Science.gov

Sample records for stimulating factor g-csf

  1. Expression and purification of canine granulocyte colony-stimulating factor (cG-CSF).

    PubMed

    Yamamoto, Akira; Iwata, Akira; Saito, Toshiki; Watanabe, Fumiko; Ueda, Susumu

    2009-08-15

    Canine granulocyte colony-stimulating factor (cG-CSF) with modification of cysteine at position 17 to serine was expressed in Brevibacillus choshinensis HPD31. cG-CSF secreted into the culture medium was purified by ammonium sulfate precipitation and consecutive column chromatography, using butyl sepharose and DEAE sepharose. Biological activity of the recombinant cG-CSF was 8.0 x 10(6) U/mg protein, as determined by its stimulatory effect on NFS-60 cell proliferation. Purified cG-CSF was subcutaneously administered once a day for two successive days to dogs (1, 5, 25, or 125 microg). Neutrophil count increased the following day in all dogs except those administered the lowest dose (1 microg). No severe side effects were observed in dogs after administration of cG-CSF.

  2. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large

  3. Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response

    PubMed Central

    Reyes, E; García-Castro, I; Esquivel, F; Hornedo, J; Cortes-Funes, H; Solovera, J; Alvarez-Mon, M

    1999-01-01

    Granulocyte colony-stimulation factor (G-CSF) is a cytokine that selectively promotes growth and maturation of neutrophils and may modulate the cytokine response to inflammatory stimuli. The purpose of this study was to examine the effect of G-CSF on ex vivo peripheral blood mononuclear cell (PBMC) functions. Ten patients with breast cancer were included in a clinical trial in which r-metHuG-CSF was administrered daily for 5 days to mobilize peripheral blood stem cells. Ten healthy women were also included as controls. Our data show that G-CSF treatment induces an increase in peripheral blood leucocyte, neutrophil, lymphocyte and monocyte counts. We have found a modulation in the percentages of CD19+, CD45+CD14+, CD4+CD45RA+ and CD4+CD45RO+ cells in PBMC fractions during G-CSF treatment. We have also found a significant reduction in the proliferative response of PBMC to mitogenic stimulation that reverted 14 days after the fifth and the last dose of G-CSF. Furthermore, it was not associated with significant changes in the pattern of cytokine production. The mechanism of this immunoregulatory effect is probably indirect since G-CSF receptor has not been found in T lymphocytes. This mechanism and its potential clinical applications remain to be elucidated. © 1999 Cancer Research Campaign PMID:10390001

  4. Sustained in vivo activity of recombinant bovine granulocyte colony stimulating factor (rbG-CSF) using HEPES buffer.

    PubMed

    Kasraian, K; Kuzniar, A; Earley, D; Kamicker, B J; Wilson, G; Manion, T; Hong, J; Reiber, C; Canning, P

    2001-08-01

    The purpose of this study was to develop a long-acting injectable formulation of bG-CSF for veterinary use. However, in order to achieve sustained in vivo activity it was first necessary to stabilize the protein at the injection site. Preformulation studies, as well as literature, suggest that bG-CSF aggregates at neutral pH ranges (i.e., pH 6-8) and at temperatures of approximately 40 degrees C. Therefore, bG-CSF will not retain its activity for an extended period of time at the injection site. During this study we determined that HEPES buffer has a very significant impact on protein stability as well as on biological performance. Recombinant bovine granulocyte colony stimulating factor (rbG-CSF) was formulated in 1 M HEPES buffer for subcutaneous injection into cows. bG-CSF formulated in 1 M HEPES buffer resulted in sustained in vivo activity of bG-CSF compared to the "control" formulation (control formulation: 5% mannitol, 10 mM acetate buffer, 0.004% tween-80, pH 4). White blood cell (WBC) count was used as a marker to evaluate in vivo activity of the formulation. WBC numbers remained above a threshold value for only 24-30 h for the control formula. However, when bG-CSF was formulated in 1 M HEPES, the WBC remained above threshold for 3 days or 72 h. Formulating bG-CSF in 1 M HEPES at pH 7.5 also resulted in greater solution stability. This was surprising since bG-CSF is intrinsically not stable at neutral pH. The effect of 1 M HEPES on the T(M) (temperature at maximum heat flow on calorimetry scan) of bG-CSF was determined by microcalorimetry. In the absence of 1 M HEPES buffer the T(M) was 48 degrees C (onset approximately 40 degrees C), while bG-CSF formulated in 1 M HEPES buffer has a T(M) of 59 degrees C (onset approximately 50 degrees C). Similar organic buffers, such as MOPS, HEPPS, TES, and tricine, also resulted in improved solution stability as well as in sustained in vivo activity. The dramatic effect of these buffers on stability and biological

  5. Effect of granulocyte colony stimulating factor (G-CSF) on IVF outcomes in infertile women: An RCT

    PubMed Central

    Eftekhar, Maryam; Hosseinisadat, Robabe; Baradaran, Ramesh; Naghshineh, Elham

    2016-01-01

    Background: Despite major advances in assisted reproductive techniques, the implantation rates remain relatively low. Some studies have demonstrated that intrauterine infusion of granulocyte colony stimulating factor (G-CSF) improves implantation in infertile women. Objective: To assess the G-CSF effects on IVF outcomes in women with normal endometrial thickness. Materials and methods: In this randomized controlled clinical trial, 100 infertile women with normal endometrial thickness who were candidate for IVF were evaluated in two groups. Exclusion criteria were positive history of repeated implantation failure (RIF), endocrine disorders, severe endometriosis, congenital or acquired uterine anomaly and contraindication for G-CSF (renal disease, sickle cell disease, or malignancy). In G-CSF group (n=50), 300 µg trans cervical intrauterine of G-CSF was administered at the oocyte retrieval day. Controls (n=50) were treated with standard protocol. Chemical, clinical and ongoing pregnancy rates, implantation rate, and miscarriage rate were compared between groups. Results: Number of total and mature oocytes (MII), two pronuclei (2PN), total embryos, transferred embryos, quality of transferred embryos, and fertilization rate did not differ significantly between two groups. So there were no significant differences between groups in chemical, clinical and ongoing pregnancy rate, implantation rate, and miscarriage rate Conclusion: our result showed in normal IVF patients with normal endometrial thickness, the intrauterine infusion of G-CSF did not improve pregnancy outcomes. PMID:27326420

  6. Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis

    PubMed Central

    England, Timothy J.; Sprigg, Nikola; Alasheev, Andrey M.; Belkin, Andrey A.; Kumar, Amit; Prasad, Kameshwar; Bath, Philip M.

    2016-01-01

    Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked Investigators to share individual patient data on baseline characteristics, stroke severity and type, end-of-trial modified Rankin Scale (mRS), Barthel Index, haematological parameters, serious adverse events and death. Multiple variable analyses were adjusted for age, sex, baseline severity and time-to-treatment. Individual patient data were obtained for 6 of 10 RCTs comprising 196 stroke patients (116 G-CSF, 80 placebo), mean age 67.1 (SD 12.9), 92% ischaemic, median NIHSS 10 (IQR 5–15), randomised 11 days (interquartile range IQR 4–238) post ictus; data from three commercial trials were not shared. G-CSF did not improve mRS (ordinal regression), odds ratio OR 1.12 (95% confidence interval 0.64 to 1.96, p = 0.62). There were more patients with a serious adverse event in the G-CSF group (29.6% versus 7.5%, p = 0.07) with no significant difference in all-cause mortality (G-CSF 11.2%, placebo 7.6%, p = 0.4). Overall, G-CSF did not improve stroke outcome in this individual patient data meta-analysis. PMID:27845349

  7. A randomised study comparing granulocyte-colony stimulating factor (G-CSF) with G-CSF plus thymostimulin in the treatment of haematological toxicity in patients with advanced breast cancer after high dose mitoxantrone therapy.

    PubMed

    Sanchiz, F; Milla, A

    1996-01-01

    54 patients with advanced breast cancer were randomised into a prospective, non-blinded, controlled trial to receive: mitoxantrone 28 mg/m2 intravenous day 1 and granulocyte-colony stimulating factor (G-CSF) 5 micrograms/kg/day subcutaneously days 2 to 16 (n = 27) or the same regimen plus thymostimulin (TS) 50 mg/day intramuscular at days 2 to 16 (n = 27). The median time to reach a neutrophil count greater than 0.5 x 10(9)/l was lower in the G-CSF+TS treated group (9.13 versus 3.24 days; P < 0.0005). More patients experienced neutropenic fever in the G-CSF group than in the G-CSF+TS group (59.3% versus 22.2%, P = 0.0119). The incidence, duration and severity of clinically or bacteriologically documented infection were lower in patients who received TS. 16 patients (59.3%) in the G-CSF group contracted infection, and 4 patients (14.8%) receiving G-CSF+TS (P = 0.0016). These data indicate that the combination of G-CSF and TS is well-tolerated and may enhance haematological recovery following myelosuppressive chemotherapy in patients with advanced breast cancer.

  8. G-CSF use in patients receiving first-line chemotherapy for non-Hodgkin's lymphoma (NHL) and granulocyte-colony stimulating factors (G-CSF) as observed in clinical practice in Italy.

    PubMed

    Vitolo, Umberto; Angrili, Francesco; DeCosta, Lucy; Wetten, Sally; Federico, Massimo

    2016-12-01

    Treatment of non-Hodgkin lymphoma (NHL) requires chemotherapy regimens with significant risk of febrile neutropenia (FN). For patients at ≥20% FN risk, guidelines recommend primary prophylaxis (PP) with granulocyte-colony stimulating factor (G-CSF). This study assessed whether G-CSF use in NHL was in line with recommendations in routine practice. This was a retrospective, observational study of adult NHL patients receiving first-line (R)CHOP-like chemotherapy and G-CSF support between June 2010 and 2012, in Italy. The primary outcome was whether G-CSF was provided as PP, which was defined as G-CSF initiation on days 1-3 after chemotherapy, ≥3 days' use for daily G-CSFs and continued prophylaxis from cycle 1 across all cycles. Secondary prophylaxis was defined as continued prophylaxis from cycle 2 or later, and all other use was defined as Suboptimal. The analysis included 199 patients, 61% of whom had diffuse large B cell lymphoma and 21% follicular lymphoma. (R)CHOP-21 was given to 52% of patients and (R)CHOP-14 to 32%. Overall, 29% of patients received PP, while two-thirds received Suboptimal G-CSF. Of patients receiving daily G-CSF, 3% received PP and 94% received Suboptimal use; with pegfilgrastim, 65% received PP and 26% Suboptimal use. FN occurred in 13 patients (7%) and grade 3/4 neutropenia in 43%. Chemotherapy dose delays occurred in 22% and dose reductions in 18% of patients. Delivery of G-CSF, particularly daily G-CSFs, was not in accordance with guideline or product label recommendations in a large proportion of NHL patients receiving chemotherapy in Italy.

  9. GRANULOCYTE COLONY-STIMULATING FACTOR (G-CSF) UPREGULATES β1 INTEGRIN AND INCREASES MIGRATION OF HUMAN TROPHOBLAST SWAN 71 CELLS VIA PI3K AND MAPK ACTIVATION

    PubMed Central

    Furmento, Verónica A.; Marino, Julieta; Blank, Viviana C.; Cayrol, María Florencia; Cremaschi, Graciela A.; Aguilar, Rubén C.; Roguin, Leonor P.

    2017-01-01

    Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development. PMID:26992288

  10. Granulocyte colony-stimulating factor (G-CSF) upregulates β1 integrin and increases migration of human trophoblast Swan 71 cells via PI3K and MAPK activation.

    PubMed

    Furmento, Verónica A; Marino, Julieta; Blank, Viviana C; Cayrol, María Florencia; Cremaschi, Graciela A; Aguilar, Rubén C; Roguin, Leonor P

    2016-03-15

    Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development.

  11. Lipopolysaccharide-binding protein (LBP) blockade augments the protective effect of granulocyte colony-stimulating factor (G-CSF) in a rat sepsis model.

    PubMed

    Liu, Anding; Weiss, Stefanie; Fang, Haoshu; Claus, Ralf A; Rödel, Jürgen; Dirsch, Olaf; Dahmen, Uta

    2015-05-01

    The effect of granulocyte colony-stimulating factor (G-CSF) on sepsis is discussed controversially in clinical studies. We previously demonstrated that G-CSF treatment induced lipopolysaccharide (LPS) sensitization via up-regulation of LPS-binding protein (LBP). We hypothesized that the futile effect of G-CSF-treatment in sepsis might be due to its ability to up-regulate LBP. Therefore, blockade of LBP may attenuate the G-CSF-induced LPS sensitization and protect animals from polymicrobial sepsis. Endogenous LBP levels were up-regulated by pretreatment with G-CSF, and the LBP protein was blocked by administration of a specific blocking peptide-LBPK95A. Polymicrobial sepsis was induced by intraperitoneal injection of feces slurry. Rats were monitored every 3 up to 72 h to observe the survival rate. Tissue injury, bacterial infiltration, local inflammatory response, and neutrophil infiltration at 0, 2, and 12 h after the septic insult were analyzed. The survival benefit of G-CSF pretreatment was improved when combined with LBPK95A treatment (control vs. G-CSF vs. combi: 36% vs. 56% vs. 93%; P < 0.05). Combined treatment of G-CSF and LBPK95A was associated with the minimal tissue damage. Treatment with LBPK95A significantly inhibited the neutrophil infiltration without interfering with the bacterial clearance. The G-CSF-induced inflammatory sensitization effect was inhibited by LBPK95A, indicated by the decrease of cytokines expression, and the activation of nuclear factor kappa B and signal transducer and activator of transcription 3 signaling pathway. In conclusion, these results suggested that the effect of prophylactic augmentation of the host's response via G-CSF pretreatment was further enhanced by inhibition of the up-regulation of LBP.

  12. Dissociation of LPS-induced monocytic ex vivo production of granulocyte colony-stimulating factor (G-CSF) and TNF-alpha in patients with septic shock.

    PubMed

    Weiss, M; Fischer, G; Barth, E; Boneberg, E; Schneider, E M; Georgieff, M; Hartung, T

    2001-01-07

    Over a 6 month period, in 192 patients admitted to the intensive care unit (ICU), a longitudinal analysis of whole blood lipopolysaccharide (LPS)-induced ex vivo cytokine production was performed on a daily basis until discharge from the ICU or death. Twenty-one patients with proven infections were in septic shock for the first time and for at least 3 days' duration. Ex vivo LPS-inducible release of granulocyte colony-stimulating factor (G-CSF) was upregulated and that of TNF-alpha was downregulated in patients with septic shock, regardless whether they survived or died. In conclusion, LPS-induced ex vivo TNF-alpha and G-CSF cytokine release by monocytes is regulated differentially in patients with septic shock. Since upregulation of LPS-induced production of G-CSF occurred earlier in survivors than in non-survivors, rapidly elevated and sustained G-CSF responsiveness may contribute to survival in septic shock.

  13. Porcine granulocyte-colony stimulating factor (G-CSF) delivered via replication-defective adenovirus induces a sustained increase in circulating peripheral blood neutrophils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease, particularly during periods of peak disease incidence. Cytokines, including granulocyte colony-stimulating factor (G-CSF), are one class of compounds that...

  14. Development of a colon delivery capsule and the pharmacological activity of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in beagle dogs.

    PubMed

    Takaya, T; Ikeda, C; Imagawa, N; Niwa, K; Takada, K

    1995-06-01

    A peroral dosage form was examined to deliver recombinant human granulocyte colony-stimulating factor (rhG-CSF) to the colon in beagle dogs. A new gelatin capsule with its inside surface coated with ethylcellulose was prepared for this purpose. RhG-CSF was dissolved with propylene glycol and was filled in the capsule. Several kinds of ethylcellulose-gelatin capsules with an ethylcellulose layer of thickness 46 to 221 mm were used. The capsule was filled with propylene glycol solution containing fluorescein as an absorption marker, castor oil derivative and citric acid. The hardness of the capsule was tested after the gelatin layer was dissolved using a hardness tester and was dependent on the thickness of the ethylcellulose layer of the capsule. The time, Tmax, at which plasma fluorescein level reaches its maximum following oral administration of ethylcellulose capsules was used as a parameter for the in-vivo disintegration time of the ethylcellulose capsule into the colon. Capsules of thickness 84 mm with a Tmax of 4-6 h were filled with rhG-CSF solution containing fluorescein and were administered to dogs. After administration, blood samples were collected for 96 h and the blood total leucocyte (BTL) counts were measured as a pharmacological index of rhG-CSF. The maximum BTL count appeared at 10 h then gradually decreased and returned to its normal level at 48 h. These results suggest the usefulness of ethylcellulose capsules for the delivery of rhG-CSF to the colon and the possibility of a new oral rhG-CSF dosage form has been elucidated.

  15. Administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the intracranial hemorrhage in two dogs: a case report

    PubMed Central

    Kang, M. H.; Park, H. M.

    2016-01-01

    Two dogs with generalized seizures were evaluated. The dogs were diagnosed with traumatic intracranial hemorrhages based on the history, neurological examinations, and magnetic resonance imaging (MRI) of the brain. Treatment was started with oxygen, prednisolone and anticonvulsant agents. No further seizure activity was observed after treatment in both dogs, however cushing reflex was detected in case 1 and a left-sided hemi-paresis was detected in case 2. Further supportive treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF) was attempted. No abnormal signs were noted in either of the dogs and no recurrence was noted 16 and 14 months later, in case 1 and 2, respectively. These cases indicate that a combination of rhG-CSF treatment with previous therapy could be used in dogs with traumatic brain injury. PMID:27656233

  16. Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans

    PubMed Central

    Ordelheide, Anna-Maria; Gommer, Nadja; Böhm, Anja; Hermann, Carina; Thielker, Inga; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Häring, Hans-Ulrich; Staiger, Harald

    2016-01-01

    Objective Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. PMID:27069870

  17. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone.

    PubMed

    Balseanu, Adrian Tudor; Buga, Ana-Maria; Catalin, Bogdan; Wagner, Daniel-Christoph; Boltze, Johannes; Zagrean, Ana-Maria; Reymann, Klaus; Schaebitz, Wolf; Popa-Wagner, Aurel

    2014-01-01

    Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF). We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs) in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg) or in combination with a single dose (10(6) cells) of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min) of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the "islet of regeneration." However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be

  18. Granulocyte colony stimulating factor (G-CSF) can allow treatment with clozapine in a patient with severe benign ethnic neutropaenia (BEN): a case report.

    PubMed

    Spencer, Benjamin W J; Williams, Hugh R J; Gee, Siobhan H; Whiskey, Eromona; Rodrigues, Joseph P; Mijovic, Aleksandar; MacCabe, James H

    2012-09-01

    Clozapine is the treatment of choice for treatment-resistant schizophrenia, but it is associated with a risk of neutropaenia and agranulocytosis. Clozapine use is regulated by mandatory blood monitoring in the UK, requiring cessation of treatment should the absolute neutrophil count (ANC) drop below specified values. Benign reductions in the ANC in non-white populations are common, and this can preclude a patient from receiving treatment with clozapine. A diagnosis of benign ethnic neutropaenia can reduce these treatment restrictions (UK specific), but the degree of neutropaenia can be significant enough to still prevent treatment. In this report, we show that response to granulocyte colony stimulating factor (G-CSF) may be quite variable and difficult to predict, but with careful monitoring it can be used to increase the ANC count and allow continued treatment with clozapine.

  19. Early applications of granulocyte colony-stimulating factor (G-CSF) can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy (rAION).

    PubMed

    Wen, Yao-Tseng; Huang, Tzu-Lun; Huang, Sung-Ping; Chang, Chung-Hsing; Tsai, Rong-Kung

    2016-10-01

    Granulocyte colony-stimulating factor (G-CSF) was reported to have a neuroprotective effect in a rat model of anterior ischemic optic neuropathy (rAION model). However, the therapeutic window and anti-inflammatory effects of G-CSF in a rAION model have yet to be elucidated. Thus, this study aimed to determine the therapeutic window of G-CSF and investigate the mechanisms of G-CSF via regulation of optic nerve (ON) inflammation in a rAION model. Rats were treated with G-CSF on day 0, 1, 2 or 7 post-rAION induction for 5 consecutive days, and a control group were treated with phosphate-buffered saline (PBS). Visual function was assessed by flash visual evoked potentials at 4 weeks post-rAION induction. The survival rate and apoptosis of retinal ganglion cells were determined by FluoroGold labeling and TUNEL assay, respectively. ON inflammation was evaluated by staining of ED1 and Iba1, and ON vascular permeability was determined by Evans Blue extravasation. The type of macrophage polarization was evaluated using quantitative real-time PCR (qRT-PCR). The protein levels of TNF-α and IL-1β were analyzed by western blotting. A therapeutic window during which G-CSF could rescue visual function and retinal ganglion cell survival was demonstrated at day 0 and day 1 post-infarct. Macrophage infiltration was reduced by 3.1- and 1.6-fold by G-CSF treatment starting on day 0 and 1 post-rAION induction, respectively, compared with the PBS-treated group (P<0.05). This was compatible with 3.3- and 1.7-fold reductions in ON vascular permeability after G-CSF treatment compared with PBS treatment (P<0.05). Microglial activation was increased by 3.8- and 3.2-fold in the early (beginning treatment at day 0 or 1) G-CSF-treated group compared with the PBS-treated group (P<0.05). Immediate (within 30 mins of infarct) treatment with G-CSF also induced M2 microglia/macrophage activation. The cytokine levels were lower in the group that received immediate G-CSF treatment compared to

  20. Prognostic factors for re-mobilization using plerixafor and granulocyte colony-stimulating factor (G-CSF) in patients with malignant lymphoma or multiple myeloma previously failing mobilization with G-CSF with or without chemotherapy: the Korean multicenter retrospective study.

    PubMed

    Kim, Jin Seok; Yoon, Dok Hyun; Park, Seonyang; Yoon, Sung-Soo; Cho, Seok-Goo; Min, Chang-Ki; Lee, Je-Jung; Yang, Deok-Hwan; Kwak, Jae-Yong; Eom, Hyeon-Seok; Kim, Won Seog; Kim, Hawk; Do, Young Rok; Moon, Joon Ho; Lee, Jihye; Suh, Cheolwon

    2016-03-01

    Plerixafor in combination with granulocyte colony-stimulating factor (G-CSF) has been shown to improve the rates of successful peripheral blood stem cell (PBSC) mobilization in patients with malignant lymphoma or multiple myeloma (MM) who experienced prior failure of PBSC mobilization. We evaluated the mobilization results of re-mobilization using plerixafor and G-CSF in insufficiently mobilizing patients. Forty-four patients with lymphoma (n = 29) or MM (n = 15) were included in the study. The median age was 50 (range, 24-64) years. Previous mobilization regimens were chemotherapy with G-CSF (n = 28), including cyclophosphamide with G-CSF (n = 15), and G-CSF only (n = 16). All patients with lymphoma achieved at least partial response (PR) before the mobilization, including 13 complete responses (CRs). Eleven patients with MM achieved at least PR and four patients with MM were in stable disease before mobilization. The median number of apheresis was 3 (range, 1-6). The median yield of PBSC collections was 3.41 (0.13-38.11) × 10(6) CD34(+) cells/kg. Thirty-four (77.3 %) patients had successful collections defined as at least 2 × 10(6) CD34(+) cells/kg. The rate of successful collections was not different between the two underlying diseases (79.3 % in lymphoma and 73.3 % in MM). Of the entire cohort, 38 (86.4 %) of patients went on to receive an autologous transplant. Previous long-term use of high-risk drugs (>4 cycles use of alkylating agents, platinum-containing agents, or thalidomide) (HR 10.8, 95 % CI 1.1-110.0, P = 0.043) and low platelet count (<100 × 10(9)/L) 1 day before the first apheresis (HR 27.9, 95 % CI 2.9-273.7, P = 0.004) were independent prognostic factors for predicting failure of PBSC re-mobilization using plerixafor and G-CSF. In conclusion, re-mobilization using plerixafor and G-CSF showed a success rate of 77.3 % in patients with lymphoma or MM who experienced prior failure of PBSC

  1. Granulocyte colony-stimulating factor (G-CSF) positive effects on muscle fiber degeneration and gait recovery after nerve lesion in MDX mice

    PubMed Central

    Simões, Gustavo F; Benitez, Suzana U; Oliveira, Alexandre L R

    2014-01-01

    Background G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. Aims The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Methods Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75NTR and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Results Both groups treated with G-CSF showed increased p75NTR and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. Conclusions The reduction in p75NTR and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF. PMID:25328849

  2. Hochuekkito, a Kampo (Traditional Japanese Herbal) Medicine, and its Polysaccharide Portion Stimulate G-CSF Secretion from Intestinal Epithelial Cells.

    PubMed

    Matsumoto, Tsukasa; Moriya, Michiyo; Kiyohara, Hiroaki; Tabuchi, Yoshiaki; Yamada, Haruki

    2010-09-01

    Kampo (traditional Japanese herbal) medicines are taken orally due to which the gastric mucosal immune system may act as one of the major targets for the expression of pharmacological activity. The inner surface of the intestinal tract possesses a large area of mucosal membranes, and the intestinal epithelial cells sit at the interface between a lumen and a lymphocyte-rich lamina propria. The cross talk that occurs between these compartments serves to maintain intestinal homeostasis, and the cytokine network plays an important role in the cross talk. In this study, the effect of Hochuekkito (HET), one of Kampo medicines, on cytokine secretion of intestinal epithelial cells was investigated. When murine normal colonic epithelial cell-line MCE301 cells were stimulated with HET, the contents of granulocyte colony-stimulating factor (G-CSF) in the conditioned medium were significantly increased in dose- and time-dependent manners. The enhanced G-CSF gene transcription in MCE301 cells by the stimulation of HET was observed by RT-PCR. The enhanced G-CSF secretion by HET was also observed in C3H/HeJ mice-derived primary cultured colonic epithelial cells. When the HET was fractionated, only the polysaccharide fraction (F-5) enhanced the G-CSF secretion of MCE301 cells, and the activity of F-5 lost after the treatment of periodate that can degrade the carbohydrate moiety. These results suggest that HET enhances secretion of G-CSF from colonic epithelial cells and the polysaccharide is one of the active ingredients of HET. The enhanced G-CSF secretion by HET may partly contribute to the clinically observed various pharmacological activities of HET including immunomodulating activity.

  3. Ischemic cardiac complications following G-CSF.

    PubMed

    Eckman, Peter M; Bertog, Stefan C; Wilson, Robert F; Henry, Timothy D

    2010-07-01

    Granulocyte-colony stimulating factor (G-CSF) is commonly used in bone marrow transplant donors to increase the number of circulating progenitor cells. G-CSF has also been studied following myocardial infarction, but concern has been raised about the risks of G-CSF administration in patients with coronary artery disease. We present two cases of ischemic cardiac complications that are likely to be related to administration of G-CSF and provide a contemporary overview of the literature on the cardiovascular risks of G-CSF.

  4. A 3,387 bp 5'-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice.

    PubMed

    Serova, Irina A; Dvoryanchikov, Gennady A; Andreeva, Ludmila E; Burkov, Ivan A; Dias, Luciene P B; Battulin, Nariman R; Smirnov, Alexander V; Serov, Oleg L

    2012-06-01

    A new expression vector containing the 1,944 bp 5'-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3'-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19-40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice.

  5. The role of G-CSF and IL-6 in the granulopoiesis-stimulating activity of murine blood serum induced by perorally administered ultrafiltered pig leukocyte extract, IMUNOR.

    PubMed

    Vacek, Antonín; Hofer, Michal; Holá, Jirina; Weiterová, Lenka; Streitová, Denisa; Svoboda, Jaroslav

    2007-05-01

    IMUNOR, a low-molecular weight (< 12 kD) ultrafiltered pig leukocyte extract, has been previously found to have significant stimulatory effects on murine hematopoiesis supressed by ionizing radiation or cytotoxic drugs. This communication shows data on the mechanisms of these effects. Using ELISA assay, significantly increased levels of granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed. On the contrary, no detectable levels of granulocyte-macrophage colony-stimulating factor (GM-CFC) and interleukin-3 (IL-3) have been found in blood serum of IMUNOR-treated mice. Incubation of the serum from IMUNOR-treated mice with antibodies against G-CSF caused abrogation of the ability of the sera to stimulate in vitro growth of colonies originating from granulocyte-macrophage progenitor cells (GM-CFC). In contrast, incubation of the serum with antibodies against IL-6 did not change its colony-stimulating activity. It may be inferred from these findings that G-CSF is probably the main cytokine responsible for the granulopoiesis-stimulating effects of IMUNOR. When the serum from IMUNOR-treated mice with G-CSF inactivated by anti-G-CSF antibodies (but with elevated IL-6) was added to cultures of bone marrow cells together with a suboptimum concentration of IL-3, a significant increase in the numbers of GM-CFC colonies was found. Moreover, conjoint inactivation of G-CSF and IL-6 significantly decreased the numbers of GM-CFC colonies in comparison with those observed when only G-CSF was inactivated. This observation strongly suggests that though IMUNOR-induced IL-6 is not able to induce the growth of GM-CFC colonies alone, it is able to potentiate the hematopoiesis-stimulating effect of IL-3. These findings represent a new knowledge concerning the hematopoiesis-stimulating action of IMUNOR, a promising immunomodulatory agent.

  6. Combined administration of G-CSF and GM-CSF stimulates monocyte-derived pro-angiogenic cells in patients with acute myocardial infarction.

    PubMed

    Bruno, Stefania; Bussolati, Benedetta; Scacciatella, Paolo; Marra, Sebastiano; Sanavio, Fiorella; Tarella, Corrado; Camussi, Giovanni

    2006-04-01

    Mobilization of endothelial progenitor cells has been suggested to contribute to neo-vascularization of ischemic organs. Aim of this study was to investigate whether the combination of granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF may influence the expansion of circulating KDR+ cells in patients with acute myocardial infarction (AMI). KDR+ cells significantly increased in peripheral blood of AMI patients treated with G-CSF and GM-CSF compared to untreated patients. This KDR+ cells population was CD14+ but not CD34+ or CD133+. CD14+/KDR+ cells were also obtained in vitro by culturing mononuclear cells from healthy donors in a Rotary Cell Culture System in the presence of G-CSF + GM-CSF, but not of the individual growth factors. CD14+/KDR+ cells, obtained from patients or from in vitro culture, co-expressed hematopoietic (CD45, CD14) and endothelial markers (CD31, CD105, and VE-cadherin). CD14+/KDR+, but not CD14+/KDR- cells, stimulated the organization of human microvascular endothelial cells into capillary-like structures on Matrigel both in vitro and in vivo. The combination of G-CSF and GM-CSF induced a CD14+/KDR+ cell population with potential pro-angiogenic properties.

  7. Phorbol ester-treated human acute myeloid leukemia cells secrete G-CSF, GM-CSF and erythroid differentiation factor into serum-free media in primary culture.

    PubMed

    Scher, W; Eto, Y; Ejima, D; Den, T; Svet-Moldavsky, I A

    1990-12-10

    Upon treatment with the phorbol ester, tetradecanoylphorbol 13-acetate (PMA), peripheral mononuclear blood cells from patients with acute myeloid leukemia secrete into serum-free cell-conditioned media (PMA-CCM) at least three distinct nondialysable 'hematopoietic' factors: granulocyte-colony-stimulating factor (G-CSF), granulocyte/macrophage-colony-stimulating factor (GM-CSF) and erythroid differentiation factor (EDF, activin A). G-CSF was identified by its stimulation of [3H]thymidine incorporation into a G-CSF-responsive cell line, NSF-60, and the inhibition of its stimulation by a G-CSF-specific monoclonal antibody (MAB). GM-CSF was identified by its stimulation of [3H]thymidine incorporation into a GM-CSF-responsive line, TALL-101, and the inhibition of its stimulation by a GM-CSF-specific MAB. EDF was identified by its ability to stimulate erythroid differentiation in mouse erythroleukemia cell lines, its identical retention times to those of authentic EDF on three successive reverse-phase HPLC columns and characterization of its penultimate N-terminal residue as leucine which is the same as that of authentic EDF. Both authentic EDF and the erythroid-stimulating activity in PMA-CCM were found to act synergistically with a suboptimal inducing concentration of a well-studied inducing agent, dimethyl sulfoxide, in inducing erythroid differentiation. In addition, a fourth activity was observed in PMA-CCM: normal human fetal bone marrow cell-proliferation stimulating activity (FBMC-PSA). FBMC-PSA was identified by its ability to stimulate the growth of granulocytes and macrophages in FBMC suspension cultures, which neither recombinant G-CSF or GM-CSF were found to do.

  8. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production.

    PubMed

    Chafe, Shawn C; Lou, Yuanmei; Sceneay, Jaclyn; Vallejo, Marylou; Hamilton, Melisa J; McDonald, Paul C; Bennewith, Kevin L; Möller, Andreas; Dedhar, Shoukat

    2015-03-15

    The mobilization of bone marrow-derived cells (BMDC) to distant tissues before the arrival of disseminated tumor cells has been shown preclinically to facilitate metastasis through the establishment of metastatic niches. Primary tumor hypoxia has been demonstrated to play a pivotal role in the production of chemokines and cytokines responsible for the mobilization of these BMDCs, especially in breast cancer. Carbonic anhydrase IX (CAIX, CA9) expression is highly upregulated in hypoxic breast cancer cells through the action of hypoxia-inducible factor-1 (HIF1). Preclinical evidence has demonstrated that CAIX is required for breast tumor growth and metastasis; however, the mechanism by which CAIX exerts its prometastatic function is not well understood. Here, we show that CAIX is indispensable for the production of granulocyte colony-stimulating factor (G-CSF) by hypoxic breast cancer cells and tumors in an orthotopic model. Furthermore, we demonstrate that tumor-expressed CAIX is required for the G-CSF-driven mobilization of granulocytic myeloid-derived suppressor cells (MDSC) to the breast cancer lung metastatic niche. We also determined that CAIX expression is required for the activation of NF-κB in hypoxic breast cancer cells and constitutive activation of the NF-κB pathway in CAIX-depleted cells restored G-CSF secretion. Together, these findings identify a novel hypoxia-induced CAIX-NF-κB-G-CSF cellular signaling axis culminating in the mobilization of granulocytic MDSCs to the breast cancer lung metastatic niche.

  9. Progressive inactivation of the expression of an erythroid transcriptional factor in GM- and G-CSF-dependent myeloid cell lines.

    PubMed Central

    Crotta, S; Nicolis, S; Ronchi, A; Ottolenghi, S; Ruzzi, L; Shimada, Y; Migliaccio, A R; Migliaccio, G

    1990-01-01

    The transcriptional binding protein NFE-1 (also called GF-1 and Ery-f1) is thought to play a necessary, but not sufficient, role in the regulation of differentiation-related gene expression in a subset of hematopoietic lineages (erythroid, megakaryocytic, and basophil-mast cell). In order to clarify the mechanism which underlies the lineage-specificity of the NFE-1 expression, as well as the relationship between the expression of this factor and growth factor responsiveness, we have evaluated the capacity of erythropoietin (Epo)-, granulomonocytic (GM)-colony stimulating factor (CSF)-, and granulocyte (G)-CSF-dependent subclones derived from the interleukin 3 (IL-3)-dependent cell line 32D, to express 1) NFE-1 mRNA, 2) NFE-1-related nuclear proteins, and 3) chloramphenicol acetyl transferase (CAT) activity when transfected with a CAT gene under the control of NFE-1 cognate sequences. NFE-1 mRNA was found to be expressed not only in cells with mast cell (IL-3-dependent 32D) and erythroid (Epo-dependent 32D Epo1) phenotypes, but also in cells with predominantly granulocyte/macrophage properties, such as the GM-CSF- (early myelomonocytic) and G-CSF- (myelocytic) dependent subclones of 32D. However, a gradient of expression, correlating with the lineage, the stage of differentiation, and the growth factor responsiveness of the cell lines, was found among the different subclones: Epo greater than or equal to IL-3 greater than GM-CSF greater than G-CSF. Binding experiments demonstrated NFE-1 activity in all cell lines except the G-CSF-dependent line. Function of the NFE-1 protein was assessed by the expression of the CAT gene linked to the SV40 promoter and a mutant (-175 T----C) HPFH gamma-globin promoter. High level CAT expression was seen only in the Epo1 cells although low level expression was also seen in the parent 32D. These results demonstrate that the specificity of the expression of NFE-1 for the erythroid--megakaryocytic--mast cell lineages is obtained by

  10. Transfusion-related acute lung injury (TRALI) induced by donor-derived anti-HLA antibodies in aplastic anemia: possible priming effect of granulocyte-colony stimulating factor (G-CSF) on the recipient neutrophils.

    PubMed

    Hishizawa, Masakatsu; Mitsuhashi, Ryuichi; Ohno, Tatsuharu

    2009-01-01

    Transfusion-related acute lung injury (TRALI) is currently the leading cause of transfusion-related death. A 67-year-old man with severe aplastic anemia developed TRALI, consisting of acute respiratory insufficiency with severe hypoxia and diffuse pulmonary infiltration 2 hours after the transfusion of platelet concentrates. Although he required intensive respiratory support, he promptly recovered within 4 days. The presence of anti-HLA antibody (anti-HLA B52) in the donated blood product was demonstrated, and a lymphocytotoxicity test disclosed antibody-mediated cytotoxicity against the patient's cells. Furthermore, administration of granulocyte-colony stimulating factor was suggested to predispose the patient to TRALI by priming the neutrophils.

  11. Do two different stem cell grafts: G-CSF stimulated and unstimulated bone marrow differ according to hematopoietic colony forming capacity?

    PubMed

    Özgüner, Meltem; Azık, Mehmet Fatih; Tavil, Betül; Bozkaya, Ikbal; Köksal, Yasin; Canal, Elif; Uçkan, Duygu; Tunç, Bahattin

    2014-06-01

    The study was designed to compare colony forming capacity of granulocyte-colony stimulating factor (G-CSF) stimulated bone marrow (G-BM) with standard unstimulated bone marrow (U-BM) of healthy donors of pediatric patients. CFU-Assay results of 26 healthy donors of pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) were analyzed retrospectively. 13 of donors received 10 μg/kg per day of G-CSF as a single injection for 3 consecutive days and other 13 of donors had unstimulated BM. Colony forming capacity of hematopoietic stem cells evaluated with Colony Forming Unit-Assay (CFU-Assay) with in semi-solid agar culture medium after 14-18 days of culture period. CFU-Assay results of G-BM and U-BM (expressed as means) were; Burst Forming Unit-Erythroid (BFU-E): 15.20 × 10(4)/kg and 8.38 × 10(4)/kg, Colony Forming Unit-Granulocyte Macrophage (CFU-GM): 10.35 × 10(4)/kg and 5.67 × 10(4)/kg, Colony Forming Unit-Erythroid (CFU-E): 0.59 × 10(4)/kg and 0.33 × 10(4)/kg, CFU-Granulocyte Erythroid Macrophage Megakaryocyte (CFU-GEMM): 0.52 × 10(4)/kg and 0.53 × 10(4)/kg respectively. BFU-E and CFU-GM capacity of G-BM was increased and statistically significantly different than standard U-BM (p ⩽ 0.01). In conclusion, increased colony forming capacity of hematopoietic stem cells of G-BM when compared with standard unstimulated BM could be a major advantage for transplantation.

  12. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  13. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  14. The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-CSF stimulates hematopoiesis and enhances survival from lethal total-body gamma-irradiation

    PubMed Central

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-01-01

    Purpose We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the Acute Radiation Syndrome (ARS), to enhance discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematological parameters and dynamics of cell loss/recovery following irradiation provide a convenient means to compare efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials Male Gottingen minipigs, 4–5 months old and weighing 9–11 kg were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen®, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body gamma-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results Results indicate G-CSF enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusion These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing numbers of circulating granulocytes. PMID:23845847

  15. Diabetes Limits Stem Cell Mobilization Following G-CSF but Not Plerixafor.

    PubMed

    Fadini, Gian Paolo; Fiala, Mark; Cappellari, Roberta; Danna, Marianna; Park, Soo; Poncina, Nicol; Menegazzo, Lisa; Albiero, Mattia; DiPersio, John; Stockerl-Goldstein, Keith; Avogaro, Angelo

    2015-08-01

    Previous studies suggest that diabetes impairs hematopoietic stem cell (HSC) mobilization in response to granulocyte colony-stimulating factor (G-CSF). In this study, we tested whether the CXCR4 antagonist plerixafor, differently from G-CSF, is effective in mobilizing HSCs in patients with diabetes. In a prospective study, individuals with and without diabetes (n = 10/group) were administered plerixafor to compare CD34(+) HSC mobilization; plerixafor was equally able to mobilize CD34(+) HSCs in the two groups, whereas in historical data, G-CSF was less effective in patients with diabetes. In a retrospective autologous transplantation study conducted on 706 patients, diabetes was associated with poorer mobilization in patients who received G-CSF with/without chemotherapy, whereas it was not in patients who received G-CSF plus plerixafor. Similarly in an allogeneic transplantation study (n = 335), diabetes was associated with poorer mobilization in patients who received G-CSF. Patients with diabetes who received G-CSF without plerixafor had a lower probability of reaching >50/μL CD34(+) HSCs, independent from confounding variables. In conclusion, diabetes negatively impacted HSC mobilization after G-CSF with or without chemotherapy but had no effect on mobilization induced by G-CSF with plerixafor. This finding has major implications for the care of patients with diabetes undergoing stem cell mobilization and transplantation and for the vascular regenerative potential of bone marrow stem cells.

  16. G-CSF attenuates noise-induced hearing loss.

    PubMed

    Shi, Ze-tao; Lin, Ying; Wang, Jie; Wu, Jin; Wang, Ren-feng; Chen, Fu-quan; Mi, Wen-juan; Qiu, Jian-hua

    2014-03-06

    In this study, we investigated the effects of granulocyte colony-stimulating factor (G-CSF) for the treatment of noise-induced hearing loss (NIHL) in a guinea pig model. Forty guinea pigs were randomly divided into four groups: control, noise (white noise, 3 h/d for 2 days at 115 dB), noise+G-CSF (350 μg/kg/d for 5 days), and noise+saline. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were used to determine the hearing threshold and outer hair cell function, respectively, in each group. Cochlear morphology was examined to evaluate hair cell injury induced by intense noise exposure. Fourteen days after noise exposure, the noise+G-CSF group had a lower ABR value than the noise group (P<0.05) or the noise+saline group (P<0.01). At most frequencies, the DPOAE value of the noise+G-CSF group showed a significant rise (P<0.05) compared to the noise group or the noise+saline group. Neither the ABR value nor the DPOAE value differed between the noise group and the noise+saline group. The morphology of the phalloidin-stained organ of Corti was consistent with the functional measurements. In conclusion, G-CSF can preserve hearing in an experimental model of NIHL in guinea pigs, by preserving hair cells after intense noise exposure.

  17. Stem Cell Mobilization with G-CSF versus Cyclophosphamide plus G-CSF in Mexican Children

    PubMed Central

    Meraz, José Eugenio Vázquez; Arellano-Galindo, José; Avalos, Armando Martínez; Mendoza-García, Emma; Jiménez-Hernández, Elva

    2016-01-01

    Fifty-six aphaereses were performed in 23 pediatric patients with malignant hematological and solid tumors, following three different protocols for PBPC mobilization and distributed as follows: A: seventeen mobilized with 4 g/m2 of cyclophosphamide (CFA) and 10 μg/kg/day of granulocyte colony stimulating factor (G-CSF), B: nineteen with CFA + G-CSF, and C: twenty only with G-CSF when the WBC count exceeded 10 × 109/L. The average number of MNC/kg body weight (BW)/aphaeresis was 0.4 × 108 (0.1–1.4), 2.25 × 108 (0.56–6.28), and 1.02 × 108 (0.34–2.5) whereas the average number of CD34+ cells/kg BW/aphaeresis was 0.18 × 106/kg (0.09–0.34), 1.04 × 106 (0.19–9.3), and 0.59 × 106 (0.17–0.87) and the count of CFU/kg BW/aphaeresis was 1.11 × 105 (0.31–2.12), 1.16 × 105 (0.64–2.97), and 1.12 × 105 (0.3–6.63) in groups A, B, and C, respectively. The collection was better in group B versus group A (p = 0.007 and p = 0.05, resp.) and in group C versus group A (p = 0.08 and p = 0.05, resp.). The collection of PBPCs was more effective in the group mobilized with CFM + G-CSF when the WBC exceeded 10 × 103/μL in terms of MNC and CD34+ cells and there was no toxicity of the chemotherapy. PMID:26880960

  18. Stem Cell Mobilization with G-CSF versus Cyclophosphamide plus G-CSF in Mexican Children.

    PubMed

    Meraz, José Eugenio Vázquez; Arellano-Galindo, José; Avalos, Armando Martínez; Mendoza-García, Emma; Jiménez-Hernández, Elva

    2016-01-01

    Fifty-six aphaereses were performed in 23 pediatric patients with malignant hematological and solid tumors, following three different protocols for PBPC mobilization and distributed as follows: A: seventeen mobilized with 4 g/m(2) of cyclophosphamide (CFA) and 10 μg/kg/day of granulocyte colony stimulating factor (G-CSF), B: nineteen with CFA + G-CSF, and C: twenty only with G-CSF when the WBC count exceeded 10 × 10(9)/L. The average number of MNC/kg body weight (BW)/aphaeresis was 0.4 × 10(8) (0.1-1.4), 2.25 × 10(8) (0.56-6.28), and 1.02 × 10(8) (0.34-2.5) whereas the average number of CD34+ cells/kg BW/aphaeresis was 0.18 × 10(6)/kg (0.09-0.34), 1.04 × 10(6) (0.19-9.3), and 0.59 × 10(6) (0.17-0.87) and the count of CFU/kg BW/aphaeresis was 1.11 × 10(5) (0.31-2.12), 1.16 × 10(5) (0.64-2.97), and 1.12 × 10(5) (0.3-6.63) in groups A, B, and C, respectively. The collection was better in group B versus group A (p = 0.007 and p = 0.05, resp.) and in group C versus group A (p = 0.08 and p = 0.05, resp.). The collection of PBPCs was more effective in the group mobilized with CFM + G-CSF when the WBC exceeded 10 × 10(3)/μL in terms of MNC and CD34+ cells and there was no toxicity of the chemotherapy.

  19. Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients

    PubMed Central

    Shin, Yoon-Kyum; Cho, Sung-Rae

    2016-01-01

    Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34+ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. PMID:27043535

  20. Heme oxygenase-1 induction contributes to renoprotection by G-CSF during rhabdomyolysis-associated acute kidney injury.

    PubMed

    Wei, Qingqing; Hill, William D; Su, Yunchao; Huang, Shuang; Dong, Zheng

    2011-07-01

    Granulocyte colony-stimulating factor (G-CSF) is renoprotective during acute kidney injury (AKI) induced by ischemia and cisplatin nephrotoxicity; however, the underlying mechanism is not entirely clear. Rhabdomyolysis is another important clinical cause of AKI, due to the release of nephrotoxins (e.g., heme) from disrupted muscles. The current study has determined the effects of G-CSF on rhabdomyolysis-associated AKI using in vivo and in vitro models. In C57BL/6 mice, intramuscular injection of glycerol induced AKI, which was partially prevented by G-CSF pretreatment. Consistently, glycerol-induced renal tissue damage was ameliorated by G-CSF. In addition, animal survival following the glycerol injection was improved from ∼30 to ∼70% by G-CSF. In cultured renal tubular cells, hemin-induced apoptosis was also suppressed by G-CSF. Interestingly, G-CSF induced heme oxygenase-1 (HO-1, a critical enzyme for heme/hemin degradation and detoxification) in both cultured tubular cells and mouse kidneys. Blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) could largely diminish the protective effects of G-CSF. Together, these results demonstrated the renoprotective effects of G-CSF in rhabdomyolysis-associated AKI. Notably, G-CSF may directly protect against tubular cell injury under the disease condition by inducing HO-1.

  1. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation.

    PubMed

    Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon

    2014-01-01

    The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen (®) ) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF.

  2. G-CSF induces stabilization of ETS protein Fli-1 during myeloid cell development.

    PubMed

    Mora-Garcia, Patricia; Wei, Jolyn; Sakamoto, Kathleen M

    2005-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a growth factor that regulates the production and function of neutrophils. G-CSF has been used to treat neutropenia in neonates, pediatric cancer patients, and patients undergoing stem cell transplantation. The regulation of transcription factors mediating G-CSF activity has not been well characterized. The goal of this study was to examine the regulation of the ETS binding protein, Friend leukemia integration site 1 (Fli-1), in myeloid cells treated with G-CSF. Fli-1 has oncogenic properties in humans and mice, and plays a role in vascular and hematopoietic cell development. We previously reported that Fli-1 and the serum response factor bind at adjacent sites within the serum response element-1 of the early growth response gene-1 promoter in the murine myeloid leukemic cell line, NFS60. We also identified that Fli-1 DNA binding increased in G-CSF-treated cells compared with untreated cells. To determine whether the change in binding activity is due to increased Fli-1 transcription or protein stability, we examined endogenous Fli-1 expression in G-CSF-treated or -untreated NFS60 cells. Our results demonstrated that levels of Fli-1 protein, but not RNA, were higher in extracts from cells treated with G-CSF. The increase in Fli-1 protein was also dependent on protein synthesis. Finally, we showed that the half-life of Fli-1 is prolonged in G-CSF-treated cells compared with control-treated cells. These results suggest that G-CSF induces stabilization of Fli-1 protein in myeloid cells, thus proposing a novel mechanism by which hematopoietic growth factors regulate transcription factors.

  3. G-CSF displays restricted ability to promote Sca-1(+) cardiac stem cell proliferation in vitro.

    PubMed

    Luo, Haijian; Bassi, Giulio; Tessari, Maddalena; Yang, Zhenyu; Faggian, Giuseppe

    2014-12-01

    Granulocyte colony-stimulating factor (G-CSF) is a controversial chemical in cardiac cell therapy. Myocardial homing of mobilized bone marrow-derived cells is thought to play a critical role in observed G-CSF-induced cardiac repair; meanwhile, the activation of proliferative potential of cardiac stem cells (CSCs) residing in the heart is a significant challenge. The present study aims to investigate whether G-CSF receptor is expressed in adult resident Sca-1(+) CSCs and determine the effect of G-CSF treatment on the proliferation of CSCs. For cardiac cells isolation, 12-week-old male C57BL/6 mice were anesthetized in a chamber containing 2.5% isoflurane in oxygen, euthanized by CO2 inhalation and then sacrificed by cervical dislocation. Magnetic-activated cell sorting was employed to acquire highly purified Sca-1(+) CSCs. We found that G-CSF receptor was expressed in adult resident Sca-1(+) CSCs by immunofluorescence staining and Western blotting. Exposure of Sca-1(+) cells to G-CSF in the culture medium for 72 h induced time-dependent but self-limiting cell cycle acceleration with a restricted effect on the CSC proliferation. As a result, it has provided a new insight to focus on the association between cardiac G-CSF therapy and adult resident stem cell activation. It may suggest gaining a deeper insight into the mechanisms of the interaction between CSCs and G-CSF to develop a synergistic strategy based on resident stem cell and G-CSF therapy for heart disease.

  4. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    PubMed Central

    2011-01-01

    Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646

  5. Repairing the Brain by SCF+G-CSF Treatment at 6 Months Postexperimental Stroke

    PubMed Central

    Cui, Lili; Wang, Dandan; McGillis, Sandra; Kyle, Michele

    2016-01-01

    Stroke, a leading cause of adult disability in the world, is a severe medical condition with limited treatment. Physical therapy, the only treatment available for stroke rehabilitation, appears to be effective within 6 months post-stroke. Here, we have mechanistically determined the efficacy of combined two hematopoietic growth factors, stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF; SCF + G-CSF), in brain repair 6 months after cortical infarct induction in the transgenic mice carrying yellow fluorescent protein in Layer V pyramidal neurons (Thy1-YFP-H). Using a combination of live brain imaging, whole brain imaging, molecular manipulation, synaptic and vascular assessments, and motor function examination, we found that SCF + G-CSF promoted mushroom spine formation, enlarged postsynaptic membrane size, and increased postsynaptic density-95 accumulation and blood vessel density in the peri-infarct cavity cortex; and that SCF + G-CSF treatment improved motor functional recovery. The SCF + G-CSF-enhanced motor functional recovery was dependent on the synaptic and vascular regeneration in the peri-infarct cavity cortex. These data suggest that a stroke-damaged brain is repairable by SCF + G-CSF even 6 months after the lesion occurs. This study provides novel insights into the development of new restorative strategies for stroke recovery. PMID:27511907

  6. PBSC mobilization in lymphoma patients: analysis of risk factors for collection failure and development of a predictive score based on the kinetics of circulating CD34+ cells and WBC after chemotherapy and G-CSF mobilization.

    PubMed

    Rossi, Giuseppe; Skert, Cristina; Morello, Enrico; Almici, Camillo; Arcaini, Luca; Basilico, Claudia; Cavalli, Lara; Botto, Barbara; Castelli, Andrea; Pica, Gianmatteo; Ripamonti, Francesco; Salvi, Flavia; Carella, Angelo M; Gaidano, Gianluca; Levis, Alessandro; Nosari, Annamaria; Russo, Domenico; Vitolo, Umberto

    2015-09-01

    Autologous stem cell transplantation (ASCT) is a potentially curative treatment of lymphoma, but peripheral blood stem cell (PBSC) mobilization fails in some patients. PBSC mobilizing agents have recently been proved to improve the PBSC yield after a prior mobilization failure. Predictive parameters of mobilization failure allowing for a preemptive, more cost-effective use of such agents during the first mobilization attempt are still poorly defined, particularly during mobilization with chemotherapy + granulocyte colony-stimulating factor (G-CSF). We performed a retrospective analysis of a series of lymphoma patients who were candidates for ASCT, to identify factors influencing PBSC mobilization outcome. Premobilization parameters-age, histology, disease status, mobilizing protocol, and previous treatments-as well as white blood cell (WBC) and PBSC kinetics, markers potentially able to predict failure during the ongoing mobilization attempt, were analyzed in 415 consecutive mobilization procedures in 388 patients. We used chemotherapy + G-CSF in 411 (99%) of mobilization attempts and PBSC collection failed (<2 × 10(6) CD34+ PBSC/kg) in 13%. Multivariable analysis showed that only a low CD34+ PBSC count and CD34+ PBSC/WBC ratio, together with the use of nonplatinum-containing chemotherapy, independently predicted mobilization failure. Using these three parameters, we established a scoring system to predict risk of failure during mobilization ranging from 2 to 90%, thus allowing a selective use of a preemptive mobilization policy.

  7. The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer.

    PubMed

    Kawano, Mahiru; Mabuchi, Seiji; Matsumoto, Yuri; Sasano, Tomoyuki; Takahashi, Ryoko; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Isobe, Aki; Sawada, Kenjiro; Hamasaki, Toshimitsu; Morii, Eiichi; Kimura, Tadashi

    2015-12-15

    Granulocyte-colony stimulating factor (G-CSF) producing malignant tumor has been reported to occur in various organs, and has been associated with poor clinical outcome. The aim of this study is to investigate the significance of tumor G-CSF expression in the chemosensitivity of uterine cervical cancer. The clinical data of recurrent or advanced cervical cancer patients who were treated with platinum-based chemotherapy were analyzed. Clinical samples, cervical cancer cell lines, and a mouse model of cervical cancer were employed to examine the mechanisms responsible for the development of chemoresistance in G-CSF-producing cervical cancer, focusing on myeloid-derived suppressor cells (MDSC). As a result, the tumor G-CSF expression was significantly associated with increased MDSC frequencies and compromised survival. In vitro and in vivo experiments demonstrated that the increased MDSC induced by tumor-derived G-CSF is involved in the development of chemoresistance. The depletion of MDSC via splenectomy or the administration of anti-Gr-1 antibody sensitized G-CSF-producing cervical cancer to cisplatin. In conclusion, tumor G-CSF expression is an indicator of an extremely poor prognosis in cervical cancer patients that are treated with chemotherapy. Combining MDSC-targeting treatments with current standard chemotherapies might have therapeutic efficacy as a treatment for G-CSF-producing cervical cancer.

  8. Systemic G-CSF treatment does not improve long-term outcomes after neonatal hypoxic-ischaemic brain injury.

    PubMed

    Schlager, G W; Griesmaier, E; Wegleiter, K; Neubauer, V; Urbanek, M; Kiechl-Kohlendorfer, U; Felderhoff-Mueser, U; Keller, M

    2011-07-01

    Hypoxia-ischaemia (HI) is a major factor in the pathogenesis of developmental brain injury, leading to cognitive deficits and motor disabilities in preterm infants. The haematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) has been shown to exert a neuroprotective activity in rodent models of ischaemic stroke and is currently subject to phase I/II clinical trials in adults. Results of studies examining the effect of G-CSF in perinatal brain damage have been contradictory. We have previously shown that G-CSF increases NMDAR-mediated excitotoxic brain injury in the neonatal mouse brain. In this study, we evaluated the effect of G-CSF on long-term outcomes after HI. On postnatal day 5, mice pubs were first randomly assigned to a sham operation or HI and then divided into four treatment groups: i) G-CSF; ii) phosphate buffered saline (PBS) 1h after injury; iii) G-CSF and iv) PBS 60 h after injury. G-CSF (200 μg/kg BW) was administered five times within a 24h interval. Neuromotor and cognitive outcomes were assessed by open-field, novel object recognition tests and rotarod tests starting on P90, with subsequent histological analyses of brain injury. G-CSF treatment did not improve either neurobehavioural outcomes or brain injuries. Interestingly, the application of PBS and G-CSF in the acute phase increased brain damage in the hippocampus. We could not confirm the neuroprotective properties of G-CSF in neonatal HI brain damage. The exacerbation of injury by the administration of substances in the acute phase might indicate a heightened state of neurological sensitivity that is specific to mechanisms of secondary neurodegeneration and influenced by unidentified external factors possibly associated with the treatment protocol during the acute phase. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."

  9. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis.

    PubMed

    Croker, Ben A; Metcalf, Donald; Robb, Lorraine; Wei, Wei; Mifsud, Sandra; DiRago, Ladina; Cluse, Leonie A; Sutherland, Kate D; Hartley, Lynne; Williams, Emily; Zhang, Jian-Guo; Hilton, Douglas J; Nicola, Nicos A; Alexander, Warren S; Roberts, Andrew W

    2004-02-01

    To determine the importance of suppressor of cytokine signaling-3 (SOCS3) in the regulation of hematopoietic growth factor signaling generally, and of G-CSF-induced cellular responses specifically, we created mice in which the Socs3 gene was deleted in all hematopoietic cells. Although normal until young adulthood, these mice then developed neutrophilia and a spectrum of inflammatory pathologies. When stimulated with G-CSF in vitro, SOCS3-deficient cells of the neutrophilic granulocyte lineage exhibited prolonged STAT3 activation and enhanced cellular responses to G-CSF, including an increase in cloning frequency, survival, and proliferative capacity. Consistent with the in vitro findings, mutant mice injected with G-CSF displayed enhanced neutrophilia, progenitor cell mobilization, and splenomegaly, but unexpectedly also developed inflammatory neutrophil infiltration into multiple tissues and consequent hind-leg paresis. We conclude that SOCS3 is a key negative regulator of G-CSF signaling in myeloid cells and that this is of particular significance during G-CSF-driven emergency granulopoiesis.

  10. G-CSF treatment promotes apoptosis of autoreactive T cells to restrict the inflammatory cascade and accelerate recovery in experimental allergic encephalomyelitis.

    PubMed

    Peng, Wei

    2017-03-01

    G-CSF is a hematopoietic growth factor that regulates the proliferation, differentiation and survival of myeloid lineage cells, which has protective effects in autoimmune neuroinflammatory diseases such as EAE. Here we use EAE model treated by G-CSF to address the hypothesis that G-CSF inhibits the proliferative response of splenic T cells via the enhancement of apoptosis, and this priming effect of G-CSF depends on the cell cycle. Our results show that G-CSF administration reduced EAE frequency and severity of attacks. The inflammatory cells and demyelination areas were decreased in the CNS of G-CSF-treated mice. G-CSF treatment altered cytokine profiles in vivo to inhibit the productions of IFN-γ, IL-1β, IL-2, TNF-α, IL-17 and NO, while the secretions of IL-4 and IL-10 were increased. Splenic T cells from G-CSF-treated mice showed significantly lower proliferative response to specific antigen MOG35-55 stimulation. G-CSF enhanced the percentage of a CD4(+)CD25(+) T cell subset in spleen T cells. Moreover, G-CSF promoted the G0/G1 to S phase transition of MOG35-55 autoreactive T cells inducing apoptosis and elevating Bax gene expression of apoptosis marker. These findings indicate that G-CSF treatment induces the apoptosis of MOG35-55 autoreactive T cells, which decreases the production of pro-inflammatory cytokines and NO, suppresses the proliferation of autoreactive T cells and elevates a CD4(+)CD25(+) T cell subset to inhibit inflammatory infiltration and demyelination within CNS of EAE. The conclusions of G-CSF treatment in EAE mice suggest that G-CSF is clinically applicable and may be considered for future use in therapeutic measures for multiple sclerosis treatment.

  11. G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle

    PubMed Central

    Wright, Craig R.; Brown, Erin L.; Della-Gatta, Paul A.; Ward, Alister C.; Lynch, Gordon S.; Russell, Aaron P.

    2014-01-01

    Granulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways. Expression of the G-CSFR within the haematopoietic system is well known, but more recently it has been demonstrated to be expressed in other tissues. However, comprehensive characterization of G-CSFR expression in healthy and diseased skeletal muscle, imperative before implementing G-CSF as a therapeutic agent for skeletal muscle conditions, has been lacking. Here we show that the G-CSFR is expressed in proliferating C2C12 myoblasts, differentiated C2C12 myotubes, human primary skeletal muscle cell cultures and in mouse and human skeletal muscle. In mdx mice, a model of human Duchenne muscular dystrophy (DMD), G-CSF mRNA and protein was down-regulated in limb and diaphragm muscle, but circulating G-CSF ligand levels were elevated. G-CSFR mRNA in the muscles of mdx mice was up-regulated however steady-state levels of the protein were down-regulated. We show that G-CSF does not influence C2C12 myoblast proliferation, differentiation or phosphorylation of Akt, STAT3, and Erk1/2. Media change alone was sufficient to elicit increases in Akt, STAT3, and Erk1/2 phosphorylation in C2C12 muscle cells and suggest previous observations showing a G-CSF increase in phosphoprotein signaling be viewed with caution. These results suggest that the actions of G-CSF may require the interaction with other cytokines and growth factors in vivo, however these data provides preliminary evidence supporting the investigation of G-CSF for the management of muscular dystrophy. PMID:24822049

  12. 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation-induced DNA Damage and Induces Genes that Modulate Cell Cycle Progression and Apoptosis

    DTIC Science & Technology

    2012-01-01

    pre-irradiation) radio- protectants and (post-irradiation) therapeutics, as recognized by civilian and military government agencies [2– 4 ]. 5-AED is...2012 4 . TITLE AND SUBTITLE 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces...control after 4 days, but not 8 days. The time course of plasma 5-AED after buccal de- livery (60 mg/kg) was similar, but levels were significantly lower

  13. G-CSF improves CUMS-induced depressive behaviors through downregulating Ras/ERK/MAPK signaling pathway.

    PubMed

    Li, Hui; Linjuan-Li; Wang, Yaping

    2016-10-28

    Neuronal plasticity in hippocampal neurons is closely related to memory, mood and behavior as well as in the development of depression. Granulocyte colony-stimulating factor (G-CSF) can promote neuronal plasticity and enhance motor skills. However, the function of G-CSF in depression remains poorly understood. In this study, we explored the biological role and potential molecular mechanism of G-CSF on depression-like behaviors. Our results showed that G-CSF was significantly downregulated in the hippocampus of chronic unexpected mild stress (CUMS) rats. Administration of G-CSF significantly reversed CUMS-induced depression-like behaviors in the open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST). Moreover, G-CSF upregulated the expression of synaptic-associated proteins including polysialylated form of neural cell adhesion molecule (PSA-NCAM), synaptophysin (SYN), and postsynaptic density protein 95 (PSD-95) in the hippocampus and G-CSF significantly increased cell viability rate of hippocampal neurons in vitro. Further studies indicated that the renin-angiotensin system (Ras)/extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathways was involved in the regulation of G-CSF on depressive-like behaviors and neuronal plasticity in CUMS rats. Taken together, our results showed that G-CSF improves depression-like behaviors via inhibiting Ras/ERK/MAPK signaling pathways. Our study suggests that G-CSF may be a promising therapeutic strategy for the treatment of depression.

  14. G-CSF for mobilizing transplanted bone marrow stem cells in rat model of Parkinson’s disease

    PubMed Central

    Safari, Manouchehr; Jafari, Behnaz; Zarbakhsh, Sam; Sameni, Hamidreza; Vafaei, Abbas Ali; Mohammadi, Nasrin Khan; Ghahari, Laya

    2016-01-01

    Objective(s):: Granulocyte-colony stimulating factor (G-CSF) is used in clinical practice for the treatment of neutropenia and to stimulate generation of hematopoietic stem cells in bone marrow donors. In the present study, the ability of G-CSF in mobilizing exogenous bone marrow stem cells (BMSCs) from peripheral blood into the brain was tested. We for the first time injected a small amount of BMSCs through the tail vein. Materials and Methods: We choose 25 male Wistar rats (200–250 g) were lesioned by 6-OHDA injected into the left substantia nigra, pars compacta (SNpc). G-CSF (70 µg/kg/day) was given from the 7th day after lesion for five days. The BMSCs (2×105) were injected through the dorsal tail vein on the 7th day after lesion. Results: The number of rotations was significantly lower in the stem cell therapy group than in the control group. In the third test in the received G-CSF and G-CSF+stem cells groups, animals displayed significant behavioral recovery compared with the control group (P<0.05). There was a significant difference in the average of dopaminergic neurons in SNpc between the control group and G-CSF and G-CS+stem cells groups. We didn’t detect any labeling stem cells in SNpc. Conclusion: G-CSF can’t mobilize low amounts of exogenous BMSCs from the blood stream to injured SNpc. But G-CSF (70 µg/kg) is more neuroprotective than BMSCs (2×105 number[w1] of BMSCs). Results of our study suggest that G-CSF alone is more neuroprotective than BMSCs. PMID:28096964

  15. Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke

    PubMed Central

    dela Peña, Ike; Borlongan, Cesar V.

    2015-01-01

    Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis and produce behavioral and functional improvement through their “bystander effects.” Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., cotransplantation of stem cells or adjunct treatment with pharmacological agents and substrates, which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments, and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of co-treatment with granulocyte-colony stimulating factor (G-CSF) and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here, we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of G-CSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells (EPCs) , as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment

  16. Potential use of G-CSF for protection against Streptococcus suis infection in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of immunomodulators is a promising alternative to the use of antibiotics for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. We developed a replication-defective adenovirus vector that expresses porcine granulocyte colony-stimulating factor (G-CSF) ...

  17. Reduced salmonella fecal shedding in swine administered porcine granulocyte-colony stimulating factor (G-CSF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella colonization of food animals is a concern for animal health, food safety and public health. Key objectives of pre-harvest food safety programs are to detect asymptomatic Salmonella carriage in food animals, reduce colonization, and prevent transmission of Salmonella to other animals and ...

  18. Comparison of outcomes after transplantation of G-CSF-stimulated bone marrow grafts versus bone marrow or peripheral blood grafts from HLA-matched sibling donors for patients with severe aplastic anemia.

    PubMed

    Chu, Roland; Brazauskas, Ruta; Kan, Fangyu; Bashey, Asad; Bredeson, Christopher; Camitta, Bruce; Chiang, Kuang-Yueh; Frangoul, Haydar; Gale, Robert Peter; Gee, Adrian; George, Biju; Goldman, Frederick D; Gross, Thomas G; Gupta, Vikas; Hale, Gregory A; Isola, Luis; Ispizua, Alvaro Urbano; Lazarus, Hillard; Marsh, Judith; Russell, James; Sabloff, Mitchell; Waller, Edmund K; Eapen, Mary

    2011-07-01

    We compared outcomes of patients with severe aplastic anemia (SAA) who received granulocyte-colony stimulating factor (G-CSF)-stimulated bone marrow (G-BM) (n = 78), unstimulated bone marrow (BM) (n = 547), or peripheral blood progenitor cells (PBPC) (n = 134) from an HLA-matched sibling. Transplantations occurred in 1997 to 2003. Rates of neutrophil and platelet recovery were not different among the 3 treatment groups. Grade 2-4 acute graft-versus-host disease (aGVHD) (relative risk [RR] = 0.82, P = .539), grade 3-4 aGVHD (RR = 0.74, P = .535), and chronic GVHD (cGVHD) (RR = 1.56, P = .229) were similar after G-BM and BM transplants. Grade 2-4 aGVHD (RR = 2.37, P = .012) but not grade 3-4 aGVHD (RR = 1.66, P = .323) and cGVHD (RR = 5.09, P < .001) were higher after PBPC transplants compared to G-BM. Grade 2-4 (RR = 2.90, P < .001), grade 3-4 (RR = 2.24, P = .009) aGVHD and cGVHD (RR = 3.26, P < .001) were higher after PBPC transplants compared to BM. Mortality risks were lower after transplantation of BM compared to G-BM (RR = 0.63, P = .05). These data suggest no advantage to using G-BM and the observed higher rates of aGVHD and cGVHD in PBPC recipients warrants cautious use of this graft source for SAA. Taken together, BM is the preferred graft for HLA-matched sibling transplants for SAA.

  19. Hematologic improvement in dogs with parvovirus infection treated with recombinant canine granulocyte-colony stimulating factor.

    PubMed

    Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T

    2010-08-01

    Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P < 0.05) in the 28 dogs treated with rcG-CSF compared to disease-matched dogs not treated with rcG-CSF. In addition, the mean duration of hospitalization was reduced (P = 0.01) in rcG-CSF treated dogs compared to untreated dogs. However, survival times were decreased in dogs treated with rcG-CSF compared to untreated dogs. These results suggest that treatment with rcG-CSF was effective in stimulating neutrophil recovery and shortening the duration of hospitalization in dogs with parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.

  20. G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2.

    PubMed

    Kawano, Yuko; Fukui, Chie; Shinohara, Masakazu; Wakahashi, Kanako; Ishii, Shinichi; Suzuki, Tomohide; Sato, Mari; Asada, Noboru; Kawano, Hiroki; Minagawa, Kentaro; Sada, Akiko; Furuyashiki, Tomoyuki; Uematsu, Satoshi; Akira, Shizuo; Uede, Toshimitsu; Narumiya, Shuh; Matsui, Toshimitsu; Katayama, Yoshio

    2017-02-02

    Granulocyte colony-stimulating factor (G-CSF) is widely used for peripheral blood stem/progenitor mobilization. G-CSF causes low-grade fever that is ameliorated by nonsteroidal anti-inflammatory drugs (NSAIDs), suggesting the activation of arachidonic acid (AA) cascade. How G-CSF regulated this reaction was assessed. G-CSF treatment in mice resulted in fever, which was canceled in prostaglandin E synthase (mPGES-1)-deficient mice. Mobilization efficiency was twice as high in chimeric mice lacking mPGES-1, specifically in hematopoietic cells, suggesting that prostaglandin E2 (PGE2) from hematopoietic cells modulated the bone marrow (BM) microenvironment. Neutrophils from steady-state BM constitutively expressed mPGES-1 and significantly enhanced PGE2 production in vitro by β-adrenergic stimulation, but not by G-CSF, which was inhibited by an NSAID. Although neutrophils expressed all β-adrenergic receptors, only β3-agonist induced this phenomenon. Liquid chromatography-tandem mass spectrometry traced β-agonist-induced PGE2 synthesis from exogenous deuterium-labeled AA. Spontaneous PGE2 production was highly efficient in Gr-1(high) neutrophils among BM cells from G-CSF-treated mice. In addition to these in vitro data, the in vivo depletion of Gr-1(high) neutrophils disrupted G-CSF-induced fever. Furthermore, sympathetic denervation eliminated both neutrophil priming for PGE2 production and fever during G-CSF treatment. Thus, sympathetic tone-primed BM neutrophils were identified as one of the major PGE2 producers. PGE2 upregulated osteopontin, specifically in preosteoblasts, to retain progenitors in the BM via EP4 receptor. Thus, the sympathetic nervous system regulated neutrophils as an indispensable PGE2 source to modulate BM microenvironment and body temperature. This study provided a novel mechanistic insight into the communication of the nervous system, BM niche components, and hematopoietic cells.

  1. [Effect of rhG-CSF on blood coagulation in beagles irradiated by 2.3 Gy neutron].

    PubMed

    Li, Ming; Han, Qin-Fang; Liu, Xiao-Lan; Xing, Shuang; Xiong, Guo-Lin; Xie, Ling; Zhao, Yan-Fang; Yu, Zu-Yin; Ding, Yi-Bo; Zhao, Zhen-Hu; Cong, Yu-Wen; Luo, Qing-Liang

    2010-12-01

    The aim of this study was to investigate the effect of recombinant human granulocyte stimulating factor (rhG-CSF) on blood coagulation of beagles irradiated by 2.3 Gy neutron so as to provide new therapy for blood coagulation disorder after neutron irradiation. 10 beagles were exposed to 2.3 Gy neutron, and then randomly assigned into supportive care group and rhG-CSF-treated group. The rhG-CSF-treated cohorts were injected subcutaneously with rhG-CSF (10 µg/kg·d) beginning at the day of exposure for 21 consecutive days. Peripheral blood platelet counts were examined once every two days. In vitro platelet aggregation test, thromboelastography and blood clotting tetrachoric tests were also performed. The results indicated that the blood clotting system of irradiated dogs was in hypercoagulable state in the early days after 2.3 Gy neutron irradiation, and became hypocoagulable at crisis later and were mainly on intrinsic coagulation pathway. Blood fibrinogen increased markedly during the course of disease, while platelet counts and aggregation function were decreased remarkably. rhG-CSF administered daily could correct hypercoagulable state induced by 2.3 Gy neutron irradiation at the early time post exposure, shortened the thromboplastin generation time and clotting formation, down-regulated the abnormal high fibrinogen in blood, and improved platelet aggregation function. It is concluded that rhG-CSF can improve coagulation disorders of irradiated dogs.

  2. The role of G-CSF in recurrent implantation failure: A randomized double blind placebo control trial

    PubMed Central

    Davari-tanha, Fatemeh; Shahrokh Tehraninejad, Ensieh; Ghazi, Mohadese; Shahraki, Zahra

    2016-01-01

    Background: Recurrent implantation failure (RIF) is the absence of implantation after three consecutive In Vitro Fertilization (IVF) cycles with transferring at least four good quality embryos in a minimum of three fresh or frozen cycles in a woman under 40 years. The definition and management of RIF is under constant scrutiny. Objective: To investigate the effects of Granulocyte colony stimulating factor (G-CSF) on RIF, pregnancy rate, abortion rate and implantation rates. Materials and Methods: A double blind placebo controlled randomized trial was conducted at two tertiary university based hospitals. One hundred patients with the history of RIF from December 2011 until January 2014 were recruited in the study. G-CSF 300µg/1ml was administered at the day of oocyte puncture or day of progesterone administration of FET cycle. Forty patients were recruited at G-CSF group, 40 in saline and 20 in placebo group. Results: The mean age for whole study group was 35.3±4.2 yrs (G-CSF 35.5±4.32, saline 35.3±3.98, placebo 35.4±4.01, respectively). Seventeen patients had a positive pregnancy test after embryo transfer [10 (25%) in G-CSF; 5 (12.5%) in saline; and 2 (10%) in placebo group]. The mean of abortion rates was 17.6% (3), two of them in G-CSF, one in saline group. The implantation rate was 12.3% in G-CSF, 6.1% in saline and 4.7% in placebo group. Conclusion: G-CSF may increase chemical pregnancy and implantation rate in patients with recurrent implantation failure but clinical pregnancy rate and abortion rate was unaffected. PMID:28066833

  3. Treatment of leg ischemia with biodegradable gelatin hydrogel microspheres incorporating granulocyte colony-stimulating factor.

    PubMed

    Kawamura, Itta; Takemura, Genzou; Tsujimoto, Akiko; Watanabe, Takatomo; Kanamori, Hiromitsu; Esaki, Masayasu; Kobayashi, Hiroyuki; Takeyama, Toshiaki; Kawaguchi, Tomonori; Goto, Kazuko; Maruyama, Rumi; Fujiwara, Takako; Fujiwara, Hisayoshi; Tabata, Yasuhiko; Minatoguchi, Shinya

    2011-04-01

    Granulocyte colony-stimulating factor (G-CSF) is a potent angiogenic factor. We hypothesized that G-CSF-immersed gelatin hydrogel microspheres (G-CSF-GHMs) injected into the ischemic legs might continuously release a small amount of G-CSF to locally stimulate angiogenesis without unfavorable systemic effects. Just after ligation of the right femoral artery of BALB/c mice, recombinant human G-CSF (100-μg/kg)-immersed GHM was injected into the right hindlimb muscles; the controls included a saline-injected group, an intramuscularly injected G-CSF group, a subcutaneously injected G-CSG group, and an empty GHM-injected group. Eight weeks later, improvement of blood perfusion to the ischemic limb was significantly augmented in the G-CSF-GHM group compared with any of the control groups. Despite there being no increase in the serum concentration of G-CSF, in peripheral granulocytes, or in circulating endothelial progenitor cells, not only capillary but also arteriolar density was significantly increased in this group. Next, we started treatment with G-CSF-GHM 4 weeks after ligation to examine whether the treatment is effective if performed during the chronic stage of ischemia. The late treatment was also found to effectively improve blood flow in the ischemic leg. In conclusion, G-CSF-GHM administration is suggested to be a promising and readily usable approach to treating peripheral artery disease, applicable even during the chronic stage.

  4. Filgrastim (G-CSF) loaded liposomes: mathematical modeling and optimization of encapsulation efficiency and particle size

    PubMed Central

    Kiafar, Farhad; Siahi Shadbad, Mohammad Reza; Valizadeh, Hadi

    2016-01-01

    Introduction: Optimization of filgrastim (G-CSF) (granulocyte colony stimulating factor) liposomes formulation prepared by the method of film hydration was the aim of this research. Methods: To study the independent variables effects in the development of filgrastim (G-CSF) liposomes, method of factorial design was applied. The molar ratio of dipalmitoyl phophatidylcholine (DPPC) per cholesterol (Chol.) and hydration time were chosen as two independent factors. The dependent variables were encapsulation efficiency percent (EE %) and particle size (PS). Ultrafiltration method was applied for separation of un-encapsulated protein. RP-HPLC method was employed for analysis of G-CSF. Results: Application of response surface methodology (RSM) in formulation of filgrastim liposomes and the obtained results for responses including particle size and EE % showed that the main effective independent variable was DPPC/Chol molar ratio. Different impacts of influencing parameters including interaction and individual effects were checked employing a mathematical method for obtaining desired liposomes. Optimum liposomal formulations were established using this method for enhancing their characteristics. Average percent errors (APEs) were 3.86% and 3.27% for predicting EE % and PS, respectively which reflect high model ability in this regard. Conclusion: It is concluded that observed and predicted values regarding PS and EE % were consistent and this model is efficient enough in prediction of the mentioned characteristics while preparing filgrastim (G-CSF) liposomes. PMID:28265535

  5. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD+-sirtuin-1-dependent pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia....

  6. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling.

    PubMed

    Bajrami, Besnik; Zhu, Haiyan; Kwak, Hyun-Jeong; Mondal, Subhanjan; Hou, Qingming; Geng, Guangfeng; Karatepe, Kutay; Zhang, Yu C; Nombela-Arrieta, César; Park, Shin-Young; Loison, Fabien; Sakai, Jiro; Xu, Yuanfu; Silberstein, Leslie E; Luo, Hongbo R

    2016-09-19

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation.

  7. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    PubMed Central

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  8. G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancers.

    PubMed

    Li, Wenbin; Zhang, Xinghua; Chen, Yongkang; Xie, Yibin; Liu, Jiancheng; Feng, Qiang; Wang, Yi; Yuan, Wei; Ma, Jie

    2016-02-01

    Granulocyte colony-stimulating factor (G-CSF) is an essential regulator of neutrophil trafficking and is highly expressed in multiple tumors. Myeloid derived suppressor cells (MDSCs) promote neoplastic progression through multiple mechanisms by immune suppression. Despite the findings of G-CSF function in colon cancer progression, the precise mechanism of G-CSF on MDSCs regulation and its blockade effects on tumor growth remains a worthy area of investigation. In this study we observed an overexpression of G-CSF in a mouse colitis-associated cancer (CAC) model, which was consistent with the accumulation of MDSCs in mouse colon tissues. Further in vitro studies demonstrated that G-CSF could promote MDSCs survival and activation through signal transducer and activator of transcription 3 (STAT3) signaling pathway. Moreover, compared with isotype control, anti-G-CSF mAb treatment demonstrated reduced MDSC accumulation, which led to a marked decrease in neoplasm size and number in mice. Our results indicated that G-CSF is a critical regulating molecule in the migration, proliferation and function maintenance of MDSCs, which could be a potential therapeutic target for colitis-associated cancer.

  9. G-CSF Analogue Treatment Increases Peripheral Neutrophil Numbers in Pigs - a Potential Alternative for In-Feed Antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunomodulators is a promising area for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease during periods of peak disease incidence. Granulocyte colony-stimulating factor (G-CSF) enhances neutrophil production and release from the bone marrow and is already li...

  10. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Karaman, Sinem; Schwager, Simon; Lisibach, Angela; Christiansen, Ailsa J.; Maksimow, Mikael; Varga, Zsuzsanna; Jalkanen, Sirpa; Detmar, Michael

    2016-01-01

    ABSTRACT Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called “gate-keeper” subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression. PMID:27141367

  11. G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration.

    PubMed

    Frost, Hanna K; Kodama, Akira; Ekström, Per; Dahlin, Lars B

    2016-10-15

    Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. There was no difference in axonal outgrowth between G-CSF-treated and non-treated rats, regardless if healthy Wistar or diabetic Goto-Kakizaki (GK) rats were examined. However, G-CSF treatment caused a significant 13% decrease of cleaved caspase 3-positive Schwann cells at the lesion site in healthy rats, but only a trend in diabetic rats. In the distal nerve segments of healthy rats a similar trend was observed. In long-term experiments of healthy rats, regeneration outcome was evaluated at 90days after repair by presence of neurofilaments, wet weight of gastrocnemius muscle, and perception of touch (von Frey monofilament testing weekly). The presence of neurofilaments distal to the suture line was similar in G-CSF-treated and non-treated rats. The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery.

  12. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages.

    PubMed

    Meshkibaf, Shahab; Martins, Andrew J; Henry, Garth T; Kim, Sung Ouk

    2016-02-01

    Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine.

  13. Effect of thrombopoietin and granulocyte colony-stimulating factor on platelets and polymorphonuclear leukocytes.

    PubMed

    Schattner, M; Pozner, R G; Gorostizaga, A B; Lazzari, M A

    2000-07-15

    Thrombopoietin (TPO) and granulocyte colony-stimulating factor (G-CSF) may be administered together in aplastic patients. We evaluated the effect of both cytokines alone or combined on platelets and polymorphonuclear leukocytes (PMN) functional responses. TPO, G-CSF, or the combination of both cytokines, induced neither platelet nor PMN activation. TPO but not G-CSF synergized with threshold ADP concentrations to induce maximal aggregation and ATP release. The synergistic effect of TPO with ADP was not modified by the presence of G-CSF. Flow cytometry studies have shown that thrombin-induced loss of GPIb from platelet surface was significantly increased by pretreatment of platelets with TPO, G-CSF, or both cytokines. P-selectin expression induced by thrombin was augmented by TPO, but not by G-CSF. Coincubation of the cells with TPO and G-CSF did not modify the values obtained with TPO alone. Expression of CD11b on PMN surface was augmented by G-CSF or fMLP. G-CSF-treated PMN increased the effect of fMLP on CD11b expression. TPO did not modify either basal levels of CD11b or the increased expression induced by G-CSF or fMLP. Incubation of PMN with both cytokines showed no differences compared to G-CSF alone. Platelet-PMN aggregates induced by thrombin in whole blood were augmented by TPO. G-CSF alone neither synergized with thrombin nor changed the results observed with TPO. These data show that in vitro functional responses of platelets, or PMN induced by TPO or G-CSF alone, were neither further increased nor inhibited by treatment of the cells with both cytokines.

  14. Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor.

    PubMed

    Corey, S J; Dombrosky-Ferlan, P M; Zuo, S; Krohn, E; Donnenberg, A D; Zorich, P; Romero, G; Takata, M; Kurosaki, T

    1998-02-06

    Treatment of cells with granulocyte colony-stimulating factor (G-CSF) leads to tyrosine phosphorylation of cellular proteins. G-CSF stimulates both the activation of protein tyrosine kinases Lyn, Jak1, and Jak2 and the association of these enzymes with the G-CSF receptor. Wild-type, lyn-deficient, and syk-deficient chicken B lymphocyte cell lines were transfected with the human G-CSF receptor, and stable transfectants were studied. G-CSF-dependent tyrosyl phosphorylation of Jak1 and Jak2 occurred in all three cell lines. Wild-type and syk-deficient transfectants responded to G-CSF in a dose-responsive fashion with increased thymidine incorporation, but none of the clones of lyn-deficient transfectants did. Ectopic expression of Lyn, but not that of c-Src, in the lyn-deficient cells restored their mitogenic responsiveness to G-CSF. Ectopic expression in wild-type cells of the kinase-inactive form of Lyn, but not of the kinase-inactive form of Jak2, inhibited thymidine incorporation in response to G-CSF. These studies show that the absence of Lyn results in the loss of mitogenic signaling in the G-CSF signaling pathway and that activation of Jak1 or Jak2 is not sufficient to cause mitogenesis.

  15. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor

    SciTech Connect

    Cohen, A.M.; Zsebo, K.M.; Inoue, H.; Hines, D.; Boone, T.C.; Chazin, V.R.; Tsai, L.; Ritch, T.; Souza, L.M.

    1987-04-01

    Osmotic pumps containing Escherichia coli-derived recombinant human granulocyte colony-stimulating factor (rhG-CSF) were attached to indwelling jugular vein catheters and implanted subcutaneously into Golden Syrian hamsters. Within 3 days, peripheral granulocyte counts had increased > 10-fold with a concomitant 4-fold increase in total leukocytes. Microscopic examination of Wright-Giemsa-stained blood smears from rhG-CSF hamsters showed that only the neutrophil subpopulation of granulocytes had increased. After subcutaneous injection at /sup 35/S-labeled rhG-CSF doses of up to 10 ..mu..g x kg/sup -1/ x day/sup -1/ only granulocyte counts were affected. However, at higher dose levels, a transient thrombocytopenia was noted. Erythrocyte and lymphocyte/monocyte counts remained unaffected by rhG-CSF over the entire dose range studied. Total leukocyte counts increased 3-fold within 12 hr after a single s.c. injection of rhG-CSF. This early effect was associated with an increase in the total number of colony-forming cells and the percent of active cycling cells in the marrow. A sustained elevation of peripheral leukocyte and marrow progenitor counts was observed following seven daily s.c. injections of rhG-CSF. The ability of rhG-CSF to increase the production and release of granulocytes from the marrow may underlie the beneficial effect it produced on the restoration of peripheral leukocyte counts in hamsters made leukopenic by treatment with 5-fluorouracil.

  16. The effects of p38 MAPK inhibition combined with G-CSF administration on the hematoimmune system in mice with irradiation injury.

    PubMed

    Li, Deguan; Wang, Yueying; Wu, Hongying; Lu, Lu; Wang, Xiaochun; Zhang, Junling; Zhang, Heng; Fan, Saijun; Fan, Feiyue; Zhou, Daohong; Meng, Aimin

    2013-01-01

    The acute and residual (or long-term) bone marrow (BM) injury induced by ionizing radiation (IR) is a major clinic concern for patients receiving conventional radiotherapy and victims accidentally exposed to a moderate-to-high dose of IR. In this study, we investigated the effects of the treatment with the p38 inhibitor SB203580 (SB) and/or granulocyte colony-stimulating factor (G-CSF) on the hematoimmune damage induced by IR in a mouse model. Specifically, C57BL/6 mice were exposed to a sublethal dose (6 Gy) of total body irradiation (TBI) and then treated with vehicle, G-CSF, SB, and G-CSF plus SB. G-CSF (1 µg/mouse) was administrated to mice by intraperitoneal (ip) injection twice a day for six successive days; SB (15 mg/kg) by ip injection every other day for 10 days. It was found that the treatment with SB and/or G-CSF significantly enhanced the recovery of various peripheral blood cell counts and the number of BM mononuclear cells 10 and 30 days after the mice were exposed to TBI compared with vehicle treatment. Moreover, SB and/or G-CSF treatment also increased the clonogenic function of BM hematopoietic progenitor cells (HPCs) and the frequency of BM lineage -Sca1+c-kit+ cells (LSK cells) and short-term and long term hematopoietic stem cells (HSCs) 30 days after TBI, in comparison with vehicle treated controls. However, the recovery of peripheral blood B cells and CD4+ and CD8+ T cells was not significantly affected by SB and/or G-CSF treatment. These results suggest that the treatment with SB and/or G-CSF can reduce IR-induced BM injury probably in part via promoting HSC and HPC regeneration.

  17. G-CSF ameliorates neuronal apoptosis through GSK-3β inhibition in neonatal hypoxia–ischemia in rats

    PubMed Central

    Li, Li; Klebe, Damon; Doycheva, Desislava; McBride, Devin W.; Krafft, Paul R.; Flores, Jerry; Zhou, Changman; Zhang, John H.; Tang, Jiping

    2014-01-01

    Granulocyte-colony stimulating factor (G-CSF), a growth factor, has known neuroprotective effects in a variety of experimental brain injury models. Herein we show that G-CSF administration attenuates neuronal apoptosis after neonatal hypoxia-ischemia (HI) via glycogen synthase kinase-3β (GSK-3β) inhibition. Ten day old Sprague-Dawley rat pups (n=157) were subjected to unilateral carotid artery ligation followed by 2.5hrs of hypoxia or sham surgery. HI animals received control siRNA, GSK-3β siRNA (4μL/pup), G-CSF (50μg/kg), G-CSF combined with 0.1 or 0.4nM G-CSF receptor (G-CSFR) siRNA, phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin (86ng/pup), or DMSO (vehicle for Wortmannin). Pups were euthanized 48hrs post-HI to quantify brain infarct volume. G-CSFR, activated Akt (p-Akt), activated GSK-3β (p-GSK-3β), Cleaved Caspase-3 (CC3), Bcl-2, and Bax were quantified using Western blot analysis and the localizations of each was visualized via immunofluorescence staining. Neuronal cell death was determined using terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL). Our results showed p-GSK-3β increased after HI until its peak at 48hrs post-ictus, and both GSK-3β siRNA and G-CSF administration reduced p-GSK-3β expression, as well as infarct volume. p-GSK-3β and CC3 were generally co-localized in neurons. Furthermore, G-CSF increased p-Akt expression and the Bcl-2/Bax ratio and also decreased p-GSK-3β and CC3 expression levels in the ipsilateral hemisphere, which were all reversed by G-CSFR siRNA, Wortmannin, and GSK-3β siRNA. In conclusion, G-CSF attenuated caspase activation and reduced brain injury by inhibiting GSK-3β activity after experimental HI in rat pups. This neuroprotective effect was abolished by both G-CSFR siRNA and Wortmannin. PMID:25448005

  18. Administration of granulocyte colony-stimulating factor with radiotherapy promotes tumor growth by stimulating vascularization in tumor-bearing mice.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Minyoung; Lee, Chang Geun; Jo, Wol Soon; Kim, Sung Dae; Yang, Kwangmo

    2015-07-01

    Although granulocyte-colony stimulating factor (G-CSF) is commonly used to support recovery from radiation-induced side-effects, the precise effects of G-CSF on colon cancer under radiotherapy remain poorly understood. In the present study, to investigate the effects of tumor growth following radiotherapy and G-CSF administration in a murine xenograft model of colon cancer, female BALB/c mice were injected with cells of a colon carcinoma cell line (CT26) with irradiation and G-CSF, alone or in combination. Mice received 2 Gy of focal radiation daily for 5 days and intraperitoneal injection of G-CSF (100 µg/kg/day) after irradiation for 7 days. Changes in the levels of myeloperoxidase (MPO), vascular endothelial growth factor (VEGF), matrix metalloproteinase type 9 (MMP-9) and CD31 were assessed in the mouse cancer induced by injection of colon cancer cells. We observed that G-CSF increased the number of circulating neutrophils, but facilitated tumor growth. However, G-CSF treatment did not affect radiation-induced cytotoxicity and cell viability in CT26 cells in vitro. Increased levels of myeloperoxidase, a neutrophil marker and those of vascular endothelial growth factor were observed in tumors with G-CSF supplementation. In addition, we found that increased levels of CD31 and matrix metalloproteinase-9 were correlated with the enhanced tumor growth after G-CSF treatment. Therefore, these data suggest that G-CSF may contribute to tumor growth and decrease the antitumor effect of radiotherapy, possibly by promoting vascularization in cancer lesions.

  19. Functional Improvement after Photothrombotic Stroke in Rats Is Associated with Different Patterns of Dendritic Plasticity after G-CSF Treatment and G-CSF Treatment Combined with Concomitant or Sequential Constraint-Induced Movement Therapy.

    PubMed

    Frauenknecht, Katrin; Diederich, Kai; Leukel, Petra; Bauer, Henrike; Schäbitz, Wolf-Rüdiger; Sommer, Clemens J; Minnerup, Jens

    2016-01-01

    We have previously shown that granulocyte-colony stimulating factor (G-CSF) treatment alone, or in combination with constraint movement therapy (CIMT) either sequentially or concomitantly, results in significantly improved sensorimotor recovery after photothrombotic stroke in rats in comparison to untreated control animals. CIMT alone did not result in any significant differences compared to the control group (Diederich et al., Stroke, 2012;43:185-192). Using a subset of rat brains from this former experiment the present study was designed to evaluate whether dendritic plasticity would parallel improved functional outcomes. Five treatment groups were analyzed (n = 6 each) (i) ischemic control (saline); (ii) CIMT (CIMT between post-stroke days 2 and 11); (iii) G-CSF (10 μg/kg G-CSF daily between post-stroke days 2 and 11); (iv) combined concurrent group (CIMT plus G-CSF) and (v) combined sequential group (CIMT between post-stroke days 2 and 11; 10 μg/kg G-CSF daily between post-stroke days 12 and 21, respectively). After impregnation of rat brains with a modified Golgi-Cox protocol layer V pyramidal neurons in the peri-infarct cortex as well as the corresponding contralateral cortex were analyzed. Surprisingly, animals with a similar degree of behavioral recovery exhibited quite different patterns of dendritic plasticity in both peri-lesional and contralesional areas. The cause for these patterns is not easily to explain but puts the simple assumption that increased dendritic complexity after stroke necessarily results in increased functional outcome into perspective.

  20. 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation-Induced DNA Damage and Induces Genes that Modulate Cell Cycle Progression and Apoptosis

    DTIC Science & Technology

    2012-07-22

    cytokines [15, 24]. However, this speculation was based on correla- tions, rather than a direct test of the hypothesis by blocking hematopoietic... tested the effects of 5-AED on irradiated human hematopoietic progenitor (CD34+) cells [26]. We found that 5-AED protected CD34+ cells from radi- ation...animals, this required a direct test in vivo. We compared the effects of blocking G-CSF to blocking IL-6, since IL-6 is induced by 5-AED [24, 26], but was

  1. Cost-effectiveness of febrile neutropenia prevention with primary versus secondary G-CSF prophylaxis for adjuvant chemotherapy in breast cancer: a systematic review.

    PubMed

    Younis, T; Rayson, D; Jovanovic, S; Skedgel, C

    2016-10-01

    The adoption of primary (PP) versus secondary prophylaxis (SP) of febrile neutropenia (FN), with granulocyte colony-stimulating factors (G-CSF), for adjuvant chemotherapy (AC) regimens in breast cancer (BC) could be affected by its "value for money". This systematic review examined (i) cost-effectiveness of PP versus SP, (ii) FN threshold at which PP is cost-effective including the guidelines 20 % threshold and (iii) potential impact of G-CSF efficacy assumptions on outcomes. The systematic review identified all cost-effectiveness/cost-utility analyses (CEA/CUA) involving PP versus SP G-CSF for AC in BC that met predefined inclusion/exclusion criteria. Five relevant CEA/CUA were identified. These CEA/CUA examined different AC regimens (TAC = 2; FEC-D = 1; TC = 2) and G-CSF formulations (filgrastim "F" = 4; pegfilgrastim "P" = 4) with varying baseline FN-risk (range 22-32 %), mortality (range 1.4-6.0 %) and utility (range 0.33-0.47). The potential G-CSF benefit, including FN risk reduction with P versus F, varied among models. Overall, relative to SP, PP was not associated with good value for money, as per commonly utilized CE thresholds, at the baseline FN rates examined, including the consensus 20 % FN threshold, in most of these studies. The value for money associated with PP versus SP was primarily dependent on G-CSF benefit assumptions including reduced FN mortality and improved BC survival. PP G-CSF for FN prevention in BC patients undergoing AC may not be a cost-effective strategy at the guidelines 20 % FN threshold.

  2. Adrenaline administration promotes the efficiency of granulocyte colony stimulating factor-mediated hematopoietic stem and progenitor cell mobilization in mice.

    PubMed

    Chen, Chong; Cao, Jiang; Song, Xuguang; Zeng, Lingyu; Li, Zhenyu; Li, Yong; Xu, Kailin

    2013-01-01

    A high dose of granulocyte colony stimulating factor (G-CSF) is widely used to mobilize hematopoietic stem and progenitor cells (HSPC), but G-CSF is relatively inefficient and may cause adverse effects. Recently, adrenaline has been found to play important roles in HSPC mobilization. In this study, we explored whether adrenaline combined with G-CSF could induce HSPC mobilization in a mouse model. Mice were treated with adrenaline and either a high or low dose of G-CSF alone or in combination. Peripheral blood HSPC counts were evaluated by flow cytometry. Levels of bone marrow SDF-1 were measured by ELISA, the transcription of CXCR4 and SDF-1 was measured by real-time RT-PCR, and CXCR4 protein was detected by Western blot. Our results showed that adrenaline alone fails to mobilize HSPCs into the peripheral blood; however, when G-CSF and adrenaline are combined, the WBC counts and percentages of HSPCs are significantly higher compared to those in mice that received G-CSF alone. The combined use of adrenaline and G-CSF not only accelerated HSPC mobilization, but also enabled the efficient mobilization of HSPCs into the peripheral blood at lower doses of G-CSF. Adrenaline/G-CSF treatment also extensively downregulated levels of SDF-1 and CXCR4 in mouse bone marrow. These results demonstrated that adrenaline combined with G-CSF can induce HSPC mobilization by down-regulating the CXCR4/SDF-1 axis, indicating that the use of adrenaline may enable the use of reduced dosages or durations of G-CSF treatment, minimizing G-CSF-associated complications.

  3. Acetylation impacts Fli-1-driven regulation of granulocyte colony stimulating factor.

    PubMed

    Lennard Richard, Mara L; Brandon, Danielle; Lou, Ning; Sato, Shuzo; Caldwell, Tomika; Nowling, Tamara K; Gilkeson, Gary; Zhang, Xian K

    2016-10-01

    Fli-1 has emerged as a critical regulator of inflammatory mediators, including MCP-1, CCL5, and IL-6. The cytokine, granulocyte colony stimulating factor (G-CSF) regulates neutrophil precursor maturation and survival, and activates mature neutrophils. Previously, a significant decrease in neutrophil infiltration into the kidneys of Fli-1(+/-) lupus-prone mice was observed. In this study, a significant decrease in G-CSF protein expression was detected in stimulated murine and human endothelial cells when expression of Fli-1 was inhibited. The murine G-CSF promoter contains numerous putative Fli-1 binding sites and several regions within the proximal promoter are significantly enriched for Fli-1 binding. Transient transfection assays indicate that Fli-1 drives transcription from the G-CSF promoter and mutation of the Fli-1 DNA binding domain resulted in a 94% loss of transcriptional activation. Mutation of a known acetylation site, led to a significant increase in G-CSF promoter activation. The histone acetyltransferases p300/CBP and p300/CBP associated factor (PCAF) significantly decrease Fli-1 specific activation of the G-CSF promoter. Thus, acetylation appears to be an important mechanism behind Fli-1 driven activation of the G-CSF promoter. These results further support the theory that Fli-1 plays a major role in the regulation of several inflammatory mediators, ultimately affecting inflammatory disease pathogenesis.

  4. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review.

    PubMed

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-04-16

    This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.

  5. Influence of rhG-CSF scheduling on megakaryocytopoietic recovery following 5-fluorouracil-induced hematotoxicity in splenectomized B6D2F1 mice.

    PubMed

    Scheding, S; Media, J E; Nakeff, A

    1998-01-01

    Recombinant human granulocyte colony-stimulating factor, rhG-CSF, is widely applied to ameliorate neutropenia following chemotherapy. However, rhG-CSF can exert negative effects on megakaryocytopoiesis that might cause a delay of megakaryocyte recovery. Therefore, the present study was designed to test different rhG-CSF administration protocols with regard to their megakaryocytic inhibitory potential in a 5-fluorouracil (5-FU)-induced experimental model system. Splenectomized B6D2F1 mice received a single injection of 5-FU (150 mg/kg) on day 0 followed by 50 micrograms/kg/day rhG-CSF given daily for either zero, four, or eight days. Five days after 5-FU, bone marrow and blood hematopoiesis were reduced significantly when compared with controls, independent of whether or not animals received rhG-CSF. However, nine days after 5-FU, granulopoietic recovery from 5-FU-induced toxicity was faster for rhG-CSF-treated versus untreated mice as demonstrated by higher values for colony forming unit-granulocyte macrophage (CFU-GM) and granulocytes (CFU-GM: 7.2 +/- 0.4 versus 5 +/- 0.6 x 10(4)/femur, granulocytes: 4.3 +/- 2 versus 1.4 +/- 0.4 x 10(5)/ml, respectively). Furthermore, significant mobilization of CFU-megakaryocyte (CFU-Meg) and CFU-GM into the peripheral blood was induced by the eight-day administration of rhG-CSF following 5-FU (day 9: 911 +/- 102 CFU-Meg/ml, 2330 +/- 152 CFU-GM/ml). However, megakaryocytic cells in these same mice were considerably lower when compared with those of animals receiving no rhG-CSF (CFU-Meg: 2.7 +/- 0.2 x 10(3) versus 4.2 +/- 0.2 x 10(3)/femur; small acetylcholinesterase positive (SAChE+) cells: 4.9 +/- 0.3 x 10(3) versus 7.3 +/- 0.9 x 10(3)/femur; megakaryocytes: 2.5 +/- 0.2 x 10(3) versus 4.1 +/- 0.7 x 10(3)/femur; platelets: 2.67 +/- 0.5 x 10(9) versus 3.1 +/- 0.5 x 10(9)/ml, respectively). On the other hand, the shortening of the rhG-CSF treatment from eight to four days caused a rapid granulopoietic recovery comparable to animals

  6. Use of Granulocyte Colony–Stimulating Factor During Pregnancy in Women With Chronic Neutropenia

    PubMed Central

    Boxer, Laurence A.; Bolyard, Audrey Anna; Kelley, Merideth L.; Marrero, Tracy M.; Phan, Lan; Bond, Jordan M.; Newburger, Peter E.; Dale, David C.

    2014-01-01

    Objective To report outcomes associated with the administration of granulocyte colony–stimulating factor (G-CSF) to women with chronic neutropenia during pregnancy. Methods We conducted an observational study of women of child-bearing potential with congenital, cyclic, idiopathic, or autoimmune neutropenia enrolled in the Severe Chronic Neutropenia International Registry to determine outcomes of pregnancies, without and with chronic G-CSF therapy, 1999–2014. Treatment decisions were made by the patients’ personal physicians. A research nurse conducted telephone interviews of all enrolled U.S. women of child-bearing potential using a standard questionnaire. Comparisons utilized Fisher’s exact test analysis and Student’s t-test. Results One-hundred seven women reported 224 pregnancies, 124 without G-CSF therapy and 100 on chronic G-CSF therapy (median dose: 1.0 mcg/kg/day, range 0.02–8.6 mcg/kg/day). There were no significant differences in adverse events between the groups considering all pregnancies or individual mothers, e.g., spontaneous terminations (all pregnancies: no G-CSF 27/124, G-CSF 13/100; P=0.11, Fisher’s exact test,), preterm labors (all pregnancies, no G-CSF 9/124, G-CSF 2/100, P=0.12,). A study with at least 300 per group would be needed to detect a difference in these events with 80% statistical power (alpha=0.05). Four newborns of mothers with idiopathic or autoimmune neutropenia not on G-CSF (4/101) had life-threatening infections, whereas there were no similar events (0/90) in the treated group, but this difference was also not statistically significant. (p=0.124). Adverse events in the neonates were similar for the two groups. Conclusions This observational study showed no significant adverse effects of administration of G-CSF to women with severe chronic neutropenia during pregnancy. PMID:25560125

  7. Predicting erythroid response to recombinant erythropoietin plus granulocyte colony-stimulating factor therapy following a single subcutaneous bolus in patients with myelodysplasia.

    PubMed

    Bowen, David; Hyslop, Ann; Keenan, Norene; Groves, Michael; Culligan, Dominic; Johnson, Peter; Shaw, Ann; Geddes, Fiona; Evans, Patricia; Porter, John; Cavill, Ivor

    2006-05-01

    We randomized 21 patients with low-risk myelodysplastic syndromes (MDS) to receive a single subcutaneous bolus of recombinant erythropoietin (epoietin) +/- granulocyte-colony stimulating factor (G-CSF), or placebo and monitored erythropoietic response over 7 days. In this small study, the reticulocyte response at day 7 was highly predictive of subsequent response to a therapeutic trial of epoietin + G-CSF.

  8. Simplified Large-Scale Refolding, Purification, and Characterization of Recombinant Human Granulocyte-Colony Stimulating Factor in Escherichia coli

    PubMed Central

    Kim, Chang Kyu; Lee, Chi Ho; Lee, Seung-Bae; Oh, Jae-Wook

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins. PMID:24224041

  9. pH responsive granulocyte colony-stimulating factor variants with implications for treating Alzheimer's disease and other central nervous system disorders.

    PubMed

    Heinzelman, Pete; Schoborg, Jennifer A; Jewett, Michael C

    2015-10-01

    Systemic injection of granulocyte colony-stimulating factor (G-CSF) has yielded encouraging results in treating Alzheimer's Disease (AD) and other central nervous system (CNS) disorders. Making G-CSF a viable AD therapeutic will, however, require increasing G-CSF's ability to stimulate neurons within the brain. This objective could be realized by increasing transcytosis of G-CSF across the blood brain barrier (BBB). An established correlation between G-CSF receptor (G-CSFR) binding pH responsiveness and increased recycling of G-CSF to the cell exterior after endocytosis motivated development of G-CSF variants with highly pH responsive G-CSFR binding affinities. These variants will be used in future validation of our hypothesis that increased BBB transcytosis can enhance G-CSF therapeutic efficacy. Flow cytometric screening of a yeast-displayed library in which G-CSF/G-CSFR interface residues were mutated to histidine yielded a G-CSF triple His mutant (L109H/D110H/Q120H) with highly pH responsive binding affinity. This variant's KD, measured by surface plasmon resonance (SPR), increases ∼20-fold as pH decreases from 7.4 to below histidine's pKa of ∼6.0; an increase 2-fold greater than for previously reported G-CSF His mutants. Cell-free protein synthesis (CFPS) enabled expression and purification of soluble, bioactive G-CSF triple His variant protein, an outcome inaccessible via Escherichia coli inclusion body refolding. This purification and bioactivity validation will enable future identification of correlations between pH responsiveness and transcytosis in BBB cell culture model and animal experiments. Furthermore, the library screening and CFPS methods employed here could be applied to developing other pH responsive hematopoietic or neurotrophic factors for treating CNS disorders.

  10. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-liang; He, Mei-qing; Han, Xiang-yu; Sun, Jing-yi; Yang, Ming-feng; Yuan, Hui; Fan, Cun-dong; Zhang, Shuai; Mao, Lei-lei; Li, Da-wei; Zhang, Zong-yong; Zheng, Cheng-bi; Yang, Xiao-yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  11. Key role for neutrophils in radiation-induced antitumor immune responses: Potentiation with G-CSF

    PubMed Central

    Takeshima, Tsuguhide; Pop, Laurentiu M.; Laine, Aaron; Iyengar, Puneeth; Vitetta, Ellen S.; Hannan, Raquibul

    2016-01-01

    Radiation therapy (RT), a major modality for treating localized tumors, can induce tumor regression outside the radiation field through an abscopal effect that is thought to involve the immune system. Our studies were designed to understand the early immunological effects of RT in the tumor microenvironment using several syngeneic mouse tumor models. We observed that RT induced sterile inflammation with a rapid and transient infiltration of CD11b+Gr-1high+ neutrophils into the tumors. RT-recruited tumor-associated neutrophils (RT-Ns) exhibited an increased production of reactive oxygen species and induced apoptosis of tumor cells. Tumor infiltration of RT-Ns resulted in sterile inflammation and, eventually, the activation of tumor-specific cytotoxic T cells, their recruitment into the tumor site, and tumor regression. Finally, the concurrent administration of granulocyte colony-stimulating factor (G-CSF) enhanced RT-mediated antitumor activity by activating RT-Ns. Our results suggest that the combination of RT and G-CSF should be further evaluated in preclinical and clinical settings. PMID:27651484

  12. Transvaginal perfusion of G-CSF for infertile women with thin endometrium in frozen ET program: A non-randomized clinical trial

    PubMed Central

    Eftekhar, Maryam; Sayadi, Mozhgan; Arabjahvani, Farideh

    2014-01-01

    Background: We often see patients with a thin endometrium in ART cycles, in spite of standard and adjuvant treatments. Improving endometrial growth in patients with a thin endometrium is very difficult. Without adequate endometrial thickness these patients, likely, would not have reached embryo transfer. Objective: We planned this study to investigate the efficacy of intrauterine granulocyte colony-stimulating factor (G-CSF) perfusion in improving endometrium, and possibly pregnancy rates in frozen-thawed embryo transfer cycles. Materials and Methods: This is a non-randomized intervention clinical trial. Among 68 infertile patients with thin endometrium (-7 mm) at the 12th-13th cycle day, 34 patients received G-CSF. G-CSF (300 microgram/1mL) to improve endometrial thickness was direct administered by slow intrauterine infusion using IUI catheter. If the endometrium had not reached at least a 7-mm within 48-72 h, a second infusion was given. Endometrial thickness was assessed by serial vaginal ultrasound at the most expanded area of the endometrial stripe. Results: The cycle was cancelled in the patients with thin endometrium (endometrial thickness below 7mm) until 19th cycle day ultimately The cycle cancelation rate owing to thin endometrium was similar in G-CSF group (15.20%), followed by (15.20%) in the control group (p=1.00). The endometrial growth was not different within 2 groups, an improvement was shown between controlled and G-CSF cotreated groups, with chemical (39.30% vs. 14.30%) and clinical pregnancy rates (32.10% vs. 12.00%) although were not significant. Conclusion: Our study fails to demonstrate that G-CSF has the potential to improve endometrial thickness but has the potential to improve chemical and clinical pregnancy rate of the infertile women with thin endometrium in frozen-thawed embryo transfer cycle. PMID:25469123

  13. Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury

    PubMed Central

    Liew, Hock-Kean; Kuo, Jon-Son; Wang, Jia-Yi; Pang, Cheng-Yoong

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury. PMID:26146654

  14. Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury.

    PubMed

    Liew, Hock-Kean; Kuo, Jon-Son; Wang, Jia-Yi; Pang, Cheng-Yoong

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-N(G)-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury.

  15. Regulation of LIP level and ROS formation through interaction of H-ferritin with G-CSF receptor.

    PubMed

    Yuan, Xiaoling; Cong, Yuwen; Hao, Jing; Shan, Yajun; Zhao, Zhenhu; Wang, Shengqi; Chen, Jiapei

    2004-05-21

    A variety of hematopoietic factors including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), interleukin 3 (IL-3) and thrombopoietin (TPO) induce a rapid increase of intracellular reactive oxygen species (ROS). ROS induces the activation of many signaling molecules, including Shc, Lck, syk, PKC, MAPK, STAT3, through inhibition of protein phosphatase. Each growth factor has a specific cell-surface receptor, which activates both unique and shared signal transduction pathways. The processes of signal transduction linking cell-surface receptor to the formation of intracellular ROS have not been elucidated fully. Ferritins are composed of two subunit types, H and L, and made of 24 subunits that sequester up to 4500 atoms of iron. When the stored iron atoms are released from H-ferritin, through iron-catalyzed reaction, they have the capacity to promote the formation of ROS. Here, the interaction of G-CSFR and H-ferritin was confirmed by yeast two-hybrid screen, mammalian two-hybrid assays, glutathione-S-transferase (GST) pull-down experiments and immunoprecipitation studies in vitro and in vivo. Additional immunofluorescence assay showed that the two proteins colocalized along the plasma membrane and partly in the cytoplasm. The binding site for H-ferritin was demonstrated to locate to the box3 motif on the C-terminal region of granulocyte colony-stimulating factor receptor (G-CSFR). Furthermore, we found the interaction of full-length G-CSFR with H-ferritin was dissociated at 30 minutes after G-CSF induction and then began to assemble at 45 minutes. The labile iron pool (LIP) is a pool of redox-active iron complexes, which is regulated tightly by the expression of H-ferritin. Experiments showed that the level of LIP increased significantly at 30 minutes after G-CSF stimulation and intracellular ROS formation changed in a pattern similar to LIP response to G-CSF in bone-marrow hematopoietic cells. G-CSF

  16. G(AnH)MTetra, a naturally occurring 1,6-anhydro muramyl dipeptide, induces granulocyte colony-stimulating factor expression in human monocytes: a molecular analysis.

    PubMed Central

    Dokter, W H; Dijkstra, A J; Koopmans, S B; Mulder, A B; Stulp, B K; Halie, M R; Keck, W; Vellenga, E

    1994-01-01

    N-Acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-isoglutam yl-m- diaminopimelyl-D-alanine [G (Anh)MTetra], a naturally occurring breakdown product of peptidoglycan from bacterial cell walls, was studied for its ability to induce granulocyte colony-stimulating factor (G-CSF) mRNA and protein expression in human adherent monocytes. Resting monocytes did not express G-CSF mRNA or secrete G-CSF protein. In contrast, monocytes exposed to G(Anh)MTetra showed a dose-dependent increase in G-CSF mRNA accumulation, which correlates with the secretion of G-CSF protein. Maximal levels of G-CSF mRNA were reached within 2 h of activation. Expression of G-CSF was mediated by an increase in the stability of G-CSF transcripts rather than by an increase in the transcription rate of the G-CSF gene. Experiments with the protein synthesis inhibitor cycloheximide revealed that G(Anh)MTetra-induced G-CSF mRNA expression was independent of new protein synthesis. Furthermore, it was shown that the effect of G(Anh)MTetra was regulated by a protein kinase C-dependent pathway, whereas protein kinase A and tyrosine kinases were not involved. Finally, it was shown that G(Anh)MTetra also induced G-CSF mRNA expression in human endothelial cells. The data indicate that, besides lipopolysaccharide, other naturally occurring bacterial cell wall components are able to induce G-CSF expression in different hematopoietic cells. Images PMID:7516314

  17. Autopsy of anaplastic carcinoma of the pancreas producing granulocyte colony-stimulating factor.

    PubMed

    Hayashi, Haruna; Eguchi, Noriaki; Sumimoto, Kyoku; Matsumoto, Kenta; Azakami, Takahiro; Sumida, Tomonori; Tamura, Tadamasa; Sumii, Masaharu; Uraoka, Naohiro; Shimamoto, Fumio

    2016-08-01

    A 50-year-old man presented to a nearby hospital with high fever and anorexia. An abdominal tumor was detected, and he was referred to our hospital. A pancreatic tumor was detected by computed tomography and abdominal ultrasonography. He had high fever, leukocytosis, and high serum granulocyte colony-stimulating factor (G-CSF). We performed a tumor biopsy and histological examination revealed anaplastic carcinoma of the pancreas. Based on the diagnosis, we initiated chemotherapy using gemcitabine plus S-1. However, the tumor rapidly progressed and he deteriorated and died 123 days after admission. As immunohistochemical study showed positive staining for G-CSF in the tumor cell, we diagnosed the tumor producing G-CSF during autopsy. Anaplastic carcinoma of the pancreas producing G-CSF is very rare, with 10 cases, including ours, reported in the literature.

  18. G-CSF and GM-CSF in clinical trials.

    PubMed Central

    Antman, K. H.

    1990-01-01

    Hematopoietic growth factors have now been purified, cloned, and produced in bacteria and yeast. Those that are currently in clinical study include erythropoietin, GM-CSF, G-CSF, M-CSF (also called CSF-1), and multi-CSF (also called interleukin 3). Growth factor appear likely to enhance the recovery and function of circulating white cells after standard-dose cancer therapy and high-bone-dose cancer therapy with marrow transplant and to restore leukocyte numbers and competence in the acquired immune deficiency syndromes and myelodysplastic syndromes. Phase I, II trials in AIDS, in cancer patients receiving chemotherapy, in cases of myeloproliferative disease, and after bone marrow transplant have been published. The results of phase III studies are just becoming available. PMID:1705737

  19. G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis.

    PubMed

    Wu, Cheng-Chun; Wang, I-Fang; Chiang, Po-Min; Wang, Liang-Chao; Shen, Che-Kun James; Tsai, Kuen-Jer

    2016-10-05

    Recent studies reported granulocyte colony-stimulating factor (G-CSF) treatment can improve the cognitive function of Alzheimer's disease (AD) mice, and the mobilized hematopoietic stem cells (HSCs) or bone marrow mesenchymal stem cells (BM-MSCs) are proposed to be involved in this recovery effect. However, the exact role of mobilized HSC/BM-MSC in G-CSF-based therapeutic effects is still unknown. Here, we report that C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) chemotaxis was a key mediator in G-CSF-based therapeutic effects, which was involved in the recruitment of repair-competent cells. Furthermore, we found both mobilized HSCs and BM-MSCs were able to infiltrate into the brain, but only BM-MSCs replenished the neural lineage cells and contributed to neurogenesis in the brains of AD mice. Together, our data show that mobilized BM-MSCs are involved in the replenishment of neural lineages following G-CSF treatment via CXCR4/SDF-1 chemotaxis and further support the potential use of BM-MSCs for further autogenically therapeutic applications.

  20. Self-assembling nanocomposites for protein delivery: supramolecular interactions between PEG-cholane and rh-G-CSF.

    PubMed

    Salmaso, Stefano; Bersani, Sara; Mastrotto, Francesca; Tonon, Giancarlo; Schrepfer, Rodolfo; Genovese, Stefano; Caliceti, Paolo

    2012-08-20

    PEG(5 kDa)-cholane, PEG(10 kDa)-cholane and PEG(20 kDa)-cholane self-assembling polymers have been synthesised by the end-functionalisation of 5, 10 and 20 kDa linear amino-terminating monomethoxy-poly(ethylene glycol) (PEG-NH(2)) with 5β-cholanic acid. Spectroscopic studies and isothermal titration calorimetry showed that the CMC of the PEG-cholane derivatives increased from 23.5 ± 1.8 to 60.2 ± 2.4 μM as the PEG molecular weight increased. Similarly, light scattering analysis showed that the micelle size increased from 15.8 ± 4.9 to 23.2 ± 11.1 nm with the PEG molecular weight. Gel permeation studies showed that the polymer bioconjugates associate with recombinant human granulocyte colony stimulating factor (rh-G-CSF) to form supramolecular nanocomposites according to multi-modal association profiles. The protein loadings obtained with PEG(5 kDa)-cholane, PEG(10 kDa)-cholane and PEG(20 kDa)-cholane were 7.4 ± 1.1, 2.7 ± 0.3 and 2.1 ± 0.4% (protein/polymer, w/w %), respectively. Scatchard and Klotz analyses showed that the protein/polymer affinity constant increased and that the number of PEG-cholane molecules associated to rh-G-CSF decreased as the PEG molecular weight increased. Isothermal titration calorimetry confirmed the protein/polymer multi-modal association. Circular dichroism analyses showed that the polymer association alters the secondary structure of the protein. Nevertheless, in vitro studies performed with NFS-60 cells showed that the polymer interaction does not impair the biological activity of the cytokine. In vivo studies performed by intravenous and subcutaneous administrations of rh-G-CSF to rats showed that the association with PEG(5 kDa)-cholane prolongs the body exposure of the protein. After subcutaneous administration, the protein t(max) values obtained with rh-G-CSF and 1:14 and 1:21 rh-G-CSF/PEG(5 kDa)-cholane (w/w ratio) nanocomplexes were 2, 8 and 24h, respectively. The 1:21 (w/w) rh-G-CSF/PEG(5kDa)-cholane formulation

  1. Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL.

    PubMed

    Liu, Xiao-Yun; Gonzalez-Toledo, Maria E; Fagan, Austin; Duan, Wei-Ming; Liu, Yanying; Zhang, Siyuan; Li, Bin; Piao, Chun-Shu; Nelson, Lila; Zhao, Li-Ru

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a Notch3 dominant mutation-induced cerebral small vascular disease, is characterized by progressive degeneration of vascular smooth muscle cells (vSMCs) of small arteries in the brain, leading to recurrent ischemic stroke, vascular dementia and death. To date, no treatment can stop or delay the progression of this disease. Herein, we determined the therapeutic effects of stem cell factor (SCF) in combination with granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) in a mouse model of CADASIL carrying the human mutant Notch3 gene. SCF+G-CSF was subcutaneously administered for 5 days and repeated 4 times with 1-4 month intervals. We found through water maze testing that SCF+G-CSF treatment improved cognitive function. SCF+G-CSF also attenuated vSMC degeneration in small arteries, increased cerebral blood vascular density, and inhibited apoptosis in CADASIL mice. We also discovered that loss of cerebral capillary endothelial cells and neural stem cells/neural progenitor cells (NSCs/NPCs) occurred in CADASIL mice. SCF+G-CSF treatment inhibited the CADASIL-induced cell loss in the endothelia and NSCs/NPCs and promoted neurogenesis. In an in vitro model of apoptosis, SCF+G-CSF prevented apoptotic cell death in vSMCs through AKT signaling and by inhibiting caspase-3 activity. These data suggest that SCF+G-CSF restricts the pathological progression of CADASIL. This study offers new insights into developing therapeutic strategies for CADASIL.

  2. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity

    PubMed Central

    Wallner, Stephanie; Peters, Sebastian; Pitzer, Claudia; Resch, Herbert; Bogdahn, Ulrich; Schneider, Armin

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) is a growth factor that has originally been identified several decades ago as a hematopoietic factor required mainly for the generation of neutrophilic granulocytes, and is in clinical use for that. More recently, it has been discovered that G-CSF also plays a role in the brain as a growth factor for neurons and neural stem cells, and as a factor involved in the plasticity of the vasculature. We review and discuss these dual properties in view of the neuroregenerative potential of this growth factor. PMID:26301221

  3. Granulocyte colony-stimulating factor increases the platelet volume in peripheral stem cell apheresis donors.

    PubMed

    Ihara, Akihiro; Matsui, Keiko; Minami, Ryouta; Uchida, Shuzou; Ueda, Shuji; Nishiura, Tetsuo

    2008-01-01

    We investigated the short-term influence of granulocyte colony-stimulating factor (G-CSF) administration on platelet counts and platelet indices in 12 donors (8 males and 4 females; median age 34 years, range 16-49) for peripheral stem cell transplantation using an automated blood cell analyzer. On day 3 (D3) compared with D0, 11 donors with normal laboratory and physical findings showed increases in platelet indices (chi(2) = 12.0, p = 0.0025). Furthermore, mean platelet volume (MPV) was significantly increased (p = 0.04). Also, platelet count decreased, and platelet distribution width and platelet-large cell ratio were increased, but these were not significant. On the contrary, 1 donor with abnormal laboratory findings who had large platelets (MPV 11.4 fl) before G-CSF administration showed decreases in platelet indices (MPV 10.3 fl) on D3, although platelet count (18.2 x 10(4)/microl) decreased after G-CSF administration. G-CSF administration induces an inflammatory process with endothelial cell activation. This is probably the reason why platelet volume increases after G-CSF use. This is the first report showing that G-CSF administration immediately induces increases in large platelets in peripheral stem cell transplant donors before harvest.

  4. The use of granulocyte-colony-stimulating factor in volunteer unrelated hemopoietic stem cell donors.

    PubMed

    Pamphilon, Derwood; Nacheva, Elisabeth; Navarrete, Cristina; Madrigal, Alejandro; Goldman, John

    2008-07-01

    Granulocyte-colony-stimulating factor (G-CSF) is used for the mobilization of hemopoietic stem cells in healthy donors. It has a number of common side effects such as bone pain, which resolve rapidly after administration is discontinued. Recent publications have raised concern that it might act as a trigger for the development of hematologic malignancy in susceptible individuals, possibly by causing genomic instability, but to date there is no evidence that healthy volunteer donors who receive G-CSF are at any increased risk. Ongoing studies aim to confirm whether or not G-CSF can cause chromosomal abnormalities in healthy donors. In the UK, the British Bone Marrow Registry and Anthony Nolan Trust give G-CSF to donors who have agreed to donate peripheral blood stem cells. It is recommended by the UK Registries at present that all stem cell donors are given updated information explaining the current uncertainties with regard to the use of G-CSF before they give informed consent to its administration. This information is based on a statement agreed by the World Marrow Donor Association for use by individual donor registries. Further, it is our current practice that all donors who have received G-CSF, as well as marrow donors who do not, should be under regular review for at least 10 years to allow the occurrence of any long-term adverse events to be documented.

  5. Effect of Intravenous Infusion of G-CSF-Mobilized Peripheral Blood Mononuclear Cells on Upper Extremity Function in Cerebral Palsy Children

    PubMed Central

    2017-01-01

    Objective To investigate the effect of intravenous infusion of peripheral blood mononuclear cells (mPBMC) mobilized by granulocyte-colony stimulating factor (G-CSF) on upper extremity function in children with cerebral palsy (CP). Methods Fifty-seven children with CP were enrolled. Ten patients were excluded due to follow-up loss. In total, 47 patients (30 males and 17 females) were analyzed. All patients' parents provided signed consent before the start of the study. After administration of G-CSF for 5 days, mPBMC was collected and cryopreserved. Patients were randomized into two groups 1 month later. Twenty-two patients were administered mPBMC and 25 patients received normal saline as placebo. Six months later, the two groups were switched, and administered mPBMC and placebo, respectively. Quality of Upper Extremity Skills Test (QUEST) and the Manual Ability Classification System (MACS) were used to evaluate upper motor function. Results All subdomain and total scores of QUEST were significantly improved after mPBMC and placebo infusion, without significant differences between mPBMC and placebo groups. A month after G-CSF, all subdomain and total scores of QUEST were improved. The level of MACS remained unchanged in both mPBMC and placebo groups. Conclusion In this study, intravenously infused mPBMC showed no significant effect on upper extremity function in children with CP, as compared to placebo. The effect of mPBMC was likely masked by the effect of G-CSF, which was used in both groups and/or G-CSF itself might have other neurotrophic potentials in children with CP. PMID:28289643

  6. Granulocyte-Colony-Stimulating Factor Stimulation of Bone Marrow Mesenchymal Stromal Cells Promotes CD34+ Cell Migration Via a Matrix Metalloproteinase-2-Dependent Mechanism

    PubMed Central

    Ponte, Adriana López; Ribeiro-Fleury, Tatiana; Chabot, Valérie; Gouilleux, Fabrice; Langonné, Alain; Hérault, Olivier; Charbord, Pierre

    2012-01-01

    Human hematopoietic stem/progenitor cells (HSPCs) can be mobilized into the circulation using granulocyte-colony stimulating factor (G-CSF), for graft collection in view of hematopoietic transplantation. This process has been related to bone marrow (BM) release of serine proteases and of the matrix metalloproteinase-9 (MMP-9). Yet, the role of these mediators in HSC egress from their niches remains questionable, because they are produced by nonstromal cells (mainly neutrophils and monocytes/macrophages) that are not a part of the niche. We show here that the G-CSF receptor (G-CSFR) is expressed by human BM mesenchymal stromal/stem cells (MSCs), and that G-CSF prestimulation of MSCs enhances the in vitro trans-stromal migration of CD34+ cells. Zymography analysis indicates that pro-MMP-2 (but not pro-MMP-9) is expressed in MSCs, and that G-CSF treatment increases its expression and induces its activation at the cell membrane. We further demonstrate that G-CSF-stimulated migration depends on G-CSFR expression and is mediated by a mechanism that involves MMPs. These results suggest a molecular model whereby G-CSF infusion may drive, by the direct action on MSCs, HSPC egress from BM niches via synthesis and activation of MMPs. In this model, MMP-2 instead of MMP-9 is implicated, which constitutes a major difference with mouse mobilization models. PMID:22651889

  7. Pegfilgrastim and daily granulocyte colony-stimulating factor: patterns of use and neutropenia-related outcomes in cancer patients in Spain--results of the LEARN Study.

    PubMed

    Almenar, D; Mayans, J; Juan, O; Bueno, J M Garcia; Lopez, J I Jalon; Frau, A; Guinot, M; Cerezuela, P; Buscalla, E Garcia; Gasquet, J A; Sanchez, J

    2009-05-01

    Daily granulocyte colony-stimulating factors [(G-CSFs); e.g. filgrastim, lenograstim] are frequently used to reduce the duration of chemotherapy-induced neutropenia (CIN) and the incidence of febrile neutropenia (FN) in cancer patients. A pegylated formulation of filgrastim, pegfilgrastim, which is administered once per cycle, was introduced in Spain in 2003. LEARN was a multi-centre, retrospective, observational study in Spain comparing patterns of use of daily G-CSF and pegfilgrastim, and CIN-related outcomes in adults with non-myeloid malignancies receiving myelosuppressive chemotherapy. Outcome measures were the percentage of patients receiving G-CSF for primary prophylaxis versus secondary prophylaxis/treatment, duration of treatment with G-CSF and incidence of CIN-related complications. Medical records from consecutive patients with documented pegfilgrastim (n = 75) or daily G-CSF (n = 111) use during 2003 were included. The proportion of patients receiving primary or secondary prophylaxis was comparable between the pegfilgrastim (39 and 48% respectively) and daily G-CSF (40 and 48% respectively) groups. However, there was a trend towards less frequent use to treat a neutropenic event such as FN or neutropenia in the pegfilgrastim group (17 versus 30% with daily G-CSF). Chemotherapy-induced neutropenia-related complications were less frequent in patients receiving pegfilgrastim (e.g. FN 11 versus 24% with daily G-CSF). This is the first study to show the potential benefits of pegfilgrastim over daily G-CSF in Spanish clinical practice.

  8. The colony-stimulating factors and cancer.

    PubMed

    Metcalf, Donald

    2010-06-01

    The four colony-stimulating factors (CSFs) are glycoproteins that regulate the generation and some functions of infection-protective granulocytes and macrophages. Recombinant granulocyte-CSF (G-CSF) and granulocyte-macrophage-CSF (GM-CSF) have now been used to increase dangerously low white blood cell levels in many millions of cancer patients following chemotherapy. These CSFs also release haematopoietic stem cells to the peripheral blood, and these cells have now largely replaced bone marrow as more effective populations for transplantation to cancer patients who have treatment-induced bone marrow damage.

  9. Granulocyte colony-stimulating factor-based stem cell mobilization in patients with sickle cell disease.

    PubMed

    Rosenbaum, Cara; Peace, David; Rich, Elizabeth; Van Besien, Koen

    2008-06-01

    Granulocyte colony-stimulating factor (G-CSF) has been reported to exacerbate vaso-occlusive crises in sickle cell disease. It has been recommended to avoid its use for stem cell mobilization in this population, yet autologous transplant is the standard of care and at times a life-saving treatment for patients with various hematologic malignancies such as relapsed aggressive lymphoma or multiple myeloma. We report 5 cases of patients with sickle cell disease and related hemoglobinopathies who underwent granulocyte-colony stimulating factor (G-CSF)-mobilization of peripheral blood stem cells (PBSC). Three of them developed manageable vaso-occlusive pain symptoms requiring parenteral narcotics alone. The 2 others had no complications. These cases demonstrate that stem cell mobilization using G-CSF, although complicated and not without risk, is feasible in patients with sickle cell syndromes.

  10. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells

    SciTech Connect

    Uzumaki, Hiroya; Okabe, Tetsuro; Sasaki, Norio; Hagiwara, Koichi; Takaku, Fumimaro; Tobita, Masahito; Yasukawa, Kaoru ); Ito, Seiga ); Umezawa, Yoshimi )

    1989-12-01

    Since radioiodination of human granulocyte colony-stimulating factor (G-CSF) is difficult, the authors synthesized a mutein of human G-CSF that retains full biological activity and receptor-binding capacity for at least 2 weeks after radioiodination. Receptors for human G-CSF were characterized in the plasma membrane fraction from the human term placenta (human placental membranes) and trophoblastic cells by using the {sup 125}I-labeled mutein of human G-CSF (KW-2228). The specific binding of {sup 125}I-labeled KW-2228 to placental membranes was pH-dependent, with maximal specific binding at pH 7.8; it increased linearly with protein to 3.7 mg of protein per ml and was both time- and temperature-dependent, with maximal binding at 4{degree}C after a 24-hr incubation. When the authors examined the ability of hematopoietic growth factors to inhibit {sup 125}I-labeled KW-2228 binding, they found that KW-2228 and intact human G-CSF ihibited {sup 125}I-labeled KW-2228 binding, whereas erythropoietin or granulocyte-macrophage colony-stimulating factor did not. Scatchard analysis revealed a single receptor type. The human G-CSF receptors on human placental membranes were shown to consist of two molecular species that could be specifically cross-linked to {sup 125}I-labeled KW-2228. Human trophoblastic cells, T3M-3, also possessed a single receptor for G-CSF. They have identified the receptor for human G-CSF on human placental membranes and trophoblastic cells.

  11. Controlled Release of Granulocyte Colony-Stimulating Factor Enhances Osteoconductive and Biodegradable Properties of Beta-Tricalcium Phosphate in a Rat Calvarial Defect Model

    PubMed Central

    Minagawa, Tomohiro; Tabata, Yasuhiko; Oyama, Akihiko; Furukawa, Hiroshi; Yamao, Takeshi; Yamamoto, Yuhei

    2014-01-01

    Autologous bone grafts remain the gold standard for the treatment of congenital craniofacial disorders; however, there are potential problems including donor site morbidity and limitations to the amount of bone that can be harvested. Recent studies suggest that granulocyte colony-stimulating factor (G-CSF) promotes fracture healing or osteogenesis. The purpose of the present study was to investigate whether topically applied G-CSF can stimulate the osteoconductive properties of beta-tricalcium phosphate (β-TCP) in a rat calvarial defect model. A total of 27 calvarial defects 5 mm in diameter were randomly divided into nine groups, which were treated with various combinations of a β-TCP disc and G-CSF in solution form or controlled release system using gelatin hydrogel. Histologic and histomorphometric analyses were performed at eight weeks postoperatively. The controlled release of low-dose (1 μg and 5 μg) G-CSF significantly enhanced new bone formation when combined with a β-TCP disc. Moreover, administration of 5 μg G-CSF using a controlled release system significantly promoted the biodegradable properties of β-TCP. In conclusion, the controlled release of 5 μg G-CSF significantly enhanced the osteoconductive and biodegradable properties of β-TCP. The combination of G-CSF slow-release and β-TCP is a novel and promising approach for treating pediatric craniofacial bone defects. PMID:24829581

  12. Upfront plerixafor plus G-CSF versus cyclophosphamide plus G-CSF for stem cell mobilization in multiple myeloma: efficacy and cost analysis study.

    PubMed

    Afifi, S; Adel, N G; Devlin, S; Duck, E; Vanak, J; Landau, H; Chung, D J; Lendvai, N; Lesokhin, A; Korde, N; Reich, L; Landgren, O; Giralt, S; Hassoun, H

    2016-04-01

    Cyclophosphamide plus G-CSF (C+G-CSF) is one of the most widely used stem cell (SC) mobilization regimens for patients with multiple myeloma (MM). Plerixafor plus G-CSF (P+G-CSF) has demonstrated superior SC mobilization efficacy when compared with G-CSF alone and has been shown to rescue patients who fail mobilization with G-CSF or C+G-CSF. Despite the proven efficacy of P+G-CSF in upfront SC mobilization, its use has been limited, mostly due to concerns of high price of the drug. However, a comprehensive comparison of the efficacy and cost effectiveness of SC mobilization using C+G-CSF versus P+G-CSF is not available. In this study, we compared 111 patients receiving C+G-CSF to 112 patients receiving P+G-CSF. The use of P+G-CSF was associated with a higher success rate of SC collection defined as ⩾5 × 10(6) CD34+ cells/kg (94 versus 83%, P=0.013) and less toxicities. Thirteen patients in the C+G-CSF arm were hospitalized owing to complications while none in the P+G-CSF group. C+G-CSF was associated with higher financial burden as assessed using institutional-specific costs and charges (P<0.001) as well as using Medicare reimbursement rates (P=0.27). Higher rate of hospitalization, increased need for salvage mobilization, and increased G-CSF use account for these differences.

  13. G-CSF Intrauterine for Thin Endometrium, and Pregnancy Outcome

    PubMed Central

    Tehraninejad, Ensieh; Davari Tanha, Fateme; Asadi, Ebrahim; Kamali, Koorosh; Aziminikoo, Elham; Rezayof, Elahe

    2015-01-01

    Objective: To evaluate effects of G-CSF on a cancelled ART cycle due to thin endometrium. Materials and methods: In a nonrandomized clinical trial from January 2011 to January 2013 in two tertiary university based hospitals fifteen patients undergoing embryo transfer and with the history of cycle cancellation due to thin endometrium were studied. Intrauterine infusion of G-CSF was done on the day of oocyte pick-up or 5 days before embryo transfer. The primary outcome to be measured was an endometrium thickened to at least 6 mm and the secondary outcome was clinical pregnancy rate and consequently take-home baby. All previous cycles were considered as control for each patient. Results: The G-CSF was infused at the day of oocyte retrieval or 5 days before embryo transfer. The endometrial thickness reached from 3.593±0.251 mm to 7.120 ± 0.84 mm. The mean age, gravidity, parity, and FSH were 35.13± 9.531 years, 3, 1 and 32.78 ± 31.10 mIU/ml, respectively. The clinical pregnancy rate was 20%, and there was one missed abortion, a mother death at 34 weeks, and a preterm labor at 30 weeks due to PROM. Conclusion: G-CSF may increase endometrial thickness in the small group of patients who had no choice except cycle cancellation or surrogacy. PMID:26622308

  14. Severe Hypoxemia in a Healthy Donor for Allogeneic Hematopoietic Stem Cell Transplantation after Only the First Administration of Granulocyte-Colony Stimulating Factor

    PubMed Central

    Yamamoto, Keita; Doki, Noriko; Senoo, Yasushi; Najima, Yuho; Kobayashi, Takeshi; Kakihana, Kazuhiko; Haraguchi, Kyoko; Okuyama, Yoshiki; Sakamaki, Hisashi; Ohashi, Kazuteru

    2016-01-01

    Background Granulocyte-colony stimulating factor (G-CSF) is widely used to mobilize peripheral blood stem cells (PBSCs) in healthy donors. A few reports have shown that some healthy donors developed acute respiratory distress syndrome or capillary leak syndrome after more than several rounds of G-CSF administration or leukapheresis. Case Report We report the case of a healthy donor for allogeneic stem cell transplantation who developed severe hypoxemia 1 h after only the first administration of G-CSF. The donor was administered 10 μg/kg G-CSF (lenograstim) subcutaneously for PBSC mobilization. 1 h after the first administration of G-CSF, the donor suddenly presented with dry cough and dyspnea. The oxygen saturation by pulse oximetry (SpO2) in the room air was 88%. An electrocardiogram and chest radiography revealed no abnormalities. We excluded other causes of severe hypoxemia and diagnosed the donor with hypoxemia due to G-CSF administration, which was subsequently terminated. The donor was administered 2 l/min oxygen via a nasal cannula and 100 mg hydrocortisone intravenously. He subsequently recovered, and SpO2 in the room air returned to 98% 10 h after hypoxemia. Conclusion These respiratory symptoms might be related to anaphylactoid or hypersensitivity reaction. The donors should be observed for at least 1 h after the first administration of G-CSF. PMID:27994532

  15. Broad-Spectrum Antibiotic or G-CSF as Potential Countermeasures for Impaired Control of Bacterial Infection Associated with an SPE Exposure during Spaceflight

    PubMed Central

    Li, Minghong; Holmes, Veronica; Ni, Houping; Sanzari, Jenine K.; Romero-Weaver, Ana L.; Lin, Liyong; Carabe-Fernandez, Alejandro; Diffenderfer, Eric S.; Kennedy, Ann R.; Weissman, Drew

    2015-01-01

    A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body’s defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure. PMID:25793272

  16. Estimation of rhG-CSF absorption kinetics after subcutaneous administration using a modified Wagner-Nelson method with a nonlinear elimination model.

    PubMed

    Hayashi, N; Aso, H; Higashida, M; Kinoshita, H; Ohdo, S; Yukawa, E; Higuchi, S

    2001-05-01

    The clearance of recombinant human granulocyte-colony stimulating factor (rhG-CSF) is known to decrease with dose increase, and to be saturable. The average clearance after intravenous administration will be lower than that after subcutaneous administration. Therefore, the apparent absolute bioavailability with subcutaneous administration calculated from the AUC ratio is expected to be an underestimate. The absorption pharmacokinetics after subcutaneous administration was examined using the results of the bioequivalency study between two rhG-CSF formulations with a dose of 2 microg/kg. The analysis was performed using a modified Wagner-Nelson method with the nonlinear elimination model. The apparent absolute bioavailability for subcutaneous administration was 56.9 and 67.5% for each formulation, and the ratio between them was approximately 120%. The true absolute bioavailability was, however, estimated to be 89.8 and 96.9%, respectively, and the ratio was approximately 108%. The absorption pattern was applied to other doses, and the predicted clearance values for subcutaneous and intravenous administrations were then similar to the values for several doses reported in the literature. The underestimation of bioavailability was around 30%, and the amplification of difference was 2.5 times, from 8 to 20%, because of the nonlinear pharmacokinetics. The neutrophil increases for each formulation were identical, despite the different bioavailabilities. The reason for this is probably that the amount eliminated through the saturable process, which might indicate the amount consumed by the G-CSF receptor, was identical for each formulation.

  17. Randomized study of granulocyte colony stimulating factor for childhood B-cell non-Hodgkin lymphoma: a report from the Japanese pediatric leukemia/lymphoma study group B-NHL03 study.

    PubMed

    Tsurusawa, Masahito; Watanabe, Tomoyuki; Gosho, Masahiko; Mori, Tetsuya; Mitsui, Tetsuo; Sunami, Shosuke; Kobayashi, Ryoji; Fukano, Reiji; Tanaka, Fumiko; Fujita, Naoto; Inada, Hiroko; Sekimizu, Masahiro; Koh, Katsuyoshi; Kosaka, Yoshiyuki; Komada, Yoshihiro; Saito, Akiko M; Nakazawa, Atsuko; Horibe, Keizo

    2016-07-01

    The objective of this study was to assess the impact of the primary prophylaxis of granulocyte colony-stimulating factor (G-CSF) in the management of childhood B-cell non-Hodgkin lymphoma (B-NHL). Patients with advanced-stage mature B-NHL were randomized to receive prophylactic G-CSF (G-CSF+) or not receive G-CSF (G-CSF-) based on protocols of the B-NHL03 study. The G-CSF group received 5 μg/kg/d Lenograstim from day 2 after each course of six chemotherapy courses. Fifty-eight patients were assessable, 29 G-CSF + and 29 G-CSF-. G-CSF + patients showed a positive impact on the meantime to neutrophil recovery and hospital stay. On the other hand, they had no impact in the incidences of febrile neutropenia, serious infections, stomatitis and total cost. Our study showed that administration of prophylactic G-CSF through all six chemotherapy courses for childhood B-NHL showed no clinical and economic benefits for the management of childhood B-NHL treatment.

  18. Development and calibration of a standard for the protein content of granulocyte colony-stimulating factor products.

    PubMed

    Gao, Kai; Rao, Chunming; Tao, Lei; Han, Chunmei; Shi, Xinchang; Wang, Lan; Fan, Wenhong; Yu, Lei; Wang, Junzhi

    2012-03-01

    This collaborative study characterizes a homogeneous standard for the protein content determination of granulocyte colony-stimulating factor (G-CSF) products with traceability of the measurement. The Kjeldahl method was used to determine the average protein content of G-CSF bulk as 2.505 mg/ml (95% C.I: 2.467-2.543 mg/ml, GCV 4.0%). Using G-CSF bulk as a traceability benchmark, the protein content of the final freeze-dried standard using reverse phase HPLC (RP-HPLC) was 215.4 μg protein per ampoule (95% C.I: 212.407-218.486 μg/ampoule, GCV 3.4%). A comparative study showed that there was no difference between using Filgrastim CRS (European Pharmacopeia G-CSF reference standard) and freeze-dried homogeneous standard when quantifying G-CSF protein content by RP-HPLC (P > 0.05). However, there were significant differences in the G-CSF protein content obtained using a serum albumin standard by Lowry assay and a G-CSF standard with RP-HPLC. Therefore, use of RP-HPLC with a freeze-dried homogeneous standard would eliminate the systematic errors introduced when using a serum albumin standard because of the differences in protein composition between the standard and the sample. It would also be helpful to use this method to compare the quality of G-CSF biosimilar products in situations where the protein content has been calibrated using various standards.

  19. Optimization of auto-induction medium for G-CSF production by Escherichia coli using artificial neural networks coupled with genetic algorithm.

    PubMed

    Tian, H; Liu, C; Gao, X D; Yao, W B

    2013-03-01

    Granulocyte colony-stimulating factor (G-CSF) is a cytokine widely used in cancer patients receiving high doses of chemotherapeutic drugs to prevent the chemotherapy-induced suppression of white blood cells. The production of recombinant G-CSF should be increased to meet the increasing market demand. This study aims to model and optimize the carbon source of auto-induction medium to enhance G-CSF production using artificial neural networks coupled with genetic algorithm. In this approach, artificial neural networks served as bioprocess modeling tools, and genetic algorithm (GA) was applied to optimize the established artificial neural network models. Two artificial neural network models were constructed: the back-propagation (BP) network and the radial basis function (RBF) network. The root mean square error, coefficient of determination, and standard error of prediction of the BP model were 0.0375, 0.959, and 8.49 %, respectively, whereas those of the RBF model were 0.0257, 0.980, and 5.82 %, respectively. These values indicated that the RBF model possessed higher fitness and prediction accuracy than the BP model. Under the optimized auto-induction medium, the predicted maximum G-CSF yield by the BP-GA approach was 71.66 %, whereas that by the RBF-GA approach was 75.17 %. These predicted values are in agreement with the experimental results, with 72.4 and 76.014 % for the BP-GA and RBF-GA models, respectively. These results suggest that RBF-GA is superior to BP-GA. The developed approach in this study may be helpful in modeling and optimizing other multivariable, non-linear, and time-variant bioprocesses.

  20. Neuroprotection of Granulocyte Colony-Stimulating Factor for Early Stage Parkinson's Disease.

    PubMed

    Tsai, Sheng-Tzung; Chu, Sung-Chao; Liu, Shu-Hsin; Pang, Cheng-Yoong; Hou, Ting-Wen; Lin, Shinn-Zong; Chen, Shin-Yuan

    2017-03-13

    Parkinson's disease (PD) is a slowly progressive neurodegenerative disease. Both medical and surgical choices provide symptomatic treatment. Granulocyte colony-stimulating factor (G-CSF), a conventional treatment for hematological diseases, has demonstrated its effectiveness in acute and chronic neurological diseases through its anti-inflammatory and antiapoptosis mechanisms. Based on previous in vitro and in vivo studies, we administered a lower dose (3.3 μg/kg) G-CSF injection for 5 days and six courses for 1 year in early-stage PD patients as a phase I trial. The four PD patient's mean unified PD rating scale motor scores in medication off status remained stable from 23 before the first G-CSF injection to 22 during the 2-year follow-up. 3,4-Dihydroxy-6-18F-fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) studies also revealed an annual 3.5% decrease in radiotracer uptake over the caudate nucleus and 7% in the putamen, both slower than those of previous reports of PD. Adverse effects included transient muscular-skeletal pain, nausea, vomiting, and elevated liver enzymes. Based on this preliminary report, G-CSF seems to alleviate disease deterioration for early stage PD patients. The effectiveness of G-CSF was possibly due to its amelioration of progressive dopaminergic neuron degeneration.

  1. Biosimilar granulocyte-colony-stimulating factor for healthy donor stem cell mobilization: need we be afraid?

    PubMed

    Bonig, Halvard; Becker, Petra S; Schwebig, Arnd; Turner, Matthew

    2015-02-01

    Biosimilars are approved biologics with comparable quality, safety, and efficacy to a reference product. Unlike generics, which are chemically manufactured copies of small-molecule drugs with relatively simple chemical structures, the biosimilar designation is applied to drugs that are produced by living organisms, implying much more difficult to control manufacturing and purification procedures. To account for these complexities, the European Medicines Agency (EMA), the US Food and Drug Administration, the Australian Therapeutic Goods Administration, and other regulatory authorities have devised and implemented specific, markedly more demanding pathways for the evaluation and approval of biosimilars. To date, several biosimilars have been approved, including versions of somatropin, erythropoietin, and granulocyte-colony-stimulating factor (G-CSF), and several biosimilar monoclonal antibodies are currently in development. The reference G-CSF product (Neupogen, Amgen) has been used for many years for prevention and treatment of neutropenia and also for mobilization of peripheral blood stem cells (PBSCs). However, concerns have been raised about the safety and efficacy of biosimilar G-CSF during PBSC mobilization procedures, especially in healthy donors. This article reviews the available evidence on the use of biosimilar G-CSF in this setting. Aggregate clinical evidence supports the assessment by the EMA of biosimilar and originator G-CSF as highly biologically similar, with respect to desired and undesired effects.

  2. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice

    SciTech Connect

    Moore, M.A.S.; Warren, D.J.

    1987-10-01

    The human bladder carcinoma cell line 5637 produces hematopoietic growth factors (granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)) and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1..cap alpha.. (IL-1..cap alpha..). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1..cap alpha.. and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or human IL-1..cap alpha.. accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F/sub 1/ mice. The combination of IL-1..cap alpha.. and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression.

  3. Contribution of granulocyte colony-stimulating factor to the acute mobilization of endothelial precursor cells by vascular disrupting agents.

    PubMed

    Shaked, Yuval; Tang, Terence; Woloszynek, Jill; Daenen, Laura G; Man, Shan; Xu, Ping; Cai, Shi-Rong; Arbeit, Jeffrey M; Voest, Emile E; Chaplin, David J; Smythe, Jon; Harris, Adrian; Nathan, Paul; Judson, Ian; Rustin, Gordon; Bertolini, Francesco; Link, Daniel C; Kerbel, Robert S

    2009-10-01

    Vascular disrupting agents (VDA) cause acute shutdown of abnormal established tumor vasculature, followed by massive intratumoral hypoxia and necrosis. However, a viable rim of tumor tissue invariably remains from which tumor regrowth rapidly resumes. We have recently shown that an acute systemic mobilization and homing of bone marrow-derived circulating endothelial precursor (CEP) cells could promote tumor regrowth following treatment with either a VDA or certain chemotherapy drugs. The molecular mediators of this systemic reactive host process are unknown. Here, we show that following treatment of mice with OXi-4503, a second-generation potent prodrug derivative of combretastatin-A4 phosphate, rapid increases in circulating plasma vascular endothelial growth factor, stromal derived factor-1 (SDF-1), and granulocyte colony-stimulating factor (G-CSF) levels are detected. With the aim of determining whether G-CSF is involved in VDA-induced CEP mobilization, mutant G-CSF-R(-/-) mice were treated with OXi-4503. We found that as opposed to wild-type controls, G-CSF-R(-/-) mice failed to mobilize CEPs or show induction of SDF-1 plasma levels. Furthermore, Lewis lung carcinomas grown in such mice treated with OXi-4503 showed greater levels of necrosis compared with tumors treated in wild-type mice. Evidence for rapid elevations in circulating plasma G-CSF, vascular endothelial growth factor, and SDF-1 were also observed in patients with VDA (combretastatin-A4 phosphate)-treated cancer. These results highlight the possible effect of drug-induced G-CSF on tumor regrowth following certain cytotoxic drug therapies, in this case using a VDA, and hence G-CSF as a possible therapeutic target.

  4. The combination of stem cell factor and granulocyte-colony stimulating factor for chronic stroke treatment in aged animals

    PubMed Central

    2012-01-01

    Background Stroke occurs more frequently in the elderly population and presents the number one leading cause of persistent disability worldwide. Lack of effective treatment to enhance brain repair and improve functional restoration in chronic stroke, the recovery phase of stroke, is a challenging medical problem to be solved in stroke research. Our early study has revealed the therapeutic effects of stem cell factor (SCF) in combination with granulocyte-colony stimulating factor (G-CSF) (SCF+G-CSF) on chronic stroke in young animals. However, whether this treatment is effective and safe to the aged population remains to be determined. Methods Cortical brain ischemia was produced in aged C57BL mice or aged spontaneously hypertensive rats. SCF+G-CSF or equal volume of vehicle solution was subcutaneously injected for 7 days beginning at 3–4 months after induction of cortical brain ischemia. Using the approaches of biochemistry assays, flow cytometry, pathology, and evaluation of functional outcome, several doses of SCF+G-CSF have been examined for their safety and efficiency on chronic stroke in aged animals. Results All tested doses did not show acute or chronic toxicity in the aged animals. Additionally, SCF+G-CSF treatment in chronic stroke of aged animals mobilized bone marrow stem cells and improved functional outcome in a dose-dependent manner. Conclusions SCF+G-CSF treatment is a safe and effective approach to chronic stroke in the aged condition. This study provides important information needed for developing a new therapeutic strategy to improve the health of older adults with chronic stroke. PMID:23254113

  5. Case Report. Prevention of Clozapine-Induced Granulocytopenia/Agranulocytosis with Granulocyte-Colony Stimulating Factor (G-CSF) in an Intellectually Disabled Patient with Schizophrenia

    ERIC Educational Resources Information Center

    Rajagopal, G.; Graham, J. G.; Haut, F. F. A.

    2007-01-01

    Background: While clozapine is an effective treatment for refractory schizophrenia, its use is limited by haematological side effects. Treatment options that allow continued prescription of clozapine by tackling these side effects will greatly aid patients for whom this medication is all too often their only hope of recovery. Method: In this case…

  6. Immunomodulation of Bu-Zhong-Yi-Qi-Tang on in vitro granulocyte colony-stimulating-factor and tumor necrosis factor-alpha production by peripheral blood mononuclear cells.

    PubMed

    Kao, S T; Yang, S L; Hsieh, C C; Yang, M D; Wang, T F; Lin, J G

    2000-11-01

    Bu-Zhong-Yi-Qi-Tang (BZYQT) is a Chinese medicine, and has been used for the treatment of hepatocellular carcinoma (HCC) patients. At present, we still do not fully understand the effects of BZYQT on the cellular physiology. Present in vitro study demonstrated that BZYQT is capable of increasing granulocyte colony-stimulating-factor (G-CSF) and tumor necrosis factor-alpha (TNF-alpha) production by peripheral blood mononuclear cells (PBMC) in healthy volunteers and patients with HCC. The productions of G-CSF and TNF-alpha by PBMC of volunteers were significantly stimulated by more than 125 microg/ml of BZYQT. G-CSF levels stimulated by PBMC of healthy volunteers were higher than in PBMC of the HCC patients when more than 625 microg/ml of BZYQT was administrated. The reason may be due to the impaired immunologic reactivity of mononuclear cells in HCC patients. However, the production levels of TNF-alpha in HCC patients can be stimulated to levels as high as those in healthy volunteers. When adding high concentration (3.125 mg/ml) of BZYQT to the cultured PBMC, the increments of G-CSF and TNF-alpha production decreased although there were no obvious changes in the number of metabolic active PBMC changed. TNF-alpha andG-CSF are known to play important roles in the biological defensive mechanism. These findings show that BZYQT is a unique formula for the stimulation of PBMC to produce G-CSF and TNF-alpha. Administration of BZYQT may be beneficial for patients with HCC to modulate these cytokines.

  7. Granulocyte Colony-Stimulating Factor Induces Osteoblast Inhibition by B Lymphocytes and Osteoclast Activation by T Lymphocytes during Hematopoietic Stem/Progenitor Cell Mobilization.

    PubMed

    Li, Sidan; Li, Tianshou; Chen, Yongbing; Nie, Yinchao; Li, Changhong; Liu, Lanting; Li, Qiaochuan; Qiu, Lugui

    2015-08-01

    In the bone marrow (BM), hematopoietic stem and progenitor cells (HSPCs) reside in specialized niches near osteoblast cells at the endosteum. HSPCs that egress to peripheral blood are widely used for transplant, and mobilization is most commonly performed with recombinant human granulocyte colony-stimulating factor (G-CSF). However, the cellular targets of G-CSF that initiate the mobilization cascade and bone remodeling are not completely understood. Here, we examined whether T and B lymphocytes modulate the bone niche and influence HSPC mobilization. We used T and B defective mice to show that G-CSF-induced mobilization of HSPCs correlated with B lymphocytes but poorly with T lymphocytes. In addition, we found that defective B lymphocytes prevent G-CSF-mediated osteoblast disruption, and further study showed BM osteoblasts were reduced coincident with mobilization, induced by elevated expression of dickkopf1 of BM B lymphocytes. BM T cells were also involved in G-CSF-induced osteoclast activation by regulating the Receptor Activator of Nuclear Factor-κ B Ligand/Osteoprotegerin (RANKL/OPG) axis. These data provide evidence that BM B and T lymphocytes play a role in G-CSF-induced HSPC mobilization by regulating bone remodeling.

  8. Granulocyte colony-stimulating factor-producing pancreatic anaplastic carcinoma in ascitic fluid at initial diagnosis: A case report.

    PubMed

    Kubota, Nao; Naito, Yoshiki; Kawahara, Akihiko; Taira, Tomoki; Yamaguchi, Tomohiko; Yoshida, Tomoko; Abe, Hideyuki; Takase, Yorihiko; Fukumitsu, Chihiro; Murata, Kazuya; Ishida, Yusuke; Okabe, Yoshinobu; Kimura, Yoshizo; Tanigawa, Masahiko; Mihara, Yutaro; Nakayama, Masamichi; Yamaguchi, Rin; Akiba, Jun; Yano, Hirohisa

    2017-02-10

    Granulocyte colony-stimulating factor (G-CSF)-producing pancreatic tumors are extremely rare. These tumors have an aggressive clinical course and no established treatment. Here, we report an autopsy case of G-CSF-production in pancreatic anaplastic carcinoma (PAC). A 72-year-old woman presented with a large pancreatic head mass and multiple liver metastases. Laboratory data showed leukocytosis (leukocyte count 113.3 × 10(3) /µL) and high serum G-CSF levels (441 pg/mL; normal range: <39.0 pg/mL). The ascitic fluid was submitted to our pathology laboratory at initial diagnosis. Cytopathology showed that smears from the ascitic fluid were highly cellular and contained numerous malignant cells, mainly in loose groupings. Occasional pseudoglandular formations and giant cells were also present. The malignant cells were round, and no spindle-shaped cells were visible. The nuclei were round to ovoid with coarsely granular chromatin and large prominent nucleoli. Upon immunocytochemistry, tumor cells were positive for G-CSF and vimentin; there was no E-cadherin expression. Histopathological examination of the tumor showed a mixed composition of adenocarcinomatous and sarcomatous regions. Upon immunohistochemistry, both components were positive for G-CSF. Few CD34-positive myeloblasts were observed in the bone marrow. Thus, we diagnosed this as a case of G-CSF production in PAC with leukocytosis. To the best of our knowledge, this is the first report on G-CSF expression immunocytochemically confirmed in PAC. Diagn. Cytopathol. © 2017 Wiley Periodicals, Inc.

  9. Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis.

    PubMed

    Cheng, Allen C; Stephens, Dianne P; Anstey, Nicholas M; Currie, Bart J

    2004-01-01

    Melioidosis, caused by the intracellular pathogen Burkholderia pseudomallei, is endemic in northern Australia and Southeast Asia. Risk factors for this infection have also been associated with functional neutrophil defects. Because of this, granulocyte colony-stimulating factor (G-CSF) was adopted for use in patients with septic shock due to melioidosis in December 1998. We compared the mortality rates from before and after the introduction of G-CSF therapy at the Royal Darwin Hospital (Darwin, Australia) during the period of 1989-2002. The mortality rate decreased from 95% to 10% after the introduction of G-CSF. Risk factors, the duration of illness before presentation, and the severity of illness were similar in both groups. A smaller decrease in mortality among patients in the intensive care unit who did not have melioidosis was observed, suggesting that other changes in management did not account for the magnitude of the benefit seen. We conclude that G-CSF may have contributed to the reduction in the mortality rate among patients with septic shock due to melioidosis.

  10. Predictors for successful PBSC collection on the fourth day of G-CSF-induced mobilization in allogeneic stem cell donors.

    PubMed

    van Oostrum, Anja; Zwaginga, Jaap Jan; Croockewit, Sandra; Overdevest, Jacqueline; Fechter, Mirjam; Ruiterkamp, Bart; Brand, Anneke; Netelenbos, Tanja

    2017-01-31

    Peripheral blood stem cells (PBSCs) used for allogeneic transplantation are collected by apheresis after pre-treatment of donors with G-CSF. Using modern apheresis devices stem cells can be collected more efficiently. It was studied whether collection on the 4th instead of the 5th day after initiation of G-CSF treatment might be feasible. Stem cell yields that could have been collected on day 4 were calculated in two cohorts treated with 10 µg/kg G-CSF once daily (n = 106, cohort I) or 5 µg/kg twice daily schedule (n = 85, cohort II). Harvests were predicted using the median collection efficiency (CE) of the apheresis machine and regarded successful when > 5.0 x10(6) CD34(+/) kg recipient body weight. Successful harvests at day 4 could have been obtained in only 22.6% and 41.2% of donors in cohort I and II respectively, while the expected successful collections on day 5 were 55.7% and 76.5%. Individual donor factors that correlated with a successful harvest on day 4 were weight, BMI, age, ratio donor/recipient weight and total G-CSF dose in cohort I, whereas ratio donor/recipient weight was the only significant predictor in cohort II. Donor weight, BMI and total G-CSF dose correlated positively with CD34(+) values in the blood on day 4 in all donors. However, donor characteristics were not able to be used as strong predictors in daily practice. In conclusion, PBSC collection on day 4 will not result in a successful harvest in most stem cell donors, however using a twice daily G-CSF scheme increases the yield.

  11. Granulocyte colony-stimulating factor-producing undifferentiated carcinoma of the colon mimicking a pulmonary giant cell carcinoma: a case showing overexpression of CD44 along with highly proliferating nestin-positive tumor vessels.

    PubMed

    Tajima, Shogo; Waki, Michihiko; Tsuchiya, Tomonori; Hoshi, Shoji

    2014-01-01

    Granulocyte colony-stimulating factor (G-CSF)-producing tumors are known for their aggressive behavior. Only four cases of G-CSF-producing colorectal carcinoma have been previously reported. Herein, we present a case of an undifferentiated carcinoma of the descending colon showing G-CSF production and giant cell carcinoma morphology in a 93-year-old woman. A tumor with a diameter of 80 mm was identified in the descending colon via computed tomography. Descending colectomy was performed involving the abdominal wall where tumor invasion was observed. The white blood cell count, which was elevated before resection, decreased to normal levels after intervention. However, local recurrence at the resected site was detected 39 days after surgery. Upon recurrence, increased white blood cell counts and serum G-CSF were seen. The patient died because of respiratory failure 98 days after colectomy. By using immunohistochemistry, G-CSF expression was detected in tumor cells in the resected specimen, along with overexpression of CD44 and highly proliferating nestin-positive tumor vessels. The poor clinical outcome of this patient is consistent with previous reports that the expression of these three molecules predict poor prognosis. While G-CSF can be a therapeutic target considering its auto/paracrine function to induce tumor growth via the G-CSF receptor, CD44 and nestin may also be possible candidate therapeutic targets. Further studies are required to assess the efficacy of treatments targeting these three molecules.

  12. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    PubMed

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  13. Administration of granulocyte colony stimulating factor after liver transplantation leads to an increased incidence and severity of ischemic biliary lesions in the rat model

    PubMed Central

    Dirsch, Olaf; Chi, Haidong; Ji, Yuan; Gu, Yan Li; Broelsch, Christoph E; Dahmen, Uta

    2006-01-01

    AIM: Recently it has been reported that granulocyte colony stimulating factor (G-CSF) can induce hypercoagulability in healthy bone marrow donors. It is conceivable that the induction of a prothrombotic state in a recipient of an organ graft with already impaired perfusion might cause further deterioration in the transplanted organ. This study evaluated whether G-CSF treatment worsens liver perfusion following liver transplantation in the rat model. METHODS: A non-arterialized rat liver transplantation model was employed to evaluate the effect of G-CSF treatment on the liver in a syngeneic and allogeneic strain combination. Study outcomes included survival time and liver damage as investigated by liver enzymes and liver histology. Observation times were 1 d, 1 wk and 12 wk. RESULTS: Rats treated with G-CSF had increased incidence and severity of biliary damage following liver transplantation. In these animals, hepatocellular necrosis was accentuated in the centrilobular region. These lesions are indicative of impaired perfusion in G-CSF treated animals. CONCLUSION: G-CSF should be used with caution in recipients of liver transplantation, as treatment might enhance preexisting, undetected perfusion problems and ultimately lead to ischemia induced biliary complications. PMID:16937499

  14. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line.

    PubMed

    Sheng, Xianfu; Zhong, Hua; Wan, Haixia; Zhong, Jihua; Chen, Fangyuan

    2016-07-01

    Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of

  15. Stem cell mobilisation by granulocyte-colony stimulating factor in patients with acute myocardial infarction. Long-term results of the REVIVAL-2 trial.

    PubMed

    Steppich, Birgit; Hadamitzky, Martin; Ibrahim, Tareq; Groha, Philip; Schunkert, Heribert; Laugwitz, Karl-Ludwig; Kastrati, Adnan; Ott, Ilka

    2016-04-01

    Treatment with granulocyte-colony stimulating factor (G-CSF) mobilises cells from the bone marrow to the peripheral blood. Previous preclinical and early clinical trials may suggest that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischaemic heart disease. In the REVIVAL-2 study we found that stem cell mobilisation by G-CSF does not influence infarct size, left ventricular function and coronary restenosis in patients with acute myocardial infarction (MI) that underwent successful percutaneous coronary intervention. The objective of the present analysis was to assess the impact of G-CSF treatment on seven-year clinical outcomes from the REVIVAL-2 trial. In the randomized, double-blind, placebo-controlled REVIVAL-2 study, 114 patients with the diagnosis of acute myocardial infarction were enrolled five days after successful reperfusion by percutaneous coronary intervention. Patients were assigned to receive 10 µg/kg G-CSF (n=56) or placebo (n=58) for five days. The primary endpoint for this long-term outcome analysis was the composite of death, myocardial infarction or stroke seven years after randomisation. The endpoint occurred in 14.3 % of patients in the G-CSF group versus 17.2 % assigned to placebo (p=0.67). The combined incidence of death or myocardial infarction occurred in 14.3 % of the patients assigned to G-CSF and 15.5 % of the patients assigned to placebo (p=0.85). In conclusion, these long-term follow-up data show that G-CSF does not improve clinical outcomes of patients with acute myocardial infarction.

  16. Enhanced activation of B cells in a granulocyte colony-stimulating factor-mobilized peripheral blood stem cell graft.

    PubMed

    Tayebi, H; Lapierre, V; Saas, P; Lienard, A; Sutton, L; Milpied, N; Attal, M; Cahn, J Y; Kuentz, M; Blaise, D; Hervé, P; Tiberghien, P; Robinet, E

    2001-09-01

    In a randomized study that compared human leucocyte antigen-identical allogeneic granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cell (PBSC) versus bone marrow (BM) transplantation, the expression of activation markers, CD23, CD25 and CD45RO by B cells, was compared in blood before and after G-CSF mobilization and in PBSC versus BM grafts. The fractions of CD23+ and CD25+ B cells were higher in PBSC than in BM grafts. Moreover, we observed a G-CSF-induced increase in B-cell fractions in blood as well as in PBSC grafts when compared with BM grafts. Such an enhanced B-cell activation could contribute to the accelerated kinetics of immuno-haematological reconstitution, the occurrence of acute haemolysis in the ABO minor incompatibility setting, as well as the increased incidence of chronic graft-versus-host disease observed after PBSC transplantation.

  17. Granulocyte Colony-stimulating Factor Producing Anaplastic Carcinoma of the Pancreas: Case Report and Review of the Literature.

    PubMed

    Vinzens, Sarah; Zindel, Joel; Zweifel, Martin; Rau, Tilman; Gloor, Beat; Wochner, Annette

    2017-01-01

    We report on the case of a 67-year-old man with granulocyte colony-stimulating factor (G-CSF) producing anaplastic carcinoma of the pancreas. Preoperative routine tests revealed an elevated white blood cell (WBC) count of 25.2 G/l, consisting almost exclusively of neutrophilic granulocytes (23.31 G/l) with a predominance of segmented neutrophils (78% of all neutrophilic granulocytes), and elevated levels of C-reactive protein at 87 mg/l. Upon surgery, local tumour infiltration was more extensive than expected from preoperative imaging. However, no peritoneal dissemination was found and curative resection was attempted. Only seven days after the operation, signs of relapse were seen upon computed tomograpy. Histology revealed an undifferentiated anaplastic carcinoma, on the basis of a poorly differentiated ductal adenocarcinoma. Immunohistochemistry demonstrated G-CSF and G-CSF-Receptor expression in some CD68-positive syncytial macrophages. Granulocyte colony-stimulating factor (G-CSF) in serum was elevated at 5.6 pg/ml, which further raised to 43 pg/ml one week after FOLFIRINOX chemotherapy (oxaliplatin, irinotecan, 5-fluorouracil), while WBC decreased from 103.3 G/l to 59.3 G/l. Granulocyte macrophage-colony stimulating factor (GM-CSF) in serum was normal (<0.5 pg/ml). The patient died on postoperative day 34.

  18. G-CSF priming, clofarabine, and high dose cytarabine (GCLAC) for upfront treatment of acute myeloid leukemia, advanced myelodysplastic syndrome or advanced myeloproliferative neoplasm.

    PubMed

    Becker, Pamela S; Medeiros, Bruno C; Stein, Anthony S; Othus, Megan; Appelbaum, Frederick R; Forman, Stephen J; Scott, Bart L; Hendrie, Paul C; Gardner, Kelda M; Pagel, John M; Walter, Roland B; Parks, Cynthia; Wood, Brent L; Abkowitz, Janis L; Estey, Elihu H

    2015-04-01

    Prior study of the combination of clofarabine and high dose cytarabine with granulocyte colony-stimulating factor (G-CSF) priming (GCLAC) in relapsed or refractory acute myeloid leukemia resulted in a 46% rate of complete remission despite unfavorable risk cytogenetics. A multivariate analysis demonstrated that the remission rate and survival with GCLAC were superior to FLAG (fludarabine, cytarabine, G-CSF) in the relapsed setting. We therefore initiated a study of the GCLAC regimen in the upfront setting in a multicenter trial. The objectives were to evaluate the rates of complete remission (CR), overall and relapse-free survival (OS and RFS), and toxicity of GCLAC. Clofarabine was administered at 30 mg m(-2) day(-1) × 5 and cytarabine at 2 g m(-2) day(-1) × 5 after G-CSF priming in 50 newly-diagnosed patients ages 18-64 with AML or advanced myelodysplastic syndrome (MDS) or advanced myeloproliferative neoplasm (MPN). Responses were assessed in the different cytogenetic risk groups and in patients with antecedent hematologic disorder. The overall CR rate was 76% (95% confidence interval [CI] 64-88%) and the CR + CRp (CR with incomplete platelet count recovery) was 82% (95% CI 71-93%). The CR rate was 100% for patients with favorable, 84% for those with intermediate, and 62% for those with unfavorable risk cytogenetics. For patients with an antecedent hematologic disorder (AHD), the CR rate was 65%, compared to 85% for those without an AHD. The 60 day mortality was 2%. Thus, front line GCLAC is a well-tolerated, effective induction regimen for AML and advanced myelodysplastic or myeloproliferative disorders.

  19. G-CSF Priming, Clofarabine, and High Dose Cytarabine (GCLAC) for Upfront Treatment of Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome or Advanced Myeloproliferative Neoplasm

    PubMed Central

    Becker, Pamela S.; Medeiros, Bruno C.; Stein, Anthony S.; Othus, Megan; Appelbaum, Frederick R.; Forman, Stephen J.; Scott, Bart L.; Hendrie, Paul C.; Gardner, Kelda M.; Pagel, John M.; Walter, Roland B.; Parks, Cynthia; Wood, Brent L.; Abkowitz, Janis L.; Estey, Elihu H.

    2016-01-01

    Prior study of the combination of clofarabine and high dose cytarabine with granulocyte colony-stimulating factor (G-CSF) priming (GCLAC) in relapsed or refractory acute myeloid leukemia resulted in a 46% rate of complete remission despite unfavorable risk cytogenetics. A multivariate analysis demonstrated that the remission rate and survival with GCLAC were superior to FLAG (fludarabine, cytarabine, G-CSF) in the relapsed setting. We therefore initiated a study of the GCLAC regimen in the upfront setting in a multicenter trial. The objectives were to evaluate the rates of complete remission (CR), overall and relapse-free survival (OS and RFS), and toxicity of GCLAC. Clofarabine was administered at 30 mg/m2/day × 5 and cytarabine at 2 gm/m2/day × 5 after G-CSF priming in 50 newly-diagnosed patients ages 18–64 with AML or advanced myelodysplastic syndrome (MDS) or advanced myeloproliferative neoplasm (MPN). Responses were assessed in the different cytogenetic risk groups and in patients with antecedent hematologic disorder. The overall CR rate was 76% (95% confidence interval [CI] 64–88%) and the CR + CRp (CR with incomplete platelet count recovery) was 82% (95% CI 71–93%). The CR rate was 100% for patients with favorable, 84% for those with intermediate, and 62% for those with unfavorable risk cytogenetics. For patients with an antecedent hematologic disorder (AHD), the CR rate was 65%, compared to 85% for those without an AHD. The 60 day mortality was 2%. Thus, front line GCLAC is a well-tolerated, effective induction regimen for AML and advanced myelodysplastic or myeloproliferative disorders. PMID:25545153

  20. Endotoxin down-modulates granulocyte colony-stimulating factor receptor (CD114) on human neutrophils.

    PubMed

    Hollenstein, U; Homoncik, M; Stohlawetz, P J; Marsik, C; Sieder, A; Eichler, H G; Jilma, B

    2000-07-01

    During infection, the development of nonresponsiveness to granulocyte colony-stimulating factor (G-CSF) may be influenced by the down-modulation of G-CSF receptor (G-CSFR) by cytokines. This down-modulation was studied during experimental human endotoxemia. Healthy volunteers received either 2 ng/kg endotoxin (lipopolysaccharide [LPS], n=20) or placebo (n=10) in a randomized, controlled trial. Endotoxin infusion increased the mean fluorescence intensity of the neutrophil activation marker CD11b >300% after 1 h (P<.001 vs. placebo). LPS infusion down-modulated G-CSFR expression in as early as 60 min (-17%; P=.001 vs. placebo). Down-modulation was almost maximal at 90 min and persisted for 6 h (-50% from baseline; P<.0001 vs. placebo). Plasma levels of G-CSF started to increase only after G-CSFR down-modulation had occurred and peaked 37-fold above baseline at 4 h (P<.0001 vs. placebo). In conclusion, LPS down-modulates G-CSFR expression in humans, which may render neutrophils less responsive to the effects of G-CSF and, thereby, compromise host defense mechanisms.

  1. Attitudes of physicians toward assessing risk and using granulocyte colony-stimulating factor as primary prophylaxis in patients receiving chemotherapy associated with an intermediate risk of febrile neutropenia.

    PubMed

    Freyer, Gilles; Kalinka-Warzocha, Ewa; Syrigos, Konstantinos; Marinca, Mihai; Tonini, Giuseppe; Ng, Say Liang; Wong, Zee Wan; Salar, Antonio; Steger, Guenther; Abdelsalam, Mahmoud; DeCosta, Lucy; Szabo, Zsolt

    2015-10-01

    Febrile neutropenia (FN) is a potentially fatal complication of chemotherapy. This prospective, observational study describes physicians' approaches toward assessing FN risk in patients receiving chemotherapy regimens with an intermediate (10-20 %) FN risk. In the baseline investigator assessment, physicians selected factors considered important when assessing overall FN risk and deciding on granulocyte colony-stimulating factor (G-CSF) primary prophylaxis (PP). Physicians then completed patient assessments using the same lists of factors. The final FN risk scores and whether G-CSF PP was planned were reported. The final analysis included 165 physicians and 944 patients. The most frequently considered factor in both assessments was chemotherapy agents in the backbone (88 % of investigator and 93 % of patient assessments). History of FN (83 %), baseline laboratory values (76 %) and age (73 %) were commonly selected at baseline, whereas tumor type (72 %), guidelines (62 %) and tumor stage (43 %) were selected most during patient assessments. Median investigator-reported FN risk threshold for G-CSF PP was 20 % (range 10-85 %). G-CSF PP was planned in 82 % of patients with an FN risk at or above this threshold; therefore, almost one-fifth of qualifying patients would not receive G-CSF PP. Physicians generally follow guidelines, but also consider individual patient characteristics when assessing FN risk and deciding on G-CSF PP. A standardized FN risk assessment may optimize the use of G-CSF PP, which may minimize the incidence of FN in patients undergoing chemotherapy with an intermediate FN risk. ClinicalTrials.gov Identifier: NCT01813721.

  2. The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor.

    PubMed

    Swierczak, Agnieszka; Cook, Andrew D; Lenzo, Jason C; Restall, Christina M; Doherty, Judy P; Anderson, Robin L; Hamilton, John A

    2014-08-01

    Treatment options are limited for patients with breast cancer presenting with metastatic disease. Targeting of tumor-associated macrophages through the inhibition of colony-stimulating factor-1 receptor (CSF-1R), a key macrophage signaling pathway, has been reported to reduce tumor growth and metastasis, and these treatments are now in clinical trials. Here, we report that, surprisingly, treatment with neutralizing anti-CSF-1R and anti-CSF-1 antibodies, or with two different small-molecule inhibitors of CSF-1R, could actually increase spontaneous metastasis without altering primary tumor growth in mice bearing two independently derived mammary tumors. The blockade of CSF-1R or CSF-1 led to increased levels of serum G-CSF, increased frequency of neutrophils in the primary tumor and in the metastasis-associated lung, as well as increased numbers of neutrophils and Ly6C(hi) monocytes in the peripheral blood. Neutralizing antibody against the G-CSF receptor, which regulates neutrophil development and function, reduced the enhanced metastasis and neutrophil numbers that resulted from CSF-1R blockade. These results indicate that the role of the CSF-1R/CSF-1 system in breast cancer is far more complex than originally proposed, and requires further investigation as a therapeutic target.

  3. Cdc42 inhibitor ML141 enhances G-CSF-induced hematopoietic stem and progenitor cell mobilization.

    PubMed

    Chen, Chong; Song, Xuguang; Ma, Sha; Wang, Xue; Xu, Jie; Zhang, Huanxin; Wu, Qingyun; Zhao, Kai; Cao, Jiang; Qiao, Jianlin; Sun, Xiaoshen; Li, Depeng; Zeng, Lingyu; Li, Zhengyu; Xu, Kailin

    2015-01-01

    G-CSF is the most often used agent in clinical hematopoietic stem and progenitor cell (HSPC) mobilization. However, in about 10 % of patients, G-CSF does not efficiently mobilize HSPC in clinically sufficient amounts. Cdc42 activity is involved in HSPC mobilization. In the present study, we explore the impact of Cdc42 inhibitor ML141 on G-CSF-mediated HSPC mobilization in mice. We found that the use of ML141 alone only triggered modest HSPC mobilization effect in mice. However, combination of G-CSF and ML141 significantly promoted HPSC counts and colony forming units in peripheral blood, as compared to mice treated with G-CSF alone. ML141 did not significantly alter the levels of SDF-1 and MMP-9 in the bone marrow, when used alone or in combination with G-CSF. We also found that G-CSF administration significantly increases the level of GTP-bound Cdc42, but does not alter the expression of Cdc42 in the bone marrow. Our data indicate that the Cdc42 signal is a negative regulator in G-CSF-mediated HSPC mobilization, and that inhibition of the Cdc42 signal efficiently improves mobilization efficiency. These findings may provide a new strategy for efficient HSPC mobilization, especially in patients with poor G-CSF response.

  4. Survival enhancement and hemopoietic regeneration following radiation exposure: Therapeutic approach using glucan and granulocyte colony-stimulating factor

    SciTech Connect

    Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M. )

    1990-10-01

    C3H/HeN female mice were exposed to whole-body cobalt-60 radiation and administered soluble glucan (5 mg i.v. at 1 h following exposure), recombinant human granulocyte colony-stimulating factor (G-CSF; 2.5 micrograms/day s.c., days 3-12 following exposure), or both agents. Treatments were evaluated for their ability to enhance hemopoietic regeneration, and to increase survival after radiation-induced myelosuppression. Both glucan and G-CSF enhanced hemopoietic regeneration alone; however, greater effects were observed in mice receiving both agents. For example, on day 17 following a sublethal 6.5-Gy radiation exposure, mice treated with saline, G-CSF, glucan, or both agents, respectively, exhibited 36%, 65%, 50%, and 78% of normal bone marrow cellularity, and 84%, 175%, 152%, and 212% of normal splenic cellularity. At this same time, granulocyte-macrophage colony-forming cell (GM-CFC) values in saline, G-CSF, glucan, or combination-treated mice, respectively, were 9%, 46%, 26%, and 57% of normal bone marrow values, and 57%, 937%, 364%, and 1477% of normal splenic values. Endogenous spleen colony formation was also increased in all treatment groups, with combination-treated mice exhibiting the greatest effects. Likewise, although both glucan and G-CSF alone enhanced survival following an 8-Gy radiation exposure, greatest survival was observed in mice treated with both agents. These studies suggest that glucan, a macrophage activator, can synergize with G-CSF to further accelerate hemopoietic regeneration and increase survival following radiation-induced myelosuppression.

  5. Granulocyte-colony stimulating factor improves Parkinson's disease associated with co-morbid depression: An experimental exploratory study

    PubMed Central

    Prakash, Ajay; Chopra, Kanwaljit; Medhi, Bikash

    2013-01-01

    Introduction: The present study was designed to evaluate the effect of granulocyte-colony stimulating factor (G-CSF) in the treatment of Parkinson's disease (PD), the second most common neurodegenerative disease characterized by muscle and movement disorder, often associated with depression. PD is very difficult to treat. Hence, the present study was aimed to evaluate the effect of G-CSF in PD associated with depression. Materials and Methods: Adult Wistar male rats weighing about 180-250 g were selected and divided into five groups in parallel designed method namely; control group (n = 5); sham operated group (n = 5); Vehicle group (n = 5); G-CSF group (70 μg/kg, s.c.) (n = 5) and L-DOPA group (n = 5). The rats were treated with 6-hydroxydopamine (6-OHDA) on day 0 and then treatment was continued for 14 day of L-DOPA/carbidopa, whereas G-CSF (70 μg/kg, s.c.) was given from day 1 to 6. Thereafter, adhesive removal and forced swim tests were conducted to evaluate the behavioral outcome of G-CSF treatment. The finding was correlated and analyzed with Nissl staining findings for the final conclusion. Results: The behavioral parameters were assessed and found to be ameliorate the symptoms of Parkinson's and reduced the depression like behavior in PD. The histological findings were supported the behavioral findings and showed pathological improvement. Conclusion: As a preliminary work, the present study first time suggested that G-CSF have a potential role in PD and associated depression. PMID:24347771

  6. Expression cloning of a human granulocyte colony-stimulating factor receptor: a structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin domains

    PubMed Central

    1990-01-01

    We report the isolation from a placental library, of two cDNAs that can encode high affinity receptors for granulocyte colony-stimulating factor (G-CSF) when expressed in COS-7 cells. The cDNAs are predicted to encode integral membrane proteins of 759 and 812 amino acids in length. The predicted extracellular and membrane spanning sequences of the two clones are identical, as are the first 96 amino acids of their respective cytoplasmic regions. Different COOH termini of 34 or 87 residues are predicted for the two cDNAs, due apparently to alternate splicing. The receptor with the longer cytoplasmic domain is the closest human homologue of the murine G-CSF receptor recently described by Fukunaga et al. (Fukunaga, R., E. Ishizaka-Ikeda, Y. Seto, and S. Nagata. 1990. Cell. 61:341). A hybridization probe derived from the placental G-CSF receptor cDNA detects a approximately 3-kb transcript in RNAs isolated from placenta and a number of lymphoid and myeloid cells. The extracellular region of the G-CSF receptors is composed of four distinct types of structural domains, previously recognized in other cell surface proteins. In addition to the two domains of the HP receptor family-defining region (Patthy, L. 1990. Cell. 61:13) it incorporates one NH2-terminal Ig-like domain, and three additional repeats of fibronectin type III-like domains. The presence of both an NH2-terminal Ig-like domain and multiple membrane-proximal FN3-like domains suggests that the G-CSF receptor may be derived from an ancestral NCAM-like molecule and that the G-CSF receptor may function in some adhesion or recognition events at the cell surface in addition to the binding of G-CSF. PMID:2147944

  7. Platelet lysate and granulocyte-colony stimulating factor serve safe and accelerated expansion of human bone marrow stromal cells for stroke therapy.

    PubMed

    Yamauchi, Tomohiro; Saito, Hisayasu; Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2014-12-01

    Autologous human bone marrow stromal cells (hBMSCs) should be expanded in the animal serum-free condition within clinically relevant periods in order to secure safe and effective cell therapy for ischemic stroke. This study was aimed to assess whether the hBMSCs enhance their proliferation capacity and provide beneficial effect in the infarct brain when cultured with platelet lysate (PL) and granulocyte-colony stimulating factor (G-CSF). The hBMSCs were cultured in the fetal calf serum (FCS)-, PL-, or PL/G-CSF-containing medium. Cell growth kinetics was analyzed. The hBMSCs-PL, hBMSC-PL/G-CSF, or vehicle was stereotactically transplanted into the ipsilateral striatum of the rats subjected to permanent middle cerebral artery occlusion 7 days after the insult. Motor function was assessed for 8 weeks, and the fate of transplanted hBMSCs was examined using immunohistochemistry. As the results, the hBMSCs-PL/G-CSF showed more enhanced proliferation than the hBMSCs-FCS and hBMSCs-PL. Transplantation of hBMSCs expanded with the PL- or PL/G-CSF-containing medium equally promoted functional recovery compared with the vehicle group. Histological analysis revealed that there were no significant differences in their migration, survival, and neural differentiation in the infarct brain between the hBMSCs-PL and hBMSCs-PL/G-CSF. These findings strongly suggest that the combination of PL and G-CSF may accelerate hBMSC expansion and serve safe cell therapy for patients with ischemic stroke at clinically relevant timing.

  8. The addition of granulocyte-colony stimulating factor shifts the dose limiting toxicity and markedly increases the maximum tolerated dose and activity of the kinesin spindle protein inhibitor SB-743921 in patients with relapsed or refractory lymphoma: results of an international, multicenter phase I/II study.

    PubMed

    O'Connor, Owen A; Gerecitano, John; Van Deventer, Henrik; Hainsworth, John; Zullo, Kelly M; Saikali, Khalil; Seroogy, Joseph; Wolff, Andrew; Escandón, Rafael

    2015-01-01

    This was a phase I study of SB-743921 (SB-921) in patients with relapsed/refractory lymphoma. Previous studies established that neutropenia was the only dose limiting toxicity (DLT). The primary objective was to determine the DLT, maximum tolerated dose (MTD) and efficacy of SB-921 with and without granulocyte-colony stimulating factor (G-CSF). Sixty-eight patients were enrolled, 42 without G-CSF, 26 with G-CSF. In the cohort without G-CSF, SB-921 doses ranged from 2 to 7 mg/m(2), with 6 mg/m(2) being the MTD. In the cohort with G-CSF support, doses of 6-10 mg/m(2) were administered, with 9 mg/m(2) being the MTD, representing a 50% increase in dose density. Fifty-six patients were evaluable for efficacy. Four of 55 patients experienced a partial response (three in Hodgkin lymphoma and one in non-Hodgkin lymphoma, all at doses ≥ 6 mg/m(2)); 19 patients experienced stable disease, 33 patients developed progression of disease. G-CSF shifted the DLT from neutropenia to thrombocytopenia, allowing for a 50% increase in dose density. Responses were seen at higher doses with G-CSF support.

  9. Effect of Granulocyte Colony-Stimulating Factor-Combined Conditioning in Cord Blood Transplantation for Myelodysplastic Syndrome and Secondary Acute Myeloid Leukemia: A Retrospective Study in Japan.

    PubMed

    Konuma, Takaaki; Takahashi, Satoshi; Uchida, Naoyuki; Kuwatsuka, Yachiyo; Yamasaki, Satoshi; Aoki, Jun; Onishi, Yasushi; Aotsuka, Nobuyuki; Ohashi, Kazuteru; Mori, Takehiko; Masuko, Masayoshi; Nakamae, Hirohisa; Miyamura, Kouichi; Kato, Koji; Atsuta, Yoshiko; Kato, Seiko; Asano, Shigetaka; Takami, Akiyoshi; Miyazaki, Yasushi

    2015-09-01

    Granulocyte colony-stimulating factor (G-CSF) increases the susceptibility of dormant malignant or nonmalignant hematopoietic cells to cytarabine arabinoside (Ara-C) through the induction of cell cycle entry. Therefore, G-CSF-combined conditioning before allogeneic stem cell transplantation might positively contribute to decreased incidences of relapse and graft failure without having to increase the dose of cytotoxic drugs. We conducted a retrospective nationwide study of 336 adult patients with myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML) after single-unit cord blood transplantation (CBT) who underwent 4 different kinds of conditioning regimens: total body irradiation (TBI) ≥ 8 Gy + Ara-C/G-CSF + cyclophosphamide (CY) (n = 65), TBI ≥ 8 Gy + Ara-C + CY (n = 119), TBI ≥ 8 Gy + other (n = 104), or TBI < 8 Gy or non-TBI (n = 48). The TBI ≥ 8 Gy + Ara-C/G-CSF + CY regimen showed significantly higher incidence of neutrophil engraftment (hazard ratio, 1.52; 95% confidence interval [CI], 1.10 to 2.08; P = .009) and lower overall mortality (hazard ratio, .46; 95% CI, .26 to .82; P = .008) rates compared with those without a G-CSF regimen. This retrospective study shows that the G-CSF-combined conditioning regimen provides better engraftment and survival results in CBT for adults with MDS and sAML.

  10. [A case of bladder cancer producing granulocyte colony-stimulating factor and interleukin-6 causing respiratory failure treated with neoadjuvant systemic chemotherapy along with sivelestat].

    PubMed

    Matsuzaki, Kyosuke; Okumi, Masayoshi; Kishimoto, Nozomu; Yazawa, Koji; Miyagawa, Yasushi; Uchida, Kinya; Nonomura, Norio

    2013-07-01

    A 67-year-old man visited an urological clinic with a chief complaint of urination pain. Cystourethroscopy and magnetic resonance imaging (MRI) examination revealed a bladder tumor (cT3bN0M0). Marked leukocytosis and respiratory distress with pleural effusion appeared. Pulse steroid therapy improved the general condition partially. The patient was sent to our hospital for further examination. Serum granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were high and the pathological findings of bladder tumor obtained by transurethral resection (TUR) revealed an urothelial carcinoma that produced G-CSF and IL-6. Neoadjuvant systemic chemotherapy was performed along with use of steroid and sivelestat, which ameliorated the respiratory distress. After three courses of systemic chemotherapy, serum G-CSF and IL-6 normalized and cystoprostatectomy was performed. The patient has been in good health at 20 months after the surgery with no evidence of recurrence.

  11. Effect of Periodic Granulocyte Colony-Stimulating Factor Administration on Endothelial Progenitor Cells and Different Monocyte Subsets in Pediatric Patients with Muscular Dystrophies

    PubMed Central

    Sienkiewicz, Dorota; Grubczak, Kamil; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Miklasz, Paula; Singh, Paulina; Radzikowska, Urszula; Kulak, Wojciech

    2016-01-01

    Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration. We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells with proangiogenic potential. These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric MD patients. PMID:26770204

  12. Peripheral blood stem cell mobilization in multiple myeloma patients treat in the novel therapy-era with plerixafor and G-CSF has superior efficacy but significantly higher costs compared to mobilization with low-dose cyclophosphamide and G-CSF.

    PubMed

    Chaudhary, Lubna; Awan, Farrukh; Cumpston, Aaron; Leadmon, Sonia; Watkins, Kathy; Tse, William; Craig, Michael; Hamadani, Mehdi

    2013-10-01

    Studies comparing the efficacy and cost of peripheral blood stem and progenitor cells mobilization with low-dose cyclophosphamide (LD-CY) and granulocyte-colony stimulating factor (G-CSF) against plerixafor and G-CSF, in multiple myeloma (MM) patients treated in the novel therapy-era are not available. Herein, we report mobilization outcomes of 107 patients who underwent transplantation within 1-year of starting induction chemotherapy with novel agents. Patients undergoing mobilization with LD-CY (1.5 gm/m(2)) and G-CSF (n = 74) were compared against patients receiving plerixafor and G-CSF (n = 33). Compared to plerixafor, LD-CY was associated with a significantly lower median peak peripheral blood CD34+ cell count (68/µL vs. 36/µL, P = 0.048), and lower CD34+ cell yield on day 1 of collection (6.9 × 10(6)/kg vs. 2.4 × 10(6)/kg, P = 0.001). Six patients (8.1%) in the LD-CY group experienced mobilization failure, compared to none in the plerixafor group. The total CD34+ cell yield was significantly higher in the plerixafor group (median 11.6 × 10(6)/kg vs. 7 × 10(6)/kg; P-value = 0.001). Mobilization with LD-CY was associated with increased (albeit statistically non-significant) episodes of febrile neutropenia (5.4% vs. 0%; P = 0.24), higher use of intravenous antibiotics (6.7% vs. 3%; P = 0.45), and need for hospitalizations (9.4% vs. 3%; P = 0.24). The average total cost of mobilization in the plerixafor group was significantly higher compared to the LD-CY group ($28,980 vs. $19,626.5 P-value < 0.0001). In conclusion, in MM plerixafor-based mobilization has superior efficacy, but significantly higher mobilization costs compared to LD-CY mobilization. Our data caution against the use of LD-CY in MM patients for mobilization, especially after induction with lenalidomide-containing regimens.

  13. Chronic recurrent multifocal osteomyelitis with Crohn's disease exacerbation and vasculitis after granulocyte colony-stimulating factor therapy.

    PubMed

    Manners, P; Robbins, P

    2000-10-01

    Chronic recurrent multifocal osteomyelitis (CRMO), of unknown etiology, is characterized by recurring non-suppurative lesions of bone in multiple sites, and has been considered to be self-limiting. Reported therapies include prolonged antibiotics, corticosteroids and anti-inflammatory medications. This case is presented to illustrate the following: 1) CRMO may be severe, on-going, and unresponsive to treatment; 2) it may be associated with Crohns' disease; 3) the use of granulocyte colony-stimulating factor (G-CSF) may be associated with severe gastrointestinal vasculitis. A male was treated from ages 11-20 years for CRMO (manifesting as multiple bone lesions), with therapies of variable efficacy (anti-inflammatories, antibiotics, corticosteroids, gammaglobulin and methotrexate). With increasing disruption to his life, a 10-day course of granulocyte colony-stimulating factor (G-CSF) was given with benefit seen on magnetic resonance imaging (MRI). With exacerbation of symptoms one month later, G-CSF was re-commenced but ceased after 3 weeks because of abdominal pain, rectal blood loss, and progression of bone lesions with subsequent removal of portions of ileum, colon and appendix, which showed vasculitis. Months later, a colonoscopy revealed perianastomotic ulcers and continuing gastroenterological ulceration not unlike Crohn's disease. With azathioprine, gut and bone symptoms improved. We conclude that 1) CRMO may adversely affect life for years; 2) proven treatments are unavailable; 3) gastroenterological vasculitis/ Crohn's may be associated with CRMO; 4) MRI is useful for monitoring CRMO; 5) In this patient, G-CSF seemed beneficial initially, but later, vasculitis (possibly Crohn's) manifested, leading to bowel resection; 6) Crohn's disease may have been present for years, masked by corticosteroid, and unmasked by reduction of steroids and use of G-CSF.

  14. The efficacy of intrauterine instillation of granulocyte colony-stimulating factor in infertile women with a thin endometrium: A pilot study

    PubMed Central

    Lee, Dayong; Jo, Jae Dong; Kim, Seul Ki; Kim, Seok Hyun

    2016-01-01

    Objective The study aimed to investigate the efficacy of intrauterine instillation of granulocyte colony-stimulating factor (G-CSF) on the day of ovulation triggering or oocyte retrieval in infertile women with a thin endometrium. Methods Fifty women whose endometrial thickness (EMT) was ≤8 mm at the time of triggering during at least one previous in vitro fertilization (IVF) cycle and an index IVF cycle were selected. On the day of triggering (n=12) or oocyte retrieval (n=38), 300 µg of G-CSF was instilled into the uterine cavity. Results In the 50 index IVF cycles, the mean EMT was 7.2±0.6 mm on the triggering day and increased to 8.5±1.5 mm on the embryo transfer day (p<0.001). The overall clinical pregnancy rate was 22.0%, the implantation rate was 15.9%, and the ongoing pregnancy rate was 20%. The clinical pregnancy rate (41.7% vs. 15.8%), the implantation rate (26.7% vs. 11.7%), and the ongoing pregnancy rate (41.7% vs. 13.2%) were higher when G-CSF was instilled on the triggering day than when it was instilled on the retrieval day, although this tendency was likewise not statistically significant. Aspects of the stimulation process and mean changes in EMT were similar in women who became pregnant and women who did not. Conclusion Intrauterine instillation of G-CSF enhanced endometrial development and resulted in an acceptable pregnancy rate. Instillation of G-CSF on the triggering day showed better outcomes. G-CSF instillation should be considered as a strategy for inducing endometrial growth and good pregnancy results in infertile women with a thin endometrium. PMID:28090464

  15. Effects of recombinant human granulocyte colony-stimulating factor on central and peripheral T lymphocyte reconstitution after sublethal irradiation in mice

    PubMed Central

    Zhao, Hongxia; Guo, Mei; Sun, Xuedong; Sun, Wanjun; Hu, Hailan; Wei, Li; Ai, Huisheng

    2013-01-01

    Granulocyte colony-stimulating factor (G-CSF) is one of the most critical cytokines used for the treatment of acute radiation syndrome (ARS). In addition to the hematopoietic effects of G-CSF on the differentiation and proliferation of myeloid progenitor cells, G-CSF is also known to have immunomodulatory effects. The aim of the present study was to investigate whether G-CSF could accelerate central and peripheral T lymphocyte recovery after a sublethal dose of irradiation. Female BALB/c mice were subjected to 6 Gy of total body irradiation and then were treated with either 100 μg/kg G-CSF or an equal volume of PBS once daily for 14 days. Percentages of thymocyte subpopulations including CD4 − CD8 − , CD4 + CD8 + , CD4 + CD8− and CD4 − CD8+ T cells, peripheral CD3 + , CD4+ and CD8+ cells were analyzed by flow cytometry. Recent thymic emigrants (RTEs) were assessed by real-time polymerase chain reaction (PCR) using primers specific to the 257-bp T cell receptor rearrangement excision circles (sjTRECs). The proliferative capacity of splenic mononuclear cells upon exposure to ConA was measured by using the Cell Count Kit-8 (CCK-8). G-CSF treatment promoted thymocyte regeneration, accelerated the recovery of CD4 + CD8+ cells and increased the frequency of thymocyte sjTRECs. These effects were more prominent at early time points (Day 28) after irradiation. G-CSF also increased the rate of recovery of peripheral CD3 + , CD4+ and CD8+ cells and shortened the period of severe lymphopenia following irradiation. G-CSF also increased the splenic mononuclear cell mitotic responsiveness to ConA more than control-treated cells. Our results show that G-CSF accelerates T cell recovery through both thymic-dependent and thymic-independent pathways, which could be used to increase the rate of immune reconstitution after sublethal irradiation. PMID:23001765

  16. Factors stimulating bone formation.

    PubMed

    Lind, M; Bünger, C

    2001-10-01

    The aim of this review is to describe major approaches for stimulating bone healing and to review other factors affecting bone healing. Spinal bone fusion after surgery is a demanding process requiring optimal conditions for clinical success. Bone formation and healing can be enhanced through various methods. Experimental studies have revealed an array of stimulative measures. These include biochemical stimulation by use of hormones and growth factors, physical stimulation through mechanical and electromagnetic measures, and bone grafting by use of bone tissue or bone substitutes. Newer biological techniques such as stem cell transplantation and gene therapy can also be used to stimulate bone healing. Apart from bone transplantation, clinical experience with the many stimulation modalities is limited. Possible areas for clinical use of these novel methods are discussed.

  17. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    SciTech Connect

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  18. Efficacy of LL-37 and granulocyte colony-stimulating factor in a neutropenic murine sepsis due to Pseudomonas aeruginosa.

    PubMed

    Cirioni, Oscar; Ghiselli, Roberto; Tomasinsig, Linda; Orlando, Fiorenza; Silvestri, Carmela; Skerlavaj, Barbara; Riva, Alessandra; Rocchi, Marco; Saba, Vittorio; Zanetti, Margherita; Scalise, Giorgio; Giacometti, Andrea

    2008-10-01

    A promising therapeutic strategy for the management of severe Pseudomonas infection in neutropenic patients may result from the coadministration of colony-stimulating factors (CSFs) that help maintain immune competence and antimicrobial peptides, a novel generation of adjunctive therapeutic agents with antimicrobial and anti-inflammatory properties. A promising peptide with these properties is LL-37, the only member of the cathelicidin family of antimicrobial peptides found in humans. BALB/c male mice were rendered neutropenic by intraperitoneal administration of cyclophosphamide on days -4 and -2 preinfection. Septic shock was induced at time 0 by intraperitoneal injection of 2x10 colony-forming units of P. aeruginosa American Type Culture Collection (ATCC) 27853. All animals were randomized to receive intravenously isotonic sodium chloride solution, 1 mg/kg of LL-37, 20 mg/kg of imipenem, 0.1 mg/kg of granulocyte CSF (G-CSF), 1 mg/kg of LL-37+0.1 mg/kg of G-CSF, or 20 mg/kg of imipenem+0.1 mg/kg of G-CSF. Lethality and bacterial growth in blood, peritoneum, spleen, liver, and kidney were evaluated. All regimens were significantly superior to controls at reducing the mouse lethality rate and bacterial burden in organs. Particularly, the combination between LL-37 and G-CSF was the most effective in protecting neutropenic mice from the onset of sepsis and in vitro significantly reduced the apoptosis of neutrophils. Combination therapy between LL-37 and G-CSF is a promising therapeutic strategy for the management of severe Pseudomonas infection complicated by neutropenia.

  19. Timing of platelet recovery is associated with adequacy of leukapheresis product yield after cyclophosphamide and G-CSF in patients with lymphoma.

    PubMed

    Zimmerman, T M; Michelson, G C; Mick, R; Grinblatt, D L; Williams, S F

    1999-01-01

    A subgroup of patients with refractory Hodgkin's (HD) or non-Hodgkin's (NHL) lymphoma may be cured with high-dose chemotherapy and peripheral blood progenitor cell rescue. To investigate the relationship of adequate leukapheresis yield and time course of platelet recovery after mobilization chemotherapy, we retrospectively analyzed the leukapheresis yields in seven patients with Hodgkin's disease and fifteen patients with non-Hodgkin's lymphoma undergoing high-dose chemotherapy. Our goal was to develop a rule to determine when to initiate leukapheresis and then to prospectively validate this rule. All patients were mobilized with cyclophosphamide and G-CSF (granulocyte-colony stimulating factor). A total of 144 leukaphereses were completed and analyzed. Based on the CD34 content in the initial harvest product, fifteen patients were defined as poor mobilizers (CD34 < 0.15 x 10(6)/kg) and seven were good mobilizers. The platelet count on the first day of harvesting was significantly associated with the poor mobilizers (P = .03). Age, sex, marrow involvement, disease (HD vs. NHL), prior radiation, time since last chemotherapy, and total number of cycles of prior chemotherapy were not predictive of poor mobilizers. By using a platelet count cut off of 35 x 10(9)/L, we retrospectively analyzed 144 individual leukapheresis products, to test whether CD34 yield was predicted by the peripheral blood platelet count on the day of leukapheresis. This rule had an excellent sensitivity, 91%, and a specificity of 67%. Subsequently, we validated this rule with the next twenty-four patients undergoing leukapheresis of which there were 143 leukaphereses. The prediction rule exhibited a sensitivity of 72% and a specificity of 68% in the validation set. There does appear to be utility in using the platelet count to guide the initiation of leukapheresis after chemotherapy and G-CSF mobilization.

  20. Subcutaneous versus intravenous granulocyte colony stimulating factor for the treatment of neutropenia in hospitalized hemato-oncological patients: randomized controlled trial.

    PubMed

    Paul, Mical; Ram, Ron; Kugler, Eitan; Farbman, Laura; Peck, Anat; Leibovici, Leonard; Lahav, Meir; Yeshurun, Moshe; Shpilberg, Ofer; Herscovici, Corina; Wolach, Ofir; Itchaki, Gilad; Bar-Natan, Michal; Vidal, Liat; Gafter-Gvili, Anat; Raanani, Pia

    2014-03-01

    Intravenous (IV) granulocyte colony stimulating factor (G-CSF) might be safer and more convenient than subcutaneous (SC) administration to hospitalized hemato-oncological patients receiving chemotherapy. To compare IV vs. SC G-CSF administration, we conducted a randomized, open-label trial. We included inpatients receiving chemotherapy for acute myeloid leukemia, acute lymphoblastic leukemia, lymphoma or multiple myeloma, and allogeneic or autologous hematopoietic cell transplantation (HCT). Patients were randomized to 5 mcg/kg single daily dose of IV bolus versus SC filgrastim given for its clinical indications. Patients were crossed-over to the alternate study arm on the subsequent chemotherapy course. The primary outcomes were time from initiation of filgrastim to recovery of stable neutrophil count of >500 cells/µL and a composite clinical outcome of infection or death assessed for the first course post-randomization. The study was stopped on the second interim analysis. Of 120 patients randomized, 118 were evaluated in the first treatment course. The mean time to neutropenia resolution was longer with IV G-CSF [7.9 days, 95% confidence interval (CI) 6.6-9.1] compared with SC G-CSF (5.4 days, 95% CI 4.6-6.2), log-rank P = 0.001. Longer neutropenia duration was observed in all patient subgroups, except for patients undergoing autologous HCT. There was no significant difference between groups in the occurrence of infection or death, but more deaths were observed with IV (4/57, 7%) versus SC (1/61, 1.6%) G-CSF administration, P = 0.196. Similar results were observed when all 158 courses following cross-over were analyzed. Patients reported similar pain and satisfaction scores in both groups. Bolus IV administration of G-CSF results in longer neutropenia duration than SC administration, with no difference in clinical or quality-of-life measures.

  1. Acute exposure to cadmium induces prolonged neutrophilia along with delayed induction of granulocyte colony-stimulating factor in the livers of mice.

    PubMed

    Horiguchi, Hyogo; Oguma, Etsuko

    2016-12-01

    Acute exposure to cadmium (Cd), a toxic heavy metal, causes systemic inflammation characterized by neutrophilia. To elucidate the mechanism of neutrophilia induced by Cd, we investigated the induction of granulocyte colony-stimulating factor (G-CSF), which regulates neutrophil production, in mice with acute Cd toxicity, and compared it with mice injected with lipopolysaccharide (LPS) as an inducer of general inflammatory responses. We injected BALB/c mice with Cd at 2.5 mg/kg i.p. or LPS at 0.5 mg/kg i.p. and sampled the peripheral blood and organs at time points up to 24 h. In Cd-treated mice, the peripheral neutrophil count increased steadily up to 24 h, whereas LPS-treated mice showed a more rapid increase with a peak at 12 h. The serum G-CSF level increased gradually to reach a plateau at 12-18 h in Cd-treated mice, but LPS-treated mice showed a marked increase, reaching a peak at 2-3 h. A gradual elevation of G-CSF mRNA expression up to 24 h was detected by real-time PCR in the livers of Cd-treated mice, but in LPS-treated mice its highest expression was observed in the liver with a rapid increase at 2 h. By in situ hybridization using G-CSF RNA probes, hepatic Kupffer cells were identified as G-CSF-producing cells in the liver. These results indicated that Cd has a characteristic effect of delayed induction of G-CSF in the liver, causing systemic inflammation accompanied by prolonged neutrophilia.

  2. Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Seed, Thomas M

    2015-01-01

    One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.

  3. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    PubMed

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions.

  4. Survival enhancement and hemopoietic regeneration following radiation exposure: therapeutic approach using glucan and granulocyte colony-stimulating factor

    SciTech Connect

    Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M.

    1990-01-01

    C3H/HeN female mice were exposed to whole-body cobalt-60 radiation and administered soluble glucan (5 mg i.v. at 1 h following exposure), recombinant human granulocyte colony-stimulating factor or both agents. Treatments were evaluated for their ability to enhance hemopoietic regeneration, and to increase survival after radiation-induced myelosuppression. Both glucan and G-CSF enhanced hemopoietic regeneration alone; however, greater effects were observed in mice receiving both agents. For example, on day 17 following a sublethal 6.5-Gy radiation exposure, mice treated with saline, G-CSF, glucan, or both agents, respectively, exhibited 36%, 65%, 50%, and 78% of normal bone marrow cellularity, and 84%, 175%, 152%, and 212% of normal splenic cellularity.

  5. Successful mobilization of peripheral blood stem cells in children with cancer using plerixafor (Mozobil) and granulocyte-colony stimulating factor.

    PubMed

    Avramova, Boryana E; Yordanova, Maya N; Konstantinov, Dobrin N; Bobev, Dragan G

    2011-01-01

    This paper describes the successful mobilization of peripheral blood stem cells for autologous transplantation in three children with malignant diseases by using plerixafor (Mozobil; Genzyme Corporation, Cambridge, MA) and granulocyte-colony stimulating factor (G-CSF) after failed previous mobilizations. A median sixfold increase in the number of circulating CD34+ cells after plerixafor treatment as compared with the baseline level was observed. An optimal CD34+ cell count for transplantation with one or two leukapheresis sessions was achieved. Mobilization using plerixafor was found to be safe with no adverse events. Therefore, the combination of G-CSF and plerixafor in children results in effective increases in peripheral CD34+ cell counts and reduces the risk of mobilization failure.

  6. Successful mobilization of peripheral blood stem cells in children with cancer using plerixafor (Mozobil™) and granulocyte-colony stimulating factor

    PubMed Central

    Avramova, Boryana E; Yordanova, Maya N; Konstantinov, Dobrin N; Bobev, Dragan G

    2011-01-01

    This paper describes the successful mobilization of peripheral blood stem cells for autologous transplantation in three children with malignant diseases by using plerixafor (Mozobil™; Genzyme Corporation, Cambridge, MA) and granulocyte-colony stimulating factor (G-CSF) after failed previous mobilizations. A median sixfold increase in the number of circulating CD34+ cells after plerixafor treatment as compared with the baseline level was observed. An optimal CD34+ cell count for transplantation with one or two leukapheresis sessions was achieved. Mobilization using plerixafor was found to be safe with no adverse events. Therefore, the combination of G-CSF and plerixafor in children results in effective increases in peripheral CD34+ cell counts and reduces the risk of mobilization failure. PMID:21966213

  7. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    PubMed Central

    Kiang, Juliann G.; Zhai, Min; Liao, Pei-Jyun; Bolduc, David L.; Elliott, Thomas B.; Gorbunov, Nikolai V.

    2014-01-01

    Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia. PMID:24738019

  8. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization

    PubMed Central

    Smith, Veronica R.; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2014-01-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin’s and non-Hodgkin’s) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but 1 patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 106/kilogram of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 106/kilogram of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 106/kilogram of body weight. Plerixafor was well tolerated; no grade 2 or higher non- hematologic toxic effects were observed. PMID:23749720

  9. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization.

    PubMed

    Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2013-09-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed.

  10. Evaluation of a biosimilar granulocyte colony-stimulating factor (filgrastim XM02) for peripheral blood stem cell mobilization and transplantation: a single center experience in Japan

    PubMed Central

    Yoshimura, Hideaki; Hotta, Masaaki; Nakanishi, Takahisa; Fujita, Shinya; Nakaya, Aya; Satake, Atsushi; Ito, Tomoki; Ishii, Kazuyoshi; Nomura, Shosaku

    2017-01-01

    Background Biosimilar granulocyte colony-stimulating factor (G-CSF) has recently been introduced into clinical practice. G-CSFs are used to mobilize CD34+ cells and accelerate engraftment after transplantation. However, in Asia, particularly in Japan, data for peripheral blood stem cell (PBSC) mobilization by this biosimilar G-CSF are currently lacking. Therefore, the clinical efficacy and safety of biosimilar G-CSF for hematopoietic stem cell transplantation needs to be evaluated in a Japanese context. Materials and methods The subjects included two groups of patients with malignant lymphoma and multiple myeloma. All patients received chemotherapy priming for the mobilization of PBSCs. All patients were treated with chemotherapy followed by the administration of either the biosimilar G-CSF, filgrastim XM02 (FBNK), or the originators, filgrastim, or lenograstim. Results There were no significant differences among FBNK, filgrastim, and lenograstim treatments in the numbers of CD34+ cells in harvested PBSCs, the scores for granulocyte/macrophage colony forming units, or for malignant lymphoma and multiple myeloma patients evaluated as separate or combined cohorts. In addition, there were no significant differences in safety, side effects, complications, or the time to engraftment after autologous hematopoietic stem cell transplantation. Conclusion Biosimilar FBNK shows the same efficacy and safety as originator G-CSFs for facilitating bone marrow recovery in Japanese malignant lymphoma and multiple myeloma patients undergoing stem cell transplantation. In addition, it is less expensive than the originators, reducing hospitalization costs. PMID:28182150

  11. G-CSF Administration after the Intraosseous Infusion of Hypertonic Hydroxyethyl Starches Accelerating Wound Healing Combined with Hemorrhagic Shock

    PubMed Central

    Huang, Hong; Liu, Jiejie; Hao, Haojie; Tong, Chuan; Ti, Dongdong; Liu, Huiling; Song, Haijing; Jiang, Chaoguang; Fu, Xiaobing; Han, Weidong

    2016-01-01

    Objective. To evaluate the therapeutic effects of G-CSF administration after intraosseous (IO) resuscitation in hemorrhagic shock (HS) combined with cutaneous injury rats. Methods. The rats were randomly divided into four groups: (1) HS with resuscitation (blank), (2) HS with resuscitation + G-CSF (G-CSF, 200 μg/kg body weight, subcutaneous injection), (3) HS with resuscitation + normal saline solution injection (normal saline), and (4) HS + G-CSF injection without resuscitation (Unres/G-CSF). To estimate the treatment effects, the vital signs of alteration were first evaluated, and then wound closure rates and homing of MSCs and EPCs to the wound skins and vasculogenesis were measured. Besides, inflammation and vasculogenesis related mRNA expressions were also examined. Results. IO infusion hypertonic hydroxyethyl starch (HHES) exhibited beneficial volume expansion roles and G-CSF administration accelerated wound healing 3 days ahead of other groups under hemorrhagic shock. Circulating and the homing of MSCs and EPCs at wound skins were significantly elevated at 6 h after G-CSF treatment. Inflammation was declined since 3 d while angiogenesis was more obvious in G-CSF treated group on day 9. Conclusions. These results suggested that the synergistical application of HHES and G-CSF has life-saving effects and is beneficial for improving wound healing in HS combined with cutaneous injury rats. PMID:26989687

  12. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6.

    PubMed Central

    Rose, T M; Bruce, A G

    1991-01-01

    Oncostatin M (OSM), a glycoprotein of Mr approximately 28,000 produced by activated monocyte and T-lymphocyte cell lines, was previously identified by its ability to inhibit the growth of cells from melanoma and other solid tumors. We have detected significant similarities in the primary amino acid sequences and predicted secondary structures of OSM, leukemia-inhibitory factor (LIF), granulocyte colony-stimulating factor (G-CSF), and interleukin 6 (IL-6). Analysis of the genes encoding these proteins revealed a shared exon organization, suggesting evolutionary descent from a common ancestral gene. Using a panel of DNAs from somatic cell hybrids, we have shown that OSM, like LIF, is located on human chromosome 22. We have also demonstrated that OSM has the ability to inhibit the proliferation of murine M1 myeloid leukemic cells and can induce their differentiation into macrophage-like cells, a function shared by LIF, G-CSF, and IL-6. We propose that OSM, LIF, G-CSF, and IL-6 are structurally related members of a cytokine family that have in common the ability to modulate differentiation of a variety of cell types. Images PMID:1717982

  13. Herbal medicine "sho-saiko-to" induces in vitro granulocyte colony-stimulating factor production on peripheral blood mononuclear cells.

    PubMed

    Yamashiki, M; Asakawa, M; Kayaba, Y; Kosaka, Y; Nishimura, A

    1992-01-01

    The herbal medicine "Sho-saiko-to (Xiao-Chai-Hu-Tang)" has been used in China for about 3000 years for the treatment of pyretic diseases. This medicine is now available as one of the prescribing drugs approved by the Ministry of Health and Welfare of Japan, and has also been widely used for patients with chronic viral liver disease as one of biological response modifiers in the field of Japan's Western Medicine. However, its mode of action has not been fully described. In the present in vitro study, we added "Sho-saiko-to" (TJ-9, Tsumura, Tokyo) to the culture of peripheral blood mononuclear cells (PBMC) obtained from healthy volunteers, and observed a dose-dependent increase in the production of granulocyte colony-stimulating factor (G-CSF). The same experiment was conducted using other herbal medicines "Dai-saiko-to" (TJ-8) and "Saiko-keishi-to" (TJ-10) which showed similar effects, or "Sho-seiryu-to" (TJ-19) which consists of very different compounds and shows different efficacy. The increases of G-CSF production were similar when "Sho-saiko-to" (TJ-9) or one of the 2 reference drugs (TJ-8 and 10) was added, whereas the increase when the control drug "Sho-seiryu-to" (TJ-19) was added, was quite small. This result shows that G-CSF induction is not a common effect of herbal medicines, but a specific effect of TJ-8, 9, and 10. Among these 3 drugs the increase produced by "Sho-saiko-to" was the largest. Based on this result, we conclude that administration of "Sho-saiko-to" may be useful not only for the treatment of chronic liver disease, but also for malignant diseases and acute infectious diseases where G-CSF is efficacious.

  14. Granulocyte colony-stimulating factor receptor expression on human transitional cell carcinoma of the bladder.

    PubMed Central

    Tachibana, M.; Miyakawa, A.; Uchida, A.; Murai, M.; Eguchi, K.; Nakamura, K.; Kubo, A.; Hata, J. I.

    1997-01-01

    Receptors for granulocyte colony-stimulating factor (G-CSFRs) have been confirmed on the cell surfaces of several non-haematopoietic cell types, including bladder cancer cells. This observation has naturally led to the hypothesis that the expression of G-CSFR on these cells may enhance their growth by G-CSF. In this study, the expression of G-CSFR was determined in both established human bladder cancer cell lines and primary bladder cancers. We studied five different human bladder cancer cell lines (KU-1, KU-7, T-24, NBT-2 and KK) and 26 newly diagnosed bladder tumours. G-CSFR mRNA expressions on cultured cell lines were determined using the reverse transcriptase polymerase chain reaction (RT-PCR) method. Furthermore, the G-CSFR binding experiments on the cultured cell lines were conducted using the Na(125)I-labelled G-CSF ligand-binding assay method. Moreover, the G-CSFR mRNA expressions on primary bladder tumour specimens were assessed using the in situ RT-PCR method. Three out of the five cultured cell lines (KU-1, NBT-2 and KK) exhibited G-CSFR mRNA signals when the RT-PCR method was used. The G-CSFR binding experiments showed an equilibrium dissociation constant (K[d]) of 490 pM for KU-1, 340 pM for NBT-2 and 103 pM for KK cells. With in situ RT-PCR, the tumour cells of 6 out of 26 primary bladder tumour specimens (23.1%) presented positive G-CSFR mRNA signals. Thus, in this study, G-CSFR expression was frequently observed on bladder cancer cells. Therefore, the clinical use of G-CSF for patients with bladder cancer should be selected with great care. Images Figure 1 Figure 3 Figure 4 PMID:9166942

  15. Combination Therapy of Human Umbilical Cord Blood Cells and Granulocyte Colony Stimulating Factor Reduces Histopathological and Motor Impairments in an Experimental Model of Chronic Traumatic Brain Injury

    PubMed Central

    Acosta, Sandra A.; Tajiri, Naoki; Shinozuka, Kazutaka; Ishikawa, Hiroto; Sanberg, Paul R.; Sanchez-Ramos, Juan; Song, Shijie; Kaneko, Yuji; Borlongan, Cesar V.

    2014-01-01

    Traumatic brain injury (TBI) is associated with neuro-inflammation, debilitating sensory-motor deficits, and learning and memory impairments. Cell-based therapies are currently being investigated in treating neurotrauma due to their ability to secrete neurotrophic factors and anti-inflammatory cytokines that can regulate the hostile milieu associated with chronic neuroinflammation found in TBI. In tandem, the stimulation and mobilization of endogenous stem/progenitor cells from the bone marrow through granulocyte colony stimulating factor (G-CSF) poses as an attractive therapeutic intervention for chronic TBI. Here, we tested the potential of a combined therapy of human umbilical cord blood cells (hUCB) and G-CSF at the acute stage of TBI to counteract the progressive secondary effects of chronic TBI using the controlled cortical impact model. Four different groups of adult Sprague Dawley rats were treated with saline alone, G-CSF+saline, hUCB+saline or hUCB+G-CSF, 7-days post CCI moderate TBI. Eight weeks after TBI, brains were harvested to analyze hippocampal cell loss, neuroinflammatory response, and neurogenesis by using immunohistochemical techniques. Results revealed that the rats exposed to TBI treated with saline exhibited widespread neuroinflammation, impaired endogenous neurogenesis in DG and SVZ, and severe hippocampal cell loss. hUCB monotherapy suppressed neuroinflammation, nearly normalized the neurogenesis, and reduced hippocampal cell loss compared to saline alone. G-CSF monotherapy produced partial and short-lived benefits characterized by low levels of neuroinflammation in striatum, DG, SVZ, and corpus callosum and fornix, a modest neurogenesis, and a moderate reduction of hippocampal cells loss. On the other hand, combined therapy of hUCB+G-CSF displayed synergistic effects that robustly dampened neuroinflammation, while enhancing endogenous neurogenesis and reducing hippocampal cell loss. Vigorous and long-lasting recovery of motor function

  16. Combination of stem cell factor and granulocyte colony-stimulating factor mobilizes the highest number of primitive haemopoietic progenitors as shown by pre-colony-forming unit (pre-CFU) assay.

    PubMed

    Horsfall, M J; Hui, C H; To, L B; Begley, C G; Basser, R L; Simmons, P J

    2000-06-01

    Fifty-two patients with poor prognosis carcinoma of the breast underwent peripheral blood stem cell (PBSC) mobilization using five different regimens. The yields of primitive haemopoietic progenitors were quantified by a recently described pre-colony-forming unit (pre-CFU) assay using limiting dilution analysis (LDA). Results of days 14 and 35 pre-CFU were also correlated with conventional CD34+ cell enumeration, CFU-GM (granulocyte-macrophage) and long-term culture-initiating cell (LTCIC) assays. The yield of pre-CFUs with the combination of granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) was significantly higher than with G-CSF alone, cyclophosphamide (Cyclo) and granulocyte-monocyte colony-stimulating factor (GM-CSF), interleukin (IL)-3 and GM-CSF, or Cyclo alone. No significant correlation between neutrophil engraftment and pre-CFU could be demonstrated. Furthermore, CFU-GM was shown to bear a stronger correlation with pre-CFU and LTCIC than CD34+ cell measurement; thus, CFU-GM remains a useful biological tool for haemopoietic stem cell assay. We conclude that the combination of G-CSF and SCF mobilizes the highest number of pre-CFUs as measured by functional pre-CFU assay, which provides an alternative measurement of primitive haemopoietic progenitors to the LTCIC assay.

  17. CEL-I, an invertebrate N-acetylgalactosamine-specific C-type lectin, induces TNF-alpha and G-CSF production by mouse macrophage cell line RAW264.7 cells.

    PubMed

    Yamanishi, Tomohiro; Yamamoto, Yoshiko; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2007-11-01

    Our previous studies demonstrated that CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin purified from the marine invertebrate Cucumaria echinata (Holothuroidea) showed potent cytotoxicity to several cell lines such as HeLa, MDCK and XC cells. In this study, we found that CEL-I induced increased secretion of tumour necrosis factor-alpha (TNF-alpha) and granulocyte colony stimulation factor (G-CSF) by mouse macrophage cell line RAW264.7 cells in a dose-dependent manner, whereas this cell line was highly resistant to CEL-I cytotoxicity. The cytokine-inducing activity of CEL-I was stronger than that of phytohaemagglutinin (PHA-L). A binding study using FITC-labelled CEL-I (F-CEL-I) indicated that the amount of bound F-CEL-I on RAW264.7 cells was greater than that of F-PHA-L, suggesting that the greater activity of CEL-I to induce cytokine secretion by RAW264.7 cells is partly due to the higher binding ability. Since the cell binding and cytokine-inducing activity of CEL-I were partly but significantly inhibited by the specific sugar (GalNAc), it is considered that the binding of CEL-I to cell-surface-specific saccharide moieties, which may be recognized by CEL-I with higher affinity than GalNAc, is essential for the induction of cytokine secretion. The secretion of TNF-alpha and G-CSF from CEL-I-treated RAW264.7 cells were almost completely prevented by brefeldin A (BFA), whereas increase in mRNA levels of these cytokines were not affected by BFA. Bio-Plex beads assay suggested that temporal increase in phosphorylation of extracellular-regulated kinase (ERK), c-jun NH(2)-terminal kinase (JNK) and p38 MAP kinase occurred at relatively early time following CEL-I treatment. Furthermore, the secretion of TNF-alpha and G-CSF were inhibited by specific inhibitors for these MAP kinases. These results suggest that the intracellular signal transduction through the activation of MAP kinase system is involved in CEL-I-induced cytokine secretion.

  18. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism.

    PubMed

    Waight, Jeremy D; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy.

  19. rhG-CSF does not affect the phenotype of adult donor peripheral blood NK cells.

    PubMed

    Lassailly, F; Sielleur, I; Blaise, D; Chabannon, C

    2005-01-01

    Considerable evidence in preclinical models as well as in human transplantation now suggests that donor-derived natural killer (NK) cells can contribute to alloimmune recognition of recipient residual tumour cells. This makes the NK cell population an attractive target for in vitro or in vivo manipulations, in order to improve the antitumour effect of allogeneic transplantation. However, conditions in which allogeneic donor cells are collected vary; several reports have emphasised the different phenotypic and functional properties of T cells derived from marrow, cord blood or mobilised peripheral blood grafts; others have demonstrated different clinical outcomes following blood or marrow transplantation after myeloablative conditioning regimens. NK cells have been examined in this setting; the availability of new tools to study the expression of a variety of surface antigens that are involved in the control of NK cell activity offered us an opportunity to extensively characterise the phenotypic properties of NK cells from donors, before and after administration of pharmacological doses of rhG-CSF used for haematopoietic progenitor mobilisation. Our study suggests that rhG-CSF does not reproducibly alter blood NK cell phenotype in normal individuals, and thus that donor-derived cells are fully equipped to exert their potential antitumour effect.

  20. Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury.

    PubMed

    Reeves, Glen

    2014-06-01

    Depression of hematopoietic elements due to significant levels of whole-body or partial-body irradiation due to radiation-induced suppression of mitosis in the stem and progenitor cells can result in life-threatening injury. Successful administration of intensive care of patients experiencing acute radiation sickness (ARS; also called acute radiation syndrome) is dependent upon the ability to stimulate the recovery of surviving hematopoietic stem cells (HSC), assuming the non-hematopoietic injuries are also survivable with treatment. To date, there have been a number of studies involving radiation accidents where patients were treated with cytokines. Although the data overall seem to indicate that the period of neutropenia is shortened and survival prolonged, so far there is no statistically significant proof that cytokine administration actually decreases mortality in radiation-injured humans. Some studies have shown no improved survival when used in a mouse model; however, studies in canines and primates have shown improved survival. CSF therapy is considered a valuable adjunct to treatment with antibiotics and strict hygiene controls in certain irradiated patients. It appears that these drugs do shorten the periods of neutropenia in irradiated patients and must be considered part of the therapeutic armamentarium in the treatment of ARS in a mass casualty situation. Based on review of the human experience with G-CSF and GM-CSF, as well as some animal studies, current consensus opinions support the prompt administration of these materials to patients suffering significant bone marrow depression from exposure to ionizing radiation.

  1. Basal CD34+ Cell Count Predicts Peripheral Blood Stem Cell Mobilization in Healthy Donors after Administration of G-CSF: a Longitudinal, Prospective, Observational, Single-Center, Cohort Study.

    PubMed

    Martino, Massimo; Gori, Mercedes; Pitino, Annalisa; Gentile, Massimo; Dattola, Antonia; Pontari, Antonella; Vigna, Ernesto; Moscato, Tiziana; Recchia, Anna Grazia; Barilla', Santina; Tripepi, Giovanni; Morabito, Fortunato

    2017-03-24

    A longitudinal, prospective, observational, single-center, cohort study on healthy donors (HDs) was designed to identify predictors of CD34+ cells on day 5 with emphasis on the predictive value of the basal CD34+ cell count. As potential predictors of mobilization, age, sex, body weight, height, blood volume as well as white blood cell count, peripheral blood (PB) mononuclear cells, platelet count, hematocrit, and hemoglobin levels were considered. Two different evaluations of CD34+ cell counts were determined for each donor: baseline (before granulocyte colony-stimulating factor [G-CSF] administration) and in PB after G-CSF administration on the morning of the fifth day (day 5). A total 128 consecutive HDs (66 males) with a median age of 43 years were enrolled. CD34+ levels on day 5 displayed a non-normal distribution with a median value of 75.5 cells/µL. To account for the non-normal distribution of the dependent variable, a quantile regression analysis to predict CD34+ on day 5 using the baseline value of CD34+ as the key predictor was performed. On crude analysis, a baseline value of CD34+ ranging from 0.5 to 1 cells/µL predicts a median value of 50 cells/µL on day 5; a value of 2 cells/µL predicts a median value of 70.7 cells/µL; a value of 3-4 cells/µL predicts a median value of 91.3 cells/µL, and a value ≥ 5 predicts a median value of 112 cells/µL. In conclusion, the baseline PB CD34+ cell count correlates with the effectiveness of allogeneic PBSC mobilization and could be useful to plan the collection.

  2. Mobilization and collection of CD34+ cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses

    PubMed Central

    Eid, Kátia Aparecida de Brito; Miranda, Eliana Cristina Martins; Aguiar, Simone dos Santos

    2015-01-01

    Introduction The use of peripheral hematopoietic progenitor cells (HPCs) is the cell choice in autologous transplantation. The classic dose of granulocyte-colony stimulating factor (G-CSF) for mobilization is a single daily dose of 10 μg/kg of patient body weight. There is a theory that higher doses of granulocyte-colony stimulating factor applied twice daily could increase the number of CD34+ cells collected in fewer leukapheresis procedures. Objective The aim of this study was to compare a fractionated dose of 15 μg G-CSF/kg of body weight and the conventional dose of granulocyte-colony stimulating factor in respect to the number of leukapheresis procedures required to achieve a minimum collection of 3 × 106 CD34+ cells/kg body weight. Methods Patients were divided into two groups: Group 10 – patients who received a single daily dose of 10 μg G-CSF/kg body weight and Group 15 – patients who received a fractioned dose of 15 μg G-CSF/kg body weight daily. The leukapheresis procedure was carried out in an automated cell separator. The autologous transplantation was carried out when a minimum number of 3 × 106 CD34+ cells/kg body weight was achieved. Results Group 10 comprised 39 patients and Group 15 comprised 26 patients. A total of 146 apheresis procedures were performed: 110 (75.3%) for Group 10 and 36 (24.7%) for Group 15. For Group 10, a median of three (range: 1–7) leukapheresis procedures and a mean of 8.89 × 106 CD34+ cells/kg body weight (±9.59) were collected whereas for Group 15 the corresponding values were one (range: 1–3) and 5.29 × 106 cells/kg body weight (±4.95). A statistically significant difference was found in relation to the number of apheresis procedures (p-value <0.0001). Conclusions To collect a minimum target of 3 × 106 CD34+ cells/kg body weight, the administration of a fractionated dose of 15 μg G-CSF/kg body weight significantly decreased the number of leukapheresis procedures performed. PMID:26041417

  3. Granulocyte Colony Stimulating Factor and Physiotherapy after Stroke: Results of a Feasibility Randomised Controlled Trial: Stem Cell Trial of Recovery EnhanceMent after Stroke-3 (STEMS-3 ISRCTN16714730)

    PubMed Central

    Sprigg, Nikola; O’Connor, Rebecca; Woodhouse, Lisa; Krishnan, Kailash; England, Timothy J.; Connell, Louise A.; Walker, Marion F.; Bath, Philip M.

    2016-01-01

    Background Granulocyte-colony stimulating factor (G-CSF) mobilises endogenous haematopoietic stem cells and enhances recovery in experimental stroke. Recovery may also be dependent on an enriched environment and physical activity. G-CSF may have the potential to enhance recovery when used in combination with physiotherapy, in patients with disability late after stroke. Methods A pilot 2 x 2 factorial randomised (1:1) placebo-controlled trial of G-CSF (double-blind), and/or a 6 week course of physiotherapy, in 60 participants with disability (mRS >1), at least 3 months after stroke. Primary outcome was feasibility, acceptability and tolerability. Secondary outcomes included death, dependency, motor function and quality of life measured 90 and 365 days after enrolment. Results Recruitment to the trial was feasible and acceptable; of 118 screened patients, 92 were eligible and 32 declined to participate. 60 patients were recruited between November 2011 and July 2013. All participants received some allocated treatment. Although 29 out of 30 participants received all 5 G-CSF/placebo injections, only 7 of 30 participants received all 18 therapy sessions. G-CSF was well tolerated but associated with a tendency to more adverse events than placebo (16 vs 10 patients, p = 0.12) and serious adverse events (SAE) (9 vs 3, p = 0.10). On average, patients received 14 (out of 18 planned) therapy sessions, interquartile range [12, 17]. Only a minority (23%) of participants completed all physiotherapy sessions, a large proportion of sessions (114 of 540, 21%) were cancelled due to patient (94, 17%) and therapist factors (20, 4%). No significant differences in functional outcomes were detected in either the G-CSF or physiotherapy group at day 90 or 365. Conclusions Delivery of G-CSF is feasible in chronic stroke. However, the study failed to demonstrate feasibility for delivering additional physiotherapy sessions late after stroke therefore a definitive study using this trial design

  4. Contribution of G-CSF to the acute mobilization of endothelial precursor cells by vascular disrupting agents

    PubMed Central

    Shaked, Yuval; Tang, Terence; Woloszynek, Jill; Daenen, Laura G.; Man, Shan; Xu, Ping; Cai, Shi-Rong; Arbeit, Jeffrey M.; Voest, Emile E.; Chaplin, David; Smythe, Jon; Harris, Adrian; Nathan, Paul; Judson, Ian; Rustin, Gordon; Bertolini, Francesco; Link, Daniel C.; Kerbel, Robert S.

    2009-01-01

    Vascular disrupting agents (VDAs) cause acute shutdown of abnormal established tumor vasculature, followed by massive intratumoral hypoxia and necrosis. However, a viable rim of tumor tissue invariably remains from which tumor regrowth rapidly resumes. We have recently shown that an acute systemic mobilization and homing of bone marrow derived circulating endothelial precursor cells (CEPs) can promote tumor regrowth following treatment with either a VDA or certain chemotherapy drugs. The molecular mediators of this systemic reactive host process are unknown. Here we show that following treatment of mice with OXi-4503, a second generation potent pro-drug derivative of combretastatin-A 4 phosphate (CA4P), rapid increases in circulating plasma VEGF, SDF-1, and G-CSF levels are detected. With the aim of determining whether G-CSF is involved in VDA-induced CEP mobilization, mutant G-CSF-R−/− mice were treated with OXI-4503. We found that as opposed to wildtype controls, G-CSF-R−/− mice failed to mobilize CEPs or show induction of SDF-1 plasma levels. Furthermore, Lewis lung carcinomas grown in such mice treated with OXi-4503 showed greater levels of necrosis compared to tumors treated in wildtype mice. Evidence for rapid elevations in circulating plasma G-CSF, VEGF, and SDF-1 were also observed in VDA (CA4P) treated cancer patients. These results highlight the possible impact of drug-induced G-CSF on tumor re-growth following certain cytotoxic drug therapies, in this case using a VDA, and hence G-CSF as a possible therapeutic target. PMID:19738066

  5. G-CSF-Associated Bone Marrow Necrosis in AML after Induction Chemotherapy.

    PubMed

    Osuorji, Ikenna; Goldman, Lyle

    2012-01-01

    Bone marrow necrosis (BMN) is defined as necrosis of the myeloid tissues and stroma without involvement of the cortical bone. We report a case of 66-year-old male with AML-M4 (FAB classification) who was given induction chemotherapy with cytarabine and daunorubicin. Filgrastim at 480 micrograms was administered on days 15-19 to shorten the duration of neutropenia. Consequently patient developed severe pelvic bone pain, leukoerythroblastosis, and severe leukocytosis. Repeat bone marrow aspiration and biopsy on day 21 confirmed bone marrow necrosis. These manifestations responded quickly to discontinuation of filgrastim. Subsequently, he recovered full myelopoiesis. We suggest that there may be more cases of BMN associated with G-CSF that are undiagnosed.

  6. Drugs elevating extracellular adenosine promote regeneration of haematopoietic progenitor cells in severely myelosuppressed mice: their comparison and joint effects with the granulocyte colony-stimulating factor.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Vacek, Antonín; Weiterova, Lenka; Holá, Jirina; Vácha, Jirí

    2002-01-01

    We tested capabilities of drugs elevating extracellular adenosine and of granulocyte colony-stimulating factor (G-CSF) given alone or in combination to modulate regeneration from severe myelosuppression resulting from combined exposure of mice to ionizing radiation and carboplatin. Elevation of extracellular adenosine was induced by joint administration of dipyridamole (DP), a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), serving as an adenosine prodrug. DP+AMP, G-CSF or all these drugs in combination were administered in a 4-d treatment regimen starting on day 3 after induction of myelosuppression. Comparable enhancements of haematopoietic regeneration due to elevation of extracellular adenosine or to action of G-CSF were demonstrated as shown by elevated numbers of haematopoietic progenitor cells for granulocytes/macrophages (GM-CFC) and erythrocytes (BFU-E) in the bone marrow and spleen in early time intervals after termination of the drug treatment, i.e. on days 7 and 10 after induction of myelosuppression. Coadministration of all the drugs further potentiated the restoration of progenitor cell pools in the haematopoietic organs. The effects of the drug treatments on progenitor cells were reflected in the peripheral blood in later time intervals of days 15 and 20 after induction of myelosuppression, especially as significantly elevated numbers of granulocytes and less pronounced elevation of lymphocytes and erythrocytes. The results substantiate the potential of drugs elevating extracellular adenosine for clinical utilization in myelosuppressive states, e.g. those accompanying oncological radio- and chemotherapy.

  7. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice.

    PubMed

    Huston, Marshall W; Riegman, Adriaan R A; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P; Wagemaker, Gerard

    2014-10-01

    Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning.

  8. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression

    SciTech Connect

    Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M.

    1990-01-01

    The primary cause of death after radiation exposure is infection resulting from myelosuppression. Because granulocytes play a critical role in host defense against infection and because granulocyte proliferation and differentiation are enhanced by granulocyte colony-stimulating factor (G-CSF), this agent was evaluated for the ability to accelerate hemopoietic regeneration and to enhance survival in irradiated mice. C3H/HeN mice were irradiated and G-CSF or saline was administered on days 3-12, 1-12 or 0-12 post-irradiation. Bone marrow, splenic and peripheral blood cellularity and bone marrow and splenic granulocyte-macrophage progenitor cell recoveries were evaluated in mice exposed to 6.5 Gy. Mice exposed to 8 Gy were evaluated for multipotent hemopoietic stem cell recovery (using endogenous spleen colony-forming units) and enhanced survival. Results demonstrated that therapeutic G-CSF (1) accelerates hemopoietic regeneration after radiation-induced myelosuppression, (2) enhances survival after potentially lethal irradiation and (3) is most effective when initiated 1 h following exposure.

  9. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression

    SciTech Connect

    Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M. )

    1990-03-01

    The primary cause of death after radiation exposure is infection resulting from myelosuppression. Because granulocytes play a critical role in host defense against infection and because granulocyte proliferation and differentiation are enhanced by granulocyte colony-stimulating factor (G-CSF), this agent was evaluated for the ability to accelerate hemopoietic regeneration and to enhance survival in irradiated mice. C3H/HeN mice were irradiated and G-CSF (2.5 micrograms/day, s.c.) or saline was administered on days 3-12, 1-12 or 0-12 post-irradiation. Bone marrow, splenic and peripheral blood cellularity, and bone marrow and splenic granulocyte-macrophage progenitor cell recoveries were evaluated in mice exposed to 6.5 Gy. Mice exposed to 8 Gy were evaluated for multipotent hemopoietic stem cell recovery (using endogenous spleen colony-forming units) and enhanced survival. Results demonstrated that therapeutic G-CSF (1) accelerates hemopoietic regeneration after radiation-induced myelosuppression, (2) enhances survival after potentially lethal irradiation and (3) is most effective when initiated 1 h following exposure.

  10. Pretransplant Mobilization with Granulocyte Colony-Stimulating Factor Improves B-Cell Reconstitution by Lentiviral Vector Gene Therapy in SCID-X1 Mice

    PubMed Central

    Huston, Marshall W.; Riegman, Adriaan R.A.; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P.

    2014-01-01

    Abstract Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg−/− mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin−) cells or Il2rg−/− Lin− cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning. PMID:25222508

  11. Granulocyte, granulocyte–macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells

    PubMed Central

    Pei, X-H; Nakanishi, Y; Takayama, K; Bai, F; Hara, N

    1999-01-01

    We and other researchers have previously found that colony-stimulating factors (CSFs), which generally include granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), promote invasion by lung cancer cells. In the present study, we studied the effects of these CSFs on gelatinase production, urokinase plasminogen activator (uPA) production and their activity in human lung cancer cells. Gelatin zymographs of conditioned media derived from human lung adenocarcinoma cell lines revealed two major bands of gelatinase activity at 68 and 92 kDa, which were characterized as matrix metalloproteinase (MMP)-2 and MMP-9 respectively. Treatment with CSFs increased the 68- and 92-kDa activity and converted some of a 92-kDa proenzyme to an 82-kDa enzyme that was consistent with an active form of the MMP-9. Plasminogen activator zymographs of the conditioned media from the cancer cells showed that CSF treatment resulted in an increase in a 48–55 kDa plasminogen-dependent gelatinolytic activity that was characterized as human uPA. The conditioned medium from the cancer cells treated with CSFs stimulated the conversion of plasminogen to plasmin, providing a direct demonstration of the ability of enhanced uPA to increase plasmin-dependent proteolysis. The enhanced invasive behaviour of the cancer cells stimulated by CSFs was well correlated with the increase in MMPs and uPA activities. These data suggest that the enhanced production of extracellular matrix-degrading proteinases by the cancer cells in response to CSF treatment may represent a biochemical mechanism which promotes the invasive behaviour of the cancer cells. © 1999 Cancer Research Campaign PMID:10408691

  12. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells

    SciTech Connect

    Andersen, D.C.; Goochee, C.F.

    1995-07-05

    Ammonium ion concentrations ranging from 0 to 10 mM are shown to significantly reduce the sialylation of granulocyte colony-stimulating factor (G-CSF) produced by recombinant Chinese hamster ovary cells. Specifically, the degree of completion of the final reaction in the O-linked glycosylation pathway, the addition of sialic acid in an {alpha}(2,6) linkage to N-acetylgalactosamine, is reduced by NH{sub 4}{sup +} concentrations of as low as 2 mM. The effect of ammonia on sialylation is rapid, sustained, and does not affect the secretion rate of G-CSF. Additionally, the effect can be mimicked using the weak base chloroquine, suggesting that the effect is related to the weak base characteristics of ammonia. In support of this hypothesis, experiments using brefeldin A suggest that the addition of sialic acid in an {alpha}(2,6) linkage to N-acetylgalactosamine occurs in the trans-Golgi compartment prior to the trans-Golgi network, which would be expected under normal conditions to have a slightly acidic pH in the range from 6.5 to 6.75. Ammonium ion concentrations of 10mM would be expected to reduce significantly the differences in pH between acidic intracellular compartments and the cytoplasm. The pH-activity profile for the CHO O-linked {alpha}(2,6)sialytransferase using monosialylated G-CSF as a substrate reveals a twofold decrease in enzymatic activity across the pH range from 6.75 to 7.0. Mathematical modeling of this sialylation reaction supports the hypothesis that this twofold decrease in sialyltransferase activity resulting from an ammonia-induced increase in trans-Golgi pH could produce the observed decrease in G-CSF sialylation.

  13. E-ring 8-isoprostanes are agonists at EP2- and EP4-prostanoid receptors on human airway smooth muscle cells and regulate the release of colony-stimulating factors by activating cAMP-dependent protein kinase.

    PubMed

    Clarke, Deborah L; Belvisi, Maria G; Hardaker, Elizabeth; Newton, Robert; Giembycz, Mark A

    2005-02-01

    8-Isoprostanes are bioactive lipid mediators formed via the nonenzymatic peroxidation of arachidonic acid by free radicals and reactive oxygen species. However, their cognate receptors, biological actions, and signaling pathways are poorly studied. Here, we report the effect of a variety of E- and Falpha-ring 8-isoprostanes on the release of granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) from human airway smooth muscle (HASM) cells stimulated with interleukin-1beta (IL-1beta). The elaboration of GM-CSF and G-CSF by IL-1beta was inhibited and augmented, respectively, in a concentration-dependent manner by 8-iso-prostaglandin (PG) E(1) and 8-iso-PGE(2), but not by 8-iso-PGF(1alpha), 8-iso-PGF(2alpha), and 8-iso-PGF(3)alpha. AH 6809 (6-isopropoxy-9-oxoxanthine-2-carboxylic acid), an EP(1)-/EP(2)-/DP-receptor blocking drug, antagonized the inhibitory effect of 8-iso-PGE(1) and 8-iso-PGE(2) on GM-CSF output with an affinity consistent with an interaction at prostanoid receptors of the EP(2)-subtype. In contrast, the facilitation by 8-iso-PGE(1) and 8-iso-PGE(2) of G-CSF release was unaffected by AH 6809 and the selective EP(4)-receptor antagonist L-161,982 [4'-[3-butyl-5-oxo-1-(2-trifluoromethyl-phenyl)-1,5-dihydro-[1,2,4]triazol-4-ylmethyl]-biphenyl-2-sulfonic acid (3-methyl-thiophene-2-carbonyl)-amide]. However, when used in combination, AH 6809 and L-161,982 displaced 5-fold to the right the 8-iso-PGE and 8-iso-PGE concentration-response curves. The opposing (1)effect of E-ring (2)8-isoprostanes on GM-CSF and G-CSF release was mimicked by 8-bromo-cAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). Together, these data demonstrate that E-ring 8-isoprostanes regulate the secretion of GM-CSF and G-CSF from HASM cells by a cAMP- and PKA-dependent mechanism. Moreover, antagonist studies revealed that 8-iso-PGE(1) and 8-iso-PGE(2

  14. Increased susceptibility to liver injury after hemorrhagic shock in rats chronically fed ethanol: role of nuclear factor-kappa B, interleukin-6, and granulocyte colony-stimulating factor.

    PubMed

    Ono, Masafumi; Yu, Bi; Hardison, Edith G; Mastrangelo, Mary-Ann A; Tweardy, David J

    2004-06-01

    Chronic ethanol use preceding severe trauma and hemorrhagic shock (HS) is associated with an increased incidence of multiorgan failure (MOF) and death; however, the molecular basis for this increased susceptibility is unknown. We previously demonstrated that production of interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF), mediated by nuclear factor-kappa B (NF-kappa B), each make essential contributions to organ injury and inflammation in a rodent model of controlled HS, and we proposed in this study to examine the hypothesis that the increased susceptibility to MOF after shock/trauma in the setting of chronic ethanol use is due to an exaggerated activation of NF-kappa B and production of these proinflammatory cytokines. We observed increased HS-induced liver injury 4 h after resuscitation in rats fed the ethanol-containing Lieber-DeCarli liquid diet for 8 weeks compared with rats fed the control liquid diet (3-fold increase in serum alanine aminotransferase [ALT], P = 0.008, and 2-fold increase in focal liver necrosis, P = 0.005). The increased liver injury in the ethanol-fed HS rats was accompanied by a 70% increase in liver NF-kappa B activation (P < 0.05), a 3- to 5-fold increase in hepatocyte and Kupffer cell production of IL-6 and G-CSF (P < 0.05 for each), and a 2-fold increase in neutrophil infiltration (P < 0.005) compared with the control diet-fed HS rats. Thus, increased susceptibility to HS-induced liver injury in the setting of chronic ethanol use may be mediated, at least in part, by increased NF-kappa B activation resulting in increased local production of IL-6 and G-CSF and increased infiltration of neutrophils, which can damage liver cells directly and contribute to impaired sinusoidal blood flow.

  15. Biweekly docetaxel and vinorelbine with granulocyte colony-stimulating factor support for patients with anthracycline-resistant metastatic breast cancer.

    PubMed

    Gómez-Bernal, Amalia; Cruz, Juan Jesús; Olaverri, Amaya; Arizcun, Alberto; Martín, Teresa; Rodríguez, Cesar A; Martín, Germán; Fonseca, Emilio; Sánchez, Pedro

    2005-01-01

    This phase II trial evaluated the efficacy and toxicity of vinorelbine 25 mg/m2 plus docetaxel 60 mg2/m administered on day 1, every 2 weeks with granulocyte colony-stimulating factor support (G-CSF, 5 microg/kg/day, days 3-7) as primary prophylaxis in patients with histologically confirmed metastatic breast cancer (MBC) and previously treated with anthracyclines in the adjuvant or in the first-line setting. A total of 48 patients received 352 cycles (median 8, range 2-10). All patients were included in the efficacy and safety evaluation on an intent-to-treat analysis. Eight patients (17%) showed a complete response and 14 patients (29%) showed a partial response. Overall response rate was 46% [95% confidence interval (CI) 33-60]. The median duration of response was 10.0 months. With a median follow-up of 18.0 months, the median time to progression was 11.9 months and the median overall survival was 27.1 months. The most frequently reported grade 3/4 hematological toxicity was neutropenia (19% of patients, 4% of cycles). Febrile neutropenia was reported in six patients (13%) and 7 cycles (2%), but no toxic deaths were reported. The most common grade 3/4 non-hematological toxicity was asthenia (17% of patients, 6% of cycles) and nail toxicity (15% of patients, 3% of cycles). In conclusion, biweekly docetaxel plus vinorelbine with G-CSF support is active and well tolerated as chemotherapy for patients with MBC resistant to anthracyclines. G-CSF support is recommended for lowering the incidence and severity of neutropenia and febrile neutropenia.

  16. Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: a multicenter randomized controlled study in southwest China.

    PubMed

    Gao, Lei; Wen, Qin; Chen, Xinghua; Liu, Yao; Zhang, Cheng; Gao, Li; Kong, Peiyan; Zhang, Yanqi; Li, Yunlong; Liu, Jia; Wang, Qingyu; Su, Yi; Wang, Chunsen; Wang, Sanbin; Zeng, Yun; Sun, Aihua; Du, Xin; Zeng, Dongfeng; Liu, Hong; Peng, Xiangui; Zhang, Xi

    2014-12-01

    HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is an effective and immediate treatment for high-risk acute myeloid leukemia (HR-AML) patients lacking matched donors. Relapse remains the leading cause of death for HR-AML patients after haplo-HSCT. Accordingly, the prevention of relapse remains a challenge in the treatment of HR-AML. In a multicenter randomized controlled trial in southwestern China, 178 HR-AML patients received haplo-HSCT with conditioning regimens involving recombinant human granulocyte colony-stimulating factor (rhG-CSF) or non-rhG-CSF. The cumulative incidences of relapse and graft-versus-host disease (GVHD), 2-year leukemia-free survival (LFS), and overall survival (OS) were evaluated. HR-AML patients who underwent the priming conditioning regimen with rhG-CSF had a lower relapse rate than those who were treated with non-rhG-CSF (38.2%; 95% confidence interval [CI], 28.1% to 48.3% versus 60.7%, 95% CI, 50.5% to 70.8%; P < .01). The cumulative incidences of acute GVHD, chronic GVHD, transplantation-related toxicity, and infectious complications appeared to be equivalent. In total, 53 patients in the rhG-CSF-priming group and 31 patients in the non-rhG-CSF-priming group were still alive at the median follow-up time of 42 months (range, 24 to 80 months). The 2-year probabilities of LFS and OS in the rhG-CSF-priming and non-rhG-CSF-priming groups were 55.1% (95% CI, 44.7% to 65.4%) versus 32.6% (95% CI, 22.8% to 42.3%) (P < .01) and 59.6% (95% CI, 49.4% to 69.7%) versus 34.8% (95% CI, 24.9% to 44.7%) (P < .01), respectively. Multivariate analyses indicated that the 2-year probability of LFS of patients who achieved complete remission (CR) before transplantation was better than that of patients who did not achieve CR. The 2-year probability of LFS of patients with no M4/M5/M6 subtype was better than that of patients with the M4/M5/M6 subtype in the G-CSF-priming group (67.4%; 95% CI, 53.8% to 80.9% versus 41.9%; 95% CI, 27

  17. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats

    PubMed Central

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  18. Randomized Prospective Controlled Trial of Recombinant Granulocyte Colony-Stimulating Factor as Adjunctive Therapy for Limb-Threatening Diabetic Foot Infection

    PubMed Central

    de Lalla, Fausto; Pellizzer, Giampietro; Strazzabosco, Marco; Martini, Zeno; Du Jardin, Giovanni; Lora, Luciano; Fabris, Paolo; Benedetti, Paolo; Erle, Giuseppe

    2001-01-01

    Adult diabetic patients admitted to our Diabetes Center from September 1996 to January 1998 for severe, limb-threatening foot infection were consecutively enrolled in a prospective, randomized, controlled clinical study aimed at assessing the safety and efficacy of recombinant human granulocyte colony-stimulating factor (G-CSF) (lenograstim) as an adjunctive therapy for the standard treatment of diabetic foot infection. Forty patients, all of whom displayed evidence of osteomyelitis and long-standing ulcer infection, were randomized 1:1 to receive either conventional treatment (i.e., antimicrobial therapy plus local treatment) or conventional therapy plus 263 μg of G-CSF subcutaneously daily for 21 days. The empiric antibiotic treatment (a combination of ciprofloxacin plus clindamycin) was further adjusted, when necessary, according to the results of cultures and sensitivity testing. Microbiologic assessment of foot ulcers was performed by both deep-tissue biopsy and swab cultures, performed at enrollment and on days 7 and 21 thereafter. Patients were monitored for 6 months; the major endpoints (i.e., cure, improvement, failure, and amputation) were blindly assessed at weeks 3 and 9. At enrollment, both patient groups were comparable in terms of both demographic and clinical data. None of the G-CSF-treated patients experienced either local or systemic adverse effects. At the 3- and 9-week assessments, no significant differences between the two groups could be observed concerning the number of patients either cured or improved, the number of patients displaying therapeutic failure, or the species and number of microorganisms previously yielded from cultures at day 7 and day 21. Conversely, among this small series of patients the cumulative number of amputations observed after 9 weeks of treatment appeared to be lower in the G-CSF arm; in fact, only three patients (15%) in this group had required amputation, whereas nine patients (45%) in the other group had

  19. Granulocyte colony stimulating factor reduces brain injury in a cardiopulmonary bypass-circulatory arrest model of ischemia in a newborn piglet

    PubMed Central

    Pastuszko, Peter; Schears, Gregory J.; Greeley, William J.; Kubin, Joanna; Wilson, David F.; Pastuszko, Anna

    2014-01-01

    Background Ischemic brain injury continues to be of major concern in patients undergoing cardiopulmonary bypass (CPB) surgery for congenital heart disease. Striatum and hippocampus are particularly vulnerable to injury during these processes. Our hypothesis is that the neuronal injury resulting from CPB and the associated circulatory arrest can be at least partly ameliorated by pre-treatment with granulocyte colony stimulating factor (G-CSF). Material and Methods Fourteen male newborn piglets were assigned to three groups: deep hypothermic circulatory arrest (DHCA), DHCA with G-CSF, and sham-operated. The first two groups were placed on CPB, cooled to 18°C, subjected to 60 min of DHCA, re-warmed and recovered for 8-9 hrs. At the end of experiment, the brains were perfused, fixed and cut into 10 μm transverse sections. Apoptotic cells were visualized by in-situ DNA fragmentation assay (TUNEL), with the density of injured cells expressed as a mean number ± SD per mm2. Results The number of injured cells in the striatum and CA1 and CA3 regions of the hippocampus increased significantly following DHCA. In the striatum, the increase was from 0.46±0.37 to 3.67±1.57 (p=0.002); in the CA1, from 0.11±0.19 to 5.16±1.57 (p=0.001), and in the CA3, from 0.28±0.25 to 2.98±1.82 (p=0.040). Injection of G-CSF prior to bypass significantly reduced the number of injured cells in the striatum and CA1 region, by 51% and 37%, respectively. In the CA3 region, injured cell density did not differ between the G-CSF and control group. Conclusion In a model of hypoxic brain insult associated with CPB, G-CSF significantly reduces neuronal injury in brain regions important for cognitive functions, suggesting it can significantly improve neurological outcomes from procedures requiring DHCA. PMID:25082120

  20. Growth of human hemopoietic colonies in response to recombinant gibbon interleukin 3: comparison with human recombinant granulocyte and granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Messner, H.A.; Yamasaki, K.; Jamal, N.; Minden, M.M.; Yang, Y.C.; Wong, G.G.; Clark, S.C.

    1987-10-01

    Supernatants of COS-1 cells transfected with gibbon cDNA encoding interleukin 3 (IL-3) with homology to sequences for human IL-3 were tested for ability to promote growth of various human hemopoietic progenitors. The effect of these supernatants as a source of recombinant IL-3 was compared to that of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) as well as to that of medium conditioned by phytohemagglutinin-stimulated leukocytes. The frequency of multilineage colonies, erythroid bursts, and megakaryocyte colonies in cultures containing the COS-1 cell supernatant was equivalent to the frequency observed in the controls and significantly higher than found in cultures plated with recombinant GM-CSF. G-CSF did not support the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. In contrast, growth of granulocyte-macrophage colonies was best supported with GM-CSF, while recombinant IL-3 yielded colonies at lower or at best equivalent frequency. The simultaneous addition of higher concentrations of GM-CSF to cultures containing IL-3 in optimal amounts did not enhance the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. However, the frequency of such colonies and bursts increased with GM-CSF when cultures were plated with suboptimal concentrations of IL-3. Growth of colonies within the granulocyte-macrophage lineage is optimally supported by GM-CSF and does not increase with further addition of IL-3.

  1. Increased efficacy of intermediate-dose cytarabine + G-CSF compared to DHAP + G-CSF for stem cell mobilization in patients with lymphoma: an analysis by the polish lymphoma research group.

    PubMed

    Giebel, Sebastian; Sadus-Wojciechowska, Maria; Halaburda, Kazimierz; Drozd-Sokolowska, Joanna; Wierzbowska, Agnieszka; Najda, Jacek; Mendrek, Wlodzimierz; Sobczyk-Kruszelnicka, Malgorzata; Nowicki, Mateusz; Holowiecki, Jerzy; Czerw, Tomasz

    2016-01-01

    Salvage regimens, like DHAP (dexamethasone, cytarabine, and cisplatin) are frequently used for stem cell mobilization in lymphoma. The aim of this study was to compare the efficacy of DHAP + G-CSF with intermediate-dose cytarabine (ID-AraC) + G-CSF, recently proposed as an alternative schedule. Consecutive patients with Hodgkin's or non-Hodgkin lymphoma who had received at least 2 lines of chemotherapy, mobilized with either DHAP (n = 51) or ID-AraC (n = 50) + G-CSF were included in the analysis. AraC was administered at the dose of 400 mg/m [1] bid intravenously for 2 days followed by filgrastim starting from day 5. In the AraC group, 96 % of patients collected at least 2 × 10 [2] CD34(+) cells/kg compared to 71 % in the DHAP group (p = 0.0006). The CD34(+) cell yield was 9.3 (0-30.3) × 10 [2]/kg vs. 5.6 (0-24.8) × 10 [2]/kg, respectively (p = 0.006). A single apheresis was sufficient to achieve the threshold number of CD34(+) cells in 82 % of the cases after AraC compared to 45 % after DHAP (p = 0.001). We conclude that stem cell mobilization using ID-AraC is associated with a significantly higher efficacy than DHAP, allowing for collection of the transplant material in almost all patients with lymphoma. Our observation suggests that ID-AraC + G-CSF may be a preferable mobilization regimen in this setting.

  2. Effects of low-dose G-CSF formulation on hematology in healthy horses after long-distance transportation.

    PubMed

    Endo, Yoshiro; Hobo, Seiji; Korosue, Kenji; Ootsuka, Kenji; Kitauchi, Akira; Kikkawa, Risa; Hidaka, Yuichi; Hagio, Mitsuyoshi; Tsuzuki, Nao

    2015-04-01

    The present study evaluated the effects of single-dose filgrastim on hematology in 16 healthy horses after long-distance transportation. Horses were assigned to receive filgrastim (0.23 µg/kg, SC, once; G-CSF group; n=8) or saline (0.9% NaCl) solution (0.3 ml, SC, once; control group; n=8) ≤ 1 hr before transportation. Horses were transported 2,530 km using commercial vans over the course of approximately 44 hr. Clinical examinations and hematologic analyses were performed on all horses before and after transportation. Because the post-transportation white blood cell counts and bacillary neutrophil to segmented neutrophil ratio were significantly higher in the G-CSF group, filgrastim may have promoted the mobilization of neutrophils from marrow. Filgrastim deserves a further study for efficacy in preventing horse shipping fever.

  3. The synthesis of Rantes, G-CSF, IL-4, IL-5, IL-6, IL-12 and IL-13 in human whole-blood cultures is modulated by an extract from Eleutherococcus senticosus L. roots.

    PubMed

    Schmolz, M W; Sacher, F; Aicher, B

    2001-05-01

    An ethanol extract derived from the roots of Eleutherococcus senticosus was found to influence markedly the cytokine synthesis of activated whole blood cultures of ten healthy volunteers. Whereas the synthesis of Rantes was increased over a wide range of concentrations, the release of IL-4, IL-5 and IL-12 was significantly inhibited. An inhibition at higher concentrations, switching to a stimulation at lower doses of the extract was seen with G-CSF, IL-6 and IL-13. From these particular immuno-pharmacological effects of Eleutherococcus senticosus we suggest this herbal preparation possesses immuno-modulatory potency, rather than just being immuno-suppressive or -stimulating.

  4. Weekly CODE chemotherapy with recombinant human granulocyte colony-stimulating factor for relapsed or refractory small cell lung cancer.

    PubMed

    Sato, K; Tsuchiya, S; Minato, K; Sunaga, N; Ishihara, S I; Makimoto, T; Naruse, I; Hoshino, H; Watanabe, S; Saitoh, R; Mori, M

    2000-01-01

    We used cisplatin, vincristine, doxorubicin, and etoposide (CODE) plus recombinant human granulocyte colony-stimulating factor (rhG-CSF) weekly for salvage chemotherapy in relapsed or refractory small cell lung cancer (SCLC). We reviewed the medical charts of patients between January 1993 and December 1996 at the National Nishi-Gunma Hospital. Twenty patients were treated with salvage chemotherapy. The overall response rate was 55.0%. The median survival time of extensive disease patients from the start of CODE therapy was 23 weeks and the 1-year survival rate was 21.0%. Toxicities were severe, especially in myelosuppression. CODE could be selected as a salvage therapy for chemotherapy- relapsed SCLC cases.

  5. Late reperfusion of a totally occluded infarct-related artery increases granulocyte-colony stimulation factor and reduces stroma-derived factor-1alpha blood levels in patients with ongoing ischemia after acute myocardial infarction.

    PubMed

    Kuo, Li-Tang; Chen, Shih-Jen; Cherng, Wen-Jin; Yang, Ning-I; Lee, Chen-Chin; Cheng, Chi-Wen; Verma, Subodh; Wang, Chao-Hung

    2009-07-01

    After acute myocardial infarction (AMI), reopening of a totally occluded infarct-related artery (IRA) at a subacute stage is still controversial in symptom-free patients. However, in patients with persistent ischemic symptoms and inadequate collaterals to the infarct area, recanalization is thought to provide beneficial effects. In addition to augmenting myocardial perfusion, we hypothesized that the benefit of recanalization involves the manipulation of circulating stem cell-mobilizing cytokines. This study included 30 patients with a totally occluded IRA and ongoing ischemic symptoms (the study group) and 30 patients with a partially occluded IRA (the control group). All patients underwent successful angioplasty and/or stenting. Before and immediately after the coronary intervention, blood granulocyte-colony-stimulating factor (G-CSF), stem-cell factor (SCF), vascular endothelial growth factor (VEGF), and stroma-derived factor-1 (SDF-1alpha) were measured. After recanalization, G-CSF levels significantly increased in the study group compared to the control group (P=0.03). SDF-1alpha levels in the study group decreased relative to the controls (P=0.02). However, no significant changes in VEGF or SCF levels between the two groups were found. In the multivariate analysis, reopening of a totally occluded IRA was independently and significantly associated with changes in G-CSF and SDF-1alpha levels after recanalization. In conclusion, our data suggest that the benefits of late reperfusion of a totally occluded IRA in patients with ongoing myocardial ischemia may involve mechanisms associated with stem cell-mobilizing and plaque-stabilizing cytokines. This study provides the rationale to investigate serial changes in cytokines and the numbers of circulating progenitors after reperfusion in the future.

  6. Identification of Granulocyte Colony-Stimulating Factor and Interleukin-6 as Candidate Biomarkers of CBLB502 Efficacy as a Medical Radiation Countermeasure

    PubMed Central

    Krivokrysenko, Vadim I.; Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Kononov, Yevgeniy; Shyshynova, Inna; Cheney, Alec; Maitra, Ratan K.; Purmal, Andrei; Whitnall, Mark H.; Feinstein, Elena

    2012-01-01

    Given an ever-increasing risk of nuclear and radiological emergencies, there is a critical need for development of medical radiation countermeasures (MRCs) that are safe, easily administered, and effective in preventing and/or mitigating the potentially lethal tissue damage caused by acute high-dose radiation exposure. Because the efficacy of MRCs for this indication cannot be ethically tested in humans, development of such drugs is guided by the Food and Drug Administration's Animal Efficacy Rule. According to this rule, human efficacious doses can be projected from experimentally established animal efficacious doses based on the equivalence of the drug's effects on efficacy biomarkers in the respective species. Therefore, identification of efficacy biomarkers is critically important for drug development under the Animal Efficacy Rule. CBLB502 is a truncated derivative of the Salmonella flagellin protein that acts by triggering Toll-like receptor 5 (TLR5) signaling and is currently under development as a MRC. Here, we report identification of two cytokines, granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6), as candidate biomarkers of CBLB502's radioprotective/mitigative efficacy. Induction of both G-CSF and IL-6 by CBLB502 1) is strictly TLR5-dependent, 2) occurs in a CBLB502 dose-dependent manner within its efficacious dose range in both nonirradiated and irradiated mammals, including nonhuman primates, and 3) is critically important for the ability of CBLB502 to rescue irradiated animals from death. After evaluation of CBLB502 effects on G-CSF and IL-6 levels in humans, these biomarkers will be useful for accurate prediction of human efficacious CBLB502 doses, a key step in the development of this prospective radiation countermeasure. PMID:22837010

  7. Low-dose granulocyte colony-stimulating factor overcomes neutropenia in the treatment of non-Hodgkin's lymphoma with higher cost-effectiveness.

    PubMed

    Hara, Takeshi; Tsurumi, Hisashi; Kasahara, Senji; Kanemura, Nobuhiro; Yoshikawa, Takeshi; Goto, Naoe; Kojima, Yasushi; Yamada, Toshiki; Sawada, Michio; Takahashi, Takeshi; Oyama, Masami; Tomita, Eiichi; Moriwaki, Hisataka

    2005-12-01

    To facilitate more economical medical care, we carried out a prospective study of whether a THP-COP regimen (cyclophosphamide, pirarubicin, vincristine, and prednisolone) with low-dose granulocyte colony-stimulating factor (G-CSF) would effectively treat non-Hodgkin's lymphoma (NHL). From April 2003 through March 2004, we enrolled 19 consecutive patients with newly diagnosed NHL treated at our hospital. The patients were divided into young and elderly groups. Each patient underwent chemotherapy with 8 courses of a THP-COP regimen with a 50-microg dose of lenograstim. Age- and sex-matched historical control patients (n = 141) received NHL diagnoses between 1998 and 2003. Each patient in the control group underwent the same chemotherapy and received a 100-microg dose of lenograstim. The mean (+/-SD) total amounts of G-CSF per cycle of chemotherapy were 332 +/- 103 microg (young patients) and 345 +/- 128 microg (elderly patients) in the low-dose group and 594 +/- 439 microg (young) and 730 +/- 551 microg (elderly) in the control group. The duration of fever in 1 cycle of chemotherapy was 0.3 +/- 1.0 days (young) and 0.1 +/- 0.8 days (elderly) in the low-dose group and 0.5 +/- 1.3 days (young) and 0.8 +/- 2.0 days (elderly) in the control group. A THP-COP regimen with low-dose G-CSF could be administered to NHL patients with safety. Administration of a 50-microg dose of lenograstim is sufficient and recommended for the treatment of NHL.

  8. Incidence of chemotherapy-induced neutropenia and current practice of prophylaxis with granulocyte colony-stimulating factors in cancer patients in Spain: a prospective, observational study.

    PubMed

    Jolis, L; Carabantes, F; Pernas, S; Cantos, B; López, A; Torres, P; Funes, C; Caballero, D; Benedit, P; Salar, A

    2013-07-01

    We aimed to describe the incidence of neutropenia in breast cancer and lymphoma patients and granulocyte colony-stimulating factors (G-CSF) use in clinical practice. We conducted a multicentre, prospective, observational study including breast cancer and lymphoma patients initiating chemotherapy (≥ 10% febrile neutropenia risk). We included 734 patients with breast cancer and 291 with lymphoma. Over the first four chemotherapy cycles, patients had an incidence of 11.0% grade 3-4 neutropenia (absolute neutrophil count <1.0 × 10(9) /L) and 4.3% febrile neutropenia (absolute neutrophil count <0.5 × 10(9) /L and fever ≥ 38 °C) in the breast cancer cohort, and 40.5% and 14.8% in the lymphoma cohort. Full dose on schedule (>85% of planned chemotherapy dose and ≤ 3 days delay) was achieved by 85.6% of breast cancer and 68.9% of lymphoma patients. Hospitalisation due to febrile neutropenia was required in 2.0% and 12.0% of breast cancer and lymphoma patients respectively. G-CSF was administered to 70.0% of breast cancer and 83.8% of lymphoma patients, and initiated from the first chemotherapy cycle (primary prophylaxis) in 60.6% and 64.2% of cases. Severe neutropenia affects approximately one in 10 breast cancer patients and one in two lymphoma patients receiving chemotherapy with moderate or greater risk of febrile neutropenia. Most patients received treatment with G-CSF in Spanish clinical practice.

  9. Plerixafor on-demand combined with chemotherapy and granulocyte colony-stimulating factor: significant improvement in peripheral blood stem cells mobilization and harvest with no increase in costs.

    PubMed

    Milone, Giuseppe; Martino, Massimo; Spadaro, Andrea; Leotta, Salvatore; Di Marco, Annalia; Scalzulli, Potito; Cupri, Alessandra; Di Martina, Valentina; Schinocca, Elena; Spina, Eleonora; Tripepi, Giovanni

    2014-01-01

    To date, no prospective study on Plerixafor 'on-demand' in combination with chemotherapy and granulocyte colony-stimulating factor (G-CSF) has been reported. We present an interim analysis of the first prospective study in which Plerixafor was administered on-demand in patients affected by multiple myeloma and lymphoma who received high dose cyclophosphamide or DHAP (dexamethasone, cytarabine, cisplatin) plus G-CSF to mobilize peripheral blood stem cells (PBSC). One hundred and two patients were evaluable for response. A cohort of 240 patients receiving the same mobilizing chemotherapy was retrospectively studied. Failure to mobilize CD34(+) cells in peripheral blood was reduced by 'on-demand' strategy compared to conventional mobilization; from 13·0 to 3·0% (P = 0·004). Failure to harvest CD34(+) cells 2 × 10(6) /kg decreased from 20·9 to 4·0% (P = 0·0001). The on-demand Plerixafor strategy also resulted in a lower rate of mobilization failure (P = 0·03) and harvest failure (P = 0·0008) when compared to a 'bias-adjusted set of controls'. Evaluation of economic costs of the two strategies showed that the overall cost of the two treatments were comparable when salvage mobilizations were taken into account. When in combination with cyclophosphamide or DHAP plus G-CSF, the 'on-demand' use of Plerixafor showed, in comparison to conventionally treated patients, a significant improvement in mobilization of PBSC with no increase in overall cost.

  10. Effects of short-term administration of G-CSF (filgrastim) on bone marrow progenitor cells: analysis of serial marrow samples from normal donors.

    PubMed

    Martínez, C; Urbano-Ispizua, A; Rozman, M; Rovira, M; Marín, P; Montfort, N; Carreras, E; Montserrat, E

    1999-01-01

    To determine the effect of G-CSF administration on both the total number of CD34+ cells and the primitive CD34+ subsets in bone marrow (BM), we have analyzed BM samples serially obtained from 10 normal donors in steady-state and during G-CSF treatment. Filgrastim was administered subcutaneously at a dosage of 10 microg/kg/day (n = 7) or 10 microg/kg/12 h (n = 3) for 4 consecutive days. Peripheral blood sampling and BM aspirates were performed on day 1 (just before G-CSF administration), day 3 (after 2 days of G-CSF), and day 5 (after 4 days of G-CSF). During G-CSF administration, a significant increase in the total number of BM nucleated cells was observed. The percentage (range) of CD34+ cells decreased in BM from a median of 0.88 (0.47-1.44) on day 1 to 0.57 (0.32-1.87), and to 0.42 (0.16-0.87) on days 3 and 5, respectively. We observed a slight increase in the total number of BM CD34+ cells on day 3 (0.66 x 10(9)/l (0.13-0.77)), and a decrease on day 5 (0.23 x 10(9)/l (0.06-1.23)) as compared with steady-state (0.40 x 10(9)/l (0.06-1.68)). The proportion of primitive BM hematopoietic progenitor cells (CD34+CD38-, CD34+HLA-DR-, CD34+CD117-) decreased during G-CSF administration. In parallel, a significant increase in the total number of CD34+ cells in peripheral blood was observed, achieving the maximum value on day 5. These results suggest that in normal subjects the administration of G-CSF for 5 days may reduce the number of progenitor cells in BM, particularly the most primitive ones.

  11. G-CSF preferentially supports the generation of gut-homing Gr-1high macrophages in M-CSF-treated bone marrow cells.

    PubMed

    Meshkibaf, Shahab; Gower, Mark William; Dekaban, Gregory A; Kim, Sung Ouk

    2014-10-01

    The G-CSF is best known for its activity in the generation and activation of neutrophils. In addition, studies on G-CSF(-/-) or G-CSFR(-/-) mice and BMC cultures suggested a role of G-CSF in macrophage generation. However, our understanding on the role of G-CSF in macrophage development is limited. Here, using in vitro BMC models, we demonstrated that G-CSF promoted the generation of Gr-1(high)/F4/80(+) macrophage-like cells in M-BMCs, likely through suppressing cell death and enhancing generation of Gr-1(high)/F4/80(+) macrophage-like cells. These Gr-1(high) macrophage-like cells produced "M2-like" cytokines and surface markers in response to LPS and IL-4/IL-13, respectively. Adoptive transfer of EGFP-expressing (EGFP(+)) M-BMCs showed a dominant, gut-homing phenotype. The small intestinal lamina propria of G-CSFR(-/-) mice also harbored significantly reduced numbers of Gr-1(high)/F4/80(+) macrophages compared with those of WT mice, but levels of Gr-1(+)/F4/80(-) neutrophil-like cells were similar between these mice. Collectively, these results suggest a novel function of G-CSF in the generation of gut-homing, M2-like macrophages.

  12. Long-term results of dose-intensive chemotherapy with G-CSF support (TCC-NHL-91) for advanced intermediate-grade non-Hodgkin's lymphoma: a review of 59 consecutive cases treated at a single institute.

    PubMed

    Akutsu, Miyuki; Tsunoda, Saburo; Izumi, Tohru; Tanaka, Masaru; Katano, Susumu; Inoue, Koichi; Igarashi, Seiji; Hirabayashi, Kaoru; Furukawa, Yusuke; Ohmine, Ken; Sato, Kazuya; Kobayashi, Hiroyuki; Ozawa, Keiya; Kirito, Keita; Nagashima, Takahiro; Teramukai, Satoshi; Fukushima, Masanori; Kano, Yasuhiko

    2008-01-01

    We evaluated the long-term outcome of very dose-intensive chemotherapy (TCC-NHL-91) for advanced intermediate-grade lymphoma, in which an eight-cycle regimen with 11 drugs was given with granulocyte colony-stimulating factor (G-CSF) support (total 18 weeks). Fifty-nine patients were treated during February 1, 1991 and March 31, 2001 (median age: 48 years). Forty-three patients (73%) were in a high-intermediate risk or high-risk group (HI/H) according to the age-adjusted International Prognostic Index (aa-IPI). Forty-six patients received 7 or 8 cycles of therapy. Ten of 15 patients over age 60 stopped before 7 cycles. Forty-three patients with an initial bulky mass or a residual mass received involved-field radiation. Overall, 56 patients (95%) achieved complete remission (CR). Grade 4 hematotoxicity was observed in all patients. With a median follow-up of 128 months, the 10-year overall survival (OS) and progression-free survival (PFS) rates were 76% and 61%, respectively. Neither aa-IPI risk factors nor the index itself was associated with response, OS, or PFS. One patient died of sepsis during the therapy and one died of secondary leukemia. This retrospective study suggests that the TCC-NHL-91 regimen achieves high CR, OS, and PFS in patients with advanced intermediate-grade lymphoma up to 60 years old and may be a valuable asset in the management of this disease. Further evaluation and prospective studies of the TCC-NHL-91 are warranted.

  13. Neutrophil biology and the next generation of myeloid growth factors.

    PubMed

    Dale, David C

    2009-01-01

    Neutrophils are the body's critical phagocytic cells for defense against bacterial and fungal infections; bone marrow must produce approximately 10 x 10(9) neutrophils/kg/d to maintain normal blood neutrophil counts. Production of neutrophils depends on myeloid growth factors, particularly granulocyte colony-stimulating factor (G-CSF). After the original phase of development, researchers modified these growth factors to increase their size and delay renal clearance, increase their biologic potency, and create unique molecules for business purposes. Pegylated G-CSF is a successful product of these efforts. Researchers have also tried to identify small molecules to serve as oral agents that mimic the parent molecules, but these programs have been less successful. In 2006, the European Medicines Agency established guidelines for the introduction of new biologic medicinal products claimed to be similar to reference products that had previously been granted marketing authorization in the European community, called bio-similars. Globally, new and copied versions of G-CSF and other myeloid growth factors are now appearing. Some properties of the myeloid growth factors are similar to other agents, offering opportunities for the development of alternative drugs and treatments. For example, recent research shows that hematopoietic progenitor cells can be mobilized with a chemokine receptor antagonist, chemotherapy, G-CSF, and granulocyte macrophage colony-stimulating factor. Advances in neutrophil biology coupled with better understanding and development of myeloid growth factors offer great promise for improving the care of patients with cancer and many other disorders.

  14. Case Report: Combination Therapy with Mesenchymal Stem Cells and Granulocyte-Colony Stimulating Factor in a Case of Spinal Cord Injury

    PubMed Central

    Derakhshanrad, Nazi; Saberi, Hooshang; Tayebi Meybodi, Keyvan; Taghvaei, Mohammad; Arjmand, Babak; Aghayan, Hamid Reza; Kohan, Amir Hassan; Haghpanahi, Mohammad; Rahmani, Shahrokh

    2015-01-01

    Introduction: Various neuroregenerative procedures have been recently employed along with neurorehabilitation programs to promote neurological function after Spinal Cord Injury (SCI), and recently most of them have focused on the acute stage of spinal cord injury. In this report, we present a case of acute SCI treated with neuroprotective treatments in conjunction with conventional rehabilitation program. Methods: A case of acute penetrative SCI (gunshot wound), 40 years old, was treated with intrathecal bone marrow derived stem cells and parenteral Granulocyte-Colony Stimulating Factor (G-CSF) along with rehabilitation program. The neurological outcomes as well as safety issues have been reported. Results: Assessment with American Spinal Injury Association (ASIA), showed neurological improvement, meanwhile he reported neuropathic pain, which was amenable to oral medication. Discussion: In the acute setting, combination therapy of G-CSF and intrathecal Mesenchymal Stem Cells (MSCs) was safe in our case as an adjunct to conventional rehabilitation programs. Further controlled studies are needed to find possible side effects, and establish net efficacy. PMID:26649168

  15. [Comparison of different G-CSF treatment effectiveness in experiments on irradiated mice].

    PubMed

    Rozhdestvenskiĭ, L M; Shchegoleva, R A; Deshevoĭ, Iu B; Lisina, N I; Titov, B A

    2012-01-01

    In the experiments on F1 (CBA x C57BL) and BALB mice irradiated by 137Cs gamma-rays, preparations of unglycosilated G-SCF such as Neupogen and their domestic analogs Leucostim and Neupomax were investigated. The tests such as 9-day bone marrow cellularity (BMC) and endogenous CFUs, the neutrophile number restoration, the 30-day survival index have shown that all three preparations have an approximately equal effectiveness relating to acute radiation disease treatment and granulopoiesis stimulation after a 5-10 day consecutive administration following irradiation of mice at lethal and sublethal doses. We have come to the conclusion that Leucostim and Neupomax can be regarded as adequate substitutes for Neupogen.

  16. Factors Associated with Speech-Sound Stimulability.

    ERIC Educational Resources Information Center

    Lof, Gregory L.

    1996-01-01

    This study examined stimulability in 30 children (ages 3 to 5) with articulation impairments. Factors found to relate to stimulability were articulation visibility, the child's age, the family's socioeconomic status, and the child's overall imitative ability. Perception, severity, otitis media history, language abilities, consistency of…

  17. Clinical grade isolation of regulatory T cells from G-CSF mobilized peripheral blood improves with initial depletion of monocytes.

    PubMed

    Patel, Pritesh; Mahmud, Dolores; Park, Youngmin; Yoshinaga, Kazumi; Mahmud, Nadim; Rondelli, Damiano

    2015-01-01

    Clinical isolation of circulating CD4(+)CD25(+) regulatory T cells (Tregs) from peripheral blood mononuclear cells is usually performed by CD4(+) cell negative selection followed by CD25(+) cell positive selection. Although G-CSF mobilized peripheral blood (G-PBSC) contains a high number of Tregs, a high number of monocytes in G-PBSC limits Treg isolation. Using a small scale device (MidiMACS, Miltenyi) we initially demonstrated that an initial depletion of monocytes would be necessary to obtaina separation of CD4(+)CD25(+)FoxP3(+)CD127(-) cells from G-PBSC (G-Tregs) with a consistent purity >70% and inhibitory activity of T cell alloreactivity in-vitro. We then validated the same approach in a clinical scale setting by separating G-Tregs with clinically available antibodies to perform a CD8(+)CD19(+)CD14(+) cell depletion followed by CD25(+) cell selection (2-step process) or by adding an initial CD14(+) cell depletion (3-step process) using a CliniMACS column. The 3-step approach resulted in a better purity (81±12% vs. 35±33%) and yield (66% vs. 39%). Clinically isolated G-Tregs were also FoxP3(+)CD127(dim) and functionally suppressive in-vitro. Our findings suggest that a better and more consistent purity of Tregs can be achieved from G-PBSC by an initial single depletion of monocytes prior to selection of CD4(+)CD25(+) cells.

  18. Clinical grade isolation of regulatory T cells from G-CSF mobilized peripheral blood improves with initial depletion of monocytes

    PubMed Central

    Patel, Pritesh; Mahmud, Dolores; Park, Youngmin; Yoshinaga, Kazumi; Mahmud, Nadim; Rondelli, Damiano

    2015-01-01

    Clinical isolation of circulating CD4+CD25+ regulatory T cells (Tregs) from peripheral blood mononuclear cells is usually performed by CD4+ cell negative selection followed by CD25+ cell positive selection. Although G-CSF mobilized peripheral blood (G-PBSC) contains a high number of Tregs, a high number of monocytes in G-PBSC limits Treg isolation. Using a small scale device (MidiMACS, Miltenyi) we initially demonstrated that an initial depletion of monocytes would be necessary to obtaina separation of CD4+CD25+FoxP3+CD127- cells from G-PBSC (G-Tregs) with a consistent purity >70% and inhibitory activity of T cell alloreactivity in-vitro. We then validated the same approach in a clinical scale setting by separating G-Tregs with clinically available antibodies to perform a CD8+CD19+CD14+ cell depletion followed by CD25+ cell selection (2-step process) or by adding an initial CD14+ cell depletion (3-step process) using a CliniMACS column. The 3-step approach resulted in a better purity (81±12% vs. 35±33%) and yield (66% vs. 39%). Clinically isolated G-Tregs were also FoxP3+CD127dim and functionally suppressive in-vitro. Our findings suggest that a better and more consistent purity of Tregs can be achieved from G-PBSC by an initial single depletion of monocytes prior to selection of CD4+CD25+ cells. PMID:27069755

  19. Race and ethnicity influences collection of G-CSF mobilized peripheral blood progenitor cells from unrelated donors, a CIBMTR analysis

    PubMed Central

    Hsu, Jack W.; Wingard, John R.; Logan, Brent R.; Chitphakdithai, Pintip; Akpek, Gorgun; Anderlini, Paolo; Artz, Andrew S.; Bredeson, Chris; Goldstein, Steven; Hale, Gregory; Hematti, Pieman; Joshi, Sarita; Kamble, Rammurti T.; Lazarus, Hillard M.; O'Donnell, Paul V.; Pulsipher, Michael A.; Savani, Bipin; Schears, Raquel M.; Shaw, Bronwen E.; Confer, Dennis L.

    2014-01-01

    Little information exists on the effect of race and ethnicity on collection of peripheral blood stem cells (PBSC) for allogeneic transplantation. We studied 10776 donors from the National Marrow Donor Program who underwent PBSC collection from 2006-2012. Self-reported donor race/ethnic information included Caucasian, Hispanic, Black/African American (AA), Asian/Pacific Islander (API), and Native American (NA). All donors were mobilized with subcutaneous filgrastim (G-CSF) at an approximate dose of 10 µg/kg/d for 5 days. Overall, AA donors had the highest median yields of mononuclear cells (MNC)/L and CD34+ cells/L blood processed (3.1 × 109 and 44 × 106 respectively) while Caucasians had the lowest median yields at 2.8 × 109 and 33.7 × 106 respectively. Multivariate analysis of CD34+/L mobilization yields using Caucasians as the comparator and controlling for age, gender, body mass index, and year of apheresis revealed increased yields in overweight and obese AA and API donors. In Hispanic donors, only male obese donors had higher CD34+/L mobilization yields compared to Caucasian donors. No differences in CD34+/L yields were seen between Caucasian and NA donors. Characterization of these differences may allow optimization of mobilization regimens to allow enhancement of mobilization yields without compromising donor safety. PMID:25316111

  20. Therapeutic use of recombinant human G-CSF (RHG-CSF) in a canine model of sublethal and lethal whole-body irradiation

    SciTech Connect

    Macvittie, T.J.; Monroy, R.L.; Patchen, M.L.; Souza, L.M.

    1990-01-01

    The short biologic half-life of the peripheral neutrophil (PMN) requires an active granulopoietic response to replenish functional PMSs and to remain a competent host defence in irradiated animals. Recombinant human G-CSF (rhG-CSF) was studied for its ability to modulate hemopoiesis in normal dogs as well as to decrease therapeutically the severity and duration of neutropenia in sublethally and lethally irradiated dogs. For the normal dog, subcutaneous administration of rhG-CSF induced neutrophilia within hours after the first injection; total PMSs continued to increase (with plateau phases) to mean peak values of 1000 per cent of baseline at the end of the treatment period (12-14 days). Bone-marrow-derived granulocyte-macrophage colony-forming cells (GM-CFC) increased significantly during treatment. For a sublethal 200 cGy dose, treatment with rhG-CSF for 14 consecutive days decreased the severity and shortened the duration of neutropenia and thrombocytopenia. The radiation-induced lethality of 60 per cent after a dose of 350 cGy was associated with marrow-derived GM-CFC survival of 1 per cent.

  1. Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ.

    PubMed

    Mendt, Mayela; Cardier, Jose E

    2015-12-01

    The stromal cell derived factor 1 (SDF-1/CXCL12) plays an essential role in the homing of hematopoietic stem and progenitor cells (HSPCs) to bone marrow (BM). It is not known whether SDF-1 may also regulate the homing of HSPCs to the liver during extramedullary hematopoiesis (EMH). Here, we investigated the possible role of SDF-1 in attracting HSPCs to the liver during experimental EMH induced by the hematopoietic mobilizers G-CSF, AMD3100 and phenylhydrazine (PHZ). Mice treated with G-CSF, AMD3100 and PHZ showed a significant increase in the expression of SDF-1 in the liver sinusoidal endothelial cells (LSECs) microenvironments. Liver from mice treated with the hematopoietic mobilizers showed HSPCs located adjacent to the LSEC microenvironments, expressing high levels of SDF-1. An inverse relationship was found between the hepatic SDF-1 levels and those in the BM. In vitro, LSEC monolayers induced the migration of HSPCs, and this effect was significantly reduced by AMD3100. In conclusion, our results provide the first evidence showing that SDF-1 expressed by LSEC can be a major player in the recruitment of HSPCs to the liver during EMH induced by hematopoietic mobilizers.

  2. Mononuclear cells from the cord blood and granulocytecolony stimulating factor-mobilized peripheral blood: is there a potential for treatment of cerebral palsy?

    PubMed

    Koh, Hani; Hwang, Kyoujung; Lim, Hae-Young; Kim, Yong-Joo; Lee, Young-Ho

    2015-12-01

    To investigate a possible therapeutic mechanism of cell therapy in the field of cerebral palsy using granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (mPBMCs), we compared the expression of inflammatory cytokines and neurotrophic factors in PBMCs and mPBMCs from children with cerebral palsy to those from healthy adult donors and to cord blood mononuclear cells donated from healthy newborns. No significant differences in expression of neurotrophic factors were found between PBMCs and mPBMCs. However, in cerebral palsy children, the expression of interleukin-6 was significantly increased in mPBMCs as compared to PBMCs, and the expression of interleukin-3 was significantly decreased in mPBMCs as compared to PBMCs. In healthy adults, the expression levels of both interleukin-1β and interleukin-6 were significantly increased in mPBMCs as compared to PBMCs. The expression of brain-derived neurotrophic factors in mPBMC from cerebral palsy children was significantly higher than that in the cord blood or mPBMCs from healthy adults. The expression of G-CSF in mPBMCs from cerebral palsy children was comparable to that in the cord blood but significantly higher than that in mPBMCs from healthy adults. Lower expression of pro-inflammatory cytokines (interleukin-1β, interleukin-3, and -6) and higher expression of anti-inflammatory cytokines (interleukin-8 and interleukin-9) were observed from the cord blood and mPBMCs from cerebral palsy children rather than from healthy adults. These findings indicate that mPBMCs from cerebral palsy and cord blood mononuclear cells from healthy newborns have the potential to become seed cells for treatment of cerebral palsy.

  3. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.

  4. Stimulation of neutrophils by tumor necrosis factor

    SciTech Connect

    Klebanoff, S.J.; Vadas, M.A.; Harlan, J.M.; Sparks, L.H.; Gamble, J.R.; Agosti, J.M.; Waltersdorph, A.M.

    1986-06-01

    Human recombinant tumor necrosis factor (TNF) was shown to be a weak direct stimulus of the neutrophil respiratory burst and degranulation. The stimulation, as measured by iodination, H/sub 2/O/sub 2/ production, and lysozyme release, was considerably increased by the presence of unopsonized zymosan in the reaction mixture, an effect which was associated with the increased ingestion of the zymosan. TNF does not act as an opsonin but, rather, reacts with the neutrophil to increase its phagocytic activity. TNF-dependent phagocytosis, as measured indirectly by iodination, is inhibited by monoclonal antibodies (Mab) 60.1 and 60.3, which recognize different epitopes on the C3bi receptor/adherence-promoting surface glycoprotein of neutrophils. Other neutrophil stimulants, namely N-formyl-methionyl-leucyl-phenylalanine, the Ca2+ ionophore A23187, and phorbol myristic acetate, also increase iodination in the presence of zymosan; as with TNF, the effect of these stimulants is inhibited by Mab 60.1 and 60.3, whereas, in contrast to that of TNF, their stimulation of iodination is unaffected by an Mab directed against TNF. TNF may be a natural stimulant of neutrophils which promotes adherence to endothelial cells and to particles, leading to increased phagocytosis, respiratory burst activity, and degranulation.

  5. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  6. Increased presence of anti-HLA antibodies early after allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood hematopoietic stem cell transplantation compared with bone marrow transplantation.

    PubMed

    Lapierre, Valérie; Aupérin, Anne; Tayebi, Hakim; Chabod, Jacqueline; Saas, Philippe; Michalet, Mauricette; François, Sylvie; Garban, Frédéric; Giraud, Christine; Tramalloni, Dominique; Oubouzar, Nadia; Blaise, Didier; Kuentz, Matthieu; Robinet, Eric; Tiberghien, Pierre

    2002-08-15

    We have recently shown that the use of allogeneic granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood hematopoietic stem cell transplantation (PBHSCT), as compared with bone marrow transplantation (BMT), is associated with increased titers of antibodies (Abs) directed against red blood cell ABO antigens. To further evaluate the influence of a G-CSF-mobilized PBHSCT graft on alloimmune Ab responses, we examined the frequency of anti-HLA Abs after transplantation in the setting of the same randomized study, comparing PBHSCT with BMT in adults. Anti-HLA Ab presence was determined by complement-dependent cytotoxicity assay (CDC) and flow cytometry in the recipient before and 30 days after transplantation as well as in the donor before graft donation. The use of PBHSCT was significantly associated with increased detection of anti-HLA immunoglobulin G (IgG) Abs early after transplantation as evidenced by flow cytometry (11 of 24 versus 4 of 27 transplant recipients, P =.03) and, less so, by CDC (5 of 24 versus 1 of 27 transplant recipients, P =.09). The difference between PBHSCT and BMT was further heightened when analysis was restricted to anti-HLA IgG Ab-negative donor/recipient pairs. In such a setting, early anti-HLA Ab was never detected after BMT but was repeatedly detected after PBHSCT (flow cytometry, 6 of 18 versus 0 of 17 transplant recipients, P =.02; CDC, 4 of 23 versus 0 of 26 transplant recipients, P =.04). Importantly, the PBHSCT-associated increase in anti-HLA Ab detection was observed despite a reduction in the median number of platelet-transfusion episodes per patient in PBHSC transplant versus BM transplant recipients (3 platelet-transfusion episodes [range, 1-21] in PBHSCT group vs 6 platelet-transfusion episodes [range, 3-33] in the BMT group; P =.02). In conclusion, this study strongly suggests that G-CSF-mobilized PBHSCT results in an increased incidence of circulating anti-HLA Abs and further confirms that the use of such a

  7. Multimodal Regulation of NET Formation in Pregnancy: Progesterone Antagonizes the Pro-NETotic Effect of Estrogen and G-CSF

    PubMed Central

    Giaglis, Stavros; Stoikou, Maria; Sur Chowdhury, Chanchal; Schaefer, Guenther; Grimolizzi, Franco; Rossi, Simona W.; Hoesli, Irene Mathilde; Lapaire, Olav; Hasler, Paul; Hahn, Sinuhe

    2016-01-01

    Human pregnancy is associated with a mild pro-inflammatory state, characterized by circulatory neutrophil activation. In order to explore the mechanism underlying this alteration, we examined NETosis during normal gestation. Our data indicate that neutrophils exhibit a pro-NETotic state, modulated in a multimodal manner during pregnancy. In general, circulatory granulocyte colony-stimulating factor, the levels of which increase during gestation, promotes neutrophil extracellular trap (NET) formation. Early in pregnancy, NETosis is enhanced by chorionic gonadotropin, whereas toward term is stimulated by estrogen. A complex interaction between estrogen and progesterone arises, wherein progesterone restrains the NETotic process. In this state, extensive histone citrullination is evident, yet full NETosis is inhibited. This coincides with the inability of neutrophil elastase to translocate from the cytoplasm to the nucleus and is regulated by progesterone. Our findings provide new insight concerning gestational and hormone-driven pathologies, since neutrophil recruitment, activation, and NET release could be associated with excessive endothelial and placental injury. PMID:27994595

  8. The colony-stimulating factors and cancer.

    PubMed

    Metcalf, Donald

    2013-12-01

    The colony-stimulating factors (CSFs) are the master regulators of granulocyte and macrophage populations. There are four different aspects of the connection between the CSFs and cancer: (a) the CSFs can accelerate the regeneration of protective white cells damaged by chemotherapy; (b) the CSFs can mobilize stem cells to the peripheral blood in convenient numbers for transplantation; (c) the CSFs can enhance anticancer immune responses and (d) the CSFs are potentially involved in the genesis of the myeloid leukemias.

  9. Successful autografting in chronic myelogenous leukaemia using Philadelphia negative blood progenitor cells mobilized with rHuG-CSF alone in a patient responding to alpha-interferon.

    PubMed

    Carreras, E; Sierra, J; Rovira, M; Urbano-Ispizua, A; Martinez, C; Nomdedeu, B; Cervantes, F; Marín, P; Rozman, C; Montserrat, E

    1997-02-01

    Several non-randomized studies suggest a possible survival advantage for chronic myelogenous leukaemia (CML) patients treated with an autologous stem-cell transplantation. Due to the possible contribution of residual leukaemic cells present in the inoculum in post-transplant relapse, several methods are being evaluated to eliminate neoplastic cells or to select 'normal' (Ph1 negative) progenitor cells for autografting. Recently, several studies have shown that Ph1 negative blood progenitor cells can be mobilized by rHuG-CSF alone in patients who have a cytogenetic response to alpha-interferon (IFN). We describe the first case, as far as we are aware, of a CML patient responding to IFN autografted by using blood progenitor cells collected by rHuG-CSF alone.

  10. G-CSF-Induced Suppressor IL-10+ Neutrophils Promote Regulatory T Cells That Inhibit Graft-Versus-Host Disease in a Long-Lasting and Specific Way.

    PubMed

    Perobelli, Suelen Martins; Mercadante, Ana Carolina Terra; Galvani, Rômulo Gonçalves; Gonçalves-Silva, Triciana; Alves, Ana Paula Gregório; Pereira-Neves, Antonio; Benchimol, Marlene; Nóbrega, Alberto; Bonomo, Adriana

    2016-11-01

    Acute graft-versus-host disease (aGVHD) is the main complication of allogeneic hematopoietic stem cell transplantation, and many efforts have been made to overcome this important limitation. We showed previously that G-CSF treatment generates low-density splenic granulocytes that inhibit experimental aGVHD. In this article, we show that aGVHD protection relies on incoming IL-10(+) neutrophils from G-CSF-treated donor spleen (G-Neutrophils). These G-Neutrophils have high phagocytic capacity, high peroxide production, low myeloperoxidase activity, and low cytoplasmic granule content, which accounts for their low density. Furthermore, they have low expression of MHC class II, costimulatory molecules, and low arginase1 expression. Also, they have low IFN-γ, IL-17F, IL-2, and IL-12 levels, with increased IL-10 production and NO synthase 2 expression. These features are in accordance with the modulatory capacity of G-Neutrophils on regulatory T cell (Treg) generation. In vivo, CD25(+) Treg depletion shortly after transplantation with splenic cells from G-CSF-treated donors blocks suppression of aGVHD, suggesting Treg involvement in the protection induced by the G-Neutrophils. The immunocompetence and specificity of the semiallogeneic T cells, long-term after the bone marrow transplant using G-Neutrophils, were confirmed by third-party skin graft rejection; importantly, a graft-versus-leukemia assay showed that T cell activity was maintained, and all of the leukemic cells were eliminated. We conclude that G-CSF treatment generates a population of activated and suppressive G-Neutrophils that reduces aGVHD in an IL-10- and Treg-dependent manner, while maintaining immunocompetence and the graft versus leukemia effect.

  11. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    DTIC Science & Technology

    2014-03-05

    histopathological responses to RI, thereby increasing the mortality [1, 5–7]. Because the responses to RI and CI occur at molecular , cellular, tissue, and system...In contrast to the RI mice, peg-G-CSF failed to improve survival after CI.This could be due to the complexity of mechanisms of CI involving...Moore, “Modulations of mortality by tissue trauma and sepsis in mice after radiation injury,” in The Biological Basis of Radiation Protection Practice

  12. Elevating body temperature enhances hematopoiesis and neutrophil recovery after total body irradiation in an IL-1-, IL-17-, and G-CSF-dependent manner.

    PubMed

    Capitano, Maegan L; Nemeth, Michael J; Mace, Thomas A; Salisbury-Ruf, Christi; Segal, Brahm H; McCarthy, Philip L; Repasky, Elizabeth A

    2012-09-27

    Neutropenia is a common side effect of cytotoxic chemotherapy and radiation, increasing the risk of infection in these patients. Here we examined the impact of body temperature on neutrophil recovery in the blood and bone marrow after total body irradiation (TBI). Mice were exposed to either 3 or 6 Gy TBI followed by a mild heat treatment that temporarily raised core body temperature to approximately 39.5°C. Neutrophil recovery was then compared with control mice that received either TBI alone heat treatment alone. Mice that received both TBI and heat treatment exhibited a significant increase in the rate of neutrophil recovery in the blood and an increase in the number of marrow hematopoietic stem cells and neutrophil progenitors compared with that seen in mice that received either TBI or heat alone. The combination treatment also increased G-CSF concentrations in the serum, bone marrow, and intestinal tissue and IL-17, IL-1β, and IL-1α concentrations in the intestinal tissue after TBI. Neutralizing G-CSF or inhibiting IL-17 or IL-1 signaling significantly blocked the thermally mediated increase in neutrophil numbers. These findings suggest that a physiologically relevant increase in body temperature can accelerate recovery from neutropenia after TBI through a G-CSF-, IL-17-, and IL-1-dependent mechanism.

  13. Four-Week Repeated Intravenous Dose Toxicity and Toxicokinetic Study of TS-DP2, a Novel Human Granulocyte Colony Stimulating Factor in Rats

    PubMed Central

    Lee, JooBuom; Lee, Kyungsun; Choe, Keunbum; Jung, Hyunseob; Cho, Hyunseok; Choi, Kiseok; Kim, Taegon; Kim, Seojin; Lee, Hyeong-Seok; Cha, Mi-Jin; Song, Si-Whan; Lee, Chul Kyu; Chun, Gie-Taek

    2015-01-01

    TS-DP2 is a recombinant human granulocyte colony stimulating factor (rhG-CSF) manufactured by TS Corporation. We conducted a four-week study of TS-DP2 (test article) in repeated intravenous doses in male and female Sprague-Dawley (SD) rats. Lenograstim was used as a reference article and was administered intravenously at a dose of 1000 μg/kg/day. Rats received TS-DP2 intravenously at doses of 250, 500, and 1000 μg/kg/day once daily for 4 weeks, and evaluated following a 2-week recovery period. Edema in the hind limbs and loss of mean body weight and body weight gain were observed in both the highest dose group of TS-DP2 and the lenograstim group in male rats. Fibro-osseous lesions were observed in the lenograstim group in both sexes, and at all groups of TS-DP2 in males, and at doses of TS-DP2 500 μg/kg/day and higher in females. The lesion was considered a toxicological change. Therefore, bone is the primary toxicological target of TS-DP2. The lowest observed adverse effect level (LOAEL) in males was 250 μg/kg/day, and no observed adverse effect level (NOAEL) in females was 250 μg/kg/day in this study. In the toxicokinetic study, the serum concentrations of G-CSF were maintained until 8 hr after administration. The systemic exposures (AUC0-24h and C0) were not markedly different between male and female rats, between the administration periods, or between TS-DP2 and lenograstim. In conclusion, TS-DP2 shows toxicological similarity to lenograstim over 4-weeks of repeated doses in rats. PMID:26877840

  14. Low doses of GM-CSF (molgramostim) and G-CSF (filgrastim) after cyclophosphamide (4 g/m2) enhance the peripheral blood progenitor cell harvest: results of two randomized studies including 120 patients

    PubMed Central

    Quittet, Philippe; Ceballos, Patrice; Lopez, Ernesto; Lu, Zhao-Yang; Latry, Pascal; Becht, Catherine; Legouffe, Eric; Fegueux, Nathalie; Exbrayat, Carole; Pouessel, Damien; Rouillé, Valérie; Daures, Jean-Pierre; Klein, Bernard; Rossi, Jean-François

    2006-01-01

    The use of a combination of G-CSF and GM-CSF to G-CSF alone, after cyclophosphamide (4g/m2) was compared in 2 randomized phase III studies, including 120 patients. In study A, 60 patients received 5 × 2 μg/kg/day of G-CSF and GM-CSF compared to 5 μg/kg/day of G-CSF. In study B, 60 patients received 2.5 × 2 μg/kg/day G-CSF and GM-CSF compared to G-CSF alone (5 μg/kg/day). With the aim to collect at least 5 × 106/kg CD34 cells in a maximum of 3 large volume leukapherisis (LK), 123 LK were performed in study A, showing significant higher number of patients reaching 10 × 106/kg CD34 cells (21/29 in G+GM-CSF arm vs 11/27 in G-CSF arm, P= .00006). In study B, 109 LK were performed, with similar results (10/27 vs 15/26, P= .003). In both the study, the total harvest of CD34 cells/kg was 2-fold higher in G-CSF plus GM-CSF group (18.3 × 106 in study A and 15.85 × 106 in study B) than in G-CSF group (9 × 106 in study A and 8.1 × 106 in study B), a difference particularly seen in multiple myeloma, with no significant difference in terms of mobilized myeloma cells between G-CSF and GM-CSF groups. PMID:16883311

  15. Soluble complement receptor 1 is increased in patients with leukemia and after administration of granulocyte colony-stimulating factor.

    PubMed

    Sadallah, S; Lach, E; Schwarz, S; Gratwohl, A; Spertini, O; Schifferli, J A

    1999-01-01

    Complement receptor type 1 is expressed by erythrocytes and most leukocytes. A soluble form is shed from the leukocytes and found in plasma (sCR1). sCR1 is a powerful inhibitor of complement. We report an increased sCR1 in the plasma of leukemia patients, up to levels producing measurable complement inhibition. Half of the 180 patients with acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia (CLL) had sCR1 levels above the normal range. The highest levels were observed in T-ALL (17 patients). The complement function of a T-ALL serum was improved by blocking sCR1 with a specific mAb (3D9). Measurements in 16 peripheral stein cell donors before and after granulocyte colony-stimulating factor (G-CSF) administration showed an increase in sCR1 (before, 43.8+/-15.4; at day 5, 118.3+/-44.7 ng/mL; P < 0.0001). This increase paralleled the increase in total leukocyte counts and was concomitant with de novo leukocyte mRNA CR1 expression in all three individuals tested. Whether pharmacological intervention may be used to up-regulate sCR1 so as to inhibit complement in vivo should be further investigated.

  16. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, Paul Artur; Chua, Hui Lin; Sampson, Carol H; Katz, Barry P; Fam, Christine M; Anderson, Lana J; Cox, George N; Orschell, Christie M

    2014-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.

  17. Proteolytic enzyme levels are increased during granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization in human donors but do not predict the number of mobilized stem cells.

    PubMed

    van Os, R; van Schie, M L J; Willemze, R; Fibbe, W E

    2002-06-01

    Previous studies from our laboratory indicate that functional, mature neutrophils are essential for interleukin-8 (IL-8)-induced stem cell mobilization. To study a possible role of neutrophils in granulocyte colony-stimulating factor (G-CSF) induced hematopoietic mobilization, we assessed the number of circulating CD34+ cells in healthy allogeneic stem cell donors on days 3, 4, and 5 of mobilization for comparison with the number of peripheral blood neutrophils and the plasma levels of IL-8, Flt3 ligand (FL), matrix metalloproteinase-9 (MMP-9), and human neutrophil elastase (HNE). Thirty-seven of 45 donors required 1 day of apheresis to obtain 5 x 10(6) CD34+/kg recipient body weight (high responders), the remaining 8 donors required 1 extra day of apheresis on day 6 (low responders). On day 5, CD34+ numbers in the blood were significantly highe in high responders (116 x 10(3) +/- 10.4/ml) than in low responders (54.1 x 10(3) +/- 10.3, p < 0.001). In all donors, MMP-9 and HNE levels were increased compared to nonmobilized individuals, but in high responders, plasma MMP-9 levels on days 3-5 of mobilization were substantially higher than in low responders (p < or = 0.02 for MMP-9 and p = 0.89, p = 0.05 and p = 0.52 for HNE on days 3, 4, and 5, respectively). These results are in accordance with the hypothesis that neutrophils play a role in G-CSF-induced mobilization through the release of proteases such as MMP-9 and elastase. No change in plasma levels of IL-8 or Flt3 ligand was observed, suggesting that these cytokines do not play a role in stem cell mobilization. However, because stem cell numbers could not be predicted by proteolytic enzyme levels and/or neutrophil numbers, other undefined factors may be more important.

  18. Fludarabine and cytosine are less effective than standard ADE chemotherapy in high-risk acute myeloid leukemia, and addition of G-CSF and ATRA are not beneficial: results of the MRC AML-HR randomized trial.

    PubMed

    Milligan, Donald W; Wheatley, Keith; Littlewood, Timothy; Craig, Jenny I O; Burnett, Alan K

    2006-06-15

    The optimum chemotherapy schedule for reinduction of patients with high-risk acute myeloid leukemia (relapsed, resistant/refractory, or adverse genetic disease) is uncertain. The MRC AML (Medical Research Council Acute Myeloid Leukemia) Working Group designed a trial comparing fludarabine and high-dose cytosine (FLA) with standard chemotherapy comprising cytosine arabinoside, daunorubicin, and etoposide (ADE). Patients were also randomly assigned to receive filgrastim (G-CSF) from day 0 until neutrophil count was greater than 0.5 x 10(9)/L (or for a maximum of 28 days) and all-trans retinoic acid (ATRA) for 90 days. Between 1998 and 2003, 405 patients were entered: 250 were randomly assigned between FLA and ADE; 356 to G-CSF versus no G-CSF; 362 to ATRA versus no ATRA. The complete remission rate was 61% with 4-year disease-free survival of 29%. There were no significant differences in the CR rate, deaths in CR, relapse rate, or DFS between ADE and FLA, although survival at 4 years was worse with FLA (16% versus 27%, P = .05). Neither the addition of ATRA nor G-CSF demonstrated any differences in the CR rate, relapse rate, DFS, or overall survival between the groups. In conclusion these findings indicate that FLA may be inferior to standard chemotherapy in high-risk AML and that the outcome is not improved with the addition of either G-CSF or ATRA.

  19. G-CSF and Exenatide Might Be Associated with Increased Long-Term Survival of Allogeneic Pancreatic Islet Grafts

    PubMed Central

    Peixoto, Eduardo; Messinger, Shari; Mantero, Alejandro; Padilla-Téllez, Nathalia D.; Baidal, David A.; Alejandro, Rodolfo; Ricordi, Camillo; Inverardi, Luca

    2016-01-01

    Background Allogeneic human islet transplantation is an effective therapy for the treatment of patients with Type 1 Diabetes (T1D). The low number of islet transplants performed worldwide and the different transplantation protocols used limit the identification of the most effective therapeutic options to improve the efficacy of this approach. Methods We present a retrospective analysis on the data collected from 44 patients with T1D who underwent islet transplantation at our institute between 2000 and 2007. Several variables were included: recipient demographics and immunological characteristics, donor and transplant characteristics, induction protocols, and additional medical treatment received. Immunosuppression was induced with anti-CD25 (Daclizumab), alone or in association with anti-tumor necrosis factor alpha (TNF-α) treatments (Etanercept or Infliximab), or with anti-CD52 (Alemtuzumab) in association with anti-TNF-α treatments (Etanercept or Infliximab). Subsets of patients were treated with Filgrastim for moderate/severe neutropenia and/or Exenatide for post prandial hyperglycemia. Results The analysis performed indicates a negative association between graft survival (c-peptide level ≥ 0.3 ng/ml) and islet infusion volume, with the caveat that, the progressive reduction of infusion volumes over the years has been paralleled by improved immunosuppressive protocols. A positive association is instead suggested between graft survival and administration of Exenatide and Filgrastim, alone or in combination. Conclusion This retrospective analysis may be of assistance to further improve long-term outcomes of protocols for transplant of islets and other organs. PMID:27285580

  20. Long-term outcomes after transplantation of HLA-identical related G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow.

    PubMed

    Mielcarek, Marco; Storer, Barry; Martin, Paul J; Forman, Stephen J; Negrin, Robert S; Flowers, Mary E; Inamoto, Yoshihiro; Chauncey, Thomas R; Storb, Rainer; Appelbaum, Frederick R; Bensinger, William I

    2012-03-15

    Between 1996 and 1999, 172 patients (median age, 42 years) with hematologic malignancies were randomly assigned to receive either HLA-identical related bone marrow or G-CSF-mobilized peripheral blood mononuclear cells (G-PBMCs) after myeloablative conditioning. Early results showed that transplantation of G-PBMCs, compared with marrow, was associated with significantly superior 2-year disease-free survival (DFS) and overall survival. Ten-year follow-up showed a sustained DFS benefit associated with G-PBMCs (mortality or relapse hazard ratio, 0.64; 95% confidence interval, 0.4-1.0; P = .03), although the likelihood of overall survival was not significantly different between the 2 groups (mortality hazard ratio, 0.75; 95% confidence interval, 0.5-1.2; P = .20). The 10-year cumulative incidence of chronic GVHD and the duration of systemic immunosuppression were similar in the 2 groups. In summary, transplantation of HLA-identical related G-PBMCs, compared with marrow, was associated with superior short-term and long-term DFS, and there was no evidence that this benefit was outweighed by GVHD-related late mortality.

  1. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector.

    PubMed

    van der Loo, Johannes C M; Liu, B L; Goldman, A I; Buckley, S M; Chrudimsky, K S

    2002-07-20

    Primitive human hematopoietic cells in granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood (MPB) are more difficult to transduce compared to cells from umbilical cord blood. Based on the hypothesis that MPB cells may require different stimulation for efficient retroviral infection, we compared several culture conditions known to induce cycling of primitive hematopoietic cells. MPB-derived CD34(+) cells were stimulated in the presence or absence of the murine fetal liver cell line AFT024 in trans-wells with G-CSF, stem cell factor (SCF), and thrombopoietin (TPO) (G/S/T; 100 ng/ml) or Flt3-L, SCF, interleukin (IL)-7, and TPO (F/S/7/T; 10-20 ng/ml), and transduced using a GaLV-pseudotyped retroviral vector expressing the enhanced green fluorescence protein (eGFP). Compared to cultures without stroma, the presence of AFT024 increased the number of transduced colony-forming cells (CFC) by 3.5-fold (with G/S/T), long-term culture-initiating cells (LTC-IC) by 4.6-fold (with F/S/7/T), and nonobese diabetic/severe immunodeficiency disease (NOD/SCID)-repopulating cells (SRC) by 6.8-fold (with F/S/7/T). Similar numbers of long-term culture-initiating cells (LTC-IC) and SRC could be transduced using AFT024-conditioned medium (AFT-CM) or a defined medium that had been supplemented with factors identified in AFT-CM. Finally, using our best condition based on transduction with the gibbon ape leukemia virus (GaLV)-pseudotyped vector, we demonstrate a 33-fold higher level of gene transfer (p < 0.001) in SRC using an RD114-pseudotyped vector. In summary, using an optimized protocol with low doses of cytokines, and transduction with an RD114 compared to a GaLV-pseudotyped retroviral vector, the overall number of transduced cells in NOD/SCID mice could be improved 144-fold, with a gene-transfer efficiency in SRC of 16.3% (13.3-19.9; n = 6).

  2. The discovery, development and clinical applications of granulocyte colony-stimulating factor.

    PubMed Central

    Dale, D. C.

    1998-01-01

    The story of the discovery, development and applications of G-CSF illustrates many of the best features of modern laboratory and clinical investigation. The initial discovery of the CSFs was somewhat serendipitous. The pathway to understanding the cellular and molecular base for the action of these substances was long, but fruitful and exciting for those who pursued it tirelessly. The power of modern molecular biology is illustrated by the rapid advances which followed the cloning of the G-CSF gene. Major advances in our understanding of the regulation of neutrophil production and deployment have followed, together with many important clinical observations. To date hundreds of thousands of patients have been treated with G-CSF and some individuals with severe chronic neutropenia have received daily therapy for more than ten years. Results of recent studies suggest that there will be many more interesting and important clinical applications for G-CSF. PMID:9601125

  3. Circulating progenitors following high-dose sequential (HDS) chemotherapy with G-CSF: short intervals between drug courses severely impair progenitor mobilization.

    PubMed

    Tarella, C; Caracciolo, D; Gavarotti, P; Bondesan, P; Cherasco, C; Omedè, P; Bregni, M; Siena, S; Gianni, A M; Pileri, A

    1995-08-01

    Sequential administration of high-dose chemotherapy courses possibly allows extensive in vivo purging before circulating progenitor collection for autograft. To evaluate whether progenitor cell mobilization was negatively affected by repeated high-dose chemotherapy courses, we studied 23 lymphoma patients undergoing the HDS regimen. The scheme includes the sequential administration of cyclophosphamide (CY) given at 7 g/m2 and etoposide (VP16) given at 2 g/m2, each followed by G-CSF (filgrastim) at 5 micrograms/kg/day. Eleven patients received the standard HDS sequence, with a short interval between first and second myelotoxic courses of less than 45 days (median: 30 days); the remaining 12 patients received a modified HDS where the interval between first and second high-dose course was protracted over 2 months (median: 70 days); in this latter group, 2 to 4 conventional debulking courses were delivered prior to HDS. In patients receiving the standard HDS, progenitor mobilization following the first course was consistently high (median circulating CFU-GM/ml peak value: 29,022); however, significantly lower values were observed at the second course (median CFU-GM/ml peak value 3757, P = 0.002). Circulating BFU-E and CD34+ cell values paralleled those of CFU-GM. No significant difference was observed in progenitor mobilization following either course in patients receiving HDS with extended interval (median circulating CFU-GM/ml peak value: 14,363 vs 9208, at first and second course respectively, P = 0.27). Eleven patients had their progenitor cells harvested following the second delayed course and 2-4 leucaphereses allowed very satisfactory harvests in all of them (CFU-GM/kg ranging from 39-340 x 10(4)).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. HCMV infection of humanized mice after transplantation of G-CSF-mobilized peripheral blood stem cells from HCMV-seropositive donors.

    PubMed

    Hakki, Morgan; Goldman, Devorah C; Streblow, Daniel N; Hamlin, Kimberly L; Krekylwich, Craig N; Fleming, William H; Nelson, Jay A

    2014-01-01

    Human cytomegalovirus (HCMV) infection, including primary infection resulting from transmission from a seropositive donor to a seronegative recipient (D(+)/R(-)), remains a significant problem in the setting of peripheral blood stem cell transplantation (PBSCT). The lack of a suitable animal model for studying HCMV transmission after PBSCT is a major barrier to understanding this process and, consequently, developing novel interventions to prevent HCMV infection. Our previous work demonstrated that human CD34(+) progenitor cell-engrafted NOD-scid IL2Rγc(null) (NSG) mice support latent HCMV infection after direct inoculation and reactivation after treatment with granulocyte colony-stimulating factor. To more accurately recapitulate HCMV infection in the D(+)/R(-) PBSCT setting, granulocyte colony-stimulating factor-mobilized peripheral blood stem cells from seropositive donors were used to engraft NSG mice. All recipient mice demonstrated evidence of HCMV infection in liver, spleen, and bone marrow. These findings validate the NSG mouse model for studying HCMV transmission during PBSCT.

  5. Granulocyte macrophage colony stimulating factor therapy for pulmonary alveolar proteinosis.

    PubMed

    Shende, Ruchira P; Sampat, Bhavin K; Prabhudesai, Pralhad; Kulkarni, Satish

    2013-03-01

    We report a case of 58 year old female diagnosed with Pulmonary Alveolar Proteinosis (PAP) with recurrence of PAP after 5 repeated whole lung lavage, responding to subcutaneous injections of Granulocyte Macrophage Colony Stimulating Factor therapy (GM-CSF). Thus indicating that GM-CSF therapy is a promising alternative in those requiring repeated whole lung lavage

  6. Macrophage colony-stimulating factor induces indirect angiogenesis in vivo.

    PubMed

    Phillips, G D; Aukerman, S L; Whitehead, R A; Knighton, D R

    1993-01-01

    The cytokine macrophage colony-stimulating factor was implanted in the rabbit cornea over a wide dose range (1 ng to 100 microg) to assay its angiogenic activity in vivo. Neovascularization occurred in a dose-dependent manner, and maximum angiogenesis occurred only with 100 microg. Histologic analysis revealed that the corneas were free of inflammation at the lower doses, but had slight inflammation at 50 and 100 microg. Nonspecific esterase staining of frozen sections and transmission electron microscopy revealed that the inflammatory cells were predominantly macrophages, with very few neutrophils present. This association of capillary formation with inflammation suggests an indirect mechanism of angiogenesis. The lack of neutrophils within the inflammatory cell infiltrate demonstrates that indirect angiogenesis can proceed without the local presence of neutrophils. This distinguishes macrophage colony-stimulating factor from other indirect-acting angiogenesis factors that have been identified to date.

  7. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  8. Succinate ester derivative of δ-tocopherol enhances the protective effects against 60Co γ-ray-induced hematopoietic injury through granulocyte colony-stimulating factor induction in mice

    PubMed Central

    Li, Zhong-Tang; Wang, Li-Mei; Yi, Li-Rong; Jia, Chao; Bai, Fan; Peng, Ren-Jun; Yu, Zu-Yin; Xiong, Guo-Lin; Xing, Shuang; Shan, Ya-Jun; Yang, Ri-Fang; Dong, Jun-Xing; Cong, Yu-Wen

    2017-01-01

    α-tocopherol succinate (α-TOS), γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have drawn large attention due to their efficacy as radioprotective agents. α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI). Because α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI), we hypothesized succinate may be contribute to the radioprotection of α-TOS. To study the contributions of succinate and to identify stronger radioprotective agents, we synthesized α-, γ- and δ-TOS. Then, we evaluated their radioprotective effects and researched further mechanism of δ-TOS on hematological recovery post-irradiation. Our results demonstrated that the chemical group of succinate enhanced the effects of α-, γ- and δ-TOS upon radioprotection and granulocyte colony-stimulating factor (G-CSF) induction, and found δ-TOS a higher radioprotective efficacy at a lower dosage. We further found that treatment with δ-TOS ameliorated radiation-induced pancytopenia, augmenting cellular recovery in bone marrow and the colony forming ability of bone marrow cells in sublethal irradiated mice, thus promoting hematopoietic stem and progenitor cell recovery following irradiation exposure. δ-TOS appears to be an attractive radiation countermeasure without known toxicity, but further exploratory efficacy studies are still required. PMID:28145432

  9. Functional NF-IL6/CCAAT enhancer-binding protein is required for tumor necrosis factor alpha-inducible expression of the granulocyte colony- stimulating factor (CSF), but not the granulocyte/macrophage CSF or interleukin 6 gene in human fibroblasts [retracted by Adler G. In: J Exp Med 1997 Jul 7;186(1):171

    PubMed Central

    1995-01-01

    Tumor necrosis factor (TNF) alpha participates in the regulation of the acute-phase, immune, and inflammatory responses. Target genes known to be transcriptionally activated by TNF-alpha include the granulocyte (G)- colony-stimulating factor (CSF) gene, the granulocyte/macrophage (GM)- CSF gene, as well as the interleukin (IL) 6 gene. Functional nuclear factor (NF)-IL6 recognition sites have been identified in regulatory regions of these genes by transient transfection studies using deleted promoter constructs. In addition, NF-IL6 is known to form heterodimeric complexes with the NF-kappa B transcription factor, which is also engaged in the transcriptional regulation of these genes. The indispensable importance of NF-IL6 for regulating gene expression of proinflammatory cytokine genes in response to inflammatory stimuli in vivo remains, however, unclear. We here report, by using both antisense (AS) oligodesoxyribonucleotide (ODN) and ribozyme (RZ)-mediated specific elimination of NF-IL6 transcripts in human fibroblasts, that TNF-alpha-induced synthesis of G-CSF, but not of GM-CSF or IL-6, is abolished in the absence of functional NF-IL6 in vivo. Both AS ODN and RZ targeting of the NF-IL6 transcript eliminate NF-IL6 protein, as shown in Western blot analysis and electrophoretic mobility shift assays. Similarly, fibroblasts exposed to either the AS NF-IL6 ODN or the NF-IL6 RZ, but not to the sense or nonsense ODN or a mutated ribozyme, also failed to respond with functional activation of NF-IL6 as assayed in transient transfection studies using heterologous promoter constructs harboring the NF-IL6 recognition site. In contrast, protein synthesis, DNA-binding activity, and transcriptional activation capacity of the NF-kappa B transcription factor is not impaired upon exposure to either ODN or RZ. Fibroblasts that had been cultured in the presence of the AS NF-IL6 ODN or the NF-IL6RZ failed to synthesize G- CSF protein in response to TNF-alpha, while TNF

  10. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone beta subunit gene expression.

    PubMed

    Aikawa, Satoko; Kato, Takako; Susa, Takao; Tomizawa, Kyoko; Ogawa, Satoshi; Kato, Yukio

    2004-11-12

    Molecular cloning of the transcription factor that modulates the expression of porcine follicle-stimulating hormone beta subunit (FSHbeta) gene was performed by the yeast one-hybrid cloning system using the -852/-746 upstream region (Fd2) as a bait sequence. We eventually cloned a pituitary transcription factor, Prop-1, which has been identified as an upstream transcription factor of Pit-1 gene. Binding ability of Prop-1 to the bait sequence was confirmed using recombinant Prop-1, and the binding property was investigated by DNase I footprinting, revealing that Prop-1 certainly bound to the large AT-rich region throughout the Fd2. Co-transfection of Prop-1 expression vector together with a reporter gene fused with Fd2 in CHO cells demonstrated an attractive stimulation of reporter gene expression. Immunohistochemistry of adult porcine pituitary confirmed the colocalization of the Prop-1 and FSHbeta subunit. This study is the first to report that Prop-1 participates in the regulation of FSHbeta gene. The present finding will provide new insights into the development of pituitary cell lineage and combined pituitary hormone deficiency (CPHD), since why the defect of Prop-1 causes CPHD including gonadotropins (FSH and LH) has yet to be clarified.

  11. Effect of low-dose cytarabine, homoharringtonine and granulocyte colony-stimulating factor priming regimen on patients with advanced myelodysplastic syndrome or acute myeloid leukemia transformed from myelodysplastic syndrome.

    PubMed

    Wu, Lingyun; Li, Xiao; Su, Jiying; Chang, Chunkang; He, Qi; Zhang, Xi; Xu, Li; Song, Luxi; Pu, Quan

    2009-09-01

    A total of 32 patients (25 with advanced MDS and 7 with t-AML) were enrolled in this study to evaluate the efficacy and toxicity of the low-dose cytarabine and homoharringtonine in combination with granulocyte colony-stimulating factor (G-CSF) (CHG protocol) in patients with advanced myelodysplastic syndromes (MDS) or MDS-transformed acute myeloid leukemia (t-AML). All the patients were administered the CHG regimen comprising low-dose cytarabine (25 mg/day, intravenous continuous infusion, days 1-14), homoharringtonine (1 mg/day, intravenous continuous infusion, days 1-14), and G-CSF (300 microg/day, subcutaneous injection, days 0-14, interrupted when the peripheral white blood cell count reached >20 x 10(9)/L). The overall response rate was 71.9% after the administration of one course of the CHG regimen. Of the 32 patients, 15 (46.9%) achieved complete remission (CR) and 8 (25%) achieved partial remission (PR). This regimen was followed by a post-remission therapy that included conventional chemotherapy, when CR was achieved. Of the patients with CR who just received post-remission regimens as homoharringtonine and cytarabine (HA) and daunorubicin and cytarabine (DA) 6 relapsed rapidly and just had a mean 6.1 months of CR. Otherwise, the other 8 out of 14 patients with CR alternatively received subsequent chemotherapy, which combined mitoxantrone, idarubicin, pirarubicin, or aclarubicin with cytarabine. The mean CR duration of the 8 patients had reached 10.6 months, and 5 of the 8 still kept a continuous CR. The median overall survival (OS) was 18.2 months. There were no statistically significant differences for CR, PR, and OS when the patients were grouped by age, blasts in bone marrow, and karyotypes, respectively. No treatment-related deaths were observed. Myelosuppression was mild to moderate, and no severe non-hematological toxicity was observed. Thus, a CHG priming regimen as an induction therapy was well tolerated and effective in patients with advanced MDS

  12. Modulation of colony stimulating factor release and apoptosis in human colon cancer cells by anticancer drugs

    PubMed Central

    Calatayud, S; Warner, T D; Mitchell, J A

    2002-01-01

    Modulation of the immune response against tumour cells is emerging as a valuable approach for cancer treatment. Some experimental studies have shown that secretion of colony stimulating factors by cancer cells reduces their tumorigenicity and increases their immunogenicity probably by promoting the cytolitic and antigen presenting activities of leukocytes. We have observed that human colon cancer cells (HT-29) are able to secrete granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor when stimulated with cytokines (IL-1β and TNF-α). In this study we assessed, for the first time, the effects of several anticancer drugs on colony stimulating factor release or apoptosis in HT-29 cells. Cytokine-induced release of granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor was significantly increased by cisplatin and 6-mercaptopurine. Taxol only increased macrophage-colony stimulating factor release while reduced that of granulocyte-colony stimulating factor. No changes in colony stimulating factor secretion were observed after treatment with methotrexate. Only cisplatin and taxol induced apoptosis in these cells. Secretion of colony stimulating factors by colon cancer cells may contribute to the immune host response against them. Anticancer drugs such as cisplatin and 6-mercaptopurine increase colony stimulating factor secretion by cytokine stimulated cancer cells probably through mechanisms different to those leading to cell apoptosis, an effect that may contribute to their anti-neoplasic action. British Journal of Cancer (2002) 86, 1316–1321. DOI: 10.1038/sj/bjc/6600240 www.bjcancer.com © 2002 Cancer Research UK PMID:11953891

  13. Assessing blood granulocyte colony-stimulating factor as a potential biomarker of acute traumatic brain injury in mice and humans.

    PubMed

    Banks, William A; Dohi, Kenji; Hansen, Kim; Thompson, Hilaire J

    2016-02-01

    Previous work has found that serum G-CSF was acutely elevated in mice 24h but not one week after controlled cortical impact (CCI). The purpose of this study was to investigate whether blood G-CSF correlates with the elevated brain cytokines in mice after CCI and also if it correlates with traumatic brain injury (TBI) in humans. Here, we found in mice undergoing CCI, a procedure that induces direct injury to the brain, that serum G-CSF correlated directly or indirectly with several brain cytokines, indicating it is a useful marker for the neuroinflammation of TBI. A pilot study in humans (phase I, n=19) confirmed that plasma G-CSF is acutely elevated on day 1 (p<0.001) of TBI and has returned to baseline by one week. In a second human sample (phase II) (n=80), we found plasma G-CSF peaks about 12h after arriving in the emergency department (41.6+/-5.4 pg/ml). Aging was weakly associated (p<0.05) with a less robust elevation in serum G-CSF, but there was no difference with gender. ISS, a measure of total severity of injury, correlated with the degree of elevation in serum G-CSF (r=.419; p<0.05), but severity of head injury (via AIS) did not. The latter may have been because of the statistically narrow range of head injuries among our cases and the high number of cases diagnosed with closed head injury (a non-codable diagnosis). In conclusion, plasma G-CSF may be a useful biomarker of TBI, correlating with neuroinflammation in the animal model and in the human studies with time since injury and total severity of injury. As such, it may be useful in determining whether TBI has occurred within the last 24h.

  14. Factors stimulating propagation of legionellae in cooling tower water

    SciTech Connect

    Yamamoto, Hiroyuki; Sugiura, Minoru; Kusunoki, Shinji; Ezaki, Takayuki; Ikedo, Masanari; Yabuuchi, Eiko )

    1992-04-01

    The authors survey of cooling tower water demonstrated that the highest density of legionellae, {ge}10{sup 4} CFU/100 ml, appeared in water containing protozoa, {ge}10{sup 2} MPN/100 ml, and heterotrophic bacteria, {ge}10{sup 6} CFU/100 ml, at water temperatures between 25 and 35C. Viable counts of legionellae were detected even in the winter samples, and propagation, up to 10{sup 5} CFU/100 ml, occurs in summer. The counts of legionellae correlated positively with increases in water temperature, pH, and protozoan counts, but not with heterotrophic bacterial counts. The water temperature of cooling towers may promote increases in the viable counts of legionellae, and certain microbes, e.g., protozoa or some heterotrophic bacteria, may be a factor stimulating the propagation of legionellae.

  15. Nerve growth factor: stimulation of polymorphonuclear leukocyte chemotaxis in vitro.

    PubMed Central

    Gee, A P; Boyle, M D; Munger, K L; Lawman, M J; Young, M

    1983-01-01

    Topical application of mouse nerve growth factor (NGF) to superficial skin wounds of mice has previously been shown to accelerate the rate of wound contraction. Results of the present study reveal that NGF in the presence of plasma is also chemotactic for human polymorphonuclear leukocytes in vitro, and the concentration of NGF required for this effect is similar to that which stimulates ganglionic neurite outgrowth. This property does not arise from liberation of the C5a fragment of complement, nor does it require the known enzymic activity of NGF. (NGF inactivated with diisopropyl fluorophosphate is equally active.) We conclude that NGF can display biological effects on cells of nonneural origin and function, and this feature might play a role in the early inflammatory response to injury. PMID:6580641

  16. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    SciTech Connect

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.; Garrison, J.C.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent protein kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.

  17. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors.

    PubMed Central

    Hill, C P; Osslund, T D; Eisenberg, D

    1993-01-01

    We have determined the three-dimensional structure of recombinant human granulocyte-colony-stimulating factor by x-ray crystallography. Phases were initially obtained at 3.0-A resolution by multiple isomorphous replacement and were refined by solvent flattening and by averaging of the electron density of the three molecules in the asymmetric unit. The current R factor is 21.5% for all data between 6.0- and 2.2-A resolution. The structure is predominantly helical, with 104 of the 175 residues forming a four-alpha-helix bundle. The only other secondary structure is also helical. In the loop between the first two long helices a four-residue 3(10)-helix is immediately followed by a 6-residue alpha-helix. Three residues in the short connection between the second and third bundle helices form almost one turn of left-handed helix. The up-up-down-down connectivity with two long crossover connections has been reported previously for five other proteins, which like granulocyte-colony-stimulating factor are all signaling ligands: growth hormone, granulocyte/macrophage-colony-stimulating factor, interferon beta, interleukin 2, and interleukin 4. Structural similarity among these growth factors occurs despite the absence of similarity in their amino acid sequences. Conservation of this tertiary structure suggests that these different growth factors might all bind to their respective sequence-related receptors in an equivalent manner. Images Fig. 2 PMID:7685117

  18. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine.

    PubMed

    Pabst, Thomas; Vellenga, Edo; van Putten, Wim; Schouten, Harry C; Graux, Carlos; Vekemans, Marie-Christiane; Biemond, Bart; Sonneveld, Peter; Passweg, Jakob; Verdonck, Leo; Legdeur, Marie-Cecile; Theobald, Matthias; Jacky, Emanuel; Bargetzi, Mario; Maertens, Johan; Ossenkoppele, Gert Jan; Löwenberg, Bob

    2012-06-07

    The clinical value of chemotherapy sensitization of acute myeloid leukemia (AML) with G-CSF priming has remained controversial. Cytarabine is a key constituent of remission induction chemotherapy. The effect of G-CSF priming has not been investigated in relationship with variable dose levels of cytarabine. We randomized 917 AML patients to receive G-CSF (456 patients) or no G-CSF (461 patients) at the days of chemotherapy. In the initial part of the study, 406 patients were also randomized between 2 cytarabine regimens comparing conventional-dose (199 patients) versus escalated-dose (207 patients) cytarabine in cycles 1 and 2. We found that patients after induction chemotherapy plus G-CSF had similar overall survival (43% vs 40%, P = .88), event-free survival (37% vs 31%, P = .29), and relapse rates (34% vs 36%, P = .77) at 5 years as those not receiving G-CSF. However, patients treated with the escalated-dose cytarabine regimen benefited from G-CSF priming, with improved event-free survival (P = .01) and overall survival (P = .003), compared with patients without G-CSF undergoing escalated-dose cytarabine treatment. A significant survival advantage of sensitizing AML for chemotherapy with G-CSF was not apparent in the entire study group, but it was seen in patients treated with escalated-dose cytarabine during remission induction. The HOVON-42 study is registered under The Netherlands Trial Registry (www.trialregister.nl) as #NTR230.

  19. [Hematopoietic growth factors in primary and therapy-related bone marrow insufficiency].

    PubMed

    Hansen, B; Hippe, E; Jacobsen, G K; Johnsen, H E

    1992-06-08

    This investigation is retrospective and comprises 20 patients with bone-marrow insufficiency. During the period 1.4.1988-1.3.1991, these patients were treated with erythropoietin (Epo), the granulocyte-macrophage-colony-stimulating factor (GM-CSF) or the granulocyte-colony-stimulating factor (G-CSF). Thirteen patients had primary bone-marrow insufficiency: six had the myelodysplastic syndrome, three had primary myelofibrosis, two aplastic anemia and two myelomatosis. On account of dominating symptoms of anemia, five patients received Epo while eight received GM-CSF as part of an extensive clinical trial of this preparation. Seven patients with relapse of the haematological malignant disease had bone-marrow insufficiency and pancytopenia secondary to intensive chemotherapy/irradiation: four of these patients received GM-CSF and two received G-CSF with the object of increasing bone-marrow regeneration and to render further chemotherapy possible. One patient received GM-CSF with the object of improving bone-marrow function after autologous bone-marrow transplantation. Treatment with Epo for ten months combined with treatment with interferon for six months resulted in normalization of the haemoglobin concentration in one patient with bone-marrow insufficiency on account of primary myelofibrosis. Treatment with Epo for briefer periods in lower doses was without effect in four other patients with primary bone-marrow insufficiency. Treatment with GM-CSF and G-CSF resulted in neutrophil leukocytosis in 12 out of 15 patients (80%) and, in six out of 14 patients (43%), increased marrow cellularity was demonstrated by means of histological examination of the bone-marrow. One patient showed normal haemoglobin levels during treatment with GM-CSF.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Signaling factors in stem cell-mediated repair of infarcted myocardium.

    PubMed

    Vandervelde, S; van Luyn, M J A; Tio, R A; Harmsen, M C

    2005-08-01

    Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by regeneration of healthy myocardial tissue, which is accomplished by neo-angiogenesis and cardiogenesis. A major reservoir of adult autologous stem cells distal from the heart is the bone marrow. Adequate regulation of signaling between the bone marrow, the peripheral circulation and the infarcted myocardium is important in orchestrating the process of mobilization, homing, incorporation, survival, proliferation and differentiation of stem cells, that leads to myocardial regeneration. In this review, we discuss key signaling factors, including cytokines, chemokines and growth factors, which are involved in orchestrating the stem cell driven repair process. We focus on signaling factors known for their mobilizing and chemotactic abilities (SDF-1, G-CSF, SCF, IL-8, VEGF), signaling factors that are expressed after myocardial infarction involved in the patho-physiological healing process (TNF-alpha, IL-8, IL-10, HIF-1alpha, VEGF, G-CSF) and signaling factors that are involved in cardiogenesis and neo-angiogenesis (VEGF, EPO, TGF-beta, HGF, HIF-1alpha, IL-8). The future therapeutic application and capacity of secreted factors to modulate tissue repair after myocardial infarction relies on the intrinsic potency of factors and on the optimal localization and timing of a combination of signaling factors to stimulate stem cells in their niche to regenerate the infarcted heart.

  1. 5-Androstenediol Promotes Survival of Gamma-Irradiated Human Hematopoietic Progenitors Through Induction of NF-kappa B Activation and G-CSF Expression

    DTIC Science & Technology

    2007-05-01

    and Kroemer G (2006) NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome . Blood 107:1156-1165. Carlsen H...DA, Luger SM and Jordan CT (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98...the pro-apoptotic factor p53 after IR, as determined by Western blot. The results indicate that NFkB1 degradation after IR may be responsible for the

  2. Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma.

    PubMed

    Kittler, E L; McGrath, H; Temeles, D; Crittenden, R B; Kister, V K; Quesenberry, P J

    1992-06-15

    The "stromal" or adherent cells of long-term murine Dexter explant bone marrow cultures provide the best in vitro model of the bone marrow microenvironment. Colony-stimulating factor-1 (CSF-1) is produced constitutively by these cells and is easily detected, but most investigators have not found constitutive production of the other hemolymphopoietic cytokines. We have previously reported the detection of granulocyte-macrophage-CSF (GM-CSF) in murine stromal cultures and its induction by the lectin Pokeweed mitogen. The present studies analyzing stromal cytokine messenger RNA (mRNA) production by standard Northern blot analysis show constitutive production of mRNAs for CSF-1, GM-CSF, granulocyte-CSF (G-CSF), c-kit ligand (KL), and interleukin-6 (IL-6), but not IL-3, IL-4, or IL-5 by 3-week irradiated or nonirradiated murine Dexter stromal cells. Exposure of stromal cells to Pokeweed mitogen or IL-1 16 hours before RNA harvest induces the messages for GM-CSF, G-CSF, KL, and IL-6, but not IL-3, IL-4, IL-5, or CSF-1. Polymerase chain reaction amplification of cDNA made with reverse transcriptase from stromal RNA using two separate sets of IL-3-specific primers shows the presence of IL-3 message in irradiated stromal cells, which is only detectable with this more sensitive technique. The factor-dependent cell lines FDC-P1 and 32D are supported by the stromal cells without the addition of exogenous growth factors, demonstrating a cytokine activity in these cultures that is inhibited by the addition of anti-IL-3 or anti-GM-CSF antibodies. These data indicate that murine Dexter stromal cells constitutively produce CSF-1, GM-CSF, G-CSF, IL-6, KL, and IL-3. This growth factor production could explain the support of granulocyte, macrophage, and megakaryocyte production and stem cell maintenance in Dexter-type long-term murine bone marrow cultures.

  3. Tissue factor: A potent stimulator of Von Willebrand factor synthesis by human umbilical vein endothelial cells

    PubMed Central

    Meiring, Muriel; Allers, W.; Le Roux, E.

    2016-01-01

    Inflammation and dysfunction of endothelial cells are thought to be triggers for the secretion of Von Willebrand factor. The aim of this study was to examine the effects of the inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) and the coagulation factors, tissue factor and thrombin on the release and cleavage potential of ultra-large von Willebrand factor (ULVWF) and its cleavage protease by cultured human umbilical vein endothelial cells (HUVEC). HUVEC were treated with IL-6, IL-8, and TNF-α, tissue factor (TF) and thrombin, and combinations thereof for 24 hours under static conditions. The cells were then exposed to shear stress after which the VWF-propeptide levels and the VWF cleavage protease, ADAMTS13 content were measured. All treatments and their combinations, excluding IL-6, significantly stimulated the secretion of VWF from HUVEC. The VWF secretion from the HUVEC was stimulated most by the combination of TF with TNF-α. Slightly lower levels of ADAMTS13 secretion were found with all treatments. This may explain the thrombogenicity of patients with inflammation where extremely high VWF levels and slightly lower ADAMTS13 levels are present. PMID:27766025

  4. Colony-Stimulating Factor-1 Signaling Suppresses Renal Crystal Formation

    PubMed Central

    Taguchi, Kazumi; Kitamura, Hiroshi; Yasui, Takahiro; Naiki, Taku; Hamamoto, Shuzo; Ando, Ryosuke; Mizuno, Kentaro; Kawai, Noriyasu; Tozawa, Keiichi; Asano, Kenichi; Tanaka, Masato; Miyoshi, Ichiro; Kohri, Kenjiro

    2014-01-01

    We recently reported evidence suggesting that migrating macrophages (Mϕs) eliminate renal crystals in hyperoxaluric mice. Mϕs can be inflammatory (M1) or anti-inflammatory (M2), and colony-stimulating factor-1 (CSF-1) mediates polarization to the M2Mϕ phenotype. M2Mϕs promote renal tissue repair and regeneration, but it is not clear whether these cells are involved in suppressing renal crystal formation. We investigated the role of M2Mϕs in renal crystal formation during hyperoxaluria using CSF-1–deficient mice, which lack M2Mϕs. Compared with wild-type mice, CSF-1–deficient mice had significantly higher amounts of renal calcium oxalate crystal deposition. Treatment with recombinant human CSF-1 increased the expression of M2-related genes and markedly decreased the number of renal crystals in both CSF-1–deficient and wild-type mice. Flow cytometry of sorted renal Mϕs showed that CSF-1 deficiency resulted in a smaller population of CD11b+F4/80+CD163+CD206hi cells, which represent M2-like Mϕs. Additionally, transfusion of M2Mϕs into CSF-1–deficient mice suppressed renal crystal deposition. In vitro phagocytosis assays with calcium oxalate monohydrate crystals showed a higher rate of crystal phagocytosis by M2-polarized Mϕs than M1-polarized Mϕs or renal tubular cells. Gene array profiling showed that CSF-1 deficiency resulted in disordered M2- and stone-related gene expressions. Collectively, our results provide compelling evidence for a suppressive role of CSF-1 signaling in renal crystal formation. PMID:24578130

  5. Neutrophil-related factors as biomarkers in EAE and MS

    PubMed Central

    Rumble, Julie M.; Huber, Amanda K.; Krishnamoorthy, Gurumoorthy; Srinivasan, Ashok; Giles, David A.; Zhang, Xu; Wang, Lu

    2015-01-01

    A major function of T helper (Th) 17 cells is to induce the production of factors that activate and mobilize neutrophils. Although Th17 cells have been implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE), little attention has been focused on the role of granulocytes in those disorders. We show that neutrophils, as well as monocytes, expand in the bone marrow and accumulate in the circulation before the clinical onset of EAE, in response to systemic up-regulation of granulocyte colony-stimulating factor (G-CSF) and the ELR+ CXC chemokine CXCL1. Neutrophils comprised a relatively high percentage of leukocytes infiltrating the central nervous system (CNS) early in disease development. G-CSF receptor deficiency and CXCL1 blockade suppressed myeloid cell accumulation in the blood and ameliorated the clinical course of mice that were injected with myelin-reactive Th17 cells. In relapsing MS patients, plasma levels of CXCL5, another ELR+ CXC chemokine, were elevated during acute lesion formation. Systemic expression of CXCL1, CXCL5, and neutrophil elastase correlated with measures of MS lesion burden and clinical disability. Based on these results, we advocate that neutrophil-related molecules be further investigated as novel biomarkers and therapeutic targets in MS. PMID:25559893

  6. Colony-stimulating factor 1 potentiates lung cancer bone metastasis.

    PubMed

    Hung, Jaclyn Y; Horn, Diane; Woodruff, Kathleen; Prihoda, Thomas; LeSaux, Claude; Peters, Jay; Tio, Fermin; Abboud-Werner, Sherry L

    2014-04-01

    Colony-stimulating factor 1 (CSF1) is essential for osteoclastogenesis that mediates osteolysis in metastatic tumors. Patients with lung cancer have increased CSF1 in serum and high levels are associated with poor survival. Adenocarcinomas metastasize rapidly and many patients suffer from bone metastasis. Lung cancer stem-like cells sustain tumor growth and potentiate metastasis. The purpose of this study was to determine the role of CSF1 in lung cancer bone metastasis and whether inhibition of CSF1 ameliorates the disease. Human lung adenocarcinoma A549 cells were examined in vitro for CSF1/CSF1R. A549-luc cells were injected intracardiac in NOD/SCID mice and metastasis was assessed. To determine the effect of CSF1 knockdown (KD) in A549 cells on bone metastasis, cells were stably transfected with a retroviral vector containing short-hairpin CSF1 (KD) or empty vector (CT). Results showed that A549 cells express CSF1/CSF1R; CSF1 increased their proliferation and invasion, whereas soluble CSF1R inhibited invasion. Mice injected with A549-luc cells showed osteolytic bone lesions 3.5 weeks after injection and lesions increased over 5 weeks. Tumors recapitulated adenocarcinoma morphology and showed osteoclasts along the tumor/bone interface, trabecular, and cortical bone loss. Analyses of KD cells showed decreased CSF1 protein levels, reduced colony formation in soft agar assay, and decreased fraction of stem-like cells. In CSF1KD mice, the incidence of tumor metastasis was similar to controls, although fewer CSF1KD mice had metastasis in both hind limbs. KD tumors showed reduced CSF1 expression, Ki-67+ cells, and osteoclasts. Importantly, there was a low incidence of large tumors >0.1 mm(2) in CSF1KD mice compared with control mice (10% vs 62.5%). This study established a lung osteolytic bone metastasis model that resembles human disease and suggests that CSF1 is a key determinant of cancer stem cell survival and tumor growth. Results may lead to novel strategies to

  7. A microassay for colony-stimulating factor based on thymidine incorporation.

    PubMed Central

    Prystowsky, M. B.; Naujokas, M. F.; Ihle, J. N.; Goldwasser, E.; Fitch, F. W.

    1984-01-01

    A variety of growth factors and lectins were tested; only colony-stimulating factors CSF-1, Interleukin 3, and a T-lymphocyte GM CSF induced colony formation in semisolid medium and stimulated thymidine incorporation in liquid culture. All other growth factors and lectins were inactive in both assays. Factor-stimulated thymidine incorporation was detectable 24 hours after stimulation and reached maximal levels 4-6 days after stimulation. A convenient microassay for measuring CSF activity has been developed, enabling a large number of samples to be screened qualitatively in 2 days and permitting CSF activity to be measured quantitatively in 4-5 days. This microassay can supplement the clonal-cell assay method and be especially useful as an initial screening assay for CSF activity. PMID:6606982

  8. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  9. Utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors treated with G-CSF for mobilization of peripheral blood stem cells.

    PubMed

    Martino, Massimo; Luise, Francesca; Oriana, Vincenzo; Console, Giuseppe; Moscato, Tiziana; Mammì, Corrado; Messina, Giuseppe; Massara, Elisabetta; Irrera, Giuseppe; Piromalli, Angela; Lombardo, Vincenzo Trapani; Laganà, Carmelo; Iacopino, Pasquale

    2007-01-01

    The aim of the study was to verify the utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors receiving granulocyte colony-stimulating factor to mobilize peripheral blood stem cells. Thrombophilia screening comprised of testing for factor V Leiden G1691A, prothrombin G20210A, the thermolabile variant (C677T) of the methylene tetrahydrofolate reductase gene, protein C, protein S, factor VIII and homocysteine plasmatic levels, antithrombin III activity, and acquired activated protein C resistance. We investigated prospectively 72 white Italian healthy donors, 39 men and 33 women, with a median age of 42 years (range, 18-65). Five donors (6.9%) were heterozygous carriers of Factor V Leiden G1691A; two healthy donors had the heterozygous prothrombin G20210A gene mutation; C677T mutation in the methylene tetrahydrofolate reductase gene was present in 34 (47.2%) donors in heterozygous and in 7 donors (9.7%) in homozygous. Acquired activated protein C resistance was revealed in 8 donors of the study (11.1%). The protein C plasmatic level was decreased in 3 donors (4.2%); the protein S level was decreased in 7 donors (9.7%). An elevated factor VIII dosage was shown in 10 donors (13.9%) and hyperhomocysteinemia in 9 donors (12.5%). Concentration of antithrombin III was in the normal range for all study group donors. The factor V Leiden mutation was combined with the heterozygous prothrombin G20210A in 2 cases and with protein S deficiency in one case; 2 healthy donors presented an associated deficiency of protein C and protein S. Although none of these healthy subjects had a previous history of thrombosis, low-molecular-weight heparin was administered to all donors during granulocyte colony-stimulating factor administration to prevent thrombotic events. No donor experienced short or long-term thrombotic diseases after a median follow-up of 29.2 months. Our data do not

  10. Expression of interleukin-34 and colony stimulating factor-1 in the stimulated periodontal ligament cells with tumor necrosis factor-α.

    PubMed

    Kawabe, Mutsuki; Ohyama, Hideki; Kato-Kogoe, Nahoko; Yamada, Naoko; Yamanegi, Koji; Nishiura, Hiroshi; Hirano, Hirotugu; Kishimoto, Hiromitsu; Nakasho, Keiji

    2015-09-01

    Tumor necrosis factor-α (TNF-α) directly and indirectly plays a crucial role in osteoclastogenesis. However, the indirect effects of TNF-α on colony-stimulating factor-1 receptor (CSF-1R)-mediated osteoclastogenesis achieved via periodontal ligament (PDL) cells are not fully understood. We herein examined the potency of osteoclast differentiation and maturation induced by fivefold supernatants in the stimulated human PDL cells with a physiologically high concentration (10 ng/mL) of recombinant TNF-α to human peripheral blood monocytes/macrophages in the simultaneous presence of the receptor activator of nuclear factor kappa-B ligand. The number of tartrate-resistant acid phosphatase-positive cells with multiple nuclei, but not those with a single nucleus, was decreased by approximately 50% by neutralization with rabbit IgG against either interleukin-34 (IL-34) or CSF-1. Small and large amounts of IL34 and CSF1 transcripts were measured in the stimulated PDL cells using real-time polymerase chain reaction. The corresponding amounts of proteins to IL34 and CSF1 transcripts were observed in the stimulated PDL cells on immunohistochemical staining or Western blotting. Moreover, 0.13 ng/mL of IL-34 and 5.0 ng/mL of CSF-1 were measured in the supernatants of the stimulated PDL cells using an enzyme-linked immunosorbent assay. IL-34 derived from the stimulated PDL cells with TNF-α appeared to synergistically function with CSF-1 in the CSF-1R-mediated maturation of osteoclastogenesis.

  11. Identification of a unique B-cell-stimulating factor produced by a cloned dendritic cell.

    PubMed Central

    Clayberger, C; DeKruyff, R H; Fay, R; Cantor, H

    1985-01-01

    We describe a cloned dendritic cell, clone Den-1, which is a potent accessory cell for some B-cell responses. Clone Den-1 produces a unique lymphokine that induces polyclonal B-cell proliferation in the absence of other costimulators. This clone or factors produced by it also stimulate purified B cells to develop plaque-forming cell responses to type 2 antigens. The effect of this factor(s) on various B-cell populations and its relationship to previously described B-cell-stimulating factors is discussed. Images PMID:3871522

  12. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    SciTech Connect

    Brady, Robert T.; O'Brien, Fergal J.; Hoey, David A.

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  13. Acute iritis induced by granulocyte colony-stimulating factor used for mobilization in a volunteer unrelated peripheral blood progenitor cell donor.

    PubMed

    Parkkali, T; Volin, L; Sirén, M K; Ruutu, T

    1996-03-01

    We describe a volunteer unrelated peripheral blood progenitor cell donor with previously diagnosed dermatitis herpetiformis in whom the administration of G-CSF for the mobilization of precursor cells induced acute iritis. G-CSF has been administered to healthy people with minimal side-effects but when used in patients with autoimmune disorders worsening of symptoms or new manifestations may be a potential concern.

  14. STIMULATION OF DEFENSE FACTORS FOR OYSTERS DEPLOYED TO CONTAMINATED SITES IN PENSACOLA BAY, FLORIDA

    EPA Science Inventory

    A positive association between chemical contaminants and defense factors has been established for eastern oysters (Crassostrea virginica) from Florida, but it is unknown whether such factors can be stimulated through short-term exposure to contaminants in the field. Hatchery oyst...

  15. Platelet-derived growth factor stimulated mechanisms of glucosamine incorporation

    SciTech Connect

    Harrington, M.A.; Pledger, W.J. )

    1987-10-01

    Platelet-derived growth factor (PDGF) treatment of density-arrested BALB/c-3T3 cells results in increased ({sup 3}H)glucosamine (GlcN) incorporation into cellular material. The enhanced GlcN incorporation is not due to a preferential increase in proteoglycan synthesis as measured by ({sup 35}S)H{sub 2}SO{sub 4} incorporation. Approximately 50% of the GlcN incorporated in PDGF or platelet-poor plasma (PPP)-treated cultures enters N-linked glycoproteins. Addition of dolichol-phosphate (dolichol-P), a required intermediate in N-linked glycosylation, did not alter ({sup 3}H)GlcN incorporation in PDGF-treated cells but did increase incorporation in PPP-treated cultures to a level comparable to that observed for PDGF-treated cultures. PDGF-treated cultures contained twofold greater quantities of ({sup 3}H)GlcN dolichol intermediates and lipid-free glycoprotein. Over a 12-h time course 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) activity was similar in cultures treated with PDGF or PPP. Results of these studies reveal that enhanced protein glycosylation in response to PDGF treatment is not the result of a direct effect on HMG CoA reductase.

  16. Stimulation of human neutrophil leukocyte aerobic glucose metabolism by purified chemotactic factors.

    PubMed Central

    Goetzl, E J; Austen, K F

    1974-01-01

    The interaction of human neutrophils adherent to plastic petri dishes with the purified chemotactic factors C5a and kallikrein increased their rate of aerobic glycolysis 25-120% and the activity of their hexose monophosphate shunt (HMPS) 100-600%, reaching a plateau after 2 hr at 37 degrees C. The stimulation of either pathway required a chemotactically active stimulus since neither C5 nor prekallikrein or inactivated kallikrein could enhance metabolic activity. Marked suppression of the neutrophil chemotactic response by preincubation with a chemotactic factor to achieve deactivation, 5 x 10(-7) M diisopropyl fluorophosphate, or the neutrophil immobilizing factor (NIF) did not prevent the stimulation of HMPS activity or glycolysis by chemotactic factors. The metabolic inhibitors iodoacetate and 6-aminonicotinamide at concentrations which blocked enhancement of glycolysis or HMPS activity, respectively, partially suppressed the chemotactic response of neutrophils to the chemotactic factors. The capacity of a chemotactic factor to stimulate glucose metabolism of human neutrophils is associated with a maximal chemotactic response, but this stimulation is not alone sufficient for chemotaxis. Images PMID:11344574

  17. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  18. Heparin stimulates epidermal growth factor receptor-mediated phosphorylation of tyrosine and threonine residues.

    PubMed

    Revis-Gupta, S; Abdel-Ghany, M; Koland, J; Racker, E

    1991-07-15

    We have described previously that in extracts of A431 cells epidermal growth factor (EGF) stimulates the phosphorylation of tyrosine as well as of threonine residues in the EGF receptor and in lipocortin 1. We now report that heparin at low concentrations also stimulates the autophosphorylation of the EGF receptor and of the recombinant 56-kDa domain of the EGF receptor that lacks the EGF binding site. To study the stimulations of phosphorylation of threonine residues, a fusion protein was prepared with glutathione S-transferase (GST) and an EGF receptor fragment, TK8 (residues 647-688), that contains the threonine phosphorylation site but no tyrosine. We show that the phosphorylation of threonine residues in GST-TK8 by extracts of A431 cells is stimulated by heparin but not by EGF. These and other results suggest that heparin acts as a chaperone, a substrate modulator, that enhances the susceptibility of the substrate to phosphorylation by protein kinases.

  19. Src family kinase mediated negative regulation of hematopoietic stem cell mobilization involves both intrinsic and microenvironmental factors

    PubMed Central

    Borneo, Jovencio; Munugalavadla, Veerendra; Sims, Emily Catherine; Vemula, Sasidhar; Orschell, Christie M.; Yoder, Merv; Kapur, Reuben

    2007-01-01

    Objective The intracellular signals that contribute to G-CSF receptor induced stem cell mobilization are poorly characterized. Methods We show enhanced G-CSF induced mobilization of stem cells in mice deficient in the expression of Src family kinases (SFK−/−), which is associated with hypersensitivity of SFK−/− bone marrow cells to G-CSF as well as sustained activation of Stat3. Results A proteome map of the bone marrow fluid derived from wildtype and SFK−/− mice revealed a significant global reduction in the number of proteins in SFK−/− mice compared to controls, which was associated with elevated MMP-9 levels, reduced SDF-1 expression, and enhanced break down of VCAM-1. Transplantation of wildtype or SFK−/− stem cells into wildtype mice and treatment with G-CSF recapitulated the G-CSF induced increase in stem cell mobilization noted in SFK−/− non-transplanted mice; however, the increase was significantly less. G-CSF treatment of SFK−/− mice engrafted with wildtype stem cells also demonstrated a modest increase in stem cell mobilization compared to controls, however the observed increase was greatest in mice completely devoid of SFKs. Conclusions These data suggest an involvement of both hematopoietic intrinsic and microenvironmental factors in Src kinase mediated mobilization of stem cells and identify Src kinases as potential targets for modulating stem cell mobilization. PMID:17588471

  20. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation

    PubMed Central

    Starner, Renny J.; McClelland, Lindy; Abdel-Malek, Zalfa; Fricke, Alex; Scott, Glynis

    2013-01-01

    Melanocyte proliferation, dendrite formation, and pigmentation are controlled by paracrine factors, particularly following exposure to ultraviolet radiation (UVR). Little is known about autocrine factors for melanocytes. Prostaglandins activate signaling pathways involved in growth, differentiation and apoptosis. Prostaglandin E2 (PGE2) is the most abundant prostaglandin released by keratinocytes following UVR, and stimulates the formation of dendrites in melanocytes. Synthesis of PGE2 is controlled by cPLA2, which releases arachidonic acid from membranes, and COX-2 and prostaglandin E2 synthases (PGES), which convert arachidonic acid to PGH2 and PGH2 to PGE2, respectively. In this report we show that multiple irradiations of human melanocytes with UVR stimulates tyrosinase activity, independent of expression of a functional melanocortin 1 receptor, suggesting the presence of a non-melanocortin autocrine factor. Irradiation of melanocytes activated cPLA2, the rate-limiting step in eicosanoid synthesis, and stimulated PGE2 secretion. PGE2 increased cAMP production, tyrosinase activity and proliferation in melanocytes. PGE2 binds to four distinct G-protein coupled receptors (EP1–4). We show that EP4 receptor signaling stimulates cAMP production in melanocytes. Conversely, stimulation of the EP3 receptor lowered basal cAMP levels. These data suggest that relative levels or activity of these receptors controls effects of PGE2 on cAMP in melanocytes. The data are the first to identify PGE2 as an UVR-inducible autocrine factor for melanocytes that stimulates tyrosinase activity and proliferation, and to show that EP3 and EP4 receptor signaling have opposing effects on cAMP production, a critical signaling pathway that regulates proliferation and melanogenesis in melanocytes. PMID:20500768

  1. Childhood Conduct Problems and Other Early Risk Factors in Rural Adult Stimulant Users

    ERIC Educational Resources Information Center

    Kramer, Teresa L.; Han, Xiaotong; Leukefeld, Carl; Booth, Brenda M.; Edlund, Carrie

    2009-01-01

    Context: Understanding childhood risk factors associated with adult substance use and legal problems is important for treatment and prevention. Purpose: To examine the relationship of early substance use, conduct problems before age 15, and family history of substance abuse on adult outcomes in rural, stimulant users. Methods: Adult cocaine and…

  2. The anti-inflammatory role of granulocyte colony-stimulating factor in macrophage-dendritic cell crosstalk after Lactobacillus rhamnosus GR-1 exposure.

    PubMed

    Martins, Andrew J; Spanton, Sarah; Sheikh, Haroon I; Kim, Sung Ouk

    2011-06-01

    MΦs are important sensory cells of the innate immune system and regulate immune responses through releasing different combinations of cytokines. In this study, we examined whether cytokines released by MΦs in response to the probiotic bacterial strain GR-1 modulate the responses of DCs. The cytokine profile released by GR-1-treated MΦs was characterized by low levels of TNF-α, GM-CSF, IL-6, and IL-12 but very high levels of G-CSF. GR-1 CM did not induce expression of the shared p40 subunit of IL-12 and IL-23 and costimulatory molecules CD80 or CD86 or increase T cell stimulatory capacity in DCs. However, in G-CSFR-deficient DCs or after antibody-mediated neutralization of G-CSF, GR-1 CM induced IL-12/23 p40 production significantly, indicating that G-CSF within the GR-1 CM inhibits IL-12/23 p40 production induced by other CM components. GR-1 CM and rG-CSF also inhibited LPS-induced IL-12 production at the mRNA and protein levels. The inhibition of IL-12 production by G-CSF was at least in part mediated through inhibition of JNK activation. Finally, splenic DCs of GR-1-injected mice produced less IL-12/23 p40 than those of PBS-injected mice in response to LPS ex vivo, and this was at least partially dependent on exposure to GR-1-induced G-CSF in vivo. Altogether, these results suggest that G-CSF modulates the IL-12/23 p40 response of DCs in the context of the probiotic GR-1 through MΦ-DC crosstalk.

  3. Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial.

    PubMed

    Mao, Qiang; Wang, Weidong; Xu, Taotao; Zhang, Shanxing; Xiao, Luwei; Chen, Di; Jin, Hongting; Tong, Peijian

    2015-04-01

    The objective of this study was to determine the benefits of combination treatment with mechanical support and targeted intra-arterial infusion of peripheral blood stem cells (PBSCs) mobilized by granulocyte-colony stimulating factor (G-CSF) via the medial circumflex femoral artery on the progression of osteonecrosis of the femoral head (ONFH). Fifty-five patients (89 hips) with early and intermediate stage ONFH were recruited and randomly assigned to combination treatment or mechanical support treatment (control group). All hips received mechanical support treatment (porous tantalum rod implantation). Then, hips in the combination treatment group were performed targeted intra-arterial infusion of PBSCs. At each follow-up, Harris hip score (HHS) and Association Research Circulation Osseous (ARCO) classification were used to evaluate the symptoms and progression of osteonecrosis. Total hip arthroplasty (THA) was assessed as an endpoint at each follow-up. At 36 months, 9 of the 41 hips (21.95%) in the control group progressed to clinical failure and underwent THA whereas only 3 of the 48 hips (6.25%) in the combination treatment group required THA (p = 0.031). Kaplan-Meier survival analysis showed a significant difference in the survival time between the two groups (log-rank test; p = 0.025). Compared to the control group, combination treatment significantly improved the HHS at 36 months (p = 0.003). At the final follow-up examination, radiological progression was noted in 13 of 41 hips (31.71%) for the control group, but in only 4 of 48 hips (8.33%) for the combination treatment group (p = 0.005). The overall collapse rates were 15.15% (5/33 hips) and 8.11% (3/37 hips) in the control and combination treatment groups, respectively. Targeted intra-arterial infusion of PBSCs is capable of enhancing the efficacy of biomechanical support in the treatment of ONFH. This clinical trial confirmed that the combination treatment might be a safe and feasible

  4. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  5. Increased Expression of Hepatocyte Nuclear Factor 6 Stimulates Hepatocyte Proliferation during Mouse Liver Regeneration

    PubMed Central

    Tan, Yongjun; Yoshida, Yuichi; Hughes, Douglas E.; Costa, Robert H.

    2005-01-01

    Background & Aims The Hepatocyte Nuclear Factor 6 (HNF6 or ONECUT-1) protein is a cell-type specific transcription factor that regulates expression of hepatocyte-specific genes. Using hepatocytes for Chromatin Immunoprecipitation (ChIP) assays, the HNF6 protein was shown to associate with cell cycle regulatory promoters. Here, we examined whether increased levels of HNF6 stimulate hepatocyte proliferation during mouse liver regeneration. Methods Tail vein injection of adenovirus expressing the HNF6 cDNA (AdHNF6) was used to increase hepatic HNF6 levels during mouse liver regeneration induced by partial hepatectomy, and DNA replication was determined by Bromodeoxyuridine incorporation. Cotransfection and ChIP assays were used to determine transcriptional target promoters. Results Elevated expression of HNF6 during mouse liver regeneration causes a significant increase in the number of hepatocytes entering DNA replication (S-phase) and mouse hepatoma Hepa1-6 cells diminished for HNF6 levels by siRNA transfection exhibit a 50% reduction in S-phase following serum stimulation. This stimulation in hepatocyte S-phase progression was associated with increased expression of the hepatocyte mitogen Tumor Growth Factor α (TGFα) and the cell cycle regulators Cyclin D1 and Forkhead Box m1 (Foxm1) transcription factor. Cotransfection and ChIP assays show that TGFα, Cyclin D1, and HNF6 promoter regions are direct transcriptional targets of the HNF6 protein. Co-immunoprecipitation assays with regenerating mouse liver extracts reveal association between HNF6 and Foxm1 proteins and cotransfection assays show that HNF6 stimulates Foxm1 transcriptional activity. Conclusion These mouse liver regeneration studies show that increased HNF6 levels stimulate hepatocyte proliferation through transcriptional induction of cell cycle regulatory genes. PMID:16618419

  6. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    SciTech Connect

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.; Juutilainen, Timo; Kovanen, Petri T.; Eklund, Kari K. . E-mail: kari.eklund@hus.fi

    2006-08-18

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured in the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.

  7. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    PubMed

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.

  8. Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours.

    PubMed

    Sternberg, C N; de Mulder, P; Schornagel, J H; Theodore, C; Fossa, S D; van Oosterom, A T; Witjes, J A; Spina, M; van Groeningen, C J; Duclos, B; Roberts, J T; de Balincourt, C; Collette, L

    2006-01-01

    EORTC protocol 30924 is an international randomized trial reporting a 7.3 year update of a 2 weekly regimen of high-dose intensity chemotherapy with M-VAC plus granulocyte colony stimulating factor (HD-M-VAC) compared to classic M-VAC in advanced transitional cell carcinoma (TCC). Two hundred and sixty three untreated patients with bidimensionally measurable TCC were included. In an intention to treat analysis, there were 28 complete responses (CR) (21%) and 55 partial responses (PR) (41%), for an overall response rate (RR) of 64% on the HD-M-VAC arm. On M-VAC, there were 12 CR (9%) and 53 PR (41%), for an overall RR of 50% . The P-value for the difference in CR was 0.009; and for RR, was 0.06. After a median follow-up of 7.3 years, 24.6% are alive on the HD-M-VAC arm vs. 13.2% on the M-VAC arm. Median progression-free survival was better with HD-MVAC (9.5 months) vs. M-VAC (8.1 months). The mortality hazard ratio (HR) was 0.76. The 2-year survival rate for HD-M-VAC was 36.7% vs. 26.2% for M-VAC. At 5 years, the survival rate was 21.8% in the HD-M-VAC vs. 13.5%. Median survival was 15.1 months on HD-MVAC and 14.9 months on M-VAC. There was one death from toxicity in each arm; and more patients died to malignant disease in the M-VAC arm (76%) than in the HD-M-VAC arm (64.9%). With longer follow-up initial results have been confirmed, and shows that HD-M-VAC produces a borderline statistically significant relative reduction in the risk of progression and death compared to M-VAC.

  9. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    NASA Astrophysics Data System (ADS)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  10. Endothelium-Derived Hyperpolarizing Factor Mediates Bradykinin Stimulated Tissue Plasminogen Activator Release In Humans

    PubMed Central

    Rahman, Ayaz M.; Murrow, Jonathan R.; Ozkor, Muhiddin A.; Kavtaradze, Nino; Lin, Ji; De Staercke, Christine; Hooper, W. Craig; Manatunga, Amita; Hayek, Salim; Quyyumi, Arshed A.

    2014-01-01

    Aims Bradykinin stimulates tissue plasminogen activator (t-PA) release from human endothelium. Although bradykinin stimulates both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) release, the role of EDHF in t-PA release remains unexplored. This study sought to determine the mechanisms of bradykinin-stimulated t-PA release in the forearm vasculature of healthy human subjects. Methods In 33 healthy subjects (age 40.3±1.9 years) forearm blood flow (FBF) and t-PA release were measured at rest, and after intra-arterial infusions of bradykinin (400ng/min) and sodium nitroprusside (3.2 mg/min). Measurements were repeated after intra-arterial infusion of TEA (1 μmol/min), fluconazole (0.4 μmol.min-1.L-1), and NG-monomethyl-L-arginine (L-NMMA, 8 μmol/min) to block nitric oxide, and their combination in separate studies. Results Bradykinin significantly increased net t-PA release across the forearm (P<0.0001). Fluconazole attenuated both bradykinin-mediated vasodilation (-23.3±2.7% FBF, P<0.0001) and t-PA release (from 50.9±9.0 to 21.3±8.9 ng/min/100ml, P=0.02). TEA attenuated FBF (-14.7±3.2%, P=0.002) and abolished bradykinin-stimulated t-PA release (from 22.9+5.7 to - 0.8±3.6 ng/min/100ml, P=0.0002). L-NMMA attenuated FBF (P<0.0001), but did not inhibit bradykinin-induced t-PA release (P=NS). Conclusion Bradykinin-stimulated t-PA release is partly due to cytochrome P450-derived epoxides, and is inhibited by K+ca channel blockade. Thus, bradykinin stimulates both EDHF-dependent vasodilation and t-PA release. PMID:24925526

  11. Risk factors for stimulant use among homeless and unstably housed adult women

    PubMed Central

    Riley, Elise D.; Shumway, Martha; Knight, Kelly R.; Guzman, David; Cohen, Jennifer; Weiser, Sheri D.

    2015-01-01

    Background One of the most common causes of death among homeless and unstably housed women is acute intoxication where cocaine is present. While correlates of stimulant use have been determined in prior research, few studies have assessed risk factors of use specifically in this high-risk population. Methods We sampled biological women with a history of housing instability from community-based venues to participate in a cohort study. Baseline and 6-month follow-up data were used to determine the relative risk of stimulant use (crack cocaine, powder cocaine or methamphetamine) among individuals who did not use at baseline. Results Among 260 study participants, the median age was 47 years, 70% were women of color; 47% reported having unmet subsistence needs and 53% reported abstinence from stimulants at baseline. In analyses adjusting for baseline sociodemographics and drug treatment, the risk of using stimulants within 6 months was significantly higher among women who reported recent sexual violence (Adjusted Relative Risk [ARR] = 4.31; 95% CI:1.97–9.45), sleeping in a shelter or public place (ARR = 2.75; 95% CI:1.15–6.57), and using unprescribed opioid analgesics (ARR = 2.54; 95% CI:1.01–6.38). Conclusion We found that almost half of homeless and unstably housed women used stimulants at baseline and 14% of those who did not use began within 6 months. Addressing homelessness and sexual violence is critical to reduce stimulant use among impoverished women. PMID:26070454

  12. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  13. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha.

    PubMed

    Brock, C; Brock, B; Aziz, Q; Møller, H J; Pfeiffer Jensen, M; Drewes, A M; Farmer, A D

    2016-12-12

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t-VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which warrants further evaluation in larger controlled studies.

  14. [Lymphocyte transformation test following stimulation with a protein factor from neutrophilic granulocytes (PMNL) in psoriasis patients].

    PubMed

    Ruszczak, Z; Ciborska, L; Kaszuba, A

    1988-12-01

    The lymphocyte transformation test (LTT) was given to 20 healthy subjects and 43 patients with generalized psoriasis vulgaris: it was given right after stimulation with PHA (spontaneous) and after stimulation with allogenic and autogenic protein factor (NPF). NPF was isolated from secondary lysosome granules of peripheral blood neutrophils. The results were analyzed using computer statistic tests. No distinct differences were noticed between the spontaneous transformation test in psoriatic patients compared to the controls. After stimulation with PHA, the percentage of blast cells was significantly lower in patients with psoriasis. When allogenic and autogenic NPF was used for stimulation, the LTT values were significantly higher in the psoriasis group than in the control subjects. This fact points out the increase in sensitivity of lymphocytes to NPF in active psoriasis and the possibility of abnormal neutrophil-lymphocyte interactions in vivo. This phenomenon may be intensified when under the influence of bacterial or viral agents, or medicaments; the degranulation of secondary lysosome granules of neutrophils occurs, causing the release of NPF. These investigations support our opinion that psoriasis is a systemic disease and that NPF plays a considerable role in the psoriatic reaction.

  15. Stimulation of DNA synthesis in cultured primary human mesothelial cells by specific growth factors

    SciTech Connect

    Gabrielson, E.W.; Gerwin, B.I.; Harris, C.C.; Roberts, A.B.; Sporn, M.B.; Lechner, J.F.

    1988-08-01

    Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells.

  16. GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity.

    PubMed

    Vercruyssen, Liesbeth; Tognetti, Vanesa B; Gonzalez, Nathalie; Van Dingenen, Judith; De Milde, Liesbeth; Bielach, Agnieszka; De Rycke, Riet; Van Breusegem, Frank; Inzé, Dirk

    2015-03-01

    Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.

  17. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors

    PubMed Central

    Bai, Huai; Forrester, John V.; Zhao, Min

    2015-01-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24 h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. PMID:21524919

  18. Mechanism of kinase activation in the receptor for colony-stimulating factor 1.

    PubMed Central

    Lee, A W; Nienhuis, A W

    1990-01-01

    Receptor tyrosine kinases remain dormant until activated by ligand binding to the extracellular domain. Two mechanisms have been proposed for kinase activation: (i) ligand binding to the external domain of a receptor monomer may induce a conformational change that is transmitted across the cell membrane (intramolecular model) or (ii) the ligand may facilitate oligomerization, thereby allowing interactions between the juxtaposed kinase domains (intermolecular model). The receptor for colony-stimulating factor 1 was used to test these models. Large insertions at the junction between the external and transmembrane domains of the receptor, introduced by site-directed mutagenesis of the cDNA, were positioned to isolate the external domain and prevent transmembrane conformational propagation while allowing for receptor oligomerization. Such mutant receptors were expressed on the cell surface, bound ligand with high affinity, exhibited ligand-stimulated autophosphorylation, and signaled mitogenesis and cellular proliferation in the presence of ligand. A second experimental strategy directly tested the intermolecular model of ligand activation. A hybrid receptor composed of the external domain of human glycophorin A and the transmembrane and cytoplasmic domains of the colony-stimulating factor 1 receptor exhibited anti-glycophorin antibody-induced kinase activity that supported mitogenesis. Our data strongly support a mechanism of receptor activation based on ligand-induced receptor oligomerization. Images PMID:2169623

  19. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    PubMed

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities.

  20. Multi-factorial modulation of IGD motogenic potential in MSF (migration stimulating factor).

    PubMed

    Ellis, Ian R; Jones, Sarah J; Staunton, David; Vakonakis, Ioannis; Norman, David G; Potts, Jennifer R; Milner, Caroline M; Meenan, Nicola A G; Raibaud, Sophie; Ohea, Go; Schor, Ana M; Schor, Seth L

    2010-09-10

    Migration Stimulating Factor (MSF) is a genetically truncated isoform of fibronectin (Fn). MSF is a potent stimulator of fibroblast migration, whereas full length Fn is devoid of motogenic activity. MSF and Fn contain four IGD motifs, located in the 3rd, 5th, 7th and 9th type I modules; these modules are referred to as (3)FnI, (5)FnI, (7)FnI and (9)FnI, respectively. We have previously reported that mutation of IGD motifs in modules (7)FnI and (9)FnI of MSF is sufficient to completely abolish the motogenic response of target adult skin fibroblasts. We now report that the IGD sequences in (3)FnI and (5)FnI are also capable of exhibiting motogenic activity when present within fragments of MSF. When present within (1-5)FnI, these sequences require the presence of serum or vitronectin for their motogenic activity to be manifest, whereas the IGD sequences in (7)FnI and (9)FnI are bioactive in the absence of serum factors. All MSF and IGD-containing peptides stimulated the phosphorylation of the integrin binding protein focal adhesion kinase (FAK) but did not necessarily affect migration. These results suggest that steric hindrance determines the motogenic activity of MSF and Fn, and that both molecules contain cryptic bioactive fragments.

  1. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    PubMed

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors.

  2. Decrease in platelet activating factor stimulated phosphoinositide turnover during storage of human platelets in plasma

    SciTech Connect

    Carter, M.G.; Shukla, S.D. )

    1987-05-01

    Human platelet concentrate from the American Red Cross Blood Center was stored at 24{degree}C in a shaker and aliquots were taken out at time intervals aseptically. Platelet activating factor (PAF) stimulated turnover of phosphoinositide (PPI) was monitored by assaying {sup 32}P incorporation into phosphoinositides using platelet rich plasma (PRP). Platelets in PRP were incubated with 1 {times} 10{sup {minus}7} M PAF at 37{degree}C with gentle shaking and after 5 min their lipids were extracted and analysed by TLC for {sup 32}P-phosphoinositides. The percent stimulation of {sup 32}P incorporation by PAF (over control) into PPI was approximately 250, 100, 60, 25 and 20 on days 1, 2, 3, 5 and 6, respectively. This indicated a dramatic decrease in PAF responsive turnover of platelet PPI during storage. These findings have important implications in relation to PAF receptor activity and viability of platelets at different periods of storage.

  3. Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity.

    PubMed

    Lopes Bezerra, Leila M; Filler, Scott G

    2004-03-15

    Invasive aspergillosis causes significant mortality among patients with hematologic malignancies. This infection is characterized by vascular invasion and thrombosis. To study the pathogenesis of invasive aspergillosis, we investigated the interactions of Aspergillus fumigatus conidia and hyphae with endothelial cells in vitro. We found that both forms of the organism induced endothelial cell microfilament rearrangement and subsequent endocytosis. Conidia were endocytosed 2-fold more avidly than hyphae, and endocytosis was independent of fungal viability. Endocytosed conidia and hyphae caused progressive endothelial cell injury after 4 hours of infection. Live conidia induced more endothelial cell injury than did live hyphae. However, endothelial cell injury caused by conidia was dependent on fungal viability, whereas injury caused by hyphae was not, indicating that conidia and hyphae injure endothelial cells by different mechanisms. Neither live nor killed conidia increased tissue factor activity of endothelial cells. In contrast, both live and killed hyphae stimulated significant endothelial cell tissue factor activity, as well as the expression of tissue factor antigen on the endothelial cell surface. These results suggest that angioinvasion and thrombosis caused by A fumigatus hyphae in vivo may be due in part to endothelial cell invasion, induction of injury, and stimulation of tissue factor activity.

  4. PU/PTFE-stimulated monocyte-derived soluble factors induced inflammatory activation in endothelial cells.

    PubMed

    Xue, Yang; Liu, Xin; Sun, Jiao

    2010-03-01

    Polyurethane (PU) and polytetrafluoroethylene (PTFE) are two commonly used blood-contacting biomaterials. In the present study, we used a noncontact coculture model to evaluate the thrombosis-causing potential of monocyte-mediated PU and PTFE. We used human endothelial cells from umbilical cord (HUVECs) and human monocytes (THP1 cells). The THP1 cells were directly exposed to PU/PTFE, and the resultant cell-free supernatants were harvested for stimulating HUVECs. The treated HUVECs constituted the test group. HUVECs treated with supernatants of LPS-stimulated THP1 cells were used as the positive controls. To investigate the effects of the supernatant treatment on HUVECs, we measured the expression of the leukocyte-endothelial-cell adhesion molecules (CAMs) CD54 (ICAM-1), CD106 (VCAM-1), and CD62E (E-selectin) and evaluated the release of tissue factor (TF). The results demonstrated that both PU and PTFE induced the expressions of CD62E and TF. These activation effects were accompanied by activation of the NF-kappaB transcription factor. To further investigate the monocyte-derived soluble factors that might contribute to these effects, we evaluated the effects of the PU/PTFE stimulation on the expression of reactive oxygen species (ROS), TNF-alpha, IL-1beta, and IL-6 in monocyte monocultures. In comparison with the results for the negative control, both PU and PTFE significantly induced ROS release after 0.5h, while the expressions of TNF-alpha, IL-1beta, and IL-6 were variably increased after 24h. Our results suggest that the biomaterial induces monocytic activation and subsequently causes the release of soluble factors, which contribute to the inflammatory activation in HUVECs.

  5. Prostaglandin E2 regulates macrophage colony stimulating factor secretion by human bone marrow stromal cells.

    PubMed

    Besse, A; Trimoreau, F; Faucher, J L; Praloran, V; Denizot, Y

    1999-07-08

    Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.

  6. POU domain transcription factors from different subclasses stimulate adenovirus DNA replication.

    PubMed Central

    Verrijzer, C P; Strating, M; Mul, Y M; van der Vliet, P C

    1992-01-01

    POU domain proteins constitute a family of eukaryotic transcription factors that exert critical functions during development. They contain a conserved 160 amino acids DNA binding domain, the POU domain. Genetic data have demonstrated that some POU domain proteins are essential for the proliferation of specific cell types, suggesting a possible role in DNA replication. In addition, the ubiquitous POU transcription factor Oct-1 or its isolated POU domain enhances adenovirus DNA replication. Here we compared the DNA binding specificities of POU domain proteins from different subclasses. They exhibit overlapping, yet distinct binding site preferences. Furthermore, purified Pit-1, Oct-1, Oct-2, Oct-6, Oct-4 and zebrafish POU[C] could all stimulate adenovirus DNA replication in a reconstituted in vitro system. Thus, activation appears to depend on a property common to most POU domain proteins. Adenovirus DNA replication is also stimulated by the transcription factor NFI/CTF. In contrast to NFI, the POU domain did not enhance binding of precursor terminal protein-DNA polymerase to the origin nor did it stabilize the preinitiation complex. These results suggest that the POU domain acts on a rate limiting step after formation of the preinitiation complex. Images PMID:1475198

  7. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T. )

    1991-09-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes.

  8. Highly metastatic 13762NF rat mammary adenocarcinoma cell clones stimulate bone marrow by secretion of granulocyte-macrophage colony-stimulating factor/interleukin-3 activity.

    PubMed

    McGary, C T; Miele, M E; Welch, D R

    1995-12-01

    Circulating neutrophil (polymorphonuclear leukocyte levels rise 50-fold in 13762NF tumor-bearing rats in proportion to the tumor's metastatic potential. Purified tumor-elicited neutrophils enhance metastasis of syngeneic tumor cells when co-injected intravenously; however, circulating and phorbol ester-activated polymorphonuclear neutrophils do not. The purpose of this study was to elucidate the source of tumor-elicited neutrophils in metastatic tumor-bearing rats. We examined the bone marrow in rats bearing tumors of poorly, moderately, and highly metastatic cell clones. Marrow from rats with highly metastatic tumors had increased cellularity (100%), myeloid to erythroid ratio (10:1), and megakaryocytes compared with control rats (cellularity, approximately 80%; myeloid to erythroid ratio, 5:1), with marrows from rats with moderately metastatic tumors having intermediate values. This suggested production of a colony-stimulating factor by the metastatic cells. To confirm this, bone marrow colony formation from control and tumor-bearing rats was compared. Colony number increased in proportion to the metastatic potential of the tumor. Conditioned medium from metastatic cells supported growth of the granulocyte-macrophage colony-stimulating factor/interleukin-3-dependent 32Dcl3 cell line, but media from nonmetastatic or moderately metastatic cells did not. Antibodies to murine granulocyte-macrophage colony-stimulating factor neutralized 32Dcl3 growth in tumor cell conditioned medium. These results suggest production of a granulocyte-macrophage colony-stimulating factor or interleukin-3-like activity by highly metastatic 13762NF clones and implicate a possible role for colony-stimulating factors in regulating the metastatic potential of mammary adenocarcinoma cell clones.

  9. Corticotropin releasing factor stimulates cAMP formation in pituitary corticotropic tumor cells

    SciTech Connect

    Parenti, M.; Cantalamessa, L.; Catania, A.; Reschini, E.; Mueller, E.E.

    1984-01-23

    Addition of corticotropin-releasing factor (CRF) to membranes from two ACTH-secreting pituitary tumors strikingly increased in a dose-dependent fashion adenylate cyclase (AC) activity. Stimulation of AC activity by CRF in membranes from non-tumoral tissue adjacent to tumoral corticotrophs was considerably lower, and was lacking in membranes from a growth hormone secreting tumor. These data correlated well with in vivo pre-surgery and post-surgery ACTH responsiveness to CRF of the tumor bearing patients. Basal AC activity was higher in pituitary adenomas than in non-tumoral adjacent tissue.

  10. Neuroprotective Activities of Granulocyte-Macrophage Colony Stimulating Factor Following Controlled Cortical Impact

    PubMed Central

    Kelso, Matthew L.; Elliott, Bret R.; Haverland, Nicole A.; Mosley, R. Lee; Gendelman, Howard E.

    2014-01-01

    Neurodegeneration after traumatic brain injury (TBI) is facilitated by innate and adaptive immunity and can be harnessed to effect brain repair. In mice subjected to controlled cortical impact (CCI) we show that treatment with granulocyte macrophage colony stimulating factor (GM-CSF) affects regulatory T cell numbers coincident with decreased lesion volumes and increased cortical tissue sparing. This paralleled increases in neurofilament and diminished reactive microglial staining. Transcriptomic analysis showed that GM-CSF induces robust immune neuroprotective responses seven days following CCI. Together, these results support the therapeutic potential of GM-CSF for TBI. PMID:25468272

  11. Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons.

    PubMed

    Burkhalter, Julia; Fiumelli, Hubert; Allaman, Igor; Chatton, Jean-Yves; Martin, Jean-Luc

    2003-09-10

    Brain-derived neurotrophic factor (BDNF) promotes the biochemical and morphological differentiation of selective populations of neurons during development. In this study we examined the energy requirements associated with the effects of BDNF on neuronal differentiation. Because glucose is the preferred energy substrate in the brain, the effect of BDNF on glucose utilization was investigated in developing cortical neurons via biochemical and imaging studies. Results revealed that BDNF increases glucose utilization and the expression of the neuronal glucose transporter GLUT3. Stimulation of glucose utilization by BDNF was shown to result from the activation of Na+/K+-ATPase via an increase in Na+ influx that is mediated, at least in part, by the stimulation of Na+-dependent amino acid transport. The increased Na+-dependent amino acid uptake by BDNF is followed by an enhancement of overall protein synthesis associated with the differentiation of cortical neurons. Together, these data demonstrate the ability of BDNF to stimulate glucose utilization in response to an enhanced energy demand resulting from increases in amino acid uptake and protein synthesis associated with the promotion of neuronal differentiation by BDNF.

  12. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    SciTech Connect

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-05-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio ((activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)). Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of /sup 125/I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms.

  13. Insulin-like growth factor I stimulates elastin synthesis by bovine pulmonary arterial smooth muscle cells.

    PubMed

    Badesch, D B; Lee, P D; Parks, W C; Stenmark, K R

    1989-04-14

    Insulin-like growth factor I stimulates mitogenesis in smooth muscle cells, and upregulates elastin synthesis in embryonic aortic tissue. Increased smooth muscle elastin synthesis may play an important role in vascular remodeling in chronic pulmonary hypertension. Therefore, we studied the effect of IGF-I on elastin and total protein synthesis by pulmonary arterial smooth muscle cells in vitro. Tropoelastin synthesis was measured by enzyme immunoassay, and total protein synthesis was measured by [3H]-leucine incorporation. In addition, the steady-state levels of tropoelastin mRNA were determined by slot blot hybridization. Incubation of confluent cultures with various concentrations of IGF-I resulted in a dose-dependent stimulation of elastin synthesis, with a 2.4-fold increase over control levels at 1000 ng/ml of IGF. The increase in elastin synthesis was reflected by a stimulation of the steady-state levels of tropoelastin mRNA. We conclude that IGF-I has potent elastogenic effects on vascular smooth muscle cells, and speculate that it may contribute to vascular wall remodeling in chronic hypertension.

  14. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  15. Evidence for multiple bone resorption-stimulating factors produced by normal human keratinocytes in culture.

    PubMed

    Fried, R M; Voelkel, E F; Rice, R H; Levine, L; Tashjian, A H

    1988-06-01

    Conditioned medium from cultured normal human foreskin keratinocytes enhanced the release of calcium from neonatal mouse calvaria in organ culture. Unfractionated keratinocyte-conditioned medium (KCM) stimulated bone resorption in a dose-dependent manner, but it did not increase the concentration of prostaglandin E2 (PGE2) in the bone culture medium until a maximal dose of KCM for resorption was used. Furthermore, inhibitors of PGE2 synthesis, indomethacin, ibuprofen, and piroxicam, did not inhibit KCM-induced calcium release. High concentrations of KCM increased cAMP production by calvaria in the presence of isobutylmethylxanthine, but the increase was small compared with that produced by a dose of bovine PTH that caused a similar level of bone resorption. The bone resorption-stimulating activity of KCM was not lost after incubation at 56 C for 60 min, but it was lost after heating at 100 C for 10 min. Fractionation of KCM by gel filtration chromatography revealed two distinct peaks of bone resorption-stimulating activity. One peak, KCMI, caused a significant increase in bone resorption at 2 micrograms protein/ml. KCMI did not increase medium PGE2, and inhibition of PGE2 synthesis in bone had no effect on KCMI-induced bone resorption. KCMI failed to increase cAMP production by human osteosarcoma SaOS-2 cells. Another peak, KCMII, caused a dose-dependent increase in bone resorption, and a significant increase in medium calcium was noted at a 20-fold lower concentration (0.1 microgram protein/ml) than with KCMI. In contrast to KCMI, the increase in bone resorption stimulated by KCMII was accompanied by a parallel increase in the production of PGE2, and inhibition of PGE2 synthesis completely inhibited the bone resorption-stimulating activity of KCMII. KCMII also caused an increase in cAMP production by SaOS-2 cells. We conclude that KCM contains at least two distinct bone resorption-stimulating factors, one of which acts via a PG-mediated mechanism and the other by

  16. Platelet factor 4 stimulates thrombomodulin protein C-activating cofactor activity. A structure-function analysis.

    PubMed

    Slungaard, A; Key, N S

    1994-10-14

    Thrombomodulin (TM) is an anionic (pI approximately 4) protein cofactor that promotes thrombin (THR) cleavage of protein C to generate activated protein C (APC), a potent anticoagulant. We find that the cationic platelet alpha-granule protein platelet factor 4 (PF4) stimulates 4-25-fold the cofactor activity of rabbit TM and two differentially glycanated versions of an extracellular domain human TM polypeptide in which the glycosaminoglycan (GAG) is either present (GAG+ TM) or absent (GAG- TM) with an ED50 of 3.3-10 micrograms/ml. No such stimulation occurs in response to beta-thromboglobulin or thrombospondin, or when protein C lacking its gamma-carboxyglutamic acid (Gla) domain is the substrate. Heparin and chondroitin sulfates A and E reverse PF4 stimulation. PF4 minimally affects the Kd for THR but decreases 30-fold (from 8.3 to 0.3 microM) the Km for protein C of APC generation by GAG+ TM. PF4 also strikingly transforms the [Ca2+] dependence profile of rabbit and GAG+ TM to resemble that of GAG- TM. A potential explanation for this is that PF4, like Ca2+, induces heparin-reversible alterations in native (but not Gla-domainless) protein C conformation as assessed by autofluorescence emission analysis. We conclude that PF4 stimulates TM APC generation by interacting electrostatically with both the TM GAG and the protein C Gla domain to enhance markedly the affinity of the THR.TM complex for protein C. By this mechanism, PF4 may play a previously unsuspected role in the physiologic regulation of clotting.

  17. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  18. Transforming growth factor Beta 1 stimulates profibrotic activities of luteal fibroblasts in cows.

    PubMed

    Maroni, Dulce; Davis, John S

    2012-11-01

    Luteolysis is characterized by angioregression, luteal cell apoptosis, and remodeling of the extracellular matrix characterized by deposition of collagen 1. Transforming growth factor beta 1 (TGFB1) is a potent mediator of wound healing and fibrotic processes through stimulation of the synthesis of extracellular matrix components. We hypothesized that TGFB1 stimulates profibrotic activities of luteal fibroblasts. We examined the actions of TGFB1 on luteal fibroblast proliferation, extracellular matrix production, floating gel contraction, and chemotaxis. Fibroblasts were isolated from the bovine corpus luteum. Western blot analysis showed that luteal fibroblasts expressed collagen 1 and prolyl 4-hydroxylase but did not express markers of endothelial or steroidogenic cells. Treatment of fibroblasts with TGFB1 stimulated the phosphorylation of SMAD2 and SMAD3. [(3)H]thymidine incorporation studies showed that TGFB1 caused concentration-dependent reductions in DNA synthesis in luteal fibroblasts and significantly (P < 0.05) reduced the proliferative effect of FGF2 and fetal calf serum. However, TGFB1 did not reduce the viability of luteal fibroblasts. Treatment of luteal fibroblasts with TGFB1 induced the expression of laminin, collagen 1, and matrix metalloproteinase 1 as determined by Western blot analysis and gelatin zymography of conditioned medium. TGFB1 increased the chemotaxis of luteal fibroblasts toward fibronectin in a transwell system. Furthermore, TGFB1 increased the fibroblast-mediated contraction of floating bovine collagen 1 gels. These results suggest that TGFB1 contributes to the structural regression of the corpus luteum by stimulating luteal fibroblasts to remodel and contract the extracellular matrix.

  19. Exploring bikeability in a metropolitan setting: stimulating and hindering factors in commuting route environments

    PubMed Central

    2012-01-01

    Background Route environments may influence people's active commuting positively and thereby contribute to public health. Assessments of route environments are, however, needed in order to better understand the possible relationship between active commuting and the route environment. The aim of this study was, therefore, to assess the potential associations between perceptions of whether the route environment on the whole hinders or stimulates bicycle commuting and perceptions of environmental factors. Methods The Active Commuting Route Environment Scale (ACRES) was used for the assessment of bicycle commuters' perceptions of their route environments in the inner urban parts of Greater Stockholm, Sweden. Bicycle commuters (n = 827) were recruited by advertisements in newspapers. Simultaneous multiple regression analyses were used to assess the relation between predictor variables (such as levels of exhaust fumes, noise, traffic speed, traffic congestion and greenery) and the outcome variable (hindering - stimulating route environments). Two models were run, (Model 1) without and (Model 2) with the item traffic: unsafe or safe included as a predictor. Results Overall, about 40% of the variance of hindering - stimulating route environments was explained by the environmental predictors in our models (Model 1, R2 = 0.415, and Model 2, R 2= 0.435). The regression equation for Model 1 was: y = 8.53 + 0.33 ugly or beautiful + 0.14 greenery + (-0.14) course of the route + (-0.13) exhaust fumes + (-0.09) congestion: all types of vehicles (p ≤ 0.019). The regression equation for Model 2 was y = 6.55 + 0.31 ugly or beautiful + 0.16 traffic: unsafe or safe + (-0.13) exhaust fumes + 0.12 greenery + (-0.12) course of the route (p ≤ 0.001). Conclusions The main results indicate that beautiful, green and safe route environments seem to be, independently of each other, stimulating factors for bicycle commuting in inner urban areas. On the other hand, exhaust fumes, traffic

  20. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).

  1. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  2. Side-effects of subthalamic stimulation in Parkinson's disease: clinical evolution and predictive factors.

    PubMed

    Guehl, D; Cuny, E; Benazzouz, A; Rougier, A; Tison, F; Machado, S; Grabot, D; Gross, C; Bioulac, B; Burbaud, P

    2006-09-01

    Chronic bilateral high-frequency stimulation of the subthalamic nucleus (STN) is an alternative treatment for disabling forms of Parkinson's disease when on-off fluctuations and levodopa-induced dyskinesias compromise patients' quality of life. The aim of this study was to assess the evolution of side-effects during the first year of follow-up and search for clinical predictive factors accounting for their occurrence. We compared the frequency of side-effects at 3 and 12 months after surgery in a cohort of 44 patients. The off-medication scores of Unified Parkinson's Disease Rating Scale (UPDRS) II, III, axial symptoms, disease duration and age at surgery were retained for correlation analysis. Dysarthria/hypophonia, weight gain and postural instability were the most frequent chronic side-effects. Whereas dysarthria/hypophonia remained stable over time, weight gain and postural instability increased during the first year post-op. High axial and UPDRS II scores at surgery were predictive of dysarthria/hypophonia. Age and axial score at surgery were positively correlated with postural instability. Despite the occurrence of side-effects, the benefit/side-effects ratio of STN stimulation was largely positive during the first year of follow-up. Age, intensity of axial symptoms and UDPRS II off-medication score before surgery are predictive factors of dysarthria/hypophonia and postural instability after surgery.

  3. Tissue factor expression in human arterial smooth muscle cells. TF is present in three cellular pools after growth factor stimulation.

    PubMed Central

    Schecter, A D; Giesen, P L; Taby, O; Rosenfield, C L; Rossikhina, M; Fyfe, B S; Kohtz, D S; Fallon, J T; Nemerson, Y; Taubman, M B

    1997-01-01

    Tissue factor (TF) is a transmembrane glycoprotein that initiates the coagulation cascade. Because of the potential role of TF in mediating arterial thrombosis, we have examined its expression in human aortic and coronary artery smooth muscle cells (SMC). TF mRNA and protein were induced in SMC by a variety of growth agonists. Exposure to PDGF AA or BB for 30 min provided all of the necessary signals for induction of TF mRNA and protein. This result was consistent with nuclear runoff analyses, demonstrating that PDGF-induced TF transcription occurred within 30 min. A newly developed assay involving binding of digoxigenin-labeled FVIIa (DigVIIa) and digoxigenin-labeled Factor X (DigX) was used to localize cellular TF. By light and confocal microscopy, prominent TF staining was seen in the perinuclear cytoplasm beginning 2 h after agonist treatment and persisting for 10-12 h. Surface TF activity, measured on SMC monolayers under flow conditions, increased transiently, peaking 4-6 h after agonist stimulation and returning to baseline within 16 h. Peak surface TF activity was only approximately 20% of total TF activity measured in cell lysates. Surface TF-blocking experiments demonstrated that the remaining TF was found as encrypted surface TF, and also in an intracellular pool. The relatively short-lived surface expression of TF may be critical for limiting the thrombotic potential of intact SMC exposed to growth factor stimulation. In contrast, the encrypted surface and intracellular pools may provide a rich source of TF under conditions associated with SMC damage, such as during atherosclerotic plaque rupture or balloon arterial injury. PMID:9410905

  4. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    PubMed

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  5. Multiple Growth Factors, But Not VEGF, Stimulate Glycosaminoglycan Hyperelongation in Retinal Choroidal Endothelial Cells

    PubMed Central

    Al Gwairi, Othman; Osman, Narin; Getachew, Robel; Zheng, Wenhua; Liang, X-L.; Kamato, Danielle; Thach, Lyna; Little, Peter J.

    2016-01-01

    A major feature of early age-related macular degeneration (AMD) is the thickening of Bruch's membrane in the retina and an alteration in its composition with increased lipid deposition. In certain pathological conditions proteoglycans are responsible for lipid retention in tissues. Growth factors are known to increase the length of glycosaminoglycan chains and this can lead to a large increase in the interaction between proteoglycans and lipids. Using choroidal endothelial cells, we investigated the effects of a number of AMD relevant growth factors TGFβ, thrombin, PDGF, IGF and VEGF on proteoglycan synthesis. Cells were characterized as of endothelial origin using the specific cell markers endothelial nitric oxide synthesis and von Willebrand factor and imaged using confocal microscopy. Cells were treated with growth factors in the presence and absence of the appropriate inhibitors and were radiolabeled with [35S]-SO4. Proteoglycans were isolated by ion exchange chromatography and sized using SDS-PAGE. Radiosulfate incorporation was determined by the cetylpyridinium chloride (CPC) precipitation technique. To measure cellular glycosaminoglycan synthesizing capacity we added xyloside and assessed the xyloside-GAGs by SDS-PAGE. TGFβ, thrombin, PDGF & IGF dose-dependently stimulated radiosulfate incorporation and GAG elongation as well as xyloside-GAG synthesis, however VEGF treatment did not stimulate any changes in proteoglycan synthesis. VEGF did not increase pAKT but caused a large increase in pERK relative to the response to PDGF. Thus, AMD relevant agonists cause glycosaminoglycan hyperelongation of proteoglycans synthesised and secreted by retinal choroidal endothelial cells. The absence of a response to VEGF is intriguing and identifies proteoglycans as a novel potential target in AMD. Future studies will examine the relevance of these changes to enhanced lipid binding and the development of AMD. PMID:27570478

  6. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation.

    PubMed

    Naranjo-Suárez, Salvador; Castellanos, María Carmen; Alvarez-Tejado, Miguel; Vara, Alicia; Landázuri, Manuel O; del Peso, Luis

    2003-08-22

    Cellular responses to low oxygen tension are mediated, at least in part, by the activation of the hypoxia-inducible factors (HIFs). In the presence of oxygen, specific HIF residues become hydroxylated by the action of a recently described group of dioxygenases. These post-translational modifications target HIF for proteosomal degradation and prevent its transcriptional activity. Despite these detailed studies, little is known about the regulation of HIF by stimuli other than hypoxia. Here we report that, in rat pheochromocytoma PC12 cells, nerve growth factor (NGF) stimulation results in a decrease of both basal and hypoxia-induced levels of HIF-2 alpha protein. NGF treatment did not increase HIF-hydroxylase gene expression or activity, and the reduction of the HIF-2 alpha protein level upon stimulation was observed even in the presence of HIF-hydroxylase inhibitors such as deferoxamine or dimethyloxoglutarate. Thus, in contrast to the response to hypoxia, the effect of NGF on HIF-2 alpha protein levels is not mediated by the HIF hydroxilases. Quantitative real time (RT)-PCR showed that NGF stimulation results in a decrease of the HIF-2 alpha mRNA level similar to that found at the protein level. Interestingly, NGF effect was specific for HIF-2 alpha mRNA because it did not affect HIF-1 alpha mRNA levels. NGF treatment reduced HIF-2 alpha mRNA levels even in the presence of actinomycin D, suggesting an effect on mRNA stability. Finally, the effect of NGF on HIF2 alpha correlates with reduction of both basal and hypoxia-induced vascular endothelial growth factor mRNA levels. Reporter assays suggest that the reduced expression of hypoxia-inducible genes upon NGF treatment is related, at least in part, to the reduction of HIF-2 alpha protein. Hence, in PC12 cells the level of HIF-2 alpha protein and its effect on gene expression can be down-regulated by stimuli other than oxygen.

  7. The Role of Cytokines, Chemokines, and Growth Factors in the Pathogenesis of Pityriasis Rosea

    PubMed Central

    Drago, Francesco; Ciccarese, Giulia; Broccolo, Francesco; Ghio, Massimo; Contini, Paola; Thanasi, Hajdhica; Parodi, Aurora

    2015-01-01

    Introduction. Pityriasis rosea (PR) is an exanthematous disease related to human herpesvirus- (HHV-) 6/7 reactivation. The network of mediators involved in recruiting the infiltrating inflammatory cells has never been studied. Object. To investigate the levels of serum cytokines, growth factors, and chemokines in PR and healthy controls in order to elucidate the PR pathogenesis. Materials and Methods. Interleukin- (IL-) 1, IL-6, IL-17, interferon- (IFN-) γ, tumor necrosis factor- (TNF-) α, vascular endothelial growth factor (VEGF), granulocyte colony stimulating factor (G-CSF), and chemokines, CXCL8 (IL-8) and CXCL10 (IP-10), were measured simultaneously by a multiplex assay in early acute PR patients' sera and healthy controls. Subsequently, sera from PR patients were analysed at 3 different times (0, 15, and 30 days). Results and discussion. Serum levels of IL-17, IFN-γ, VEGF, and IP-10 resulted to be upregulated in PR patients compared to controls. IL-17 has a key role in host defense against pathogens stimulating the release of proinflammatory cytokines/chemokines. IFN-γ has a direct antiviral activity promoting NK cells and virus specific T cells cytotoxicity. VEGF stimulates vasculogenesis and angiogenesis. IP-10 can induce chemotaxis, apoptosis, cell growth, and angiogenesis. Conclusions. Our findings suggest that these inflammatory mediators may modulate PR pathogenesis in synergistic manner. PMID:26451078

  8. Factors determining pbsc mobilization efficiency and nonmobilization following ICE with or without rituximab (R-ICE) salvage therapy for refractory or relapsed lymphoma prior to autologous transplantation.

    PubMed

    Xia, Wei; Ma, Chun Kei K; Reid, Cassandra; Bai, Lijun; Wong, Kelly; Kerridge, Ian; Ward, Christopher; Greenwood, Matthew

    2014-12-01

    ICE/R-ICE (ifosfamide, carboplatin, and etoposide without or with rituximab) chemotherapy followed by autologous stem cell transplantation is an established regimen in refractory/relapsed lymphoma. Few studies have addressed which factors are important in determining peripheral blood stem cell (PBSC) mobilization efficiency or nonmobilization following ICE/R-ICE. Between 2004 and 2013, 88 patients with refractory/relapsed lymphoma who received ICE/R-ICE salvage-chemotherapy prior to granulocyte colony stimulating factor (G-CSF) stimulated PBSC mobilization at a single center were identified. Mobilization efficiency was assessed by time from ICE/R-ICE to day of harvest, duration of G-CSF use, days to peripheral blood (PB) CD34(+) ≥15/µL, PB CD34(+) number on harvest day, CD34(+) yield and nonmobilization rate. Median PB CD34(+) at harvest were 54/μL (7-524); median days to first apheresis was 15 (11-30); median harvested total CD34(+) were 5.46 × 10(6) /kg (0.96-44.36); 71 patients (80.7%) successfully mobilized; 20 (22.7%) patients were poor mobilizers; 14 (15.9%) patients were considered nonmobilizers with maximal PB CD34(+) <7/µL and did not proceed to apheresis. Six of 20 poor mobilizers were apheresed with PB CD34(+) 7-12/µL, 50% were successfully harvested. No differences were found between ICE and R-ICE regimens. Impaired mobilization efficiency was associated with age, remission status, >1 line of induction chemotherapy, four cycles ICE/R-ICE and grade 4 neutropenia. Prior bone marrow (BM) involvement was associated with nonmobilization. The majority of patients can be successfully mobilized with ICE/R-ICE. Prior BM involvement is associated with high rates of nonmobilization following ICE/R-ICE. Such patients may benefit from novel mobilization agents and/or alternative salvage regimens to ICE/R-ICE.

  9. Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors.

    PubMed

    Hah, Young-Sool; Jun, Jin-Su; Lee, Seong-Gyun; Park, Bong-Wook; Kim, Deok Ryong; Kim, Uk-Kyu; Kim, Jong-Ryoul; Byun, June-Ho

    2011-02-01

    Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF(121), VEGF(165), VEGF(189), and VEGF(206)), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF(165) elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF(165) resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.

  10. Perinatal factors associated with neonatal thyroid-stimulating hormone in normal newborns

    PubMed Central

    2016-01-01

    Purpose This study was to evaluate the effect of neonatal, maternal, and delivery factors on neonatal thyroid-stimulating hormone (TSH) of healthy newborns. Methods Medical records of 705 healthy infants born through normal vaginal delivery were reviewed. Neonatal TSH levels obtained by neonatal screening tests were analyzed in relation to perinatal factors and any associations with free thyroxine (FT4) and 17-α hydroxyprogesterone (17OHP) levels. Results An inverse relationship was found between TSH and sampling time after birth. Twin babies and neonates born by vacuum-assisted delivery had higher TSH levels than controls. First babies had higher TSH levels than subsequent babies. Birth weight, gestational age, maternal age and duration from the rupture of the membrane to birth were not related to neonatal TSH. There were no significant differences in TSH level according to sex, Apgar scores, labor induction, the presence of maternal disease and maternal medications. There was a positive association between TSH and 17OHP level but not between TSH and FT4 level. Multiple linear regression analyses showed that sampling time, mode of delivery, birth order, and 17OHP level were significant factors affecting neonatal TSH level. Conclusion Neonatal TSH levels of healthy normal newborns are related with multiple factors. Acute stress during delivery may influence the neonatal TSH level in early neonatal period. PMID:28164073

  11. The effect of diet on tumor necrosis factor stimulation of hepatic lipogenesis

    SciTech Connect

    Feingold, K.R.; Soued, M.; Serio, M.K.; Adi, S.; Moser, A.H.; Grunfeld, C. )

    1990-06-01

    In this study, we determined the effects of tumor necrosis factor (TNF) on serum lipid levels and hepatic lipid synthesis in animals whose diets and feeding conditions were varied to induce changes in baseline serum lipid levels and/or rates of hepatic lipid synthesis. In animals studied at both the nadir and peak of the diurnal cycle of hepatic lipid synthesis, TNF acutely increases serum triglyceride levels, stimulates hepatic fatty acid synthesis, and increases the quantity of newly synthesized fatty acids found in the serum. Similarly, in animals ingesting either high-sucrose or cholesterol-enriched diets, TNF induces the characteristic rapid increase in serum triglyceride levels, hepatic fatty acid synthesis, and quantity of labeled fatty acids in the serum. In animals fed a diet high in triglycerides, using either corn oil or lard, TNF stimulates hepatic fatty acid synthesis and increases the quantity of newly synthesized fatty acids in the serum, but serum triglyceride levels do not change. However, TNF inhibits gastric emptying, which results in a marked decrease in fat absorption in TNF-treated animals. It is likely that a decrease in the dietary contribution to serum triglyceride levels during high-triglyceride feeding counterbalances the increased hepatic contribution induced by TNF treatment. In animals fasted before TNF administration there was no acute change in either serum lipid levels, hepatic fatty acid synthesis, or the quantity of labeled fatty acids in the serum. Thus, TNF stimulates hepatic fatty acid synthesis and increases serum triglyceride levels under many diverse dietary conditions, suggesting that there is a strong linkage between the immune system and lipid metabolism that is independent of most dietary manipulations and may be of fundamental importance in the body's response to infection.

  12. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  13. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation

    PubMed Central

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara; Wang, Zhixiang

    2016-01-01

    The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity. PMID:26816343

  14. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  15. Allograft inflammatory factor-1 stimulates chemokine production and induces chemotaxis in human peripheral blood mononuclear cells.

    PubMed

    Kadoya, Masatoshi; Yamamoto, Aihiro; Hamaguchi, Masahide; Obayashi, Hiroshi; Mizushima, Katsura; Ohta, Mitsuhiro; Seno, Takahiro; Oda, Ryo; Fujiwara, Hiroyoshi; Kohno, Masataka; Kawahito, Yutaka

    2014-06-06

    Allograft inflammatory factor-1 (AIF-1) is expressed by macrophages, fibroblasts, endothelial cells and smooth muscle cells in immune-inflammatory disorders such as systemic sclerosis, rheumatoid arthritis and several vasculopathies. However, its molecular function is not fully understood. In this study, we examined gene expression profiles and induction of chemokines in monocytes treated with recombinant human AIF (rhAIF-1). Using the high-density oligonucleotide microarray technique, we compared mRNA expression profiles of rhAIF-1-stimulated CD14(+) peripheral blood mononuclear cells (CD14(+) PBMCs) derived from healthy volunteers. We demonstrated upregulation of genes for several CC chemokines such as CCL1, CCL2, CCL3, CCL7, and CCL20. Next, using ELISAs, we confirmed that rhAIF-1 promoted the secretion of CCL3/MIP-1α and IL-6 by CD14(+) PBMCs, whereas only small amounts of CCL1, CCL2/MCP-1, CCL7/MCP-3 and CCL20/MIP-3α were secreted. Conditioned media from rhAIF-1stimulated CD14(+) PBMCs resulted in migration of PBMCs. These findings suggest that AIF-1, which induced chemokines and enhanced chemotaxis of monocytes, may represent a molecular target for the therapy of immune-inflammatory disorders.

  16. Inhibitory effect of trichothecene mycotoxins on bovine platelets stimulated by platelet activating factor.

    PubMed Central

    Gentry, P A; Ross, M L; Bondy, G S

    1987-01-01

    Several species of fungi, which infect cereals and grains, can produce a class of compounds, known as trichothecene mycotoxins, which is characterized by a substituted epoxy-trichothecene ring structure. Cattle are susceptible to intoxication from feeds contaminated with T-2 toxin, one of the more potent trichothecene mycotoxins, while swine refuse to ingest feed contaminated with T-2 toxin. The bovine platelet has been used as a model cell system to evaluate the effects of T-2 toxin and its natural metabolites, HT-2 toxin and T-2 tetraol, on cell function in vitro. Due to the lipophilic nature of these mycotoxins, a biologically active phospholipid was used to stimulate the platelets in the presence and absence of the toxins. The mycotoxin T-2 toxin and its major metabolite HT-2 toxin inhibited platelet activating factor-stimulated bovine platelets, suspended in homologous plasma, in a concentration but not time dependent manner. Significant inhibition of platelet function (p less than 0.01) occurred with 135 ng T-2 toxin per 10(6) platelets and with 77 ng HT-2 toxin per 10(6) platelets. These mycotoxins exerted an additive inhibitory effect on the platelet aggregation response. In contrast, the minor metabolite T-2 tetraol had no inhibitory effect on platelet function and had no influence on the responses of T-2 toxin or HT-2 toxin when the mycotoxins were present together in the platelet suspensions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3453270

  17. Role of macrophage colony-stimulating factor (M-CSF) in human granulosa cells.

    PubMed

    Xu, Song; Zhang, Zhifen; Xia, Li-Xia; Huang, Jian

    2016-12-01

    Macrophage colony-stimulating factor (M-CSF) has been proved to have a positive role in the follicular development. We investigated its effect on human granulosa cells and found that M-CSF could stimulate the production of E2. The production of FSH receptors was enhanced by M-CSF in vitro in a dose-dependent manner with or without the addition of tamoxifen (p <0.05). Correspondingly, FSH was also able to coordinate the expression of M-CSF and its receptor (p <0.05). That maybe important to maintain the level of Nppc and the meiotic arrest of the oocyte. The protein p-JAK2 and p-STAT3 in JAK/STAT-signaling pathway elevated after the influence of M-CSF (p < 0.05). These results suggest that M-CSF has a role in regulating the response of granulosa cells to gonadotropins. Its function is associated with JAK/STAT-signaling pathway.

  18. Insulin-like growth factor I stimulates erythropoiesis in hypophysectomized rats

    SciTech Connect

    Kurtz, A.; Zapf, J.; Eckardt, K.U.; Clemons, G.; Froesch, E.R.; Bauer, C. )

    1988-10-01

    Stimulation of erythropoiesis during growth is necessary to ensure proportionality between erythrocyte mass and body mass. However, the way by which erythrocyte formation is adapted to body growth is still unknown. Growth arrest in hypophysectomized rats is accompanied by decreased erythropoiesis. The authors have, therefore, examined whether insulin-like growth factor I (IGF-I), the mediator of growth hormone effects on body growth, is able to restore erythropoiesis in these animals. Subcutaneous infusions of 120 {mu}g of recombinant human IGF-I per day in hypophysectomized rats led to increases in body weight, {sup 59}Fe incorporation into erythrocytes, and the number of reticulocytes that were similar to increases caused by infusions of 28 milliunits of human growth hormone per day. Body weight gain and {sup 59}Fe incorporation were linearly correlated. Like growth hormone, IGF-I also caused a significant rise in serum erythropoietin concentrations. However, the stimulatory effect on erythropoiesis occurred before serum erythropoietin levels had risen. These results demonstrate that IGF-I mediates the stimulatory effect of growth hormone on erythropoiesis in vivo and thus further support the somatomedin concept. They also show that IGF-I can stimulate erythropoiesis in an endocrine manner, and they suggest two possible routes of action: a direct one and an indirect one by means of enhanced erythropoietin production.

  19. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies

    PubMed Central

    Li, Lucia M.; Uehara, Kazumasa; Hanakawa, Takashi

    2015-01-01

    There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies. PMID:26029052

  20. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  1. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4

    PubMed Central

    Yang, Benjamin; Lee, Je-Jung; Lee, Hyun-Ju; Lee, Jaemin; Jung, In Duk; Han, Hee Dong; Lee, Seung-Hyun; Koh, Sang Seok; Wu, T.-C.; Park, Yeong-Min

    2015-01-01

    Dendritic cell (DC) based cancer vaccines represent a promising immunotherapeutic strategy against cancer. To enhance the modest immunogenicity of DC vaccines, various adjuvants are often incorporated. Particularly, most of the common adjuvants are derived from bacteria. In the current study, we evaluate the use of a human pancreatic cancer derived protein, pancreatic adenocarcinoma upregulated factor (PAUF), as a novel DC vaccine adjuvant. We show that PAUF can induce activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. Furthermore, vaccination with PAUF treated DCs pulsed with E7 or OVA peptides leads to generation of E7 or OVA-specific CD8+ T cells and memory T cells, which correlate with long term tumor protection and antitumor effects against TC-1 and EG.7 tumors in mice. Finally, we demonstrated that PAUF mediated DC activation and immune stimulation are dependent on TLR4. Our data provides evidence supporting PAUF as a promising adjuvant for DC based therapies, which can be applied in conjunction with other cancer therapies. Most importantly, our results serve as a reference for future investigation of human based adjuvants. PMID:26336989

  2. Circulating macrophage colony-stimulating factor is not reduced in malignant osteopetrosis.

    PubMed

    Orchard, P J; Dahl, N; Aukerman, S L; Blazar, B R; Key, L L

    1992-01-01

    Malignant osteopetrosis is a disorder characterized by a deficiency in osteoclast number or function. In one animal model of osteopetrosis, the op/op mouse, macrophage colony-stimulating factor (M-CSF) is absent, and the administration of M-CSF corrects the defects. We evaluated the serum of 13 patients with malignant osteopetrosis by an M-CSF radioimmunoassay to determine if a quantitative M-CSF deficiency existed in these patients. All patients had M-CSF present in levels equal to or higher than control serum. In addition, serum from 6 osteopetrotic patients was tested in a bioassay to determine if the M-CSF present is biologically active, and in all cases there was demonstrable activity in these samples. We provide evidence that deficiency of circulating M-CSF is unlikely to be a major contributor to the etiologic basis for the majority of children with malignant osteopetrosis.

  3. Using Student-Centred Learning Environments to Stimulate Deep Approaches to Learning: Factors Encouraging or Discouraging Their Effectiveness

    ERIC Educational Resources Information Center

    Baeten, Marlies; Kyndt, Eva; Struyven, Katrien; Dochy, Filip

    2010-01-01

    This review outlines encouraging and discouraging factors in stimulating the adoption of deep approaches to learning in student-centred learning environments. Both encouraging and discouraging factors can be situated in the context of the learning environment, in students' perceptions of that context and in characteristics of the students…

  4. Mechanism of arachidonic acid liberation in platelet-activating factor-stimulated human polymorphonuclear neutrophils

    SciTech Connect

    Nakashima, S.; Suganuma, A.; Sato, M.; Tohmatsu, T.; Nozawa, Y. )

    1989-08-15

    Upon stimulation of human polymorphonuclear neutrophils with platelet-activating factor (PAF), arachidonic acid (AA) is released from membrane phospholipids. The mechanism for AA liberation, a key step in the synthesis of biologically active eicosanoids, was investigated. PAF was found to elicit an increase in the cytoplasmic level of free Ca2+ as monitored by fluorescent indicator fura 2. When (3H) AA-labeled neutrophils were exposed to PAF, the enhanced release of AA was observed with a concomitant decrease of radioactivity in phosphatidylinositol and phosphatidylcholine fractions. The inhibitors of phospholipase A2, mepacrine and 2-(p-amylcinnamoyl)-amino-4-chlorobenzoic acid, effectively suppressed the liberation of (3H)AA from phospholipids, indicating that liberation of AA is mainly catalyzed by the action of phospholipase A2. The extracellular Ca2+ is not required for AA release. However, intracellular Ca2+ antagonists, TMB-8 and high dose of quin 2/AM drastically reduced the liberation of AA induced by PAF, indicating that Ca2+ is an essential factor for phospholipase A2 activation. PAF raised the fluorescence of fura 2 at concentrations as low as 8 pM which reached a maximal level about 8 nM, whereas more than nM order concentrations of PAF was required for the detectable release of (3H)AA. Pretreatment of neutrophils with pertussis toxin resulted in complete abolition of AA liberation in response to PAF. However, the fura 2 response to PAF was not effectively inhibited by toxin treatment. In human neutrophil homogenate and membrane preparations, guanosine 5'-O-(thiotriphosphate) stimulated AA release and potentiated the action of PAF. Guanosine 5'-O-(thiodiphosphate) inhibited the effects of guanosine 5'-O-(thiotriphosphate).

  5. Stimulation of prostaglandin E/sub 2/ production by phorbol esters and epidermal growth factor in porcine thyroid cells

    SciTech Connect

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-07-13

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E/sub 2/ production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E/sub 2/ production by the cells in dose related fashion. PMA stimulated prostaglandin E/sub 2/ production over fifty-fold with the dose of 10/sup -7/ M compared with control. EGF (10/sup -7/ M) also stimulated it about ten-fold. The ED/sub 50/ values of PMA and EGF were respectively around 1 x 10/sup -9/ M and 5 x 10/sup -10/ M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E/sub 2/ production from 1 to 24-h incubation. The release of radioactivity from (/sup 3/H)-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E/sub 2/ production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table.

  6. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke.

    PubMed

    Wang, Yuanfei; Cooke, Michael J; Sachewsky, Nadia; Morshead, Cindi M; Shoichet, Molly S

    2013-11-28

    Stroke is a leading cause of disability with no effective regenerative treatment. One promising strategy for achieving tissue repair involves the stimulation of endogenous neural stem/progenitor cells through sequential delivery of epidermal growth factor (EGF) followed by erythropoietin (EPO). Yet currently available delivery strategies such as intracerebroventricular (ICV) infusion cause significant tissue damage. We designed a novel delivery system that circumvents the blood brain barrier and directly releases growth factors to the brain. Sequential release of the two growth factors is a key in eliciting tissue repair. To control release, we encapsulate pegylated EGF (EGF-PEG) in poly(lactic-co-glycolic acid) (PLGA) nanoparticles and EPO in biphasic microparticles comprised of a PLGA core and a poly(sebacic acid) coating. EGF-PEG and EPO polymeric particles are dispersed in a hyaluronan methylcellulose (HAMC) hydrogel which spatially confines the particles and attenuates the inflammatory response of brain tissue. Our composite-mediated, sequential delivery of EGF-PEG and EPO leads to tissue repair in a mouse stroke model and minimizes damage compared to ICV infusion.

  7. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    SciTech Connect

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.; Sadove, A.M.; Heuvelman, D.; Feder, J. )

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically in all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.

  8. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells

    PubMed Central

    Choudhary, Geetika S.; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A.; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  9. Structural studies on leukaemia inhibitory factor

    SciTech Connect

    Norton, R.S.; Maurer, T.; Smith, D.K.; Nicola, N.A.

    1994-12-01

    Leukaemia Inhibitory Factor (LIF) is a pleiotropic cytokine that acts on a wide range of target cells, including mega-karyocytes, osteoblasts, hepatocytes, adipocytes, neurons, embryonic stem cells, and primordial germ cells. Many of its activities are shared with other cytokines, particularly interleukin-6, oncostatin-M, ciliary neurotrophic factor, and granulocyte colony-stimulating factor (G-CSF). Although secreted in vivo as a glycoprotein, nonglycosylated recombinant protein expressed in E. coli is fully active and has been used in our nuclear magnetic resonance (NMR) studies of the three-dimensional structure and structure-function relationships of LIF. With 180 amino acids and a molecular mass of about 20 kDa, OF is too large for direct structure determination by two-dimensional and three-dimensional {sup 1}HNMR. It is necessary to label the protein with the stable isotopes {sup 15}N and {sup 13}C and employ heteronuclear three-dimensional NMR in order to resolve and interpret the spectral information required for three-dimensional structure determination. This work has been undertaken with both human LIF and a mouse-human chimaera that binds to the human LIF receptor with the same affinity as the human protein and yet expresses in E. coli at much higher levels. Sequence-specific resonance assignments and secondary structure elements for these proteins will be presented and progress towards determination of their three-dimensional structures described.

  10. Factors to predict positive results of gonadotropin releasing hormone stimulation test in girls with suspected precocious puberty.

    PubMed

    Nam, Hyo-Kyoung; Rhie, Young Jun; Son, Chang Sung; Park, Sang Hee; Lee, Kee-Hyoung

    2012-02-01

    Sometimes, the clinical findings and the results of the gonadotropin-releasing hormone (GnRH) stimulation test are inconsistent in girls with early breast development and bone age advancement. We aimed to investigate the factors predicting positive results of the GnRH stimulation test in girls with suspected central precocious puberty (CPP). We reviewed the records of 574 girls who developed breast budding before the age of 8 yr and underwent the GnRH stimulation test under the age of 9 yr. Positive results of the GnRH stimulated peak luteinizing hormone (LH) level were defined as 5 IU/L and over. Girls with the initial positive results (n = 375) showed accelerated growth, advanced bone age and higher serum basal LH, follicle-stimulating hormone, and estradiol levels, compared to those with the initial negative results (n = 199). Girls with the follow-up positive results (n = 64) showed accelerated growth and advanced bone age, compared to those with the follow-up negative results. In the binary logistic regression, the growth velocity ratio was the most significant predictive factor of positive results. We suggest that the rapid growth velocity is the most useful predictive factor for positive results in the GnRH stimulation test in girls with suspected precocious puberty.

  11. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  12. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  13. Expression and function of the human granulocyte-macrophage colony-stimulating factor receptor alpha subunit.

    PubMed

    Jubinsky, P T; Laurie, A S; Nathan, D G; Yetz-Aldepe, J; Sieff, C A

    1994-12-15

    To determine the expression and function of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha chain (GMR alpha) during hematopoiesis and on leukemic cells, monoclonal antibodies were raised by immunizing mice with cells expressing high levels of human GMR alpha. A pool of five antibodies isolated from three different mice was used to characterize GMR alpha. This antibody pool (anti-GMR alpha) immunoprecipitated a protein with the expected molecular weight of GMR alpha from COS cells transiently transfected with the GMR alpha gene. In factor-dependent cells, GMR alpha existed as a phosphoprotein. However, its phosphorylation was not stimulated by the presence of GM-CSF. Anti-GMR alpha inhibited the GM-CSF-dependent growth of cell lines and normal bone marrow cells and inhibited the binding of iodinated GM-CSF to its receptor. Cell surface expression of GMR alpha was examined using anti-GMR alpha and flow cytometry. GMR alpha was readily detectable on both blood monocytes and neutrophils. In adherence-depleted normal bone marrow, two separate populations expressed GMR alpha. The most positive cells were predominantly macrophages, whereas the cells that expressed less GMR alpha were largely myelocytes and metamyelocytes. A small population of lin-CD34+ or CD34+CD38- cells also expressed GMR alpha, but they were not capable of significant growth in colony-forming assays. In contrast, the majority of lin-CD34+ and CD34+CD38- cells were GMR alpha-, yet they produced large numbers of myeloid and erythroid colonies in the same assay. Malignant cells from patients with leukemia were also tested for GMR alpha expression. All of the myeloid leukemias and only rare lymphoid leukemias surveyed tested positive for GMR alpha. These results show that anti-GMR alpha is useful for the functional characterization of the GMR alpha and for the detection of myeloid leukemia and that GMR alpha is expressed on certain lineages throughout hematopoietic

  14. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin.

    PubMed

    Deng, Yi-Ting; Chen, Hsin-Ming; Cheng, Shih-Jung; Chiang, Chun-Pin; Kuo, Mark Yen-Ping

    2009-09-01

    Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF). We immunohistochemically examined the expression of CTGF protein in 20 cases of OSF and found positive CTGF staining in fibroblasts and endothelial cells in all cases. Western blot analysis showed that arecoline, a main alkaloid found in AN, stimulated CTGF synthesis in a dose- and time-dependent manner in buccal mucosal fibroblasts. Constitutive overexpression of CTGF during AN chewing may enhance the fibrotic activity in OSF and play a role in the pathogenesis of OSF. Pretreatment with NF-kappaB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant N-acetyl-l-cysteine, but not ERK inhibitor PD98059, significantly reduced arecoline-induced CTGF synthesis. Furthermore, curcumin completely inhibited arecoline-induced CTGF synthesis and the inhibition is dose-dependent. These results indicated that arecoline-induced CTGF synthesis was mediated by ROS, NF-kappaB, JNK, P38 MAPK pathways and curcumin could be a useful agent in controlling OSF.

  15. Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus

    PubMed Central

    Li, Bei; Wang, Meiye; Li, Ming; Yin, Shankai

    2016-01-01

    Objectives. We investigated factors that contribute to suppression of tinnitus after repetitive transcranial magnetic stimulation (rTMS). Methods. A total of 289 patients with tinnitus underwent active 1 Hz rTMS in the left temporoparietal region. A visual analog scale (VAS) was used to assess tinnitus loudness. All participants were interviewed regarding age, gender, tinnitus duration, laterality and pitch, audiometric parameters, sleep, and so forth. The resting motor thresholds (RMTs) were measured in all patients and 30 age- and gender-matched volunteers. Results. With respect to different factors that contribute to tinnitus suppression, we found improvement in the following domains: shorter duration, normal hearing (OR: 3.25, 95%CI: 2.01–5.27, p = 0.001), and without sleep disturbance (OR: 2.51, 95%CI: 1.56–4.1, p = 0.005) adjusted for age and gender. The patients with tinnitus lasting less than 1 year were more likely to show suppression of tinnitus (OR: 2.77, 95%CI: 1.48–5.19, p = 0.002) compared to those with tinnitus lasting more than 5 years. Tinnitus patients had significantly lower RMTs compared with healthy volunteers. Conclusion. Active low-frequency rTMS results in a significant reduction in the loudness of tinnitus. Significant tinnitus suppression was shown in subjects with shorter tinnitus duration, with normal hearing, and without sleep disturbance. PMID:27847647

  16. Characterisation of a Novel Fc Conjugate of Macrophage Colony-stimulating Factor

    PubMed Central

    Gow, Deborah J; Sauter, Kristin A; Pridans, Clare; Moffat, Lindsey; Sehgal, Anuj; Stutchfield, Ben M; Raza, Sobia; Beard, Philippa M; Tsai, Yi Ting; Bainbridge, Graeme; Boner, Pamela L; Fici, Greg; Garcia-Tapia, David; Martin, Roger A; Oliphant, Theodore; Shelly, John A; Tiwari, Raksha; Wilson, Thomas L; Smith, Lee B; Mabbott, Neil A; Hume, David A

    2014-01-01

    We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs. The impact of CSF1-Fc was examined using the Csf1r-enhanced green fluorescent protein (EGFP) reporter gene in MacGreen mice. Administration of CSF1-Fc to mice drove extensive infiltration of all tissues by Csf1r-EGFP positive macrophages. The main consequence was hepatosplenomegaly, associated with proliferation of hepatocytes. Expression profiles of the liver indicated that infiltrating macrophages produced candidate mediators of hepatocyte proliferation including urokinase, tumor necrosis factor, and interleukin 6. CSF1-Fc also promoted osteoclastogenesis and produced pleiotropic effects on other organ systems, notably the testis, where CSF1-dependent macrophages have been implicated in homeostasis. However, it did not affect other putative CSF1 targets, notably intestine, where Paneth cell numbers and villus architecture were unchanged. CSF1 has therapeutic potential in regenerative medicine in multiple organs. We suggest that the CSF1-Fc conjugate retains this potential, and may permit daily delivery by injection rather than continuous infusion required for the core molecule. PMID:24962162

  17. Colony-Stimulating Factor-1 Promotes Kidney Growth and Repair via Alteration of Macrophage Responses

    PubMed Central

    Alikhan, Maliha A.; Jones, Christina V.; Williams, Timothy M.; Beckhouse, Anthony G.; Fletcher, Anne L.; Kett, Michelle M.; Sakkal, Samy; Samuel, Chrishan S.; Ramsay, Robert G.; Deane, James A.; Wells, Christine A.; Little, Melissa H.; Hume, David A.; Ricardo, Sharon D.

    2011-01-01

    Colony-stimulating factor (CSF)-1 controls the survival, proliferation, and differentiation of macrophages, which are recognized as scavengers and agents of the innate and the acquired immune systems. Because of their plasticity, macrophages are endowed with many other essential roles during development and tissue homeostasis. We present evidence that CSF-1 plays an important trophic role in postnatal organ growth and kidney repair. Notably, the injection of CSF-1 postnatally enhanced kidney weight and volume and was associated with increased numbers of tissue macrophages. Moreover, CSF-1 promotes postnatal renal repair in mice after ischemia-reperfusion injury by recruiting and influencing macrophages toward a reparative state. CSF-1 treatment rapidly accelerated renal repair with tubular epithelial cell replacement, attenuation of interstitial fibrosis, and functional recovery. Analysis of macrophages from CSF-1-treated kidneys showed increased expression of insulin-like growth factor-1 and anti-inflammatory genes that are known CSF-1 targets. Taken together, these data suggest that CSF-1 is important in kidney growth and the promotion of endogenous repair and resolution of inflammatory injury. PMID:21762674

  18. Monocyte activation following systemic administration of granulocyte-macrophage colony-stimulating factor.

    PubMed

    Chachoua, A; Oratz, R; Hoogmoed, R; Caron, D; Peace, D; Liebes, L; Blum, R H; Vilcek, J

    1994-04-01

    Twenty-four patients with solid malignancies were treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) on a Phase 1b trial. The objective of the study was to evaluate the effects of GM-CSF on peripheral blood monocyte activation. GM-CSF was administered by subcutaneous injection daily for 14 days. Immune parameters measured were monocyte cytotoxicity against the human colon carcinoma (HT29) cell line, serum tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, and in vitro TNF-alpha and IL-1 beta induction. All patients were evaluable for toxicity. Fifteen patients were evaluable for immunologic response. Treatment with GM-CSF led to a statistically significant enhancement in direct monocyte cytotoxicity against HT29 cells. There was no increase in serum TNF-alpha or IL-1 beta and no consistent in vitro induction of TNF-alpha or IL-1 beta from monocytes posttreatment. Treatment was well tolerated overall. We conclude that treatment with GM-CSF can lead to enhanced monocyte cytotoxicity. Further studies are in progress to evaluate the effect of GM-CSF on other parameters of monocyte functions.

  19. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor.

    PubMed

    Gow, Deborah J; Sauter, Kristin A; Pridans, Clare; Moffat, Lindsey; Sehgal, Anuj; Stutchfield, Ben M; Raza, Sobia; Beard, Philippa M; Tsai, Yi Ting; Bainbridge, Graeme; Boner, Pamela L; Fici, Greg; Garcia-Tapia, David; Martin, Roger A; Oliphant, Theodore; Shelly, John A; Tiwari, Raksha; Wilson, Thomas L; Smith, Lee B; Mabbott, Neil A; Hume, David A

    2014-09-01

    We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs. The impact of CSF1-Fc was examined using the Csf1r-enhanced green fluorescent protein (EGFP) reporter gene in MacGreen mice. Administration of CSF1-Fc to mice drove extensive infiltration of all tissues by Csf1r-EGFP positive macrophages. The main consequence was hepatosplenomegaly, associated with proliferation of hepatocytes. Expression profiles of the liver indicated that infiltrating macrophages produced candidate mediators of hepatocyte proliferation including urokinase, tumor necrosis factor, and interleukin 6. CSF1-Fc also promoted osteoclastogenesis and produced pleiotropic effects on other organ systems, notably the testis, where CSF1-dependent macrophages have been implicated in homeostasis. However, it did not affect other putative CSF1 targets, notably intestine, where Paneth cell numbers and villus architecture were unchanged. CSF1 has therapeutic potential in regenerative medicine in multiple organs. We suggest that the CSF1-Fc conjugate retains this potential, and may permit daily delivery by injection rather than continuous infusion required for the core molecule.

  20. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses.

    PubMed

    Alikhan, Maliha A; Jones, Christina V; Williams, Timothy M; Beckhouse, Anthony G; Fletcher, Anne L; Kett, Michelle M; Sakkal, Samy; Samuel, Chrishan S; Ramsay, Robert G; Deane, James A; Wells, Christine A; Little, Melissa H; Hume, David A; Ricardo, Sharon D

    2011-09-01

    Colony-stimulating factor (CSF)-1 controls the survival, proliferation, and differentiation of macrophages, which are recognized as scavengers and agents of the innate and the acquired immune systems. Because of their plasticity, macrophages are endowed with many other essential roles during development and tissue homeostasis. We present evidence that CSF-1 plays an important trophic role in postnatal organ growth and kidney repair. Notably, the injection of CSF-1 postnatally enhanced kidney weight and volume and was associated with increased numbers of tissue macrophages. Moreover, CSF-1 promotes postnatal renal repair in mice after ischemia-reperfusion injury by recruiting and influencing macrophages toward a reparative state. CSF-1 treatment rapidly accelerated renal repair with tubular epithelial cell replacement, attenuation of interstitial fibrosis, and functional recovery. Analysis of macrophages from CSF-1-treated kidneys showed increased expression of insulin-like growth factor-1 and anti-inflammatory genes that are known CSF-1 targets. Taken together, these data suggest that CSF-1 is important in kidney growth and the promotion of endogenous repair and resolution of inflammatory injury.

  1. Simulation of epiretinal prostheses - Evaluation of geometrical factors affecting stimulation thresholds

    PubMed Central

    2011-01-01

    Background An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. Methods In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. Results Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. Conclusions The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends

  2. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    PubMed

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  3. Neuropeptide W stimulates adrenocorticotrophic hormone release via corticotrophin-releasing factor but not via arginine vasopressin.

    PubMed

    Yogo, Kosuke; Oki, Yutaka; Iino, Kazumi; Yamashita, Miho; Shibata, Shoko; Hayashi, Chiga; Sasaki, Shigekazu; Suenaga, Toshiko; Nakahara, Daiichiro; Nakamura, Hirotoshi

    2012-01-01

    Neuropeptide W (NPW) was isolated as an endogenous ligand for NPBWR1, an orphan G protein-coupled receptor localized in the rat brain, including the paraventricular nucleus. It has been reported that central administration of NPW stimulates corticosterone secretion in rats. We hypothesized that NPW activates the hypothalamic-pituitary-adrenal (HPA) axis via corticotrophin-releasing factor (CRF) and/or arginine vasopressin (AVP). NPW at 1 pM to 10 nM did not affect basal or ACTH-induced corticosterone release from dispersed rat adrenocortical cells, or basal and CRF-induced ACTH release from dispersed rat anterior pituitary cells. In conscious and unrestrained male rats, intravenous administration of 2.5 and 25 nmol NPW did not affect plasma ACTH levels. However, intracerebroventricular (icv) administration of 2.5 and 5.0 nmol NPW increased plasma ACTH levels in a dose-dependent manner at 15 min after stimulation (5.0 vs. 2.5 nmol NPW vs. vehicle: 1802 ± 349 vs. 1170 ± 204 vs. 151 ± 28 pg/mL, respectively, mean ± SEM). Pretreatment with astressin, a CRF receptor antagonist, inhibited the increase in plasma ACTH levels induced by icv administration of 2.5 nmol NPW at 15 min (453 ± 176 vs. 1532 ± 343 pg/mL, p<0.05) and at 30 min (564 ± 147 vs. 1214 ± 139 pg/mL, p<0.05) versus pretreatment with vehicle alone. However, pretreatment with [1-(β-mercapto-β, β-cyclopentamethylenepropionic acid), 2-(Ο-methyl)tyrosine]-arg-vasopressin, a V1a/V1b receptor antagonist, did not affect icv NPW-induced ACTH release at any time (p>0.05). In conclusion, we suggest that central NPW activates the HPA axis by activating hypothalamic CRF but not AVP.

  4. Granulocyte colony-stimulating factor in repeated IVF failure, a randomized trial.

    PubMed

    Aleyasin, Ashraf; Abediasl, Zhila; Nazari, Atefeh; Sheikh, Mahdi

    2016-06-01

    Recent studies have revealed key roles for granulocyte colony-stimulating factor (GCSF) in embryo implantation process and maintenance of pregnancy, and some studies showed promising results by using local intrauterine infusion of GCSF in patients undergoing in vitro fertilization (IVF). This multicenter, randomized, controlled trial included 112 infertile women with repeated IVF failure to evaluate the efficacy of systemic single-dose subcutaneous GCSF administration on IVF success in these women. In this study, the Long Protocol of ovarian stimulation was used for all participants. Sealed, numbered envelopes assigned 56 patients to receive subcutaneous 300 µg GCSF before implantation and 56 in the control group. The implantation (number of gestational sacs on the total number of transferred embryos), chemical pregnancy (positive serum β-HCG), and clinical pregnancy (gestational sac and fetal heart) rates were compared between the two groups. This trial is registered at www.irct.ir (IRCT201503119568N11). The successful implantation (18% vs 7.2%, P=0.007), chemical pregnancy (44.6% vs 19.6%, P=0.005), and clinical pregnancy (37.5% vs 14.3%, P=0.005) rates were significantly higher in the intervention group than in the control group. After adjustment for participants' age, endometrial thickness, good-quality oocyte counts, number of transferred embryos, and anti-Mullerian hormone levels, GCSF treatment remained significantly associated with successful implantation (OR=2.63, 95% CI=1.09-6.96), having chemical pregnancy (OR= 2.74, 95% CI=1.11-7.38) and clinical pregnancy (OR=2.94, 95% CI=1.23-8.33). In conclusion, administration of single-dose systemic subcutaneous GCSF before implantation significantly increases the IVF success, implantation, and pregnancy rates in infertile women with repeated IVF failure.

  5. Immunostimulation using granulocyte- and granulocyte-macrophage colony stimulating factor in patients with severe sepsis and septic shock.

    PubMed

    Schefold, Joerg C

    2011-01-01

    Sepsis is associated with failure of multiple organs, including failure of the immune system. The resulting 'sepsis-associated immunosuppression' resembles a state of immunological anergy that is characterized by repeated 'infectious hits', prolonged multiple-organ failure, and death. As a consequence, adjunctive treatment approaches using measures of immunostimulation with colony-stimulating factors (CSFs) were tested in animal experiments and clinical trials. Herein, data from randomized clinical trials will be discussed in the context of a recently published meta-analysis investigating the effects of granulocyte- and granulocyte-macrophage colony-stimulating factor therapy in patients with severe sepsis and septic shock.

  6. Prognostic factors in the prediction of chronic wound healing by electrical stimulation.

    PubMed

    Cukjati, D; Robnik-Sikonja, M; Rebersek, S; Kononenko, I; Miklavcic, D

    2001-09-01

    The aim of the study is to determine the effects of wound, patient and treatment attributes on the wound healing rate and to propose a system for wound healing rate prediction. Predicting the wound healing rate from the initial wound, patient and treatment data collected in a database of 300 chronic wounds is not possible. After considering weekly follow-ups, it was determined that the best prognostic factors are weekly follow-ups of the wound healing process, which alone were found to predict accurately the wound healing rate after a minimum follow-up period of four weeks (at least five measurements of wound area). After combining the follow-ups with wound, patient and treatment attributes, the minimum follow-up period was reduced to two weeks (at least three measurements of wound area). After a follow-up period of two weeks, it was possible to predict the wound healing rate of an independent test set of chronic wounds with a relative squared error of 0.347, and after three weeks, with a relative squared error of 0.181 (using regression trees with linear equations in its leaves). Regression trees with a relative squared error close to 0 produce better prediction than with an error closer to 1. Results show that the type of treatment is just one of many prognostic factors. Arranged in order of decreasing prediction capability, prognostic factors are: wound size, patient's age, elapsed time from wound appearance to the beginning of the treatment, width-to-length ratio, location and type of treatment. The data collected support former findings that the biphasic- and direct-current stimulation contributes to faster healing of chronic wounds. The model of wound healing dynamics aids the prediction of chronic wound healing rate, and hence helps with the formulation of appropriate treatment decisions.

  7. Differential processing of colony-stimulating factor 1 precursors encoded by two human cDNAs.

    PubMed Central

    Rettenmier, C W; Roussel, M F

    1988-01-01

    The biosynthesis of macrophage colony-stimulating factor 1 (CSF-1) was examined in mouse NIH-3T3 fibroblasts transfected with a retroviral vector expressing the 554-amino-acid product of a human 4-kilobase (kb) CSF-1 cDNA. Similar to results previously obtained with a 1.6-kb human cDNA that codes for a 256-amino-acid CSF-1 precursor, the results of the present study showed that NIH-3T3 cells expressing the product of the 4-kb clone produced biologically active human CSF-1 and were transformed by an autocrine mechanism when cotransfected with a vector containing a human c-fms (CSF-1 receptor) cDNA. The 4-kb CSF-1 cDNA product was synthesized as an integral transmembrane glycoprotein that was assembled into disulfide-linked dimers and rapidly underwent proteolytic cleavage to generate a soluble growth factor. Although the smaller CSF-1 precursor specified by the 1.6-kb human cDNA was stably expressed as a membrane-bound glycoprotein at the cell surface and was slowly cleaved to release the extracellular growth factor, the cell-associated product of the 4-kb clone was efficiently processed to the secreted form and was not detected on the plasma membrane. Digestion with glycosidic enzymes indicated that soluble CSF-1 encoded by the 4-kb cDNA contained both asparagine(N)-linked and O-linked carbohydrate chains, whereas the product of the 1.6-kb clone had only N-linked oligosaccharides. Removal of the carbohydrate indicated that the polypeptide chain of the secreted 4-kb cDNA product was longer than that of the corresponding form encoded by the smaller clone. These differences in posttranslational processing may reflect diverse physiological roles for the products of the two CSF-1 precursors in vivo. Images PMID:3264877

  8. Transforming growth factor-beta stimulates the expression of fibronectin by human keratinocytes.

    PubMed

    Wikner, N E; Persichitte, K A; Baskin, J B; Nielsen, L D; Clark, R A

    1988-09-01

    Transforming growth factor beta (TGF-beta) is a 25-kD protein which has regulatory activity over a variety of cell types. It is distinct from epidermal growth factor (EGF) and EGF analogs, and exerts its action via a distinct receptor. Its effect on proliferation or differentiation can be positive or negative depending on the cell type and the presence of other growth factors. It also modulates the expression of cellular products. TGF-beta causes fibroblasts to increase their production of the extracellular matrix components, fibronectin and collagen. Human keratinocytes (HK) are known to have TGF-beta receptors. We wished to study the effect of TGF-beta on the production of extracellular matrix proteins by human keratinocytes in culture. Human keratinocytes were grown in serum-free defined medium (MCDB-153) to about 70% confluence. Following a 16-h incubation in medium lacking EGF and TGF-beta, cells were incubated for 12 h in medium containing varying concentrations of EGF and TGF-beta. Cells were then labeled with 35S-methionine for 10 h in the same conditions. Labeled proteins from the medium were analyzed by SDS-PAGE and autoradiography. TGF-beta at 10 ng/ml induced a sixfold increase in the secretion of fibronectin, as well as an unidentified 50-kD protein. Thrombospondin production was also increased, but not over a generalized twofold increase in the production of all other proteins. EGF, at 10 ng/ml, caused a smaller additive effect. TGF-beta may be an important stimulator of extracellular matrix production by human keratinocytes.

  9. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1.

    PubMed

    Liu, Jing; Lam, Janice B B; Chow, Kim H M; Xu, Aimin; Lam, Karen S L; Moon, Randall T; Wang, Yu

    2008-11-01

    Adiponectin (ADN) is an adipokine possessing growth inhibitory activities against various types of cancer cells. Our previous results demonstrated that ADN could impede Wnt/beta-catenin-signaling pathways in MDA-MB-231 human breast carcinoma cells [Wang,Y. et al. (2006) Adiponectin modulates the glycogen synthase kinase-3 beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res., 66, 11462-11470]. Here, we extended our studies to elucidate the effects of ADN on regulating the expressions of Wnt inhibitory factor-1 (WIF1), a Wnt antagonist frequently silenced in human breast tumors. Our results showed that ADN time dependently stimulated WIF1 gene and protein expressions in MDA-MB-231 cells. Overexpression of WIF1 exerted similar inhibitory effects to those of ADN on cell proliferations, nuclear beta-catenin activities, cyclin D1 expressions and serum-induced phosphorylations of Akt and glycogen synthase kinase-3 beta. Blockage of WIF1 activities significantly attenuated the suppressive effects of ADN on MDA-MB-231 cell growth. Furthermore, our in vivo studies showed that both supplementation of recombinant ADN and adenovirus-mediated overexpression of this adipokine substantially enhanced WIF1 expressions in MDA-MB-231 tumors implanted in nude mice. More interestingly, we found that ADN could alleviate methylation of CpG islands located within the proximal promoter region of WIF1, possibly involving the specificity protein 1 (Sp1) transcription factor and its downstream target DNA methyltransferase 1 (DNMT1). Upon ADN treatment, the protein levels of both Sp1 and DNMT1 were significantly decreased. Using silencing RNA approaches, we confirmed that downregulation of Sp1 resulted in an increased expression of WIF1 and decreased methylation of WIF1 promoter. Taken together, these data suggest that ADN might elicit its antitumor activities at least partially through promoting WIF1 expressions.

  10. Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34)

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Pridans, Clare; Gow, Adam G.; Simpson, Kerry E.; Gunn-Moore, Danielle; Hume, David A.

    2013-01-01

    Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats. PMID:23260168

  11. Structure of the SH3 domain of human osteoclast-stimulating factor at atomic resolution

    SciTech Connect

    Chen, Liqing Wang, Yujun; Wells, David; Toh, Diana; Harold, Hunt; Zhou, Jing; DiGiammarino, Enrico; Meehan, Edward J.

    2006-09-01

    The crystal structure of the SH3 domain of human osteoclast-stimulating factor has been determined and refined to the ultrahigh resolution of 1.07 Å. The structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors. Osteoclast-stimulating factor (OSF) is an intracellular signaling protein, produced by osteoclasts themselves, that enhances osteoclast formation and bone resorption. It is thought to act via an Src-related signaling pathway and contains SH3 and ankyrin-repeat domains which are involved in protein–protein interactions. As part of a structure-based anti-bone-loss drug-design program, the atomic resolution X-ray structure of the recombinant human OSF SH3 domain (hOSF-SH3) has been determined. The domain, residues 12–72, yielded crystals that diffracted to the ultrahigh resolution of 1.07 Å. The overall structure shows a characteristic SH3 fold consisting of two perpendicular β-sheets that form a β-barrel. Structure-based sequence alignment reveals that the putative proline-rich peptide-binding site of hOSF-SH3 consists of (i) residues that are highly conserved in the SH3-domain family, including residues Tyr21, Phe23, Trp49, Pro62, Asn64 and Tyr65, and (ii) residues that are less conserved and/or even specific to hOSF, including Thr22, Arg26, Thr27, Glu30, Asp46, Thr47, Asn48 and Leu60, which might be key to designing specific inhibitors for hOSF to fight osteoporosis and related bone-loss diseases. There are a total of 13 well defined water molecules forming hydrogen bonds with the above residues in and around the peptide-binding pocket. Some of those water molecules might be important for drug-design approaches. The hOSF-SH3 structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors.

  12. A pre-formed Pyrogenic Factor Released by Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Zampronio, A. R.; Melo, M. C. C.; Silva, C. A. A.; Pelá, I. R.; Hopkins, S. J.

    1994-01-01

    The aim of this study was to investigate the pyrogenic activity of factor(s) released by rat peritoneal macrophages following a brief stimulation with LPS. The effect of this factor on the number of circulating leukocytes and serum Fe, Cu and Zn levels, was also evaluated. The possibility that the content of interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF) in the supernatant could explain the observations was investigated. Supernatant produced over a period of 1 h by peritoneal macrophages, following a 30 min incubation with LPS at 37°C, was ultrafiltered through a 10 000 MW cut-off Amicon membrane, sterilized, and concentrated 2.5, 5, 10 and 20 times. The intravenous (i.v.) injection of this supernatant induced a concentration-dependent fever in rats with a maximal response at 2 h. The pyrogenic activity was produced by macrophages elicited with thioglycollate and by resident cells. The supernatants also induced neutrophilia and reduction in Fe and Zn 6 h after the injection. Absence of activity in boiled supernatants, or supernatants from macrophages incubated at 4°C with LPS, indicates that LPS was not responsible for the activity. In vitro treatment with indomethacin (Indo), dexamethasone (Dex), or cycloheximide (Chx) did not modify the release of pyrogenic activity into the supernatant or its effects on the reduction in serum metal levels. Although Chx abolished the production of mediator(s) inducing neutrophilia, and Dex reduced the induction of IL-1β, TNF and IL-6, injection of the highest concentration of these cytokines detected in the supernatants did not induce fever. In vivo treatment with Dex, but not Indo, abolished the fever induced by the supernatant. These results suggest that macrophages contain pre-formed pyrogenic mediator(s), not related to IL-1β, IL-6 or TNF, that acts indirectly and independently of prostaglandtn. It also seems likely that the pyrogenic activity is related to the factor responsible for the reduction of serum Fe

  13. Biphasic Stimulation of Translational Activity Correlates with Induction of Translation Elongation Factor 1 Subunit [alpha] upon Wounding in Potato Tubers.

    PubMed Central

    Morelli, J. K.; Shewmaker, C. K.; Vayda, M. E.

    1994-01-01

    Potato (Solanum tuberosum) tubers exhibit an increase in translational activity in response to mechanical wounding. The response is biphasic, with an initial stimulation apparent within the first 2 h after wounding and a second increase occurring 12 to 24 h after wounding. Increased activity is apparent by measurement of protein synthesis both in vivo and in vitro using a cell-free extract. Accumulation of the translational elongation factor 1 subunit [alpha] (EF-1[alpha]) parallels translational activity. Changes in the steady-state level of EF-1[alpha] mRNA, and expression of a chimeric EF-1[alpha] promoter/[beta]-glucuronidase construct in transgenic potato tubers, indicate that the gene encoding EF-1[alpha] is transcribed during both periods of translational stimulation. These results indicate that stimulation of translational activity is coordinated with increased expression and accumulation of translation factors. PMID:12232374

  14. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  15. Enhanced and Secretory Expression of Human Granulocyte Colony Stimulating Factor by Bacillus subtilis SCK6

    PubMed Central

    Bashir, Shaista; Sadaf, Saima; Ahmad, Sajjad; Akhtar, Muhammad Waheed

    2015-01-01

    This study describes a simplified approach for enhanced expression and secretion of a pharmaceutically important human cytokine, that is, granulocyte colony stimulating factor (GCSF), in the culture supernatant of Bacillus subtilis SCK6 cells. Codon optimized GCSF and pNWPH vector containing SpymwC signal sequence were amplified by prolonged overlap extension PCR to generate multimeric plasmid DNA, which was used directly to transform B. subtilis SCK6 supercompetent cells. Expression of GCSF was monitored in the culture supernatant for 120 hours. The highest expression, which corresponded to 17% of the total secretory protein, was observed at 72 hours of growth. Following ammonium sulphate precipitation, GCSF was purified to near homogeneity by fast protein liquid chromatography on a QFF anion exchange column. Circular dichroism spectroscopic analysis showed that the secondary structure contents of the purified GCSF are similar to the commercially available GCSF. Biological activity, as revealed by the regeneration of neutrophils in mice treated with ifosfamine, was also similar to the commercial preparation of GCSF. This, to our knowledge, is the first study that reports secretory expression of human GCSF in B. subtilis SCK6 with final recovery of up to 96 mg/L of the culture supernatant, without involvement of any chemical inducer. PMID:26881203

  16. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    PubMed Central

    Kwon, Hyuck Joon; Lee, Gyu Seok; Chun, Honggu

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs. PMID:28004813

  17. Recovery from severe hematopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Monroy, R.L.; Skelly, R.R.; Taylor, P.; Dubois, A.; Donahue, R.E.; MacVittie, T.J.

    1988-06-01

    The ability of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) to enhance recovery of a radiation-suppressed hematopoietic system was evaluated in a nonuniform radiation exposure model using the rhesus monkey. Recombinant human GM-CSF treatment for 7 days after a lethal, nonuniform radiation exposure of 800 cGy was sufficient to enhance hematopoietic reconstitution, leading to an earlier recovery. Monkeys were treated with 72,000 U/kg/day of rhGM-CSF delivered continuously through an Alzet miniosmotic pump implanted subcutaneously on day 3. Treated monkeys demonstrated effective granulocyte and platelet levels in the peripheral blood, 4 and 7 days earlier, respectively, than control monkeys. Granulocyte-macrophage colony-forming unit (CFU-GM) activity in the bone marrow was monitored to evaluate the effect of rhGM-CSF on marrow recovery. Treatment with rhGM-CSF led to an early recovery of CFU-GM activity suggesting that rhGM-CSF acted on an earlier stem cell population to generate CFU-GM. Thus, the effect of rhGM-CSF on hematopoietic regeneration, granulocyte recovery, and platelet recovery are evaluated in this paper.

  18. Recovery from severe hematopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Monroy, R.L.; Skelly, R.R.; Taylor, P.; Dubois, A.; Donahue, R.E.

    1988-01-01

    The ability of recombinant human granulocytemacrophage colony-stimulating factor (rhGM-CSF) to enhance recovery of a radiation-suppressed hematopoietic system was evaluated in a nonuniform radiation-exposure model using the rhesus monkey. Recombinant human GM-CSF treatment for 7 days after a lethal, nonuniform radiation exposure of 800 cGy was sufficient to enhance hematopoietic reconstitution, leading to an earlier recovery. Monkeys were treated with 72,000 U/kg/day of rhGm-CSF delivered continuously through an Alzet mini-osmotic pump implanted subcutaneously on day 3. Treated monkeys demonstrated effective granulocyte and platelet levels in the peripheral blood, 4 and 7 days earlier, respectively, than control monkeys. Granulocyte-macrophage colony-forming unit (CFU-GM) activity in the bone marrow was monitored to evaluate the effect of rhGM-CSF on marrow recovery. Treatment with rhGM-CSF led to an early recovery of CFU-GM activity suggesting that rhGM-CSF acted on an earlier stem cell population to generate CFU-GM. Thus, the effect of rhGM-CSF on hematopoietic regeneration, granulocyte recovery, and platelet recovery are evaluated.

  19. NUTRITIONAL FACTORS STIMULATING THE FORMATION OF LYSINE DECARBOXYLASE IN ESCHERICHIA COLI

    PubMed Central

    Maretzki, Andrew; Mallette, M. F.

    1962-01-01

    Maretzki, Andrew (Pennsylvania State University, University Park) and M. F. Mallette. Nutritional factors stimulating the formation of lysine decarboxylase in Escherichia coli. J. Bacteriol. 83:720–726. 1962 — Inclusion of complex nitrogen sources in the induction medium was shown to be necessary for the synthesis of appreciable amounts of l-lysine decarboxylase by Escherichia coli B. Hy-case, a commercial acid hydrolyzate of casein, was especially effective in enzyme production, which was assayed manometrically after lysis of the bacteria from without by bacteriophage. Partial fractionation of the Hy-case, identification of the free amino acids, and addition of these amino acids to test media revealed stimulatory effects by methionine, threonine, proline, leucine, and tyrosine. A full complement of amino acids did not match the enzyme levels reached in the presence of Hy-case. Certain peptide fractions obtained from this mixture supplemented the effects of the amino acids in such a way as to suggest direct incorporation of peptide rather than transport or protective roles. Added purines, pyrimidines, iron, and water-soluble vitamins were without effect. Neither carbohydrates nor phosphorylated materials could be detected in the stimulatory fractions. PMID:14469751

  20. In vivo effect of human granulocyte-macrophage colony-stimulating factor on megakaryocytopoiesis

    SciTech Connect

    Aglietta, M.; Monzeglio, C.; Sanavio, F.; Apra, F.; Morelli, S.; Stacchini, A.; Piacibello, W.; Bussolino, F.; Bagnara, G.; Zauli, G. )

    1991-03-15

    The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on megakaryocytopoiesis and platelet production was investigated in patients with normal hematopoiesis. Three findings indicated that GM-CSF plays a role in megakaryocytopoiesis. During treatment with GM-CSF (recombinant mammalian, glycosylated; Sandoz/Schering-Plough, 5.5 micrograms protein/kg/d, subcutaneously for 3 days) the percentage of megakaryocyte progenitors (megakaryocyte colony forming unit (CFU-Mk)) in S phase (evaluated by the suicide technique with high 3H-Tdr doses) increased from 31% +/- 16% to 88% +/- 11%; and the maturation profile of megakaryocytes was modified, with a relative increase in more immature stage I-III forms. Moreover, by autoradiography (after incubation of marrow cells with 125I-labeled GM-CSF) specific GM-CSF receptors were detectable on megakaryocytes. Nevertheless, the proliferative stimulus induced on the progenitors was not accompanied by enhanced platelet production (by contrast with the marked granulomonocytosis). It may be suggested that other cytokines are involved in the regulation of the intermediate and terminal stages of megakaryocytopoiesis in vivo and that their intervention is an essential prerequisite to turn the GM-CSF-induced proliferative stimulus into enhanced platelet production.

  1. Protective, restorative, and therapeutic properties of recombinant colony-stimulating factors

    SciTech Connect

    Talmadge, J.E.; Tribble, H.; Pennington, R.; Bowersox, O.; Schneider, M.A.; Castelli, P.; Black, P.L.; Abe, F. )

    1989-06-01

    Pretreatment of mice with recombinant murine (rM) colony-stimulating factor-granulocyte-macrophage (CSF-gm) or recombinant human (rH) CSF-g provides partial protection from the lethal effects of ionizing radiation or the alkylating agent cyclophosphamide (CTX). In addition, these agents can significantly prolong survival if administered following lethal doses of irradiation or CTX. To induce protective activity, cytokines were injected 20 hours before lethal irradiation or CTX administration. To accelerate recovery from lethal irradiation, the cytokines must be administered shortly following irradiation, and the induction of maximal levels of activity is dependent on chronic administration. In contrast, because of their longer half-lives, accelerated recovery from alkylating agents requires a delay of at least 24 to 48 hours to allow complete clearance of CTX before administration of a CSF. Studies quantitating peripheral blood leukocytes and bone marrow cellularity as well as colony-forming units per culture (CFU-C) frequency and CFU-C per femur revealed a significant correlation between these parameters and the ability to survive lethal irradiation.

  2. Proepithelin stimulates growth plate chondrogenesis via nuclear factor-kappaB-p65-dependent mechanisms.

    PubMed

    Wu, Shufang; Zang, Weijin; Li, Xu; Sun, Hongzhi

    2011-07-08

    Proepithelin, a previously unrecognized growth factor in cartilage, has recently emerged as an important regulator for cartilage formation and function. In the present study, we provide several lines of evidences in proepithelin-mediated induction of cell proliferation, differentiation, and apoptosis in the metatarsal growth plate. Proepithelin-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by pyrrolidine dithiocarbamate, a known NF-κB inhibitor. In rat growth plate chondrocytes, proepithelin induced NF-κB-p65 nuclear translocation, and nuclear NF-κB-p65 initiated its target gene cyclin D1 to regulate chondrocyte functions. The inhibition of NF-κB-p65 expression and activity (by p65 short interfering RNA (siRNA) and pyrrolidine dithiocarbamate, respectively) in chondrocytes reversed the proepithelin-mediated induction of cell proliferation and differentiation and the proepithelin-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of proepithelin on NF-κB activation. Finally, using siRNA and antisense strategies, we demonstrated that endogenously produced proepithelin by chondrocytes is important for chondrocyte growth in serum-deprived conditions. These results support the hypothesis that the induction of NF-κB activity of in growth plate chondrocytes is critical in proepithelin-mediated growth plate chondrogenesis and longitudinal bone growth.

  3. Interleukin 1 stimulates platelet-activating factor production in cultured human endothelial cells.

    PubMed Central

    Bussolino, F; Breviario, F; Tetta, C; Aglietta, M; Mantovani, A; Dejana, E

    1986-01-01

    Monocyte-derived interleukin 1 (IL-1) was found to be a potent inducer of platelet-activating factor (PAF) in cultured human vascular endothelial cells (HEC). The product was identified as PAF by its behavior in chromatographic systems, its recovery of biological activity, and its physico-chemical properties and susceptibility to lipases. The response of HEC to IL-1 was concentration-dependent, took more than 2 h to become apparent, and decreased after 18 h of incubation. Most of the PAF produced was cell-associated and only a small amount (about 25% of the total) was released in the culture medium. To study the mechanism of IL-1-induced HEC-PAF production we tested the activity of 1-O-alkyl-sn-glycero-3-phosphocholine:acetyl/coenzyme A acetyltransferase in HEC. Acetyltransferase activity measured in IL-1-stimulated HEC lysates showed a three to five times greater maximum velocity, but the same Michaelis constant, as untreated cells. The regulation of PAF generation in HEC by IL-1 may be an important aspect of the two-way interaction between immunocompetent cells and vascular tissue. PMID:2872233

  4. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1

    SciTech Connect

    Shim, Ann Hye-Ryong; Chang, Rhoda Ahn; Chen, Xiaoyan; Longnecker, Richard; He, Xiaolin

    2014-10-02

    The ubiquitous EBV causes infectious mononucleosis and is associated with several types of cancers. The EBV genome encodes an early gene product, BARF1, which contributes to pathogenesis, potentially through growth-altering and immune-modulating activities, but the mechanisms for such activities are poorly understood. We have determined the crystal structure of BARF1 in complex with human macrophage-colony stimulating factor (M-CSF), a hematopoietic cytokine with pleiotropic functions in development and immune response. BARF1 and M-CSF form a high-affinity, stable, ring-like complex in both solution and the crystal, with a BARF1 hexameric ring surrounded by three M-CSF dimers in triangular array. The binding of BARF1 to M-CSF dramatically reduces but does not completely abolish M-CSF binding and signaling through its cognate receptor FMS. A three-pronged down-regulation mechanism is proposed to explain the biological effect of BARF1 on M-CSF:FMS signaling. These prongs entail control of the circulating and effective local M-CSF concentration, perturbation of the receptor-binding surface of M-CSF, and imposition of an unfavorable global orientation of the M-CSF dimer. Each prong may reduce M-CSF:FMS signaling to a limited extent but in combination may alter M-CSF:FMS signaling dramatically. The downregulating mechanism of BARF1 underlines a viral modulation strategy, and provides a basis for understanding EBV pathogenesis.

  5. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis.

    PubMed

    Griseri, Thibault; Arnold, Isabelle C; Pearson, Claire; Krausgruber, Thomas; Schiering, Chris; Franchini, Fanny; Schulthess, Julie; McKenzie, Brent S; Crocker, Paul R; Powrie, Fiona

    2015-07-21

    The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target.

  6. Granulocyte/macrophage colony-stimulating factor attenuates endothelial hyperpermeability after thermal injury.

    PubMed

    Zhao, Jingling; Chen, Lei; Shu, Bin; Tang, Jinming; Zhang, Lijun; Xie, Julin; Liu, Xusheng; Xu, Yingbin; Qi, Shaohai

    2015-01-01

    Microvascular hyperpermeability followed by burn injury is the main cause of shock, and cardiovascular collapse can result if the condition is treated improperly. Our previous studies demonstrated that granulocyte/macrophage colony-stimulating factor (GM-CSF) clearly reduces microvascular permeability and protects microvessels against burn injury. However, the mechanism underlying the protective function of GM-CSF on burn-injured microvessels remains unknown. This study aimed to investigate the effect and mechanism of GM-CSF on endothelial cells after exposure to burn serum. We demonstrated that GM-CSF reduced post-burn endothelial "capillary leak" by inhibiting the activity of RhoA and maintaining the membrane localization of VE-cadherin. Membranous VE-cadherin enhances adherens junctions between endothelial cells and co-localizes with and activates VEGFR2, which protect cells from burn serum-induced apoptosis. Our findings suggest that the protective mechanism of GM-CSF on burn serum-injured endothelial monolayer hyperpermeability is achieved by strengthening cell adherens junctions and improving cell viability.

  7. Granulocyte-Macrophage Colony-Stimulating Factor Is Neuroprotective in Experimental Traumatic Brain Injury

    PubMed Central

    Tan, Xin L.; Wright, David K.; Liu, Shijie J.; Semple, Bridgette D.; Johnston, Leigh; Jones, Nigel C.; Cook, Andrew D.; Hamilton, John A.; O'Brien, Terence J.

    2014-01-01

    Abstract Traumatic brain injury (TBI) is an international health concern with a complex pathogenesis resulting in major long-term neurological, neurocognitive, and neuropsychiatric outcomes. Although neuroinflammation has been identified as an important pathophysiological process resulting from TBI, the function of specific inflammatory mediators in the aftermath of TBI remains poorly understood. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an inflammatory cytokine that has been reported to have neuroprotective effects in various animal models of neurodegenerative disease that share pathological similarities with TBI. The importance of GM-CSF in TBI has yet to be studied, however. We examined the role of GM-CSF in TBI by comparing the effects of a lateral fluid percussion (LFP) injury or sham injury in GM-CSF gene deficient (GM-CSF-/-) versus wild-type (WT) mice. After a 3-month recovery interval, mice were assessed using neuroimaging and behavioral outcomes. All mice given a LFP injury displayed significant brain atrophy and behavioral impairments compared with those given sham-injuries; however, this was significantly worse in the GM-CSF-/- mice compared with the WT mice. GM-CSF-/- mice given LFP injury also had reduced astrogliosis compared with their WT counterparts. These novel findings indicate that the inflammatory mediator, GM-CSF, may have significant protective properties in the chronic sequelae of experimental TBI and suggest that further research investigating GM-CSF and its potential benefits in the injured brain is warranted. PMID:24392832

  8. Pedagogical Factors Stimulating the Self-Development of Students' Multi-Dimensional Thinking in Terms of Subject-Oriented Teaching

    ERIC Educational Resources Information Center

    Andreev, Valentin I.

    2014-01-01

    The main aim of this research is to disclose the essence of students' multi-dimensional thinking, also to reveal the rating of factors which stimulate the raising of effectiveness of self-development of students' multi-dimensional thinking in terms of subject-oriented teaching. Subject-oriented learning is characterized as a type of learning where…

  9. An interleukin-1 receptor antagonist blocks lipopolysaccharide-induced colony-stimulating factor production and early endotoxin tolerance.

    PubMed Central

    Henricson, B E; Neta, R; Vogel, S N

    1991-01-01

    In this report, administration of a recombinant interleukin-1 receptor antagonist protein to mice was found to inhibit induction of colony-stimulating factor as well as induction of early endotoxin tolerance by lipopolysaccharide. These findings provide direct evidence that interleukin-1 is an intermediate in these two lipopolysaccharide-induced phenomena. PMID:1825485

  10. Advanced lytic lesion is a poor mobilization factor in peripheral blood stem cell collection in patients with multiple myeloma.

    PubMed

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2014-12-01

    This study examined the incidence and predictors of peripheral blood stem cell (PBSC) mobilization failure in patients with multiple myeloma (MM). Retrospective data for 104 patients who received granulocyte colony-stimulating factor (G-CSF) alone or with cyclophosphamide as mobilization regimens were analyzed. The rates of mobilization failure using two definitions of failure (< 2 × 10(6) and < 4 × 10(6) CD34(+) cells/kg) following the first collection attempt were 16.3 and 33.7%, respectively. Predictors of mobilization failure were evaluated using logistic regression analysis which included age, advanced osteolytic lesions, bone marrow cellularity before mobilization, platelet count, body mass index before mobilization, and mobilization method. Lytic bone lesions were assessed using a conventional skeletal survey, and advanced osteolytic lesions were defined as lytic lesions in more than three skeletal sites regardless of the number of lytic lesions. On multivariate analysis, advanced osteolytic lesions [hazard ratio (HR) = 10.95, P = 0.001] and age ≥60 years (HR = 5.45, P = 0.016) were associated with a PBSC yield < 2 × 10(6) CD34(+) cells/kg, and advanced osteolytic lesions (HR = 5.08, P = 0.006), white blood cell count ≤4,000/µL before mobilization (HR = 4.72, P = 0.005), and G-CSF only mobilization (HR 10.52, P < 0.001) were associated with PBSC yield < 4 × 10(6) CD34(+) cells/kg. The data suggest that an advanced osteolytic lesion is a significant predictor of mobilization failure in MM patients.

  11. Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration.

    PubMed

    Dise, Rebecca S; Frey, Mark R; Whitehead, Robert H; Polk, D Brent

    2008-01-01

    Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.

  12. Metal: ATP characteristics of insulin- and epidermal growth factor-stimulated phosphorylation in detergent extracts of rat liver plasma membranes.

    PubMed

    Uhing, R J; Exton, J H

    1986-09-01

    The metal: ATP characteristics of insulin- and epidermal growth factor-(EGF)-stimulated protein kinase activities were examined in Nonidet P40 extracts of rat liver plasma membranes. The two kinase activities were capable of utilizing either manganese or magnesium, although differences were observed. Insulin-stimulated 32P incorporation into an Mr 95 000 protein exhibited a higher affinity for ATP in the presence of manganese compared to magnesium. At 200 microM ATP, insulin stimulated 32P incorporation into the Mr 95 000 protein 3- to 5-fold after 5 min in the presence of either metal. At 1 mM ATP, insulin-stimulated 32P incorporation was significantly greater in the presence of magnesium. In contrast, EGF-stimulated 32P incorporation into an Mr 170 000 protein exhibited similar ATP dependencies in the presence of magnesium or manganese. Basal phosphorylation of the Mr 170 000 protein was 2- to 3-fold higher in the presence of manganese, however. Since the higher basal phosphorylation persisted after chromatography on wheat germ lectin-Sepharose, it may represent an inherent activity of the receptor kinase. In the presence of magnesium: ATP, low concentrations of manganese enhanced both insulin- and EGF-stimulated phosphorylation of angiotensin II suggesting involvement of a second metal binding site which regulates the kinase activity. The results presented show major differences in the metal: ATP properties of the two major hormonally regulated protein kinase activities observed in detergent-extracted liver membranes.

  13. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  14. Effect of maternal and neonatal factors on cord blood thyroid stimulating hormone

    PubMed Central

    Lakshminarayana, Sheetal G.; Sadanandan, Nidhish P.; Mehaboob, A. K.; Gopaliah, Lakshminarayana R.

    2016-01-01

    Background: Congenital hypothyroidism (CH) is most common preventable cause of mental retardation in children. Cord blood Thyroid Stimulating Hormone (CBTSH) level is an accepted screening tool for CH. Objectives: To study CBTSH profile in neonates born at tertiary care referral center and to analyze the influence of maternal and neonatal factors on their levels. Design: Cross retrospective sectional study. Methods: Study population included 979 neonates (males = 506 to females = 473). The CBTSH levels were estimated using electrochemiluminescence immunoassay on Cobas analyzer. Kit based cut-offs of TSH level were used for analysis. All neonates with abnormal CBSTH levels, were started on levothyroxine supplementation 10 μg/Kg/day and TSH levels were reassessed as per departmental protocol. Results: The mean CBTSH was 7.82 μIU/mL (Range 0.112 to 81.4, SD = 5.48). The mean CBTSH level was significantly higher in first order neonates, neonates delivered by assisted vaginal delivery and normal delivery, delivered at term or preterm, neonates with APGAR score <5 and those needing advanced resuscitation after birth. The CBTSH level >16.10 and <1.0 μIU/mL was found in 4.39 % and 1.02 % neonates respectively. The prevalence rate of CBTSH level >16.1 μIU/mL was significantly higher in neonates delivered by assisted vaginal delivery and normal delivery, term and preterm neonates, APAGR score of <5, presence of fetal distress, need for resuscitation beyond initial steps and in those with birth weight of <1.5 Kg. Three neonates were confirmed to have CH after retesting of TSH level. Conclusions: The CBTSH estimation is an easy, non-invasive method for screening for CH. The cutoff level of CB TSH (μIU/mL) >16.10 and <1.0 led to a recall of 5.41% of neonates which is practicable given the scenario in our Country. The mode of delivery and perinatal stress factors have a significant impact on CBTSH levels and any rise to be seen in the light of these factors. The prevalence

  15. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  16. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    PubMed

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-07

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  17. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis.

    PubMed Central

    Clinton, S. K.; Underwood, R.; Hayes, L.; Sherman, M. L.; Kufe, D. W.; Libby, P.

    1992-01-01

    The infiltration of monocytes into the vascular wall and their transformation into lipid-laden foam cells characterizes early atherogenesis. Macrophages are also present in more advanced human atherosclerotic plaques and can produce many mediators that may contribute to lesion formation and progression. Macrophage colony-stimulating factor (MCSF) enhances the proliferation and differentiation of monocyte progenitors and is required for the survival and activation of mature monocytes and macrophages. The authors therefore examined the expression of the MCSF gene in cultured human vascular endothelial (EC) and smooth muscle cells (SMC) as well as in atheromatous lesions from rabbits and humans. Growth arrested EC and SMC contain a low level of MCSF mRNA. Bacterial lipopolysaccharide (LPS), recombinant human interleukin-1 alpha (IL-1 alpha) or tumor necrosis factor alpha (TNF alpha) induced MCSF mRNA accumulation in a concentration-dependent manner in both EC and SMC. These stimuli induced large increases in MCSF mRNA with peak induction between 4-8 hours after treatment. LPS, IL-1 alpha, and TNF alpha stimulated EC and SMC also showed increased fluorescent antibody staining for MCSF protein and released immunoreactive MCSF in a time-dependent manner. In contrast, phorbol 12-myristate 13-acetate (PMA) was a less potent inducer of MCSF gene expression and iron-oxidized low-density lipoproteins (ox-LDL) did not increase consistently MCSF mRNA or the synthesis and secretion of immunoreactive protein. Northern analysis of mRNA isolated from the atheromatous aorta of rabbits fed a 1% cholesterol diet for 10 weeks showed elevated MCSF mRNA compared with controls. Immunostaining of atheromatous arterial lesions of rabbits demonstrated MCSF protein in association with intimal SMC as well as macrophages. Furthermore, polymerase chain reaction (PCR) analysis of MCSF mRNA in human atheromata showed higher levels than found in nonatherosclerotic arteries and veins. Since the

  18. Immobilized transition metals stimulate contact activation and drive factor XII-mediated coagulation

    PubMed Central

    Mutch, N.J.; Waters, E.K.; Morrissey, J. H.

    2012-01-01

    Summary Background Upon contact with an appropriate surface, factor XII (FXII) undergoes autoactivation or cleavage by kallikrein. Zn2+ is known to facilitate binding of FXII and the cofactor, high molecular weight kininogen (HK), to anionic surfaces. Objectives To investigate whether transition metals immobilized on liposome surfaces can initiate coagulation via the contact pathway. Methods & Results Liposomes containing a metal ion-chelating lipid (DOGS-NTA) were prepared by membrane extrusion (20% DOGS-NTA, 40% phosphatidylcholine, 10% phosphatidylserine, and 30% phosphatidylethanolamine). Ni2+ immobilized on such liposomes accelerated clotting in normal, but not FXI- or FXII-deficient plasma. Results were comparable to a commercial aPTT reagent. Charging such liposomes with other transition metals revealed differences in their procoagulant capacity, with Ni2+> Cu2+> Co2+ and Zn2+. Plasma could be depleted of FXI, FXII and HK by adsorption with Ni2+-containing beads, resulting in delayed clot times. Consistent with this, FXI, FXII and HK bound to immobilized Ni2+ or Cu2+ with high affinity as determined by surface plasmon resonance. In the presence of Ni2+-bearing liposomes, Km and kcat values derived for autoactivation of FXII and prekallikrein, as well as for activation of FXII by kallikrein or prekallikrein by FXIIa, were similar to literature values in the presence of dextran sulfate. Conclusions Immobilized Ni2+ and Cu2+ bind FXII, FXI and HK with high affinity and stimulate activation of the contact pathway, driving FXII-mediated coagulation. Activation of the contact system by immobilized transition metals may have implications during pathogenic infection or in individuals exposed to high levels of pollution. PMID:22905925

  19. Clonidine stimulates atrial natriuretic factor (ANF) release in water-deprived rats.

    PubMed

    Baranowska, B; Tremblay, J; Gutkowska, J

    1988-01-01

    To determine the effect of clonidine, an alpha 2-adrenergic agonist, on atrial natriuretic factor (ANF) release during water deprivation, plasma immunoreactive ANF (IR-ANF) arginine vasopressin, diuresis and natriuresis were measured in rats which had been deprived of water for 24 and 48 hr after intravenous (IV) administration of 50 micrograms clonidine. In normally-hydrated rats clonidine produced a marked elevation of plasma IR-ANF from 40.5 +/- 4.6 pg/ml to 1064 +/- 22 pg/ml (mean +/- SEM) and sodium excretion from 73.3 +/- 6.8 microEq to 723.4 +/- 62.3 microEq. Clonidine evoked an increase in plasma IR-ANF from 16.6 +/- 5.9 pg/ml to 229.5 +/- 60 pg/ml (mean +/- SEM) after 24 hr water deprivation and from 13.6 +/- 7.4 pg/ml to 104.8 +/- 21 pg/ml (mean +/- SEM) after 48 hr water deprivation. Clonidine did not induce any significant changes in vasopressin levels. During 24 hr and 48 hr water deprivation vasopressin rose from 3.1 +/- 0.3 pg/ml to 7.3 +/- 1.3 pg/ml and 8.4 +/- 0.6 pg/ml (mean +/- SEM), respectively. In normally-hydrated rats clonidine produced a marked diuresis and natriuresis. These effects and urinary cGMP excretion were significantly inhibited by anti-ANF antibodies. Clonidine caused a significant increase in urine output in 24 hr water-deprived rats but the response was markedly lower than that seen in normally-hydrated rats. In conclusion, clonidine stimulates ANF release both in normally-hydrated and water-deprived rats. The diuretic effect of clonidine appears to be related to ANF release but not to inhibition of vasopressin.

  20. Tumor necrosis factor alpha/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium

    PubMed Central

    1990-01-01

    Eosinophils (EOs) participate in a variety of inflammatory states characterized by endothelial cell damage, such as vasculitis, pneumonitis, and endocarditis. We find that 100 U/ml TNF- alpha/cachectin (TNF), a concentration attainable in the blood of humans with parasitic infestations, stimulates highly purified populations of EOs to damage human umbilical vein endothelial cells (HUVEC), a model of human endothelium. This TNF-dependent EO cytotoxicity is strongly inhibited by heparin and methyprednisolone but unaffected by the platelet-activating factor antagonist BN52012 or scavengers of superoxide anion and H2O2, superoxide dismutase and catalase. However, addition of a physiologically relevant concentration of Br- (100 microM) enhances EO/TNF damage to HUVEC, implicating the possible participation of EO peroxidase (EPO) in the killing mechanism. EOs adherent to FCS-coated plastic wells more than double their production of superoxide anion and the cytotoxic EPO-derived oxidant HOBr when exposed to TNF, showing that TNF activates the respiratory burst of EOs attached to a "physiologic" surface. Unlike PMNs, EOs were not irreversibly activated to kill unopsonized endothelium by previous exposure to TNF, and did not degranulate or upregulate CR3 expression as detected by Mo1 in the presence of 100 U/ml TNF. HUVEC exposed 18 h to TNF were considerably more susceptible to lysis by PMA-activated EOs and reagent H2O2, demonstrating a direct effect of TNF upon endothelium, perhaps through inhibition of antioxidant defenses. These findings suggest that abnormally elevated serum levels of TNF may provoke EOs to damage endothelial cells and thereby play a role in the pathogenesis of tissue damage in hypereosinophilic states. PMID:1972179

  1. Tumor necrosis factor alpha/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium.

    PubMed

    Slungaard, A; Vercellotti, G M; Walker, G; Nelson, R D; Jacob, H S

    1990-06-01

    Eosinophils (EOs) participate in a variety of inflammatory states characterized by endothelial cell damage, such as vasculitis, pneumonitis, and endocarditis. We find that 100 U/ml TNF-alpha/cachectin (TNF), a concentration attainable in the blood of humans with parasitic infestations, stimulates highly purified populations of EOs to damage human umbilical vein endothelial cells (HUVEC), a model of human endothelium. This TNF-dependent EO cytotoxicity is strongly inhibited by heparin and methyprednisolone but unaffected by the platelet-activating factor antagonist BN52012 or scavengers of superoxide anion and H2O2, superoxide dismutase and catalase. However, addition of a physiologically relevant concentration of Br- (100 microM) enhances EO/TNF damage to HUVEC, implicating the possible participation of EO peroxidase (EPO) in the killing mechanism. EOs adherent to FCS-coated plastic wells more than double their production of superoxide anion and the cytotoxic EPO-derived oxidant HOBr when exposed to TNF, showing that TNF activates the respiratory burst of EOs attached to a "physiologic" surface. Unlike PMNs, EOs were not irreversibly activated to kill unopsonized endothelium by previous exposure to TNF, and did not degranulate or upregulate CR3 expression as detected by Mo1 in the presence of 100 U/ml TNF. HUVEC exposed 18 h to TNF were considerably more susceptible to lysis by PMA-activated EOs and reagent H2O2, demonstrating a direct effect of TNF upon endothelium, perhaps through inhibition of antioxidant defenses. These findings suggest that abnormally elevated serum levels of TNF may provoke EOs to damage endothelial cells and thereby play a role in the pathogenesis of tissue damage in hypereosinophilic states.

  2. Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness

    PubMed Central

    Vance, Carol GT; Rakel, Barbara A; Dailey, Dana L; Sluka, Kathleen A

    2015-01-01

    Objective Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological intervention used to manage pain using skin surface electrodes. Optimal electrode placement is unclear. We hypothesized that better analgesia would occur if electrodes were placed over sites with lower skin impedance. Optimal site selection (OSS) and sham site selection (SSS) electrode sites on the forearm were identified using a standard clinical technique. Methods Experiment 1 measured skin impedance in the forearm at OSS and SSS. Experiment 2 was a crossover design double-blind randomized controlled trial comparing OSS-TENS, SSS-TENS, and placebo TENS (P-TENS) to confirm differences in skin impedance between OSS and SSS, and measure change in pressure pain threshold (PPT) following a 30-minute TENS treatment. Healthy volunteers were recruited (ten for Experiment 1 [five male, five female] and 24 for Experiment 2 [12 male, 12 female]). TENS was applied for 30 minutes at 100 Hz frequency, 100 µs pulse duration, and “strong but nonpainful” amplitude. Results Experiment 1 results demonstrate significantly higher impedance at SSS (17.69±1.24 Ω) compared to OSS (13.53±0.57 Ω) (P=0.007). For Experiment 2, electrode site impedance was significantly higher over SSS, with both the impedance meter (P=0.001) and the TENS unit (P=0.012) compared to OSS. PPT change was significantly greater for both OSS-TENS (P=0.024) and SSS-TENS (P=0.025) when compared to P-TENS. PPT did not differ between the two active TENS treatments (P=0.81). Conclusion Skin impedance is lower at sites characterized as optimal using the described technique of electrode site selection. When TENS is applied at adequate intensities, skin impedance is not a factor in attainment of hypoalgesia of the forearm in healthy subjects. Further investigation should include testing in patients presenting with painful conditions. PMID:26316808

  3. Factors predicting incremental administration of antihypertensive boluses during deep brain stimulator placement for Parkinson's disease.

    PubMed

    Rajan, Shobana; Deogaonkar, Milind; Kaw, Roop; Nada, Eman Ms; Hernandez, Adrian V; Ebrahim, Zeyd; Avitsian, Rafi

    2014-10-01

    Hypertension is common in deep brain stimulator (DBS) placement predisposing to intracranial hemorrhage. This retrospective review evaluates factors predicting incremental antihypertensive use intraoperatively. Medical records of Parkinson's disease (PD) patients undergoing DBS procedure between 2008-2011 were reviewed after Institutional Review Board approval. Anesthesia medication, preoperative levodopa dose, age, preoperative use of antihypertensive medications, diabetes mellitus, anxiety, motor part of the Unified Parkinson's Disease Rating Scale score and PD duration were collected. Univariate and multivariate analysis was done between each patient characteristic and the number of antihypertensive boluses. From the 136 patients included 60 were hypertensive, of whom 32 were on angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB), told to hold on the morning of surgery. Antihypertensive medications were given to 130 patients intraoperatively. Age (relative risk [RR] 1.01; 95% confidence interval [CI] 1.00-1.02; p=0.005), high Joint National Committee (JNC) class (p<0.0001), diabetes mellitus (RR 1.4; 95%CI 1.2-17; p<0.0001) and duration of PD >10 years (RR 1.2; 95%CI 1.1-1.3; p=0.001) were independent predictors for antihypertensive use. No difference was noted in the mean dose of levodopa (p=0.1) and levodopa equivalent dose (p=0.4) between the low (I/II) and high severity (III/IV) JNC groups. Addition of dexmedetomidine to propofol did not influence antihypertensive boluses required (p=0.38). Intraoperative hypertension during DBS surgery is associated with higher age group, hypertensive, diabetic patients and longer duration of PD. Withholding ACEI or ARB is an independent predictor of hypertension requiring more aggressive therapy. Levodopa withdrawal and choice of anesthetic agent is not associated with higher intraoperative antihypertensive medications.

  4. Elevated levels of macrophage colony-stimulating factor in human fracture healing.

    PubMed

    Sarahrudi, Kambiz; Mousavi, Mehdi; Thomas, Anita; Eipeldauer, Stefan; Vécsei, Vilmos; Pietschmann, Peter; Aharinejad, Seyedhossein

    2010-05-01

    Macrophage colony-stimulating factor (M-CSF) plays a unique role in bone remodeling. However, to our knowledge, no data on the role of M-CSF in fracture healing in humans have been published so far. This study addressed this issue. One hundred and thirteen patients with long-bone fractures were included in the study and divided into two groups, according to their course of fracture healing. The first group contained 103 patients with normal fracture healing. Ten patients with impaired fracture healing formed the second group of the study. Volunteers donated blood samples as control. Serum samples were collected over a period of 6 months, following a standardized time schedule. In addition, M-CSF levels were measured in fracture hematoma and serum of 11 patients with bone fractures. M-CSF concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Fracture hematoma contained significantly higher M-CSF concentrations compared to M-CSF concentrations in patient's serum. M-CSF levels in fracture hematoma and in patient's serum were both significantly higher than M-CSF concentrations measured in serum of healthy controls. Highly elevated M-CSF serum concentrations were found in patients with physiological fracture healing over the entire observation period. Significant differences in the M-CSF serum concentration between patients with normal fracture healing and patients with impaired fracture healing were not observed. This study indicates, for the first time, to our knowledge, a possible local and systemic involvement of M-CSF in humans during fracture healing.

  5. Hemoglobin stimulates mononuclear leukocytes to release interleukin-8 and tumor necrosis factor alpha.

    PubMed

    McFaul, S J; Bowman, P D; Villa, V M; Gutierrez-Ibanez, M J; Johnson, M; Smith, D

    1994-11-01

    Incubation of human mononuclear leukocytes (MNL) with human stroma-free hemolysate (SFH), purified adult hemoglobin Ao (HbAo), and oxidized HbAo (METHb) caused MNL to release compounds into the supernate that mediated neutrophil (polymorphonuclear leukocytes, PMN) chemotaxis and PMN adherence to human umbilical vein endothelial cells (HUVEC). Chemotaxis and PMN adherence to HUVEC were reduced significantly when supernates were preincubated with neutralizing antibodies to interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha), respectively, suggesting that IL-8 and TNF-alpha played significant roles in mediating these activities. Greatest chemotactic activity was observed in supernates of MNL treated with HbAo; while greatest PMN/endothelial cell (EC) adherence activity was observed in supernates of MNL treated with METHb. Furthermore, PMN/EC adherence activity was a function of METHb content in each hemoglobin solution. PMN chemotaxis, PMN adherence to HUVEC, and cytokine release increased as a function of increasing incubation time. Chemotactic activity was detected in HbAo-treated and METHb-treated MNL supernates after incubation for 6 hours and was maximal by 10 hours. IL-8 was detected in both HbAo and METHb-MNL supernates by 4 hours. PMN/EC adherence activity was detected in HbAo-MNL supernates at 10 hours and in METHb-MNL supernates at 4 hours. TNF-alpha was detected in METHb and HbAo-MNL supernates at 4 and 12 hours, respectively. These results suggest that hemoglobin solutions stimulate MNL to release IL-8 and TNF-alpha in quantities sufficient to induce PMN chemotaxis and PMN adherence to HUVEC. This is a US government work. There are no restrictions on its use.

  6. Trypanosome Lytic Factor-1 Initiates Oxidation-stimulated Osmotic Lysis of Trypanosoma brucei brucei*

    PubMed Central

    Greene, Amy Styer; Hajduk, Stephen L.

    2016-01-01

    Human innate immunity against the veterinary pathogen Trypanosoma brucei brucei is conferred by trypanosome lytic factors (TLFs), against which human-infective T. brucei gambiense and T. brucei rhodesiense have evolved resistance. TLF-1 is a subclass of high density lipoprotein particles defined by two primate-specific apolipoproteins: the ion channel-forming toxin ApoL1 (apolipoprotein L1) and the hemoglobin (Hb) scavenger Hpr (haptoglobin-related protein). The role of oxidative stress in the TLF-1 lytic mechanism has been controversial. Here we show that oxidative processes are involved in TLF-1 killing of T. brucei brucei. The lipophilic antioxidant N,N′-diphenyl-p-phenylenediamine protected TLF-1-treated T. brucei brucei from lysis. Conversely, lysis of TLF-1-treated T. brucei brucei was increased by the addition of peroxides or thiol-conjugating agents. Previously, the Hpr-Hb complex was postulated to be a source of free radicals during TLF-1 lysis. However, we found that the iron-containing heme of the Hpr-Hb complex was not involved in TLF-1 lysis. Furthermore, neither high concentrations of transferrin nor knock-out of cytosolic lipid peroxidases prevented TLF-1 lysis. Instead, purified ApoL1 was sufficient to induce lysis, and ApoL1 lysis was inhibited by the antioxidant DPPD. Swelling of TLF-1-treated T. brucei brucei was reminiscent of swelling under hypotonic stress. Moreover, TLF-1-treated T. brucei brucei became rapidly susceptible to hypotonic lysis. T. brucei brucei cells exposed to peroxides or thiol-binding agents were also sensitized to hypotonic lysis in the absence of TLF-1. We postulate that ApoL1 initiates osmotic stress at the plasma membrane, which sensitizes T. brucei brucei to oxidation-stimulated osmotic lysis. PMID:26645690

  7. Vascular endothelial growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer.

    PubMed

    Devery, Aoife M; Wadekar, Rekha; Bokobza, Sivan M; Weber, Anika M; Jiang, Yanyan; Ryan, Anderson J

    2015-09-01

    Vascular endothelial growth factor (VEGF) is a key stimulator of physiological and pathological angiogenesis. VEGF signals primarily through VEGF receptor 2 (VEGFR2), a receptor tyrosine kinase whose expression is found predominantly on endothelial cells. The purpose of this study was to determine the role of VEGFR2 expression in NSCLC cells. NSCLC cells and tissue sections were stained for VEGFR2 expression by immunohistochemistry (IHC). Immunoblotting and ELISA were used to determine the activation and inhibition of VEGFR2 and its downstream signalling pathways. Five-day proliferation assays were carried out in the presence or absence of VEGF. IHC analysis of NSCLC demonstrated tumour cell VEGFR2 expression in 20% of samples. Immunoblot analysis showed expression of VEGFR2 protein in 3/8 NSCLC cell lines that correlated with VEGFR2 mRNA expression levels. VEGF-dependent VEGFR2 activation was apparent in NSCLC cells, and was associated with increased tumor cell proliferation. Cediranib treatment or siRNA against VEGFR2 inhibited VEGF-dependent increases in cell proliferation. Inhibition of VEGFR2 tyrosine kinase activity using cediranib was more effective than inhibition of AKT (MK2206) or MEK (AZD6244) for overcoming VEGFR2-driven cell proliferation. VEGF treatment did not affect cell survival following treatment with radiation, cisplatin, docetaxel or gemcitabine. Our data suggest that a subset of NSCLC tumour cells express functional VEGFR2 which can act to promote VEGF-dependent tumour cell growth. In this tumour subset, therapies targeting VEGFR2 signalling, such as cediranib, have the potential to inhibit both tumour cell proliferation and angiogenesis.

  8. Purification of a Factor from Human Placenta That Stimulates Capillary Endothelial Cell Protease Production, DNA Synthesis, and Migration

    NASA Astrophysics Data System (ADS)

    Moscatelli, David; Presta, Marco; Rifkin, Daniel B.

    1986-04-01

    A protein that stimulates the production of plasminogen activator and latent collagenase in cultured bovine capillary endothelial cells has been purified 106-fold from term human placenta by using a combination of heparin affinity chromatography, ion-exchange chromatography, and gel chromatography. The purified molecule has a molecular weight of 18,700 as determined by NaDodSO4/PAGE under both reducing and nonreducing conditions. The purified molecule stimulates the production of plasminogen activator and latent collagenase in a dose-dependent manner between 0.1 and 10 ng of protein/ml. The purified protein also stimulates DNA synthesis and chemotaxis in capillary endothelial cells in the same concentration range. Thus, this molecule has all of the properties predicted for an angiogenic factor.

  9. Biosynthesis of platelet-activating factor by cultured rat Kupffer cells stimulated with calcium ionophore A23187.

    PubMed Central

    Chao, W; Siafaka-Kapadai, A; Olson, M S; Hanahan, D J

    1989-01-01

    Cultured rat Kupffer cells synthesize and release platelet-activating factor (PAF) when stimulated with calcium ionophore A23187. The production of PAF is concentration- and time-dependent and, based upon [3H]serotonin release assays, approx. 1.0 pmol of PAF is formed per 8 x 10(6) cells during 10 min of ionophore stimulation. It is suggested that Kupffer cells are important cellular components which produce and release PAF in order to facilitate communication between hepatic sinusoidal and parenchymal cells. Further, it is suggested that such mediator production in response to reticulo-endothelial cell stimulation causes the hepatic glycogenolytic response previously in the isolated perfused rat liver. PMID:2494988

  10. Immobilized alpha-melanocyte stimulating hormone 10-13 (GKPV) inhibits tumor necrosis factor-alpha stimulated NF-kappaB activity.

    PubMed

    Kelly, J M; Moir, A J G; Carlson, K; Yang, Y; MacNeil, S; Haycock, J W

    2006-02-01

    alpha-MSH is an anti-inflammatory peptide which signals by binding to the melanocortin-1 receptor (MC1R) and elevating cyclic AMP in several different cells and tissues. The carboxyl terminal peptides of alpha-MSH (KPV/GKPV) are the smallest minimal sequences that prevent inflammation, but it is not known if they operate via MC1R or cyclic AMP. The aim of this study was to examine the intracellular signaling potential of the GKPV peptide sequence when immobilized to polystyrene beads via a polyethylene glycol moiety. Beads containing an immobilized GKPV peptide were investigated for their ability to inhibit proinflammatory tumor necrosis factor-alpha (TNF-alpha) stimulated activation of NF-kappaB in HBL cells stably transfected with an NF-kappaB-luciferase reporter construct. Peptide functionalized beads were compared with the ability of soluble peptide alone (alpha-MSH or GKPV) or non-functionalized beads to inhibit TNF-alpha stimulated activation of NF-kappaB. GKPV peptide functionalized beads significantly inhibited NF-kappaB-luciferase activity in comparison to beads containing no peptide moiety in one of two growths conditions investigated. Soluble alpha-MSH and GKPV peptides were also confirmed to inhibit NF-kappaB-luciferase. The present study suggests that the carboxyl terminal MSH peptide acts via a cell receptor-based mechanism and furthermore may support the potential use of such immobilized ligands for anti-inflammatory therapeutic use.

  11. Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A

    PubMed Central

    1992-01-01

    The protein phosphatase 1 and 2A inhibitor, okadaic acid, has been shown to stimulate many cellular functions by increasing the phosphorylation state of phosphoproteins. In human monocytes, okadaic acid by itself stimulates tumor necrosis factor alpha (TNF-alpha) mRNA accumulation and TNF-alpha synthesis. Calyculin A, a more potent inhibitor of phosphatase 1, has similar effects. TNF-alpha mRNA accumulation in okadaic acid-treated monocytes is due to increased TNF- alpha mRNA stability and transcription rate. The increase in TNF-alpha mRNA stability is more remarkable in okadaic acid-treated monocytes than the mRNA stability of other cytokines, such as interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6. Gel retardation studies show the stimulation of AP-1, AP-2, and NF-kappa B binding activities in okadaic acid-stimulated monocytes. This increase may correlate with the increase in TNF-alpha mRNA transcription rate. In addition to the stimulation of TNF-alpha secretion by monocytes, okadaic acid appears to modulate TNF-alpha precursor processing, as indicated by a marked increase in the cell-associated 26-kD precursor. These results suggest that active basal phosphorylation/dephosphorylation occurs in monocytes, and that protein phosphatase 1 or 2A is important in regulating TNF-alpha gene transcription, translation, and posttranslational modification. PMID:1324971

  12. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway.

    PubMed

    Elvin, J A; Yan, C; Matzuk, M M

    2000-08-29

    Growth differentiation factor-9 (GDF-9), an oocyte-secreted member of the transforming growth factor beta superfamily, progesterone receptor, cyclooxygenase 2 (Cox2; Ptgs2), and the EP2 prostaglandin E(2) (PGE(2)) receptor (EP2; Ptgerep2) are required for fertility in female but not male mice. To define the interrelationship of these factors, we used a preovulatory granulosa cell culture system in which we added recombinant GDF-9, prostaglandins, prostaglandin receptor agonists, or cyclooxygenase inhibitors. GDF-9 stimulated Cox2 mRNA within 2 h, and PGE(2) within 6 h; however, progesterone was not increased until 12 h after addition of GDF-9. This suggested that Cox2 is a direct downstream target of GDF-9 but that progesterone synthesis required an intermediate. To determine whether prostaglandin synthesis was required for progesterone production, we analyzed the effects of PGE(2) and cyclooxygenase inhibitors on this process. PGE(2) can stimulate progesterone synthesis by itself, although less effectively than GDF-9 (3-fold vs. 6-fold increase over 24 h, respectively). Furthermore, indomethacin or NS-398, inhibitors of Cox2, block basal and GDF-9-stimulated progesterone synthesis. However, addition of PGE(2) to cultures containing both GDF-9 and NS-398 overrides the NS-398 block in progesterone synthesis. To further define the PGE(2)-dependent pathway, we show that butaprost, a specific EP2 agonist, stimulates progesterone synthesis and overrides the NS-398 block. In addition, GDF-9 stimulates EP2 mRNA synthesis by a prostaglandin- and progesterone-independent pathway. Thus, GDF-9 induces an EP2 signal transduction pathway which appears to be required for progesterone synthesis in cumulus granulosa cells. These studies further demonstrate the importance of oocyte-somatic cell interactions in female reproduction.

  13. Neuronal expression of nuclear transcription factor MafG in the rat medulla oblongata after baroreceptor stimulation.

    PubMed

    Kumaki, Iku; Yang, Dawei; Koibuchi, Noriyuki; Takayama, Kiyoshige

    2006-03-06

    The medulla oblongata is the site of central baroreceptive neurons in mammals. These neurons express specific basic-leucine zipper transcription factors (bZIP) after baroreceptor stimulation. Previously we showed that activation of baroreceptors induced expression of nuclear transcription factors c-Fos and FosB in central baroreceptive neurons. Here we studied the effects of baroreceptor stimulation on induction of MafG, a member of small Maf protein family that functions as dimeric partners for various bZIP transcription factors by forming transcription-regulating complexes, in the rat medulla oblongata. To determine whether gene expression of MafG is induced by stimulation of arterial baroreceptors, we examined the expression of its mRNA by semi-quantitative reverse transcription-PCR method and its gene product by immunohistochemistry. We found that the number of MafG transcripts increased significantly in the medulla oblongata after baroreceptor stimulation. MafG-immunoreactive neurons were distributed in the nucleus tractus solitarii, the dorsal motor nucleus of the vagus nerve, the ambiguous nucleus and the ventrolateral medulla. The numbers of MafG-immunoreactive neurons in these nuclei were significantly greater in test rats than in saline-injected control rats. We also found approximately 20% of MafG-immunoreactive neurons coexpress FosB after baroreceptor stimulation. Our results suggest that MafG cooperates with FosB to play critical roles as an immediate early gene in the signal transduction of cardiovascular regulation mediated by baroreceptive signals in the medulla oblongata.

  14. Effect of an extract based on the medicinal mushroom Agaricus blazei murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo.

    PubMed

    Johnson, E; Førland, D T; Saetre, L; Bernardshaw, S V; Lyberg, T; Hetland, G

    2009-03-01

    An immunostimulatory extract based on the medicinal mushroom Agaricus blazei Murill (AbM) has been shown to stimulate mononuclear phagocytes in vitro to produce pro-inflammatory cytokines, and to protect against lethal peritonitis in mice. The present aim was to study the effect of AbM on release of several cytokines in human whole blood both after stimulation ex vivo and in vivo after oral intake over several days in healthy volunteers. The 17 signal substances examined were; T helper 1 (Th1) cytokines [interleukin (IL)-2, interferon (IFN)-gamma and IL-12], T helper 2 cytokines (IL-4, IL-5 and IL-13), pleiotropic (IL-7, IL-17), pro-inflammatory [IL-1beta, IL-6, tumour necrosis factor (TNF)-alpha (mainly produced by Th1 cells)]--and anti-inflammatory (IL-10) cytokines, chemokines [IL-8, macrophage inhibitory protein (MIP)-1beta and monocyte chemoattractant protein (MCP)-1] and leukocyte growth factors [granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor]. After stimulation of whole blood ex vivo with 0.5-5.0% of a mushroom extract, AndoSan mainly containing AbM, there was a dose-dependent increase in all the cytokines studied, ranging from two to 399-fold (TNF-alpha). However, in vivo in the eight volunteers who completed the daily intake (60 ml) of this AbM extract for 12 days, a significant reduction was observed in levels of IL-1beta (97%), TNF-alpha (84%), IL-17 (50%) and IL-2 (46%). Although not significant, there was a trend towards reduced levels for IL-8, IFN-gamma and G-CSF, whilst those of the remaining nine cytokines tested, were unaltered. The discrepant results on cytokine release ex vivo and in vivo may partly be explained by the antioxidant activity of AbM in vivo and limited absorption of its large, complex and bioactive beta-glucans across the intestinal mucosa to the reticuloendothelial system and blood.

  15. Effects of low- and high-frequency repetitive magnetic stimulation on neuronal cell proliferation and growth factor expression: A preliminary report.

    PubMed

    Lee, Ji Yong; Park, Hyung Joong; Kim, Ji Hyun; Cho, Byung Pil; Cho, Sung-Rae; Kim, Sung Hoon

    2015-09-14

    Repetitive magnetic stimulation is a neuropsychiatric and neurorehabilitation tool that can be used to investigate the neurobiology of sensory and motor functions. Few studies have examined the effects of repetitive magnetic stimulation on the modulation of neurotrophic/growth factors and neuronal cells in vitro. Therefore, the current study examined the differential effects of repetitive magnetic stimulation on neuronal cell proliferation as well as various growth factor expression. Immortalized mouse neuroblastoma cells were used as the cell model in this study. Dishes of cultured cells were randomly divided into control, sham, low-frequency (0.5Hz, 1Tesla) and high-frequency (10Hz, 1Tesla) groups (n=4 dishes/group) and were stimulated for 3 days. Expression of neurotrophic/growth factors, Akt and Erk was investigated by Western blotting analysis 3 days after repetitive magnetic stimulation. Neuroblastoma cell proliferation was determined with a cell counting assay. There were differences in cell proliferation based on stimulus frequency. Low-frequency stimulation did not alter proliferation relative to the control, while high-frequency stimulation elevated proliferation relative to the control group. The expression levels of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) and platelet-derived growth factor (PDGF) were elevated in the high-frequency magnetic stimulation group. Akt and Erk expression was also significantly elevated in the high-frequency stimulation group, while low-frequency stimulation decreased the expression of Akt and Erk compared to the control. In conclusion, we determined that different frequency magnetic stimulation had an influence on neuronal cell proliferation via regulation of Akt and ERK signaling pathways and the expression of growth factors such as BDNF, GDNF, NT-3 and PDGF. These findings represent a promising opportunity to gain insight into how different

  16. In vivo production of macrophage migration inhibition and stimulation factors during the inductive phase of the alloimmune response

    SciTech Connect

    Suslov, A.P.; Yazova, A.K.; Berkova, N.P.

    1986-12-01

    This paper offers a study of the production of macrophage migration inhibition factor (MIF), and also of the alternative macrophage migration stimulation factor (MSF), in vivo. Mice were injected with mouse spleen cells, irradiated with a dose of 1500 rads. The animals were divided into three groups, two of which were injected for a second time with irradiated mouse spleen cells. Samples of all fractions obtained by electrophoresis of sera of unimmunized mice had no significant effect of macrophage migration, while unfractionated sera of immunized mice obtained after a second injection of alloantigen as a rule stimulated macrophage migration. The results are evidence that T cells may function in vivo during the period before development of the antigen-specific proliferative response of T cells. The technique used to approach the problem, described in this study, can be used for preparative isolation of purified MIF and MSF without contamination by embryonic calf serum proteins which are usually present in culture in vitro.

  17. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    SciTech Connect

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  18. Integrin α6β4 Promotes Autocrine Epidermal Growth Factor Receptor (EGFR) Signaling to Stimulate Migration and Invasion toward Hepatocyte Growth Factor (HGF).

    PubMed

    Carpenter, Brittany L; Chen, Min; Knifley, Teresa; Davis, Kelley A; Harrison, Susan M W; Stewart, Rachel L; O'Connor, Kathleen L

    2015-11-06

    Integrin α6β4 is up-regulated in pancreatic adenocarcinomas where it contributes to carcinoma cell invasion by altering the transcriptome. In this study, we found that integrin α6β4 up-regulates several genes in the epidermal growth factor receptor (EGFR) pathway, including amphiregulin (AREG), epiregulin (EREG), and ectodomain cleavage protease MMP1, which is mediated by promoter demethylation and NFAT5. The correlation of these genes with integrin α6β4 was confirmed in The Cancer Genome Atlas Pancreatic Cancer Database. Based on previous observations that integrin α6β4 cooperates with c-Met in pancreatic cancers, we examined the impact of EGFR signaling on hepatocyte growth factor (HGF)-stimulated migration and invasion. We found that AREG and EREG were required for autocrine EGFR signaling, as knocking down either ligand inhibited HGF-mediated migration and invasion. We further determined that HGF induced secretion of AREG, which is dependent on integrin-growth factor signaling pathways, including MAPK, PI3K, and PKC. Moreover, matrix metalloproteinase activity and integrin α6β4 signaling were required for AREG secretion. Blocking EGFR signaling with EGFR-specific antibodies or an EGFR tyrosine kinase inhibitor hindered HGF-stimulated pancreatic carcinoma cell chemotaxis and invasive growth in three-dimensional culture. Finally, we found that EGFR was phosphorylated in response to HGF stimulation that is dependent on EGFR kinase activity; however, c-Met phosphorylation in response to HGF was unaffected by EGFR signaling. Taken together, these data illustrate that integrin α6β4 stimulates invasion by promoting autocrine EGFR signaling through transcriptional up-regulation of key EGFR family members and by facilitating HGF-stimulated EGFR ligand secretion. These signaling events, in turn, promote pancreatic carcinoma migration and invasion.

  19. Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

    PubMed Central

    Hua, Zhang Guo; Xiong, Lu Jian; Yan, Chen; Wei, Dai Hong; YingPai, ZhaXi; Qing, Zhao Yong; Lin, Qiao Zi; Fei, Feng Ruo; Ling, Wang Ya; Ren, Ma Zhong

    2016-01-01

    Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. LXRα activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, LXRα activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, LXRα might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and LXRα activation enhanced these effects, suggesting LXRα mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes. PMID:27871177

  20. RhoC Mediates Epidermal Growth Factor-Stimulated Migration and Invasion in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Tumur, Zohra; Katebzadeh, Shahbaz; Guerra, Carlos; Bhushan, Lokesh; Alkam, Tursun; Henson, Bradley S.

    2015-01-01

    Epidermal growth factor receptor (EGFR) is overexpressed in head and neck squamous cell carcinoma (HNSCC) where it has been shown to promote tumor cell invasion upon phosphorylation. One mechanism by which EGFR promotes tumor progression is by activating signal cascades that lead to loss of E-cadherin, a transmembrane glycoprotein of the cell-cell adherence junctions; however mediators of these signaling cascades are not fully understood. One such mediator, RhoC, is activated upon a number of external stimuli, such as epidermal growth factor (EGF), but its role as a mediator of EGF-stimulated migration and invasion has not been elucidated in HNSCC. In the present study, we investigate the role of RhoC as a mediator of EGF-stimulated migration and invasion in HNSCC. We show that upon EGF stimulation, EGFR and RhoC were strongly activated in HNSCC. This resulted in activation of the phosphatidylinositol 3-Kinase Akt pathway (PI3K-Akt), phosphorylation of GSK-3β at the Ser9 residue, and subsequent down regulation of E-cadherin cell surface expression resulting in increased tumor cell invasion. Knockdown of RhoC restored E-cadherin expression and inhibited EGF-stimulated migration and invasion. This is the first report in HNSCC demonstrating the role RhoC plays in mediating EGF-stimulated migration and invasion by down-regulating the PI3K-Akt pathway and E-cadherin expression. RhoC may serve as a treatment target for HNSCC. PMID:25622907

  1. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  2. Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src family kinase-dependent p38 MAPK signaling.

    PubMed

    Frey, Mark R; Golovin, Anastasia; Polk, D Brent

    2004-10-22

    Members of the epidermal growth factor (EGF) family of ligands and their receptors regulate migration and growth of intestinal epithelial cells. However, our understanding of the signal transduction pathways determining these responses is incomplete. In this study we tested the hypothesis that p38 is required for EGF-stimulated intestinal epithelial monolayer restitution. EGF-stimulated migration in a wound closure model required continuous presence of ligand for several hours for maximal response, suggesting a requirement for sustained signal transduction pathway activation. In this regard, prolonged exposure of cells to EGF activated p38 for up to 5 h. Furthermore genetic or pharmacological blockade of p38 signaling inhibited the ability of EGF to accelerate wound closure. Interestingly p38 inhibition was associated with increased EGF-stimulated ERK1/ERK2 phosphorylation and cell proliferation, suggesting that p38 regulates the balance of proliferation/migration signaling in response to EGF receptor activity. Activation of p38 in intestinal epithelial cells through EGF receptor was abolished by blockade of Src family tyrosine kinase signaling but not inhibition of phosphatidylinositol 3-kinase or protein kinase C. Taken together, these data suggest that Src family kinase-dependent p38 activation is a key component of a signaling switch routing EGF-stimulated responses to epithelial cell migration/restitution rather than proliferation during wound closure.

  3. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  4. Chicken tumor necrosis-like factor. I. In vitro production by macrophages stimulated with Eimeria tenella or bacterial lipopolysaccharide.

    PubMed

    Zhang, S; Lillehoj, H S; Ruff, M D

    1995-08-01

    HD11, a transformed avian macrophage cell line, and chicken peripheral blood leukocyte-derived macrophages (PBL-M phi) were stimulated with bacterial endotoxin lipopolysaccharide (LPS) or Eimeria tenella sporozoites and merozoites. The specific cytotoxicities of the culture supernatants against different target cell lines were measured, and the kinetics of tumor necrosis-like factor (TNF) production by HD11 and PBL-M phi were also measured. The results showed that HD11 and PBL-M phi secreted a TNF-like factor when stimulated with Eimeria parasites or LPS. A time- and dose-dependent TNF-like factors production by PBL-M phi was observed poststimulation with Eimeria parasites. Chicken TNF-like factor preferentially kills CHCC OU-2 cells, a fibroblast cell line of chicken origin, when compared to LM cells, a murine cell line used for mammalian TNF. This study indicates that chicken M phi produce a significant level of TNF-like factor following coccidial infection.

  5. Tumor necrosis factor inhibits ligand-stimulated EGF receptor activation through a TNF receptor 1-dependent mechanism

    PubMed Central

    McElroy, Steven J.; Frey, Mark R.; Yan, Fang; Edelblum, Karen L.; Goettel, Jeremy A.; John, Sutha; Polk, D. Brent

    2008-01-01

    Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2−/−, but not TNFR1−/−, mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1−/− MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases. PMID:18467504