G.R.

    2000-04-06

    The authors report the results of three-pulse photon echo peak shift (3PEPS) measurements on the light-harvesting complex II (LHC-II) of the green algae Chlamydomonas reinhardtii. Experiments were performed at two different excitation wavelengths, 670 and 650 nm, corresponding to Chl-a and Chl-b excitation, respectively. The 3PEPS data are analyzed using a new theory that incorporates the effect of energy transfer on third-order response functions. The theoretical model separates energy transfer dynamics from the solvation dynamics arising from coupling of the electronic transitions to the protein environment. The protein fluctuations can be described by an ultrafast solvation on a sub-100 fs time scale and a long time correlation (static disorder). Decay of the 670 nm peak shift reveals spectral equilibration time scales for Chl-a molecules that range from 300 fs to 6 ps and agree well with other experiments. 3PEPS data at 650 nm (Chl-b excitation) reveal rapid Chl-b to Chl-b energy transfer (<1 ps), which suggests excitation hopping between a pair of Chls-b, and slow energy transfer from these Chls-b to Chls-a. Also, a 60 cm{sup {minus}1} oscillatory mode is observed for Chl-b which is attributed to the first observation of coherent nuclear dynamics in LHC-II. Calculating the energy transfer dynamics based on recently proposed assignments of chromophores by solving the master equation reveals Chl-b intra- and interband energy transfer dynamics that are in qualitative agreement with the simulation model of the peak shift data.

  17. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGES

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  18. Stimulated Rayleigh-Bragg scattering in two-photon absorbing media

    SciTech Connect

    He, Guang S.; Lu Changgui; Zheng Qingdong; Prasad, Paras N.; Zerom, Petros; Boyd, Robert W.; Samoc, Marek

    2005-06-15

    The origin and mechanism of backward stimulated Rayleigh scattering in two-photon absorbing media are studied theoretically and experimentally. This type of stimulated scattering has the unusual features of no frequency shift and low pump threshold requirement compared to all other known stimulated scattering effects. This frequency-unshifted stimulated Rayleigh scattering effect can be well explained by a two-photon-excitation-enhanced Bragg grating reflection model. The reflection of the forward pump beam from this stationary Bragg grating may substantially enhance the backward Rayleigh scattering beam, providing a positive feedback mechanism without causing any frequency shift. A two-counterpropagating-beam-formed grating experiment in a two-photon absorbing dye solution is conducted. The measured dynamic behavior of Bragg grating formation and reflectivity properties are basically consistent with the predictions from the proposed model.

  19. Definition of Shifts of Optical Transitions Frequencies due to Pulse Perturbation Action by the Photon Echo Signal Form

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2015-09-01

    A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.

  20. Oscillations of the photon echo intensity in a pulsed magnetic field: Zeeman splitting in LiLuF4:Er3+

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Gerasimov, K. I.

    2012-03-01

    A method of high-resolution time-resolved optical spectroscopy using oscillations of the photon echo intensity in the presence of a perturbation, which splits the optical frequencies of the transitions of two or more ion subgroups, has been proposed and demonstrated. This method has been applied to systems in which the Zee-man effect is manifested. The transition frequencies of ions are switched by a pulsed magnetic field. Oscillations of the photon echo intensity were observed in LiLuF4:Er3+ and LiYF4:Er3+. The first minimum corresponding to the accumulated phase of the electric dipole moment π/2 is reached in the pulsed magnetic field with an amplitude of ˜2 G at a duration of 30 ns. The Zeeman splitting in this field is ˜10 MHz, which is much less than the laser spectral width (0.15 Å ˜ 9 GHz). The g factor of the 4 F 9/2( I) excited state of the Er3+ ion in the LiLuF4 matrix has been determined in zero magnetic field. The comparison with the g-factor value found from the measurement of the absorption spectrum in a magnetic field of 8 kG has been performed.

  1. Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches

    PubMed Central

    2015-01-01

    Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution. PMID:24857186

  2. Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere.

    PubMed

    Yakshinskiy, B V; Madey, T E

    1999-08-12

    Mercury and the Moon both have tenuous atmospheres that contain atomic sodium and potassium. These chemicals must be continuously resupplied, as neither body can retain the atoms for more than a few hours. The mechanisms proposed to explain the resupply include sputtering of the surface by the solar wind, micrometeorite impacts, thermal desorption and photon-stimulated desorption. But there are few data and no general agreement about which processes dominate. Here we report laboratory studies of photon-stimulated desorption of sodium from surfaces that simulate lunar silicates. We find that bombardment of such surfaces at temperatures of approximately 250 K by ultraviolet photons (wavelength lambda < 300 nm) causes very efficient desorption of sodium atoms, induced by electronic excitations rather than by thermal processes or momentum transfer. The flux at the lunar surface of ultraviolet photons from the Sun is sufficient to ensure that photon-stimulated desorption of sodium contributes substantially to the Moon's atmosphere. On Mercury, solar heating of the surface implies that thermal desorption will also be an important source of atmospheric sodium. PMID:10458159

  3. Pseudo-rephasing and pseudo-free-induction-decay mechanism in two-color three-pulse photon echo of a binary system.

    PubMed

    Dong, Hui; Ryu, Ian Seungwan; Fleming, Graham R

    2013-12-27

    We investigate the two-color three-pulse photon echo peak shift in a (left-right) binary system, where each component consists of a heterodimer. On the basis of the model, we find that the effect of the excitonic asymmetry between two components leads to an additional factor in the peak shift. A pseudo-rephasing and pseudo-free-induction-decay mechanism is proposed to explain the resultant negative peak shift, when the differences between the two left/right components have the opposite sign. In such a case, estimates of the electronic coupling strength via two- and one-color peak shift experiments lead to an underestimate of the coupling magnitude.

  4. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons At Long Standoff Distances

    SciTech Connect

    J. L. Jones; J.W. Sterbentz; W.Y. Yoon

    2009-06-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung distribution) or as a set of one or more discrete photon energies (i.e., monoenergetic distribution). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). The latter paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). Specifically, this paper will pursue this higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions for air and an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of any secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening atmosphere. *Supported in part by the Defense Threat Reduction Agency and Department of Energy (DOE) Idaho Operations Office under Contract Number DE-AC07-05ID14517.

  5. The Number of Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images

    SciTech Connect

    Syed, Aleem; Lesoine, Michael D; Bhattacharjee, Ujjal; Petrich, Jacob W; Smith, Emily A

    2014-03-03

    Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion (STED) fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a tenfold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40- to 400-nm spatial regime.

  6. An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering.

    PubMed

    Xiao, Yongchuan; Guo, Jing; Wu, Kui; Qu, Pengfei; Qi, Huajuan; Liu, Caixia; Ruan, Shengping; Chen, Weiyou; Dong, Wei

    2013-02-11

    A single passband microwave photonic filter with ultrawide tunable range based on stimulated Brillouin scattering is theoretically analyzed. Combining the gain and loss spectrums, tuning range with 44GHz is obtained without crosstalk by introducing two pumps. Adding more pumps, Tuning range multiplying with the multiplication factor equaling to the total quantity of pump can be achieved, which has potential application in microwave and millimeter wave wireless communication systems.

  7. Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography.

    PubMed

    Fang, B; Liscidini, M; Sipe, J E; Lorenz, V O

    2016-05-01

    Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom. PMID:27137611

  8. Gradient moment nulling in fast spin echo.

    PubMed

    Hinks, R S; Constable, R T

    1994-12-01

    The fast spin echo sequence combines data from many echo signals in a Carr-Purcell-Meiboom-Gill echo train to form a single image. Much of the signal in the second and later echoes results from the coherent addition of stimulated echo signal components back to the spin echo signal. Because stimulated echoes experience no dephasing effects during the time that they are stored as Mz magnetization, they experience a different gradient first moment than does the spin echo. This leads to flow-related phase differences between different echo components and results in flow voids and ghosting, even when the first moment is nulled for the spin echo signal. A method of gradient moment nulling that correctly compensates both spin echo and stimulated echo components has been developed. The simplest solution involves nulling the first gradient moment at least at the RF pulses and preferably at both the RF pulses and the echoes. Phantom and volunteer studies demonstrate good suppression of flow-related artifacts.

  9. Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons

    PubMed Central

    Liao, Chien-Sheng; Wang, Pu; Wang, Ping; Li, Junjie; Lee, Hyeon Jeong; Eakins, Gregory; Cheng, Ji-Xin

    2015-01-01

    In vivo vibrational spectroscopic imaging is inhibited by relatively slow spectral acquisition on the second scale and low photon collection efficiency for a highly scattering system. Recently developed multiplex coherent anti-Stokes Raman scattering and stimulated Raman scattering techniques have improved the spectral acquisition time down to microsecond scale. These methods using a spectrometer setting are not suitable for turbid systems in which nearly all photons are scattered. We demonstrate vibrational imaging by spatial frequency multiplexing of incident photons and single photodiode detection of a stimulated Raman spectrum within 60 μs. Compared to the spectrometer setting, our method improved the photon collection efficiency by two orders of magnitude for highly scattering specimens. We demonstrated in vivo imaging of vitamin E distribution on mouse skin and in situ imaging of human breast cancerous tissues. The reported work opens new opportunities for spectroscopic imaging in a surgical room and for development of deep-tissue Raman spectroscopy toward molecular level diagnosis. PMID:26601311

  10. Stimulated topological condensation of 'vapor phase' photons and possible implications for space power technology

    SciTech Connect

    Dudziak, M.; Pitkaenen, M.

    1999-01-22

    vacuum current presence. Whether this entire process, if it is feasible, could generate enough useful energy for spacecraft propulsion is a major open question. However, it does appear that in the least such a mechanism could provide for some type of quantum communication with storage of information in both phase and intensity of the coherent emf and with the vacuum currents acting as quantum antennae. An examination of certain models known as quantum cellular automata and networks (QCAM, CLAN) (Dudziak, 1993) and synchronized heterogeneous dynamical networks (SHDN) (Chinarov, 1998) may provide some further insight into how the suggested stimulated coherent production of photons might be initiated, controlled, and stabilized in an application for space travel or communication.

  11. Ultrashort-TE stimulated echo acquisition mode (STEAM) improves the quantification of lipids and fatty acid chain unsaturation in the human liver at 7 T.

    PubMed

    Gajdošík, Martin; Chadzynski, Grzegorz L; Hangel, Gilbert; Mlynárik, Vladimír; Chmelík, Marek; Valkovič, Ladislav; Bogner, Wolfgang; Pohmann, Rolf; Scheffler, Klaus; Trattnig, Siegfried; Krššák, Martin

    2015-10-01

    Ultrahigh-field, whole-body MR systems increase the signal-to-noise ratio (SNR) and improve the spectral resolution. Sequences with a short TE allow fast signal acquisition with low signal loss as a result of spin-spin relaxation. This is of particular importance in the liver for the precise quantification of the hepatocellular content of lipids (HCL). In this study, we introduce a spoiler Gradient-switching Ultrashort STimulated Echo AcqUisition (GUSTEAU) sequence, which is a modified version of a stimulated echo acquisition mode (STEAM) sequence, with a minimum TE of 6 ms. With the high spectral resolution at 7 T, the efficient elimination of water sidebands and the post-processing suppression of the water signal, we estimated the composition of fatty acids (FAs) via the detection of the olefinic lipid resonance and calculated the unsaturation index (UI) of hepatic FAs. The performance of the GUSTEAU sequence for the assessment of UI was validated against oil samples and provided excellent results in agreement with the data reported in the literature. When measuring HCL with GUSTEAU in 10 healthy volunteers, there was a high correlation between the results obtained at 7 and 3 T (R(2) = 0.961). The test-retest measurements yielded low coefficients of variation for HCL (4 ± 3%) and UI (11 ± 8%) when measured with the GUSTEAU sequence at 7 T. A negative correlation was found between UI and HCL (n = 10; p < 0.033). The ultrashort TE MRS sequence (GUSTEAU; TE = 6 ms) provided high repeatability for the assessment of HCL. The improved spectral resolution at 7 T with the elimination of water sidebands and the offline water subtraction also enabled an assessment of the unsaturation of FAs. This all highlights the potential use of this MRS acquisition scheme for studies of hepatic lipid composition in vivo.

  12. Detection of a two-photon transition by stimulated emission: Amplification and circular birefringence

    SciTech Connect

    Sanguinetti, S.; Mure, E.; Minguzzi, P.

    2007-02-15

    We present the detection of a two-photon transition based on stimulated emission. This measurement was performed in rubidium for the 5S-5D{sub 5{approx}}{sub sol{approx}}{sub 2}-5P{sub 3{approx}}{sub sol{approx}}{sub 2} transition, using two low-cost diode lasers. Several detection schemes were tested. We reached the best results by probing the circular birefringence of the excited vapor, with the polarization analysis of the amplified laser beam.

  13. Spontaneous and stimulated Raman scattering in silica-cladded silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-01

    We report the observation of spontaneous and stimulated Raman scattering in a silica-cladded silicon photonic crystal (PhC) waveguide (WG) with modified holes. Spontaneous Raman scattering in the WG was enhanced when the Stokes wavelength was approached to the bandedge of a WG mode. A maximum enhancement up to ˜5 times was obtained in the present work. At a Stokes wavelength in the lower group velocity region, nonlinear increase of the Stokes power as the pump power, a clear indication of the onset of stimulated Raman scattering, was observed. Moreover, Raman amplification with an external signal beam was also demonstrated. On-off gain becomes small as the Stokes wavelength gets away from the bandedge of the WG mode. These are the first observations of Raman scattering effects in silica-cladded silicon PhC structures.

  14. Echo's Legacy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Echo 1 Satellite is simply a very large balloon, the diameter of a 10 story building. Metallized Products, Inc. developed a special material for NASA used for the balloons's skin. For "bouncing signals," material had to be reflective, lightweight, and thin enough to be folded into a beach ball size canister for delivery into orbit, where it would automatically inflate. Material selected was mylar polyester, with a reflective layer of tiny aluminum particles so fine that Echo's skin had a thickness half that of cellophane on a cigarette package.

  15. Highly efficient and two-photon excited stimulated Rayleigh-Bragg scattering in organic solutions

    SciTech Connect

    He, Guang S. Prasad, Paras N.; Kannan, Ramamurthi; Tan, Loon-Seng

    2015-07-21

    The properties of backward stimulated Rayleigh-Bragg scattering (SRBS) in three highly two-photon active AF-chromophores solutions in tetrahydrofuran (THF) have been investigated using 816-nm and 8-ns pump laser beam. The nonlinear reflectivity R, spectral structure, temporal behavior, and phase-conjugation capability of the backward SRBS output have been measured, respectively. Under the same experimental condition, the pump threshold for SRBS in three solution samples can be significantly (∼one order of magnitude) lower than that for stimulated Brillouin scattering (SBS) in the pure solvent (THF). With the optimized concentration value and at a moderate pump energy (∼1.5 mJ) level, the measured nonlinear reflectivity was R ≥ 35% for the 2 cm-long solution sample, while for the SBS from a pure solvent sample of the same length was R ≈ 4.7%. The peculiar features of very low pump threshold, no spectral shift, tolerant pump spectral linewidth requirement (≤1 cm{sup −1}), and phase-conjugation capability are favorable for those nonlinear photonics applications, such as highly efficiency phase-conjugation reflectors for high-brightness laser oscillator/amplifier systems, special imaging through turbid medium, self-adaptive remote optical sensing, as well as for optical rangefinder and lidar systems.

  16. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Eggleton, Benjamin J.; Merklein, Moritz; Buettner, Thomas F. S.; Kabakova, Irina V.

    2015-09-01

    On-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slowlight structures. This, however, often results in simultaneous enhancement of competing Q2 nonlinear processes, which limit the efficiency and can cause signal distortion. Here, we exploit the frequency dependence of the optical density-of-states near the edge of a photonic bandgap to selectively enhance or inhibit nonlinear interactions on a chip. We demonstrate this concept for one of the strongest nonlinear effects, stimulated Brillouin scattering using a narrow-band one-dimensional photonic bandgap structure: a Bragg grating. The stimluated Brillouin scattering enhancement enables the generation of a 15-line Brillouin frequency comb. In the inhibition case, we achieve stimulated Brillouin scattering free operation at a power level twice the threshold

  17. Oscillations in two-dimensional photon-echo signals of excitonic and vibronic systems: Stick-spectrum analysis and its computational verification

    SciTech Connect

    Egorova, Dassia

    2014-01-21

    Stick-spectrum expressions for electronic two-dimensional (2D) photon-echo (PE) signal of a generic multi-level system are presented and employed to interrelate oscillations in individual peaks of 2D PE signal and the underlying properties (eigenstates and coherent dynamics) of excitonic or vibronic systems. When focusing on the identification of the origin of oscillations in the rephasing part of 2D PE it is found, in particular, that multiple frequencies in the evolution of the individual peaks do not necessarily directly reflect the underlying system dynamics. They may originate from the excited-state absorption contribution to the signal, or arise due to multi-level vibrational structure of the electronic ground state, and represent a superposition of system frequencies, while the latter may evolve independently. The analytical stick-spectrum predictions are verified and illustrated by numerical calculations of 2D PE signals of an excitonic trimer and of a displaced harmonic oscillator with unequal vibrational frequencies in the two electronic states. The excitonic trimer is the smallest excitonic oligomer where excited-state absorption may represent a superposition of excited-state coherences and significantly influence the phase of the observed oscillations. The displaced oscillator is used to distinguish between the frequencies of the ground-state and of the excited-state manifolds, and to demonstrate how the location of a cross peak in 2D pattern of the PE signal “predetermines” its oscillatory behavior. Although the considered models are kept as simple as possible for clarity, the stick-spectrum analysis provides a solid general basis for interpretation of oscillatory signatures in electronic 2D PE signals of much more complex systems with multi-level character of the electronic states.

  18. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging

    PubMed Central

    Bianchini, Paolo; Harke, Benjamin; Galiani, Silvia; Vicidomini, Giuseppe; Diaspro, Alberto

    2012-01-01

    We developed a new class of two-photon excitation–stimulated emission depletion (2PE-STED) optical microscope. In this work, we show the opportunity to perform superresolved fluorescence imaging, exciting and stimulating the emission of a fluorophore by means of a single wavelength. We show that a widely used red-emitting fluorophore, ATTO647N, can be two-photon excited at a wavelength allowing both 2PE and STED using the very same laser source. This fact opens the possibility to perform 2PE microscopy at four to five times STED-improved resolution, while exploiting the intrinsic advantages of nonlinear excitation. PMID:22493221

  19. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    NASA Astrophysics Data System (ADS)

    Azzini, Stefano; Grassani, Davide; Galli, Matteo; Gerace, Dario; Patrini, Maddalena; Liscidini, Marco; Velha, Philippe; Bajoni, Daniele

    2013-07-01

    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitude. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a hundred-fold increase in efficiency as compared to silicon micro-ring resonators.

  20. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    PubMed

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was <1 %. For the 6-MV photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  1. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    NASA Astrophysics Data System (ADS)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  2. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    SciTech Connect

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na/sup +/ and F/sup +/ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H/sup +/, Li/sup +/, and F/sup +/ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N/sub 2/-O/sub 2/ multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF/sub 2/ and a series of alkali halides are discussed in terms of desorption mechanisms.

  3. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  4. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  5. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    NASA Astrophysics Data System (ADS)

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  6. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  7. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  8. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams

    SciTech Connect

    Reft, Chester S.

    2009-05-15

    Optically stimulated luminescent detectors, which are widely used in radiation protection, offer a number of potential advantages for application in radiation therapy dosimetry. Their introduction into this field has been somewhat hampered by the lack of information on their radiation response in megavoltage beams. Here the response of a commercially available optically stimulated luminescent detector (OSLD) is determined as a function of energy, absorbed dose to water, and linear energy transfer (LET). The detector response was measured as a function of energy for absorbed doses from 0.5 to 4.0 Gy over the following ranges: 125 kVp to18 MV for photons, 6-20 MeV for electrons, 50-250 MeV for protons, and 290 MeV/u for the carbon ions. For the low LET beams, the response of the detector was linear up to 2 Gy with supralinearity occurring at higher absorbed doses. For the kilovoltage photons, the detector response relative to 6 MV increased with decreasing energy due to the higher atomic number of aluminum oxide (11.2) relative to water (7.4). For the megavoltage photons and electrons, the response was independent of energy. The response for protons was also independent of energy, but it was about 6% higher than its response to 6 MV photons. For the carbon ions, the dose response was linear for a given LET from 0.5 to 4.0 Gy, and no supralinearity was observed. However, it did exhibit LET dependence on the response relative to 6 MV photons decreasing from 1.02 at 1.3 keV/{mu}m to 0.41 at 78 keV/{mu}m. These results provide additional information on the dosimetric properties for this particular OSL detector and also demonstrate the potential for their use in photon, electron, and proton radiotherapy dosimetry with a more limited use in high LET radiotherapy dosimetry.

  9. Systolic Myocardial Dysfunction in Patients with Type 2 Diabetes Mellitus: Identification at MR Imaging with Cine Displacement Encoding with Stimulated Echoes

    PubMed Central

    Ernande, Laura; Thibault, Hélène; Bergerot, Cyrille; Moulin, Phillippe; Wen, Han; Derumeaux, Geneviève

    2012-01-01

    Purpose: To determine if cine displacement encoding with stimulated echoes (DENSE) can help to identify and determine the patterns of subclinical myocardial systolic dysfunction in patients with type 2 diabetes mellitus (DM) when compared with cine DENSE in control patients. Materials and Methods: After obtaining approval from the institutional ethics committee and written informed consent from the patients, 37 patients with type 2 DM without overt heart disease and 23 age-matched control patients were prospectively included in the study. The patients underwent standard cine magnetic resonance (MR) imaging with two-dimensional cine DENSE acquisitions. Circumferential (Ecc) and radial (Err) systolic strains were measured on short-axis views at basal, mid, and apical left ventricular levels. Longitudinal strain (Ell) was measured on four- and two-chamber views. Statistical testing included the intraclass correlation coefficient and multiple linear regression analysis. Results: The intraobserver intraclass correlation coefficient values were 0.85, 0.95, and 0.90, and the interobserver intraclass correlation coefficient values were 0.79, 0.91 and 0.80 for Ecc, Err, and Ell, respectively. The left ventricular ejection fraction was in the reference range and similar between the groups, and the patients with DM showed a decrease in Ecc (−14.4% ± 1.6 vs −17.0% ± 1.6, P < .001), Err (36.2% ± 10.9 vs 44.4% ± 9.9, P = .006) and Ell (−12.9% ± 2.1 vs −15.5% ± 1.6, P < .001) compared with the control patients. Finally, DM was independently associated with Ecc (P < .001), Err (P = .05) and Ell (P = .01) after adjustment for age, sex, hypertension, body mass index, and left ventricular mass. Conclusion: Cine DENSE, a motion-encoding MR imaging technique for myocardial strain assessment with high spatial resolution, appears to be useful in the identification of subclinical myocardial dysfunction in patients with DM. © RSNA, 2012 Supplemental material: http

  10. Single Echo MRI

    PubMed Central

    Galiana, Gigi; Constable, R. Todd

    2014-01-01

    Purpose Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout. The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve stimulation limits, yielding an image from a single 4 ms echo. Theory and Methods This sequence was inspired by considering the code of each voxel, i.e. the phase accumulation that a voxel follows through the readout, an approach connected to traditional encoding theory. We present simulations for the initial sequence, a low slew rate analog, and higher resolution reconstructions. Results Extremely fast acquisitions are achievable, though as one would expect, SNR is reduced relative to the slower Cartesian sampling schemes because of the high gradient strengths. Conclusions The prospect that nonlinear gradients can acquire images in a single <10 ms echo makes this a novel and interesting approach to image encoding. PMID:24465837

  11. Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide.

    PubMed

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang; Xie, Heng; Gao, Ya; Feng, Danqi; Xiong, Huang

    2014-12-29

    We propose a scheme for on-chip all optical mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. To describe the mode conversion the theoretical model of the FSBS is established by taking into account the radiation pressure and the electrostriction force simultaneously. The numerical simulation is carried out for the mode conversion from the fundamental mode E11x to the higher-order mode E21x. The results indicate that the mode conversion efficiency is affected by the waveguide length and the input pump light power, and the highest efficiency can reach upto 88% by considering the influence of optical and acoustic absorption losses in the hybrid waveguide. Additionally, the conversion bandwidth with approximate 12.5 THz can be achieved in 1550nm communication band. This mode converter on-chip is a promising device in the integrated optical systems, which can effectively increase the capacity of silicon data busses for on-chip optical interconnections. PMID:25607172

  12. Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide.

    PubMed

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang; Xie, Heng; Gao, Ya; Feng, Danqi; Xiong, Huang

    2014-12-29

    We propose a scheme for on-chip all optical mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. To describe the mode conversion the theoretical model of the FSBS is established by taking into account the radiation pressure and the electrostriction force simultaneously. The numerical simulation is carried out for the mode conversion from the fundamental mode E11x to the higher-order mode E21x. The results indicate that the mode conversion efficiency is affected by the waveguide length and the input pump light power, and the highest efficiency can reach upto 88% by considering the influence of optical and acoustic absorption losses in the hybrid waveguide. Additionally, the conversion bandwidth with approximate 12.5 THz can be achieved in 1550nm communication band. This mode converter on-chip is a promising device in the integrated optical systems, which can effectively increase the capacity of silicon data busses for on-chip optical interconnections.

  13. Asymmetric properties between the forward and backward stimulated emission generated by ultrafast three- and four-photon excitation

    SciTech Connect

    He, Guang S.; Lu Changgui; Zheng Qingdong; Baev, Alexander; Samoc, Marek; Prasad, Paras N.

    2006-03-15

    This paper presents the observation of asymmetric behavior between the forward and backward stimulated emission, generated in multiphoton active dye solutions, through three- or four-photon excitation of subpicosecond laser pulses. At a pump energy level considerably higher than the lasing threshold value, the peak wavelengths of the forward stimulated emission are 20-30-nm shorter than those of the backward stimulated emission for the two investigated stilbazolium dye solutions (PRL-L3 and PRL-L10). This obvious spectral asymmetry can be explained by the following three considerations: (i) the difference of spatial/temporal sequences between the forward and backward stimulated emission pulses; (ii) blueshift of the peak wavelength of transient gain experienced by the forward stimulated emission pulse; and (iii) saturation of reabsorption at the forward lasing wavelength range. These proposed explanations are verified by a specially designed pump-probe experiment, utilizing a white-light continuum as the probe beam and the {approx}1300-nm laser radiation as the pump beam for three-photon excitation. The experimental results have clearly shown the existence of the saturation effect of reabsorption and the gain-peak blueshift effect as well as their transient features.

  14. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  15. Simple rate equation model for hypothetical doubly stimulated emission of both photons and phonons in quantum-well lasers

    SciTech Connect

    Kroemer, H.

    1981-06-15

    The dissipation processes by which electrons and holes lose energy after being trapped in quantum wells might, in a sufficiently heavily pumped quantum well laser, lead to the buildup of such a high phonon population that phonon-assisted laser action by doubly stimulated emission of photons and phonons acquires a higher gain than unassisted laser action. The resulting mode switching exhibits a pronounced hysteresis with pump rate, which should be a characteristic identifying feature of phonon-assisted laser action.

  16. Stimulants

    MedlinePlus

    Stimulants are drugs that increase your heart rate, breathing rate, and brain function. Some stimulants affect only a specific organ, such as the heart, lungs, brain, or nervous system. Epinephrine is a stimulant. It ...

  17. Two-Photon Absorption and Time-Resolved Stimulated Emission Depletion Spectroscopy of a New Fluorenyl Derivative

    PubMed Central

    Bondar, Mykhailo V.; Morales, Alma R.; Yue, Xiling; Luchita, Gheorghe; Przhonska, Olga V.; Kachkovsky, Olexy D.

    2012-01-01

    The synthesis, comprehensive linear photophysical characterization, two-photon absorption (2PA), steady-state and time-resolved stimulated emission depletion properties of a new fluorene derivative, (E)-1-(2-(di-p-tolylamino)-9,9-diethyl-9H-fluoren-7-yl)-3-(thiophen-2-yl)prop-2-en-1-one (1), are reported. The primary linear spectral properties, including excitation anisotropy, fluorescence lifetimes, and photostability, were investigated in a number of aprotic solvents at room temperature. The degenerate 2PA spectra of 1 were obtained with an open aperture Z-scan and two-photon induced fluorescence methods, using a 1-kHz femtosecond laser system, and maximum 2PA cross-sections of ~400–600 GM were obtained. The nature of the electronic absorption processes in 1 was investigated by DFT-based quantum chemical methods implemented in the Gaussian 09 program. The one- and two-photon stimulated emission spectra of 1 were measured over a broad spectral range using a femtosecond pump probe–based fluorescence quenching technique, while a new methodology for time-resolved fluorescence emission spectroscopy is proposed. An effective application of 1 in fluorescence bioimaging was demonstrated via one- and two-photon fluorescence microscopy images of HCT 116 cells containing the dye encapsulated micelles. PMID:22887914

  18. Stimulated emission reduced fluorescence microscopy: a concept for extending the fundamental depth limit of two-photon fluorescence imaging.

    PubMed

    Wei, Lu; Chen, Zhixing; Min, Wei

    2012-06-01

    Two-photon fluorescence microscopy has become an indispensable tool for imaging scattering biological samples by detecting scattered fluorescence photons generated from a spatially confined excitation volume. However, this optical sectioning capability breaks down eventually when imaging much deeper, as the out-of-focus fluorescence gradually overwhelms the in-focal signal in the scattering samples. The resulting loss of image contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation efficiency. Herein we propose to extend this depth limit by performing stimulated emission reduced fluorescence (SERF) microscopy in which the two-photon excited fluorescence at the focus is preferentially switched on and off by a modulated and focused laser beam that is capable of inducing stimulated emission of the fluorophores from the excited states. The resulting image, constructed from the reduced fluorescence signal, is found to exhibit a significantly improved signal-to-background contrast owing to its overall higher-order nonlinear dependence on the incident laser intensity. We demonstrate this new concept by both analytical theory and numerical simulations. For brain tissues, SERF is expected to extend the imaging depth limit of two-photon fluorescence microscopy by a factor of more than 1.8.

  19. Stimulated emission reduced fluorescence microscopy: a concept for extending the fundamental depth limit of two-photon fluorescence imaging

    PubMed Central

    Wei, Lu; Chen, Zhixing; Min, Wei

    2012-01-01

    Two-photon fluorescence microscopy has become an indispensable tool for imaging scattering biological samples by detecting scattered fluorescence photons generated from a spatially confined excitation volume. However, this optical sectioning capability breaks down eventually when imaging much deeper, as the out-of-focus fluorescence gradually overwhelms the in-focal signal in the scattering samples. The resulting loss of image contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation efficiency. Herein we propose to extend this depth limit by performing stimulated emission reduced fluorescence (SERF) microscopy in which the two-photon excited fluorescence at the focus is preferentially switched on and off by a modulated and focused laser beam that is capable of inducing stimulated emission of the fluorophores from the excited states. The resulting image, constructed from the reduced fluorescence signal, is found to exhibit a significantly improved signal-to-background contrast owing to its overall higher-order nonlinear dependence on the incident laser intensity. We demonstrate this new concept by both analytical theory and numerical simulations. For brain tissues, SERF is expected to extend the imaging depth limit of two-photon fluorescence microscopy by a factor of more than 1.8. PMID:22741091

  20. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption.

    PubMed

    Wang, Yue; Ta, Van Duong; Gao, Yuan; He, Ting Chao; Chen, Rui; Mutlugun, Evren; Demir, Hilmi Volkan; Sun, Han Dong

    2014-05-01

    Three-photon pumped stimulated emission and coherent random lasing from colloidal CdSe/CdS/ZnS core-multishell quantum dots are achieved for the first time. These results can offer new possibilities in biology and photonics, as well as at their intersection of biophotonics.

  1. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.

    PubMed

    Jain, Varsha; Sharma, Shubham; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-09-01

    We theoretically examine two designs of single-mode (i) Er-doped tellurite and (ii) undoped tellurite photonic crystal fiber (PCF) for generation of slow light with tunable features based on stimulated Brillouin scattering. We obtained (i) Brillouin gain up to 91 dB and time delay of ∼145  ns at maximum allowable pump power of ∼775  mW in a 2 m Er-doped tellurite PCF and (ii) Brillouin gain up to ∼88  dB and time delay of ∼154  ns at maximum allowable pump power ∼21  mW in a 100 m undoped tellurite photonic crystal fiber. Simulated results clearly indicate that the doped tellurite PCF with Er enhances the maximum allowable pump power and comparable time delay can be obtained even with reduced photonic crystal fiber length. We believe that the carried out examination and simulation have potential impact on design and development of slow-light-based photonic devices applicable in telecommunication systems, enhancement of optical forces, and quantum computing. PMID:27607250

  2. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.

    PubMed

    Jain, Varsha; Sharma, Shubham; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-09-01

    We theoretically examine two designs of single-mode (i) Er-doped tellurite and (ii) undoped tellurite photonic crystal fiber (PCF) for generation of slow light with tunable features based on stimulated Brillouin scattering. We obtained (i) Brillouin gain up to 91 dB and time delay of ∼145  ns at maximum allowable pump power of ∼775  mW in a 2 m Er-doped tellurite PCF and (ii) Brillouin gain up to ∼88  dB and time delay of ∼154  ns at maximum allowable pump power ∼21  mW in a 100 m undoped tellurite photonic crystal fiber. Simulated results clearly indicate that the doped tellurite PCF with Er enhances the maximum allowable pump power and comparable time delay can be obtained even with reduced photonic crystal fiber length. We believe that the carried out examination and simulation have potential impact on design and development of slow-light-based photonic devices applicable in telecommunication systems, enhancement of optical forces, and quantum computing.

  3. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  4. Image formation using stimulated raman scattering gain

    NASA Astrophysics Data System (ADS)

    Bespalov, V. G.; Makarov, E. A.; Stasel'ko, D. I.

    2016-07-01

    Theoretical analysis of the spatial, noise, and energy characteristics of an amplifier has been performed in the mode of spectral and time selection using subnanosecond stimulated Raman Scattering gain of weak echo signals in crystalline active media that are known for high (up to 10-1 cm/MW) gain coefficients. The possibility to reach high gain values has been demonstrated for weak signals from objects at acceptable angular sizes of the field of vision of an amplifier. To provide a signal-to-noise ratio that exceeds unity over the entire field of vision, the number of photons at the input to an amplifier that is required has to exceed the number of its resolution elements. Accurate determination of the possibilities of recording of weak echo signals and quality of images of targets that are obtained using amplifiers under stimulated Raman Scattering requires additional special experiments.

  5. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  6. Electrical stimulation of non-classical photon emission from diamond color centers by means of sub-superficial graphitic electrodes

    PubMed Central

    Forneris, Jacopo; Traina, Paolo; Monticone, Daniele Gatto; Amato, Giampiero; Boarino, Luca; Brida, Giorgio; Degiovanni, Ivo P.; Enrico, Emanuele; Moreva, Ekaterina; Grilj, Veljko; Skukan, Natko; Jakšić, Milko; Genovese, Marco; Olivero, Paolo

    2015-01-01

    Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 μm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150 V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560–700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers. PMID:26510889

  7. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea.

    PubMed

    Tan, Xiaodong; Young, Hunter; Matic, Agnella Izzo; Zirkle, Whitney; Rajguru, Suhrud; Richter, Claus-Peter

    2015-08-01

    Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons.

  8. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea

    PubMed Central

    Tan, Xiaodong; Young, Hunter; Matic, Agnella Izzo; Zirkle, Whitney; Rajguru, Suhrud; Richter, Claus-Peter

    2015-01-01

    Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons. PMID:26311831

  9. VACUUM ULTRAVIOLET PHOTON-STIMULATED OXIDATION OF BURIED ICE: GRAPHITE GRAIN INTERFACES

    SciTech Connect

    Shi, J.; Grieves, G. A.; Orlando, T. M.

    2015-05-01

    The vacuum ultraviolet (VUV) synthesis of CO and CO{sub 2} on ice-coated graphite and isotopic labeled {sup 13}C graphite has been examined for temperatures between 40 and 120 K. The results show that CO and CO{sub 2} can be formed at the buried ice:graphite interface with Lyα photon irradiation via the reaction of radicals (O and OH) produced by direct photodissociation and the dissociative electron attachment of the interfacial water molecules. The synthesized CO and CO{sub 2} molecules can desorb in hot photon-dominated regions and are lost to space when ice coated carbonaceous dust grains cycle within the protoplanetary disks. Thus, the nonthermal formation of CO and CO{sub 2} at the buried ice:grain interface by VUV photons may help regulate the carbon inventory during the early stage of planet formation. This may contribute to the carbon deficits in our solar system and suggests that a universal carbon deficit gradient may be expected within astrophysical bodies surrounding center stars.

  10. Stark echo modulation for quantum memories

    NASA Astrophysics Data System (ADS)

    Arcangeli, A.; Ferrier, A.; Goldner, Ph.

    2016-06-01

    Quantum memories for optical and microwave photons provide key functionalities in quantum processing and communications. Here we propose a protocol well adapted to solid-state ensemble-based memories coupled to cavities. It is called Stark echo modulation memory (SEMM) and allows large storage bandwidths and low noise. This is achieved in an echo-like sequence combined with phase shifts induced by small electric fields through the linear Stark effect. We investigated the protocol for rare-earth nuclear spins and found a high suppression of unwanted collective emissions that is compatible with single-photon-level operation. Broadband storage together with high fidelity for the Stark retrieval process is also demonstrated. SEMM could be used to store optical or microwave photons in ions and/or spins. This includes nitrogen-vacancy centers in diamond and rare-earth-doped crystals, which are among the most promising solid-state quantum memories.

  11. Meteoric Head Echoes

    NASA Astrophysics Data System (ADS)

    Hajduk, A.; Galád, A.

    1995-01-01

    Results of the analysis of 3261 radar meteor head echoes observed during the Orionid and Lyrid periods by the high-power radar of the Springhill Meteor Observatory are given. Dependence of the occurence of head echoes on the geometrical factors and physical properties of the meteoroids has been studied. Increas of the head echo rates with the elevation of the shower radiant and with the velocity of meteoroids has been observed.

  12. Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation.

    PubMed

    Marino, Attilio; Barsotti, Jonathan; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Labardi, Massimiliano; Mattoli, Virgilio; Ciofani, Gianni

    2015-11-25

    In this letter, we report on the fabrication, the characterization, and the in vitro testing of structures suitable for cell culturing, prepared through two-photon polymerization of a nanocomposite resist. More in details, commercially available Ormocomp has been doped with piezoelectric barium titanate nanoparticles, and bioinspired 3D structures resembling trabeculae of sponge bone have been fabricated. After an extensive characterization, preliminary in vitro testing demonstrated that both the topographical and the piezoelectric cues of these scaffolds are able to enhance the differentiation process of human SaOS-2 cells. PMID:26548588

  13. Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation.

    PubMed

    Marino, Attilio; Barsotti, Jonathan; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Labardi, Massimiliano; Mattoli, Virgilio; Ciofani, Gianni

    2015-11-25

    In this letter, we report on the fabrication, the characterization, and the in vitro testing of structures suitable for cell culturing, prepared through two-photon polymerization of a nanocomposite resist. More in details, commercially available Ormocomp has been doped with piezoelectric barium titanate nanoparticles, and bioinspired 3D structures resembling trabeculae of sponge bone have been fabricated. After an extensive characterization, preliminary in vitro testing demonstrated that both the topographical and the piezoelectric cues of these scaffolds are able to enhance the differentiation process of human SaOS-2 cells.

  14. Analysis of acousto-optic interaction based on forward stimulated Brillouin scattering in hybrid phononic-photonic waveguides.

    PubMed

    Zhang, Ruiwen; Chen, Guodong; Sun, Junqiang

    2016-06-13

    We present the generation of forward stimulated Brillouin scattering (FSBS) in hybrid phononic-photonic waveguides. To confine the optical and acoustic waves simultaneously, a hybrid waveguide is designed by embedding the silicon line defect in the silicon nitride phononic crystal slab. By taking into account three kinds hybrid waveguide, the appropriate structural parameters are obtained to enhance the acousto-optic interaction. We fabricate the honeycomb hybrid waveguide with a CMOS compatible technology. The forward Brillouin frequency shift is measured up to 2.425 GHz and the acoustic Q-factor of the corresponding acoustic mode is 1100. The influences of pump power, acoustic loss, nonlinear optical loss and lattice constant on the acousto-optic interaction in FSBS are analyzed and discussed. The proposed approach has important potential applications in on-chip all-optical signal processing. PMID:27410324

  15. Effect of photon energy in collagen generation by interstitial low level laser stimulation

    NASA Astrophysics Data System (ADS)

    Jun, Eunkwon; Ha, Myungjin; Lee, Sangyeob; Radfar, Edalat; Park, Jihoon; Jung, Byungjo

    2015-03-01

    Although the mechanism of low level laser therapy (LLLT) is unclear, many studies demonstrated the positive clinical performance of LLLT for skin rejuvenation. An increase in dermal collagen plays an important role in skin rejuvenation and wound healing. This study aimed to investigate collagen generation after interstitial low level laser stimulation (ILLS). Rabbits were divided into two groups: surfacing irradiation and minimally invasive irradiation. 660nm diode laser of 20mW with 10J, 13J and 15J was applied to the backside of rabbits. Collagen formation was evaluated with ultrasound skin scanner every 12 hours. Results shows that ILLS groups have denser collagen density than surfacing groups.

  16. Project Echo Task Group

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'A technician assigned to the Project Echo Task Group separates the two hemispheres of the Echo 1 container for inspection. The charge that freed the balloon was placed inside of a ring encircling the canister at its equator.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 181.

  17. Multi-echo acquisition

    PubMed Central

    Posse, Stefan

    2011-01-01

    The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458

  18. Spectroscopic study of photon, ion and electron stimulated molecular synthesis in astrophysical ices

    NASA Astrophysics Data System (ADS)

    Dawes, Anita

    The universe is a vast chemical and physical factory consisting of large collections of stars, gas and dust. Energetic processing of ices and subsequent molecular synthesis in astrophysical environments, including icy Solar System bodies and grain mantles in the interstellar medium, are responsible for the observation of some of the molecular species found in space. Gas phase processes alone cannot explain the reaction mechanisms and the observed abundances of some of these molecules. This thesis reviews the current state of knowledge on solid state molecular synthesis in astrophysical ices and highlights the relevance of this work to understanding the chemical origins of life. The nature and origin of astrophysical ices and their environments is discussed to provide a background for the design and implementation of a new apparatus built to simulate astrophysical environments. An outline is given of the relevant collisional and chemical processes associated with interactions between radiation and matter pertinent to astrochemistry, e.g. ion, photon and electron processing of ices. A detailed description of the design and construction of the new apparatus is given and the theory and instrumentation in the spectroscopic techniques used are discussed. This is followed by a detailed explanation of the experimental procedures implemented at both ion and synchrotron radiation sources. The first results of ion and photon irradiation of H2O and CO2 ices (both pure and binary) using this apparatus are presented and discussed in detail. Ion irradiation is carried out using both reactive and unreactive ions. Reactive carbon ion implantation in pure H2O is investigated and the production of CO and CO2 monitored. Experiments involving both high (100 keV) and low (1-5 keV) energy ion irradiation of mixed H2O:CO2 ices are described and the production of H2CO3 (carbonic acid) and CO investigated. The production of CO and CO3 is described in UV irradiation experiments of mixed H2O

  19. Imagerie Resolue dans le Temps des Photons et Neutres Metastables Emis D'une Surface Par Stimulation Electronique

    NASA Astrophysics Data System (ADS)

    Leclerc, Gregoire

    L'appareil que nous presentons ici a ete mis au point pour permettre d'accumuler des images numeriques, resolues dans le temps, de la desorption par stimulation electronique (DSE) d'ions positifs et negatifs, de photons et de neutres metastables, tout en conservant des capacites de base de diffraction d'electrons lents (DEL) et de transmission d'electrons lents (TEL). Le spectrometre comporte un monochromateur d'electrons a secteur cylindrique de 127^ circ dont l'optique de sortie permet la focalisation du faisceau d'electrons sur une large gamme d'energies. Le detecteur consiste en un empilement de galettes de microcanaux et d'une anode resistive a encodage de division de charges. La reponse spatiale du detecteur a ete calibree et plusieurs causes de non-linearite ont ete localisees et corrigees. Des methodes de correction materielle et logicielle des distorsions spatiales sont presentees. La resolution temporelle des evenements est obtenue en pulsant le faisceau d'electrons, et de facon synchrone la detection, laquelle est couplee a un micro-ordinateur. La premiere partie de ce travail est consacree a la caracterisation du spectrometre et la presentation de nombreux parametres operationnels, obtenus soit au moment de la conception, soit experimentalement. Suit la presentation de donnees de DEL et de DSE pour le systeme Ar/Pt(111) en films minces a 15K. Les sequences temporelles d'images de metastables d'Ar desorbes ont revele la presence de plusieurs populations distinctes, ayant des distributions angulaires et distributions d'energie cinetique que nous avons pu separer. Les fonctions d'excitation de l'emission de photons et de la desorption de differentes composantes de metastables, ainsi que la dependance de ces signaux sur l'epaisseur des films d'Ar, sont aussi presentees et analysees. Les techniques que nous avons developpees ont permis de cerner les mecanismes en jeu pour la desorption et la luminescence.

  20. Light echoes - Novae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1988-01-01

    The sudden brilliance of a nova eruption will be reflected on surrounding dust grains to create a phantom nebula. Previous searches for these light echoes have used relatively short exposures with photograhic detectors. This paper reports on a search around eight recent novae with long exposures using a CCD camera. Despite an increase of sensitivity by over an order of magnitude, no light echoes were detected. It is found that the average grain density must be less than about 10 to the -9th per cu cm for distances from 0.1 pc to 1000 pc from the novae. The light echo around Nova Persei 1901 was caused by reflection off clouds with grain densities of several times 10 to the -9th per cu cm which are at distances between 0.1 pc and 10 pc. Echoes from dust in a circumstellar shell or ejected during a previous eruption will be effectively unobservable.

  1. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  2. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures.

    PubMed

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  3. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    NASA Astrophysics Data System (ADS)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  4. Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.

    PubMed

    Shin, Younghoon; Kwon, Hyuk-Sang

    2016-03-21

    We propose a Monte Carlo (MC) method based on a direct photon flux recording strategy using inhomogeneous, meshed rodent brain atlas. This MC method was inspired by and dedicated to fibre-optics-based optogenetic neural stimulations, thus providing an accurate and direct solution for light intensity distributions in brain regions with different optical properties. Our model was used to estimate the 3D light intensity attenuation for close proximity between an implanted optical fibre source and neural target area for typical optogenetics applications. Interestingly, there are discrepancies with studies using a diffusion-based light intensity prediction model, perhaps due to use of improper light scattering models developed for far-field problems. Our solution was validated by comparison with the gold-standard MC model, and it enabled accurate calculations of internal intensity distributions in an inhomogeneous near light source domain. Thus our strategy can be applied to studying how illuminated light spreads through an inhomogeneous brain area, or for determining the amount of light required for optogenetic manipulation of a specific neural target area. PMID:26914289

  5. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures.

    PubMed

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism. PMID:26580697

  6. Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Yanez, Ciceron

    2009-12-01

    Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a

  7. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were  <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was  <10% up to ~2–4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  8. Comparison between experimental and computer simulations of current-voltage (I-V) characteristics of dielectric-coated photon-stimulated field emitters.

    PubMed

    Mayer, A; Mousa, M S; Vigneron, J P

    2001-10-01

    For the purpose of simulating photon-stimulated field emission by taking account of three-dimensional aspects, a transfer-matrix formulation of electronic scattering was combined with a Floquet expansion of the wave function for taking account of quanta exchanges between the electrons and the external radiation. With specific techniques to preserve numerical stability, this transfer-matrix formalism is well suited to compute the transmission of the field-emitted/photon-stimulated electrons between two electrodes. This theory is applied to the computation of Fowler-Nordheim curves describing the photon-stimulated field emission of a tungsten plane emitter (described by z< or =0), which supports a nanometric protrusion and a dielectric coating. The extraction bias ranges from 12 to 24V, for an inter-electrode distance of 4nm. The electromagnetic radiation has a wavelength of 0.67 microm and a power flux density ranging from 5.96 x 10(10) to 5.96 x 10(12) W/m2. The effects due to the protrusion and the dielectric coating are studied. These theoretical results are compared with the experimental data.

  9. ECHO Status for International Partners

    NASA Technical Reports Server (NTRS)

    Weinstein, Beth; Lubelczyk, Jeff

    2006-01-01

    The EOS Clearinghouse (ECHO) is a clearinghouse of spatial and temporal metadata, inclusive of NASA's Distributed Active Archive Center (DAAC) data holdings, that enables the science community to more easily exchange NASA data and information. Currently, ECHO has metadata descriptors for over 55 million individual data granules and 13 million browse images. The majority of ECHO's holdings come directly from data held in the NASA DAACs. The science disciplines and domains represented in ECHO are diverse and include metadata for all of NASA's Science Focus Area data. As middleware for a service-oriented enterprise, ECHO offers access to its capabilities through a set of publicly available Application Program Interfaces (APIs). More information about ECHO is available at http://eos.nasa.gov.echo. The presentation will discuss the status of the ECHO Partners, holdings, and activities, including the transition from the EOS Data Gateway to the Warehouse Inventory Search Tool (WIST)

  10. Echo Boom Impact

    ERIC Educational Resources Information Center

    Dordai, Phillipe; Rizzo, Joseph

    2006-01-01

    Like their baby-boomer parents, the echo-boom generation is reshaping the college and university landscape. At 80 million strong, this group of children and young adults born between 1980 and 1995 now is flooding the college and university system, spurring a college building boom. According to Campus Space Crunch, a Hillier Architecture survey of…

  11. Experimental observation of fractional echoes

    NASA Astrophysics Data System (ADS)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Siour, G.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-09-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes, which appear periodically at delays which are integer multiples of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  12. Loschmidt echo and time reversal in complex systems.

    PubMed

    Goussev, Arseni; Jalabert, Rodolfo A; Pastawski, Horacio M; Wisniacki, Diego A

    2016-06-13

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years. PMID:27140977

  13. Loschmidt echo and time reversal in complex systems.

    PubMed

    Goussev, Arseni; Jalabert, Rodolfo A; Pastawski, Horacio M; Wisniacki, Diego A

    2016-06-13

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years.

  14. Loschmidt echo and time reversal in complex systems

    PubMed Central

    Goussev, Arseni; Jalabert, Rodolfo A.; Pastawski, Horacio M.; Wisniacki, Diego A.

    2016-01-01

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years. PMID:27140977

  15. Complex echo classification by echo-locating bats: a review.

    PubMed

    Yovel, Yossi; Franz, Matthias O; Stilz, Peter; Schnitzler, Hans-Ulrich

    2011-05-01

    Echo-locating bats constantly emit ultrasonic pulses and analyze the returning echoes to detect, localize, and classify objects in their surroundings. Echo classification is essential for bats' everyday life; for instance, it enables bats to use acoustical landmarks for navigation and to recognize food sources from other objects. Most of the research of echo based object classification in echo-locating bats was done in the context of simple artificial objects. These objects might represent prey, flower, or fruit and are characterized by simple echoes with a single up to several reflectors. Bats, however, must also be able to use echoes that return from complex structures such as plants or other types of background. Such echoes are characterized by superpositions of many reflections that can only be described using a stochastic statistical approach. Scientists have only lately started to address the issue of complex echo classification by echo-locating bats. Some behavioral evidence showing that bats can classify complex echoes has been accumulated and several hypotheses have been suggested as to how they do so. Here, we present a first review of this data. We raise some hypotheses regarding possible interpretations of the data and point out necessary future directions that should be pursued. PMID:20848111

  16. Echo amplitude sensitivity of bat auditory neurons improves with decreasing pulse-echo gap.

    PubMed

    Jen, Philip H-S; Wu, Chung Hsin

    2015-01-01

    During hunting, insectivorous bats systematically vary the parameters of emitted pulses and analyze the returning echoes to extract prey features. As such, the duration of the pulse (P) and echo (E), the P-E gap, and the P-E amplitude difference progressively decrease throughout the prey-approach sequence. Our previous studies have shown that most inferior collicular neurons of bats discharge maximally to a best duration, and they have the sharpest echo frequency and amplitude sensitivity when stimulated with P-E pairs with duration the same as the best duration. Furthermore, their echo duration and frequency sensitivity improves with decreasing P-E duration and P-E gap. The present study shows that this is also true in the amplitude domain. Thus, all these data indicate that bats can better extract multiple parameters of expected rather than unexpected echo after pulse emission. They also support the hypothesis that a bat's inferior collicular neurons improve the response sensitivity in multiple parametric domains as the prey is approached to increase the success of hunting. PMID:25426829

  17. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  18. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  19. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  20. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials. PMID:24733086

  1. Gradient echo MRI

    PubMed Central

    Copenhaver, B R.; Shin, J; Warach, S; Butman, J A.; Saver, J L.; Kidwell, C S.

    2009-01-01

    Background: Recent studies have demonstrated that gradient echo (GRE) MRI sequences are as accurate as CT for the detection of intracerebral hemorrhage (ICH) in the context of acute stroke. However, many physicians who currently read acute stroke imaging studies may be unfamiliar with interpretation of GRE images. Methods: An NIH Web-based training program was developed including a pretest, tutorial, and posttest. Physicians involved in the care of acute stroke patients were encouraged to participate. The tutorial covered acute, chronic, and mimic hemorrhages as they appear on CT, diffusion-weighted imaging, and GRE sequences. Ability of users to identify ICH presence, type, and age on GRE was compared from the pretest to posttest timepoint. Results: A total of 104 users completed the tutorial. Specialties represented included general radiology (42%), general neurology (16%), neuroradiology (15%), stroke neurology (14%), emergency medicine (1%), and other (12%). Median overall score improved pretest to posttest from 66.7% to 83.3%, p < 0.001. Improvement by category was as follows: acute ICH, 66.7%–100%, p < 0.001; chronic ICH, 33.3%–66.7%, p < 0.001; ICH negatives/mimics, 100%–100%, p = 0.787. Sensitivity for identification of acute hemorrhage improved from 68.2% to 96.4%. Conclusions: Physicians involved in acute stroke care achieved significant improvement in gradient echo (GRE) hemorrhage interpretation after completing the NIH GRE MRI tutorial. This indicates that a Web-based tutorial may be a viable option for the widespread education of physicians to achieve an acceptable level of diagnostic accuracy at reading GRE MRI, thus enabling confident acute stroke treatment decisions. GLOSSARY AHA/ASA = American Heart Association/American Stroke Association; CME = continuing medical education; DWI = diffusion-weighted imaging; GRE = gradient echo; ICH = intracerebral hemorrhage; tPA = tissue plasminogen activator. PMID:19414724

  2. Transverse Echo Measurements in RHIC

    SciTech Connect

    Fischer, Wolfram

    2006-03-20

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular we examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  3. TRANSVERSE ECHO MEASUREMENTS IN RHIC.

    SciTech Connect

    FISCHER, W.

    2005-09-18

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular they examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  4. Echo 1 container

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Echo 1 container: The design of this container was one of the most difficult technical tasks. Hansen writes: 'After several weeks of examining potential solutions to this problem, the Langley engineers narrowed the field of ideas to five. They then built working models of these five container designs, and 12-foot-diameter models of the satellite for simulation studies. With help from Langley's Engineering Service and Mechanical Service divisions, the Echo group built a special 41-foot-diameter spherical vacuum chamber equipped with pressure-proof windows. There the dynamics of opening the container and inflating the satelloon could be studies as the satelloon fell to the bottom of the tank.' 'The container-opening mechanism that eventually resulted from these vacuum tests was surely one of the oddest explosive devices ever contrived. The container was a sphere that opened at its equator into top and bottom hemispheres. the top half fit on the bottom half much like a lid fits snugly atop a kitchen pot. The joint between the two hemispheres, therefore, formed a sliding valve. The halves had to move apart an inch or two before the canister was actually open. It was in this joint between the hemispheres that the charge was placed.' The whole whole system was laced together with fishing line which resulted in many disdainful comments from visiting scientists and engineers but the system worked. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 180.

  5. Dissecting a Light Echo

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation

    This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one.

    The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow.

    When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time.

    As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  6. Echo-seeding options for LCLS-II

    SciTech Connect

    Xiang, D.; Stupakov, G.; /SLAC

    2010-09-14

    The success of LCLS has opened up a new era of x-ray sciences. An upgrade to LCLS is currently being planned to enhance its capabilities. In this paper we study the feasibility of using the echo-enabled harmonic generation (EEHG) technique to generate narrow bandwidth soft x-ray radiation in the proposed LCLS-II soft x-ray beam line. We focus on the conceptual design, the technical implementation and the expected performances of the echo-seeding scheme. We will also show how the echo-seeding scheme allows one to generate two color x-ray pulses with the higher energy photons leading the lower energy ones as is favored in the x-ray pump-probe experiments.

  7. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams

    PubMed Central

    Beetz, M. Jerome; Hechavarría, Julio C.; Kössl, Manfred

    2016-01-01

    Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical “default mode” that allows selectively focusing on close obstacle even without active attention from the animals. PMID:27786252

  8. Vibrational Echo Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbury, John B.; Steinel, Tobias; Fayer, M. D.

    Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl4 and HOD inH2O are studied using the shortest mid-IR pulses (< 45 fs, < 4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (> 400 cm-1) spectrum of the 0-1 and 1-2 vibrational transitions. Hydrogen bond population dynamics are extricated with exceptional detail in MeOD oligomers because the different hydrogen-bonded species are spectrally distinct. The experimental results along with detailed calculations indicate the strongest hydrogen bonds are selectively broken through a non-equilibrium relaxation pathway following vibrational relaxation of the hydroxyl stretch. Following hydrogen bond breaking, the broken MeOD oligomers retain a detailed structural memory of the prior intact hydrogen bond network. The correlation spectra are also a sensitive probe of the structural fluctuations in water and provide a stringent test of water models that are widely used in simulations of aqueous systems. The analysis of the 2D band shapes demonstrates that different hydrogen-bonded species are subject to distinct (wavelength-dependent) ultrafast (˜ 100 fs) local fluctuations and essentially identical slower (0.4 ps and ˜ 2 ps) structural rearrangements. Observation of wavelength-dependent dynamics demonstrates that standard theoretical approaches assuming Gaussian fluctuations cannot adequately describe water dynamics.

  9. ENVISAT Radar Altimeter Individual Echoes

    NASA Astrophysics Data System (ADS)

    Zanifé, O. Z.; Roca, M.; Rémy, F.; Legrèsy, B.; Chapron, B.; Laxon, S.; Pilar Milagro, M.; Benveniste, J.

    2006-07-01

    A unique feature of the ENVISAT RA-2 is to provide bursts of individual, unav eraged Ku band echo s ample data in phase (I) and quadrature (Q), at the full rate 1800 Hz. This data offers a unique possibility to assess the full capabilities of altimeter measurements. Both technically and scientifically, much can be expected fro m these bursts o f individual echoes, e.g., speckle characteristics over different altimeter scen es, o cean , ice, land, but also, potential blurring effects associat ed with range windo w changes during the 100 echoes on-board av eraging. Moreover, for the first time in altimetry fro m space, investigations can be carried on the direct use of phase information from backscatter signals. ENVISAT RA-2 also features a second frequency in S band. The co mbination bet ween absolutely calibrated Ku and S b and d ata can yield interesting improvement for wind speed, wav e period, g as exchang e estimates , etc. ESA has launched a study on this topic to seed the use of individual echoes by s cientists. This study is reaching completion and reconstructed echoes will be made available for the first time to the scientific community. Results fro m the technical and s cientific application of individual echoes will be pres ented.

  10. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  11. Echo particle image velocimetry.

    PubMed

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  12. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    NASA Astrophysics Data System (ADS)

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-01

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  13. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory.

    PubMed

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-25

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  14. Feasibility study of an optically-stimulated luminescent nanodot dosimeter (OSLnD) in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Park, Sung-Kwang; Kim, Yon-Lae; Suh, Tae-Suk; Shin, Jung-Wook; Oh, Kyoung-Min; Nam, Sang-Hee; Kim, Jong-Eon; Min, Byung-In; Jo, Sun-Mi; Oh, Won-Young

    2014-10-01

    In-vivo dosimetry is essential to verify the position and the intensity of the radiation therapy, such as cranio-spinal irradiation (CSI) and total body irradiation (TBI). Various kinds of devices, such as a thermo-luminesence dosimeters (TLDs), metal-oxide semiconductor field effect transistors (MOSFETs), semiconductor diodes, and gafchromic films, are used in in-vivo dosimetry, and these have their respective pros and cons. An optically-stimulated luminescent nanodot dosimeter (OSLnD) made of Al2O3: C was developed to measure the radiation dose during diagnostics, but it is now used for clinical purposes. In this study, the characteristics of the OSLnD, such as its dose rate dependency, dose linearity, angular dependency, and field junction, were investigated under a 6 MV X-ray beam. The OSLnD showed a linear response at doses from 20 to 300 cGy in the dose linearity test. Also, the dose rate dependency was shown to be less than 3%, angular dependency to be less than 2%. The experimental results proved the OSLnD to be useful for measurements of the external dose and for intensity modulated radiotherapy (IMRT) in clinical radiotherapy.

  15. Echo-acoustic flow dynamically modifies the cortical map of target range in bats.

    PubMed

    Bartenstein, Sophia K; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-01-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight ('echo-acoustic flow'). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat's flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres. PMID:25131175

  16. Echo-acoustic flow dynamically modifies the cortical map of target range in bats.

    PubMed

    Bartenstein, Sophia K; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-01-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight ('echo-acoustic flow'). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat's flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.

  17. Commissioning the Echo-Seeding Experiment Echo-7 at SLAC

    SciTech Connect

    Weathersby, S.a E.Colby; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Woodley, M.; Xiang, D.; Pernet, P-L.; /Ecole Polytechnique, Lausanne

    2011-06-02

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation (EEHG) FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment is intended to test the EEHG principle at low electron beam energy, 120 MeV, and determine the sensitivities and limitations to understand the expected performance at the higher energy scales and harmonic numbers required for x-ray FELs. In this paper we present the experimental results from the commissioning run of the completed experimental setup which started in April 2010.

  18. Photon simulated desorption revisited

    NASA Astrophysics Data System (ADS)

    Menzel, D.

    A promising new method for surface investigations is discussed: Photon stimulated desorption. The electronic excitations of adsorbate complexes on surfaces, either by electron impact or photon absorption, which can lead to repulsive states of the complex and therefore to expulsion of ions and neutrals are considered. Such processes are termed electron (or photon) stimulated desorption, ESD and PSD, respectively. Apart from the primary agent (electrons or photons), these processes are similar, and common label "desorption induced by electronic transitions" (acronym DIET) was proposed. Desorption effects, intrinsic photoneffects, and some of the advantages of PSD over ESD are discussed.

  19. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging.

    PubMed

    Posse, S; Wiese, S; Gembris, D; Mathiak, K; Kessler, C; Grosse-Ruyken, M L; Elghahwagi, B; Richards, T; Dager, S R; Kiselev, V G

    1999-07-01

    Improved data acquisition and processing strategies for blood oxygenation level-dependent (BOLD)-contrast functional magnetic resonance imaging (fMRI), which enhance the functional contrast-to-noise ratio (CNR) by sampling multiple echo times in a single shot, are described. The dependence of the CNR on T2*, the image encoding time, and the number of sampled echo times are investigated for exponential fitting, echo summation, weighted echo summation, and averaging of correlation maps obtained at different echo times. The method is validated in vivo using visual stimulation and turbo proton echoplanar spectroscopic imaging (turbo-PEPSI), a new single-shot multi-slice MR spectroscopic imaging technique, which acquires up to 12 consecutive echoplanar images with echo times ranging from 12 to 213 msec. Quantitative T2*-mapping significantly increases the measured extent of activation and the mean correlation coefficient compared with conventional echoplanar imaging. The sensitivity gain with echo summation, which is computationally efficient provides similar sensitivity as fitting. For all data processing methods sensitivity is optimum when echo times up to 3.2 T2* are sampled. This methodology has implications for comparing functional sensitivity at different magnetic field strengths and between brain regions with different magnetic field inhomogeneities.

  20. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging.

    PubMed

    Posse, S; Wiese, S; Gembris, D; Mathiak, K; Kessler, C; Grosse-Ruyken, M L; Elghahwagi, B; Richards, T; Dager, S R; Kiselev, V G

    1999-07-01

    Improved data acquisition and processing strategies for blood oxygenation level-dependent (BOLD)-contrast functional magnetic resonance imaging (fMRI), which enhance the functional contrast-to-noise ratio (CNR) by sampling multiple echo times in a single shot, are described. The dependence of the CNR on T2*, the image encoding time, and the number of sampled echo times are investigated for exponential fitting, echo summation, weighted echo summation, and averaging of correlation maps obtained at different echo times. The method is validated in vivo using visual stimulation and turbo proton echoplanar spectroscopic imaging (turbo-PEPSI), a new single-shot multi-slice MR spectroscopic imaging technique, which acquires up to 12 consecutive echoplanar images with echo times ranging from 12 to 213 msec. Quantitative T2*-mapping significantly increases the measured extent of activation and the mean correlation coefficient compared with conventional echoplanar imaging. The sensitivity gain with echo summation, which is computationally efficient provides similar sensitivity as fitting. For all data processing methods sensitivity is optimum when echo times up to 3.2 T2* are sampled. This methodology has implications for comparing functional sensitivity at different magnetic field strengths and between brain regions with different magnetic field inhomogeneities. PMID:10398954

  1. Evaluation of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy

    SciTech Connect

    Yukihara, E. G.; Mardirossian, G.; Mirzasadeghi, M.; Guduru, S.; Ahmad, S.

    2008-01-15

    This article investigates the performance of Al{sub 2}O{sub 3}:C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within {+-}1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51{+-}0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at d{sub max} within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.

  2. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  3. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady

    2010-08-25

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  4. Intra-cavity photon-assisted tunneling collector-base voltage-mediated electron-hole spontaneous-stimulated recombination transistor laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Qiu, Junyi; Wang, C. Y.; Holonyak, N.

    2016-02-01

    Optical absorption in a p-n junction diode for a direct-gap semiconductor can be enhanced by photon-assisted tunneling in the presence of a static or dynamic electrical field. In the transistor laser, the coherent photons generated at the base quantum-well interact with the collector field and "assist" optical cavity electron tunneling from the valence band of the base to the conduction band states of the collector. In the present work, we study the cavity coherent photon intensity effect on intra-cavity photon-assisted tunneling (ICPAT) in the transistor laser and realize photon-field enhanced optical absorption. This ICPAT in a transistor laser is the unique property of voltage (field) modulation and the basis for ultrahigh speed direct laser modulation and switching.

  5. Dance of the Light Echoes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray.

    In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps.

    This

  6. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  7. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data

    PubMed Central

    Muir, Dylan R.; Kampa, Björn M.

    2015-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614

  8. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    PubMed

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  9. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    PubMed

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories. PMID:25653614

  10. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  11. Loschmidt echo for quantum metrology

    NASA Astrophysics Data System (ADS)

    Macrı, Tommaso; Smerzi, Augusto; Pezzè, Luca

    2016-07-01

    We propose a versatile Loschmidt echo protocol to detect and quantify multiparticle entanglement. It allows us to extract the quantum Fisher information for arbitrary pure states, and finds direct application in quantum metrology. In particular, the protocol applies to states that are generally difficult to characterize, as non-Gaussian states, and states that are not symmetric under particle exchange. We focus on atomic systems, including trapped ions, polar molecules, and Rydberg atoms, where entanglement is generated dynamically via long-range interaction, and show that the protocol is stable against experimental detection errors.

  12. Bunched beam echos in the AGS

    SciTech Connect

    Kewisch, J.; Brennan, J.M.

    1998-08-01

    Beam echos have been measured at FNAL and CERN in coasting beams. A coherent oscillation introduced by a short RF burst decoheres quickly, but a coherent echo of this oscillation can be observed if the decohered oscillation is bounced off a second RF burst. In this report the authors describe first longitudinal echo measurements of bunched beam in the AGS accelerator. They applied a method proposed by Stupakov for transverse beam echos, where the initial oscillation is produced by a dipole kick and is bounced off a quadrupole kick. In the longitudinal case the dipole and quadrupole kicks are produced by cavities operating at a 90 and 0{degree} phase shift, respectively.

  13. Minimum complexity echo state network.

    PubMed

    Rodan, Ali; Tino, Peter

    2011-01-01

    Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.

  14. Ultrasound Echoes as Biometric Navigators

    PubMed Central

    Schwartz, Benjamin M.; McDannold, Nathan J.

    2014-01-01

    We demonstrate a new method of using ultrasound data to achieve prospective motion compensation in MRI, especially for respiratory motion during interventional MRI procedures in moving organs such as the liver. The method relies on fingerprint-like biometrically distinct ultra-sound echo patterns produced by different locations in tissue, which are collated with geometrical information from MRI during a training stage to form a mapping table that relates ultrasound measurements to positions. During prospective correction, the system makes frequent ultrasound measurements and uses the map to determine the corresponding position. Results in motorized linear motion phantoms and freely breathing animals indicate that the system performs well. Apparent motion is reduced by up to 97.8%, and motion artifacts are reduced or eliminated in 2D Spoiled Gradient-Echo images. The motion compensation is sufficient to permit MRI thermometry of focused ultrasound heating during respiratory-like motion, with results similar to those obtained in the absence of motion. This new technique may have applications for MRI thermometry and other dynamic imaging in the abdomen during free breathing. PMID:22648783

  15. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  16. Photon-photon colliders

    SciTech Connect

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  17. Increasing sensitivity of pulse EPR experiments using echo train detection schemes

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, F.; Collauto, A.; Feintuch, A.; Kaminker, I.; Tarle, V.; Goldfarb, D.

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12 h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo - either primary, stimulated or refocused - a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion.

  18. Solar Sail Model Validation from Echo Trajectories

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Brickerhoff, Adam T.

    2007-01-01

    The NASA In-Space Propulsion program has been engaged in a project to increase the technology readiness of solar sails. Recently, these efforts came to fruition in the form of several software tools to model solar sail guidance, navigation and control. Furthermore, solar sails are one of five technologies competing for the New Millennium Program Space Technology 9 flight demonstration mission. The historic Echo 1 and Echo 2 balloons were comprised of aluminized Mylar, which is the near-term material of choice for solar sails. Both spacecraft, but particularly Echo 2, were in low Earth orbits with characteristics similar to the proposed Space Technology 9 orbit. Therefore, the Echo balloons are excellent test cases for solar sail model validation. We present the results of studies of Echo trajectories that validate solar sail models of optics, solar radiation pressure, shape and low-thrust orbital dynamics.

  19. Theory of Quantum Loschmidt Echoes

    NASA Astrophysics Data System (ADS)

    Prosen, T.; Seligman, T. H.; Žnidarič, M.

    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e., various properties of the so-called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale ∝ 1/δ as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale ∝ 1/δ2, where δ is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant hbar is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbarto 0, as the two limits δto 0 and hbarto 0 do not commute. The theoretical results are demonstrated numerically for two models, the quantized kicked top and the multi-level Jaynes Cummings model. Our method can for example be applied to the stability analysis of quantum computation and quantum information processing.

  20. Antigravity Acts on Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  1. Photon-photon colliders

    SciTech Connect

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  2. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  3. Monochromatic soft-x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7 × 7 studied by continuous-time photon-stimulated desorption spectroscopy near the F(1s) edge.

    PubMed

    Wang, S-K; Tsai, W-C; Chou, L-C; Hsieh, Y-C; Chen, K-H; He, T-M; Feng, K-S; Wen, C-R

    2011-11-01

    Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was used to investigate the monochromatic soft x-ray photoreactions of CF(2)Cl(2) adsorbed on Si(111)-7 × 7 near the F(1s) edge (681-704 eV). Sequential F(+) PSD spectra were observed as a function of photon exposure at the CF(2)Cl(2)-covered surface (dose = 2.0 × 10(14) molecules cm(-2), ∼0.75 monolayer). The F(+) PSD and total electron yield (TEY) spectra of solid CF(2)Cl(2) near the F(1s) edge were also measured. Both F(+) PSD and TEY spectra depict three features in the energy range of 687-695 eV, and are assigned to the excitations of F(1s) to (13a(1) + 9b(2))[(C-Cl)(∗)], (7b(1) + 14a(1))[(C-F)∗] antibonding and 5p Rydberg orbitals, respectively. Following the Auger decay process, two holes are created in the C-F bonding orbitals producing the 2h1e final state which results in the F(+) desorption. This PSD mechanism, responsible for the F(+) PSD of solid CF(2)Cl(2), is used to explain the first F(+) PSD spectrum in the sequential F(+) PSD spectra. The variation of spectral shapes in the sequential F(+) PSD spectra shows the consumption of adsorbed CF(2)Cl(2) molecules and the production of surface SiF species as a function of photon exposure. The photolysis cross section of the adsorbed CF(2)Cl(2) molecules by photons with varying energy (681-704 eV) is deduced from the sequential F(+) PSD spectra and found to be ∼6.0 × 10(-18) cm(2). PMID:21996577

  4. Monochromatic soft-x-ray-induced reactions of CF2Cl2 adsorbed on Si(111)-7 × 7 studied by continuous-time photon-stimulated desorption spectroscopy near the F(1s) edge.

    PubMed

    Wang, S-K; Tsai, W-C; Chou, L-C; Hsieh, Y-C; Chen, K-H; He, T-M; Feng, K-S; Wen, C-R

    2011-11-01

    Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was used to investigate the monochromatic soft x-ray photoreactions of CF(2)Cl(2) adsorbed on Si(111)-7 × 7 near the F(1s) edge (681-704 eV). Sequential F(+) PSD spectra were observed as a function of photon exposure at the CF(2)Cl(2)-covered surface (dose = 2.0 × 10(14) molecules cm(-2), ∼0.75 monolayer). The F(+) PSD and total electron yield (TEY) spectra of solid CF(2)Cl(2) near the F(1s) edge were also measured. Both F(+) PSD and TEY spectra depict three features in the energy range of 687-695 eV, and are assigned to the excitations of F(1s) to (13a(1) + 9b(2))[(C-Cl)(∗)], (7b(1) + 14a(1))[(C-F)∗] antibonding and 5p Rydberg orbitals, respectively. Following the Auger decay process, two holes are created in the C-F bonding orbitals producing the 2h1e final state which results in the F(+) desorption. This PSD mechanism, responsible for the F(+) PSD of solid CF(2)Cl(2), is used to explain the first F(+) PSD spectrum in the sequential F(+) PSD spectra. The variation of spectral shapes in the sequential F(+) PSD spectra shows the consumption of adsorbed CF(2)Cl(2) molecules and the production of surface SiF species as a function of photon exposure. The photolysis cross section of the adsorbed CF(2)Cl(2) molecules by photons with varying energy (681-704 eV) is deduced from the sequential F(+) PSD spectra and found to be ∼6.0 × 10(-18) cm(2).

  5. A simple method for MR elastography: a gradient-echo type multi-echo sequence.

    PubMed

    Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro

    2015-01-01

    To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential.

  6. a Three Pulse Optical Echo Study of Depolarising Collisions in Caesium.

    NASA Astrophysics Data System (ADS)

    Dove, William Thomason

    Available from UMI in association with The British Library. The work described in this thesis is an experimental study, using three excitation pulse photon echoes, of collisional relaxation of caesium atoms perturbed by noble gases. The theoretical aspects of this thesis include the development of a density matrix theory to describe the formation of echoes formed from a sequence of three excitation pulses when applied to a multi-level system. The manner in which the resultant echoes store information about optical coherences, Zeeman coherences and state populations is discussed. The theory of collisional relaxation of three excitation pulse echoes by depolarising collisions and velocity changing collisions is introduced. Measurements of collision cross sections for depolarising collisions and velocity changing collisions for atoms in a single state are possible by the three excitation pulse echo techniques. The experimental work of this thesis involves the measurement of collisional relaxation of three pulse echoes formed on the caesium 6S_{1 over2} rightarrow 7P_ {3over2} (455 nm) and 6S _{1over2} rightarrow 7P_{1over2} (459 nm) transitions, perturbed by low pressure (below 1 torr) helium, argon and xenon gas. One series of experiments measured the collision cross section for optical coherence destroying collisions, and the results obtained are in good agreement with previous two pulse echo measurements. The remaining experimental work determined values of collision cross sections due to depolarising collisions for ground state caesium atoms perturbed by noble gas. This marks the first measurement of this parameter for 6S_{1 over2} ground state caesium atoms.

  7. Stabilization of echo amplitudes in FSE sequences.

    PubMed

    Le Roux, P; Hinks, R S

    1993-08-01

    The classical CPMG sequence and its extension as an imaging sequence, fast spin echo (FSE, based on RARE), suffer from signal magnitude variations in the early echoes when the refocusing pulses are not set exactly to 180 degrees. It has been suggested that by varying the value of the nutation angle of each refocusing pulse the signal magnitude could be made constant. This article describes an algorithm permitting the generation of sequences of nutation angles yielding series of echoes with constant signal magnitudes. This result is then used to design selective pulses for the FSE imaging technique.

  8. Coronal plasma-frequency radio echoes

    SciTech Connect

    Eremin, A.B.

    1986-06-01

    If the mechanism that Zaitsev and the author propose for generating the fundamental mode of type III solar radio bursts is correct, then coronal echo events can occur at the plasma frequency. Certain events recorded during the type IIIb-III storm of July 1974 are identifiable as echoes. Radio-wave reflection from moving solar-wind irregularities consistently shifts the echoes to shorter wavelengths than the primary burst, yielding an estimate of about 10 to the 7th cm/sec for the mean wind velocity 1-2 solar radii from the photosphere. 8 references.

  9. Photonic Maxwell's Demon.

    PubMed

    Vidrighin, Mihai D; Dahlsten, Oscar; Barbieri, Marco; Kim, M S; Vedral, Vlatko; Walmsley, Ian A

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

  10. Photonic Maxwell's Demon.

    PubMed

    Vidrighin, Mihai D; Dahlsten, Oscar; Barbieri, Marco; Kim, M S; Vedral, Vlatko; Walmsley, Ian A

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics. PMID:26894692

  11. Photonic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Vidrighin, Mihai D.; Dahlsten, Oscar; Barbieri, Marco; Kim, M. S.; Vedral, Vlatko; Walmsley, Ian A.

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

  12. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC.

    SciTech Connect

    FISCHER, W.; SATOGATA, T.; TOMAS. R.

    2005-05-16

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time {tau} after the dipole kick, the beam re-cohered at time 2{tau} thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering.

  13. Geometric spin echo under zero field

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-05-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors.

  14. Data processing of records of meteoric echoes

    NASA Astrophysics Data System (ADS)

    Dolinský, P.

    2016-01-01

    The data obtained in the period from 4 November 2014 to 31 July 2014 by our receiving and recording system was statistically processed. The system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine) using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with a recording using HROFFT v1.0.0f. The main goal was to identify weak showers in these data. Mayor or strong showers are visible without processing (referred at IMC2015, Mistelbach). To find or to identify weaker showers is more difficult. Not all echoes are meteoric echoes, but also ionospheric echoes or lightning disturbances are present.

  15. Geometric spin echo under zero field

    PubMed Central

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-01-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936

  16. Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi

    2001-05-01

    To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.

  17. Precision requirements for spin-echo-based quantum memories

    SciTech Connect

    Heshami, Khabat; Simon, Christoph; Sangouard, Nicolas; Minar, Jiri; Riedmatten, Hugues de

    2011-03-15

    Spin-echo techniques are essential for achieving long coherence times in solid-state quantum memories for light because of inhomogeneous broadening of the spin transitions. It has been suggested that unrealistic levels of precision for the radio-frequency control pulses would be necessary for successful decoherence control at the quantum level. Here we study the effects of pulse imperfections in detail, using both a semiclassical and a fully quantum-mechanical approach. Our results show that high efficiencies and low noise-to-signal ratios can be achieved for the quantum memories in the single-photon regime for realistic levels of control pulse precision. We also analyze errors due to imperfect initial-state preparation (optical pumping), showing that they are likely to be more important than control pulse errors in many practical circumstances. These results are crucial for future developments of solid-state quantum memories.

  18. Nonlinear spectroscopy of photon-dressed Dirac electrons in a quantum dot

    NASA Astrophysics Data System (ADS)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2013-01-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short-lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross-peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional photon-echo spectra are discussed.

  19. Zolpidem-Induced Arousal by Paradoxical GABAergic Stimulation: A Case Report With F-18 Flumazenil Positron Emission Tomography and Single Photon Emission Computed Tomography Study

    PubMed Central

    Kim, Changjae; Nam, Ki Yeun; Park, Jin Woo; Lee, Ho Jun

    2016-01-01

    Zolpidem is a non-benzodiazepine drug that has selectivity for the gamma-aminobutyric acid (GABA) receptors. We experienced paradoxical effect of zolpidem in a 48-year-old male patient with hypoxic-ischemic brain injury after cardiac arrest. The patient was in stupor and could not communicate. His Glasgow Coma Scale (GCS) was E2M4V2 and Rancho Los Amigos (RLA) was grade III to IV. Zolpidem was prescribed to induce sedation but paradoxically, he became alert (GCS 15, RLA VII) and was able to communicate. The arousal lasted for 2 hours repeatedly following each administration of the medication. While he was alert, electroencephalogram showed the reversal of slow wave into beta range fast activity and F-18 flumazenil positron emission tomography (PET) showed increased GABAergic receptor activity in both frontoparietotemporal cortices. Single photon emission computed tomography (SPECT) also showed increased cerebral perfusion and reversal of cerebellar diaschisis. PMID:26949686

  20. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  1. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Matheson, Thomas; Olsen, Knut; Prieto, Jose Luis; Sinnott, Brendan; Smith, Chris; Smith, Nathan; Welch, Doug

    2013-02-01

    We propose to continue our search for the first light echoes (LEs) associated with historical Galactic supernovae and LBV outbursts: SN 1006, Kepler's SN, RCW 86, Crab Nebula, and P Cygni. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of eta Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. We propose to continue our search for light echoes of the remaining historical events. With DECam, we have a 10-15 fold improvement in efficiency over the retired Mosaic camera, which allows us to cover the bigger search areas of most of the remaining targets. The study of scattered-light echoes from these Galactic supernovae and eruptions will give us the opportunity to directly compare the original outburst and its current remnant, and in favorable cases (like Eta Carinae), it provides a three-dimensional view of the event and/or a spectral time series.

  2. Transient Loschmidt echo in quenched Ising chains

    NASA Astrophysics Data System (ADS)

    Lupo, Carla; Schiró, Marco

    2016-07-01

    We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe, a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.

  3. Coronal plasma-frequency radio echoes?

    NASA Astrophysics Data System (ADS)

    Eremin, A. B.

    1986-06-01

    In the frame of the mechanism of generation of the fundamental mode of type III solar radio bursts suggested by Eremin and Zajtsev (1985) the formation of an echo event in the corona at plasma frequency is shown to be possible. Examples of events are given which were observed during the type IIIb-III radio storm in July, 1974 and may be identified as radio echos. A regular "violet" (in comparison with the primary burst) frequency shift of the echo burst has been detected that results from the radiation reflection from moving inhomogeneities of the solar wind. An estimate of the mean velocity of the solar wind of VSW ≅ 107cm/s at the distance R_sun; from the photosphere is obtained.

  4. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  5. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    PubMed

    Yovel, Yossi; Au, Whitlow W L

    2010-01-01

    Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  6. Research of laser echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou

    2015-11-01

    Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.

  7. Evolution of entanglement under echo dynamics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Seligman, Thomas H.; Žnidarič, Marko

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  8. Photon and electron stimulated surface dynamics of single molecules. Final report on D.O.E. No. DE-FG0295ER14563

    SciTech Connect

    Harrison, Ian

    2001-05-01

    The initial goal of this work was to build up an entirely new low-temperature scanning tunneling microscopy (STM) and ultrahigh vacuum system to examine the electron- and photon-induced chemistry of single molecules at low surface temperatures where thermal diffusion would be quenched. The photochemistry of methyl bromide on Pt(111) was first examined at 90 K using liquid nitrogen cooling. Br atoms were quite mobile even at 90 K, and were only visible by STM when coalesced along Pt step edges or in Br islands structures. The 193 nm photofragmentation of methyl bromide efficiently created monovacancies in the substrate at 90 K. It was found that at elevated temperatures there is considerable restructuring and reactive attack of the Pt surface by halogens, but for traditional, lower temperature studies of alkyl radicals prepared by thermal dissociative adsorption of alkyl iodides there is probably no problem with adsorbing I generating monovacancies on the surface. The dynamics of the ho t Br atoms formed by dissociative adsorption of Br{sub 2} was also examined. It was discovered that hot Br atoms from Br{sub 2} dissociative adsorption travel farther than hot O atoms from O{sub 2} dissociative adsorption; hot atom motion from different dissociative adsorption systems had not previously been compared for the same metal substrate. The experimental results strengthened the theoretical case that corrugation of the adsorbate/substrate potential is the key issue in determining hot atom travel. In addition, the data provided strong evidence for the transient existence of a weakly adsorbed and mobile Br{sub 2} precursor to dissociative adsorption. Some experiments imaging individual molecules at 15 K were also conducted.

  9. Empirical results of using back-propagation neural networks to separate single echoes from multiple echoes.

    PubMed

    Chang, W; Bosworth, B; Carter, G C

    1993-01-01

    Empirical results illustrate the pitfalls of applying an artificial neural network (ANN) to classification of underwater active sonar returns. During training, a back-propagation ANN classifier learns to recognize two classes of reflected active sonar waveforms: waveforms having two major sonar echoes or peaks and those having one major echo or peak. It is shown how the classifier learns to distinguish between the two classes. Testing the ANN classifier with different waveforms of each type generated unexpected results: the number of echo peaks was nor the feature used to separate classes.

  10. On the reliability of hook echoes as tornado indicators

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1981-01-01

    A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.

  11. Relationship between tornadoes and hook echoes on April 3, 1974

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1975-01-01

    Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.

  12. Asymmetric radar echo patterns from insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...

  13. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Matheson, Thomas; Narayan, Gautham; Olsen, Knut; Prieto, Jose Luis; Smith, Chris; Smith, Nathan; Suntzeff, Nick; Welch, Doug; Zenteno, Alfredo

    2014-02-01

    We propose to continue our search for the first light echoes (LEs) associated with historical Galactic supernovae and LBV outbursts: SN 1006, Kepler's SN, RCW 86, Crab Nebula, and P Cygni. In previously granted NOAO time, we have discovered LEs of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. We propose to continue our search for light echoes of the remaining historical events. With DECam, we have a 10-15 fold improvement in efficiency over the retired CTIO-Mosaic camera, which allows us to cover the bigger search areas of most of the remaining targets. With the KPNO 4-m, we will observe fields too far north for CTIO/DECam. The study of scattered-light echoes from these Galactic supernovae and eruptions will give us the opportunity to directly compare the original outburst and its current remnant, and in favorable cases (like Eta Carinae), it provides a three-dimensional view of the event and/or a spectral time series.

  14. AN ECHO OF SUPERNOVA 2008bk

    SciTech Connect

    Van Dyk, Schuyler D.

    2013-08-01

    I have discovered a prominent light echo around the low-luminosity Type II-plateau supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The echo is a partial ring, brighter to the north and east than to the south and west. The analysis of the echo I present suggests that it is due to the SN light pulse scattered by a sheet, or sheets, of dust located Almost-Equal-To 15 pc from the SN. The composition of the dust is assumed to be of standard Galactic diffuse interstellar grains. The visual extinction of the dust responsible for the echo is A{sub V} Almost-Equal-To 0.05 mag in addition to the extinction due to the Galactic foreground toward the host galaxy. That the SN experienced much less overall extinction implies that it is seen through a less dense portion of the interstellar medium in its environment. The late-time HST photometry of SN 2008bk also clearly demonstrates that the progenitor star has vanished.

  15. Preliminary Results of the Echo-Seeding Experiment ECHO-7 at SLAC

    SciTech Connect

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; /LBL, Berkeley /LPHE, Lausanne

    2010-06-15

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  16. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed echo imaging system....

  17. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed echo imaging system....

  18. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  19. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space

  20. The extraordinary radar echoes from Europa, Ganymede, and Callisto: A geological perspective

    USGS Publications Warehouse

    Ostro, S.J.; Shoemaker, E.M.

    1990-01-01

    This outline of plausible geologic explanations for the icy Galilean satellites' radar properties takes into consideration electromagnetic scattering models for the echoes, available empirical and theoretical information about regolith formation, and ice physics. The strange radar signatures arise because (1) ice is electrically different from silicates and/or (2) icy regoliths contain bulk-density (and hence refractive-index) structures absent within silicate regoliths. Ice's relatively high radar-frequency transparency compared with that of silicates permits longer photon path lengths, deeper radar sounding, and a greater number of scattering events. Consequently, scattering mechanisms that cannot contribute significantly to lunar echoes can dominate icy-satellite echoes. Possible phenomena unique to icy regoliths include (1) smoothing out of discontinuities between solid ejecta fragments and more porous surroundings under the action of thermal annealing to form refraction-scattering (RS) "lenses" and (2) formation of density enhancements in the shape of crater floors that result in RS and/or total internal reflection (TIR). In either case, high-order multiple scattering is more likely to be responsible for the echoes than low-order scattering. Radar/radio observations can constrain the order of the scattering and the scale of the structures responsible for the echoes but might not determine whether TIR or RS dominates the scattering. Multiwavelength investigations of the degree of correlation between radar properties and geologic terrain type should prove most useful, because inter- and intrasatellite variations in radar properties probably correspond to variations in ice purity, regolith thickness, and regolith thermal history and age. ?? 1990.

  1. Intensity-Corrected Dual-Echo Echo-Planar Imaging (DE-EPI) for Improved Pediatric Brain Diffusion Imaging

    PubMed Central

    Straka, Matus; Iv, Michael; Moseley, Michael E.; Barnes, Patrick D.; Skare, Stefan

    2015-01-01

    Here we investigate the utility of a dual-echo Echo-Planar Imaging (DE-EPI) Diffusion Weighted Imaging (DWI) approach to improve lesion conspicuity in pediatric imaging. This method delivers two ‘echo images’ for one diffusion-preparation period. We also demonstrate how the echoes can be utilized to remove transmit/receive coil-induced and static magnetic field intensity modulations on both echo images, which often mimic pathology and thereby pose diagnostic challenges. DE-EPI DWI data were acquired in 18 pediatric patients with abnormal diffusion lesions, and 46 pediatric patient controls at 3T. Echo1 [TE = 45ms] and Echo2 [TE = 86ms] were corrected for signal intensity variation across the images by exploiting the images equivalent coil-sensitivity and susceptibility-induced modulations. Two neuroradiologists independently reviewed Echo1 and Echo2 and their intensity-corrected variants (cEcho1 and cEcho2) on a 7-point Likert scale, with grading on lesion conspicuity diagnostic confidence. The apparent diffusion coefficient (ADC) map from Echo1 was used to validate presence of true pathology. Echo2 was unanimously favored over Echo1 for its sensitivity for detecting acute brain injury, with a mean respective lesion conspicuity of 5.7/4.4 (p < 0.005) and diagnostic confidence of 5.1/4.3 (p = 0.025). cEcho2 was rated higher than cEcho1, with a mean respective lesion conspicuity of 5.5/4.3 (p < 0.005) and diagnostic confidence of 5.4/4.4 (p < 0.005). cEcho2 was favored over all echoes for its diagnostic reliability, particularly in regions close to the head coil. This work concludes that DE-EPI DWI is a useful alternative to conventional single-echo EPI DWI, whereby Echo2 and cEcho2 allows for improved lesion detection and overall higher diagnostic confidence. PMID:26069959

  2. Spatial release from simultaneous echo masking in bat sonar.

    PubMed

    Warnecke, Michaela; Bates, Mary E; Flores, Victoria; Simmons, James A

    2014-05-01

    Big brown bats (Eptesicus fuscus) use biosonar to navigate and locate objects in their surroundings. During natural foraging, they often encounter echoes returned by a target of interest located to the front while other, often stronger, clutter echoes are returned from objects, such as vegetation, located to the sides or above. Nevertheless, bats behave as if they do not suffer interference from this clutter. Using a two-choice delay discrimination procedure, bats were tested for the masking effectiveness of clutter echoes on target echoes when the target echoes were delivered from the bat's front while clutter echoes were delivered from 90° overhead, a direction of lowpass filtering by the external ears. When clutter echoes are presented from the front at the same delay as target echoes, detection performance declines and clutter masking occurs. When the clutter echoes are presented at the same delay but from overhead, discrimination performance is unaffected and no masking occurs. Thus there is masking release for simultaneous off-axis lowpass clutter compared to masking by simultaneous clutter from the front. The bat's performance for simultaneous target and clutter echoes indicates a new role for the mechanism that separates overlapping echoes by decomposing the bat's auditory time-frequency representation.

  3. The relationship between fireballs and HRO Long Echos

    NASA Astrophysics Data System (ADS)

    Yanagida, E.; Amikura, S.

    Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.

  4. Improved Sensitivity of Spin Echo and Parallel Acquisitions Using SENSE Compared to Gradient Echo Sequences in fMRI

    NASA Astrophysics Data System (ADS)

    El Mrini, Sanaa; Hamri, Mohammed

    2012-03-01

    This work aims to validate the performance of spin echo and parallel acquisition using "SENSitivity Encoding (SENSE)" by comparing it to different imaging techniques, including gradient echo-planar imaging using parallel acquisition and SENSE usually used and gradient echo sequences and that of the echo of echo-planar spin. It compares the performance of sequences and their sensitivity to motor activity reflected by activation within the motor part of the brain. Image analysis of volunteers were processed individually. Image analysis techniques, such as normalization and smoothing, were used. Analyses were carried out using `Statistical Parametric Mapping' operating under Matlab.

  5. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  6. Statistical properties of bistatic clutter echoes

    NASA Astrophysics Data System (ADS)

    Stevens, William G.; Rangaswamy, Muralidhar

    1994-03-01

    In this report we present statistical results of bistatic terrain reflectivity measurements. A new technique for estimating statistical properties from limited data sets was used to examine underlying temporal probability density functions (PDFs) and correlation properties of echoes from several clutter range resolution bins. The case of locally vertically incident-vertically received signal polarization is reported for a single bistatic geometry. The terrain in the experiment consisted primarily of early-development deciduous trees. 10-15 feet high and brush approximately 8 feet high. The measurement system was a high resolution instrumentation radar operating at 3.2 GHz. Results from the estimation algorithm showed that there were small groups of contiguous clutter cells where the members within the group could be described by the same family of PDFs. while other PDF families would best describe neighboring clutter cell groups. Algorithm results for all tested clutter cells showed that the high-resolution, bistatic echoes were non-Rayleigh distributed.

  7. Light Echo From Star V838 Monocerotis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This photo, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys, is Hubble's latest view of an expanding halo of light around the distant star V838 Monocerotis, or V Mon, caused by an unusual stellar outburst that occurred back in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a 'light echo'. Located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn), the star brightened to more than 600,000 times our Sun's luminosity. The light echo gives the illusion of contracting, until it finally disappears by the end of the decade.

  8. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  9. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  10. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  11. The electron Echo 6 mechanical deployment systems

    NASA Technical Reports Server (NTRS)

    Meyers, S. C.; Steffen, J. E.; Malcolm, P. R.; Winckler, J. R.

    1984-01-01

    The Echo 6 sounding rocket payload was flown on a Terrier boosted Black Brant vehicle on March 30, 1983. The experiment requirements resulted in the new design of a rocket propelled Throw Away Detector System (TADS) with onboard Doppler radar, a free-flyer forward experiment designated the Plasma Diagnostic Package (PDP), and numerous other basic systems. The design, developmental testing, and flight preparations of the payload and the mechanical deployment systems are described.

  12. The Light Echoes around V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2009-07-01

    V838 Monocerotis, which burst upon the astronomical scene in early 2002, is a completely unanticipated new object. It underwent a large-amplitude and very luminous outburst, during which its spectrum remained that of an extremely cool supergiant. A rapidly evolving set of light echoes around V838 Mon was discovered soon after the outburst, and quickly became the most spectacular display of the phenomenon yet seen. These light echoes provide the means to accomplish three unique types of measurements based on continued HST imaging during the event: {1} Study effects of MHD turbulence at high resolution and in 3 dimensions; {2} Construct the first unambiguous and fully 3-D map of a circumstellar dust envelope in the Milky Way; {3} Study dust physics in a unique setting where the spectrum and light curve of the illumination, and the scattering angle, are unambiguously known. We have also used our HST data to determine the distance to V838 Mon through a novel direct geometric technique. Because of the extreme rarity of light echoes, this is almost certainly the only opportunity to achieve such results during the lifetime of HST. We propose two visits during Cycle 17, using the repaired ACS {or WFC3} in order to continue the mapping of the circumstellar dust and to accomplish the other goals listed above.

  13. The Light Echoes around V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2007-07-01

    V838 Monocerotis, which burst upon the astronomical scene in early 2002, is a completely unanticipated new object. It underwent a large-amplitude and very luminous outburst, during which its spectrum remained that of an extremely cool supergiant. A rapidly evolving set of light echoes around V838 Mon was discovered soon after the outburst, and quickly became the most spectacular display of the phenomenon ever seen. These light echoes provide the means to accomplish three unique types of measurements based on continued HST imaging during the event: {1} Study effects of MHD turbulence at high resolution and in 3 dimensions; {2} Construct the first unambiguous and fully 3-D map of a circumstellar dust envelope in the Milky Way; {3} Study dust physics in a unique setting where the spectrum and light curve of the illumination, and the scattering angle, are unambiguously known. We have also used our HST data to determine the distance to V838 Mon through direct geometric techniques. Because of the extreme rarity of light echoes, this is almost certainly the only opportunity to achieve such results during the lifetime of HST. We propose two visits during Cycle 16, in order to continue the mapping of the circumstellar dust and to accomplish the other goals listed above.

  14. The Light Echoes around V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2010-09-01

    V838 Monocerotis, which burst upon the astronomical scene in early 2002, is a completely unanticipated new object. It underwent a large-amplitude and very luminous outburst, during which its spectrum remained that of an extremely cool supergiant. A rapidly evolving set of light echoes around V838 Mon was discovered soon after the outburst, and quickly became the most spectacular display of the phenomenon yet seen. These light echoes provide the means to accomplish three unique types of measurements based on continued HST imaging during the event: {1} Study effects of MHD turbulence at high resolution and in 3 dimensions; {2} Construct the first unambiguous and fully 3-D map of a circumstellar dust envelope in the Milky Way; {3} Study dust physics in a unique setting where the spectrum and light curve of the illumination, and the scattering angle, are unambiguously known. We have also used our HST data to determine the distance to V838 Mon through a novel direct geometric technique. Because of the extreme rarity of light echoes, this is almost certainly the only opportunity to achieve such results during the lifetime of HST. We propose one visit during Cycle 18, using ACS, in order to continue the mapping of the circumstellar dust and to accomplish the other goals listed above.

  15. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Kunder, Andrea; Matheson, Thomas; Olsen, Knut; Prieto, Jose Luis; Sinnott, Brendan; Smith, Chris; Smith, Nathan; Welch, Doug

    2013-08-01

    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to conclude our search - so far unsuccessful - for LEs from the the Crab supernova SN 1054 by surveying one remaining region of the LE ellipsoid behind the plane of the supernova remnant on the sky. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. Our extension of LE techniques to LBV outbursts promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core- collapse supernova precursors.

  16. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Clocchiatti, Alejandro; Foley, Ryan; James, David; Matheson, Thomas; Narayan, Gautham; Olsen, Knut; Points, Sean; Prieto, Jose Luis; Smith, Chris; Smith, Nathan; Suntzeff, Nick; Welch, Doug; Zenteno, Alfredo

    2014-08-01

    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to us DECam to continue our search for LEs from the the Crab supernova SN 1054. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. Our extension of LE techniques to LBV outbursts promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core- collapse supernova precursors.

  17. Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.

    PubMed

    Bates, Mary E; Simmons, James A

    2011-02-01

    Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.

  18. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  19. The EChO science case

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2015-12-01

    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength

  20. The effect of different bleaching wavelengths on the sensitivity of Al{sub 2}O{sub 3}:C optically stimulated luminescence detectors (OSLDs) exposed to 6 MV photon beams

    SciTech Connect

    Omotayo, Azeez A.; Cygler, Joanna E.; Sawakuchi, Gabriel O.

    2012-09-15

    Purpose: To determine the effect of different bleaching wavelengths on the response of Al{sub 2}O{sub 3}:C optically stimulated luminescence detectors (OSLDs) exposed to accumulated doses of 6 MV photon beams. Methods: In this study the authors used nanoDot OSLDs readout with a MicroStar reader. The authors first characterized the dose-response, fading, and OSL signal loss of OSLDs exposed to doses from 0.5 to 10 Gy. To determine the effect of different bleaching wavelengths on the OSLDs' response, the authors optically treated the OSLDs with 26 W fluorescent lamps in two modes: (i) directly under the lamps for 10, 120, and 600 min and (ii) with a long-pass filter for 55, 600, and 2000 min. Changes in the OSLDs' sensitivity were determined for an irradiation-readout-bleaching-readout cycle after irradiations with 1 and 10 Gy dose fractions. Results: The OSLDs presented supralinearity for doses of 2 Gy and above. The signal loss rates for sequential readouts were (0.287 {+-} 0.007)% per readout in the reader's strong-stimulation mode, and (0.019 {+-} 0.002)% and (0.035 {+-} 0.007)% per readout for doses of 0.2 and 10 Gy, respectively, in the reader's weak-stimulation mode. Fading half-life values ranged from (0.98 {+-} 0.14) min to (1.77 {+-} 0.24) min and fading showed dose dependence for the first 10-min interval. For 10 and 55 min bleaching using modes (i) and (ii), the OSL signal increased 14% for an accumulated dose of 7 Gy (1 Gy fractions). For OSLDs exposed to 10 Gy fractions, the OSL signal increased 30% and 25% for bleaching modes (i) and (ii) and accumulated dose of 70 Gy, respectively. For 120 and 600 min bleaching using modes (i) and (ii), the OSL signal increased 2.7% and 1.5% for an accumulated dose of 7 Gy (1 Gy fractions), respectively. For 10 Gy fractions, the signal increased 14% for bleaching mode (i) (120 min bleaching) and decreased 1.3% for bleaching mode (ii) (600 min bleaching) for an accumulated dose of 70 Gy. For 600 and 2000 min bleaching

  1. The photon

    NASA Astrophysics Data System (ADS)

    Collins, Russell L.

    2009-10-01

    There are no TEM waves, only photons. Lets build a photon, using a radio antenna. A short antenna (2L<< λ) simplifies the calculation, letting B fall off everywhere as 1/r^2. The Biot-Savart law finds B = (μ0/4π)(LI0/r^2)θφt. The magnetic flux thru a semi-circle of radius λ/2 is set equal to the flux quantum h/e, determining the needed source strength, LI0. From this, one can integrate the magnetic energy density over a sphere of radius λ/2 and finds it to be 1.0121 hc/λ. Pretty close. A B field collapses when the current ceases, but the photon evades this by creating a ɛ0E / t displacement current at center that fully supports the toroidal B assembly as it moves at c. This E=vxB arises because the photon moves at c. Stopped, a photon decays. At every point along the photon's path, an observer will note a transient oscillation of an E field. This sources the EM ``guiding wave'', carrying little or no energy and expanding at c. At the head of the photon, all these spherical guiding waves gather ``in-phase'' as a planar wavefront. This model speaks to all the many things we know about light. The photon is tiny, but its guiding wave is huge.

  2. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  3. The Light Echoes around V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2011-10-01

    V838 Monocerotis, which burst upon the astronomical scene in early 2002, is a completely unanticipated new object. It underwent a large-amplitude and very luminous outburst, during which its spectrum remained that of an extremely cool supergiant. A rapidly evolving set of light echoes around V838 Mon was discovered soon after the outburst, and quickly became the most spectacular display of the phenomenon yet seen. These light echoes provide the means to accomplish three unique types of measurements based on continued HST imaging during the event: {1} Study effects of MHD turbulence at high resolution and in 3 dimensions; {2} Construct the first unambiguous and fully 3-D map of a circumstellar dust envelope in the Milky Way; {3} Study dust physics in a unique setting where the spectrum and light curve of the illumination, and the scattering angle, are unambiguously known. We have also used our HST data to determine the distance to V838 Mon through a novel direct geometric technique, and the results showed that V838 Mon had a maximum luminosity brighter than a classical nova.Because of the extreme rarity of light echoes, this is almost certainly the only opportunity to achieve such results during the lifetime of HST. Similar intermediate-luminosity red transients are now being discovered in nearby galaxies, and it has become important to understand the physics of their outbursts and the nature of their progenitors. We propose one visit during Cycle 19, using ACS, in order to continue the mapping of the circumstellar dust and to accomplish the other goals listed above.

  4. Project Echo: FM Demodulators with Negative Feedback

    NASA Technical Reports Server (NTRS)

    Ruthroff, Clyde L.

    1961-01-01

    The primary experimental objective of Project Echo was the transmission of radio communications between points on the earth by reflection from the balloon satellite. Owing to the large path losses from transmitter to receiver via the satellite, a wide-band frequency modulation technique was used in which bandwidth was traded for signal-to-noise ratio. This paper describes the FM receiving demodulators employed. Negative feedback applied to the local oscillator reduces the FM modulation index in the receiver IF amplifiers, resulting in threshold performance superior to that of conventional FM receivers.

  5. Temporal signal processing of dolphin biosonar echoes from salmon prey.

    PubMed

    Au, Whitlow W L; Ou, Hui Helen

    2014-08-01

    Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification. PMID:25096148

  6. Temporal signal processing of dolphin biosonar echoes from salmon prey.

    PubMed

    Au, Whitlow W L; Ou, Hui Helen

    2014-08-01

    Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification.

  7. Extra echo spaces: ultrasonography and computerised tomography correlations.

    PubMed Central

    Wada, T; Honda, M; Matsuyama, S

    1982-01-01

    Among the echocardiograms of 844 patients of the International Goodwill Hospital from January 1980 to April 1981, 700 showed clinically inexplicable extra echo spaces. Fifty of the 700 had computerised tomography of their hearts which showed the extra echo spaces to be caused either by anterior or posterior subepicardial fat. Six of the 50 cases had both fat and pericardial effusions, which are difficult to differentiate echocardiographically unless follow-up clinical observations are performed. Subepicardial fat deposits are reasonable explanations for the extra echo spaces frequently observed by echocardiography: they correlate well with clinical findings. Subepicardial fat should be recognised as the cause of such extra echo spaces. Images PMID:7073903

  8. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  9. Light Echoes of Transients and Variables

    NASA Astrophysics Data System (ADS)

    Rest, Armin

    2012-04-01

    abstract-type="normal">SummaryTycho Brahe's observations of a supernova in 1572 challenged the contemporaneous European view of the cosmos that the celestial realm was unchanging. 439 years later we have once again seen the light that Tycho saw, as some of the light from the 1572 supernova is reflected off dust and is only now reaching Earth. These light echoes, as well as ones detected from other transients and variables, give us a very rare opportunity in astronomy: direct observation of the cause (the supernova explosion) and the effect (the supernova remnant) of the same astronomical event. Furthermore, in some cases we can compare light echoes at different angles around a supernova remnant, and thus investigate possible asymmetry in the supernova explosion. In addition, in cases where the scattering dust is favorably positioned, the geometric distance to the SN remnant can be determined using polarization measurements. These techniques have been successfully applied to various transients in the last decade, and the talk gave an overview of the scientific results and techniques, with a particular focus on the challenges we will face in the current and upcoming wide-field time-domain surveys.

  10. Light Echo From Star V838 Monocerotis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This series of photos, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys from May to December 2002, dramatically demonstrates the reverberation of light through space caused by an unusual stellar outburst in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a 'light echo'. The red star at the center of the eyeball like feature is the unusual erupting super giant called V838 Monocerotis, or V Mon, located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn). During its outburst, the star brightened to more than 600,000 times our Sun's luminosity. The circular feature has now expanded to slightly larger than the angular size of Jupiter on the sky, and will continue to expand for several more years until the light from the back side of the nebula begins to arrive. The light echo will then give the illusion of contracting, until it finally disappears by the end of the decade.

  11. The Long wave (11-16 μm) spectrograph for the EChO M3 Mission Candidate study

    NASA Astrophysics Data System (ADS)

    Bowles, N. E.; Tecza, M.; Barstow, J. K.; Temple, J. M.; Irwin, P. G. J.; Fletcher, L. N.; Calcutt, S.; Hurley, J.; Ferlet, M.; Freeman, D.

    2015-12-01

    The results for the design study of the Long Wave Infrared Module (LWIR), a goal spectroscopic channel for the EChO ESA medium class candidate mission, are presented. The requirements for the LWIR module were to provide coverage of the 11-16 μm spectral range at a moderate resolving power of at least R = 30, whilst minimising noise contributions above photon due to the thermal background of the EChO instrument and telescope, and astrophysical sources such as the zodiacal light. The study output module design is a KRS-6 prism spectrograph with aluminium mirror beam expander and coated germanium lenses for the final focusing elements. Thermal background considerations led to enclosing the beam in a baffle cooled to approximately 25-29 K. To minimise diffuse astrophysical background contributions due to the zodiacal light, anamorphic designs were considered in addition to the elliptical input beam provided by the EChO telescope. Given the requirement that measurements in this waveband place on the performance of the infrared detector array, an additional study on the likely scientific return with lower resolving power ( R < 30) is included. If specific high priority molecules on moderately warm giant planets (e.g. CO2, H2O) are targeted, the LWIR channel can still provide improvements in determining the atmospheric temperature structure and molecular abundances. Thus, the inclusion of even a coarse-resolution (R≈10) LWIR module would still make an important contribution to measurements of exoplanet atmospheres made by EChO.

  12. The Future of ECHO: Evaluating Open Source Possibilities

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.

    2012-12-01

    NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.

  13. Measuring and monitoring quality in satellite echo services within critical care: an exploration of best practice

    PubMed Central

    Colebourn, Claire L

    2015-01-01

    The subspecialty of critical care echocardiography is a rapidly developing area of cardiac imaging. The United Kingdom Committee for Critical Care Echocardiography was set up in 2009 to examine the remit of echocardiography in critical care, and a successful collaboration between the British Society of Echocardiography (BSE) and the Intensive Care Society has resulted in the establishment of two new critical care accreditation processes: Focused Intensive Care Echocardiography and Advanced Critical Care Echocardiography. These accreditation processes are currently driving the development of satellite echo services within critical care departments throughout the UK. Individual practitioner – and more recently, departmental – accreditation have become well-established processes advocated by the BSE. Practitioner accreditation promotes accountability, and departmental accreditation standardises the environment in which practitioners operate. The accreditation of individual echocardiographers has been embraced by the critical care fraternity; we propose that departmental accreditation for critical care echo services be viewed in the same way. Identifying quality indicators for satellite echocardiography services within critical care areas is therefore the focus of the present quality exploration: our aim is to propose a set of parameters against which satellite critical care echo services can be benchmarked. In publishing our suggestions, we hope to stimulate debate in light of the rapid evolution of critical care echocardiography as a subspecialty practice. We suggest that our proposed parameters could be used to maintain satellite critical care service standards and to help identify departments capable of delivering high-quality services and training in critical care echocardiography. PMID:26693334

  14. Photon activation therapy.

    PubMed

    Fairchild, R G; Bond, V P

    1984-12-01

    It is suggested here that significant advantages should accrue from the use of 40 keV photons from implanted sources of 145Sm. These energies should stimulate Auger electron cascades from IdUrd, as well as produce non-repairable damage from radiosensitization. The use of low dose rates (approximately 10 rd/hr) should allow repair in normal tissues exposed to the activating photons. Utilization of this technique with brain tumors should minimize problems associated with radiosensitization of normal tissues, as CNS tissues do not synthesize DNA. The deposition of high LET radiations selectively in tumor cells provides unique advantages not available to either conventional therapy or other forms of particle therapy (fast neutrons, protons, pions, heavy ions). PMID:6515666

  15. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  16. Photonic lanterns

    NASA Astrophysics Data System (ADS)

    Leon-Saval, Sergio G.; Argyros, Alexander; Bland-Hawthorn, Joss

    2013-12-01

    Multimode optical fibers have been primarily (and almost solely) used as "light pipes" in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

  17. Towards four-dimensional photonics

    NASA Astrophysics Data System (ADS)

    Price, Hannah M.; Ozawa, Tomoki; Goldman, Nathan; Zilberberg, Oded; Carusotto, Iacopo

    2016-03-01

    Recent advances in silicon ring-resonator arrays have stimulated the development of topological lattices for photons, with potential applications in integrated photonic devices. Taking inspiration from ultracold atoms, we propose how such arrays can be extended into an additional synthetic dimension by coupling together the different modes of each ring resonator.1 In this way, a 1D resonator chain can become an effective 2D system, while a 3D resonator array can be exploited as a 4D photonic lattice. As an example of the power of this approach, we discuss how to experimentally realise an optical analogue of the 4D quantum Hall effect for the first time. This opens up the way towards the exploration of higher-dimensional lattices in integrated photonics.

  18. The EChO science case

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.

    2015-12-01

    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength

  19. In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging.

    PubMed

    Subramanian, Swetha; Rudich, Steven M; Alqadah, Amel; Karunakaran, Chandra Priya; Rao, Marepalli B; Mast, T Douglas

    2014-01-01

    Previous work indicated that ultrasound echo decorrelation imaging can track and quantify changes in echo signals to predict thermal damage during in vitro radiofrequency ablation (RFA). In the in vivo studies reported here, the feasibility of using echo decorrelation imaging as a treatment monitoring tool was assessed. RFA was performed on normal swine liver (N = 5), and ultrasound ablation using image-ablate arrays was performed on rabbit liver implanted with VX2 tumors (N = 2). Echo decorrelation and integrated backscatter were computed from Hilbert transformed pulse-echo data acquired during RFA and ultrasound ablation treatments. Receiver operating characteristic (ROC) curves were employed to assess the ability of echo decorrelation imaging and integrated backscatter to predict ablation. Area under the ROC curves (AUROC) was determined for RFA and ultrasound ablation using echo decorrelation imaging. Ablation was predicted more accurately using echo decorrelation imaging (AUROC = 0.832 and 0.776 for RFA and ultrasound ablation, respectively) than using integrated backscatter (AUROC = 0.734 and 0.494). PMID:24239361

  20. Psychoacoustic influences of the echoing environments of prehistoric art

    NASA Astrophysics Data System (ADS)

    Waller, Steven J.

    2002-11-01

    Cave paintings and ancient petroglyphs around the world are typically found in echo rich locations such as caves, canyons, and rocky cliff faces. Analysis of field data shows that echo decibel levels at a large number of prehistoric art sites are higher than those at nondecorated locations. The selection of these echoing environments by the artists appears not to be a mere coincidence. This paper considers the perception of an echoed sound as a psychoacoustic event that would have been inexplicable to ancient humans. A variety of ancient legends from cultures on several continents attribute the phenomenon of echoes to supernatural beings. These legends, together with the quantitative data, strongly implicate echoing as relevant to the artists of the past. The notion that the echoes were caused by spirits within the rock would explain not only the unusual locations of prehistoric art, but also the perplexing subject matter. For example, the common theme of hoofed animal imagery could have been inspired by echoes of percussion noises perceived as hoof beats. Further systematic acoustical studies of prehistoric art sites is warranted. Conservation of the natural acoustic properties of rock art environments--a previously unrecognized need--is urged.

  1. ECHOS: Early Childhood Hands-On Science Efficacy Study

    ERIC Educational Resources Information Center

    Brown, Judy A.; Greenfield, Daryl B.; Bell, Elizabeth; Juárez, Cheryl Lani; Myers, Ted; Nayfeld, Irena

    2013-01-01

    "ECHOS: Early Childhood Hands-On Science" was developed at the Miami Science Museum as a comprehensive set of science lessons sequenced to lead children toward a deeper understanding of science content and the use of science process skills. The purpose of the research is to determine whether use of the "ECHOS" model will…

  2. A Detection-Theoretic Model of Echo Inhibition

    ERIC Educational Resources Information Center

    Saberi, Kourosh; Petrosyan, Agavni

    2004-01-01

    A detection-theoretic analysis of the auditory localization of dual-impulse stimuli is described, and a model for the processing of spatial cues in the echo pulse is developed. Although for over 50 years "echo suppression" has been the topic of intense theoretical and empirical study within the hearing sciences, only a rudimentary understanding of…

  3. Target structure and echo spectral discrimination by echolocating bats.

    PubMed

    Simmons, J A; Lavender, W A; Lavender, B A; Doroshow, C A; Kiefer, S W; Livingston, R; Scallet, A C; Crowley, D E

    1974-12-20

    Echolocating bats can use sonar to discriminate among targets which reflect echoes differing in spectral distribution of energy but not in overall intensity. They can detect differences smaller than 1 millimeter in fine target structure. Bats may be capable of classifying targets from echo spectral signatures and might thus be able to distinguish among flying insect prey by sonar.

  4. Neural coding of echo-envelope disparities in echolocating bats.

    PubMed

    Borina, Frank; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-05-01

    The effective use of echolocation requires not only measuring the delay between the emitted call and returning echo to estimate the distance of an ensonified object. To locate an object in azimuth and elevation, the bat's auditory system must analyze the returning echoes in terms of their binaural properties, i.e., the echoes' interaural intensity and time differences (IIDs and ITDs). The effectiveness of IIDs for echolocation is undisputed, but when bats ensonify complex objects, the temporal structure of echoes may facilitate the analysis of the echo envelope in terms of envelope ITDs. Using extracellular recordings from the auditory midbrain of the bat, Phyllostomus discolor, we found a population of neurons that are sensitive to envelope ITDs of echoes of their sonar calls. Moreover, the envelope-ITD sensitivity improved with increasing temporal fluctuations in the echo envelopes, a sonar parameter related to the spatial statistics of complex natural reflectors like vegetation. The data show that in bats envelope ITDs may be used not only to locate external, prey-generated rustling sounds but also in the context of echolocation. Specifically, the temporal fluctuations in the echo envelope, which are created when the sonar emission is reflected from a complex natural target, support ITD-mediated echolocation.

  5. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  6. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  7. Diurnal variation of overdense meteor echo duration and ozone

    NASA Technical Reports Server (NTRS)

    Simek, Milos

    1992-01-01

    The diurnal variation of the median duration of overdense sporadic radar meteor echoes is examined. The meteors recorded in August, December, and January by the Ondrejov meteor radar during the period 1958-1990 were used for the analysis. A maximum median echo duration 1-3 hours after the time of local sunrise in the meteor region confirms the already known sunrise effect. Minimum echo duration occurring at the time of sunset seems to be the most important point of diurnal variation of the echo duration, when ozone is no longer dissociated by solar UV radiation. The effect of diurnal changes of the echo duration should be considered when the mass distribution of meteor showers is analyzed.

  8. Echoes from anharmonic normal modes in model glasses.

    PubMed

    Burton, Justin C; Nagel, Sidney R

    2016-03-01

    Glasses display a wide array of nonlinear acoustic phenomena at temperatures T ≲ 1 K. This behavior has traditionally been explained by an ensemble of weakly coupled, two-level tunneling states, a theory that is also used to describe the thermodynamic properties of glasses at low temperatures. One of the most striking acoustic signatures in this regime is the existence of phonon echoes, a feature that has been associated with two-level systems with the same formalism as spin echoes in NMR. Here we report the existence of a distinctly different type of acoustic echo in classical models of glassy materials. Our simulations consist of finite-ranged, repulsive spheres and also particles with attractive forces using Lennard-Jones interactions. We show that these echoes are due to anharmonic, weakly coupled vibrational modes and perhaps provide an alternative explanation for the phonon echoes observed in glasses at low temperatures. PMID:27078434

  9. Echoes from anharmonic normal modes in model glasses.

    PubMed

    Burton, Justin C; Nagel, Sidney R

    2016-03-01

    Glasses display a wide array of nonlinear acoustic phenomena at temperatures T ≲ 1 K. This behavior has traditionally been explained by an ensemble of weakly coupled, two-level tunneling states, a theory that is also used to describe the thermodynamic properties of glasses at low temperatures. One of the most striking acoustic signatures in this regime is the existence of phonon echoes, a feature that has been associated with two-level systems with the same formalism as spin echoes in NMR. Here we report the existence of a distinctly different type of acoustic echo in classical models of glassy materials. Our simulations consist of finite-ranged, repulsive spheres and also particles with attractive forces using Lennard-Jones interactions. We show that these echoes are due to anharmonic, weakly coupled vibrational modes and perhaps provide an alternative explanation for the phonon echoes observed in glasses at low temperatures.

  10. Range gate dependence of specular echoes

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1983-01-01

    Some controversy has surrounded the interpretation of the enhancement of VHF radar echoes at vertical incidence (also known as partial reflections, specular reflections and Fresnel scattering) since they were reported by the Sunset and the SOUSY radars. There is little doubt as to the observational fact of this enhancement since it was observed by experimenters using at least eleven MST or ST radars. In addition to the Sunset and SOUSY radars, this result was obtained in the lower atmosphere at the Platteville, Poker Flat, Jicamarca Arecibo radars as well as the three radars of the ALPEX experiments. In the upper atmosphere, specular or partial reflections were observed. These vertical enhancements were associated with increases in the static stability of the atmosphere, with a temperature gradient in the stratosphere, were used to monitor the height of the tropopause, and were associated with the passage of fronts.

  11. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    NASA Technical Reports Server (NTRS)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  12. The influence of temporal pattern of stimulation on delay tuning of neurons in the auditory cortex of the FM bat, Myotis lucifugus.

    PubMed

    Tanaka, H; Wong, D

    1993-03-01

    In echolocating bats, delay-sensitive neurons show facilitative responses to simulated pulse-echo pairs at particular echo delays. Three experiments examined how the temporal pattern of stimulation affected the delay tuning of neurons in the auditory cortex of the awake FM bat, Myotis lucifugus. First, delay tuning was compared using a series of pulse-echo pairs fixed in echo delay ('standard' stimuli), and a series of pulse-echo pairs in which successive sound pairs decreased by a fixed echo-delay step ('approach' stimuli). Similar best delays were measured with both stimulation patterns presented at repetition rates in which the neuron was delay-sensitive. At the higher delay-sensitive pulse repetition rates, approach stimuli evoked larger delay-dependent responses. Second, approach stimuli were fixed at different intertrial intervals. The best delay was unaffected by intertrial interval, although some neurons showed larger responses for longer intertrial intervals (0.5, 1.0 s), especially at the higher delay-sensitive pulse repetition rates. Third, approach stimuli were fixed at different echo-delay steps to simulate target velocity. The majority of neurons showed some sensitivity to echo-delay step, with clear preference for target velocity mainly between 1.8-7.0 m/s. This suggests that delay-sensitive neurons compute target velocity by rate of change of echo delay over successive echoes. Thus, response properties of cortical neurons are influenced by dynamic acoustic conditions found in target-directed flight. PMID:8473246

  13. Recent Results for the ECHo Experiment

    NASA Astrophysics Data System (ADS)

    Hassel, C.; Blaum, K.; Goodacre, T. Day; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Filianin, P.; Fäßler, A.; Fleischmann, A.; Gastaldo, L.; Goncharov, M.; Hengstler, D.; Jochum, J.; Johnston, K.; Keller, M.; Kempf, S.; Kieck, T.; Köster, U.; Krantz, M.; Marsh, B.; Mokry, C.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Runke, J.; Saenz, A.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Simkovic, F.; Stora, T.; Thörle-Pospiech, P.; Türler, A.; Veinhard, M.; Wegner, M.; Wendt, K.; Zuber, K.

    2016-08-01

    The Electron Capture in ^{163}Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in ^{163}Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the ^{163}Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure ^{163}Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the ^{163}Ho ion-implantation was performed using a high-purity ^{163}Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000 mathrm {Bq} of high-purity ^{163}Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c^2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.

  14. Fast T(2) relaxometry with an accelerated multi-echo spin-echo sequence.

    PubMed

    Sénégas, Julien; Liu, Wei; Dahnke, Hannes; Song, Hotaek; Jordan, E Kay; Frank, Joseph A

    2010-10-01

    A new method has been developed to reduce the number of phase-encoding steps in a multi-echo spin-echo imaging sequence allowing fast T(2) mapping without loss of spatial resolution. In the proposed approach, the k-space data at each echo time were undersampled and a reconstruction algorithm that exploited the temporal correlation of the MR signal in k-space was used to reconstruct alias-free images. A specific application of this algorithm with multiple-receiver acquisition, offering an alternative to existing parallel imaging methods, has also been introduced. The fast T(2) mapping method has been validated in human brain T(2) measurements in a group of nine volunteers with acceleration factors up to 3.4. The results demonstrated that the proposed method exhibited excellent linear correlation with the regular T(2) mapping with full sampling and achieved better image reconstruction and T(2) mapping with respect to SNR and reconstruction artifacts than the selected reference acceleration techniques. The new method has also been applied for quantitative tracking of injected magnetically labeled breast cancer cells in the rat brain with acceleration factors of 1.8 and 3.0. The proposed technique can provide an effective approach for accelerated T(2) quantification, especially for experiments with single-channel coil when parallel imaging is not applicable. PMID:20878973

  15. Stimulated parametric emission microscopy

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Kataoka, Shogo; Murase, Rena; Watanabe, Wataru; Higashi, Tsunehito; Kawakami, Shigeki; Matsunaga, Sachihiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2006-01-01

    We propose a novel microscopy technique based on the four-wave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our proposed FWM technique can be used to obtain a one-dimensional image of ethanol-thinned Coumarin 120 solution sandwiched between a hole-slide glass and a cover slip, and a two-dimensional image of a leaf of Camellia sinensis.

  16. The dependence of behavioral auditory thresholds on the delay of echo-like signals in noctuid moths (lepidoptera, noctuidae).

    PubMed

    Lapshin, D N; Vorontsov, D D

    2009-03-01

    The auditory system of noctuoid moths capable to respond to ultrasounds has long been a model for anti-predator studies in neuroethology. Many moths avoid hunting bats by listening for their echolocation calls and taking evasive manoeuvres to escape predation. Besides these flight defences, certain tiger moths (Arctiidae) emit high-frequency clicks to jam the echolocator of an attacking bat. Another suggested function for ultrasonic audition in moths along with their capability to emit loud ultrasonic clicks was pulse echolocation. However, it seemed difficult to arrange sufficient temporal resolution in a simple invertebrate auditory system. Here we present an evidence of moth's capability to perceive an echo following its own click with a very short delay. The behavioral responses of moths to the acoustic pulses imitating echoes of their own clicks were investigated under conditions of tethered flight. It has been found that such echo-like stimulation evokes an increase in average emission rate of own acoustic signals in moths. Auditory thresholds were measured in two noctuid species (Enargia paleacea Esp. and Blepharita satura Schiff.) at stimulus delays 0.2, 0.3, 0.5 and 1 ms in relation to the respective moth clicks. Our findings reveal the ability of these moths to perceive echoes of their own signals, thus demonstrating potential possibility for use of pulse echolocation.

  17. Vesicle Photonics

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  18. Photons Revisited

    NASA Astrophysics Data System (ADS)

    Batic, Matej; Begalli, Marcia; Han, Min Cheol; Hauf, Steffen; Hoff, Gabriela; Kim, Chan Hyeong; Kim, Han Sung; Grazia Pia, Maria; Saracco, Paolo; Weidenspointner, Georg

    2014-06-01

    A systematic review of methods and data for the Monte Carlo simulation of photon interactions is in progress: it concerns a wide set of theoretical modeling approaches and data libraries available for this purpose. Models and data libraries are assessed quantitatively with respect to an extensive collection of experimental measurements documented in the literature to determine their accuracy; this evaluation exploits rigorous statistical analysis methods. The computational performance of the associated modeling algorithms is evaluated as well. An overview of the assessment of photon interaction models and results of the experimental validation are presented.

  19. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  20. Ultrasound Echo is Related to Stress, Strain in Tendon

    PubMed Central

    Duenwald, Sarah; Kobayashi, Hirohito; Frisch, Kayt; Lakes, Roderic; Vanderby, Ray

    2010-01-01

    The mechanical behavior of tendons has been well studied in vitro. A noninvasive method to acquire mechanical data would be highly beneficial. Elastography has been a promising method of gathering in vivo tissue mechanical behavior, but it has inherent limitations. This study presents acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultrasonic echo intensity (B mode ultrasound image brightness) and mechanical behavior of tendon in vitro. Porcine digital flexor tendons were cyclically loaded in a mechanical testing system while ultrasonic echo response was recorded. We report that echo intensity closely follows the applied cyclic strain pattern in time with higher strain protocols resulting in larger echo intensity changes. We also report that echo intensity is related nonlinearly to stress and nearly linearly to strain. This indicates that ultrasonic echo intensity is related to the mechanical behavior in a loaded tissue by an acoustoelastic response, as previously described in homogeneous, nearly incompressible materials. Acoustoelasticity is therefore able to relate strain-dependent stiffness and stress to the reflected echo, even in the processed B-mode signals reflected from viscoelastic, inhomogeneous material such as tendon, and is a promising metric to acquire in vivo mechanical data noninvasively. PMID:21030024

  1. Ultrasound echo is related to stress and strain in tendon.

    PubMed

    Duenwald, Sarah; Kobayashi, Hirohito; Frisch, Kayt; Lakes, Roderic; Vanderby, Ray

    2011-02-01

    The mechanical behavior of tendons has been well studied in vitro. A noninvasive method to acquire mechanical data would be highly beneficial. Elastography has been a promising method of gathering in vivo tissue mechanical behavior, but it has inherent limitations. This study presents acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultrasonic echo intensity (B-mode ultrasound image brightness) and mechanical behavior of tendon in vitro. Porcine digital flexor tendons were cyclically loaded in a mechanical testing system while an ultrasonic echo response was recorded. We report that echo intensity closely follows the applied cyclic strain pattern in time with higher strain protocols resulting in larger echo intensity changes. We also report that echo intensity is related nonlinearly to stress and nearly linearly to strain. This indicates that ultrasonic echo intensity is related to the mechanical behavior in a loaded tissue by an acoustoelastic response, as previously described in homogeneous, nearly incompressible materials. Acoustoelasticity is therefore able to relate strain-dependent stiffness and stress to the reflected echo, even in the processed B-mode signals reflected from viscoelastic and inhomogeneous material such as tendon, and is a promising metric to acquire in vivo mechanical data noninvasively.

  2. Kinematics of illumination patterns and light echoes from flashes.

    PubMed

    Zhong, Qi

    2016-09-01

    Flash-induced light echoes-the observation of light reflected from a burst-have been observed in astronomical settings for more than a century and have been observed in the laboratory recently. Because of the flight time of light, perceived light echoes are different from real light illumination patterns on a scattering plane, neglecting interreflections and non-opaque scattering effects. The shape and motion of real illumination patterns are studied from a spherical flash. Then, ellipsoids of constant time delay for a specifically chosen coordinate system are applied. Generally, perceived light echoes are elliptical annular rings and the center of a light echo will not start at the flash, which leads to light echoes moving angularly toward the flash instead of away from it, a phenomenon actually recorded by other groups. The brightness of perceived light echoes was studied, and maximum brightness occurred close to the flash's projective point on the scattering plane. Two specific examples are given and a magnification effect between perceived echoes and real illumination patterns is proposed. PMID:27607505

  3. Photon-activation therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Photon Activation Therapy (PAT) is a technique in which radiation dose to tumor is enhanced via introduction of stable /sup 127/I in the form of iodinated deoxyuridine (IdUrd). Stimulation of cytotoxic effects from IdUrd is accomplished by activation with external (or implanted) radiation sources. Thus, accumulations of this nucleoside in actively competing cellpools do not preclude therapy in so far as such tissues can be excluded from the radiation field. Calculations show that 5% replacement of thymidine (Tyd) in tumor DNA should enhance the biological effectiveness of a given photon radiotherapy dose by a factor of approx. 3. Proportionally higher gains would result from higher replacements of Tyd and IdUrd. In addition, biological response is enhanced by chemical sensitization with IdUrd. The data indicate that damage from photon activation as well as chemical sensitization does not repair. Thus, at low dose rates, a further increase in therapeutic gain should accrue as normal tissues are allowed to repair and regenerate. A samarium-145 source has been developed for PAT, with activating x-ray energies of from 38 to 45 keV. Favorable clinical results can be expected through the use of IdUrd and protracted irradiations with low energy x-rays. In particular, PAT may provide unique advantages at selected sites such as brain, or head and neck tumors. (ERB)

  4. Temperature echoes revisited to probe the vibrational behavior of dendrimers.

    PubMed

    Paulo, Pedro M R

    2010-03-21

    Temperature quench echoes were induced in molecular dynamics simulations of dendrimers. This phenomenon was used to probe the vibrational behavior of these molecules by comparing simulation results with harmonic model predictions. The echo depth for short time intervals between temperature quenches is well described by the harmonic approximation and the fluctuations observed are related to the vibrational density of states. The echo depth for long time intervals decays progressively revealing dephasing due to anharmonic interactions. The density of states was calculated from the temperature fluctuations after the first quench and high-frequency modes were assigned by comparison with vibrational spectra of similar dendrimers.

  5. Photon-photon collisions via relativisitic mirrors

    SciTech Connect

    Koga, James K.

    2012-07-11

    Photon-photon scattering at low energies has been predicted theoretically for many years. However, due to the extremely small cross section there has been no experimental confirmation of this. Due to the rapid increase in laser irradiances and projected peak irradiances in planned facilities regimes could be reached where photon-photon scattering could be experimentally observed. We will first review basic aspects of photon-photon collisions concentrating on the calculation of the photon-photon scattering cross section. Then we will discuss the possibilities for observing these phenomena in ultra-high irradiance laser-plasma interactions involving relativistic mirrors.

  6. A comparison of dual gradient-echo and spin-echo fMRI of the inferior temporal lobe.

    PubMed

    Halai, Ajay D; Welbourne, Stephen R; Embleton, Karl; Parkes, Laura M

    2014-08-01

    Magnetic susceptibility differences at tissue interfaces lead to signal loss in conventional gradient-echo (GE) EPI. This poses a problem for fMRI in language and memory paradigms, which activate the most affected regions. Two methods proposed to overcome this are spin-echo EPI and dual GE EPI, where two EPI read-outs are serially collected at a short and longer echo time. The spin-echo method applies a refocusing pulse to recover dephased MR signal due to static field inhomogeneities, but is known to have a relatively low blood oxygenation level dependant (BOLD) sensitivity. In comparison, GE has superior BOLD sensitivity, and by employing an additional shorter echo, in a dual GE sequence, it can reduce signal loss due to spin dephasing. We directly compared dual GE and spin-echo fMRI during a semantic categorization task, which has been shown to activate the inferior temporal region-a region known to be affected by magnetic susceptibility. A whole brain analysis showed that the dual GE resulted in significantly higher activation within the left inferior temporal fusiform (ITF) cortex, compared to spin-echo. The inferior frontal gyrus (IFG) was activated for dual GE, but not spin-echo. Regions of interest analysis was carried out on the anterior and posterior ITF, left and right IFG, and part of the cerebellum. Dual GE outperformed spin-echo in the anterior and posterior ITF and bilateral IFG regions, whilst being equal in the cerebellum. Hence, dual GE should be the method of choice for fMRI studies of inferior temporal regions. PMID:24677506

  7. Magnetized stimulated scattering in pulsar winds

    NASA Technical Reports Server (NTRS)

    Sincell, Mark W.; Krolik, Julian H.

    1992-01-01

    The effects of stimulated scattering on a collimated high brightness temperature beam of photons traversing a relativistically streaming magnetized plasma are studied. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and the Lorentz factor gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency, the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam.

  8. First radar echoes from cumulus clouds

    NASA Technical Reports Server (NTRS)

    Knight, Charles A.; Miller, L. J.

    1993-01-01

    In attempting to use centimeter-wavelength radars to investigate the early stage of precipitation formation in clouds, 'mantle echoes' are rediscovered and shown to come mostly from scattering by small-scale variations in refractive index, a Bragg kind of scattering mechanism. This limits the usefulness of single-wavelength radar for studies of hydrometeor growth, according to data on summer cumulus clouds in North Dakota, Hawaii, and Florida, to values of reflectivity factor above about 10 dBZe with 10-cm radar, 0 dBZe with 5-cm radar, and -10 dBZe with 3-cm radar. These are limits at or above which the backscattered radar signal from the kinds of clouds observed can be assumed to be almost entirely from hydrometeors or (rarely) other particulate material such as insects. Dual-wavelength radar data can provide the desired information about hydrometeors at very low reflectivity levels if assumptions can be made about the inhomogeneities responsible for the Bragg scattering. The Bragg scattering signal itself probably will be a useful way to probe inhomogeneities one-half the radar wavelength in scale for studying cloud entrainment and mixing processes. However, this use is possible only before scattering from hydrometeors dominates the radar return.

  9. Quaternion-valued echo state networks.

    PubMed

    Xia, Yili; Jahanchahi, Cyrus; Mandic, Danilo P

    2015-04-01

    Quaternion-valued echo state networks (QESNs) are introduced to cater for 3-D and 4-D processes, such as those observed in the context of renewable energy (3-D wind modeling) and human centered computing (3-D inertial body sensors). The introduction of QESNs is made possible by the recent emergence of quaternion nonlinear activation functions with local analytic properties, required by nonlinear gradient descent training algorithms. To make QENSs second-order optimal for the generality of quaternion signals (both circular and noncircular), we employ augmented quaternion statistics to introduce widely linear QESNs. To that end, the standard widely linear model is modified so as to suit the properties of dynamical reservoir, typically realized by recurrent neural networks. This allows for a full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances, and a rigorous account of second-order noncircularity (improperness), and the corresponding power mismatch and coupling between the data components. Simulations in the prediction setting on both benchmark circular and noncircular signals and on noncircular real-world 3-D body motion data support the analysis.

  10. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Huber, Mark E.; Matheson, Thomas; McDonald, Brittany; Olsen, Knut; Prieto, Jose Luis; Sinnott, Brendan; Smith, Nathan; Welch, Doug

    2012-08-01

    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to conclude our search - so far unsuccessful - for LEs from the the Crab supernova SN 1054 by surveying one remaining region of the LE ellipsoid behind the plane of the supernova remnant on the sky. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. Recently, we discovered LEs of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images. Subsequent spectroscopic follow-up revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than the reported LBV outburst spectral types (F-type or earlier) teRest12_eta. The application of the LE studies to LBVs promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core-collapse supernova precursors.

  11. Quaternion-valued echo state networks.

    PubMed

    Xia, Yili; Jahanchahi, Cyrus; Mandic, Danilo P

    2015-04-01

    Quaternion-valued echo state networks (QESNs) are introduced to cater for 3-D and 4-D processes, such as those observed in the context of renewable energy (3-D wind modeling) and human centered computing (3-D inertial body sensors). The introduction of QESNs is made possible by the recent emergence of quaternion nonlinear activation functions with local analytic properties, required by nonlinear gradient descent training algorithms. To make QENSs second-order optimal for the generality of quaternion signals (both circular and noncircular), we employ augmented quaternion statistics to introduce widely linear QESNs. To that end, the standard widely linear model is modified so as to suit the properties of dynamical reservoir, typically realized by recurrent neural networks. This allows for a full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances, and a rigorous account of second-order noncircularity (improperness), and the corresponding power mismatch and coupling between the data components. Simulations in the prediction setting on both benchmark circular and noncircular signals and on noncircular real-world 3-D body motion data support the analysis. PMID:25794374

  12. Decoupled echo state networks with lateral inhibition.

    PubMed

    Xue, Yanbo; Yang, Le; Haykin, Simon

    2007-04-01

    Building on some prior work, in this paper we describe a novel structure termed the decoupled echo state network (DESN) involving the use of lateral inhibition. Two low-complexity implementation schemes, namely, the DESN with reservoir prediction (DESN + RP) and DESN with maximum available information (DESN + MaxInfo), are developed: (1) In the multiple superimposed oscillator (MSO) problem, DESN + MaxInfo exhibits three important attributes: lower generalization mean-square error (MSE), better robustness with respect to the random generation of reservoir weight matrix and feedback connections, and robustness to variations in the sparseness of reservoir weight matrix, compared to DESN + RP. (2) For a noiseless nonlinear prediction task, DESN + RP outperforms the DESN + MaxInfo and single reservoir-based ESN approach in terms of lower prediction MSE and better robustness to a change in the number of inputs and sparsity of the reservoir weight matrix. Finally, in a real-life prediction task using noisy sea clutter data, both schemes exhibit higher prediction accuracy and successful design ratio than a conventional ESN with a single reservoir.

  13. Beam Echo Effect for Generation of Short-Wavelength Radiation

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-12-09

    The Echo-Enabled Harmonic Generation (EEHG) FEL uses two modulators in combination with two dispersion sections to generate a high-harmonic density modulation starting with a relatively small initial energy modulation of the beam. After presenting the concept of the EEHG, we address several practically important issues, such as the effect of coherent and incoherent synchrotron radiation in the dispersion sections. Using a representative realistic set of beam parameters, we show how the EEHG scheme enhances the FEL performance and allows one to generate a fully (both longitudinally and transversely) coherent radiation. We then discuss application of the echo modulation for generation of attosecond pulses of radiation, and also using echo for generation of terahertz radiation. We present main parameters of a proof-of-principle experiment currently being planned at SLAC for demonstration of the echo modulation mechanism.

  14. Asynchronous and timing jitter insensitive data echo cancellation

    NASA Astrophysics Data System (ADS)

    Messerschmitt, David G.

    1986-12-01

    An approach to the implementation of asynchronous and timing jitter insensitive data echo cancellation is described. This approach introduces a small amount of jitter in the transmitted data signal, or alternatively in the received signal sampling, and uses a simple digital phase-locked loop together with the storage of two sets of echo canceller coefficients. The effect of derived timing jitter on the echo cancellation accuracy is completely eliminated for a loop timed transceiver (as in a digital subscriber loop network termination transceiver), and is easily reduced to negligible levels for a nonloop timed transceiver (as in a digital subscriber loop line card transceiver or a voiceband data modem). In the case of a voiceband data modem, this approach is one method to achieve asynchronous echo cancellation without the need to recover and resample a continuous-time far-end data signal.

  15. Light echoes and transient luminescence near SN 1987A

    NASA Technical Reports Server (NTRS)

    Crotts, Arlin P. S.; Kunkel, William E.; Mccarthy, Patrick J.

    1989-01-01

    The discovery of two new light echoes from sheets of material behind supernova 1987A and present images of the progenitor's circumstellar shell are reported, indicating diffuse echoes from the star's red giant wind. The echo sheets' geometry explains well the behavior of SN 1987's 10-micron flux, but the circumstellar shell appears to be 70 percent larger than the prediction from the analysis of narrow UV emission lines. The sheets' recombination time show them relatively thin and dense. The data also constrain the existence of any fourth star in the Sanduleak -69 deg 202 system and show that the feature reported 8 arcsecs from the supernova is probably not an echo from a thin sheet in SN 1987A's foreground.

  16. A model for depolarized radar echoes from Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1989-01-01

    The depolarized radar echoes from Mars are modeled using a combination of remote-sensing observations. The model reproduces the variations of the total radar cross-sections with longitude observed by Goldstone (1986) along 7 S, yields larger magnitudes of total radar cross-sections along 22 N than those along 7 S, and produces depolarized echo spectra that broadly match those observed by the Arecibo radar in 1980 and 1982. The model indicates that volcanoes and lava plains of the Tharsis-Alba Patera, Elysium, and Amazonia regions have the strongest depolarized echoes from the entire planet. Rock populations for the moon and Mars are estimated assuming depolarized radar echoes result from rocks with radii between 1.3 and three times the wavelength.

  17. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  18. Spin Echo in Spinor Dipolar Bose-Einstein Condensates

    SciTech Connect

    Yasunaga, Masashi; Tsubota, Makoto

    2008-11-28

    We theoretically propose and numerically realize spin echo in a spinor Bose-Einstein condensate (BEC). We investigate the influence on the spin echo of phase separation of the condensate. The equation of motion of the spin density exhibits two relaxation times. We use two methods to separate the relaxation times and hence demonstrate a technique to reveal magnetic dipole-dipole interactions in spinor BECs.

  19. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  20. A local Echo State Property through the largest Lyapunov exponent.

    PubMed

    Wainrib, Gilles; Galtier, Mathieu N

    2016-04-01

    Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN, we develop a cheap algorithm to establish a local and operational version of the Echo State Property.

  1. The architecture of dynamic reservoir in the echo state network.

    PubMed

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  2. The architecture of dynamic reservoir in the echo state network.

    PubMed

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities. PMID:23020466

  3. Transforming echoes into pseudo-action potentials for classifying plants.

    PubMed

    Kuc, R

    2001-10-01

    Animals perceive their environment by converting sensory stimuli into action potentials, or temporal point processes, that are interpreted by the brain. This paper investigates the information content of point processes extracted from echoes from in situ plants in an effort to understand how bats recognize landmarks in the field. A mobile sonar converts echoes into biologically similar temporal point processes. termed pseudo-action potentials (PAPs), whose inter-PAP interval relates to echo amplitude. The sonar forms a sector scan of an object to produce a spatial-temporal PAP field. Classifier neurons apply delays and coincidence detection to the PAP field to identify three distinct echo types, glints, blobs, and fuzz, which characterize plant features. Glints are large amplitude echoes exhibiting coherence over successive echoes in the sector scan, typically produced by favorably oriented isolated specular reflectors. Blobs are large echoes lacking coherence, typically bordering glints or formed by collections of interfering reflectors. Fuzz represents weak echoes, typically produced by collection of weak scatterers or by reflectors on the beam periphery. A small mirror reflector models a flat leaf surface and motivates the glint criteria. Classifiers are applied to experimental data from two types of tree trunks, a glint-producing sycamore (Platanus occidenatalis) and a glint-absent Norway maple (Acer platanoides) and two plants, a glint-producing rhododendron (Rhododendron maximus) and a glint-absent yew (Taxus media). We speculate that our narrow-band sonar models the activity of a single frequency bin in the frequency-modulated (FM) sweep emitted by bats, and that one function of the frequency bins in the FM sweep is to form a sector scan of the environment.

  4. Preliminary results of the echo-seeding experiment at SLAC

    SciTech Connect

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; Schlueter, R.; Venturini, M.; Wan, W.; Pernet, P-L.

    2010-05-23

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  5. Broadband waveguide quantum memory for entangled photons.

    PubMed

    Saglamyurek, Erhan; Sinclair, Neil; Jin, Jeongwan; Slater, Joshua A; Oblak, Daniel; Bussières, Félix; George, Mathew; Ricken, Raimund; Sohler, Wolfgang; Tittel, Wolfgang

    2011-01-27

    The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

  6. Microalgae photonics

    NASA Astrophysics Data System (ADS)

    Floume, Timmy; Coquil, Thomas; Sylvestre, Julien

    2011-05-01

    Due to their metabolic flexibility and fast growth rate, microscopic aquatic phototrophs like algae have a potential to become industrial photochemical converters. Algae photosynthesis could enable the large scale production of clean and renewable liquid fuels and chemicals with major environmental, economic and societal benefits. Capital and operational costs are the main issues to address through optical, process and biochemical engineering improvements. In this perspective, a variety of photonic approaches have been proposed - we introduce them here and describe their potential, limitations and compatibility with separate biotechnology and engineering progresses. We show that only sunlight-based approaches are economically realistic. One of photonics' main goals in the algae field is to dilute light to overcome photosaturation effects that impact upon cultures exposed to full sunlight. Among other approaches, we introduce a widely-compatible broadband spectral adaptation technique called AlgoSun® that uses luminescence to optimize sunlight spectrum in view of the bioconverter's requirements.

  7. EChO: What are exoplanets made of?

    NASA Astrophysics Data System (ADS)

    Tinetti, G.; Drossart, P.; Isaak, K.; Krause, O.; Lovis, C.; Micela, G.; Ollivier, M.; Ribas, I.; Snellen, I.; Swinyard, AB(B.

    2012-09-01

    The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of exoplanetary atmospheres. EChO will expand the playground of planetary science beyond our solar system, by providing a representative sample of exoplanet spectra under a wide range of physical and chemical conditions. The observed chemical composition largely depends on the planet's thermal structure, which in turn depends on the planet's orbital distance and metallicity, and the host star's luminosity and stellar type. The planetary mass determines the planet's ability to retain an atmosphere. The range of planets and stellar environments explored by EChO extends from the very hot to the temperate zone and includes gas-giants, Neptunes and super-Earths. EChO has been selected in 2011 as one of the four ESA M3 mission candidates, and it is currently in assessment phase. Here we will focus on the science of EChO and present the results obtained by the EChO Science Study Team.

  8. Multi-Echo Acquisition of O-Space Data

    PubMed Central

    Galiana, Gigi; Peters, Dana; Tam, Leo; Constable, R. Todd

    2014-01-01

    Purpose Nonlinear gradient encoding methods, such as O-Space imaging, have been shown to provide good images from very few echoes. Acquiring data in a train of spin or gradient echoes is a very flexible way to further speed acquisition time. However, combining these strategies presents significant challenges, both in terms of the contrast and artifacts. We present strategies in both pulse sequence design and image processing to mitigate these effects. Theory and Methods The three strategies include a new echo ordering that takes into account the unique way that O-Space samples the k-space of the image; a new post-processing filter that allows tuning of T2-weighting by emphasizing the contribution of low frequency spatial information at selectable points in space and time; and an offset between linear and nonlinear gradients that makes the central point of each echo unique. Results Simulations indicate that these strategies mitigate artifacts introduced by T2 (or T2*) decay and produce contrast that reflects relaxation at a given TE. Conclusion Turbo spin echo O-Space is theoretically feasible, and the greater undersampling should make it possible to use shorter echo trains for a given scan time. PMID:24459076

  9. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  10. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo. PMID:24177228

  11. Quantum teleportation from a propagating photon to a solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.

    2013-11-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  12. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  13. LRS data processing methods for detection of lunar subsurface echoes

    NASA Astrophysics Data System (ADS)

    Oshigami, Shoko; Mochizuki, Kengo; Watanabe, Shiho; Watanabe, Toshiki; Yamaguchi, Yasushi; Yamaji, Atsushi; Ono, Takayuki; Kumamoto, Atsushi; Nakagawa, Hiromu; Kobayashi, Takao; Kasahara, Yoshiya

    Lunar Radar Sounder (LRS) is an instrument for one of fifteen science missions of SE- LENE (KAGUYA). LRS is a ground-penetrating FM-CW radar system of HF-band. LRS detects echoes reflected from subsurface discontinuities where dielectric constants of the rocks change. The range resolution of LRS is 75 m in free space, whereas the sampling interval in the flight direction is about 75 m when the spacecraft altitude is 100 km. The primary objective of LRS is to investigate lunar subsurface structures. We plan to perform global soundings by LRS to contribute to studying the evolution of the Moon. In this presentation, we introduce the techniques to process LRS data to produce data products and to detect subsurface echoes. We have two standard data products of LRS under consideration. The time series data of ‘A-scope' which is a plot of signal power spectrum as a function of range derived from of the waveform data are called ‘B-scan'. Because LRS instruments change timing of data recording (measurement delay time) according to the predicted distance between KAGUYA spacecraft and lunar surface, observation range with respect to the spacecraft varies from pulse to pulse. In addition, flight altitude of KAGUYA changes in the range of several tens of kilometers. Therefore a trace of surface nadir echoes in unprocessed B-scan images does not correspond to actual lunar topography. We corrected variations of the measurement delay time and flight altitude of KAGUYA to produce a B-scan data product with the original spatial resolution (BScan high) and a reduced spatial resolution product (BScan low) both in the PDS format. The echo signals in A-scope data might be classified in the following categories; (1) a surface nadir echo, (2) surface off-nadir backscattering echoes, and (3) subsurface echoes. The most intense signal usually comes from the nadir point, when KAGUYA is flying over a level surface. The A-scope data also include various noises resulted from, for example

  14. Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus.

    PubMed

    Feng, A S; Simmons, J A; Kick, S A

    1978-11-10

    Some of the neurons in the nucleus intercollicularis and auditory cortex of the echolocating bat Eptesicus fuscus respond selectively to sonar echoes occurring with specific echo delays or pulse-echo intervals. They do not respond for a wide range of other types of sounds or for sonar echoes at longer or shorter pulse-echo intervals; they may, therefore, be specialized for detection and ranging of sonar targets.

  15. Exoplanetary Characterisation Observatory (EChO)

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo; Tinetti, Giovanna

    2013-04-01

    The science of extrasolar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 800-plus planets being detected, and over 2000 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are? The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of transiting exoplanets over the widest range possible and is currently being studied by ESA in the context of a medium class mission within the Cosmic Vision programme for launch post 2020. The mission is based around a highly stable space platform with a 1.2 m class telescope at L2, hosting a suit of spectrographs providing continuous spectral coverage from 0.5 to 16 microns. Such a broad and simultaneous wavelength coverage allows the unique insight into the atmospheric make up of these foreign worlds and allows us to study their planetary and atmospheric compositions and evolutions.

  16. Dynamics of Proteins Encapsulated in Silica Sol-gel Glasses Studied with IR Vibrational Echo Spectroscopy

    PubMed Central

    Massari, Aaron M.; Finkelstein, Ilya J.; Fayer, Michael D.

    2008-01-01

    Spectrally-resolved infrared stimulated vibrational echo spectroscopy is used to measure the fast dynamics of heme-bound CO in carbonmonoxy-myoglobin (MbCO) and hemoglobin (HbCO) embedded in silica sol-gel glasses. On the time scale of ~100 fs to several ps, the vibrational dephasing of the heme-bound CO is measurably slower for both MbCO and HbCO relative to aqueous protein solutions. The fast structural dynamics of MbCO, as sensed by the heme-bound CO, are influenced more by the sol-gel environment than those of HbCO. Longer time scale structural dynamics (tens of ps), as measured by the extent of spectral diffusion, are the same for both proteins encapsulated in sol-gel glasses compared to aqueous solutions. A comparison of the sol-gel experimental results to viscosity dependent vibrational echo data taken on various mixtures of water and fructose shows that the sol-gel encapsulated MbCO exhibits dynamics that are the equivalent to the protein in a solution that is nearly 20 times more viscous than bulk water. In contrast, the HbCO dephasing in the sol-gel reflects only a 2-fold increase in viscosity. Attempts to alter the encapsulating pore size by varying the molar ratio of silane precursor to water (R-value) used to prepare the sol-gel glasses were found to have no effect on the fast or steady-state spectroscopic results. The vibrational echo data are discussed in the context of solvent confinement and protein-pore wall interactions to provide insights into the influence of a confined environment on the fast structural dynamics experienced by a biomolecule. PMID:16551107

  17. Infrared neural stimulation in the cochlea

    PubMed Central

    Richter, Claus-Peter; Rajguru, Suhrud; Bendett, Mark

    2014-01-01

    The application of photonics to manipulate and stimulate neurons and to study neural networks has gained momentum over the last decade. Two general methods have been used: the genetic expression of light or temperature sensitive ion channels in the plasma membrane of neurons (Optogenetics and Thermogenetics) and the direct stimulation of neurons using infrared radiation (Infrared Neural Stimulation, INS). Both approaches have their strengths and challenges, which are well understood with a profound understanding of the light tissue interaction(s). This paper compares the opportunities of the methods for the use in cochlear prostheses. Ample data are already available on the stimulation of the cochlea with INS. The data show that the stimulation is selective, feasible at rates that would be sufficient to encode acoustic information and may be beneficial over conventional pulsed electrical stimulation. A third approach, using lasers in stress confinement to generate pressure waves and to stimulate the functional cochlea mechanically will also be discussed. PMID:25075260

  18. Infrared neural stimulation in the cochlea.

    PubMed

    Richter, Claus-Peter; Rajguru, Suhrud; Bendett, Mark

    2013-03-01

    The application of photonics to manipulate and stimulate neurons and to study neural networks has gained momentum over the last decade. Two general methods have been used: the genetic expression of light or temperature sensitive ion channels in the plasma membrane of neurons (Optogenetics and Thermogenetics) and the direct stimulation of neurons using infrared radiation (Infrared Neural Stimulation, INS). Both approaches have their strengths and challenges, which are well understood with a profound understanding of the light tissue interaction(s). This paper compares the opportunities of the methods for the use in cochlear prostheses. Ample data are already available on the stimulation of the cochlea with INS. The data show that the stimulation is selective, feasible at rates that would be sufficient to encode acoustic information and may be beneficial over conventional pulsed electrical stimulation. A third approach, using lasers in stress confinement to generate pressure waves and to stimulate the functional cochlea mechanically will also be discussed. PMID:25075260

  19. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Lee, Janice C.; Anderson, Jay; Andrews, Jennifer E.; Calzetti, Daniela; Bright, Stacey N.; Ubeda, Leonardo; Smith, Linda J.; Sabbi, Elena; Grebel, Eva K.; Herrero, Artemio; de Mink, Selma E.

    2015-06-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on board the Hubble Space Telescope by the Legacy ExtraGalactic Ultraviolet Survey. The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ˜21-22 mag in all of these bands. The echo appears circular, although less obviously as a ring, with an inhomogeneous surface brightness, in particular, a prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with {R}V=3.1. The SN light curves that we consider also include models of the unobserved early burst of light from the SN shock breakout. Our analysis of the echo suggests that the distance from the SN to the scattering dust elements along the echo is ≈ 45 pc. The implied visual extinction for the echo-producing dust is consistent with estimates made previously from the SN itself. Finally, our estimate of the SN brightness in F814W is fainter than that measured for the red supergiant star at the precise SN location in pre-SN images, possibly indicating that the star has vanished and confirming it as the likely SN progenitor.

  20. Research on key technologies of LADAR echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo

    2015-10-01

    LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.

  1. Suppression of artifacts in multiple-echo magnetic resonance

    NASA Astrophysics Data System (ADS)

    Barker, Gareth J.; Mareci, Thomas H.

    Many techniques in both magnetic resonance imaging and magnetic resonance spectroscopy use two or more RF pulses to excite the spin system and detect the echo signals which form between or after the pulses. In general many different echoes form during each acquisition interval, only one of which carries the information required. The others lead to distortion of peak heights and lineshapes in MRS, and to ghost images and similar artifacts in MRI. The "coherence transfer pathway" formalism of Bodenhausen et al. allows the evolution of each echo to be studied and suggests methods of removing the unwanted signals. The general phase-cycling methods described by Bodenhausen et al. require a degree of flexibility in the control of RF pulses which is not available on all spectrometers, however, so simpler schemes requiring only 180° phase shifts have been investigated. With certain restrictions, these schemes give cancellation of the unwanted echoes during any particular acquisition interval, and in certain cases can be extended to cancel the unwanted echoes in all acquisition intervals of a multiple-echo sequence. All such schemes, however, require a large number of transients to be collected, so a second method has been investigated whereby the systematic application of magnetic field gradients can produce similar results within a single transient. Both of these approaches have been reported previously, but we introduce a novel formalism which allows the required pulse phases and gradient magnitudes to be systematically calculated, rather than empirically determined, for any pulse sequence. Examples of the application of each method to the spin-echo and TART imaging sequences are given, although both methods are equally applicable to many pulse sequences used in spectroscopy.

  2. REDUCTION OF ECHO DECORRELATION VIA COMPLEX PRINCIPAL COMPONENT FILTERING

    PubMed Central

    Mauldin, F. William; Viola, Francesco; Walker, William F.

    2009-01-01

    Ultrasound motion estimation is a fundamental component of clinical and research techniques that include color flow Doppler, spectral Doppler, radiation force imaging and ultrasound-based elasticity estimation. In each of these applications, motion estimates are corrupted by signal decorrelation that originates from nonuniform target motion across the acoustic beam. In this article, complex principal component filtering (PCF) is demonstrated as a filtering technique for dramatically reducing echo decorrelation in blood flow estimation and radiation force imaging. We present simulation results from a wide range of imaging conditions that illustrate a dramatic improvement over simple bandpass filtering in terms of overall echo decorrelation (≤99.9% reduction), root mean square error (≤97.3% reduction) and the standard deviation of displacement estimates (≤97.4% reduction). A radiation force imaging technique, termed sonorheometry, was applied to fresh whole blood during coagulation, and complex PCF operated on the returning echoes. Sonorheometry was specifically chosen as an example radiation force imaging technique in which echo decorrelation corrupts motion estimation. At 2 min after initiation of blood coagulation, the average echo correlation for sonorheometry improved from 0.996 to 0.9999, which corresponded to a 41.0% reduction in motion estimation variance as predicted by the Cramer-Rao lower bound under reasonable imaging conditions. We also applied complex PCF to improve blood velocity estimates from the left carotid artery of a healthy 23-year-old male. At the location of peak blood velocity, complex PCF improved the correlation of consecutive echo signals from an average correlation of 0.94 to 0.998. The improved echo correlation for both sonorheometry and blood flow estimation yielded motion estimates that exhibited more consistent responses with less noise. Complex PCF reduces speckle decorrelation and improves the performance of ultrasonic motion

  3. A high success rate full-waveform lidar echo decomposition method

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Li, Duan; Li, Xiaolu

    2016-01-01

    A full-waveform Light detection and ranging (LiDAR) echo decomposition method is proposed in this paper. In this method, the peak points are used to detect the separated echo components, while the inflection points are combined with corresponding peak points to detect the overlapping echo components. The detected echo components are then sorted according to their energies in a descending order. The sorted echo components are one by one added into the decomposition model according to their orders. For each addition, the parameters of all echo components already added into the decomposition model are iteratively renewed. After renewing, the amplitudes and full width at half maximums of the echo components are compared with pre-set thresholds to determine and remove the false echo components. Both simulation and experiment were carried out to evaluate the proposed method. In simulation, 4000 full-waveform echoes with different numbers and parameters of echo components were generated and decomposed using the proposed and three other commonly used methods. Results show that the proposed method is of the highest success rate, 91.43%. In experiment, 9549 Geoscience Laser Altimeter System (GLAS) echoes for Shennongjia forest district in south China were employed as test echoes. The test echoes were first decomposed using the four methods and the decomposition results were also compared with those provided by the National Snow and Ice Data Center. Comparison results show that the determination coefficient ({{R}2} ) of the proposed method is of the largest mean, 0.6838, and the smallest standard deviation, 0.3588, and the distribution of the number of the echo components decomposed from the GLAS echoes is the most satisfied with the situation of full-waveform echoes from the forest area, implying that the superposition of the echo components decomposed from a full-waveform echo by using the proposed method can best approximate the full-waveform echo.

  4. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  5. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  6. Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Lokeren, Luk; Ben Sassi, Hanen; Van Assche, Guy; Ribot, François

    2013-06-01

    Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.

  7. Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy.

    PubMed

    Van Lokeren, Luk; Ben Sassi, Hanen; Van Assche, Guy; Ribot, François

    2013-06-01

    Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.

  8. Kemp Echo Lattices Incorporating Hair Cell Nonlinearities

    NASA Astrophysics Data System (ADS)

    Sellami, Louiza

    In this thesis we develop a two-part model of the inner ear that can be used to simulate Kemp echoes, in their impulse response, and from which a characterization of the cochlea can be made. To accomplish this task, in the first part, we propose a linear digital scattering model of the cochlea, based on the well known unidimensional transmission line model into which we incorporate nonuniform and loss properties. The lattice structure of the digital scattering model is obtained by rephrasing the model equations in terms of incident and reflected waves. A spectral estimation method, which treats the system as an ARMA filter with a minimum phase transfer function of unknown degree, is used to estimate the transfer function of the cochlea. This method utilizes the theory of positive real and bounded real functions and Richard's theorem on the concept of degree reduction to determine both the degree and the predictor coefficients of the filter. The scattering model is then realized, using a new synthesis technique, from the overall transfer function and the zeros of transmission, as a cascade of real lossless lattice filters of degree two, closed on a load section. To change the nature of the sections from lossless to lossy, a new method, based on the properties of the proposed lattice structure and the damping parameter of the cochlea, was developed to distribute the load factor among the sections. Each lattice filter is described by a transfer scattering matrix whose entries are functions of the mechanical and geometrical parameters of the cochlea. The proposed synthesis method leads to a systematic estimation of the parameters of the cochlea. In the second part, we introduce a nonlinear bidirectional mechano-electrical model of a hair cell, estimate its components from experimental data, analyze its behavior, simulate it, and compare the results with experimental findings. We than propose a schematic procedure to realize a nonlinear model of the cochlea by

  9. How photons start vision.

    PubMed Central

    Baylor, D

    1996-01-01

    Recent studies have elucidated how the absorption of a photon in a rod or cone cell leads to the generation of the amplified neural signal that is transmitted to higher-order visual neurons. Photoexcited visual pigment activates the GTP-binding protein transducin, which in turn stimulates cGMP phosphodiesterase. This enzyme hydrolyzes cGMP, allowing cGMP-gated cationic channels in the surface membrane to close, hyperpolarize the cell, and modulate transmitter release at the synaptic terminal. The kinetics of reactions in the cGMP cascade limit the temporal resolution of the visual system as a whole, while statistical fluctuations in the reactions limit the reliability of detection of dim light. Much interest now focuses on the processes that terminate the light response and dynamically regulate amplification in the cascade, causing the single photon response to be reproducible and allowing the cell to adapt in background light. A light-induced fall in the internal free Ca2+ concentration coordinates negative feedback control of amplification. The fall in Ca2+ stimulates resynthesis of cGMP, antagonizes rhodopsin's catalytic activity, and increases the affinity of the light-regulated cationic channel for cGMP. We are using physiological methods to study the molecular mechanisms that terminate the flash response and mediate adaptation. One approach is to observe transduction in truncated, dialyzed photoreceptor cells whose internal Ca2+ and nucleotide concentrations are under experimental control and to which exogenous proteins can be added. Another approach is to observe transduction in transgenic mouse rods in which specific proteins within the cascade are altered or deleted. PMID:8570595

  10. Modeling of Field-Aligned Guided Echoes in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Green, James L.

    2004-01-01

    The conditions under which high frequency (f>>f(sub uh)) long-range extraordinary-mode discrete field-aligned echoes observed by the Radio Plasma Imager (RPI) on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in the plasmasphere are investigated by ray tracing modeling. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and less than 10 wavelengths wide can guide nearly field-aligned propagating high frequency X mode waves. Effective guidance of wave at a given frequency and wave normal angle (Psi) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  11. Self-motion facilitates echo-acoustic orientation in humans.

    PubMed

    Wallmeier, Ludwig; Wiegrebe, Lutz

    2014-11-01

    The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory-motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556

  12. Echo Meadows Project Winter Artificial Recharge.

    SciTech Connect

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  13. Range walk error correction using prior modeling in photon counting 3D imaging lidar

    NASA Astrophysics Data System (ADS)

    He, Weiji; Chen, Yunfei; Miao, Zhuang; Chen, Qian; Gu, Guohua; Dai, Huidong

    2013-09-01

    A real-time correction method for range walk error in photon counting 3D imaging Lidar is proposed in this paper. We establish the photon detection model and pulse output delay model for GmAPD, which indicates that range walk error in photon counting 3D imaging Lidar is mainly effected by the number of photons during laser echo pulse. A measurable variable - laser pulse response rate is defined as a substitute of the number of photons during laser echo pulse, and the expression of the range walk error with respect to the laser pulse response rate is obtained using priori calibration. By recording photon arrival time distribution, the measurement error of unknown targets is predicted using established range walk error function and the range walk error compensated image is got. Thus real-time correction of the measurement error in photon counting 3D imaging Lidar is implemented. The experimental results show that the range walks error caused by the difference in reflected energy of the target can be effectively avoided without increasing the complexity of photon counting 3D imaging Lidar system.

  14. Jets and Photons

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Roy, Tuhin S.; Scholtz, Jakub

    2013-03-01

    This Letter applies the concept of “jets,” as constructed from calorimeter cell four-vectors, to jets composed (primarily) of photons (or leptons). Thus jets become a superset of both traditional objects such as QCD jets, photons, and electrons, and more unconventional objects such as photon jets and electron jets, defined as collinear photons and electrons, respectively. Since standard objects such as single photons become a subset of jets in this approach, standard jet substructure techniques are incorporated into the photon finder toolbox. Using a (reasonably) realistic calorimeter model we demonstrate that, for a single photon identification efficiency of 80% or above, the use of jet substructure techniques reduces the number of QCD jets faking photons by factors of 2.5 to 4. Depending on the topology of the photon jets, the substructure variables reduce the number of photon jets faking single photons by factors of 10 to 103 at a single photon identification efficiency of 80%.

  15. Echo-acoustic flow affects flight in bats.

    PubMed

    Kugler, Kathrin; Greiter, Wolfgang; Luksch, Harald; Firzlaff, Uwe; Wiegrebe, Lutz

    2016-06-15

    Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation.

  16. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  17. Echo-acoustic flow affects flight in bats.

    PubMed

    Kugler, Kathrin; Greiter, Wolfgang; Luksch, Harald; Firzlaff, Uwe; Wiegrebe, Lutz

    2016-06-15

    Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation. PMID:27045094

  18. Properties of echo spectra observed by MST radars

    NASA Technical Reports Server (NTRS)

    Wakasugi, K.

    1983-01-01

    Turbulent scatter and Fresnel reflection are the fundamental echoing mechanisms to interpret the signals observed by Mesosphere-stratosphere-troposphere (MST) radars. Turbulent scattered echoes provide information about the turbulence structure and mean flow of the atmosphere. Observational results with VHF MST radars, however, show the importance of Fresnel reflection due to the infinite gradient of reflectivity at the edges of a scattering layer. This condition is excluded for the weak fluctuation models but it is still possible to include the observed aspect sensitivity by assuming an anisotropic structure of fluctuations. Another explanation of the aspect sensitivity observed by MST radars is advanced. Spectral estimates by the widely used periodogram were related to a four-dimensional spectrum of atmospheric fluctuations with anisotropic structure. Effects of the radar system such as antenna beam width, beam direction and Fast Fourier Transformations (FFT) data length were discussed for the anisotropic turbulent atmosphere. Echo parameters were also estimated.

  19. Light echoes - supernovae 1987A and 1986G

    SciTech Connect

    Schaefer, B.E.

    1987-12-01

    The sudden brilliance of a supernova (SN) eruption will be reflected on surrounding dust grains to create a phantom nebula. The paper presents a series of calculations in which the apparent brightness of this light echo is predicted for a variety of situations where the dust is part of the interstellar medium (ISM). It is found that the supernova 1987 A will have a very bright echo off the ISM that may perhaps be visible with binoculars for many years. At a time of 400 days past maximum, the SN 1986G is found to be 2.7 mag brighter than would be predicted by an extrapolation of its light curve. This unique property has an easy explanation as a light echo off the dust in the dust lane of Cen A. 24 references.

  20. Ultrafast Optical Spin Echo for Electron Spins in Semiconductors

    SciTech Connect

    Clark, Susan M.; Fu, Kai-Mei C.; Zhang Qiang; Ladd, Thaddeus D.; Yamamoto, Yoshihisa; Stanley, Colin

    2009-06-19

    Spin-based quantum computing and magnetic resonance techniques rely on the ability to measure the coherence time T{sub 2} of a spin system. We report on the experimental implementation of all-optical spin echo to determine the T{sub 2} time of a semiconductor electron-spin system. We use three ultrafast optical pulses to rotate spins an arbitrary angle and measure an echo signal as the time between pulses is lengthened. Unlike previous spin-echo techniques using microwaves, ultrafast optical pulses allow clean T{sub 2} measurements of systems with dephasing times (T{sub 2}*) fast in comparison to the time scale for microwave control. This demonstration provides a step toward ultrafast optical dynamic decoupling of spin-based qubits.

  1. Auditory-tactile echo-reverberating stuttering speech corrector

    NASA Astrophysics Data System (ADS)

    Kuniszyk-Jozkowiak, Wieslawa; Adamczyk, Bogdan

    1997-02-01

    The work presents the construction of a device, which transforms speech sounds into acoustical and tactile signals of echo and reverberation. Research has been done on the influence of the echo and reverberation, which are transmitted as acoustic and tactile stimuli, on speech fluency. Introducing the echo or reverberation into the auditory feedback circuit results in a reduction of stuttering. A bit less, but still significant corrective effects are observed while using the tactile channel for transmitting the signals. The use of joined auditory and tactile channels increases the effects of their corrective influence on the stutterers' speech. The results of the experiment justify the use of the tactile channel in the stutterers' therapy.

  2. Perception of echo phase information in bat sonar.

    PubMed

    Simmons, J A

    1979-06-22

    Echolocating bats (Eptesicus fuscus) can detect changes as small as 500 nanoseconds in the arrival time of sonar echoes when these changes appear as jitter or alternations in arrival time from one echo to the next. The psychophysical function relating the bat's performance to the magnitude of the jitter corresponds to the half-wave rectified cross-correlation function between the emitted sonar signals and the echoes. The bat perceives the phase or period structure of the sounds, which cover the 25- to 100-kilohertz frequency range, as these are represented in the auditory system after peripheral transformation. The acoustic image of a sonar target is apparently derived from time-domain or periodicity information processing by the nervous system.

  3. Multi-echo imaging in highly inhomogeneous magnetic fields.

    PubMed

    Casanova, F; Perlo, J; Blümich, B; Kremer, K

    2004-01-01

    A new pulsed field gradient multi-echo imaging technique to encode position in the phase of every echo generated by a CPMG sequence in the presence of a strongly inhomogeneous static magnetic field is presented. It was applied to improve the sensitivity in an imaging experiment by adding the echo train acquired during the CPMG sequence and to spatially resolve relaxation times of inhomogeneous specimens using single-sided probes. The sequence was implemented in a new bar-magnet MOUSE equipped with a gradient coil system to apply a pulsed magnetic field with a constant gradient along one spatial coordinate. An important reduction by a factor larger than two orders of magnitude in the acquisition time was obtained compared to the previously published single-point imaging technique. PMID:14675822

  4. Experimental realization of a two-photon Raman laser

    NASA Astrophysics Data System (ADS)

    Brown, William J.

    1999-11-01

    This thesis describes the development of a novel quantum oscillator known as a two-photon Raman laser. It is based on two-photon stimulated emission in strongly driven potassium atoms. Two-photon lasers were first proposed in the 1960's, but only recently have such devices been experimentally realized. The two-photon Raman laser is an important step forward as it provides the first opportunity to study the turn-on behavior, instabilities, and noise properties of a pure two-photon optical device. The necessary ingredients for a two-photon laser are a medium displaying two-photon laser beam amplification and an optical resonator. In my two-photon Raman laser the amplification arises from a multi-photon process in which state-prepared potassium atoms undergo two-photon Raman transitions. This amplification process was studied using a high-density, small-Doppler-width potassium atomic beam that was driven by a strong pump laser and probed by a weak probe laser. I observed two-photon Raman amplification for a range of pump laser frequencies, atomic beam number densities, and probe beam powers. The two-photon Raman gain is linearly dependent on the input probe power as expected for a two-photon process. This gain mechanism is also spectrally isolated from other mechanisms occurring in strongly driven potassium atoms. The optical resonator consists of a sub-confocal high finesse cavity. The cavity is constructed so that the two-photon Raman process will lase while all other processes are suppressed. The cavity buildup is sufficient to support lasing given the maximum two-photon Raman gain observed in the amplification experiment. Using this apparatus I have observed two-photon lasing. In agreement with theoretical predictions, an external photon source is required to initiate two-photon lasing. I initiated the two-photon laser using an externally injected pulse of light and using a frequency degenerate one-photon process. The two-photon Raman laser threshold was mapped as

  5. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  6. Study of simulating dynamic polarization laser echo signal

    NASA Astrophysics Data System (ADS)

    Yang, Di; Liu, Qing; Zhan, Yong-hong; Zeng, Chang-e.

    2014-12-01

    In the test for the laser seeker in the hardware-in-loop simulation, acquiring the effect of polarization laser echo wave to optical stress polarization of the seeker and to the polarization guidance performance was not considered. A new method to generating the dynamic polarization laser echo signal was provided based on the scene model; furthermore, the method to adding the polarization characters to the energy scene was introduced. At last, the insufficient of the method to generating and simulating the dynamic polarization signal was analyzed.

  7. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2. PMID:27587156

  8. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  9. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  10. On the VHF radar echoes in the region of midnight aurora: Signs of ground echoes modulated by the ionosphere

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lester, Mark

    2015-03-01

    We present all-sky interferometric meteor radar (MR), VHF (36.9 MHz), observations from Sodankylä Geophysical Observatory and report on the unusual echoes, which were detected at low elevation on the northern horizon, typically during substorms. These echoes have a near-zero Doppler shift, relatively low power, but with a sharp rise to the power peak, short lifetime (less than 2 s), and nonexponential decay (NED). We suggest that such auroral NED echoes are in fact ground backscatter of the MR waves which have been refracted in the ionosphere, passing through the ionosphere in the substorm region, where pulsating aurora (at a frequency higher than 1.7 Hz) occurs and causes quasiperiodic modulation of the wave propagation conditions, which leads to corresponding modulation of the amplitude of return. The MR treats such oscillating signal as meteor trails.

  11. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it

  12. Observation of Photon Echoes From Evanescently Coupled Rare-Earth Ions in a Planar Waveguide.

    PubMed

    Marzban, Sara; Bartholomew, John G; Madden, Stephen; Vu, Khu; Sellars, Matthew J

    2015-07-01

    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth, and spin-state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+∶Y2SiO5 crystal allows the 3H4↔1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2-GHz inhomogeneous linewidth, the optical coherence time of 70±5  μs, and the spin-state lifetime of 9.8±0.3  s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated, and high performance rare-earth-ion quantum systems based on a waveguide platform. PMID:26182097

  13. 1. GENERAL VIEW LOOKING NORTH SHOWING 130FOOT SPAN OF ECHO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW LOOKING NORTH SHOWING 130-FOOT SPAN OF ECHO BRIDGE OVER THE CHARLES RIVER. - Sudbury River Aqueduct, Echo Bridge, Spanning Charles River at Upper Newton Falls, Newton, Middlesex County, MA

  14. 32 CFR 199.5 - TRICARE Extended Care Health Option (ECHO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Disabilities Education Act and defined at 34 CFR 300.26 and that is specifically designed to accommodate the... order for the ECHO beneficiary to receive authorized ECHO benefits. (ii) Equipment adaptation....

  15. Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs.

    PubMed

    Wu, C H; Jen, P H-S

    2008-10-28

    During hunting, insectivorous bats such as Eptesicus fuscus progressively vary the repetition rate, duration, frequency and amplitude of emitted pulses such that analysis of an echo parameter by bats would be inevitably affected by other co-varying echo parameters. The present study is to determine the variation of echo frequency selectivity of duration-tuned inferior collicular neurons during different phases of hunting using pulse-echo (P-E) pairs as stimuli. All collicular neurons discharge maximally to a tone at a particular frequency which is defined as the best frequency (BF). Most collicular neurons also discharge maximally to a BF pulse at a particular duration which is defined as the best duration (BD). A family of echo iso-level frequency tuning curves (iso-level FTC) of these duration-tuned collicular neurons is measured with the number of impulses in response to the echo pulse at selected frequencies when the P-E pairs are presented at varied P-E duration and gap. Our data show that these duration-tuned collicular neurons have narrower echo iso-level FTC when measured with BD than with non-BD echo pulses. Also, IC neurons with low BF and short BD have narrower echo iso-level FTC than IC neurons with high BF and long BD have. The bandwidth of echo iso-level FTC significantly decreases with shortening of P-E duration and P-E gap. These data suggest that duration-tuned collicular neurons not only can facilitate bat's echo recognition but also can enhance echo frequency selectivity for prey feature analysis throughout a target approaching sequence during hunting. These data also support previous behavior studies showing that bats prepare their auditory system to analyze expected returning echoes within a time window to extract target features after pulse emission.

  16. Partially restricted diffusion in a permeable sandstone: observations by stimulated echo PFG NMR.

    PubMed

    Fordham, E J; Gibbs, S J; Hall, L D

    1994-01-01

    We demonstrate a variant, insensitive to eddy current effects, of an alternating pulsed field gradient technique designed to null the effect of background gradients in liquid-saturated porous media, using a 38 mm diameter sample of a natural sandstone. Measurements of the effective diffusivity confirm predictions of a decline as the square root of an effective diffusion time. A value of the ratio S/Vp for the dominant pores is extracted, yielding with T1 a value for the surface relaxivity. We test also a geometry-dependent data collapse recently suggested for a range of diffusion times and wavenumbers. The data agree with a sheet-like pore model for this granular sandstone, and fail to agree with a tube-like model; a pore length scale is also extracted.

  17. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  18. The first satellite laser echoes recorded on the streak camera

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Prochazka, Ivan; Kirchner, Georg; Koidl, F.

    1993-01-01

    The application of the streak camera with the circular sweep for the satellite laser ranging is described. The Modular Streak Camera system employing the circular sweep option was integrated into the conventional Satellite Laser System. The experimental satellite tracking and ranging has been performed. The first satellite laser echo streak camera records are presented.

  19. Project Echo: Horn-Reflector Antenna for Space Communication

    NASA Technical Reports Server (NTRS)

    Crawford, A. B.; Hogg, D. C.; Hunt, L. E.

    1961-01-01

    This paper describes the mechanical features of the horn- reflector antenna used for receiving signals reflected from the Project Echo balloon satellite, and presents in some detail the electrical characteristics (radiation patterns and gain) measured at a frequency of 2390 Mc. Theoretically derived characteristics which agree very well with the measurements are also presented; details of the calculations are given in the appendices.

  20. Participatory Culture at the Echo Park Film Center

    ERIC Educational Resources Information Center

    Rosales, Jennifer Ann

    2013-01-01

    The Echo Park Film Center, a Los Angeles nonprofit media education organization, teaches underprivileged youth how to comprehend and make media in order to empower them to speak and be heard. Due to the organization's nonmainstream media courses and its connection to its community, the Center is able to create a participatory and socially…

  1. Pulse-echo probe of rock permeability near oil wells

    NASA Technical Reports Server (NTRS)

    Narasimhan, K. Y.; Parthasarathy, S. P.

    1978-01-01

    Processing method involves sequential insonifications of borehole wall at number of different frequencies. Return signals are normalized in amplitude, and root-mean-square (rms) value of each signal is determined. Values can be processed to yield information on size and number density of microfractures at various depths in rock matrix by using averaging methods developed for pulse-echo technique.

  2. Scheduling the EChO survey with known exoplanets

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Beaulieu, J.-P.; Coudé du Foresto, V.; Ollivier, M.; Castello, I. Ortega; Clédassou, R.; Jaubert, J.; Van-Troostenberghe, P.; Varley, R.; Waldmann, I. P.; Pascale, E.; Tessenyi, M.

    2015-12-01

    The Exoplanet Characterization Observatory ( EChO) is a concept of a dedicated space telescope optimized for low-resolution transit and occultation spectroscopy to study the exoplanet diversity through the composition of their atmospheres. The scope of this paper is to answer the following question: Can we schedule a nominal EChO mission, with targets known today (in mid 2013), given the science requirements, realistic performances and operational constraints? We examine this issue from the point of view of duration of the mission and the scheduling restrictions with a sample of exoplanet systems known nowadays. We choose different scheduling algorithms taking into account the science and operational constraints and we verified that it is fairly straightforward to schedule a mission scenario over the lifetime of EChO compliant with the science requirements. We identified agility as a critical constraint that reduces significantly the efficiency of the survey. We conclude that even with known targets today the EChO science objectives can be reached in the 4.5 years duration of the mission. We also show that it is possible to use gaps between exoplanet observations, to fit the required calibration observations, data downlinks and station keeping operations or even to observe more exoplanet targets to be discovered in the coming years.

  3. Tomographic reconstruction of the pulse-echo spatiotemporal impulse response

    NASA Astrophysics Data System (ADS)

    Nguyen, Nghia Q.; Abbey, Craig K.; Yapp, Rebecca D.; Insana, Michael F.

    2010-03-01

    Virtually every area of ultrasonic imaging research requires accurate estimation of the spatiotemporal impulse response of the instrument, and yet accurate measurements are difficult to achieve. The impulse response can also be difficult to predict numerically for a specific device because small unknown perturbations in array properties can generate significant changes in predicted pulse-echo field patterns. A typical measurement for a 1-D array transducer employs a line scatterer oriented perpendicular to the scan plane. Echoes from line scatterers located throughout the field of view constitute estimates of shift-varying line response functions. We propose an inverse-problem approach to the reconstruction of point-spread functions from line-spread functions. A collection of echoes recorded for a range of line-scatterer rotation angles are treated as projections of sound pressure onto the transducer array surface. Although the reconstruction is mathematically equivalent to filtered backprojection, it provides significant advantages with respect to interpolation that confound straightforward implementations. Field II predictions used to model measurements made on commercial systems suggest the reconstruction accuracy is with 0.32% for noiseless echo data. Application of the method to data acquired from a commercial system are evaluated from the perspective of deconvolution.

  4. Larry Echo Hawk: A Rising Star from Idaho.

    ERIC Educational Resources Information Center

    Wisecarver, Charmaine

    1993-01-01

    Larry Echo Hawk, Idaho attorney general and former state legislator, discusses success factors in college and law school; early experiences as an Indian lawyer; first election campaign; and his views on tribal sovereignty, state-tribal relationship, gambling, and his dual responsibility to the general public and Native American issues. (SV)

  5. Echolocation in bats: signal processing of echoes for target range.

    PubMed

    Simmons, J A

    1971-03-01

    Echolocating bats Eptesicus fuscus and Phyllostomus hastatus can discriminate between the nearer and farther of two targets. Their errors in discrimination are predicted accurately by the autocorrelation functions of their sonar cries. These bats behave as though they have an ideal sonar system which cross correlates the transmitted cry with the returning echo to extract targetrange information.

  6. Communication: Phase incremented echo train acquisition in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Walder, Brennan J.; Keeler, Eric G.; Kaseman, Derrick C.; Sanders, Kevin J.; Grandinetti, Philip J.

    2012-06-01

    We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ϕP, is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ϕP, converts the ϕP dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.

  7. Echo thresholds for reflections from acoustically diffusive architectural surfaces.

    PubMed

    Robinson, Philip W; Walther, Andreas; Faller, Christof; Braasch, Jonas

    2013-10-01

    When sound reflects from an irregular architectural surface, it spreads spatially and temporally. Extensive research has been devoted to prediction and measurement of diffusion, but less has focused on its perceptual effects. This paper examines the effect of temporal diffusion on echo threshold. There are several notable differences between the waveform of a reflection identical to the direct sound and one from an architectural surface. The onset and offset are damped and the energy is spread in time; hence, the reflection response has a lower peak amplitude, and is decorrelated from the direct sound. The perceptual consequences of these differences are previously undocumented. Echo threshold tests are conducted with speech and music signals, using direct sound and a simulated reflection that is either identical to the direct sound or has various degrees of diffusion. Results indicate that for a speech signal, diffuse reflections are less easily detectable as a separate auditory event than specular reflections of the same total energy. For a music signal, no differences are observed between the echo thresholds for reflections with and without temporal diffusion. Additionally, echo thresholds are found to be shorter for speech than for music, and shorter for spatialized than for diotic presentation of signals.

  8. The Light Echoes around V838 Monocerotis: Cycle 16 DD

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2007-07-01

    This is a DD program in which we propose to obtain WFPC2 imaging of the light echo around V838 Mon in late 2008 or early 2009. We were awarded Cycle 17 time to image the echo with ACS at 2 epochs {3+4 orbits}. To obtain data of similar quality with WFPC2 requires 7 orbits at 2 different pointings. Because of the SM4 delay, we are therefore requesting a 14-orbit DD program for Cycle 16, leaving the Cycle 17 allocation unchanged for continued monitoring of the event in late 2009 and 2010.V838 Monocerotis, which burst upon the astronomical scene in early 2002, is a completely unanticipated new object. It underwent a large-amplitude and very luminous outburst, during which its spectrum remained that of an extremely cool supergiant. A rapidly evolving set of light echoes around V838 Mon was discovered soon after the outburst, quickly becoming the most spectacular display of the phenomenon yet seen. These light echoes provide the means to accomplish three unique types of measurements based on continued HST imaging: {1} study MHD turbulence at high resolution and in 3 dimensions; {2} construct the first unambiguous and fully 3-D map of a circumstellar dust envelope; {3} study dust physics in a unique setting where the spectrum and light curve of the illumination, and the scattering angle, are unambiguously known. We have also used our HST data to determine the distance to V838 Mon through a novel geometric technique. Because of the extreme rarity of light echoes, this program of regular monitoring provides the only opportunity to achieve such results during the HST lifetime. We propose WFPC2 imaging in late 2008/early 2009, in order to continue the mapping of the circumstellar dust and to accomplish the other goals listed above.

  9. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  10. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Arnold, N. F.; Kirkwood, S.; Nishitani, N.; Lester, M.

    2003-04-01

    Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105 250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80 100 km altitudes with elevation angles of 20° 60

  11. Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Freedman, E G; Stevenson, S B; Chen, L; Wohlgenant, T J

    1989-10-01

    The ability of the echolocating bat, Eptesicus fuscus, to detect a sonar target is affected by the presence of other targets along the same axis at slightly different ranges. If echoes from one target arrive at about the same delay as echoes from another target, clutter interference occurs and one set of echoes masks the other. Although the bat's sonar emissions and the echoes themselves are 2 to 5 ms long, echoes (of approximately equal sensation levels--around 15 dB SL) only interfere with each other if they arrive within 200 to 400 microseconds of the same arrival time. This figure is an estimate of the integration time of the bat's sonar receiver for echoes. The fine structure of the clutter-interference data reflects the reinforcement and cancellation of echoes according to their time separation. When clutter interference first occurs, the waveforms of test and cluttering echoes already overlap for much of their duration. The masking effect underlying clutter interference appears specifically due to overlap, not between raw echo waveforms, but between the patterns of mechanical excitation created when echoes pass through bandpass filters equivalent to auditory-nerve tuning curves. While the time scale of clutter interference is substantially shorter than the duration of echo waveforms, it still is much longer than the eventual width of a target's range-axis image expressed in terms of echo delay.

  12. Detection of a Light Echo from the Otherwise Normal SN 2007af

    NASA Astrophysics Data System (ADS)

    Drozdov, D.; Leising, M. D.; Milne, P. A.; Pearcy, J.; Riess, A. G.; Macri, L. M.; Bryngelson, G. L.; Garnavich, P. M.

    2015-05-01

    We present the discovery of a light echo from SN 2007af, a normal Type Ia supernova (SN Ia) in NGC 5584. Hubble Space Telescope images taken three years post explosion reveal two separate echoes: an outer echo and an extended central region, which we propose to be an inner echo for which details are unresolved. Multiple images were obtained in the F160W, F350LP, F555W, and F814W using the Wide Field Camera 3. If the outer echo is produced by an interstellar dust sheet perpendicular to the line of sight, it is located ∼800 pc in front of the SN. The dust for the inner echo is 0.45 pc \\lt d\\lt 90 pc away from the SN. The inner echo color is consistent with typical interstellar dust wavelength-dependent scattering cross-sections, while the outer echo is redder than predicted. Both dust sheets, if in the foreground, are optically thin for scattering, and the outer echo sheet thickness is consistent with the inferred extinction from peak brightness. Whether the inner echo is from interstellar or circumstellar dust is ambiguous. Overall, the echo characteristics are quite similar to previously observed SN Ia echoes.

  13. Proton echo-planar spectroscopic imaging with highly effective outer volume suppression using combined presaturation and spatially selective echo dephasing.

    PubMed

    Chu, Archie; Alger, Jeffry R; Moore, Gregory J; Posse, Stefan

    2003-05-01

    A highly effective outer volume suppression (OVS) technique, termed spatially selective echo dephasing (SSED), which employs gradient dephasing of spatially selective spin echoes, is introduced. SSED, which is relatively insensitive to T(1) dispersion among lipid signals and B(1) inhomogeneity, was integrated with very high spatial resolution 2D proton echo-planar spectroscopic imaging (PEPSI) to assess residual lipid bleeding into cortical regions in the human brain. The method was optimized to minimize signal refocusing of secondary spin-echoes in areas of overlapping suppression slices. A comparison of spatial presaturation with single or double SSED, and with combined presaturation and SSED shows that the latter method has superior performance with spatially uniform lipid suppression factors in excess of 70. Metabolite mapping (choline, creatine, and NAA) with a 64 x 64 spatial matrix and 0.3 cm(3) voxels in close proximity to peripheral lipid regions was demonstrated at 1.5 T with a scan time of 32 min using the standard head coil.

  14. Proton echo-planar spectroscopic imaging with highly effective outer volume suppression using combined presaturation and spatially selective echo dephasing.

    PubMed

    Chu, Archie; Alger, Jeffry R; Moore, Gregory J; Posse, Stefan

    2003-05-01

    A highly effective outer volume suppression (OVS) technique, termed spatially selective echo dephasing (SSED), which employs gradient dephasing of spatially selective spin echoes, is introduced. SSED, which is relatively insensitive to T(1) dispersion among lipid signals and B(1) inhomogeneity, was integrated with very high spatial resolution 2D proton echo-planar spectroscopic imaging (PEPSI) to assess residual lipid bleeding into cortical regions in the human brain. The method was optimized to minimize signal refocusing of secondary spin-echoes in areas of overlapping suppression slices. A comparison of spatial presaturation with single or double SSED, and with combined presaturation and SSED shows that the latter method has superior performance with spatially uniform lipid suppression factors in excess of 70. Metabolite mapping (choline, creatine, and NAA) with a 64 x 64 spatial matrix and 0.3 cm(3) voxels in close proximity to peripheral lipid regions was demonstrated at 1.5 T with a scan time of 32 min using the standard head coil. PMID:12704763

  15. RR photons

    NASA Astrophysics Data System (ADS)

    Cámara, Pablo G.; Ibáñez, Luis E.; Marchesano, Fernando

    2011-09-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge U(1) Y (hence with the photon). In this paper we study in detail different avenues by which U(1) RR bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by Stückelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional p-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that type IIA Stückelberg couplings can be understood in terms of torsional (co)homology in M-theory. We provide examples of Type IIA Calabi-Yau orientifolds in which the required torsional cycles exist and kinetic mixing induced by mass mixing is present. We discuss some phenomenological consequences of our findings. In particular, we find that mass mixing may induce corrections relevant for hypercharge gauge coupling unification in F-theory SU(5) GUT's.

  16. Photon-Photon Collisions -- Past and Future

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-12-02

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy {gamma}{gamma} and e{gamma} tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy {gamma}{gamma} collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider.

  17. Collective two-particle resonances induced by photon entanglement

    SciTech Connect

    Richter, Marten; Mukamel, Shaul

    2011-06-15

    An assembly of noninteracting atoms may become correlated upon interaction with entangled photons, and certain elements of their joint density matrix can then show collective resonances. We explore experimental signatures of these resonances in the nonlinear response of a pair of two-level atoms. We find that these resonances are canceled out in stimulated signals such as pump-probe and two-photon absorption due to the destructive interference of two-photon-absorption and emission pathways in the joint two-particle space. However, they may be observed in photon statistics (Hanbury-Brown-Twiss) measurements through the attenuation of two-time intensity correlations.

  18. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  19. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  20. Analysis and interpretation of Cassini Titan radar altimeter echoes

    NASA Astrophysics Data System (ADS)

    Zebker, Howard A.; Gim, Yonggyu; Callahan, Philip; Hensley, Scott; Lorenz, Ralph; Cassini Radar Team

    2009-03-01

    The Cassini spacecraft has acquired 25 radar altimeter elevation profiles along Titan's surface as of April 2008, and we have analyzed 18 of these for which there are currently reconstructed ephemeris data. Altimeter measurements were collected at spatial footprint sizes from 6-60 km along ground tracks of length 400-3600 km. The elevation profiles yield topographic information at this resolution with a statistical height accuracy of 35-50 m and kilometer-scale errors several times greater. The data exhibit significant variations in terrain, from flat regions with little topographic expression to very rugged Titanscapes. The bandwidth of the transmitted waveform admits vertical resolution of the terrain height to 35 m at each observed location on the surface. Variations in antenna pointing and changes in surface statistics cause the range-compressed radar echoes to exhibit strong systematic and time-variable biases of hundreds of meters in delay. It is necessary to correct the received echoes for these changes, and we have derived correction algorithms such that the derived echo profiles are accurate at the 100 m level for off-nadir pointing errors of 0.3° and 0.6°, for leading edge and echo centroid estimators, respectively. The leading edge of the echo yields the elevation of the highest points on the surface, which we take to be the peaks of any terrain variation. The mean value of the echo delay is more representative of the mean elevation, so that the difference of these values gives an estimate of any local mountain heights. Finding locations where these values diverge indicates higher-relief terrain. Elevation features are readily seen in the height profiles. Several of the passes show mountains of several hundred m altitude, spread over 10's or even 100's of km in spatial extent, so that slopes are very small. Large expanses of sub-100 m topography are commonplace on Titan, so it is rather smooth in many locations. Other areas exhibit more relief

  1. Discrimination of amplitude-modulated synthetic echo trains by an echolocating bottlenose dolphin.

    PubMed

    Dankiewicz, Lois A; Helweg, David A; Moore, Patrick W; Zafran, Justine M

    2002-10-01

    Bottlenose dolphins (Tursiops truncatus) have an acute ability to use target echoes to judge attributes such as size, shape, and material composition. Most target recognition studies have focused on features associated with individual echoes as opposed to information conveyed across echo sequences (feature envelope of the multi-echo train). One feature of aspect-dependent targets is an amplitude modulation (AM) across the return echoes in the echo train created by relative movement of the target and dolphin. The current study examined whether dolphins could discriminate targets with different AM envelopes. "Electronic echoes" triggered by a dolphin's outgoing echolocation clicks were manipulated to create sinusoidal envelopes with varying AM rate and depth. Echo trains were equated for energy, requiring the dolphin to extract and retain information from multiple echoes in order to detect and report the presence of AM. The dolphin discriminated amplitude-modulated echo trains from those that were not modulated. AM depth thresholds were approximately 0.8 dB, similar to other published amplitude limens. Decreasing the rate of modulation from approximately 16 to 2 cycles per second did not affect the dolphin's AM depth sensitivity. The results support multiple-echo processing in bottlenose dolphin echolocation. This capability provides additional theoretical justification for exploring synthetic aperture sonar concepts in models of animal echolocation that potentially support theories postulating formation of images as an ultimate means for target identification.

  2. Stimulated Parametric Emission Microscope Systems

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi; Isobe, Keisuke

    2006-10-01

    We present a novel microscopy technique based on the fourwave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our FWM technique can be used to obtain two-dimensional microscopic images of an unstained leaf of Camellia sinensis and an unlabeled tobacco BY2 Cell.

  3. Bats use echo harmonic structure to distinguish their targets from background clutter.

    PubMed

    Bates, Mary E; Simmons, James A; Zorikov, Tengiz V

    2011-07-29

    When echolocating big brown bats fly in complex surroundings, echoes arriving from irrelevant objects (clutter) located to the sides of their sonar beam can mask perception of relevant objects located to the front (targets), causing "blind spots." Because the second harmonic is beamed more weakly to the sides than the first harmonic, these clutter echoes have a weaker second harmonic. In psychophysical experiments, we found that electronically misaligning first and second harmonics in echoes (to mimic the misalignment of corresponding neural responses to harmonics in clutter echoes) disrupts the bat's echo-delay perception but also prevents clutter masking. Electronically offsetting harmonics to realign their neural responses restores delay perception but also clutter interference. Thus, bats exploit harmonics to distinguish clutter echoes from target echoes, sacrificing delay acuity to suppress masking.

  4. Light Echos in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Fukumura, K.; Kazanas, D.

    2008-01-01

    We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct 'bunches' separated by a roughly constant time lag of t/M approximately equal to 14, regardless of the bursts' azimuthal position. We argue that every other such 'bunch' represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon 'echo'). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M=0.99 and mass of M=10*Msun the QPO is expected at a frequency of approximately 1.3-1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations.

  5. Time reversal and charge echo in an electron gas.

    PubMed

    Creswick, Richard J

    2004-09-01

    Apart from subtle violations of CP symmetry by the weak interactions, the basic laws of physics are time-reversal invariant. Nevertheless, in the macroscopic world, time has a very definite direction, or arrow. Given that the dynamics of a closed system are time-reversal invariant, the arrow of time is introduced through boundary or initial conditions. In this Letter it is argued that if the Hamiltonian for a system, H, has the property THT(-1)=-H for a unitary transformation T, then the system can, in principle, be made to evolve backward in time. The prototype of this sort of behavior is the spin echo. Calculations for a single-band tight-binding model suggest that it may be possible to observe the electronic counterpart, or charge echo.

  6. Doppler radar echoes of lightning and precipitation at vertical incidence

    NASA Technical Reports Server (NTRS)

    Zrnic, D. S.; Rust, W. D.; Taylor, W. L.

    1982-01-01

    Digital time series data at 16 heights within two storms were collected at vertical incidence with a 10-cm Doppler radar. On several occasions during data collection, lightning echoes were observed as increased reflectivity on an oscilloscope display. Simultaneously, lightning signals from nearby electric field change antennas were recorded on an analog recorder together with the radar echoes. Reflectivity, mean velocity, and Doppler spectra were examined by means of time series analysis for times during and after lightning discharges. Spectra from locations where lightning occurred show peaks, due to the motion of the lightning channel at the air speed. These peaks are considerably narrower than the ones due to precipitation. Besides indicating the vertical air velocity that can then be used to estimate hydrometeor-size distribution, the lightning spectra provide a convenient means to estimate the radar cross section of the channel. Subsequent to one discharge, we deduce that a rapid change in the orientation of hydrometeors occurred within the resolution volume.

  7. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    SciTech Connect

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  8. Revision of Spin Echoes in Pure Nuclear Quadrupole Resonance

    NASA Astrophysics Data System (ADS)

    Meriles, C. A.

    2001-04-01

    Goldman's spin-1/2 formalism has been used for describing the response of an I=3/2 spin system to a two-pulse sequence in a pure nuclear quadrupole resonance experiment. A detailed analysis of the polarization evolution and quadrupolar echo generation is carried out through the use of explicit expressions for secular homo- and heteronuclear dipolar interactions. In striking contrast with previous studies, it is predicted that Van Vleck's second moments governing a classical solid-echo or Hahn sequence differ from those obtained by equivalent means in magnetic resonance. In fact, it is shown that, although measured moments still complement each other, the combined use of standard sequences does not allow the separate determination of homo- and heteronuclear dipolar contributions to the linewidth, not even in an indirect manner. In this context, the importance and potential usefulness of a crossed coil probe are also briefly discussed.

  9. Infrared Echoes and the Structure of the ISM

    NASA Astrophysics Data System (ADS)

    Rieke, George; Kim, Yeunjin; Krause, Oliver

    2007-05-01

    We propose to continue a program to map the interstellar medium in three dimensions. Our technique uses infrared echoes from the supernova Cas A, which we discovered during In-Orbit Checkout. We have observed the echoes every six months since, observing the changes in the patterns of heated dust as the light pulse from the supernova propagates through the surrounding ISM. We have developed methods to invert this series of snapshots of planes in the ISM into three dimensional images. By the end of the Spitzer mission, our 3D images will have a depth of 1.5pc at a resolution of about 0.1 pc. This detailed information about the structure of the ISM will have important applications in understanding extinction in dense regions, the radiative transfer and heating of such regions, and in how the ISM fragments, for example to form stars.

  10. Modelling simultaneous echo waveform reconstruction and localization in bats.

    PubMed

    De Mey, F; Schillebeeckx, F; Vanderelst, D; Boen, A; Peremans, H

    2010-05-01

    Echolocating bats perceive the world through sound signals reflecting from the objects around them. In these signals, information is contained about reflector location and reflector identity. Bats are able to extract and separate the cues for location from those that carry identification information. We propose a model based on Wiener deconvolution that also performs this separation for a virtual system mimicking the echolocation system of the lesser spearnosed bat, Phyllostomus discolor. In particular, the model simultaneously reconstructs the reflected echo signal and localizes the reflector from which the echo originates. The proposed technique is based on a model that performs a similar task based on information from the frog's lateral line system. We show that direct application of the frog model to the bat sonar system is not feasible. However, we suggest a technique that does apply to the bat biosonar and indicate its performance in the presence of noise.

  11. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  12. Stochastic Maximum Likelihood (SML) parametric estimation of overlapped Doppler echoes

    NASA Astrophysics Data System (ADS)

    Boyer, E.; Petitdidier, M.; Larzabal, P.

    2004-11-01

    This paper investigates the area of overlapped echo data processing. In such cases, classical methods, such as Fourier-like techniques or pulse pair methods, fail to estimate the first three spectral moments of the echoes because of their lack of resolution. A promising method, based on a modelization of the covariance matrix of the time series and on a Stochastic Maximum Likelihood (SML) estimation of the parameters of interest, has been recently introduced in literature. This method has been tested on simulations and on few spectra from actual data but no exhaustive investigation of the SML algorithm has been conducted on actual data: this paper fills this gap. The radar data came from the thunderstorm campaign that took place at the National Astronomy and Ionospheric Center (NAIC) in Arecibo, Puerto Rico, in 1998.

  13. Qubit dephasing due to photon shot noise from coherent and thermal sources

    NASA Astrophysics Data System (ADS)

    Gustavsson, S.; Yan, F.; Kamal, A.; Orlando, T. P.; Oliver, W. D.; Birenbaum, J.; Sears, A.; Hover, D.; Gudmundsen, T.; Yoder, J.

    We investigate qubit dephasing due to photon shot noise in a superconducting flux qubit transversally coupled to a coplanar microwave resonator. Due to the AC Stark effect, photon fluctuations in the resonator cause frequency shifts of the qubit, which in turn lead to dephasing. While this is universally understood, we have made the first quantitative spectroscopy of this noise for both thermal (i.e., residual photons from higher temperature stages) and coherent photons (residual photons from the readout and control pulses). We find that the bandwidth of the shot noise from thermal and coherent photons differ by approximately a factor of two, which we attribute to differences in the correlation time for the two noise sources. By comparing the results with noise spectra measured without any externally applied photons, we conclude that the qubit coherence times in our setup were limited by photon shot noise from thermal radiation, with an average resonator photon population of 0.006. Equipped with this knowledge, we improved the filtering for thermal noise and thereby improved the qubit coherence times by more than a factor of two, with T2 echo times approaching 100 us. From the measured T2 decay, we determine an upper bound on the residual photon population of 0.0004. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT LL under Air Force Contract No. FA8721-05-C-0002.

  14. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    NASA Astrophysics Data System (ADS)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  15. Breast tissue characterization using FARMA modeling of ultrasonic RF echo.

    PubMed

    Alacam, Burak; Yazici, Birsen; Bilgutay, Nihat; Forsberg, Flemming; Piccoli, Catherine

    2004-10-01

    A number of empirical and analytical studies demonstrated that the ultrasound RF echo reflected from tissue exhibits 1/f characteristics. In this paper, we propose to model 1/f characteristics of the ultrasonic RF echo by a novel parsimonious model, namely the fractional differencing auto regressive moving average (FARMA) process, and evaluated diagnostic value of model parameters for breast cancer malignancy differentiation. FARMA model captures the fractal and long term correlated nature of the backscattered speckle texture and facilitates robust efficient estimation of fractal parameters. In our study, in addition to the computer generated FARMA model parameters, we included patient age and radiologist's prebiopsy level of suspicion (LOS) as potential indicators of malignant and benign masses. We evaluated the performance of the proposed set of features using various classifiers and training methods using 120 in vivo breast images. Our study shows that the area under the receiver operating characteristics (ROC) curve of FARMA model parameters alone is superior to the area under the ROC curve of the radiologist's prebiopsy LOS. The area under the ROC curve of the three sets of features yields a value of 0.87, with a confidence interval of [0.85, 0.89], at a significance level of 0.05. Our results suggest that the proposed method of ultrasound RF echo model leads to parameters that can differentiate breast tumors with a relatively high precision. This set of RF echo features can be incorporated into a comprehensive computer-aided diagnostic system to aid physicians in breast cancer diagnosis.

  16. MISTY ECHO proof test of the GRMPY system

    SciTech Connect

    Deupree, R.G.; Flicker, S.L.; Turner, W.J.; Watson, C.A. ); Khalsa, N.; Macy, D. )

    1990-01-01

    The GRMPY system that was fielded on the MISTY ECHO event demonstrated that a small cadre of people could perform all fielding tasks. This report describes each task in detail and outlines the components of the GRMPY system. Suggestions are made for system improvement. The data are presented that were obtained on eight of the nine GRMPY stations fielded. 2 refs., 22 figs., 3 tabs.

  17. Loschmidt Echo in a System of Interacting Electrons

    SciTech Connect

    Manfredi, G.; Hervieux, P.-A.

    2006-11-10

    We study the Loschmidt echo for a system of electrons interacting through mean-field Coulomb forces. The electron gas is modeled by a self-consistent set of hydrodynamic equations. It is observed that the quantum fidelity drops abruptly after a time that is proportional to the logarithm of the perturbation amplitude. The fidelity drop is related to the breakdown of the symmetry properties of the wave function.

  18. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  19. Searching for Massive Photons with Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin; Neyenhuis, Brian; Christensen, Dan

    2008-05-01

    We will discuss an ion interferometer under construction that should enable the detection of a possible photon rest mass more than 100 times smaller than previous laboratory experiments. In the apparatus a beam of ^87Sr^+ ions will be split and recombined using stimulated Raman transitions inside of a conducting cylinder. Deviations from Coulomb's law can then be detected by measuring the phase shift of the interferometer as the potential applied to the conducting cylinder is changed. We will discuss both the details of the device and the theory connecting deviations from Coulomb's inverse-square law to a theory of massive photons.

  20. Controllable photon source

    NASA Astrophysics Data System (ADS)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  1. Characteristics of lightning echoes observed with VHF ST radar

    NASA Astrophysics Data System (ADS)

    RöTtger, J.; Liu, C. H.; Pan, C. J.; Su, S. Y.

    1995-07-01

    The development of tropospheric convection was observed with the Chung-Li VHF stratosphere-troposphere (ST) radar in Taiwan, Republic of China. Deep convection evolved into thunderstorms during which radar echoes from lightning were recorded with a particular high time resolution program. These lightning echoes usually exist for only several tens to a few hundred milliseconds. To investigate the fine structure in the amplitude and phase of the lightning returns, the necessary time resolution has to be in the order of a few milliseconds. Such time resolutions are for the first time applied with VHF ST radar and the initial results are presented in this paper. Rapid jumps in the phase path were occurring together with sudden amplitude changes. This indicates that the scattering regions change their position, which could be on different branches of the lightning stroke. Large radial velocities of the lightning scattering regions up to several tens of meters per second were observed. Also, strong velocity shears were noticed in these lightning echo regions. Power peaks in Doppler spectra corresponding to velocities of about 300 m s-1 were occasionally detected. It is contemplated that these are caused by Bragg scattering from sound waves resulting from the lightning shock wave. Also a periodic velocity and amplitude modulation of a thin sheet of radar reflectivity was observed which one could attribute to infra-sound with a frequency of about 6-7 Hz. Preliminary conclusions are drawn finally to confirm that our observations are generally consistent with backscatter from lightning.

  2. 15 K pulse tube design for ECHO mission

    NASA Astrophysics Data System (ADS)

    Duval, J. M.; Charles, I.; Chassaing, C.; Butterworth, J.; Aigouy, G.; Mullié, J.

    2014-01-01

    The Exoplanet Characterisation Observatory (EChO) is a proposed space telescope designed to characterize the atmospheres of nearby transiting exoplanets. Its detectors will operate in the 0.4 to 11 micromillimeter range. Two kinds of detectors are currently able to provide the desired sensitivity in this range. Depending on the technology used, cooling to either 6 K or about 30 K will be required. For the former solution, a JT cooler coupled to a pulse tube cooler could be used whereas for the latter, a pulse tube cooler would provide the cooling power. Pulse tube coolers are particularly well adapted for the cryogenics for such mission because of the low level of vibration required and of the temperature range. We developed multistage pulse tube coolers able to cool down to temperature as low as 6 K, with efficient operation from 10 K to 40 K. A design based on our tested prototypes is proposed to fulfill the need for the ECHO missions. This paper describes the experimental results measured with demonstrator models. In particular measured performances of efficient cooling power at 10 K are presented. Several possible configurations for the ECHO cooler will be discussed as well.

  3. Optimized 3D Ultrashort Echo Time Pulmonary MRI

    PubMed Central

    Johnson, Kevin M.; Fain, Sean B.; Schiebler, Mark L.; Nagle, Scott

    2012-01-01

    Purpose To optimize 3D radial ultrashort echo time MRI for high resolution whole-lung imaging. Methods 3D radial ultrashort echo time was implemented on a 3T scanner to investigate the effects of: (1) limited field-of-view excitation, (2) variable density readouts, and (3) radial oversampling. Improvements in noise performance and spatial resolution were assessed through simulation and phantom studies. Their effects on lung and airway visualization in five healthy male human subjects (mean age 32 years) were compared qualitatively through blinded ordinal scoring by two cardiothoracic radiologists using a nonparametric Friedman test (P < 0.05). Relative signal difference between endobronchial air and adjacent lung tissue, normalized to nearby vessel, was used as a surrogate for lung tissue signal. Quantitative measures were compared using the paired Student's t-test (P < 0.05). Finally, clinical feasibility was investigated in a patient with interstitial fibrosis. Results Simulation and phantom studies showed up to 67% improvement in SNR and reduced blurring for short T2* species using all three optimizations. In vivo images showed decreased artifacts and improved lung tissue and airway visualization both qualitatively and quantitatively. Conclusion The use of limited field-of-view excitation, variable readout gradients, and radial oversampling significantly improve the technical quality of 3D radial ultrashort echo time lung images. PMID:23213020

  4. Nonlinear system modeling with random matrices: echo state networks revisited.

    PubMed

    Zhang, Bai; Miller, David J; Wang, Yue

    2012-01-01

    Echo state networks (ESNs) are a novel form of recurrent neural networks (RNNs) that provide an efficient and powerful computational model approximating nonlinear dynamical systems. A unique feature of an ESN is that a large number of neurons (the "reservoir") are used, whose synaptic connections are generated randomly, with only the connections from the reservoir to the output modified by learning. Why a large randomly generated fixed RNN gives such excellent performance in approximating nonlinear systems is still not well understood. In this brief, we apply random matrix theory to examine the properties of random reservoirs in ESNs under different topologies (sparse or fully connected) and connection weights (Bernoulli or Gaussian). We quantify the asymptotic gap between the scaling factor bounds for the necessary and sufficient conditions previously proposed for the echo state property. We then show that the state transition mapping is contractive with high probability when only the necessary condition is satisfied, which corroborates and thus analytically explains the observation that in practice one obtains echo states when the spectral radius of the reservoir weight matrix is smaller than 1.

  5. Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear

    SciTech Connect

    Rogers, Michael C.; Chen, Kui; Andrzejewski, Lukasz; Narayanan, Suresh; Ramakrishnan, Subramanian; Leheny, Robert L.; Harden, James L.

    2014-12-22

    We report x-ray photon correlation spectroscopy experiments on a concentrated nanocolloidal gel subject to in situ oscillatory shear strain. The strain causes periodic echoes in the speckle pattern that lead to peaks in the intensity autocorrelation function. Above a threshold strain that is near the first yield point of the gel, the peak amplitude decays exponentially with the number of shear cycles, signaling irreversible particle rearrangements. The wave-vector dependence of the decay rate reveals a power-law distribution in the size of regions undergoing shear-induced rearrangement. The gel also displays strain softening well below the threshold, indicating a range of strains at which the rheology is nonlinear but the microscopic deformations are reversible.

  6. Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear.

    PubMed

    Rogers, Michael C; Chen, Kui; Andrzejewski, Lukasz; Narayanan, Suresh; Ramakrishnan, Subramanian; Leheny, Robert L; Harden, James L

    2014-12-01

    We report x-ray photon correlation spectroscopy experiments on a concentrated nanocolloidal gel subject to in situ oscillatory shear strain. The strain causes periodic echoes in the speckle pattern that lead to peaks in the intensity autocorrelation function. Above a threshold strain that is near the first yield point of the gel, the peak amplitude decays exponentially with the number of shear cycles, signaling irreversible particle rearrangements. The wave-vector dependence of the decay rate reveals a power-law distribution in the size of regions undergoing shear-induced rearrangement. The gel also displays strain softening well below the threshold, indicating a range of strains at which the rheology is nonlinear but the microscopic deformations are reversible. PMID:25615096

  7. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  8. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  9. EDITORIAL: The next photonic revolution The next photonic revolution

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.

    2009-11-01

    dependence upon active and switchable photonic metamaterials and nanophotonic devices. This revolution will lead to dramatic new science and applications on a global scale in all technologies using light, from data storage to optical processing of information, from sensing to light harvesting and energy conversion. Five plenary talks at the conference outlined its topical boundaries. They were given by Sir Michael Berry, Bristol University, UK, who spoke on the new topic of optical super-oscillations; Harry A Atwater, California Institute of Technology, USA, who gave an overview of recent developments in plasmonics; Christian Colliex, Université Paris-Sud, France, who presented the concept of electron energy-loss spectroscopy for the study of localized plasmons; Xiang Zhang, University of California at Berkeley, USA, who talked about recent achievements in the optical super-lens, and Antoinette Taylor, National Laboratory, Los Alamos, USA, who discussed recent work on tunable terahertz metamaterials. In the specially assigned `breakthrough' talks Steven Anlage, University of Maryland, USA, introduced the emerging field of superconducting meta-materials, Tobias Kippenberg, Max-Planck-Institut, Garching, Germany, talked about cavity optomechanics on a chip, while Misha Lukin, Harvard University, USA, explored the field of quantum plasmonics and Victor Prinz, Russian Academy of Science, Russia, introduced a novel class of metamaterials based on three-dimensional semiconductor nanostructures. The topical scope of this special section, to a great extent, echoes the paradigm shift in the NANOMETA community and includes papers on nanofabrication of plasmonic structure, transformation optics and invisibility, mapping of fields in nanostructures, nonlinear and magnetoplasmonic media, coherent effects in metamaterials, loss compensation in nanostructures, slow light and ultrafast switching of plasmon signals, and many other topics. The Guest Editor of this special section and the co

  10. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    PubMed

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI. PMID:27374984

  11. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    PubMed

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI.

  12. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes.

    PubMed

    Nilsen, Ian A; Osborne, Derek G; White, Aaron M; Anna, Jessica M; Kubarych, Kevin J

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ∼3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  13. What a plant sounds like: the statistics of vegetation echoes as received by echolocating bats.

    PubMed

    Yovel, Yossi; Stilz, Peter; Franz, Matthias O; Boonman, Arjan; Schnitzler, Hans-Ulrich

    2009-07-01

    A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes.

  14. Apparatus and method for measuring relative phase of signals in a multiple-echo system

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor)

    1998-01-01

    An apparatus and method for measuring the relative phase of echo signals in a multiple-echo system. A signal generator generates an exciting tone burst and subsequent tone bursts delayed in phase from the exciting tone burst. The exciting tone burst is gated into a transducer coupled to the multiple-echo system. Each subsequent tone burst is converted into a series of pulses. Each pulse triggers a sample/hold circuit to sample each echo signal. The samples of the echo signal are averaged and then compared to a reference value. The signal generator is controlled to vary the subsequent tone burst phase delay to determine for each echo signal a subsequent tone burst phase delay that causes the average of the samples of the echo signal to be substantially equal to the reference value wherein the determined subsequent tone burst phase delay is the phase delay of the echo signal with respect to the exciting tone burst. The control circuit then determines the difference in phase delay between echo signals to determine the relative phase delay of the echo signals.

  15. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  16. Variabilities of low latitude mesospheric and E region echoes: linked to common sources?

    NASA Astrophysics Data System (ADS)

    Dharmalingam, Selvaraj; Patra, Amit; Sathishkumar, Sundararaman; Narayana Rao, D.

    2016-07-01

    Variability in dynamics of the mesospheric and E region echoes have been studied in isolation. Both echoing phenomena are directly or indirectly coupled with each other through neutral dynamics. This is especially so for the low-latitudes outside the equatorial electrojet belt, where E region plasma irregularities causing radar echoes are governed by neutral dynamics, such as tides and gravity waves. Although these regions are close to each other, no effort has been made yet to understand the dynamical coupling processes manifesting the observed variabilities in the two echoing phenomena. To investigate linkage between the two phenomena, if any, we conducted systematic observations of low latitude mesospheric and E region echoes during 2011-2012 using the Gadanki MST radar and used these in conjunction with SABER temperature, MF radar wind, and sporadic E observations. Both echoes are found to occur in the height regions where temperature observations show negative gradients. Mesospheric echoes are collocated with temperature gradient associated with mesospheric temperature inversion while the E region echoes are collocated with negative temperature gradient close to the mesopause. Observations have revealed a common signature of semi-annual variations in the occurrence of both mesospheric and ionospheric E-region - occurrences peak in the equinoxes. The E region echoes have an additional peak occurring in the summer and this occurrence is well correlated with the enhancement in the diurnal tidal amplitude. We surmise that the enhancement in the diurnal tidal amplitude is linked with non-migrating tide of tropospheric weather phenomena in summer. Intriguingly, mesospheric echoing layers display descending pattern quite similar to the E region echoes and sporadic E layer, which have been used to invoke tidal dynamics in manifesting similar morphology in both mesospheric and E region echoes. These results will be presented and the role of tidal dynamics on the

  17. Light Echoes and Late-Time Emissions of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Drozdov, Dina

    2016-05-01

    Type Ia supernovae have many applications in astronomy, yet with fundamental properties still not fully understood, new methods for investigating the environment of a supernova need to be developed. A light echo is produced from the scattering of light from a bright source and can be used to analyze the dust in the vicinity of the supernova and learn invaluable information about the source. These techniques can put constraints on explosion and progenitor models. Although light echo detections from Type Ia supernovae are rare, with only seven total extragalactic detections, this could be due to the lack of thorough late-epoch monitoring. Since key information is determined from even a single light echo detection, light echo searches should be undertaken in the future to supplement our understanding of supernovae. As part of our collaborative campaign for studying the emission of supernovae at late epochs, we have added two light echoes to a small sample size of Type Ia supernova light echo detections: SN 2009ig in NGC 1015 and a dual echo from SN 2007af in NGC 5584. Both echoes were observed with the Hubble Space Telescope and allow for the most detailed images of Type Ia supernova light echoes to date. Three filters (F555W, F814W, and F350LP) captured the echoes obtained with the Wide Field Camera 3, and since both host galaxies were imaged as part of the same observing program, these cases will be the best comparable light echo pairs. We also further investigate the light echoes from SN 2006X in NGC 4321 and SN 1998bu in NGC 3368 from Hubble Space Telescope archival images. Analyses performed on the images gives crucial insight into the dusty environment of the host galaxy and the surroundings of the supernova. The outer echo from SN 2007af was created from an interstellar dust sheet located ~800 pc in front of the supernova, while the inner echo could be from interstellar or circumstellar origin. A circumstellar light echo could imply a single degenerate

  18. Lowering of stimulated Raman scattering threshold as a result of light capture

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Negriyko, A. M.; Orlovich, V. A.; Sverbil, P. P.; Tcherniega, N. V.; Vodchits, A. I.; Voinov, Y. P.; Zlobina, L. I.

    2015-01-01

    Stimulated Raman Scattering in globular photonic crystals and globular photonic glasses at different diameters of globules (250 - 400 nm) with embedded molecular liquids is studied under excitation by nanosecond or picoseconds laser pulses. Substantial decrease of Stimulated Raman Scattering threshold was observed. Such phenomenon was explained as the result of laser radiation field increase in globular photonic structures due to photonic density of states enhancement near the edges of photonic stop bands of photonic crystals and due to Mie resonance or whispering gallery modes effect revealing in photonic glasses. Stimulated Raman Scattering threshold lowering as a result of light capture in globular photonic crystals and photonic glasses opens the way to new efficient laser sources created on the base of composite globular photonic structures. Experimental data on spectra of Stimulated Raman Scattering in light and heavy waters are presented. As sources of exciting light the powerful ultra short solid state laser pulses with 532.0 nm wavelength and giant pulses of Ruby laser (694.3 nm) have been used. Several Stokes and anti-Stokes satellites were observed. Libration modes have been excited and resulted in some additional Raman bands at low frequency region and also as combining tones.

  19. Analysis of the temporal structure of fish echoes using the dolphin broadband sonar signal.

    PubMed

    Matsuo, Ikuo; Imaizumi, Tomohito; Akamatsu, Tomonari; Furusawa, Masahiko; Nishimori, Yasushi

    2009-07-01

    Behavioral experiments indicate that dolphins detect and discriminate prey targets through echolocating broadband sonar signals. The fish echo contains components from multiple reflections, including those from the swim bladder and other organs, and can be used for the identification of fish species and the estimation of fish abundance. In this paper, temporal structures were extracted from fish echoes using the cross-correlation function and the lowpass filter. First, the echo was measured from an anesthetized fish in a water tank. The number, reflector intensity, and echo duration were shown to be dependent on the species, individual, and orientation of the fish. In particular, the echo duration provided useful information on the fish body height and for species identification. Second, the echo was measured from the live fish suspended by nylon monofilament lines in the open sea. It was shown that this duration could be estimated regardless of whether or not the fish were moving.

  20. Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality

    SciTech Connect

    Huang Jinfeng; Kuang Leman; Li Yong; Liao Jieqiao; Sun, C. P.

    2009-12-15

    We study the dynamic sensitivity of an atomic ensemble dressed by a single-mode cavity field (called a photon-dressed atomic ensemble), which is described by the Dicke model near the quantum critical point. It is shown that when an extra atom in a pure initial state passes through the cavity, the photon-dressed atomic ensemble will experience a quantum phase transition showing an explicit sudden change in its dynamics characterized by the Loschmidt echo of this quantum critical system. With such dynamic sensitivity, the Dicke model can resemble the cloud chamber for detecting a flying particle by the enhanced trajectory due to the classical phase transition.

  1. Discrete echo signal modeling of ultrasound imaging systems

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhang, Cishen

    2008-03-01

    In this paper, a discrete model representing the pulse-tissue interaction in the medical ultrasound scanning and imaging process is developed. The model is based on discretizing the acoustical wave equation and is in terms of convolution between the input ultrasound pulses and the tissue mass density variation. Such a model can provide a useful means for ultrasound echo signal processing and imaging. Most existing models used for ultrasound imaging are based on frequency domain transform. A disadvantage of the frequency domain transform is that it is only applicable to shift-invariant models. Thus it has ignored the shift-variant nature of the original acoustic wave equation where the tissue compressibility and mass density distributions are spatial-variant factors. The discretized frequency domain model also obscures the compressibility and mass density representations of the tissue, which may mislead the physical understanding and interpretation of the image obtained. Moreover, only the classical frequency domain filtering methods have been applied to the frequency domain model for acquiring some tissue information from the scattered echo signals. These methods are non-parametric and require a prior knowledge of frequency spectra of the transmitted pulses. Our proposed model technique will lead to discrete, multidimensional, shift-variant and parametric difference or convolution equations with the transmitted pulse pressure as the input, the measurement data of the echo signals as the output, and functions of the tissue compressibility and mass density distributions as shift-variant parameters that can be readily identified from input-output measurements. The proposed model represents the entire multiple scattering process, and hence overcomes the key limitation in the current ultrasound imaging methods.

  2. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution

    NASA Astrophysics Data System (ADS)

    Frahm, J.; Michaelis, T.; Merboldt, K. D.; Bruhn, H.; Gyngell, M. L.; Hänicke, W.

    Considerable technical improvements are reported for localized proton NMR spectroscopy using stimulated echoes. When compared to previous results, proton NMR spectra of the human brain are now obtainable (i) with in vivo water suppression factors of ⩾1000, (ii) with only minor T2 losses and negligible distortions due to J modulation at short echo times of 10-20 ms, and (iii) from volumes of interest as small as 1-8 ml within measuring times of 1-10 min. As a consequence, the detection of cerebral metabolites is greatly facilitated. This particularly applies to the assignment of those resonances (e.g., glutamate, taurine, inositols) that suffer from strong spin-spin coupling at the field strengths commonly in use for NMR in man. Studies of regional metabolite differences, tissue heterogeneity, and focal lesions in patients benefit from the increased spatial resolution and a concomitant reduction of partial volume effects. Localized proton NMR spectroscopy was performed on young healthy volunteers. Experiments were carried out on a 2.0 T whole-body MRI/MRS system using the standard headcoil for both imaging and spectroscopy.

  3. A novel analysis for the NMR magic sandwich echo in polymers: application to the α-relaxation in polybutadiene

    NASA Astrophysics Data System (ADS)

    Pieruccini, Marco; Sturniolo, Simone; Corti, Maurizio; Rigamonti, Attilio

    2015-11-01

    On the basis of a method to describe the relaxation dynamics in an ensemble of spin pairs, an analytical expression is derived for the magic sandwich echo refocusing efficiency of 1H-NMR signals from systems where dipolar interaction dominates. At the sake of illustration the method is applied to the analysis of the α-relaxation in poly(butadiene). The Vogel-Fulcher-Tammann behaviour of the central relaxation rates, derived by fitting the refocusing efficiency as a function of the temperature, follows very well independent measurements performed with stimulated echo 2H-NMR experiments. Comparison with literature data worked out by broad band dielectric spectroscopy also shows very good agreement. In the framework of an Havriliak-Negami representation of the distribution of correlation times, information about width and asymmetry of the frequency profile is also provided by the analysis. This novel method is believed to represent a suitable path to extract basic information on the motional distribution in a variety of similar systems.

  4. Connection between decoherence and fidelity decay in echo dynamics

    NASA Astrophysics Data System (ADS)

    Gorin, T.; Prosen, T.; Seligman, T. H.; Strunz, W. T.

    2004-10-01

    Entanglement between a quantum system and its environment leads to loss of coherence in the former. In general, the temporal fate of coherences is complicated. Here, we establish the connection between decoherence of a central system and fidelity decay in the environment for a variety of situations, including both energy conserving and dissipative couplings. We show how properties of unitary time evolution of the environment can be inferred from the nonunitary evolution of coherences in the central system. This opens up promising ways for measuring Loschmidt echoes in a variety of situations.

  5. First Experimental Evidence for Quantum Echoes in Scattering Systems

    NASA Astrophysics Data System (ADS)

    Dembowski, C.; Dietz, B.; Friedrich, T.; Gräf, H.-D.; Heine, A.; Mejía-Monasterio, C.; Miski-Oglu, M.; Richter, A.; Seligman, T. H.

    2004-09-01

    A self-pulsing effect termed quantum echoes has been observed in experiments with an open superconducting and a normal conducting microwave billiard whose geometry provides soft chaos, i.e., a mixed phase space portrait with a large stable island. For such systems a periodic response to an incoming pulse has been predicted. Its period has been associated with the degree of development of a horseshoe describing the topology of the classical dynamics. The experiments confirm this picture and reveal the topological information.

  6. Correlation between cosmic noise absorption and VHF coherent echo intensity

    NASA Astrophysics Data System (ADS)

    Makarevitch, R. A.; Honary, F.

    2005-07-01

    We present examples and statistical analysis of the events with statistically significant correlation between the cosmic noise absorption (CNA) and the signal-to-noise ratio (SNR) of the VHF coherent echo intensity in the area monitored simultaneously by an imaging riometer and two oblique-sounding coherent VHF radars in Northern Scandinavia. By only considering the observations from the narrow riometer beams comparable (in terms of the intersection with the ionosphere) with the VHF radar cells, we identify ~200 one-hour high correlation periods (HCPs) for 2 years near the solar cycle maximum, 2000 2001. The HCP occurrence is maximized in the afternoon (12:00 17:00 UT, MLT≅UT+3), with the secondary peak near the midnight (21:00 02:00 UT). Relative to the VHF echo occurrence, HCPs occur more frequently from 11:00 to 20:00 UT. The diurnal variation of HCP occurrence is similar to that of the 1-h intervals with the lowest mean absorption A<0.25dB.

    The HCPs are observed more frequently during the winter months, which, combined with the fact that VHF echoes observed during HCPs exhibit features typical for field-aligned E-region irregularities, makes their association with the polar mesospheric echoes (for which some positive CNA/SNR correlation has been reported in the past) very unlikely. Instead, we attribute the high positive CNA/SNR correlation to the synchronous, to a first approximation, variation of the particle fluxes for two different but close sets of energies.

    By considering the dependence of the CNA/SNR correlation coefficients for both VHF radars (CA1 and CA2) upon the correlation between SNRs for two radars (C12), we show that both coefficients, CA1 and CA2, and the agreement between them decrease drastically with a C12 decrease, which we interpreted through the progressively increasing role of the spatial inhomogeneity of the processes leading to the enhanced CNA and SNR. In this situation

  7. The wide-angle neutron spin echo spectrometer project WASP

    SciTech Connect

    Ehlers, Georg

    2007-01-01

    This paper describes design and optimization for the wide angle spin-echo spectrometer (WASP) presently being planned at the ILL. The spectrometer will be a replacement for the high intensity spectrometer IN11 and will enhance its signal by more than one order of magnitude while maintaining the resolution of the present spectrometer. The paper outlines the magnetic field calculations and the considerations about possible limitations. The projected performance has been verified carefully by Monte Carlo raytracing and Biot-Savart magnetic field calculations. The maximum momentum transfer of the new spectrometer is to be extended to 4 angstroms {sup -1}.

  8. Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens

    NASA Astrophysics Data System (ADS)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui

    2015-10-01

    The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.

  9. The design and implementation of a multi-waveform radar echo simulator.

    PubMed

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument.

  10. Improved time efficiency and accuracy in diffusion tensor microimaging with multiple-echo acquisition

    NASA Astrophysics Data System (ADS)

    Gulani, Vikas; Weber, Thomas; Neuberger, Thomas; Webb, Andrew G.

    2005-12-01

    In high-field NMR microscopy rapid single-shot imaging methods, for example, echo planar imaging, cannot be used for determination of the apparent diffusion tensor (ADT) due to large magnetic susceptibility effects. We propose a pulse sequence in which a diffusion-weighted spin-echo is followed by multiple gradient-echoes with additional diffusion weighting. These additional echoes can be used to calculate the ADT and T2∗ maps. We show here that this results in modest but consistent improvements in the accuracy of ADT determination within a given total data acquisition time. The method is tested on excised, chemically fixed rat spinal cords.

  11. The design and implementation of a multi-waveform radar echo simulator

    NASA Astrophysics Data System (ADS)

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument.

  12. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  13. Single-photon sources

    NASA Astrophysics Data System (ADS)

    Lounis, Brahim; Orrit, Michel

    2005-05-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information.

  14. Function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai

    2011-07-01

    In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.

  15. First-photon imaging.

    PubMed

    Kirmani, Ahmed; Venkatraman, Dheera; Shin, Dongeek; Colaço, Andrea; Wong, Franco N C; Shapiro, Jeffrey H; Goyal, Vivek K

    2014-01-01

    Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub-pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.

  16. An energetic stellar outburst accompanied by circumstellar light echoes.

    PubMed

    Bond, Howard E; Henden, Arne; Levay, Zoltan G; Panagia, Nino; Sparks, William B; Starrfield, Sumner; Wagner, R Mark; Corradi, R L M; Munari, U

    2003-03-27

    Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of approximately 10(4). Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation. PMID:12660776

  17. Emergence of metapopulations and echo chambers in mobile agents

    PubMed Central

    Starnini, Michele; Frasca, Mattia; Baronchelli, Andrea

    2016-01-01

    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how both kinds of segregation can emerge from the interplay between homophily and social influence in a simple model of mobile agents endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world. PMID:27572928

  18. Emergence of metapopulations and echo chambers in mobile agents.

    PubMed

    Starnini, Michele; Frasca, Mattia; Baronchelli, Andrea

    2016-01-01

    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how both kinds of segregation can emerge from the interplay between homophily and social influence in a simple model of mobile agents endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world. PMID:27572928

  19. Motion and distortion correction of skeletal muscle echo planar images.

    PubMed

    Davis, Andrew D; Noseworthy, Michael D

    2016-07-01

    This paper examines two artifacts facing researchers who use gradient echo (GRE) echo planar imaging (EPI) for time series studies of skeletal muscles in limbs. The first is through-plane blood flow during the acquisition, causing a vessel motion artifact that inhibits proper motion correction of the data. The second is distortion of EPI images caused by B0 field inhomogeneities. Though software tools are available for correcting these artifacts in brain EPI images, the tools do not perform well on muscle images. The severity of the two artifacts was described using image similarity measures, and the data was processed with both a conventional motion correction program and custom written tools. The conventional program did not perform well on the limb images, in fact significantly degrading image quality in some trials. Data is presented which proves that arterial pulsatile signal caused the impairment in motion correction. The new tools were shown to perform much better, achieving substantial motion correction and distortion correction of the muscle EPI images. PMID:26972774

  20. Quantum and classical correlations in electron-nuclear spin echo

    SciTech Connect

    Zobov, V. E.

    2014-11-15

    The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization β{sub I} in addition to the electron polarization β{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at β{sub S} ≈ β{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.

  1. Echo-Enabled Harmonic Generation for Seeded FELs

    SciTech Connect

    Stupakov, G.; /SLAC

    2011-05-19

    In the x-ray wavelengths, the two leading FEL concepts are the self-amplified spontaneous emission (SASE) configuration and the high-gain harmonic generation (HGHG) scheme. While the radiation from a SASE FEL is coherent transversely, it typically has rather limited temporal coherence. Alternatively, the HGHG scheme allows generation of fully coherent radiation by up-converting the frequency of a high-power seed laser. However, due to the relatively low up-frequency conversion efficiency, multiple stages of HGHG FEL are needed in order to generate x-rays from a UV laser. The up-frequency conversion efficiency can be greatly improved with the recently proposed echo-enabled harmonic generation (EEHG) technique. In this work we will present the concept of EEHG, and address some practically important issues that affect the performance of the seeding. We show how the EEHG can be incorporated in the FEL scheme and what is the expected performance of the EEHG seeded FEL. We will then briefly describe the first proof-of-principle EEHG experiment carried out at the Next Linear Collider Test Accelerator (NLCTA) at SLAC. We will also discuss latest advances in the echo-scheme approach, and refer to subsequent modifications of the original concept.

  2. Actively Shielded Gradient Coils and Echo-Planar MRI

    NASA Astrophysics Data System (ADS)

    Elekes, Almos A.

    Echo-planar imaging (EPI), which produces images in 25-100 msec, is the fastest magnetic resonance imaging (MRI) technique. Its implementation is hampered by the demands it places on the scanner components. It requires strong magnetic gradient fields, produced by rapidly switched gradient coils; therefore the coils must have low inductance. They also have to be accommodated without inducing eddy currents in the magnet's metallic structure, otherwise the images would be degraded. All the major technical problems of echo-planar imaging are solved. Two transverse, actively shielded gradient coils were designed, built and tested. The coils were designed by the combined application of the minimum inductance and target field methods. The gradient strengths are 10 and 13 G/cm, unusually high for EPI, but well suited for microimaging, MR spectroscopy and petrochemical core analysis. The gradient time constants are short, so high resolution images are possible under 50 ms. The research was carried out at on a 4.5T/30cm superconducting, superferric shielded magnet located at the Texas Accelerator Center. The results of EPI and microimaging are presented.

  3. Magnetization transfer prepared gradient echo MRI for CEST imaging.

    PubMed

    Dai, Zhuozhi; Ji, Jim; Xiao, Gang; Yan, Gen; Li, Shengkai; Zhang, Guishan; Lin, Yan; Shen, Zhiwei; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) is an emerging MRI contrast mechanism that is capable of noninvasively imaging dilute CEST agents and local properties such as pH and temperature, augmenting the routine MRI methods. However, the routine CEST MRI includes a long RF saturation pulse followed by fast image readout, which is associated with high specific absorption rate and limited spatial resolution. In addition, echo planar imaging (EPI)-based fast image readout is prone to image distortion, particularly severe at high field. To address these limitations, we evaluated magnetization transfer (MT) prepared gradient echo (GRE) MRI for CEST imaging. We proved the feasibility using numerical simulations and experiments in vitro and in vivo. Then we optimized the sequence by serially evaluating the effects of the number of saturation steps, MT saturation power (B1), GRE readout flip angle (FA), and repetition time (TR) upon the CEST MRI, and further demonstrated the endogenous amide proton CEST imaging in rats brains (n = 5) that underwent permanent middle cerebral artery occlusion. The CEST images can identify ischemic lesions in the first 3 hours after occlusion. In summary, our study demonstrated that the readily available MT-prepared GRE MRI, if optimized, is CEST-sensitive and remains promising for translational CEST imaging. PMID:25384020

  4. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  5. Plasma Density and Radio Echoes in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1995-01-01

    This project provided a opportunity to study a variety of interesting topics related to radio sounding in the magnetosphere. The results of this study are reported in two papers which have been submitted for publication in the Journal of Geophysical Research and Radio Science, and various aspects of this study were also reported at meetings of the American Geophysical Union (AGU) at Baltimore, Maryland and the International Scientific Radio Union (URSI) at Boulder, Colorado. The major results of this study were also summarized during a one-day symposium on this topic sponsored by Marshall Space Flight Center in December 1994. The purpose of the study was to examine the density structure of the plasmasphere and determine the relevant mechanisms for producing radio echoes which can be detected by a radio sounder in the magnetosphere. Under this study we have examined density irregularities, biteouts, and outliers of the plasmasphere, studied focusing, specular reflection, ducting, and scattering by the density structures expected to occur in the magnetosphere, and predicted the echoes which can be detected by a magnetospheric radio sounder.

  6. EChO fine guidance sensor design and architecture

    NASA Astrophysics Data System (ADS)

    Ottensamer, Roland; Rataj, Miroslaw; Schrader, Jan-Rutger; Ferstl, Roman; Güdel, Manuel; Kerschbaum, Franz; Luntzer, Armin

    2014-08-01

    EChO, the Exoplanet Characterization Observatory, is an M-class candidate in the ESA Comic Vision programme. It will provide high resolution, multi-wavelength spectroscopic observations of exoplanets, measure their atmospheric composition, temperature and albedo. The scientific payload is a spectrometer covering the 0.4-11 micron waveband. High photometric stability over a time scale of about 10 hours is one of the most stringent requirements of the EChO mission. As a result, fine pointing stability relative to the host star is mandatory. This will be achieved through a Fine Guidance Sensor (FGS), a separate photometric channel that uses a fraction of the target star signal from the optical channel. The main task of the FGS is to ensure the centering, focusing and guiding of the satellite, but it will also provide supplemental high-precision astrometry and photometry of the target to ground for de-trending the spectra and complementary science. In this paper we give an overview of the current architectural design of the FGS subsystem and discuss related requirements as well as the expected performance.

  7. An energetic stellar outburst accompanied by circumstellar light echoes.

    PubMed

    Bond, Howard E; Henden, Arne; Levay, Zoltan G; Panagia, Nino; Sparks, William B; Starrfield, Sumner; Wagner, R Mark; Corradi, R L M; Munari, U

    2003-03-27

    Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of approximately 10(4). Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation.

  8. Echoes of Historical Supernovae in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Badenes, Carles; Blondin, Stephane; Challis, Peter; Clocchiatti, Alejandro; Filippenko, Alex; Foley, Ryan; Huber, Mark E.; Matheson, Thomas; Mazzali, Paolo; Olsen, Knut; Sauer, Daniel; Sinnott, Brendan; Smith, R. Chris; Suntzeff, Nicholas; Welch, Doug; Bergmann, Marcel

    2010-08-01

    We propose to discover the first light echoes (LEs) associated with the historical Galactic supernovae SN 1181 (3C 58) and SN 1054 (Crab), and to locate additional LE complexes from SN 1680 (Cas A) and SN 1572 (Tycho). Using other facilities, we will obtain spectra of the LEs to determine the nature and properties of these important events. This is a continuation of a previously approved NOAO program to obtain images of regions of significant dust concentration near these Galactic supernova remnants. With data from previous semesters, we found LEs from the Cas A and Tycho supernovae teRest08b. We then used the rich set of LEs from Cas A to examine the Cas A SN from different viewing angles teRest10_casaspec, Rest10_leprofile, finding that in one direction the He I (lambda) 5876 and H(alpha) features are blue-shifted by an additional about 4000 km/s relative to the other directions teRest10_casaspec, which is direct evidence that the SN was asymmetric. The study of scattered-light echoes from Galactic supernovae provides a host of newly-recognized observational benefits which have only just begun to be exploited including (1) a direct comparison of a supernova and its remnant, (2) a three-dimensional view of a supernova, and (3) a Galactic network of absolute distance differences.

  9. Echo Park controversy and the American conservation movement

    SciTech Connect

    Harvey, M.W.T.

    1986-01-01

    During the twentieth century, a few conservation battles have pitted in as classic a fashion the foes of preservation and development as that waged during the 1950s over Dinosaur National Monument. The issue was whether to build the proposed Echo Park Dam within Dinosaur National Monument. The Monument spans the Utah-Colorado border, and comprises the confluence of the Green and Yampa Rivers. Echo Park, a lovely, peaceful meadow flanked by massive sandstone walls at the rivers' confluence, became the storm-center of controversy when the Bureau of Reclamation made plans to dam the Green River just two miles to the south. The dam would have flooded a hundred miles of this canyon country, and the proposal startled the nation's major conservation organizations and occupied their attention for several years. Their effort to prevent the dam ultimately succeeded, and their story is critical in tracing the roots of contemporary conservation. In the end, pressure from conservation groups helped to delete the dam from the legislation, and Dinosaur's river canyons were preserved.

  10. Emergence of metapopulations and echo chambers in mobile agents

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Frasca, Mattia; Baronchelli, Andrea

    2016-08-01

    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how both kinds of segregation can emerge from the interplay between homophily and social influence in a simple model of mobile agents endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world.

  11. Meteoroid mass determination using head echoes detected at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Oppenheim, Meers; Hunt, Stephen; McKeen, Fred; Coster, Anthea

    2002-11-01

    Meteor data collected at the Kwajalein Missile Range (KMR) during the peak of the 1998 Leonid storm comprise the only simultaneous data collection of meteor head echoes and trails using seven frequencies (VHF, UHF, L-, S-, C-, Ka- and W-band). The primary sensor was the ALTAIR radar operating at 160 MHz with 30-m range resolution and 422 MHz with 7.5-m range resolution, which has both interferometric and polarization capabilities. This paper presents an alaysis of these high-resolution data in support of the following ideas: First, head echo scattering appears to arise from an ionized region with a density sufficiently high that its plasma frequency exceeds the radar frequency (overdense reflection). Second, the Radar-cross-section (RCS) values, which decrease with decreasing wavelength, peak near 105 km altitude at the point where the meteoroid gives up the most kinetic energy during its descent. Third, these RCS measurements were used to compute electron line densities, which provide estimates of a meteoroid's mass. By combining these data and simple ablation models, we can constrain meteoroid mass as it loses material during its passage through the atmosphere.

  12. Sum-frequency generation echo and grating from interface

    SciTech Connect

    Volkov, Victor

    2014-10-14

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ{sup (4)} two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ{sub YYYZX} and χ{sub YYYZY} macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics.

  13. Photon Counts Statistics in Leukocyte Cell Dynamics

    NASA Astrophysics Data System (ADS)

    van Wijk, Eduard; van der Greef, Jan; van Wijk, Roeland

    2011-12-01

    In the present experiment ultra-weak photon emission/ chemiluminescence from isolated neutrophils was recorded. It is associated with the production of reactive oxygen species (ROS) in the "respiratory burst" process which can be activated by PMA (Phorbol 12-Myristate 13-Acetate). Commonly, the reaction is demonstrated utilizing the enhancer luminol. However, with the use of highly sensitive photomultiplier equipment it is also recorded without enhancer. In that case, it can be hypothesized that photon count statistics may assist in understanding the underlying metabolic activity and cooperation of these cells. To study this hypothesis leukocytes were stimulated with PMA and increased photon signals were recorded in the quasi stable period utilizing Fano factor analysis at different window sizes. The Fano factor is defined by the variance over the mean of the number of photon within the observation time. The analysis demonstrated that the Fano factor of true signal and not of the surrogate signals obtained by random shuffling increases when the window size increased. It is concluded that photon count statistics, in particular Fano factor analysis, provides information regarding leukocyte interactions. It opens the perspective to utilize this analytical procedure in (in vivo) inflammation research. However, this needs further validation.

  14. Two-photon physics

    SciTech Connect

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  15. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  16. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  17. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  18. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  19. A Comparison Study of Single-Echo Susceptibility Weighted Imaging and Combined Multi-Echo Susceptibility Weighted Imaging in Visualizing Asymmetric Medullary Veins in Stroke Patients

    PubMed Central

    Wang, Chao; Qiu, Tiantian; Song, Ruirui; Jiaerken, Yerfan; Yang, Linglin; Wang, Shaoze

    2016-01-01

    Background Asymmetric medullary veins (AMV) are frequently observed in stroke patients and single-echo susceptibility weighted imaging (SWIs) is the main technique in detecting AMV. Our study aimed to investigate which echo time (TE) on single-echo susceptibility is the optimal echo for visualizing AMV and to compare the ability in detecting AMV in stroke patients between SWIs and multi-echo susceptibility weighted imaging (SWIc). Materials and Methods Twenty patients with middle cerebral artery stroke were included. SWI was acquired by using a multi-echo gradient-echo sequence with six echoes ranging from 5 ms to 35.240 ms. Three different echoes of SWIs including SWIs1 (TE = 23.144 ms), SWIs2 (TE = 29.192 ms) and SWIs3 (TE = 35.240 ms) were reconstructed. SWIc was averaged using the three echoes of SWIs. Image quality and venous contrast of medullary veins were compared between SWIs and SWIc using peak signal-to-noise ratio (PSNR), mean opinion score (MOS), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The presence of AMV was evaluated in each SWIs (1–3) and SWIc. Results SWIs2 had the highest PSNR, MOS and CNR and SWIs1 had the highest SNR among three different echoes of SWIs. No significant difference was found in SNR between SWIs1 and SWIs2. PSNR, MOS and CNR in SWIc were significantly increased by 27.9%, 28.2% and 17.2% compared with SWIs2 and SNR in SWIc was significantly increased by 32.4% compared with SWIs1. 55% of patients with AMV were detected in SWIs2, SWIs3 and SWIc, while 50% AMV were found in SWIs1. Conclusions SWIs using TE around 29ms was optimal in visualizing AMV. SWIc could improve image quality and venous contrast, but was equal to SWIs using a relative long TE in evaluating AMV. These results provide the technique basis for further research of AMV in stroke. PMID:27494171

  20. Comparison of Multi-Echo Dixon Methods with Volume Interpolated Breath-Hold Gradient Echo Magnetic Resonance Imaging in Fat-Signal Fraction Quantification of Paravertebral Muscle

    PubMed Central

    Yoo, Yeon Hwa; Kim, Hak-Sun; Lee, Young Han; Yoon, Choon-Sik; Paek, Mun Young; Yoo, Hanna; Kannengiesser, Stephan; Chung, Tae-Sub; Song, Ho-Taek; Suh, Jin-Suck

    2015-01-01

    Objective To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2* estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2*-corrected two-echo Dixon or T2*-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Materials and Methods Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2*-corrected Dixon technique with two (non-T2*-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. Results A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. Conclusion T2*-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification. PMID:26357503

  1. Localization of the cortical motor area by functional magnetic resonance imaging with gradient echo and echo-planar methods, using clinical 1.5 Tesla MR imaging systems.

    PubMed

    Nakayama, K

    1997-06-01

    Functional magnetic resonance imaging (MRI) with gradient echo and echo-planar sequences was applied to healthy volunteers and neurological patients to evaluate the feasibility of detecting and localizing the motor cortex. Time course of the change in signal intensity by an alternate repetition of motor task (squeezing hand) and rest periods was also examined. The motor cortex was localized as the area of signal increase in 88.9% of 45 healthy volunteers by gradient echo method, which mainly reflected the cortical vein, and 83.3% of 30 healthy volunteers by echo-planar method, which mainly reflected the cerebral gyrus. Among 21 volunteers who participated in the both studies, success rate in the localization for the motor cortex was 90.5% (21 volunteers) by gradient echo method and 81% (17 volunteers) by echo-planar method. It was also shown from the time course of the change in signal intensity that signal increase in the most significantly activated area generally corresponded with the periods of the motor task, and the latency between the onset of signal increase and the onset of motor task was usually about 4 seconds. In four of 6 patients with brain tumor, the motor cortex was localized, although activated areas were displaced or distorted. The results indicate that fMRI, either with gradient echo or echo-planar sequence, is a useful method for localizing the primary motor area activated during the motor task and clinically available for noninvasive evaluation of the anatomical relation between brain tumors and the motor area before surgical therapy.

  2. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1984-11-01

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(..pi../sup 0/ ..-->.. ..gamma gamma..) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in ..gamma gamma.. scattering, including especially the low mass dipion. 34 references.

  3. The elimination of a class of pseudo echoes by an improved T/R switch technique

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Ecklund, W. L.

    1986-01-01

    An annoying class of pseudo echoes are described that evidently occur occasionally in a number of ST (stratosphere troposphere) radars. The origin of these signals are located in the output circuitry of the radar transmitter. Two methods for the elimination of the radar echoes are suggested and briefly desscrib.

  4. Echo-level compensation and delay tuning in the auditory cortex of the mustached bat.

    PubMed

    Macías, Silvio; Mora, Emanuel C; Hechavarría, Julio C; Kössl, Manfred

    2016-06-01

    During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface. In such a situation, the bats lower the amplitude of their emitted pulses to maintain the amplitude of incoming echoes at a constant level as they approach a target. We report that cortical auditory neurons that encode target distance have receptive fields that are optimized for dealing with echo-level compensation. In most cortical delay-tuned neurons, the echo amplitude eliciting the maximum response matches the echo amplitudes measured from the bats' biosonar vocalizations while they are swung in a pendulum. In addition, neurons tuned to short target distances are maximally responsive to low pulse amplitudes while neurons tuned to long target distances respond maximally to high pulse amplitudes. Our results suggest that bats dynamically adjust biosonar pulse amplitude to match the encoding of target range and to keep the amplitude of the returning echo within the bounds of the cortical map of echo delays. PMID:27037932

  5. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging.

    PubMed

    Hooi, Fong Ming; Nagle, Anna; Subramanian, Swetha; Douglas Mast, T

    2015-02-01

    Echo decorrelation imaging, a method for mapping ablation-induced ultrasound echo changes, is analyzed. Local echo decorrelation is shown to approximate the decoherence spectrum of tissue reflectivity. Effects of the ultrasound measurement system, echo signal windowing, electronic noise, and tissue motion on echo decorrelation images are determined theoretically, leading to a method for reduction of motion and noise artifacts. Theoretical analysis is validated by simulations and experiments. Simulated decoherence of the scattering medium was recovered with root-mean-square error less than 10% with accuracy dependent on the correlation window size. Motion-induced decorrelation measured in an ex vivo pubovisceral muscle model showed similar trends to theoretical motion-induced decorrelation for a 2.1 MHz curvilinear array with decorrelation approaching unity for 3-4 mm elevational displacement or 1-1.6 mm range displacement. For in vivo imaging of porcine liver by a 7 MHz linear array, theoretical decorrelation computed using image-based motion estimates correlated significantly with measured decorrelation (r = 0.931, N = 10). Echo decorrelation artifacts incurred during in vivo radiofrequency ablation in the same porcine liver were effectively compensated based on the theoretical echo decorrelation model and measured pre-treatment decorrelation. These results demonstrate the potential of echo decorrelation imaging for quantification of heat-induced changes to the scattering tissue medium during thermal ablation.

  6. Echo strength and density structure of Hawaiian mesopelagic boundary community patches.

    PubMed

    Benoit-Bird, Kelly J; Au, Whitlow W L

    2003-10-01

    A broadband sonar system and digital camera with strobe lights were mounted on a vertically profiling frame with a depth sensor. The echo strengths and densities of animals within individual mesopelagic boundary community patches were investigated as a function of depth. Time and distance from shore were also investigated. Simultaneous surface echosounder surveys permitted comparison of density estimates from two techniques. Echo strength values suggest nearshore boundary community animals are primarily myctophid fishes, which was confirmed by preliminary photographic evidence. Echo strength varied significantly as a function of distance from the shoreline and time. These measures of echo strength are important for estimating density from a surface echosounder. Density estimates from these revised echo strengths compare well with those made with echo highlight counting, which is independent of echo strength. These density measures suggest that previous density estimates were too low but do not change the conclusions of these studies. Vertical microstructure in density was apparent but animal size and compositional structure was not evident within a patch. Patch edges were abrupt, with no differences in the density or echo strength from patch interiors. These edges were generally straight, with a sharp drop in density to the background density of zero. Estimates of animal size as a function of time provide information about the diel migration patterns of these mesopelagic animals.

  7. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging

    PubMed Central

    Hooi, Fong Ming; Nagle, Anna; Subramanian, Swetha; Douglas Mast, T.

    2015-01-01

    Echo decorrelation imaging, a method for mapping ablation-induced ultrasound echo changes, is analyzed. Local echo decorrelation is shown to approximate the decoherence spectrum of tissue reflectivity. Effects of the ultrasound measurement system, echo signal windowing, electronic noise, and tissue motion on echo decorrelation images are determined theoretically, leading to a method for reduction of motion and noise artifacts. Theoretical analysis is validated by simulations and experiments. Simulated decoherence of the scattering medium was recovered with root-mean-square error less than 10% with accuracy dependent on the correlation window size. Motion-induced decorrelation measured in an ex vivo pubovisceral muscle model showed similar trends to theoretical motion-induced decorrelation for a 2.1 MHz curvilinear array with decorrelation approaching unity for 3–4 mm elevational displacement or 1–1.6 mm range displacement. For in vivo imaging of porcine liver by a 7 MHz linear array, theoretical decorrelation computed using image-based motion estimates correlated significantly with measured decorrelation (r = 0.931, N = 10). Echo decorrelation artifacts incurred during in vivo radiofrequency ablation in the same porcine liver were effectively compensated based on the theoretical echo decorrelation model and measured pre-treatment decorrelation. These results demonstrate the potential of echo decorrelation imaging for quantification of heat-induced changes to the scattering tissue medium during thermal ablation. PMID:25697993

  8. Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Moffat, A J; Masters, W M

    1992-02-01

    The echolocating bat, Eptesicus fuscus, detects sonar echoes with a sensitivity that changes according to the time elapsed between broadcasting of each sonar signal and reception of echoes. When tested in an electronic target simulator on a two-choice echo-detection task, the bat's threshold improved by 11.5 dB as echo delay changed from 2.3 to 4.6 ms (target ranges of 40 and 80 cm). Earlier experiments measured the change in detection threshold for delays from 1 to 6.4 ms (target ranges from about 17 to 110 cm) and obtained about 11 dB of improvement per doubling of delay. The new experiments used electronic delay lines to simulate echo delay, thus avoiding movement of loudspeakers to different distances and the possible creation of delay-dependent backward masking between stimulus echoes and cluttering echoes from the loudspeaker surfaces. The slope of the threshold shift defines an echo gain control that keeps echoes from point targets at a fixed sensation level--reducing sensitivity by 11 to 12 dB as echo amplitude increases by 12 dB per halving of range during the bat's approach to the target. A recent experiment using loudness discrimination of echoes at 70 to 80 dB SPL (roughly 50 dB above threshold) found a slope of about 6 dB per halving of range, so the gain-control effect may be level dependent. The observed effect is operationally equivalent to forward masking of echoes by the transmission, but any events correlated with vocalization which impair hearing sensitivity for a short interval following transmissions could cause a decline in sensitivity to echoes. Contractions of the bat's middle-ear muscles synchronized to transmissions may account for the observed threshold shift, at least for a span of echo delays associated with the most critical portion of the approach stage of pursuit. Forward masking by the sonar transmissions may contribute to the threshold shift, too, but middle-ear muscle contractions do occur and must be a significant part of the

  9. Surveying for Historical Supernovae Light Echoes in the Milky Way Field

    NASA Astrophysics Data System (ADS)

    Welch, D. L.

    2014-05-01

    Very luminous, transient events can produce detectable "light echoes" - light scattered by interstellar dust which can arrive much later than the direct light from an outburst. In the last 1000 years, there have been half a dozen supernovae in the Milky Way which are capable of producing detectable light echoes. Light echo systems have already been found for Tycho (SN 1572) and Cas A. The three-dimensional distribution of light echoes provides one of the few means for an astronomical source to be inspected from more than one viewpoint. Indications of the degree of asymmetry of supernovae are extremely valuable for understanding the details of the event itself. Amateurs are well-equipped to find the brighter light echoes and in this work I will provide practical guidance on how such surveys may be accomplished and the various science opportunities they provide.

  10. Multi-echo processing by a bottlenose dolphin operating in "packet" transmission mode at long range.

    PubMed

    Finneran, James J; Schroth-Miller, Maddie; Borror, Nancy; Tormey, Megan; Brewer, Arial; Black, Amy; Bakhtiari, Kimberly; Goya, Gavin

    2014-11-01

    Bottlenose dolphins performing echolocation tasks at long ranges may utilize a transmission mode where bursts, or "packets," of echolocation clicks are emitted rather than single clicks. The clicks within each packet are separated by time intervals well below the two-way travel time, while the packets themselves are emitted at intervals greater than the two-way travel time. Packet use has been shown to increase with range; however, the exact function of packets and the advantages gained by their utilization remain unknown. In this study, the capability for dolphins to utilize multi-echo processing within packets of echoes was investigated by manipulating the number of available echoes within each packet as a dolphin performed a long-range echolocation task. The results showed an improvement in detectability with an increase in the number of echoes in each packet and suggest that packet use is an adaptation to allow multi-echo processing at long ranges without introducing range ambiguity.

  11. Photon mass from inflation.

    PubMed

    Prokopec, Tomislav; Törnkvist, Ola; Woodard, Richard

    2002-09-01

    We consider vacuum polarization from massless scalar electrodynamics in de Sitter inflation. The theory exhibits a 3+1 dimensional analog of the Schwinger mechanism in which a photon mass is dynamically generated. The mechanism is generic for light scalar fields that couple minimally to gravity. The nonvanishing of the photon mass during inflation may result in magnetic fields on cosmological scales.

  12. Photonic layered media

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  13. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  14. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  15. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  16. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    SciTech Connect

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-07

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ∼3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C{sub 6}H{sub 6}Cr(CO){sub 3}, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of k{sub B}T. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 k{sub B}T above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  17. Chirality in photonic systems

    NASA Astrophysics Data System (ADS)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.

  18. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  19. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  20. Nonlinear Photonics 2014: introduction.

    PubMed

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  1. Evidence for perception of fine echo delay and phase by the FM bat, Eptesicus fuscus.

    PubMed

    Simmons, J A

    1993-05-01

    The big brown bat, Eptesicus fuscus, can perceive small changes in the delay of FM sonar echoes and shifts in echo phase, which interact with delay. Using spectral cues caused by interference, Eptesicus also can perceive the individual delays of two overlapping FM echoes at small delay separations. These results have been criticized as due to spectral artifacts caused by overlap between stimulus echoes and extraneous sounds (Pollak 1993). However, no amplitude or spectral variations larger than 0.05 dB accompany delay or phase changes produced by the electronic apparatus. No reverberation falls in the narrow span of delays required to produce the bat's performance curve from echo interference cues. Consistent differences in the durations of sonar sounds for 6 bats that perform the same in the experiments demonstrate that overlap between stimulus echoes and extraneous echoes is not necessary, and changes in the amount of echo overlap have no effect on performance. Noise-induced random variations in echo spectra outweigh putative spectral artifacts, and deliberately-introduced spectral "artifacts" do not improve performance overall but instead yield new time-frequency images. Amplitude-latency trading of perceived delay, proposed as a demonstration that the latency of neural discharges encodes delay (Pollak et al. 1977), confirms that the bat's fine delay and phase perception depends on a temporal neural code. The perceived delays depend on stimulus delays, not the delays of extraneous sounds. The rejected criticisms are based on physiological results with random-phase FM stimuli which are irrelevant to neural coding of fine echo delay and phase.

  2. EChO payload electronics architecture and SW design

    NASA Astrophysics Data System (ADS)

    Focardi, M.; Di Giorgio, A. M.; Farina, M.; Pancrazzi, M.; Ottensamer, R.; Lim, T. L.; Pezzuto, S.; Micela, G.; Pace, E.

    2015-12-01

    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ m to 11.0 μ m. The baseline design includes the goal wavelength extension to 0.4 μ m while an optional LWIR module extends the range to the goal wavelength of 16.0 μ m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control ( Instrument Control Function) and the housekeepings and scientific data digital processing ( Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.

  3. Loschmidt echoes in two-body random matrix ensembles

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Prosen, Tomaž; Seligman, Thomas H.

    2007-07-01

    Fidelity decay is studied for quantum many-body systems with a dominant independent particle Hamiltonian resulting, e.g., from a mean field theory with a weak two-body interaction. The diagonal terms of the interaction are included in the unperturbed Hamiltonian, while the off-diagonal terms constitute the perturbation that distorts the echo. We give the linear response solution for this problem in a random matrix framework. While the ensemble average shows no surprising behavior, we find that the typical ensemble member as represented by the median displays a very slow fidelity decay known as “freeze.” Numerical calculations confirm this result and show that the ground state even on average displays the freeze. This may contribute to explanation of the “unreasonable” success of mean field theories.

  4. Null Result in gamma-ray burst lensed echo search

    NASA Technical Reports Server (NTRS)

    Nemiroff, R. J.; Wickramasinghe, W. A. D. T.; Norris, J. P.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Paciesas, W. S.; Horack, J.

    1994-01-01

    We have searched for gravitational-lens-induced echoes between gamma-ray bursts (GRBs) in Burst and Transient Source Experiment (BATSE) data. The search was conducted in two phases. In the first phase we compared all GRBs in a brightness-complete sample of the first 260 GRBs with recorded angular positions having at least a 5% chance of being coincident from their combined positional error. In the second phase, we compared all GRB light curves of the first 611 GRBs with recorded angular positions having at least a 55% chance of being coincident from their combined positional error. No unambiguous gravitational lens candidate pairs were found in either phase, although a 'library of close calls' was accumulated for future reference. This result neither excludes nor significantly constrains a cosmological origin for GRBs.

  5. Echo-enabled Harmonic Generation Free Electron Laser

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    In this paper, we systematically study the echo-enabled harmonic generation (EEHG) free electron laser (FEL). The EEHG FEL uses two modulators in combination with two dispersion sections that allow to generate in the beam a high harmonic density modulation starting with a relatively small initial energy modulation of the beam. After presenting analytical theory of the phenomenon, we address several practically important issues, such as the effect of incoherent synchrotron radiation in the dispersion sections, and the beam transverse size effect in the modulator. Using a representative realistic set of beam parameters, we show how the EEHG scheme enhances the FEL performance and allows to generate a fully (both longitudinally and transversely) coherent radiation. As an example, we demonstrate that 5 nm coherent soft x-rays with GW peak power can be generated directly from the 240 nm seeding laser using the proposed EEHG scheme.

  6. Recurrent kernel machines: computing with infinite echo state networks.

    PubMed

    Hermans, Michiel; Schrauwen, Benjamin

    2012-01-01

    Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks.

  7. Echo Tomography of Reprocessing Sites in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Haswell, Carole

    1998-01-01

    We discovered correlated rapid variability between the optical/UV and X-ray emission for the first time in a soft X-ray transient, GRO J1655-40. Hubble Space Telescope light curves show features similar to those seen by the Rossi X-ray Timing Explorer, but with a mean delay of up to 10 - 20 s. We interpret the correlation as the result of reprocessing of X-rays into optical and UV emission, with a delay owing to finite light travel time; this assumption enables us to perform echo mapping of the system. The time-delay distribution has a mean of 14.6 +/-1.4 s and a dispersion of 10.5+/-1.9 s at binary phase 0.4. This establishes that the reprocessing region is the accretion disk around the compact star, rather than the mass-donating secondary. These results have been published.

  8. Heavy ion collision evolution modeling with ECHO-QGP

    NASA Astrophysics Data System (ADS)

    Rolando, V.; Inghirami, G.; Beraudo, A.; Del Zanna, L.; Becattini, F.; Chandra, V.; De Pace, A.; Nardi, M.

    2014-11-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in (3 + 1)D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  9. Quench echo and work statistics in integrable quantum field theories.

    PubMed

    Pálmai, T; Sotiriadis, S

    2014-11-01

    We propose a boundary thermodynamic Bethe ansatz calculation technique to obtain the Loschmidt echo and the statistics of the work done when a global quantum quench is performed on an integrable quantum field theory. We derive an analytic expression for the lowest edge of the probability density function and find that it exhibits universal features, in the sense that its scaling form depends only on the statistics of excitations. We perform numerical calculations on the sinh-Gordon model, a deformation of the free boson theory, and we obtain that by turning on the interaction the density function develops fermionic properties. The calculations are facilitated by a previously unnoticed property of the thermodynamic Bethe ansatz construction.

  10. REDOR with a relative full-echo reference

    NASA Astrophysics Data System (ADS)

    Mehta, Anil K.; Cegelski, Lynette; O'Connor, Robert D.; Schaefer, Jacob

    2003-07-01

    REDOR and REDOR-like 13C{ 19F} and 2H{ 19F} NMR experiments have been performed on lyophilized whole cells of Staphylococcus aureus. The bacteria were grown to maturity on media containing L-[ 13C3]alanine or L-[methyl- d3]alanine, and then complexed with the 4-fluorobiphenyl derivative of chloroeremomycin, an analogue of the widely used antibiotic, vancomycin. The position of the 19F of the drug bound in the bacterial cell wall was determined relative to L-alanine 13C and 2H labels in the peptidoglycan peptide stem that was closest to the fluorinated biphenyl moiety of the drug. These determinations were made by dipolar recoupling methods that do not require an absolute measurement of the REDOR full echo (the signal observed without rotor-synchronized dephasing pulses) of the labels in the peptide stem.

  11. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  12. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    SciTech Connect

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S.

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  13. The Exoplanet Characterisation Observatory (EChO) payload electronics

    NASA Astrophysics Data System (ADS)

    Focardi, M.; Pancrazzi, M.; Di Giorgio, A. M.; Pezzuto, S.; Micela, G.; Pace, E.

    2012-09-01

    The EChO Payload is an integrated spectrometer designed to cover the 0.55-16 μm (11 to 16 μm as a goal) wavelength band, subdivided into 5 channels from visible to thermal IR with a common set of optics spectrally dividing the field of view by means of dichroics and a unique electronics interface to the spacecraft, the Data Control Unit (DCU). DCU is mainly a digital unit with processing capabilities based on a rad-hard space qualified processor running the main Application SW (the scientific SW) and some programmable logics. DCU will host the detector’s warm front-end electronics (FEEs) and its main tasks are to implement the payload instruments commanding, the science and housekeeping (HK) data acquisition, conversion and packetisation, the onboard spectra pre-processing, and, finally, to provide finely regulated voltage levels to FEEs. Detector’s proximity cold electronics send analog data and HKs to DCU for digital conversion by sharing a redundant ADC aboard DCU. Analog HKs are previously multiplexed, elaborated and converted to digital format before sending them to the satellite platform, via the SpaceWire (SpW) links. DCU controls the FEEs syncronization (interpreting and routing sync signals and time stamps sent by OBC by means of SpW Time Codes) and runs the main logics to perform all the required tasks and memory management. The EChO DCU electronics basically focuses on the data and command flows, the clock/synchronization and power distribution network and on an overall architecture for a trade-off solution removing or reducing any electronics single-point failure.

  14. Trawling bats exploit an echo-acoustic ground effect

    PubMed Central

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990

  15. Artificial intelligence for the EChO mission planning tool

    NASA Astrophysics Data System (ADS)

    Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.

  16. Spearhead echo and downburst near the approach end of a John F. Kennedy Airport runway, New York City

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1976-01-01

    Radar echoes of a storm at John F. Kennedy International Airport are examined. Results regarding the phenomena presented suggest the existence of downburst cells. These cells are characterized by spearhead echoes. About 2% of the echoes in the New York area were spearhead echoes. The detection and identification of downburst cells, their potential hazard to approaching and landing aircraft, and communication of this information to the pilots of those aircraft are discussed.

  17. Indistinguishability of independent single photons

    NASA Astrophysics Data System (ADS)

    Sun, F. W.; Wong, C. W.

    2009-01-01

    The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform-limited pulses. The entanglement between single photons and outer environment or other photons induces the distribution of the center frequencies of those transform-limited pulses and makes photons distinguishable. Only the single photons with the same transform-limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down-conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.

  18. Investigating photonic quantum computation

    NASA Astrophysics Data System (ADS)

    Myers, Casey Robert

    The use of photons as qubits is a promising implementation for quantum computation. The inability of photons to interact, especially with the environment, makes them an ideal physical candidate. However, this also makes them a difficult system to perform two qubit gates on. Recent breakthroughs in photonic quantum computing have shown methods around the requirement of direct photon-photon interaction. In this thesis we study three recently discovered schemes for optical quantum computation. We first investigate the so called linear optical quantum computing (LOQC) scheme, exploring a method to improve the original proposal by constructing a photon-number QND detector that succeeds with a high probability. In doing this we present a new type of LOQC teleporter, one that can detect the presence of a single photon in an arbitrary polarisation state when the input state is a sum of vacuum and multi-photon terms. This new type of teleporter is an improvement on the original scheme in that the entangled states required can be made offline with fewer entangling operations. We next investigate the so called quantum bus (qubus) scheme for photonic quantum computing. We show a scheme to measure the party of n qubit states by using a single qubus mode, controlled rotations and displacements. This allows for the syndrome measurements of any stabilizer quantum error correcting code. We extend these results to a fault tolerant scheme to measure an arbitrary Pauli operator of weight n, incorporating so called single bit teleportations. We investigate the construction of a Toffoli gate by using a single qubus mode, controlled rotations and displacements that works with a success probability of at least 25%. We also investigate the use of single bit teleportations to construct a universal set of gates on coherent state type logic and in the construction of cluster states. We finally investigate the optical Zeno gate, a gate that uses the Zeno effect in the form of two photon

  19. Optical Stimulation of Neurons

    PubMed Central

    Thompson, Alexander C.; Stoddart, Paul R.; Jansen, E. Duco

    2014-01-01

    Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential. PMID:26322269

  20. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.