Torchi, Andrea; Bochicchio, Davide; Pavan, Giovanni M
2018-04-12
The rational design of supramolecular polymers that can adapt or respond in time to specific stimuli in a controlled way is interesting for many applications, but this requires understanding the molecular factors that make the material faster or slower in responding to the stimulus. To this end, it is necessary to study the dynamic adaptive properties at submolecular resolution, which is difficult at an experimental level. Here we show coarse-grained molecular dynamics simulations (<5 Å resolution) demonstrating how the dynamic adaptivity and stimuli responsiveness of a supramolecular polymer is controlled by the intrinsic dynamics of the assembly, which is in turn determined by the structure of the monomers. As a representative case, we focus on a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer incorporating (charged) receptor monomers, experimentally seen to undergo dynamic clustering following the superselective binding to a multivalent recruiter. Our simulations show that the dynamic reorganization of the supramolecular structure proceeds via monomer diffusion on the dynamic fiber surface (exchange within the fiber). Rationally changing the structure of the monomers to make the fiber surface more or less dynamic allows tuning the rate of response to the stimulus and of supramolecular reconfiguration. Simple in silico experiments draw a structure-dynamics-property relationship revealing the key factors underpinning the dynamic adaptivity and stimuli-responsiveness of these supramolecular polymers. We come out with clear evidence that to master the bioinspired properties of these fibers, it is necessary to control their intrinsic dynamics, while the high-resolution of our molecular models permits us to show how.
Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer
NASA Astrophysics Data System (ADS)
Shi, Qixun; Javorskis, Tomas; Bergquist, Karl-Erik; Ulčinas, Artūras; Niaura, Gediminas; Matulaitienė, Ieva; Orentas, Edvinas; Wärnmark, Kenneth
2017-04-01
The design and synthesis of new stimuli-responsive hydrogen-bonding monomers that display a diversity of self-assembly pathways is of central importance in supramolecular chemistry. Here we describe the aggregation properties of a simple, intrinsically C2-symmetric enantiopure bicyclic cavity compound bearing a terminally unsubstituted ureidopyrimidinone fragment fused with a pyrrole moiety in different solvents and in the absence and presence of C60 and C70 guests. The tetrameric cyclic aggregate is selectively obtained in chlorinated solvents, where only part of the available hydrogen bonding sites are utilized, whereas in toluene or upon addition of C70 guests, further aggregation into tubular supramolecular polymers is achieved. The open-end cyclic assemblies rearrange into a closed-shell capsule upon introduction of C60 with an accompanied symmetry breaking of the monomer. Our study demonstrates that a C60 switch can be used to simultaneously control the topology and occupancy of tubular assemblies resulting from the aggregation of small monomers.
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers
2017-01-01
Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527
Smart worm-like micelles responsive to CO2/N2 and light dual stimuli.
Jiang, Jianzhong; Wang, Guozheng; Ma, Yuxuan; Cui, Zhenggang; Binks, Bernard P
2017-04-12
CO 2 /N 2 and light dual stimuli-responsive worm-like micelles (WLMs) were obtained by addition of a relatively small amount of a switchable surfactant, 4-butyl-4'-(4-N,N-dimethylhexyloxy-amine) azobenzene bicarbonate (AZO-B6-CO 2 ), sensitive to the same triggers to a binary aqueous solution of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal).
Responsive Plasma Polymerized Ultrathin Nanocomposite Films
2012-01-01
29 74 32 75 Ab so rb an ce (a .u .) Wavenumber, cm-1 pNIPAAM A B C D E Fig . 2. FTIR spectra of A) NIPAAM monomer B) Spun- cast P-NIPAAM film and...self- actuating response to specific stimuli are desirable in a wide range of applications including thermalandchemical sensing, tunableoptics...targeteddrug delivery, switchable surfaces and micro actuators [1e6]. Designing materials which are capable of generating a response from the stim- ulus
``Smart'' Surfaces of Polymer Brushes
NASA Astrophysics Data System (ADS)
Wang, Qiang; Meng, Dong
2009-03-01
``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.
Xu, Chunli; Zhou, Zhaolu; Cao, Chong; Zhu, Feng; Li, Fengmin; Huang, Qiliang
2018-01-01
Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS-g-PDMAEMA) was facilely prepared through free radical graft copolymerization with 2-(dimethylamino) ethyl 2-methacrylate (DMAEMA) as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection. PMID:29538323
Recognition by Rats of Binary Taste Solutions and Their Components.
Katagawa, Yoshihisa; Yasuo, Toshiaki; Suwabe, Takeshi; Yamamura, Tomoki; Gen, Keika; Sako, Noritaka
2016-09-13
This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Olfactory cortical adaptation facilitates detection of odors against background.
Kadohisa, Mikiko; Wilson, Donald A
2006-03-01
Detection and discrimination of odors generally, if not always, occurs against an odorous background. On any given inhalation, olfactory receptor neurons will be activated by features of both the target odorant and features of background stimuli. To identify a target odorant against a background therefore, the olfactory system must be capable of grouping a subset of features into an odor object distinct from the background. Our previous work has suggested that rapid homosynaptic depression of afferents to the anterior piriform cortex (aPCX) contributes to both cortical odor adaptation to prolonged stimulation and habituation of simple odor-evoked behaviors. We hypothesize here that this process may also contribute to figure-ground separation of a target odorant from background stimulation. Single-unit recordings were made from both mitral/tufted cells and aPCX neurons in urethan-anesthetized rats and mice. Single-unit responses to odorant stimuli and their binary mixtures were determined. One of the odorants was randomly selected as the background and presented for 50 s. Forty seconds after the onset of the background stimulus, the second target odorant was presented, producing a binary mixture. The results suggest that mitral/tufted cells continue to respond to the background odorant and, when the target odorant is presented, had response magnitudes similar to that evoked by the binary mixture. In contrast, aPCX neurons filter out the background stimulus while maintaining responses to the target stimulus. Thus the aPCX acts as a filter driven most strongly by changing stimuli, providing a potential mechanism for olfactory figure-ground separation and selective reading of olfactory bulb output.
Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence
2016-04-05
Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.
Reaction-mediated entropic effect on phase separation in a binary polymer system
NASA Astrophysics Data System (ADS)
Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang
2017-10-01
We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.
Raghupathi, Krishna R.; Azagarsamy, Malar A.; Thayumanavan, S.
2012-01-01
Stimuli sensitive, facially amphiphilic dendrimers have been synthesized and their enzyme-responsive nature has been determined with dual fluorescence responses of both covalently conjugated and non-covalently bound reporter units. These dual responses are correlated to ascertain the effect of enzymatic action on micellar aggregates and the consequential guest release. The release of the guest molecule is conveniently tuned by stabilizing the micellar aggregates through photochemical crosslinking of hydrophobic coumarin units. This photo-crosslinking is also utilized as a tool to investigate the mode of enzyme-substrate interaction in the context of aggregate-monomer equilibrium. PMID:21887830
In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.
Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V
2005-03-01
Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.
Signaling of the strongest stimulus in the owl optic tectum
Mysore, Shreesh P.; Asadollahi, Ali; Knudsen, Eric I.
2011-01-01
Essential to the selection of the next target for gaze or attention is the ability to compare the strengths of multiple competing stimuli (bottom-up information), and to signal the strongest one. Though the optic tectum (OT) has been causally implicated in stimulus selection, how it computes the strongest stimulus is unknown. Here, we demonstrate that OT neurons in the barn owl systematically encode the relative strengths of simultaneously occurring stimuli independently of sensory modality. Moreover, special “switch-like” responses of a subset of neurons abruptly increase when the stimulus inside their receptive field becomes the strongest one. Such responses are not predicted by responses to single stimuli and, indeed, are eliminated in the absence of competitive interactions. We demonstrate that this sensory transformation substantially boosts the representation of the strongest stimulus by creating a binary discrimination signal, thereby setting the stage for potential winner-take-all target selection for gaze and attention. PMID:21471353
1989-01-01
In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type. PMID:2703818
A novel hybrid auditory BCI paradigm combining ASSR and P300.
Kaongoen, Netiwit; Jo, Sungho
2017-03-01
Brain-computer interface (BCI) is a technology that provides an alternative way of communication by translating brain activities into digital commands. Due to the incapability of using the vision-dependent BCI for patients who have visual impairment, auditory stimuli have been used to substitute the conventional visual stimuli. This paper introduces a hybrid auditory BCI that utilizes and combines auditory steady state response (ASSR) and spatial-auditory P300 BCI to improve the performance for the auditory BCI system. The system works by simultaneously presenting auditory stimuli with different pitches and amplitude modulation (AM) frequencies to the user with beep sounds occurring randomly between all sound sources. Attention to different auditory stimuli yields different ASSR and beep sounds trigger the P300 response when they occur in the target channel, thus the system can utilize both features for classification. The proposed ASSR/P300-hybrid auditory BCI system achieves 85.33% accuracy with 9.11 bits/min information transfer rate (ITR) in binary classification problem. The proposed system outperformed the P300 BCI system (74.58% accuracy with 4.18 bits/min ITR) and the ASSR BCI system (66.68% accuracy with 2.01 bits/min ITR) in binary-class problem. The system is completely vision-independent. This work demonstrates that combining ASSR and P300 BCI into a hybrid system could result in a better performance and could help in the development of the future auditory BCI. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of binary taste stimuli on the neural activity of the hamster chorda tympani
1980-01-01
Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114
Cheng, Weiren; Wu, Decheng; Liu, Ye
2016-10-10
Michael addition polymerizations of amines and acrylic monomers are versatile approaches to biomaterials for various applications. A combinatorial library of poly(β-amino ester)s and diverse poly(amido amine)s from diamines and diacrylates or bis(acrylamide)s have been reported, respectively. Furthermore, novel linear and hyperbranched polymers from Michael addition polymerizations of trifunctional amines and acrylic monomers significantly enrich this category of biomaterials. In this Review, we focus on the biomaterials from Michael addition polymerizations of trifunctional amines and acrylic monomers. First we discuss how the polymerization mechanisms, which are determined by the reactivity sequence of the three types of amines of trifunctional amines, i.e., secondary (2°) amines (original), primary (1°) amines, and 2° amines (formed), are affected by the chemistry of monomers, reaction temperature, and solvent. Then we update how to design and synthesize linear and hyperbranched polymers based on the understanding of polymerization mechanisms. Linear polymers containing 2° amines in the backbones can be obtained from polymerizations of diacrylates or bis(acrylamide)s with equimolar trifunctional amine, and several approaches, e.g., 2A 2 +BB'B″, A 3 +2BB'B', A 2 +BB'B″, to hyperbranched polymers are developed. Further through molecular design of monomers, conjugation of functional species to 2° amines in the backbones of linear polymers and the abundant terminal groups of hyperbranched polymers, the amphiphilicity of polymers can be adjusted, and additional stimuli, e.g., thermal, redox, reactive oxidation species (ROS), and light, responses can be integrated with the intrinsic pH response. Finally we discuss the applications of the polymers for gene/drug delivery and bioimaging through exploring their self-assemblies in various motifs, e.g., micelles, polyplexes particles/nanorings and hydrogels. Redox-responsive hyperbranched polymers can display 300 times higher in vitro gene transfection efficiency and provide a higher in vivo siRNA efficacy than PEI. Also redox-responsive micelle carriers can improve the efficacy of anticancer drug and the bioimaging contrast. Further molecular design and optimization of this category of polymers together with in vivo studies should provide safe and efficient biomaterials for clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko
1973-06-01
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less
Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles
Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.
Responses of primate cortical neurons to unitary and binary taste stimuli.
Miyaoka, Y; Pritchard, T C
1996-01-01
1. The responses of 126 neurons in primary gustatory cortices of two rhesus monkeys were recorded during sapid stimulation of the tongue with 18 taste stimuli. Ten of these stimuli were dissolved in distilled water (DW): 1.0 M sucrose (Suc), 0.1 M and 0.03 M sodium chloride (NaCl), 0.003 M hydrochloric acid (HCl), 0.001 M quinine hydrochloride (QHCl), 0.03 M monosodium glutamate (MSG), 0.03 M polycose, 0.3 M glycine, 0.1 M proline, and 0.1 M malic acid. Seven other stimuli were dissolved in 0.03 M MSG; the last stimulus was a mixture of 1.0 M Suc and 0.03 M NaCl. 2. The average spontaneous rate (2.2 +/- 0.2 spikes/s, mean +/- SE) and response to DW (2.5 +/- 0.2) of these 126 neurons was low but within the range previously reported for neurons in primate taste cortex. Suc was the most effective stimulus for 24.1% of the neurons tested followed by NaCl (15.7%), QHCl (14.8%), HCl (11.1%), MSG (10.2%), and other miscellaneous unitary gustatory stimuli (8.3%). Binary taste mixtures were the most effective stimuli for 15.7% of the sample. The net responses (corrected for DW, in spikes/s) for Suc-best (3.3), NaCl-best (4.3), HCl-best (3.4), QHCl-best (2.3), and MSG-best (4.1) were sluggish, but comparable with that reported previously. 3. The response breadth of the 82 neurons that responded best to either Suc, NaCl, HCl, or QHCl measured with the entropy coefficient indicated a moderate response breadth for these neurons (mean = 0.79; range = 0.30-0.98). According to the response criteria adopted in this experiment (water response +/- 1.96 SD), however, 81 of these 82 neurons (98.1%) responded to only one or two of the four basic taste stimuli. The disparity between the entropy- and criterion-based measures of response derive from the nature of the two statistics. Adjustments that would make the entropy statistic less inclusive and the definition of a response according to statistical criteria less exclusive would increase their concordance. 4. Three multivariate statistics (cluster, principal axis factor, and multidimensional analysis) were used to analyze the data. Cluster analysis enabled us to divide the 82 taste neurons into groups on the basis of response similarity. Each of the four largest groups was dominated by neurons that responded best to one of the four basic taste stimuli: Suc, NaCl, QHCl, and HCl (ranked in descending order); the fifth largest cluster contained neurons that responded best to MSG. Principal axis factor analysis demonstrated that 80.8% of the total variance could be accounted for by three factors. Neurons responding best to Suc, NaCl, and QHCl each were closely associated with one of those three factors, but the loadings of the HCl-best neurons were evenly distributed across all three factors. The communality coefficient of these three factors was > 80% for the Suc-, NaCl-, HCl-, and QHCl-best neurons; the MSG-best neurons, by comparison, had very few high loadings on any of these three factors and a correspondingly low communality coefficient of 40.4%, a difference that was statistically significant from the other four groups. Thus the three factors related to Suc-, NaCl-, HCl-, and QHCl-best neurons are not relevant to MSG-best neurons. We used multidimensional analysis to arrange the neurons that responded best to Suc, NaCl, HCl, QHCl, and MSG into five loosely arranged and partially overlapping clusters. A multidimensional space based on stimulus similarity showed that MSG was as different from the four basic taste stimuli as they were from one another. 5. Mixture suppression, a common observation in human psychophysical experiments, was examined at the neurophysiological level by including binary tastants in the stimulus battery. The average response of 19 Suc-best neurons to 1.0 M Suc (4.1 spikes/s) decreased to near 0 when the solvent was changed from DW to either 0.03 M MSG or 0.03 M NaCl. Similar decrements were observed in NaCl- and MSG-best neurons tested with Suc/NaCl mixtures.
Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites
NASA Technical Reports Server (NTRS)
Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.;
2001-01-01
Nature abounds with intricate composite architectures composed of hard and soft materials synergistically intertwined to provide both useful functionality and mechanical integrity. Recent synthetic efforts to mimic such natural designs have focused on nanocomposites, prepared mainly by slow procedures like monomer or polymer infiltration of inorganic nanostructures or sequential deposition. Here we report the self-assembly of conjugated polymer/silica nanocomposite films with hexagonal, cubic or lamellar mesoscopic order using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. Polymerization results in polydiacetylene/silica nanocomposites that are optically transparent and mechanically robust. Compared to ordered diacetylene-containing films prepared as Langmuir monolayers or by Langmuir-Blodgett deposition, the nanostructured inorganic host alters the diacetylene polymerization behaviour, and the resulting nanocomposite exhibits unusual chromatic changes in response to thermal, mechanical and chemical stimuli. The inorganic framework serves to protect, stabilize, and orient the polymer, and to mediate its function. The nanocomposite architecture also provides sufficient mechanical integrity to enable integration into devices and microsystems.
Gupta, Vinod Kumar; Pathania, Deepak; Priya, Bhanu; Singha, Amar Singh; Sharma, Gaurav
2014-01-01
Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10−1 for EMA and 2.76 mol/L × 10−1 for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system. PMID:25157348
STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increasemore » in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.« less
He, Chengzijing; Lay, Sovichea; Yu, Haining; Shen, Shengrong
2018-04-01
Binary functional monomers, allyl-β-cyclodextrin (allyl-β-CD) and methacrylic acid (MAA) or allyl-β-CD and acrylonitrile (AN), were exploited in a fabrication of molecularly imprinted polymers (MIPs) for selective recognition and large enrichment of pirimicarb from aqueous media. Special attention was paid to the computational simulation of the imprinting molecular and functional monomers. The morphological characteristics of MIPs made of allyl-β-CD and MAA (M-MAA) were characterised by scanning electron microscopy. The effect of binding capacity of MAA-linked allyl-β-CD MIPs (M-MAA) demonstrated higher efficiency than that of AN-linked allyl-β-CD MIPs (M-AN) when tested in binding specificity. Finally, M-MAA was chosen to run through molecularly imprinted solid-phase extraction (MISPE) to analyse the spiked fresh leafy vegetables of pirimicarb. The present proposed technique is a promising tool for the preparation of the receptors which could recognise pirimicarb pesticide in aqueous media. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.
Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A
2018-06-01
Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.
Rough Set Based Splitting Criterion for Binary Decision Tree Classifiers
2006-09-26
Alata O. Fernandez-Maloigne C., and Ferrie J.C. (2001). Unsupervised Algorithm for the Segmentation of Three-Dimensional Magnetic Resonance Brain ...instinctual and learned responses in the brain , causing it to make decisions based on patterns in the stimuli. Using this deceptively simple process...2001. [2] Bohn C. (1997). An Incremental Unsupervised Learning Scheme for Function Approximation. In: Proceedings of the 1997 IEEE International
In Silico Synthesis of Microgel Particles
2017-01-01
Microgels are colloidal-scale particles individually made of cross-linked polymer networks that can swell and deswell in response to external stimuli, such as changes to temperature or pH. Despite a large amount of experimental activities on microgels, a proper theoretical description based on individual particle properties is still missing due to the complexity of the particles. To go one step further, here we propose a novel methodology to assemble realistic microgel particles in silico. We exploit the self-assembly of a binary mixture composed of tetravalent (cross-linkers) and bivalent (monomer beads) patchy particles under spherical confinement in order to produce fully bonded networks. The resulting structure is then used to generate the initial microgel configuration, which is subsequently simulated with a bead–spring model complemented by a temperature-induced hydrophobic attraction. To validate our assembly protocol, we focus on a small microgel test case and show that we can reproduce the experimental swelling curve by appropriately tuning the confining sphere radius, something that would not be possible with less sophisticated assembly methodologies, e.g., in the case of networks generated from an underlying crystal structure. We further investigate the structure (in reciprocal and real space) and the swelling curves of microgels as a function of temperature, finding that our results are well described by the widely used fuzzy sphere model. This is a first step toward a realistic modeling of microgel particles, which will pave the way for a careful assessment of their elastic properties and effective interactions. PMID:29151620
Biologically inspired robots elicit a robust fear response in zebrafish
NASA Astrophysics Data System (ADS)
Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G.; Butail, Sachit; Macrı, Simone; Porfiri, Maurizio
2015-03-01
We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.
A novel computational approach "BP-STOCH" to study ligand binding to finite lattice.
Beshnova, Daria A; Bereznyak, Ekaterina G; Shestopalova, Anna V; Evstigneev, Maxim P
2011-03-01
We report a novel computational algorithm "BP-STOCH" to be used for studying single-type ligand binding with biopolymers of finite lengths, such as DNA oligonucleotides or oligopeptides. It is based on an idea to represent any type of ligand-biopolymer complex in a form of binary number, where "0" and "1" bits stand for vacant and engaged monomers of the biopolymer, respectively. Cycling over all binary numbers from the lowest 0 up to the highest 2(N) - 1 means a sequential generating of all possible configurations of vacant/engaged monomers, which, after proper filtering, results in a full set of possible types of complexes in solution between the ligand and the N-site lattice. The principal advantage of BP-STOCH algorithm is the possibility to incorporate into this cycle any conditions on computation of the concentrations and observed experimental parameters of the complexes in solution, and programmatic access to each monomer of the biopolymer within each binding site of every binding configuration. The latter is equivalent to unlimited extension of the basic reaction scheme and allows to use BP-STOCH algorithm as an alternative to conventional computational approaches.
Aluri, Rajendra; Saxena, Sonashree; Joshi, Dheeraj Chandra; Jayakannan, Manickam
2018-06-11
Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1 H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42-44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells.
NASA Astrophysics Data System (ADS)
Sohn, Joon-Yong; Sung, Hae-Jun; Song, Joo-Myung; Shin, Junhwa; Nho, Young-Chang
2012-08-01
In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.
Choudhury, Sharmistha Dutta; Barooah, Nilotpal; Aswal, Vinod Kumar; Pal, Haridas; Bhasikuttan, Achikanath C; Mohanty, Jyotirmayee
2014-05-21
This article demonstrates, for the first time, construction of novel cucurbituril (CB)-adorned supramolecular micellar assemblies of a cationic surfactant, cetylpyridinium chloride (CPC), through noncovalent host-guest interactions. The distinct cation receptor features and cavity dimensions of the CB5 and CB7 homologues assert that the macrocyclic hosts remain complexed with the CPC monomers and take part in the micelle formation, a unique observation in contrast to that of the classical host, β-cyclodextrin. The cooperative contributions of the CB macrocycles in the micelle formation have been documented by the photochemical, surface tension, conductivity, DOSY NMR, and SANS measurements. The contrasting downward and upward shifts in the cmc of the CPC surfactant, respectively, with CB5 and CB7 hosts provide a unique opportunity for the controlled tuning of the micellization region for CPC from 0.57 to 1.6 mM, by using a combination of the macrocyclic hosts. The article also establishes the reversible response of these soft supramolecular micellar structures to thermal-stimuli, which projects their utility for on-demand smart drug-delivery vehicles.
Patt, Joseph M.; Stockton, Dara; Meikle, William G.; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J.
2014-01-01
Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid’s host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid’s primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal. PMID:26462949
Patt, Joseph M; Stockton, Dara; Meikle, William G; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J
2014-11-19
Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid's host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid's primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal.
Yao, Huiqin; Hu, Naifei
2011-05-26
In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.
Zavala-Lagunes, Edgar; Ruiz, Juan-Carlos; Varca, Gustavo H C; Bucio, Emilio
2016-10-01
Polypropylene films were grafted with thermo-responsive N-vinylcaprolactam and pH-responsive N-vinylimidazole polymers by means of gamma radiation using pre-irradiation and direct methods, in order to functionalize the films with thermo- and/or pH-responsiveness. The dependence of grafting yield on parameters such as co-monomer concentration, pre-irradiation dose, temperature, and reaction time was evaluated. The samples were characterized by Fourier transform infrared and X-ray photoelectron spectroscopies, differential scanning calorimetry, thermogravimetric analysis, swelling studies in different solvents, and water contact angle. The grafted copolymers presented thermo- and pH-sensitiveness, highlighting their potential as advanced biomaterials, capable of providing adequate environment for hosting and sustained release of antimicrobial drugs bearing cationic moieties, such as groups of diclofenac, while still exhibiting good cytocompatibility. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Fang-Fang; Li, Zai-Xuan; Xu, Yu-Jing; Huang, Yan-Ping; Liu, Zhao-Sheng
2018-06-07
The dendritic effect of nano mesoporous molecular sieve was first used to enhance molecular recognition of molecularly imprinted polymers (MIPs)-based polyhedral oligomeric silsesquioxanes (POSS). In this study, the MIPs were made using S-naproxen (S-NAP) as template molecule, 4-vinylpyridine (4-VP) as functional monomer, ethylene glycol dimethacrylate as cross-linker, 1-butyl-3-methylimidazoliumtetrafluoroborate ([BMIM]BF 4 )/DMSO as binary porogens, 1-propylmethacrylate-heptaisobutyl substituted as POSS monomer, and mesoporous molecular sieve (Mobil composition of matter No. 41, MCM-41) as dendritic scaffold. The influence of synthesis parameters on the imprinting effect, including the content of POSS monomer and derivatized MCM-41-MPS, the ratio of template to monomer, and the ratio of binary porogens were also investigated, respectively. The morphology of the polymers was characterized by scanning electron microscopy, nitrogen adsorption, and X-ray powder diffraction. The results showed that POSS&MCM-41-MPS MIP had a stronger imprinting effect with an imprinting factor 6.86, which is approximately 2.4, 2.3, and 3 times than that of POSS MIP, MCM-41-MPS MIP, and conventional MIP, respectively. The increase of affinity might be attributed to impediment of the chain motion of polymer due to improved POSS aggregation and the dipole interaction between the POSS units by introduce of MCM-41-MPS as scaffolds. The resulting POSS&MCM-41-MPS MIP was used as adsorbent for the enrichment of S-NAP in solid-phase extraction with a high recovery of 97.65% and the value of RSD was 0.94%.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-10-08
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-01-01
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246
NASA Astrophysics Data System (ADS)
Peng, Jinrong; Qi, Tingting; Liao, Jinfeng; Fan, Min; Luo, Feng; Li, He; Qian, Zhiyong
2012-03-01
In this study, a temperature/pH dual-response nanogel based on NIPAm, MAA, and PEGMA was synthesized via emulsion polymerization and characterized by 1H-NMR, FT-IR, TEM and DLS. By introducing a novel initiator, through which PEG-AIBN-PEG was synthesized, it was revealed that the PEG segments from PEG-AIBN-PEG with a dosage of initiator had a significant influence over the macro-state and stability of the nanogels. In order to optimize the feeding prescription for better application as a drug delivery system, the effect of the co-monomer contents on the response to stimuli (temperature and pH value) and cytotoxicity of the nanogels has been studied in detail. The results demonstrated that the responsiveness, reversibility and volume phase transition critical value of the nanogels could be controlled by adjusting the feeding ratio of the co-monomers in the synthesis process. MTT assay results revealed that nanogels with appropriate compositions showed good biocompatibility and relatively low toxicity. Most importantly, by studying the drug loading behavior, it was found that the dimensions of the drug molecules had a considerable influence on the drug loading efficiency and loading capacity of the nanogels, and that the mechanism by which drug molecule sizes influence the drug loading behavior of nanogels needs further investigation. The results indicated that such PNMP nanogels might have potential applications in drug delivery and other medical applications, but that the drug loading mechanism must be further developed.
Wang, Lei; Lian, Wenjing; Yao, Huiqin; Liu, Hongyun
2015-03-11
In the present work, reduced graphene oxide (rGO)/poly(N-isopropylacrylamide) (PNIPAA) composite films were electrodeposited onto the surface of Au electrodes in a fast and one-step manner from an aqueous mixture of a graphene oxide (GO) dispersion and N-isopropylacrylamide (NIPAA) monomer solutions. Reflection-absorption infrared (IR) and Raman spectroscopies were employed to characterize the successful construction of the rGO/PNIPAA composite films. The rGO/PNIPAA composite films exhibited reversible potential-, pH-, temperature-, and sulfate-sensitive cyclic voltammetric (CV) on-off behavior to the electroactive probe ferrocenedicarboxylic acid (Fc(COOH)2). For instance, after the composite films were treated at -0.7 V for 7 min, the CV responses of Fc(COOH)2 at the rGO/PNIPAA electrodes were quite large at pH 8.0, exhibiting the on state. However, after the films were treated at 0 V for 30 min, the CV peak currents became much smaller, demonstrating the off state. The mechanism of the multiple-stimuli switchable behaviors for the system was investigated not only by electrochemical methods but also by scanning electron microscopy and X-ray photoelectron spectroscopy. The potential-responsive behavior for this system was mainly attributed to the transformation between rGO and GO in the films at different potentials. The film system was further used to realize multiple-stimuli responsive bioelectrocatalysis of glucose catalyzed by the enzyme of glucose oxidase and mediated by the electroactive probe of Fc(COOH)2 in solution. On the basis of this, a four-input enabled OR (EnOR) logic gate network was established.
Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli
1980-01-01
Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes. PMID:7190997
Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems
NASA Astrophysics Data System (ADS)
Hirayama, Mayu; Tsuruta, Kazuhiro; Kawamura, Akifumi; Ohara, Masayuki; Shoji, Kan; Kawano, Ryuji; Miyata, Takashi
2018-03-01
Diagnosis sensors using micro-total analysis systems (µ-TAS) have been developed for detecting target biomolecules such as proteins and saccharides because they are signal biomolecules for monitoring body conditions and diseases. In this study, biomolecularly stimuli-responsive micro-sized hydrogels that exhibited quick shrinkage in response to lectin concanavalinA (ConA) were prepared in a microchannel by photopolymerization using a fluorescence microscope. In preparing the micro-size hydrogels, glycosyloxyethyl methacrylate (GEMA) as a ligand monomer was copolymerized with a crosslinker in the presence of template ConA in molecular imprinting. The ConA-imprinted micro-hydrogel showed greater shrinkage in response to target ConA than nonimprinted micro-hydrogel. When a buffer solution was switched to an aqueous ConA solution in the Y-shaped microchannel, the flow rates changed quickly because of the responsive shrinkage of the micro-hydrogel prepared in the microchannel. These results suggest that the ConA-imprinted micro-hydrogel acted as a self-regulated microvalve in microfluidic systems.
Interpreting activity in H(2)O-H(2)SO(4) binary nucleation.
Bein, Keith J; Wexler, Anthony S
2007-09-28
Sulfuric acid-water nucleation is thought to be a key atmospheric mechanism for forming new condensation nuclei. In earlier literature, measurements of sulfuric acid activity were interpreted as the total (monomer plus hydrate) concentration above solution. Due to recent reinterpretations, most literature values for H(2)SO(4) activity are thought to represent the number density of monomers. Based on this reinterpretation, the current work uses the most recent models of H(2)O-H(2)SO(4) binary nucleation along with perturbation analyses to predict a decrease in critical cluster mole fraction, increase in critical cluster diameter, and orders of magnitude decrease in nucleation rate. Nucleation rate parameterizations available in the literature, however, give opposite trends. To resolve these discrepancies, nucleation rates were calculated for both interpretations of H(2)SO(4) activity and directly compared to the available parameterizations as well as the perturbation analysis. Results were in excellent agreement with older parameterizations that assumed H(2)SO(4) activity represents the total concentration and duplicated the predicted trends from the perturbation analysis, but differed by orders of magnitude from more recent parameterizations that assume H(2)SO(4) activity represents only the monomer. Comparison with experimental measurements available in the literature revealed that the calculations of the current work assuming a(a) represents the total concentration are most frequently in agreement with observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, I.; Ito, A.; Hayashi, K.
1973-08-01
The effect of temperature and composition on the inflection point in the time-conversion curve and the saturated conversion was investigated in the gamma -radio-induced radical polymerization of binary systems consisting of a glass- forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA) -triacetin and hydroxyethyl methacrylate (HEMA) --propylene glycol systems, the time-conversion curve has an inflection point at polymerization temperatures between T/sub vm/(T/sub v/ of monomer system) and T/sub vp/ (T/sub v/ of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. T/submore » v/ was found to be 30 to 50 deg C higher than T/sub g/ (glass transition temperature) and a monotonic function of composition (monomer -- polymer -- solvent). The acceleration effect continued to 100% conversion above T/sub vp/, and no acceleration effect was observed below T/sub vm/. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between T/sub gm/ (T/sub g/ of monomer system) and T/sub gp/(T of polymer system). T/sub g/ was also a monotonic function of composition. No saturation in conversion was observed above T/sub gp/ , and no polymerization occurred below T/sub gm/. In the polymerization of completely heterogeneous systems such as HEMA-dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% sbove T/sub g/ of pure HEMA, and no polymerization occurred below this temperature in this system. (auth)« less
Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran
2009-02-18
Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.
Effect of intrinsic and extrinsic factors on the simulated D-band length of type I collagen.
Varma, Sameer; Botlani, Mohsen; Hammond, Jeff R; Scott, H Larry; Orgel, Joseph P R O; Schieber, Jay D
2015-10-01
A signature feature of collagen is its axial periodicity visible in TEM as alternating dark and light bands. In mature, type I collagen, this repeating unit, D, is 67 nm long. This periodicity reflects an underlying packing of constituent triple-helix polypeptide monomers wherein the dark bands represent gaps between axially adjacent monomers. This organization is visible distinctly in the microfibrillar model of collagen obtained from fiber diffraction. However, to date, no atomistic simulations of this diffraction model under zero-stress conditions have reported a preservation of this structural feature. Such a demonstration is important as it provides the baseline to infer response functions of physiological stimuli. In contrast, simulations predict a considerable shrinkage of the D-band (11-19%). Here we evaluate systemically the effect of several factors on D-band shrinkage. Using force fields employed in previous studies we find that irrespective of the temperature/pressure coupling algorithms, assumed salt concentration or hydration level, and whether or not the monomers are cross-linked, the D-band shrinks considerably. This shrinkage is associated with the bending and widening of individual monomers, but employing a force field whose backbone dihedral energy landscape matches more closely with our computed CCSD(T) values produces a small D-band shrinkage of < 3%. Since this force field also performs better against other experimental data, it appears that the large shrinkage observed in earlier simulations is a force-field artifact. The residual shrinkage could be due to the absence of certain atomic-level details, such as glycosylation sites, for which we do not yet have suitable data. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.
2017-07-01
FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.
Grafting of vinyl acetate-ethylacrylate binary monomer mixture onto guar gum.
Singh, Vandana; Singh, Angela; Joshi, Sneha; Malviya, Tulika
2016-03-01
Present article reports on guar gum (GG) functionalization through graftcopolymerization of vinylacetate (VAC) and ethylacrylate (EA) from their binary mixtures. The potassium persulfate/ascorbic acid (KPS/AA) redox initiator system has been used for the binary grafting under the previously optimized conditions for VAC grafting at guar gum. The concentration of ascorbic acid (AA), persulfate (KPS), and grafting temperature were varied to optimize the binary grafting. A preliminary investigation revealed that the copolymer has excellent ability to capture Hg(II) from aqueous solution. It was observed that the optimum % grafting sample (CP3) was best at Hg(II) adsorption. CP3 and mercury loaded CP3 (CP3-Hg) have been extensively characterized using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Thermo gravimetric analysis (TGA) and a plausible mechanism for the grafting has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Stimuli-responsive cement-reinforced rubber.
Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef
2014-05-14
In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.
Effects of acids on neural activity elicited by other taste stimuli in the rat Chorda tympani.
Sakurai, N; Kanemura, F; Watanabe, K; Shimizu, Y; Tonosaki, K
2000-03-24
The purpose of this study is whether the gustatory neural response of taste cell to a binary mixture with threshold concentration of acid becomes synergistic or antagonistic can be estimated from the whole chorda tympani (CT) nerve in the rat. The present data demonstrate that acids are synergistic enhancer for sugars, and suppressor for NaCl and QHCl, but no effect to glycine and alanine. These results suggest that the acid was modifying the interaction of the other stimulus with its transduction mechanism.
EEG Responses to Auditory Stimuli for Automatic Affect Recognition
Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin
2016-01-01
Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410
Learning from nature: binary cooperative complementary nanomaterials.
Su, Bin; Guo, Wei; Jiang, Lei
2015-03-01
In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening
NASA Astrophysics Data System (ADS)
Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.
2014-06-01
Objective. Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words ‘yes’ and ‘no’) without loss of performance, and whether the system could be used by people in the locked-in state. Approach. We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced amyotrophic lateral sclerosis (ALS), who used the word-based system to answer a set of simple yes-no questions. Main results. The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance. Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in.
Bisphenol A (BPA) is a ubiquitous monomer used to manufacture polycarbonate plastics. BPA is used in composites and sealants in dentistry, for epoxy resins used as protective liners in metallic cans, and as additives in various plastics. Approximately 1.7 billion pounds of BPA ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, I.; Ito, A.; Hayashi, K.
1973-06-01
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less
Upadhyay, Ganesh; Gomti Devi, Th
2014-12-10
The interacting nature of dimethyl sulfoxide (DMSO) in binary mixtures has been carried out on CH and CSC stretching modes of vibration using chloroform (CLF), chloroform-d (CLFd), acetonitrile (ACN) and acetonitrile-d3 (ACNd) solvents. Peak frequencies of both the stretching modes show blue shift with the increase in solvent concentration. Variation of Raman bandwidth with the solvent concentration was discussed using different mechanisms. Ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of DMSO to explain the experimentally observed Raman spectra. Theoretically calculated values are found in good agreement with the experimental results. Vibrational and reorientational relaxation times have been studied corresponding to solvent concentrations to elucidate the interacting mechanisms of binary mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Bisphenol A (BPA) is a ubiquitous monomer used to manufacture polycarbonate plastics. BPA is used in composites and sealants in dentistry, for epoxy resins used as protective liners in metallic cans, and as additives in various plastics. Approximately 1.7 billion pounds of BPA ar...
Bisphenol A is a ubiquitous monomer used to manufacture polycarbonate plastics. Exposure ofhuman and wildlife populations to bisphenol A and its analogs is widespread and well documented. Bisphenol A is hypothesized to be estrogenic in both in vivo and in vitro studies and has be...
Does sensitivity in binary choice tasks depend on response modality?
Szumska, Izabela; van der Lubbe, Rob H J; Grzeczkowski, Lukasz; Herzog, Michael H
2016-07-01
In most models of vision, a stimulus is processed in a series of dedicated visual areas, leading to categorization of this stimulus, and possible decision, which subsequently may be mapped onto a motor-response. In these models, stimulus processing is thought to be independent of the response modality. However, in theories of event coding, common coding, and sensorimotor contingency, stimuli may be very specifically mapped onto certain motor-responses. Here, we compared performance in a shape localization task and used three different response modalities: manual, saccadic, and verbal. Meta-contrast masking was employed at various inter-stimulus intervals (ISI) to manipulate target visibility. Although we found major differences in reaction times for the three response modalities, accuracy remained at the same level for each response modality (and all ISIs). Our results support the view that stimulus-response (S-R) associations exist only for specific instances, such as reflexes or skills, but not for arbitrary S-R pairings. Copyright © 2016 Elsevier Inc. All rights reserved.
Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness
Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle
2010-01-01
Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076
Defined polymer shells on nanoparticles via a continuous aerosol-based process
NASA Astrophysics Data System (ADS)
Sigmund, Stephanie; Akgün, Ertan; Meyer, Jörg; Hubbuch, Jürgen; Wörner, Michael; Kasper, Gerhard
2014-08-01
A continuous aerosol-based process is described for the encapsulation of nanoparticles with a thin polymer shell. The process is essentially based on directed binary collisions between gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, followed by photo-initiated polymerization. Once the two streams are mixed together, the process runs to completion on a time scale of about 2 min or less, required for coagulation and polymerization. Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique with PHDDA [poly(hexanediol diacrylate)] and/or crosslinked PMMA [poly(methyl methacrylate)]. It was found that all core materials as well as agglomerates were wettable at room temperature and that the spreading kinetics of the monomer were fast enough to cover the core particles uniformly within the time scale provided for coagulation. The shell thickness depends on the volume ratio between core particles and monomer droplets. This was demonstrated for a combination of monodisperse silica spheres ( d = 241 nm) and polydisperse methyl methacrylate droplets, resulting in a theoretical shell thickness of 18 nm. There was very good agreement between measurements by TEM and electrical mobility spectroscopy. The results revealed that about 90 % or more of the core-shell structures were formed from 1:1 collisions between a core particle and a single monomer droplet.
Stimuli Responsive Morphological Changes of Pnipa Polymer Brushes Synthesized on Silicon Substrate
NASA Astrophysics Data System (ADS)
Huda, Muhammad Nurul; Kabir, A. N. M. Hamidul
2013-08-01
High-density polymer brushes were grown from the silicon surface by atom transfer radical polymerization of Poly(N-isopropylacrylamide) (PNIPA) at different polymerization conditions. PNIPA brushes were prepared using Copper (I) Chloride/tris(2-(dimetylamino)ethyl)amine (Me6TREN) as a catalytic system in DMSO at 20°C. Free polymer formed during the brush formation was characterized by gel permeation chromatography. The grafting densities up to 0.52 chains/nm2 were obtained. The layer thickness of polymer brush increases with the increase of conversion of the monomer conversion as well as polymerization time. Atomic force microscopy and air bubble contact angle under pH solution were employed to study the surface morphology, reversible conformational changes of and stimulus-response behavior. PNIPA brushes exhibited a different nanomorphology after treatment with different pH solution. It also revealed a unique reversible wetting behavior with pH. The reversible properties of the PNIPA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Optically responsive supramolecular polymer glasses
NASA Astrophysics Data System (ADS)
Balkenende, Diederik W. R.; Monnier, Christophe A.; Fiore, Gina L.; Weder, Christoph
2016-03-01
The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible.
Baumdick, Martin; Brüggemann, Yannick; Schmick, Malte; Xouri, Georgia; Sabet, Ola; Davis, Lloyd; Chin, Jason W; Bastiaens, Philippe IH
2015-01-01
Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR trafficking enables suppression of spontaneous activation while maintaining EGFR’s capacity to transduce extracellular signals. Autocatalytic phosphorylation of tyrosine 845 on unliganded EGFR monomers is suppressed by vesicular recycling through perinuclear areas with high PTP1B activity. Ligand-binding results in phosphorylation of the c-Cbl docking tyrosine and ubiquitination of the receptor. This secondary signal relies on EGF-induced EGFR self-association and switches suppressive recycling to directional trafficking. The re-routing regulates EGFR signaling response by the transit-time to late endosomes where it is switched-off by high PTP1B activity. This ubiquitin-mediated switch in EGFR trafficking is a uniquely suited solution to suppress spontaneous activation while maintaining responsiveness to EGF. DOI: http://dx.doi.org/10.7554/eLife.12223.001 PMID:26609808
Fukuda, Yoshiaki; Tomita, Yasuo
2016-01-01
We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms. PMID:28773314
Fukuda, Yoshiaki; Tomita, Yasuo
2016-03-10
We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms.
Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.
Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S
2014-03-01
In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.
Principles of protein folding--a perspective from simple exact models.
Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.
1995-01-01
General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459
Skerswetat, Jan; Formankiewicz, Monika A; Waugh, Sarah J
2018-01-01
Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Ruomeng; Wu, Wenzhuo; Pan, Caofeng; Wang, Zhaona; Ding, Yong; Wang, Zhong Lin
2015-02-04
Using polarization charges created at the metal-cadmium sulfide interface under strain to gate/modulate electrical transport and optoelectronic processes of charge carriers, the piezo-phototronic effect is applied to process mechanical and optical stimuli into electronic controlling signals. The cascade nanowire networks are demonstrated for achieving logic gates, binary computations, and gated D latches to store information carried by these stimuli. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Tao; Zhu, Shenmin; Ma, Jun; Lin, Jinyou; Wang, Wanlin; Pan, Hui; Tian, Feng; Zhang, Wang; Zhang, Di
2015-10-01
Thermoresponsive photonic materials having hierarchical structures are created by combining a template of Morpho butterfly wings with poly(N-isopropylacrylamide) (PNIPAM) through a chemical bonding and polymerization route. These materials show temperature-induced color tunability. Through reacting with both NIPAM monomers and the amino groups of chitosan in wing scales, glutaraldehyde workes as a bridge by creating chemical bonding between the biotemplate and the PNIPAM. The corresponding reflection peaks red-shift with increase in temperature-an opposite phenomenon to previous studies, demonstrating a thermoresponsive photonic property. This unique phenomenon is caused by the refractive index change due to the volume change of PNIPAM during the temperature rising. This work sets up an efficient strategy for the fabrication of stimuli-responsive photonic materials with hierarchical structures toward extensive applications in science and technology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A feed-forward spiking model of shape-coding by IT cells
Romeo, August; Supèr, Hans
2014-01-01
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders. PMID:24904494
Molecular basis of cooperativity in pH-triggered supramolecular self-assembly
NASA Astrophysics Data System (ADS)
Li, Yang; Zhao, Tian; Wang, Chensu; Lin, Zhiqiang; Huang, Gang; Sumer, Baran D.; Gao, Jinming
2016-10-01
Supramolecular self-assembly offers a powerful strategy to produce high-performance, stimuli-responsive nanomaterials. However, lack of molecular understanding of stimulated responses frequently hampers our ability to rationally design nanomaterials with sharp responses. Here we elucidated the molecular pathway of pH-triggered supramolecular self-assembly of a series of ultra-pH sensitive (UPS) block copolymers. Hydrophobic micellization drove divergent proton distribution in either highly protonated unimer or neutral micelle states along the majority of the titration coordinate unlike conventional small molecular or polymeric bases. This all-or-nothing two-state solution is a hallmark of positive cooperativity. Integrated modelling and experimental validation yielded a Hill coefficient of 51 in pH cooperativity for a representative UPS block copolymer, by far the largest reported in the literature. These data suggest hydrophobic micellization and resulting positive cooperativity offer a versatile strategy to convert responsive nanomaterials into binary on/off switchable systems for chemical and biological sensing, as demonstrated in an additional anion sensing model.
Van De Poll, Matthew N; Zajaczkowski, Esmi L; Taylor, Gavin J; Srinivasan, Mandyam V; van Swinderen, Bruno
2015-11-01
Closed-loop paradigms provide an effective approach for studying visual choice behaviour and attention in small animals. Different flying and walking paradigms have been developed to investigate behavioural and neuronal responses to competing stimuli in insects such as bees and flies. However, the variety of stimulus choices that can be presented over one experiment is often limited. Current choice paradigms are mostly constrained as single binary choice scenarios that are influenced by the linear structure of classical conditioning paradigms. Here, we present a novel behavioural choice paradigm that allows animals to explore a closed geometry of interconnected binary choices by repeatedly selecting among competing objects, thereby revealing stimulus preferences in an historical context. We used our novel paradigm to investigate visual flicker preferences in honeybees (Apis mellifera) and found significant preferences for 20-25 Hz flicker and avoidance of higher (50-100 Hz) and lower (2-4 Hz) flicker frequencies. Similar results were found when bees were presented with three simultaneous choices instead of two, and when they were given the chance to select previously rejected choices. Our results show that honeybees can discriminate among different flicker frequencies and that their visual preferences are persistent even under different experimental conditions. Interestingly, avoided stimuli were more attractive if they were novel, suggesting that novelty salience can override innate preferences. Our recursive virtual reality environment provides a new approach to studying visual discrimination and choice behaviour in animals. © 2015. Published by The Company of Biologists Ltd.
Ruf, Carolin A.; De Massari, Daniele; Furdea, Adrian; Matuz, Tamara; Fioravanti, Chiara; van der Heiden, Linda; Halder, Sebastian; Birbaumer, Niels
2013-01-01
The aim of the study was to investigate conditioned electroencephalography (EEG) responses to factually correct and incorrect statements in order to enable binary communication by means of a brain-computer interface (BCI). In two experiments with healthy participants true and false statements (serving as conditioned stimuli, CSs) were paired with two different tones which served as unconditioned stimuli (USs). The features of the USs were varied and tested for their effectiveness to elicit differentiable conditioned reactions (CRs). After acquisition of the CRs, these CRs to true and false statements were classified offline using a radial basis function kernel support vector machine. A mean single-trial classification accuracy of 50.5% was achieved for differentiating conditioned “yes” versus “no” thinking and mean accuracies of 65.4% for classification of “yes” and 68.8% for “no” thinking (both relative to baseline) were found using the best US. Analysis of the area under the curve of the conditioned EEG responses revealed significant differences between conditioned “yes” and “no” answers. Even though improvements are necessary, these first results indicate that the semantic conditioning paradigm could be a useful basis for further research regarding BCI communication in patients in the complete locked-in state. PMID:23471568
Aguilar, J; Morales-Botello, M L; Foffani, G
2008-01-01
The majority of studies investigating responses of thalamocortical neurons to tactile stimuli have focused on the whisker representation of the rat thalamus: the ventral–posterior–medial nucleus (VPM). To test whether the basic properties of thalamocortical responses to tactile stimuli could be extended to the entire ventrobasal complex, we recorded single neurons from the whisker, forepaw and hindpaw thalamic representations. We performed a systematic analysis of responses to stereotyped tactile stimuli − 500 ms pulses (i.e. ON–OFF stimuli) or 1 ms pulses (i.e. impulsive stimuli) − under two different anesthetics (pentobarbital or urethane). We obtained the following main results: (i) the tuning of cells to ON vs. OFF stimuli displayed a gradient across neurons, so that two-thirds of cells responded more to ON stimuli and one-third responded more to OFF stimuli; (ii) on average, response magnitudes did not differ between ON and OFF stimuli, whereas latencies of response to OFF stimuli were a few milliseconds longer; (iii) latencies of response to ON and OFF stimuli were highly correlated; (iv) responses to impulsive stimuli and ON stimuli showed a strong correlation, whereas the relationship between the responses to impulsive stimuli and OFF stimuli was subtler; (v) unlike ON responses, OFF responses did not decrease when stimuli were moved from the receptive field center to a close location in the excitatory surround. We obtained the same results for hindpaw, forepaw and whisker neurons. Our results support the view of a neurophysiologically homogeneous ventrobasal complex, in which OFF responses participate in the structure of the spatiotemporal receptive field of thalamocortical neurons for tactile stimuli. PMID:18190520
Pino-Ramos, Victor H.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio
2017-01-01
Abstract A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g., dose and monomers concentration) on the grafting percentage were evaluated, and the modified films were characterized by means of FTIR-ATR, Raman spectroscopy, calorimetry techniques (DSC and TGA) and contact angle measurements. The films responsiveness to stimuli was evaluated by recording the swelling degree of pristine and modified SR in buffer solutions (critical pH point) and as a function of changes in temperature (Upper Critical Solution Temperature, UCST). The graft copolymers of SR-g-(NVCL-co-4VP) showed good cytocompatibility against fibroblast cells for prolonged times, could host diclofenac and release it in a sustained manner for up to 24 h, and exhibited bacteriostatic activity when challenged against Escherichia coli. PMID:29491777
Wen, Xing; Tang, Liming; Qiang, Lu
2014-06-14
pH responsive poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (P(MBA-4VP)) one dimensional (1D) nanostructures have been prepared by metallogel template copolymerization, which was carried out in an Ag(i)-coordinated organogel with benzoyl peroxide (BPO) as the initiator. The product has been characterized using infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The experimental results reveal that the gel fiber is a crucial template for polymerization. Due to the degradation of the template in copolymerization, nanofibers of metallogel were transcribed to copolymer nanowires. The introduction of co-monomer 4-vinylpyridine (4VP) imparts to the 1D copolymer nanostructures pH sensitivity and the possible use as an adsorption material of aspirin. Adsorbed 1D copolymer nanostructures could be regenerated using proton solvent, acid medium and salt solution. In addition, silver nanoparticle loaded copolymer nanowires have been produced from the reduction of silver ions instead of template removal, where silver ions act both as the template and as the nanoparticle growth substrate.
A test of multiple correlation temporal window characteristic of non-Markov processes
NASA Astrophysics Data System (ADS)
Arecchi, F. T.; Farini, A.; Megna, N.
2016-03-01
We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.
Copper mediated polymerization without external deoxygenation or oxygen scavengers.
Liarou, Evelina; Whitfield, Richard; Anastasaki, Athina; Engelis, Nikolaos G; Jones, Glen R; Velonia, Kelly; Haddleton, David
2018-05-14
Overcoming the challenge of rigorous deoxygenation in copper mediated controlled radical polymerization processes (e.g. ATRP), we report a simple Cu(0)-RDRP system in the absence of external additives (e.g. reducing agents, enzymes etc.). By simply adjusting the headspace of the reaction vessel, a wide range of monomers, namely acrylates, methacrylates, acrylamides and styrene, can be polymerized in a controlled manner yielding polymers with low dispersities, near-quantitative conversions and high end group fidelity. Significantly, this approach is scalable (~ 125 g), tolerant to elevated temperatures, compatible with both organic and aqueous media and does not rely on external stimuli which may limit the monomer pool. The robustness and versatility of this methodology is further demonstrated by the applicability to a number of other copper mediated techniques including conventional ATRP and light-mediated approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.
2012-04-05
The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Abstract Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins. PMID:29491797
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.
Gestalt Reasoning with Conjunctions and Disjunctions
Dumitru, Magda L.; Joergensen, Gitte H.
2016-01-01
Reasoning, solving mathematical equations, or planning written and spoken sentences all must factor in stimuli perceptual properties. Indeed, thinking processes are inspired by and subsequently fitted to concrete objects and situations. It is therefore reasonable to expect that the mental representations evoked when people solve these seemingly abstract tasks should interact with the properties of the manipulated stimuli. Here, we investigated the mental representations evoked by conjunction and disjunction expressions in language-picture matching tasks. We hypothesised that, if these representations have been derived using key Gestalt principles, reasoners should use perceptual compatibility to gauge the goodness of fit between conjunction/disjunction descriptions (e.g., the purple and/ or the green) and corresponding binary visual displays. Indeed, the results of three experimental studies demonstrate that reasoners associate conjunction descriptions with perceptually-dependent stimuli and disjunction descriptions with perceptually-independent stimuli, where visual dependency status follows the key Gestalt principles of common fate, proximity, and similarity. PMID:26986760
Gestalt Reasoning with Conjunctions and Disjunctions.
Dumitru, Magda L; Joergensen, Gitte H
2016-01-01
Reasoning, solving mathematical equations, or planning written and spoken sentences all must factor in stimuli perceptual properties. Indeed, thinking processes are inspired by and subsequently fitted to concrete objects and situations. It is therefore reasonable to expect that the mental representations evoked when people solve these seemingly abstract tasks should interact with the properties of the manipulated stimuli. Here, we investigated the mental representations evoked by conjunction and disjunction expressions in language-picture matching tasks. We hypothesised that, if these representations have been derived using key Gestalt principles, reasoners should use perceptual compatibility to gauge the goodness of fit between conjunction/disjunction descriptions (e.g., the purple and/ or the green) and corresponding binary visual displays. Indeed, the results of three experimental studies demonstrate that reasoners associate conjunction descriptions with perceptually-dependent stimuli and disjunction descriptions with perceptually-independent stimuli, where visual dependency status follows the key Gestalt principles of common fate, proximity, and similarity.
Relief diffracted elements recorded on absorbent photopolymers.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Pascual, I; Beléndez, A
2012-05-07
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information for characterizing and understanding the material behavior. In this paper we use a 3-dimensional model, based on direct parameter measurements, for predicting the relief structures generated on without-coverplate photopolymers. We have analyzed different spatial frequency and recording intensity distributions such as binary and blazed periodic patterns. This model was successfully applied to different photopolymers with different values of monomer diffusion.
Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckel, E. R.; Berchtold, K. A.; Nie, J.
2002-01-01
Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less
Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking
Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre
2013-01-01
Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469
Activating and relaxing music entrains the speed of beat synchronized walking.
Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre
2013-01-01
Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.
Altszyler, Edgar; Ventura, Alejandra C; Colman-Lerner, Alejandro; Chernomoretz, Ariel
2017-01-01
Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.
Deep learning of orthographic representations in baboons.
Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan
2014-01-01
What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process.
Altszyler, Edgar; Ventura, Alejandra C.; Colman-Lerner, Alejandro; Chernomoretz, Ariel
2017-01-01
Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system’s ultrasensitivity, how a given combination of layers affects a cascade’s ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade’s ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O’Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models. PMID:28662096
Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.
Li, Isaac T S; Walker, Gilbert C
2010-05-12
The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.
Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.
Cao, Zi-Quan; Wang, Guo-Jie
2016-06-01
Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.
Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W
2016-02-02
The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049
2014-10-03
Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less
An auditory oddball brain-computer interface for binary choices.
Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A
2010-04-01
Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.
1984-01-01
The ion-molecule and radical-molecule mechanisms are responsible for the dissociation of hydrocarbon, silane, and chlorosilane monomers and the formation of polymerized species, respectively, in an RF plasma discharge. In a plasma containing a mixture of monomer and argon the rate-determining step for both dissociation and polymerization is governed by an ion-molecule type of interaction. Adding hydrogen or ammonia to the monomer-argon mixture transforms the rate-determining step from an ion-molecule interaction to a radical-molecule interaction for both monomer dissociation and polymerization.
Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko
2016-10-01
Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation
Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina
2011-01-01
We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977
Vibhute, Amol M; Pushpanandan, Poornenth; Varghese, Maria; Koniecnzy, Vera; Taylor, Colin W; Sureshan, Kana M
2016-11-03
Inositol 1,4,5-trisphosphate receptors (IP 3 Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca 2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP 3 R. Adenophostin A (AdA) is a potent agonist of IP 3 R and since some dimeric analogs of IP 3 R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca 2+ through type 1 IP 3 R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin.
Self-replication with magnetic dipolar colloids
NASA Astrophysics Data System (ADS)
Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica
2015-10-01
Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.
Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model
NASA Astrophysics Data System (ADS)
Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen
2017-12-01
Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations in the transient dynamics that are amplified by autocatalysis and eventually propagate to the population level. The impact of these observations on related prebiotic mathematical models is discussed.
Phase Change Energy Storage Material Suitable for Solar Heating System
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa
2018-01-01
Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
Advanced polymer systems that possess microstructural features that are responsive to temperature, electrolyte concentration, and shear conditions are being synthesized which will be superior to polymers presently used for mobility control in enhanced oil recovery. Improved polymer performance is accomplished by controlling hydrophobic or ampholytic interactions between individual polymer chains in solution. Of special interest to our group have been (1) the elucidation of the mechanism of associative thickening and (2) the tailoring of thickeners with reversible associations responsive to changes in pH, ionic strength, temperature, or shear stress. A polymerization technique, termed ``micellar`` polymerization utilizes a surfactant to solubilizemore » a relatively low mole percent of a hydrophobic monomer in water for copolymerization with a hydrophilic monomer. In this report, we examine the role of surfactant-to-monomer ratio (SMR) in the reaction medium on microstructure utilizing the N-[(1- pyrenylsulfonamido)ethyl] acrylamide (APS) monomer as a fluorescent label. Comparison is made with previously reported terpolymers of identical AM/AA compositions with N-(4-decyl)phenylacrylamide as the hydrophobic monomer. Unlike the uncharged copolymer of AM/APS, however, the AM/AA/APS terpolymers of this study do not show intermolecular associative thickening, apparently due to insufficient liaisons of hydrophobic microdomains even at high concentrations of terpolymer.« less
A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.
Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang
2018-06-01
Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (<250 Wh kg -1 ) and single stimuli-response, which seriously limit their application scopes in intelligent electronics. Herein, a dual-stimuli-responsive sodium-bromine (Na//Br 2 ) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and synthesis of digitally encoded polymers that can be decoded and erased
NASA Astrophysics Data System (ADS)
Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François
2015-05-01
Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.
Design and synthesis of digitally encoded polymers that can be decoded and erased.
Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François
2015-05-26
Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.
FT-IR and computer modeling study of hydrogen bonding in N-alkyl acrylamide-toluene binary mixtures
NASA Astrophysics Data System (ADS)
Rumyantsev, Misha; Kazantsev, Oleg A.; Kamorina, Sofia I.; Kamorin, Denis M.; Sivokhin, Alexey P.
2016-10-01
Degree of hydrogen bonding driven self-association of N-(n-butyl)acrylamide, N-(n-octyl)acrylamide, N-(sec-octyl)acrylamide and N-(tert-octyl)acrylamide in toluene was investigated using IR spectroscopy and computer modeling methods. Consistent results were demonstrated in the treatment of the Amide-I (νC=O), Amide-II (δN-H and νC-N) and Amide-A (νN-H) absorption bands in IR spectra. Thus, the content of non-bonded (free) amide groups decreases from 83-98% to 8-20% and the content of linear polyassociates increases to 80-90% with an increase in monomer concentration from 0.5 wt% to 50 wt%. The content of cyclic dimers was equal to the value between 5 and 10% regardless of the initial monomer concentration. Dependences of the association degree and the content of the linear polyassociates on the concentration were found to be similar for all of the studied amides.
pH-Dependent, Thermosensitive Polymeric Nanocarriers for Drug Delivery to Solid Tumors
Chen, Ching-Yi; Kim, Tae Hee; Wu, Wen-Chung; Huang, Chi-Ming; Wei, Hua; Mount, Christopher W.; Tian, Yanqing; Jang, Sei-Hum; Pun, Suzie H.; Jen, Alex K-Y
2013-01-01
Polymeric micelles are promising carriers for anticancer agents due to their small size, ease of assembly, and versatility for functionalization. A current challenge in the use of polymeric micelles is the sensitive balance that must be achieved between stability during prolonged blood circulation and release of active drug at the tumor site. Stimuli-responsive materials provide a mechanism for triggered drug release in the acidic tumor and intracellular microenvironments. In this work, we synthesized a series of dual pH- and temperature-responsive block copolymers containing a poly(ε-caprolactone) (PCL) hydrophobic block with a poly(triethylene glycol) block that were copolymerized with an amino acid-functionalized monomer. The block copolymers formed micellar structures in aqueous solutions. An optimized polymer that was functionalized with 6-aminocaproic acid (ACA) possessed pH-sensitive phase transitions at mildly acidic pH and body temperature. Doxorubicin-loaded micelles formed from these polymers were stable at blood pH (~7.4) and showed increased drug release at acidic pH. In addition, these micelles displayed more potent anti-cancer activity than free doxorubicin when tested in a tumor xenograft model in mice. PMID:23498892
Xiao, Jianbo; Niu, Yu-Qiong; Wiesner, Steven
2014-01-01
Multiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°. We first varied the motion coherence of each random-dot pattern and characterized, across the direction tuning curve, the relationship between neuronal responses elicited by bidirectional stimuli and by the constituent motion components. The tuning curve for bidirectional stimuli showed response normalization and can be accounted for by a weighted sum of the responses to the motion components. Allowing nonlinear, multiplicative interaction between the two component responses significantly improved the data fit for some neurons, and the interaction mainly had a suppressive effect on the neuronal response. The weighting of the component responses was not fixed but dependent on relative signal strengths. When two stimulus components moved at different coherence levels, the response weight for the higher-coherence component was significantly greater than that for the lower-coherence component. We also varied relative luminance levels of two coherently moving stimuli and found that MT response weight for the higher-luminance component was also greater. These results suggest that competition between multiple stimuli within a neuron's RF depends on relative signal strengths of the stimuli and that multiplicative nonlinearity may play an important role in shaping the response tuning for multiple stimuli. PMID:24899674
Psychophysiological responses to masked auditory stimuli.
Borgeat, F; Elie, R; Chaloult, L; Chabot, R
1985-02-01
Psychophysiological responses to masked auditory verbal stimuli of increasing intensities were studied in twenty healthy women. Two experimental sessions corresponding to two stimulation contents (neutral or emotional) were conducted. At each session, two different sets of instructions (attending or not attending to stimuli) were used successively. Verbal stimuli, masked by a 40-dB white noise, were presented to the subject at increasing intensities by increments of 5 dB starting at 0 dB. At each increment, frontal EMG, skin conductance and heart rate were recorded. The data were submitted to analyses of variance and covariance. Psychophysiological responses to stimuli below the thresholds of identification and detection were observed. The instruction not to attend the stimuli modified the patterns of physiological responses. The effect of the affective content of the stimuli on responses was stronger when not attending. The results show the possibility of psychophysiological responses to masked auditory stimuli and suggests that psychophysiological parameters can constitute objective and useful measures for research in auditory subliminal perception.
Multi-Stimuli Responsive Macromolecules and Their Assemblies
Zhuang, Jiaming; Gordon, Mallory; Ventura, Judy; Li, Longyu; Thayumanavan, S.
2013-01-01
In this review, we outline examples that illustrate the design criteria for achieving macromolecular assemblies that incorporate a combination of two or more chemical, physical or biological stimuli-responsive components. Progress in both fundamental investigation into the phase transformations of these polymers in response to multiple stimuli and their utilization in a variety of pratical applications have been highlighted. Using these examples, we aim to explain the origin of employed mechanisms of stimuli responsiveness which may serve as a guideline to inspire future design of multi-stimuli responsive materials. PMID:23765263
Benning, Stephen D.; Kovac, Megan; Campbell, Alana; Miller, Stephanie; Hanna, Eleanor K.; Damiano, Cara R.; Sabatino-DiCriscio, Antoinette; Turner-Brown, Lauren; Sasson, Noah J.; Aaron, Rachel V.; Kinard, Jessica; Dichter, Gabriel S.
2016-01-01
We examined the late positive potential (LPP) event related potential in response to social and nonsocial stimuli from 9-19 years old youth with (n = 35) and without (n = 34) ASD. Social stimuli were faces with positive expressions and nonsocial stimuli were related to common restricted interests in ASD (e.g., electronics, vehicles, etc.). The ASD group demonstrated relatively smaller LPP amplitude to social stimuli and relatively larger LPP amplitude to nonsocial stimuli. There were no group differences in subjective ratings of images, and there were no significant correlations between LPP amplitude and ASD symptom severity within the ASD group. LPP results suggest blunted motivational responses to social stimuli and heightened motivational responses to nonsocial stimuli in youth with ASD. PMID:27344337
ERIC Educational Resources Information Center
Laasonen, Marja; Virsu, Veijo; Oinonen, Suvi; Sandbacka, Mirja; Salakari, Anita; Service, Elisabet
2012-01-01
We investigated whether poor short-term memory (STM) in developmental dyslexia affects the processing of sensory stimulus sequences in addition to phonological material. STM for brief binary non-verbal stimuli (light flashes, tone bursts, finger touches, and their crossmodal combinations) was studied in 20 Finnish adults with dyslexia and 24…
Ramos Chagas, Gabriela; Kiryanenko, Denis; Godeau, Guilhem; Guittard, Frédéric; Darmanin, Thierry
2017-12-06
A smart stimuli-responsive surface was fabricated by the electro-copolymerization of pyrene monomers followed by base and acid treatment. Copolymers of pyrenes bearing fluorinated chains (Py-nF 6 ) and acid functions (Py-COOH) were produced with different molar concentrations of each monomer (0, 25, 50, 75, and 100 % of Py-nF 6 vs. Py-COOH) by an electrochemical process. Two different perfluorinated pyrenes containing ester and amide groups were used to reach superhydrophobic properties. The relation of those bonds with the final properties of the surface was explored. The pH-sensitive group of Py-COOH allowed the surfaces to be reversibly switched from superhydrophobic (water contact angle>θ w >150° and very low hysteresis) to hydrophilic (θ w <90°). The amide and ester bonds influenced the recovery of the original wettability after both base and acid treatment. Although the fluorinated homopolymer with ester bonds was insensitive to base and acid treatment due to its superhydrophobic properties with ultralow water adhesion, the recovery of the original wettability for the copolymers was much more important with amide bonds due to the amide functional groups be more resistant to the hydrolysis reaction. This strategy offered the opportunity to access superhydrophobic films with switchable wettability by simple pH treatment. The films proved to be a good tool for use in biological applications, for example, as a bacterial-resistant film if superhydrophobic and as a bacterial-adherent film if hydrophilic. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inoue, Takeshi; Hoshino, Hajime; Yamashita, Taiga; Shimoyama, Seira; Agata, Kiyokazu
2015-01-01
Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and the same dose of chemoattractant was presented, planarian behaviors were gradually shifted to negative phototaxis rather than chemoattraction. These results suggest that planarians may be capable of selecting behavioral strategies via the integration of discrete brain functions when exposed to multiple stimuli. The planarian brain processes external signals received through the respective sensory neurons, thereby resulting in the production of appropriate behaviors. In addition, planarians can adjust behavioral features in response to stimulus conditions by integrating multiple external signals in the brain.
Chen, Jem-Kun; Chang, Chi-Jung
2014-01-01
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing) were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles), switchable wettability, sensors (optical sensors, biosensors, chemical sensors), and actuators. PMID:28788489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tronto, Jairo, E-mail: jairotronto@ufv.br; Pinto, Frederico G.; Costa, Liovando M. da
2015-01-15
A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermalmore » treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made. • Thermal treatment above 120 °C causes partially breakdown of the LDH structure. • ESR results indicated a polaron response characteristic of electron conductivity.« less
Deep Learning of Orthographic Representations in Baboons
Hannagan, Thomas; Ziegler, Johannes C.; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan
2014-01-01
What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords [1]. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300
NASA Technical Reports Server (NTRS)
Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.
1984-01-01
The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.
NASA Technical Reports Server (NTRS)
Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.
1984-01-01
The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.
How you perceive threat determines your behavior
Fernandes, Orlando; Portugal, Liana C. L.; Alves, Rita C. S.; Campagnoli, Rafaela R.; Mocaiber, Izabela; David, Isabel P. A.; Erthal, Fátima C. S.; Volchan, Eliane; de Oliveira, Leticia; Pereira, Mirtes G.
2013-01-01
The prioritization of processing emotional stimuli usually produces deleterious effects on task performance when it distracts from a task. One common explanation is that brain resources are consumed by emotional stimuli, diverting resources away from executing the task. Viewing unpleasant stimuli also generates defensive reactions, and these responses may be at least partially responsible for the effect of the emotional modulation observed in various reaction time (RT) paradigms. We investigated whether modulatory effects on RT vary if we presented threat stimuli to prompt different defensive responses. To trigger different responses, we manipulated threat perception by moving the direction of threatening stimuli. Threatening or neutral stimuli were presented as distractors during a bar orientation discrimination task. The results demonstrated that threat stimuli directed toward the observer produced a decrease in RT; in contrast, threat stimuli directed away from the observer produced an increase in RT, when compared to neutral stimuli. Accelerated RT during directed toward threat stimuli was attributed to increased motor preparation resulting from strong activation of the defense response cascade. In contrast, directed away threat stimuli likely activated the defense cascade, but less intensively, prompting immobility. Different threat stimuli produced varying effects, which was interpreted as evidence that the modulation of RT by emotional stimuli represents the summation of attentional and motivational effects. Additionally, participants who had been previously exposed to diverse types of violent crime were more strongly influenced by threat stimuli directed toward the observer. In sum, our data support the concept that emotions are indeed action tendencies. PMID:24115925
Design of multimodal degradable hydrogels for controlled therapeutic delivery
NASA Astrophysics Data System (ADS)
Kharkar, Prathamesh Madhav
Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For localized drug delivery, hydrophilic polymeric precursors often are laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation. The release of physically entrapped cargo is dictated by Fickian diffusion, degradation of the drug carrier, or a combination of both. The goal of this work was to design and characterize degradable hydrogel formulations that are responsive to multiple biologically relevant stimuli for degradation-mediated delivery of cargo molecules such as therapeutic proteins, growth factors, and immunomodulatory agents. We began by demonstrating the use of cleavable click linkages formed by Michael-type addition reactions in conjunction with hydrolytically cleavable functionalities for the degradation of injectable hydrogels by endogenous stimuli for controlled protein release. Specifically, the reaction between maleimides and thiols was utilized for hydrogel formation, where thiol selection dictates the degradability of the resulting linkage under thiol-rich reducing conditions. Relevant microenvironments where degradation would occur in vivo include those rich in glutathione (GSH), a tripeptide that is found at elevated concentrations in carcinoma tissues. Degradation of the hydrogels was monitored with rheometry and volumetric swelling measurements. Arylthiol-based thioether succinimide linkages underwent degradation via click cleavage and thiol exchange reaction in the presence of GSH and via ester hydrolysis, whereas alkylthiol-based thioether succinimide linkages only undergo degradation by only ester hydrolysis. The resulting control over the degradation rate within a reducing microenvironment resulted in 2.5 fold differences in the release profile of the model protein, a fluorescently-labeled bovine serum albumin, from dually degradable hydrogels compared to non-degradable hydrogels, where the thiol exchange reaction facilitated rapid and responsive protein release in the presence of GSH. A photolabile o-nitrobenzyl ether group (o-NB) was subsequently incorporated within the PEG-based, gel-forming monomers to demonstrate cargo release triggered by exogenous stimuli for patient-specific therapies. Upon the application of cytocompatible doses of light, the photolabile o-NB linkage underwent irreversible cleavage yielding ketone and carboxylic acid-based cleavage products. Hydrogel degradation kinetics was characterized in response to externally applied cytocompatible light or GSH in aqueous microenvironments. By incorporating a photodegradable o-nitrobenzyl ether group, a thiol-sensitive succinimide thioether linkage, and ester linkages within the hydrogels, we demonstrated unique control over degradation via surface erosion or bulk degradation mechanisms, respectively, with degradation rate constants ranging from 10-1 min-1 to 10-4 min-1. As a proof of concept, the controlled release of nanobeads from the hydrogel was demonstrated in a preprogrammed and stimuli-responsive fashion. The multimodal degradable hydrogels were then investigated for the local controlled release of small molecular weight proteins, which are of interest for regulating various cellular functions and fates in vivo. Low molecular weight heparin, a highly sulfated polysaccharide was incorporated within the hydrogel network by Michael-type reaction due to its affinity with biologics such as growth factors and immunomodulatory proteins. Incorporation of reduction-sensitive linkages resulted in 2.3 fold differences in the release profile of fibroblast growth factor-2 (FGF-2) in the presence of GSH compared to non-reducing microenvironment. Bioactivity of released FGF-2 was comparable to pristine FGF-2, indicating the ability of the hydrogel to retain bioactivity of cargo molecules during encapsulation and release. Further, preliminary in vivo studies demonstrated control over hydrogel degradation by varying % degradable contents. Collectively, this research developed injectable hydrogels that are responsive to various endogenous and exogenous stimuli, establishing a platform for stimuli-responsive drug delivery carriers.
Stippekohl, Bastian; Winkler, Markus H; Walter, Bertram; Kagerer, Sabine; Mucha, Ronald F; Pauli, Paul; Vaitl, Dieter; Stark, Rudolf
2012-01-01
An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users) whereas others are discontent (dissonant users). Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli) and stimuli associated with the terminal stage (END-smoking-stimuli) of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula) in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex) compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli) are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli) seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant smokers experience difficulties in translating their attitudes into an actual behavior change.
Stippekohl, Bastian; Winkler, Markus H.; Walter, Bertram; Kagerer, Sabine; Mucha, Ronald F.; Pauli, Paul; Vaitl, Dieter; Stark, Rudolf
2012-01-01
An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users) whereas others are discontent (dissonant users). Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli) and stimuli associated with the terminal stage (END-smoking-stimuli) of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula) in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex) compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli) are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli) seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant smokers experience difficulties in translating their attitudes into an actual behavior change. PMID:23155368
Neural Entrainment to Auditory Imagery of Rhythms.
Okawa, Haruki; Suefusa, Kaori; Tanaka, Toshihisa
2017-01-01
A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG) response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female) imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA) and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.
Gray, Nicola S.; Snowden, Robert J.
2017-01-01
Psychopathic individuals show a range of affective processing deficits, typically associated with the interpersonal/affective component of psychopathy. However, previous research has been inconsistent as to whether psychopathy, within both offender and community populations, is associated with deficient autonomic responses to the simple presentation of affective stimuli. Changes in pupil diameter occur in response to emotionally arousing stimuli and can be used as an objective indicator of physiological reactivity to emotion. This study used pupillometry to explore whether psychopathic traits within a community sample were associated with hypo-responsivity to the affective content of stimuli. Pupil activity was recorded for 102 adult (52 female) community participants in response to affective (both negative and positive affect) and affectively neutral stimuli, that included images of scenes, static facial expressions, dynamic facial expressions and sound-clips. Psychopathic traits were measured using the Triarchic Psychopathy Measure. Pupil diameter was larger in response to negative stimuli, but comparable pupil size was demonstrated across pleasant and neutral stimuli. A linear relationship between subjective arousal and pupil diameter was found in response to sound-clips, but was not evident in response to scenes. Contrary to predictions, psychopathy was unrelated to emotional modulation of pupil diameter across all stimuli. The findings were the same when participant gender was considered. This suggests that psychopathy within a community sample is not associated with autonomic hypo-responsivity to affective stimuli, and this effect is discussed in relation to later defensive/appetitive mobilisation deficits. PMID:28118366
Burrows, Matthew; Morawo, Tolulope; Fadamiro, Henry
2017-06-01
Parasitoids utilize various sugar resources in nature, and rely on odor cues from plants to locate their food and hosts. However, lack of sugar in the diet may negatively impact odor reception in parasitoids, thus affecting foraging efficiency. We used Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), as a model species to test the hypothesis that variation in sugar diet of parasitoids affects their olfactory response to host-related odors. Heliothis virescens is a major pest of cotton and other important crops. Response of female M. croceipes fed different diet treatments (i.e., 40%, 20%, 10%, or 0% sucrose/water solution [w/v]) to select cotton volatiles were tested in electroantennogram (EAG) and Y-tube olfactometer bioassays. The following cotton plant odors were tested: cis-3-hexenol, α-pinene, 50/50 v/v binary mixture of cis-3-hexenol and α-pinene, and H. virescens-infested cotton. Sucrose-fed parasitoids showed higher EAG response to the binary mixture and host-infested plant volatile extract, compared with sucrose-starved (0% sucrose) parasitoids. However, there was no significant difference in EAG response of parasitoids to odor treatments among individuals fed 40%, 20%, or 10% sucrose. In a Y-tube olfactometer, female M. croceipes fed 40% sucrose were significantly more attracted to host-infested cotton than to a control (no plant). However, parasitoids were not significantly attracted to other odor stimuli. These results suggest that the availability of sugar diet affects odor reception in M. croceipes but variation in sugar concentration probably plays a minimal role in olfactory response of M. croceipes to host-related odors. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K
NASA Astrophysics Data System (ADS)
Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.
2018-01-01
The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.
A Link between Dimerization and Autophosphorylation of the Response Regulator PhoB*
Creager-Allen, Rachel L.; Silversmith, Ruth E.; Bourret, Robert B.
2013-01-01
Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3−. Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ∼10-fold higher than for the monomer. In a test of the model, disruption of the known PhoBN dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation. PMID:23760278
Predictions about Bisymmetry and Cross-Modal Matches from Global Theories of Subjective Intensities
ERIC Educational Resources Information Center
Luce, R. Duncan
2012-01-01
The article first summarizes the assumptions of Luce (2004, 2008) for inherently binary (2-D) stimuli (e.g., the ears and eyes) that lead to a "p-additive," order-preserving psychophysical representation. Next, a somewhat parallel theory for unary (1-D) signals is developed for intensity attributes such as linear extent, vibration to finger, and…
Metaphorical Salience in Artistic Text Processing: Evidence From Eye Movement.
Novikova, Eleonora G; Janyan, Armina; Tsaregorodtseva, Oksana V
2015-01-01
The study aimed to explore processing difference between a literal phrase and a metaphoric one. Unlike artificially created stimuli in most experimental research, an artistic text with an ambiguous binary metaphoric phrase was used. Eye tracking methodology was applied. Results suggested difference between the two types of phrases in both early and late processing measures. © The Author(s) 2015.
Neural representation of consciously imperceptible speech sound differences.
Allen, J; Kraus, N; Bradlow, A
2000-10-01
The concept of subliminal perception has been a subject of interest and controversy for decades. Of interest in the present investigation was whether a neurophysiologic index of stimulus change could be elicited to speech sound contrasts that were consciously indiscriminable. The stimuli were chosen on the basis of each individual subject's discrimination threshold. The speech stimuli (which varied along an F3 onset frequency continuum from /da/ to /ga/) were synthesized so that the acoustical properties of the stimuli could be tightly controlled. Subthreshold and suprathreshold stimuli were chosen on the basis of behavioral ability demonstrated during psychophysical testing. A significant neural representation of stimulus change, reflected by the mismatch negativity response, was obtained in all but 1 subject in response to subthreshold stimuli. Grand average responses differed significantly from responses obtained in a control condition consisting of physiologic responses elicited by physically identical stimuli. Furthermore, responses to suprathreshold stimuli (close to threshold) did not differ significantly from subthreshold responses with respect to latency, amplitude, or area. These results suggest that neural representation of consciously imperceptible stimulus differences occurs and that this representation occurs at a preattentive level.
Sukumar, Subash; Waugh, Sarah J
2007-03-01
We estimated spatial summation areas for the detection of luminance-modulated (LM) and contrast-modulated (CM) blobs at the fovea, 2.5, 5 and 10 deg eccentrically. Gaussian profiles were added or multiplied to binary white noise to create LM and CM blob stimuli and these were used to psychophysically estimate detection thresholds and spatial summation areas. The results reveal significantly larger summation areas for detecting CM than LM blobs across eccentricity. These differences are comparable to receptive field size estimates made in V1 and V2. They support the notion that separate spatial processing occurs for the detection of LM and CM stimuli.
Cassidy, Clifford M.; Brodeur, Mathieu B.; Lepage, Martin; Malla, Ashok
2014-01-01
Background Dysfunctional reward processing is present in individuals with schizophrenia-spectrum disorders (SSD) and may confer vulnerability to addiction. Our objective was to identify a deficit in patients with SSD on response to rewarding stimuli and determine whether this deficit predicts cannabis use. Methods We divided a group of patients with SSD and nonpsychotic controls into cannabis users and nonusers. Response to emotional and cannabis-associated visual stimuli was assessed using self-report, event-related potentials (using the late positive potential [LPP]), facial electromyography and skin-conductance response. Results Our sample comprised 35 patients with SSD and 35 nonpsychotic controls. Compared with controls, the patients with SSD showed blunted LPP response to pleasant stimuli (p = 0.003). Across measures, cannabis-using controls showed greater response to pleasant stimuli than to cannabis stimuli whereas cannabis-using patients showed little bias toward pleasant stimuli. Reduced LPP response to pleasant stimuli was predictive of more frequent subsequent cannabis use (β = −0.24, p = 0.034). Limitations It is not clear if the deficit associated with cannabis use is specific to rewarding stimuli or nonspecific to any kind of emotionally salient stimuli. Conclusion The LPP captures a reward-processing deficit in patients with SSD and shows potential as a biomarker for identifying patients at risk of heavy cannabis use. PMID:24913137
Cassidy, Clifford M; Brodeur, Mathieu B; Lepage, Martin; Malla, Ashok
2014-09-01
Dysfunctional reward processing is present in individuals with schizophrenia-spectrum disorders (SSD) and may confer vulnerability to addiction. Our objective was to identify a deficit in patients with SSD on response to rewarding stimuli and determine whether this deficit predicts cannabis use. We divided a group of patients with SSD and nonpsychotic controls into cannabis users and nonusers. Response to emotional and cannabis-associated visual stimuli was assessed using self-report, event-related potentials (using the late positive potential [LPP]), facial electromyography and skin-conductance response. Our sample comprised 35 patients with SSD and 35 nonpsychotic controls. Compared with controls, the patients with SSD showed blunted LPP response to pleasant stimuli (p = 0.003). Across measures, cannabis-using controls showed greater response to pleasant stimuli than to cannabis stimuli whereas cannabis-using patients showed little bias toward pleasant stimuli. Reduced LPP response to pleasant stimuli was predictive of more frequent subsequent cannabis use (β = -0.24, p = 0.034). It is not clear if the deficit associated with cannabis use is specific to rewarding stimuli or nonspecific to any kind of emotionally salient stimuli. The LPP captures a reward-processing deficit in patients with SSD and shows potential as a biomarker for identifying patients at risk of heavy cannabis use.
Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
Kahn, Jason S; Hu, Yuwei; Willner, Itamar
2017-04-18
The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).
Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong
2017-01-01
SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.
Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli
Samir, Parimal; Rahul; Slaughter, James C.; Link, Andrew J.
2015-01-01
Ultimately, the genotype of a cell and its interaction with the environment determine the cell’s biochemical state. While the cell’s response to a single stimulus has been studied extensively, a conceptual framework to model the effect of multiple environmental stimuli applied concurrently is not as well developed. In this study, we developed the concepts of environmental interactions and epistasis to explain the responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We hypothesize that, as an abstraction, environmental stimuli can be treated as analogous to genetic elements. This would allow modeling of the effects of multiple stimuli using the concepts and tools developed for studying gene interactions. Mirroring gene interactions, our results show that environmental interactions play a critical role in determining the state of the proteome. We show that individual and complex environmental stimuli behave similarly to genetic elements in regulating the cellular responses to stimuli, including the phenomena of dominance and suppression. Interestingly, we observed that the effect of a stimulus on a protein is dominant over other stimuli if the response to the stimulus involves the protein. Using publicly available transcriptomic data, we find that environmental interactions and epistasis regulate transcriptomic responses as well. PMID:26247773
Montmorillonite, Oligonucleotides, RNA and Origin of Life
NASA Astrophysics Data System (ADS)
Ertem, Gözen
2004-12-01
Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer <3-mer <4-mer ... <7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).
Montmorillonite, oligonucleotides, RNA and origin of life
NASA Technical Reports Server (NTRS)
Ertem, Gozen
2004-01-01
Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).
Kupenova, Petia; Vitanova, Lily; Popova, Elka
2010-04-01
GABAergic transmission is involved in color coding in the retina. The specific contribution of different GABA receptors to spectral sensitivity of the retinal responses is not well characterized. We studied GABAa and GABAc receptor-mediated effects on the intensity-response functions of the electroretinographic ON (b-wave) and OFF (d-wave) responses to color stimuli. For this purpose, we compared the effects of GABAa receptor blockade by bicuculline with the effects of GABAa + GABAc receptor blockade by picrotoxin. The blockade of both GABAa and GABAc receptors caused an amplitude increase of the electroretinographic responses, but the effects of the two blockades depended in a specific manner on stimulus intensity and wavelength. The effects of GABAa receptor blockade showed distinct color ON/OFF asymmetry. The absolute and relative sensitivities of the ON responses to blue stimuli and OFF responses to red stimuli were increased to the greatest degree while the sensitivity of the ON responses to red stimuli and OFF responses to blue stimuli was least increased. In contrast, color ON/OFF asymmetry was not typical of the effects of GABAc receptor blockade. The most prominent GABAc effect was the sensitivity increase of the ON and OFF responses to blue stimuli and, to some lesser extent, to green stimuli. The results of this study indicate a specific role of GABAa and GABAc receptor-mediated influences in processing of chromatic information in the distal retina.
NASA Astrophysics Data System (ADS)
López-López, J. M.; Moncho-Jordá, A.; Schmitt, A.; Hidalgo-Álvarez, R.
2005-09-01
Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative concentration of the two species. Both, short and long time behaviors are investigated by means of three-dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles is found to be formed when the relative concentration of the minority particles lies above a critical value. Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer discrimination that was observed recently in single cluster light scattering experiments.
Molecular dynamics simulation of a needle-sphere binary mixture
NASA Astrophysics Data System (ADS)
Raghavan, Karthik
This paper investigates the dynamic behaviour of a hard needle-sphere binary system using a novel numerical technique called the Newton homotopy continuation (NHC) method. This mixture is representative of a polymer melt where both long chain molecules and monomers coexist. Since the intermolecular forces are generated from hard body interactions, the consequence of missed collisions or incorrect collision sequences have a significant bearing on the dynamic properties of the fluid. To overcome this problem, in earlier work NHC was chosen over traditional Newton-Raphson methods to solve the hard body dynamics of a needle fluid in random media composed of overlapping spheres. Furthermore, the simplicity of interactions and dynamics allows us to focus our research directly on the effects of particle shape and density on the transport behaviour of the mixture. These studies are also compared with earlier works that examined molecular chains in porous media primarily to understand the differences in molecular transport in the bulk versus porous systems.
Björkner, B; Niklasson, B
1984-11-01
Many factors can influence the elicitation of hypersensitivity reactions in guinea pigs and humans. The effect which the vehicle might have on the test response in guinea pigs sensitized with various acrylic compounds, using the "guinea pig maximization test", has been investigated. A marked decrease in the number of positive animals was seen when acetone was used as test vehicle, compared to petrolatum. The same result was seen with alcohol as vehicle, when neopentyl glycol diacrylate (NPGDA) was used as an acrylic monomer model. The patch test locations on the guinea pig flank, also affected the test response. Half of the animals did not react when challenged near the abdomen, compared to a test site near the back. By means of HPLC-analysis, the possible adsorption of the acrylic monomer to the aluminium chamber or filter paper disc, was analysed. Our findings did not indicate that adsorption occurs. A decrease in the amount of acrylic monomer in the chamber with increasing time, was noted. There was a marked difference in the monomer residue between solutions with (darkness) and without (daylight) inhibitor. The monomer decrease was also more affected by an aluminium surface than a glass or filter paper surface. Aluminium oxide probably enhances the polymerization process. The discrepancy between the test results in this study, when petrolatum and acetone were used as test vehicles, is due to a polymerization process of the acrylic compounds. Thus, the petrolatum vehicle probably prevents polymerization of the acrylic monomer.
Protein-surface interactions on stimuli-responsive polymeric biomaterials.
Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D
2016-03-04
Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.
NASA Technical Reports Server (NTRS)
Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)
1976-01-01
An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location including a projection system for displaying to a patient a series of visual stimuli. A response switch enables him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system thereby provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.
Alcalá-Quintana, Rocío; García-Pérez, Miguel A
2013-12-01
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.
Ho, Elton; Smith, Richard; Goetz, Georges; Lei, Xin; Galambos, Ludwig; Kamins, Theodore I; Harris, James; Mathieson, Keith; Palanker, Daniel; Sher, Alexander
2018-02-01
Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We demonstrate modulation of the retinal ganglion cells (RGC) activity using complex spatiotemporal stimuli delivered via subretinal photovoltaic implant at 20 Hz in healthy and in degenerate retina. RGCs exhibit fast and localized ON and OFF network-mediated responses, with antagonistic center-surround organization of their receptive fields.
Stimuli-Responsive Polymeric Nanoparticles.
Liu, Xiaolin; Yang, Ying; Urban, Marek W
2017-07-01
There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The vestibular evoked myogenic potential (VEMP): air- versus bone-conducted stimuli.
McNerney, Kathleen M; Burkard, Robert F
2011-01-01
Several studies have evaluated the effects of different stimulus and recording parameters on the cervical vestibular evoked myogenic potential (cVEMP); however, it is difficult to directly compare these studies as they have all used different recording methods, different sternocleidomastoid (SCM) muscle contraction/electromyography monitoring methods, and different stimulus parameters. : This study made a direct comparison of the cVEMP in response to air-conducted (AC) and bone-conducted (BC) stimuli in the same subjects, using the same stimulus/recording/electromyography monitoring methods. We found that the input/output (I/O) functions were more linear in response to AC stimuli, whereas cVEMPs in response to BC stimuli began to saturate at the highest level. In addition, cVEMP threshold was obtained at a lower stimulus level (i.e., at a lower sensation level) in response to BC stimuli as compared with AC stimuli, and cVEMPs in response to BC stimuli were larger than cVEMPs in response to AC stimuli, which is in agreement with what has been found in previous studies. In addition, this was one of the few studies to evaluate the repeatability of the cVEMP in response to BC stimuli. Interestingly, we found that cVEMP latency in response to BC stimuli was, in most cases, less variable than cVEMP latency obtained in response to AC stimuli, whereas the reverse was true for cVEMP amplitude. We also found that BC masking presented to the forehead affected response amplitude of the AC cVEMP regardless of the specific SCM muscle contraction/toneburst presentation condition. In addition, we found that the ratio of amplitude reduction was greater in the binaural stimulation/bilateral SCM muscle contraction condition as compared with the monaural stimulation/bilateral SCM muscle contraction condition. The present experiment provided a direct comparison of the cVEMP in response to AC versus BC 500 Hz short-duration toneburst stimuli in the same subjects. The results of the present experiment also provide insight into the laterality of the cVEMP response and reveal that the cVEMP may not be completely ipsilateral (i.e., there may be a form of bilateral interaction that occurs when both sides are stimulated simultaneously). Last, the results indicate that BC stimuli likely activates the saccule as well as the utricle, given that AC VEMPs can be masked by the administration of BC masking noise presented to the midline.
Ho, Tiffany C; Zhang, Shunan; Sacchet, Matthew D; Weng, Helen; Connolly, Colm G; Henje Blom, Eva; Han, Laura K M; Mobayed, Nisreen O; Yang, Tony T
2016-01-01
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed.
Ho, Tiffany C.; Zhang, Shunan; Sacchet, Matthew D.; Weng, Helen; Connolly, Colm G.; Henje Blom, Eva; Han, Laura K. M.; Mobayed, Nisreen O.; Yang, Tony T.
2016-01-01
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed. PMID:26869950
G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.
Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela
2015-09-22
Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.
2016-01-01
Surfactant micelles are dynamic entities with a rapid exchange of monomers. By “clicking” tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts. PMID:27181610
Direct Visualization of Conformation and Dense Packing of DNA-Based Soft Colloids
NASA Astrophysics Data System (ADS)
Zhang, Jing; Lettinga, Paul M.; Dhont, Jan K. G.; Stiakakis, Emmanuel
2014-12-01
Soft colloids—such as polymer-coated particles, star polymers, block-copolymer micelles, microgels—constitute a broad class of materials where microscopic properties such as deformability and penetrability of the particle play a key role in tailoring their macroscopic properties which is of interest in many technological areas. The ability to access these microscopic properties is not yet demonstrated despite its great importance. Here we introduce novel DNA-coated colloids with star-shaped architecture that allows accessing the above local structural information by directly visualizing their intramolecular monomer density profile and arm's free-end locations with confocal fluorescent microscopy. Compression experiments on a two-dimensional hexagonal lattice formed by these macromolecular assemblies reveal an exceptional resistance to mutual interpenetration of their charged corona at pressures approaching the MPa range. Furthermore, we find that this lattice, in a close packing configuration, is surprisingly tolerant to particle size variation. We anticipate that these stimuli-responsive materials could aid to get deeper insight in a wide range of problems in soft matter, including the study and design of biomimetic lubricated surfaces.
FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less
Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren
2016-04-20
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)₂) by modulating the surrounding pH. The CV peak currents of Fc(COOH)₂ were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)₂ in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.
Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren
2016-01-01
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)2) by modulating the surrounding pH. The CV peak currents of Fc(COOH)2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes. PMID:27104542
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-01-01
Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-04-01
Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.
NASA Technical Reports Server (NTRS)
Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)
1973-01-01
An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location is described. The apparatus includes a projection system for displaying to a patient a series of visual stimuli, a response switch enabling him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.
Freeze or flee? Negative stimuli elicit selective responding.
Estes, Zachary; Verges, Michelle
2008-08-01
Humans preferentially attend to negative stimuli. A consequence of this automatic vigilance for negative valence is that negative words elicit slower responses than neutral or positive words on a host of cognitive tasks. Some researchers have speculated that negative stimuli elicit a general suppression of motor activity, akin to the freezing response exhibited by animals under threat. Alternatively, we suggest that negative stimuli only elicit slowed responding on tasks for which stimulus valence is irrelevant for responding. To discriminate between these motor suppression and response-relevance hypotheses, we elicited both lexical decisions and valence judgments of negative words and positive words. Relative to positive words (e.g., kitten), negative words (e.g., spider) elicited slower lexical decisions but faster valence judgments. Results therefore indicate that negative stimuli do not cause a generalized motor suppression. Rather, negative stimuli elicit selective responding, with faster responses on tasks for which stimulus valence is response-relevant.
NASA Astrophysics Data System (ADS)
Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo
2017-08-01
We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.
Stimuli-responsive chitosan-based nanocarriers for cancer therapy
Fathi, Marziyeh; Sahandi Zangabad, Parham; Majidi, Sima; Barar, Jaleh; Erfan-Niya, Hamid
2017-01-01
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli. PMID:29435435
Stimuli-responsive chitosan-based nanocarriers for cancer therapy.
Fathi, Marziyeh; Sahandi Zangabad, Parham; Majidi, Sima; Barar, Jaleh; Erfan-Niya, Hamid; Omidi, Yadollah
2017-01-01
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli.
Resistance to change and frequency of response-dependent stimuli uncorrelated with reinforcement.
Podlesnik, Christopher A; Jimenez-Gomez, Corina; Ward, Ryan D; Shahan, Timothy A
2009-09-01
Stimuli uncorrelated with reinforcement have been shown to enhance response rates and resistance to disruption; however, the effects of different rates of stimulus presentations have not been assessed. In two experiments, we assessed the effects of adding different rates of response-dependent brief stimuli uncorrelated with primary reinforcement on relative response rates and resistance to change. In both experiments, pigeons responded on variable-interval 60-s schedules of food reinforcement in two components of a multiple schedule, and brief response-dependent keylight-color changes were added to one or both components. Although relative response rates were not systematically affected in either experiment, relative resistance to presession feeding and extinction were. In Experiment 1, adding stimuli on a variable-interval schedule to one component of a multiple schedule either at a low rate (1 per min) for one group or at a high rate (4 per min) for another group similarly increased resistance to disruption in the components with added stimuli. When high and low rates of stimuli were presented across components (i.e., within subjects) in Experiment 2, however, relative resistance to disruption was greater in the component presenting stimuli at a lower rate. These results suggest that stimuli uncorrelated with food reinforcement do not strengthen responding in the same way as primary reinforcers.
Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov
2016-04-01
Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation
Behmer, Lawrence P; Fournier, Lisa R
2016-11-01
Questions regarding the malleability of the mirror neuron system (MNS) continue to be debated. MNS activation has been reported when people observe another person performing biological goal-directed behaviors, such as grasping a cup. These findings support the importance of mapping goal-directed biological behavior onto one's motor repertoire as a means of understanding the actions of others. Still, other evidence supports the Associative Sequence Learning (ASL) model which predicts that the MNS responds to a variety of stimuli after sensorimotor learning, not simply biological behavior. MNS activity develops as a consequence of developing stimulus-response associations between a stimulus and its motor outcome. Findings from the ideomotor literature indicate that stimuli that are more ideomotor compatible with a response are accompanied by an increase in response activation compared to less compatible stimuli; however, non-compatible stimuli robustly activate a constituent response after sensorimotor learning. Here, we measured changes in the mu-rhythm, an EEG marker thought to index MNS activity, predicting that stimuli that differ along dimensions of ideomotor compatibility should show changes in mirror neuron activation as participants learn the respective stimulus-response associations. We observed robust mu-suppression for ideomotor-compatible hand actions and partially compatible dot animations prior to learning; however, compatible stimuli showed greater mu-suppression than partially or non-compatible stimuli after explicit learning. Additionally, non-compatible abstract stimuli exceeded baseline only after participants explicitly learned the motor responses associated with the stimuli. We conclude that the empirical differences between the biological and ASL accounts of the MNS can be explained by Ideomotor Theory. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fan, Bo; Gillies, Elizabeth R
2017-08-07
The ability to disrupt polymer assemblies in response to specific stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli-initiated events to release drugs. "Self-immolative polymers" offer the potential to provide amplified responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker end-caps were triggered by a thiol reducing agent, UV light, H 2 O 2 , and combinations of these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective in rapidly disrupting the nanoparticles. Nile red, doxorubin, and curcumin were encapsulated into the nanoparticles and were selectively released upon application of the appropriate stimulus. The ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new platform highly attractive for applications in drug delivery.
(1→3)-β-d-Glucan oligosaccharides monomers purification and its H2O2 induction effect study.
Fu, Yunbin; Wang, Mengyu; Wang, Wenxia; Tuo, Yaqin; Guo, Zhimou; Du, Yuguang; Yin, Heng
2015-11-01
In order to produce highly purified (1→3)-β-d-glucan oligosaccharides ((1→3)-β-d-GOS) monomers, a hydrophilic interaction liquid chromatography (HILIC) system with X-Amide stationary phase was performed. Nine (1→3)-β-d-GOS monomers with degree of polymerization (DP) from 2 to 10 were successfully separated. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) demonstrated that these monomers were with high purity. Furthermore, a hydrogen peroxide (H2O2) online detection method was established to monitor H2O2 releases in tobacco cells. This is the first report on nine consecutive (1→3)-β-d-GOS monomers purification and its effect upon H2O2-releasing in plants. It was found that (1→3)-β-d-GOS monomers with higher DP induced stronger defense responses in plants, which will pave the way for elucidating the relationship between (1→3)-β-d-GOS and biological activities. Copyright © 2015 Elsevier B.V. All rights reserved.
Processing of odor mixtures in the zebrafish olfactory bulb.
Tabor, Rico; Yaksi, Emre; Weislogel, Jan-Marek; Friedrich, Rainer W
2004-07-21
Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB.
A Maximum Likelihood Approach to Functional Mapping of Longitudinal Binary Traits
Wang, Chenguang; Li, Hongying; Wang, Zhong; Wang, Yaqun; Wang, Ningtao; Wang, Zuoheng; Wu, Rongling
2013-01-01
Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits. PMID:23183762
Peck, Christopher J; Salzman, C Daniel
2014-01-01
Humans and other animals routinely identify and attend to sensory stimuli so as to rapidly acquire rewards or avoid aversive experiences. Emotional arousal, a process mediated by the amygdala, can enhance attention to stimuli in a non-spatial manner. However, amygdala neural activity was recently shown to encode spatial information about reward-predictive stimuli, and to correlate with spatial attention allocation. If representing the motivational significance of sensory stimuli within a spatial framework reflects a general principle of amygdala function, then spatially selective neural responses should also be elicited by sensory stimuli threatening aversive events. Recordings from amygdala neurons were therefore obtained while monkeys directed spatial attention towards stimuli promising reward or threatening punishment. Neural responses encoded spatial information similarly for stimuli associated with both valences of reinforcement, and responses reflected spatial attention allocation. The amygdala therefore may act to enhance spatial attention to sensory stimuli associated with rewarding or aversive experiences. DOI: http://dx.doi.org/10.7554/eLife.04478.001 PMID:25358090
2014-01-01
Background The affective personality trait ‘harm avoidance’ (HA) from Cloninger’s psychobiological personality model determines how an individual deals with emotional stimuli. Emotional stimuli are processed by a neural network that include the left and right amygdalae as important key nodes. Explicit, implicit and passive processing of affective stimuli are known to activate the amygdalae differently reflecting differences in attention, level of detailed analysis of the stimuli and the cognitive control needed to perform the required task. Previous studies revealed that implicit processing or passive viewing of affective stimuli, induce a left amygdala response that correlates with HA. In this new study we have tried to extend these findings to the situation in which the subjects were required to explicitly process emotional stimuli. Methods A group of healthy female participants was asked to rate the valence of positive and negative stimuli while undergoing fMRI. Afterwards the neural responses of the participants to the positive and to the negative stimuli were separately correlated to their HA scores and compared between the low and high HA participants. Results Both analyses revealed increased neural activity in the left laterobasal (LB) amygdala of the high HA participants while they were rating the positive and the negative stimuli. Conclusions Our results indicate that the left amygdala response to explicit processing of affective stimuli does correlate with HA. PMID:24884791
Inoue, Kazuya; Sato, Nobuya
2017-01-01
Attentional inhibition that occurs during discrimination tasks leads to the negative evaluation of distractor stimuli. This phenomenon, known as the distractor devaluation effect also occurs when go/no-go tasks require response inhibition. However, it remains unclear whether there are interactions between attention and response controls when the distractor devaluation effect occurs. The aims of this study were to investigate whether attention to stimuli in the go/no-go task plays a facilitative role in distractor devaluation through response inhibition, and to clarify whether this effect reflects a decreased preference for no-go stimuli. Participants evaluated the preference for pictures before and after a go/no-go task. In Experiments 1 and 2, they made a go or no-go response depending on the category of pictures displayed (gummy candies or rice crackers), whereas in Experiment 3 they did on the basis digit category, even or odd numbers, superimposed on such pictures. Experiments 1 and 2 demonstrated that the pictures presented as no-go stimuli in the preceding go/no-go task were evaluated as less positive than the pictures presented as go stimuli. This devaluation effect reflected an increased preference for the go stimuli but not a decreased preference for the no-go stimuli. Experiment 3 indicated that response inhibition did not affect the preference for the pictures that had not received attention in a preceding go/no-go task. These results suggest that although attention plays an important role in differential ratings for go and no-go stimuli, such differences, in fact, reflect the valuation of go stimuli. PMID:28439246
Inoue, Kazuya; Sato, Nobuya
2017-01-01
Attentional inhibition that occurs during discrimination tasks leads to the negative evaluation of distractor stimuli. This phenomenon, known as the distractor devaluation effect also occurs when go/no-go tasks require response inhibition. However, it remains unclear whether there are interactions between attention and response controls when the distractor devaluation effect occurs. The aims of this study were to investigate whether attention to stimuli in the go/no-go task plays a facilitative role in distractor devaluation through response inhibition, and to clarify whether this effect reflects a decreased preference for no-go stimuli. Participants evaluated the preference for pictures before and after a go/no-go task. In Experiments 1 and 2, they made a go or no-go response depending on the category of pictures displayed (gummy candies or rice crackers), whereas in Experiment 3 they did on the basis digit category, even or odd numbers, superimposed on such pictures. Experiments 1 and 2 demonstrated that the pictures presented as no-go stimuli in the preceding go/no-go task were evaluated as less positive than the pictures presented as go stimuli. This devaluation effect reflected an increased preference for the go stimuli but not a decreased preference for the no-go stimuli. Experiment 3 indicated that response inhibition did not affect the preference for the pictures that had not received attention in a preceding go/no-go task. These results suggest that although attention plays an important role in differential ratings for go and no-go stimuli, such differences, in fact, reflect the valuation of go stimuli.
Intimate stimuli result in fronto-parietal activation changes in anorexia nervosa.
van Zutphen, L; Maier, S; Siep, N; Jacob, G A; Tüscher, O; van Elst, L Tebartz; Zeeck, A; Arntz, A; O'Connor, M-F; Stamm, H; Hudek, M; Joos, Andreas
2018-02-03
Intimacy is a key psychological problem in anorexia nervosa (AN). Empirical evidence, including neurobiological underpinnings, is however, scarce. In this study, we evaluated various emotional stimuli including intimate stimuli experienced in patients with AN and non-patients, as well as their cerebral response. Functional magnetic resonance imaging was conducted using stimuli with positive, neutral, negative and intimate content. Participants (14 AN patients and 14 non-patients) alternated between passive viewing and explicit emotion regulation. Intimate stimuli were experienced less positively in AN patients compared to non-patients. AN patients showed decreased cerebral responses in superior parietal cortices in response to positive and intimate stimuli. Intimate stimuli led to stronger activation of the orbitofrontal cortex, and lower activation of the bilateral precuneus in AN patients. Orbitofrontal responses decreased in AN patients during explicit emotion regulation. These results show that intimate stimuli are of particular importance in AN patients, who show experiential differences compared to non-patients and altered activation of orbitofrontal and parietal brain structures. This supports that AN patients have difficulties with intimacy, attachment, self-referential processing and body perception. Level III, case-control study.
Chernyshev, Boris V; Bryzgalov, Dmitri V; Lazarev, Ivan E; Chernysheva, Elena G
2016-08-03
Current understanding of feature binding remains controversial. Studies involving mismatch negativity (MMN) measurement show a low level of binding, whereas behavioral experiments suggest a higher level. We examined the possibility that the two levels of feature binding coexist and may be shown within one experiment. The electroencephalogram was recorded while participants were engaged in an auditory two-alternative choice task, which was a combination of the oddball and the condensation tasks. Two types of deviant target stimuli were used - complex stimuli, which required feature conjunction to be identified, and simple stimuli, which differed from standard stimuli in a single feature. Two behavioral outcomes - correct responses and errors - were analyzed separately. Responses to complex stimuli were slower and less accurate than responses to simple stimuli. MMN was prominent and its amplitude was similar for both simple and complex stimuli, whereas the respective stimuli differed from standards in a single feature or two features respectively. Errors in response only to complex stimuli were associated with decreased MMN amplitude. P300 amplitude was greater for complex stimuli than for simple stimuli. Our data are compatible with the explanation that feature binding in auditory modality depends on two concurrent levels of processing. We speculate that the earlier level related to MMN generation is an essential and critical stage. Yet, a later analysis is also carried out, affecting P300 amplitude and response time. The current findings provide resolution to conflicting views on the nature of feature binding and show that feature binding is a distributed multilevel process.
Monomer volume fraction profiles in pH responsive planar polyelectrolyte brushes
Mahalik, Jyoti P.; Yang, Yubo; Deodhar, Chaitra V.; ...
2016-03-06
Spatial dependencies of monomer volume fraction profiles of pH responsive polyelectrolyte brushes were investigated using field theories and neutron reflectivity experiments. In particular, planar polyelectrolyte brushes in good solvent were studied and direct comparisons between predictions of the theories and experimental measurements are presented. The comparisons between the theories and the experimental data reveal that solvent entropy and ion-pairs resulting from adsorption of counterions from the added salt play key roles in affecting the monomer distribution and must be taken into account in modeling polyelectrolyte brushes. Furthermore, the utility of this physics-based approach based on these theories for the predictionmore » and interpretation of neutron reflectivity profiles in the context of pH responsive planar polyelectrolyte brushes such as polybasic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and polyacidic poly(methacrylic acid) (PMAA) brushes is demonstrated. The approach provides a quantitative way of estimating molecular weights of the polymers polymerized using surface-initiated atom transfer radical polymerization.« less
NASA Astrophysics Data System (ADS)
Subuddhi, Usharani; Vuram, Prasanna K.; Chadha, Anju; Mishra, Ashok K.
2014-07-01
A reversal in solvatochromic behaviour was observed in second and third generation glycerol based dansylated polyether dendrons in water on addition of a second solvent like methanol or acetonitrile. Below a certain percentage of the nonaqueous solvent there is a negative-solvatochromism observed and above that there is a switch to positive-solvatochromism. The negative-solvatochromism is attributed to the progressive disaggregation of the dendron aggregates by the nonaqueous solvent component. Once the disaggregation process is complete, positive-solvatochromism is exhibited by the dendron monomers. Higher the hydrophobicity of the dendron more is the amount of the second solvent required for disaggregation.
Analysis of the temporal effects on grating evolution in photopolymer
NASA Astrophysics Data System (ADS)
Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.; O'Neill, Feidhlim T.; Sheridan, John T.; Gallego, Sergi; Neipp, Cristian
2006-04-01
The nonlocal polymerization driven diffusion model is used to describe holographic grating formation in acrylamidebased photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. A Gaussian spatial material response function and an exponential temporal material response function are used to account for these effects. In this paper we firstly examine the nature of the temporal evolution of grating formation for short recording periods. It is shown that in this case, temporal effects become most notable and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure selfamplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. Incorporating each of these effects into our model, the model is then solved using a Finite-Difference Time- Domain method (FDTD). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Fits are then carried out to experimental data for 1 second exposures. Good quality fits are achieved and material parameters extracted. Monomer diffusion rates are determined to be of the order of D ~ 10 -10 cm 2/s and the time constant of the nonlocal material temporal response function being of the order of τ n ~ 10 -2s. Material shrinkage occurring over these recording periods is also determined.
MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.
Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin
2017-01-01
The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.
Substrate-dependent temperature sensitivity of soil organic matter decomposition
NASA Astrophysics Data System (ADS)
Myachina, Olga; Blagodatskaya, Evgenia
2015-04-01
Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)
Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong
2017-01-01
SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations. PMID:28626393
Weidacker, K; Kärgel, C; Massau, C; Weiß, S; Kneer, J; Krueger, T H C; Schiffer, B
2017-03-01
The presence of pedophilic sexual interests is considered of high importance for predicting recidivism among individuals who have committed sexual offenses. However, objective and valid assessment methods that are robust against confounding issues such as cognitive capacity and manipulation are sparse. We applied the Approach-Avoidance Task (AAT) for detecting sexual interests in 38 pedophilic men (18 primarily attracted to boys) and 27 male nonpedophilic (11 gay) participants. The AAT relies on automatic approach and avoidance tendencies, independent of cognitive abilities such as memory capacity and intelligence. Approach-avoidance tendencies toward stimuli depicting seminude prepubescent boys and girls as well as men and women are reported. The results were consistent with previous research on the utility of the AAT: Except for pedophiles attracted to girls, the mean AAT scores (approach minus avoidance reaction time for each stimulus category) were positive only for stimuli of the preferred category. A multivariate binary logistic regression approach revealed 80% overall accuracy in differentiating pedophilic from nonpedophilic participants.
NASA Technical Reports Server (NTRS)
Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.
2003-01-01
The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.
Decline of umami preference in aged rats.
Miura, Hirohito; Ooki, Makoto; Kanemaru, Norikazu; Harada, Shuitsu
2014-08-08
The effects of aging on the umami sensation were compared between the preference and neural responses from the greater superficial petrosal nerve (GSP innervating the soft palate) and the chorda tympani nerve (CT innervating the fungiform papillae) in the Sprague Dawley rat. A two-bottle preference test revealed that younger rats (5-12 weeks) preferred significantly 0.001 M 5'-inosine monophosphate (IMP), 0.01 M mono sodium glutamate (MSG), and binary mixtures of 0.001 M IMP+0.01 M MSG than deionized water. However, aged rats (21-22 months) showed no significant preference to these umami solutions compared to deionized water. Among the other four basic taste stimuli, there were no significant differences in preference between young and aged rats. Regardless of the age of the rat, neural responses from the GSP and CT produced robust integrated responses to all three umami solutions used in the two-bottle tests. These results indicate that the lack of preference to umami in aged rats is a central nervous system phenomenon and suggests that the loss of preference to umami taste in aged rats is caused by homeostatic changes in the brain incurred by aging. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices
M, Takahashi; M, Nakajima; J, Tagami; DLS, Scheffel; RM, Carvalho; A, Mazzoni; M, Carrilho; A, Tezvergil-Mutluay; L, Breschi; L, Tjäderhane; SS, Jang; FR, Tay; KA, Agee; DH, Pashley
2013-01-01
The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than about 1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives. PMID:23928333
Charoenthai, Nipaphat; Pattanatornchai, Thanutpon; Wacharasindhu, Sumrit; Sukwattanasinitt, Mongkol; Traiphol, Rakchart
2011-08-15
In this contribution, we report the relationship between molecular structures of polydiacetylene (PDA) vesicles, fabricated by using three monomers, 10,12-tricosadiynoic acid (TCDA), 10,12-pentacosadiynoic acid (PCDA) and N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA), and their color-transition behaviors. The modification of side chain length and head group of the PDA vesicles strongly affects the colorimetric response to temperature, ethanol and pH. A shorter side chain of poly(TCDA) yields weaker inter- and intra-chain dispersion interactions in the bilayers compared to the system of poly(PCDA), which in turn results in a faster color transition upon exposure to all stimuli. A change of head group in poly(AEPCDA) slightly reduces the transition temperature. Interestingly, the colorimetric response of poly(AEPCDA) vesicles to the addition of ethanol is found to occur in a two-step fashion while the response of poly(PCDA) vesicles takes place in a one-step process. The amount of ethanol required for inducing complete color-transition of poly(AEPCDA) vesicles is also much higher, about 87% v/v. The increase of pH to ~9 and ~10 causes a color-transition of poly(TCDA) and poly(PCDA) vesicles, respectively. The poly(AEPCDA) vesicles, on the other hand, change color upon decreasing pH to ~0. The colorimetric response also occurs in a multi-step fashion. These discrepancies are attributed to the architecture of surface layers of poly(AEPCDA), constituting amine and amide groups separated by ethyl linkers. Copyright © 2011 Elsevier Inc. All rights reserved.
State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy
Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh
2017-01-01
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered. PMID:29552041
State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy.
Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh
2017-01-01
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered.
Pupil Dilation to Explicit and Non-Explicit Sexual Stimuli.
Watts, Tuesday M; Holmes, Luke; Savin-Williams, Ritch C; Rieger, Gerulf
2017-01-01
Pupil dilation to explicit sexual stimuli (footage of naked and aroused men or women) can elicit sex and sexual orientation differences in sexual response. If similar patterns were replicated with non-explicit sexual stimuli (footage of dressed men and women), then pupil dilation could be indicative of automatic sexual response in fully noninvasive designs. We examined this in 325 men and women with varied sexual orientations to determine whether dilation patterns to non-explicit sexual stimuli resembled those to explicit sexual stimuli depicting the same sex or other sex. Sexual orientation differences in pupil dilation to non-explicit sexual stimuli mirrored those to explicit sexual stimuli. However, the relationship of dilation to non-explicit sexual stimuli with dilation to corresponding explicit sexual stimuli was modest, and effect magnitudes were smaller with non-explicit sexual stimuli than explicit sexual stimuli. The prediction that sexual orientation differences in pupil dilation are larger in men than in women was confirmed with explicit sexual stimuli but not with non-explicit sexual stimuli.
Resistance to Change and Frequency of Response-Dependent Stimuli Uncorrelated with Reinforcement
ERIC Educational Resources Information Center
Podlesnik, Christopher A.; Jimenez-Gomez, Corina; Ward, Ryan D.; Shahan, Timothy A.
2009-01-01
Stimuli uncorrelated with reinforcement have been shown to enhance response rates and resistance to disruption; however, the effects of different rates of stimulus presentations have not been assessed. In two experiments, we assessed the effects of adding different rates of response-dependent brief stimuli uncorrelated with primary reinforcement…
Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.
Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro
2017-08-01
Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.
Belasen, Abigail; Youn, Youngwon; Gee, Lucy; Prusik, Julia; Lai, Brant; Ramirez-Zamora, Adolfo; Rizvi, Khizer; Yeung, Philip; Shin, Damian S; Argoff, Charles; Pilitsis, Julie G
2016-10-01
Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). In this study, we examined how single unit and LFP oscillatory activity in the basal ganglia are impacted by mechanical and thermal sensory stimuli and explored their role in pain modulation. We assessed changes in LFPs and SUAs in the subthalamic nucleus (STN), globus pallidus interna (Gpi), and globus pallidus externa (Gpe) following exposure with mechanical or thermal stimuli. Sensory thresholds were determined pre-operatively using quantitative sensory testing. Based on these data, patients were exposed to innocuous and noxious mechanical, pressure, and thermal stimuli at individualized thresholds. In the STN, LFP alpha oscillatory activity and SUA increased in response to innocuous mechanical stimuli; SUA further increased in response to noxious mechanical, noxious pressure, and noxious thermal stimuli (p < 0.05). In the Gpe, LFP low betaactivity and SUA increased with noxious thermal stimuli; SUA also increased in response to innocuous thermal stimuli (p < 0.05). In the Gpi, innocuous thermal stimuli increased LFP gammaactivity; noxious pressure stimuli decreased low betaactivity; SUA increased in response to noxious thermal stimuli (p < 0.05). Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits. © 2016 International Neuromodulation Society.
An experimental design for quantification of cardiovascular responses to music stimuli in humans.
Chang, S-H; Luo, C-H; Yeh, T-L
2004-01-01
There have been several researches on the relationship between music and human physiological or psychological responses. However, there are cardiovascular index factors that have not been explored quantitatively due to the qualitative nature of acoustic stimuli. This study proposes and demonstrates an experimental design for quantification of cardiovascular responses to music stimuli in humans. The system comprises two components: a unit for generating and monitoring quantitative acoustic stimuli and a portable autonomic nervous system (ANS) analysis unit for quantitative recording and analysis of the cardiovascular responses. The experimental results indicate that the proposed system can exactly achieve the goal of full control and measurement for the music stimuli, and also effectively support many quantitative indices of cardiovascular response in humans. In addition, the analysis results are discussed and predicted in the future clinical research.
Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P.; Mueller-Pfeiffer, Christoph
2016-01-01
In the “loud-tone” procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p’s < 0.001, generalized eta squared 0.073–0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p’s ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli. PMID:27583659
Conscious control over the content of unconscious cognition.
Kunde, Wilfried; Kiesel, Andrea; Hoffmann, Joachim
2003-06-01
Visual stimuli (primes) presented too briefly to be consciously identified can nevertheless affect responses to subsequent stimuli - an instance of unconscious cognition. There is a lively debate as to whether such priming effects originate from unconscious semantic processing of the primes or from reactivation of learned motor responses that conscious stimuli afford during preceding practice. In four experiments we demonstrate that unconscious stimuli owe their impact neither to automatic semantic categorization nor to memory traces of preceding stimulus-response episodes, but to their match with pre-specified cognitive action-trigger conditions. The intentional creation of such triggers allows actors to control the way unconscious stimuli bias their behaviour.
Task modulation of the effects of brightness on reaction time and response force.
Jaśkowski, Piotr; Włodarczyk, Dariusz
2006-08-01
Van der Molen and Keuss [van der Molen, M.W., Keuss, P.J.G., 1979. The relationship between reaction time and intensity in discrete auditory tasks. Quarterly Journal of Experimental Psychology 31, 95-102; van der Molen, M.W., Keuss, P.J.G., 1981. Response selection and the processing of auditory intensity. Quarterly Journal of Experimental Psychology 33, 177-184] showed that paradoxically long reaction times (RT) occur with extremely loud auditory stimuli when the task is difficult (e.g. needs a response choice). It was argued that this paradoxical behavior of RT is due to active suppression of response prompting to prevent false responses. In the present experiments, we demonstrated that such an effect can also occur for visual stimuli provided that they are large enough. Additionally, we showed that response force exerted by participants on response keys monotonically grew with intensity for large stimuli but was independent of intensity for small visual stimuli. Bearing in mind that only large stimuli are believed to be arousing this pattern of results supports the arousal interpretation of the negative effect of loud stimuli on RT given by van der Molen and Keuss.
Social stimuli increase physiological reactivity but not defensive responses.
Kosonogov, Vladimir; Sanchez-Navarro, Juan Pedro; Martinez-Selva, Jose Maria; Torrente, Ginesa; Carrillo-Verdejo, Eduvigis
2016-10-01
Emotional reactions are crucial in survival because they provide approach and withdrawal behaviors. However, an unsolved question is whether the social content of the affective stimuli has a specific effect on emotional responses. We studied whether the social content of affective pictures influenced the defensive response and response mobilization. For this purpose, we recorded startle blink reflex (a defensive response) and skin conductance responses (a measure of unspecific physiological reactivity or arousal) in 73 participants while they viewed a series of 81 pictures of varying affective valence and social content. Our results revealed that defense response, as indicated by increases in the magnitude of the startle blink reflex, was mainly dependent on threatening or unpleasant cues, but was unrelated to the social content of the pictures. The social content, however, had an influence on pleasant stimuli, provoking an increase in resource mobilization, as reflected by changes in electrodermal activity. Hence, the social content of the affective stimuli may increase the physiological arousal elicited by pleasant stimuli, and it appears to be unrelated to the defense reactivity provoked by unpleasant stimuli. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Deep Belief Networks Learn Context Dependent Behavior
Raudies, Florian; Zilli, Eric A.; Hasselmo, Michael E.
2014-01-01
With the goal of understanding behavioral mechanisms of generalization, we analyzed the ability of neural networks to generalize across context. We modeled a behavioral task where the correct responses to a set of specific sensory stimuli varied systematically across different contexts. The correct response depended on the stimulus (A,B,C,D) and context quadrant (1,2,3,4). The possible 16 stimulus-context combinations were associated with one of two responses (X,Y), one of which was correct for half of the combinations. The correct responses varied symmetrically across contexts. This allowed responses to previously unseen stimuli (probe stimuli) to be generalized from stimuli that had been presented previously. By testing the simulation on two or more stimuli that the network had never seen in a particular context, we could test whether the correct response on the novel stimuli could be generated based on knowledge of the correct responses in other contexts. We tested this generalization capability with a Deep Belief Network (DBN), Multi-Layer Perceptron (MLP) network, and the combination of a DBN with a linear perceptron (LP). Overall, the combination of the DBN and LP had the highest success rate for generalization. PMID:24671178
Correlates of stimulus-response congruence in the posterior parietal cortex.
Stoet, Gijsbert; Snyder, Lawrence H
2007-02-01
Primate behavior is flexible: The response to a stimulus often depends on the task in which it occurs. Here we study how single neurons in the posterior parietal cortex (PPC) respond to stimuli which are associated with different responses in different tasks. Two rhesus monkeys performed a task-switching paradigm. Each trial started with a task cue instructing which of two tasks to perform, followed by a stimulus requiring a left or right button press. For half the stimuli, the associated responses were different in the two tasks, meaning that the task context was necessary to disambiguate the incongruent stimuli. The other half of stimuli required the same response irrespective of task context (congruent). Using this paradigm, we previously showed that behavioral responses to incongruent stimuli are significantly slower than to congruent stimuli. We now demonstrate a neural correlate in the PPC of the additional processing time required for incongruent stimuli. Furthermore, we previously found that 29% of parietal neurons encode the task being performed (task-selective cells). We now report differences in neuronal timing related to congruency in task-selective versus task nonselective cells. These differences in timing suggest that the activity in task nonselective cells reflects a motor command, whereas activity in task-selective cells reflects a decision process.
Davis, Chris; Kislyuk, Daniel; Kim, Jeesun; Sams, Mikko
2008-11-25
We used whole-head magnetoencephalograpy (MEG) to record changes in neuromagnetic N100m responses generated in the left and right auditory cortex as a function of the match between visual and auditory speech signals. Stimuli were auditory-only (AO) and auditory-visual (AV) presentations of /pi/, /ti/ and /vi/. Three types of intensity matched auditory stimuli were used: intact speech (Normal), frequency band filtered speech (Band) and speech-shaped white noise (Noise). The behavioural task was to detect the /vi/ syllables which comprised 12% of stimuli. N100m responses were measured to averaged /pi/ and /ti/ stimuli. Behavioural data showed that identification of the stimuli was faster and more accurate for Normal than for Band stimuli, and for Band than for Noise stimuli. Reaction times were faster for AV than AO stimuli. MEG data showed that in the left hemisphere, N100m to both AO and AV stimuli was largest for the Normal, smaller for Band and smallest for Noise stimuli. In the right hemisphere, Normal and Band AO stimuli elicited N100m responses of quite similar amplitudes, but N100m amplitude to Noise was about half of that. There was a reduction in N100m for the AV compared to the AO conditions. The size of this reduction for each stimulus type was same in the left hemisphere but graded in the right (being largest to the Normal, smaller to the Band and smallest to the Noise stimuli). The N100m decrease for the Normal stimuli was significantly larger in the right than in the left hemisphere. We suggest that the effect of processing visual speech seen in the right hemisphere likely reflects suppression of the auditory response based on AV cues for place of articulation.
Brain responses to verbal stimuli among multiple sclerosis patients with pseudobulbar affect.
Haiman, Guy; Pratt, Hillel; Miller, Ariel
2008-08-15
To characterize the brain activity and associated cortical structures involved in pseudobulbar affect (PBA), a condition characterized by uncontrollable episodes of emotional lability in patients with multiple sclerosis (MS). Behavioral responses and event related potentials (ERP) in response to subjectively significant and neutral verbal stimuli were recorded from 33 subjects in 3 groups: 1) MS patients with PBA (MS+PBA); 2) MS patients without PBA (MS); 3) Healthy control subjects (HC). Statistical non-parametric mapping comparisons of ERP source current density distributions between groups were conducted separately for subjectively significant and for neutral stimuli. Behavioral responses showed more impulsive performance in patients with PBA. As expected, almost all ERP waveform comparisons between the MS groups and controls were significant. Source analysis indicated significantly distinct activation in MS+PBA in the vicinity of the somatosensory and motor areas in response to neutral stimuli, and at pre-motor and supplementary motor areas in response to subjectively significant stimuli. Both subjectively significant and neutral stimuli evoked higher current density in MS+PBA compared to both other groups. PBA of MS patients involves cortical structures related to sensory-motor and emotional processing, in addition to overactive involvement of motor cortical areas in response to neutral stimuli. These results may suggest that a 'disinhibition' of a "gate control"-type mechanism for emotional expression may lead to the lower emotional expression threshold of pseudobulbar affect.
Evidence for task conflict in the Stroop effect.
Goldfarb, Liat; Henik, Avishai
2007-10-01
C. M. MacLeod and P. A. MacDonald (2000) suggested that congruent and incongruent Stroop stimuli cause more task conflict than neutral stimuli because the anterior cingulate cortex is more activated with these stimuli. This study investigated behavioral expression for this pattern. Experiment 1 reduced task conflict control by increasing the proportion of nonword neutrals. Additionally, half the trials had conflict or neutral cues. The control reduction revealed the task conflict. For noncued trials, response time was longer for congruent stimuli than for neutral stimuli (reverse facilitation effect). In addition, response time for congruent stimuli was longer when stimuli were uncued vs. cued. Experiment 2 increased task conflict control by changing the neutral stimuli to noncolor words. Consequently, the task conflict expression disappeared. (c) 2007 APA
Smith, Brian H.; Burden, Christina M.
2014-01-01
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time. PMID:25225822
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.
Gender Difference in Event Related Potentials to Masked Emotional Stimuli in the Oddball Task
Kim, Eun Young; Park, Gewnhi; Kim, Sangrae; Kim, Imyel; Chae, Jeong-Ho; Kim, Hyun Taek
2013-01-01
Objective We investigated gender differences in event-related potential (ERP) responses to subliminally presented threat-related stimuli. Methods Twenty-four participants were presented with threat-related and neutral pictures for a very brief period of time (17 ms). To explore gender differences in ERP responses to subliminally presented stimuli, we examined six ERP components [P1, N170, N250, P300, Early Posterior Negativity (EPN) and Late Positive Potential (LPP)]. Results The result revealed that only female participants showed significant increases in the N170 and the EPN in response to subliminally presented threat-related stimuli compared to neutral stimuli. Conclusion Our results suggest that female participants exhibit greater cortical processing of subliminally presented threat-related stimuli than male participants. PMID:23798965
Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P.
2015-01-01
While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. PMID:25740507
Pursuit Latency for Chromatic Targets
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Ellis, Stephen R. (Technical Monitor)
1998-01-01
The temporal dynamics of eye movement response to a change in direction of stimulus motion has been used to compare the processing speeds of different types of stimuli (Mulligan, ARVO '97). In this study, the pursuit response to colored targets was measured to test the hypothesis that the slow response of the chromatic system (as measured using traditional temporal sensitivity measures such as contrast sensitivity) results in increased eye movement latencies. Subjects viewed a small (0.4 deg) Gaussian spot which moved downward at a speed of 6.6 deg/sec. At a variable time during the trajectory, the dot's direction of motion changed by 30 degrees, either to the right or left. Subjects were instructed to pursue the spot. Eye movements were measured using a video ophthalmoscope with an angular resolution of approximately 1 arc min and a temporal sampling rate of 60 Hz. Stimuli were modulated in chrominance for a variety of hue directions, combined with a range of small luminance increments and decrements, to insure that some of the stimuli fell in the subjects' equiluminance planes. The smooth portions of the resulting eye movement traces were fit by convolving the stimulus velocity with an exponential having variable onset latency, time constant and amplitude. Smooth eye movements with few saccades were observed for all stimuli. Pursuit responses to stimuli having a significant luminance component are well-fit by exponentials having latencies and time constants on the order of 100 msec. Increases in pursuit response latency on the order of 100-200 msec are observed in response to certain stimuli, which occur in pairs of complementary hues, corresponding to the intersection of the stimulus section with the subjects' equiluminant plane. Smooth eye movements can be made in response to purely chromatic stimuli, but are slower than responses to stimuli with a luminance component.
Chen, Zhang; Veling, Harm; Dijksterhuis, Ap; Holland, Rob W
2016-12-01
In a series of 6 experiments (5 preregistered), we examined how not responding to appetitive stimuli causes devaluation. To examine this question, a go/no-go task was employed in which appetitive stimuli were consistently associated with cues to respond (go stimuli), or with cues to not respond (either no-go cues or the absence of cues; no-go stimuli). Change in evaluations of no-go stimuli was compared to change in evaluations of both go stimuli and of stimuli not presented in the task (untrained stimuli). Experiments 1 to 3 show that not responding to appetitive stimuli in a go/no-go task causes devaluation of these stimuli regardless of the presence of an explicit no-go cue. Experiments 4a and 4b show that the devaluation effect of appetitive stimuli is contingent on the percentage of no-go trials; devaluation appears when no-go trials are rare, but disappears when no-go trials are frequent. Experiment 5 shows that simply observing the go/no-go task does not lead to devaluation. Experiment 6 shows that not responding to neutral stimuli does not cause devaluation. Together, these results suggest that devaluation of appetitive stimuli by not responding to them is the result of response inhibition. By employing both go stimuli and untrained stimuli as baselines, alternative explanations are ruled out, and apparent inconsistencies in the literature are resolved. These experiments provide new theoretical insight into the relation between not responding and evaluation, and can be applied to design motor response training procedures aimed at changing people's behavior toward appetitive stimuli. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Role of spike-frequency adaptation in shaping neuronal response to dynamic stimuli.
Peron, Simon Peter; Gabbiani, Fabrizio
2009-06-01
Spike-frequency adaptation is the reduction of a neuron's firing rate to a stimulus of constant intensity. In the locust, the Lobula Giant Movement Detector (LGMD) is a visual interneuron that exhibits rapid adaptation to both current injection and visual stimuli. Here, a reduced compartmental model of the LGMD is employed to explore adaptation's role in selectivity for stimuli whose intensity changes with time. We show that supralinearly increasing current injection stimuli are best at driving a high spike count in the response, while linearly increasing current injection stimuli (i.e., ramps) are best at attaining large firing rate changes in an adapting neuron. This result is extended with in vivo experiments showing that the LGMD's response to translating stimuli having a supralinear velocity profile is larger than the response to constant or linearly increasing velocity translation. Furthermore, we show that the LGMD's preference for approaching versus receding stimuli can partly be accounted for by adaptation. Finally, we show that the LGMD's adaptation mechanism appears well tuned to minimize sensitivity for the level of basal input.
Fan, Kaiqi; Yang, Jun; Wang, Xiaobo; Song, Jian
2014-11-07
A gelator containing a sorbitol moiety and a naphthalene-based salicylideneaniline group exhibits macroscopic gel-sol behavior in response to four complementary input stimuli: temperature, UV light, OH(-), and Cu(2+). On the basis of its multiple-stimuli responsive properties, we constructed a rational gel-based supramolecular logic gate that performed OR and INH types of reversible stimulus responsive gel-sol transition in the presence of various combinations of the four stimuli when the gel state was defined as an output. Moreover, a combination two-output logic gate was obtained, owing to the existence of the naked eye as an additional output. Hence, gelator 1 could construct not only a basic logic gate, but also a two-input-two-output logic gate because of its response to multiple chemical stimuli and multiple output signals, in which one input could erase the effect of another input.
Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.
Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A
2017-10-25
Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.
Steady-state VEP responses to uncomfortable stimuli.
O'Hare, Louise
2017-02-01
Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
What is automatized during perceptual categorization?
Roeder, Jessica L.; Ashby, F. Gregory
2016-01-01
An experiment is described that tested whether stimulus-response associations or an abstract rule are automatized during extensive practice at perceptual categorization. Twenty-seven participants each completed 12,300 trials of perceptual categorization, either on rule-based (RB) categories that could be learned explicitly or information-integration (II) categories that required procedural learning. Each participant practiced predominantly on a primary category structure, but every third session they switched to a secondary structure that used the same stimuli and responses. Half the stimuli retained their same response on the primary and secondary categories (the congruent stimuli) and half switched responses (the incongruent stimuli). Several results stood out. First, performance on the primary categories met the standard criteria of automaticity by the end of training. Second, for the primary categories in the RB condition, accuracy and response time (RT) were identical on congruent and incongruent stimuli. In contrast, for the primary II categories, accuracy was higher and RT was lower for congruent than for incongruent stimuli. These results are consistent with the hypothesis that rules are automatized in RB tasks, whereas stimulus-response associations are automatized in II tasks. A cognitive neuroscience theory is proposed that accounts for these results. PMID:27232521
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Spape, Jessica; Timmers, Amanda D; Yoon, Samuel; Ponseti, Jorge; Chivers, Meredith L
2014-10-01
Heterosexual women respond genitally to stimuli featuring both their preferred and nonpreferred genders, whereas men's genital responses are gender-specific, suggesting that gender cues are less relevant to women's sexual response. Instead, prepotent sexual features (exposed and sexually aroused genitals), ubiquitous in audiovisual sexual stimuli, may elicit automatic genital responses, thereby leading to a nonspecific sexual arousal pattern in women. To examine the role of stimulus potency in women's sexual response, we assessed heterosexual women's and men's genital and subjective sexual arousal to slideshows of prepotent stimuli (erect penises and aroused vulvas), non-prepotent stimuli (flaccid penises and female pubic triangles), and sexually neutral stimuli. Contrary to our hypotheses, both women and men demonstrated gender-specific genital and subjective sexual arousal, such that sexual arousal was greatest to prepotent male and female stimuli, respectively. This is the first study to demonstrate gender-specific genital responding in heterosexual women. Copyright © 2014 Elsevier B.V. All rights reserved.
Stimuli-responsive LbL capsules and nanoshells for drug delivery.
Delcea, Mihaela; Möhwald, Helmuth; Skirtach, André G
2011-08-14
Review of basic principles and recent developments in the area of stimuli responsive polymeric capsules and nanoshells formed via layer-by-layer (LbL) is presented. The most essential attributes of the LbL approach are multifunctionality and responsiveness to a multitude of stimuli. The stimuli can be logically divided into three categories: physical (light, electric, magnetic, ultrasound, mechanical, and temperature), chemical (pH, ionic strength, solvent, and electrochemical) and biological (enzymes and receptors). Using these stimuli, numerous functionalities of nanoshells have been demonstrated: encapsulation, release including that inside living cells or in tissue, sensors, enzymatic reactions, enhancement of mechanical properties, and fusion. This review describes mechanisms and basic principles of stimuli effects, describes progress in the area, and gives an outlook on emerging trends such as theranostics and nanomedicine. Copyright © 2011. Published by Elsevier B.V.
PMR polyimide composites for aerospace applications. [Polymerization of Monomer Reactants
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1984-01-01
A novel class of addition-type polyimides has been developed in response to the need for high temperature polymers with improved processability. The new plastic materials are known as PMR (for in situ polymerization of monomer reactants) polyimides. The highly processable PMR polyimides have made it possible to realize much of the potential of high temperature resistant polymers. Monomer reactant combinations for several PMR polyimides have been identified. The present investigation is concerned with a review of the current status of PMR polyimides. Attention is given to details of PMR polyimide chemistry, the processing of composites and their properties, and aerospace applications of PMR-15 polyimide composites.
Mascaro, Jennifer S.; Hackett, Patrick D.; Rilling, James K.
2015-01-01
Despite the well-documented importance of paternal caregiving for positive child development, little is known about the neural changes that accompany the transition to fatherhood in humans, or about how changes in hormone levels affect paternal brain function. We compared fathers of children aged 1–2 with non-fathers in terms of hormone levels (oxytocin and testosterone), neural responses to child picture stimuli, and neural responses to visual sexual stimuli. Compared to non-fathers, fathers had significantly higher levels of plasma oxytocin and lower levels of plasma testosterone. In response to child picture stimuli, fathers showed stronger activation than non-fathers within regions important for face emotion processing (caudal middle frontal gyrus [MFG]), mentalizing (temporo-parietal junction [TPJ]) and reward processing (medial orbitofrontal cortex [mOFC]). On the other hand, non-fathers had significantly stronger neural responses to sexually provocative images in regions important for reward and approach-related motivation (dorsal caudate and nucleus accumbens). Testosterone levels were negatively correlated with responses to child stimuli in the MFG. Surprisingly, neither testosterone nor oxytocin levels predicted neural responses to sexual stimuli. Our results suggest that the decline in testosterone that accompanies the transition to fatherhood may be important for augmenting empathy toward children. PMID:24882167
Effects of oxycodone on brain responses to emotional images.
Wardle, Margaret C; Fitzgerald, Daniel A; Angstadt, Michael; Rabinak, Christine A; de Wit, Harriet; Phan, K Luan
2014-11-01
Evidence from animal and human studies suggests that opiate drugs decrease emotional responses to negative stimuli and increase responses to positive stimuli. Such emotional effects may motivate misuse of oxycodone (OXY), a widely abused opiate. Yet, we know little about how OXY affects neural circuits underlying emotional processing in humans. We examined effects of OXY on brain activity during presentation of positive and negative visual emotional stimuli. We predicted that OXY would decrease amygdala activity to negative stimuli and increase ventral striatum (VS) activity to positive stimuli. Secondarily, we examined the effects of OXY on other emotional network regions on an exploratory basis. In a three-session study, healthy adults (N = 17) received placebo, 10 and 20 mg OXY under counterbalanced, double-blind conditions. At each session, participants completed subjective and cardiovascular measures and underwent functional MRI (fMRI) scanning while completing two emotional response tasks. Our emotional tasks reliably activated emotional network areas. OXY produced subjective effects but did not alter either behavioral responses to emotional stimuli or activity in our primary areas of interest. OXY did decrease right medial orbitofrontal cortex (MOFC) responses to happy faces. Contrary to our expectations, OXY did not affect behavioral or neural responses to emotional stimuli in our primary areas of interest. Further, the effects of OXY in the MOFC would be more consistent with a decrease in value for happy faces. This may indicate that healthy adults do not receive emotional benefits from opiates, or the pharmacological actions of OXY differ from other opiates.
Kirkland, Tabitha
2014-01-01
Although much is known about the neural dynamics of maladaptive affective styles, the mechanisms of happiness and well-being are less clear. One possibility is that the neural processes of trait happiness are the opposite of those involved in depression/anxiety: ‘rose-colored glasses’ cause happy people to focus on positive cues while remaining oblivious to threats. Specifically, because negative affective styles have been associated with increased amygdala activation to negative stimuli, it may be happy people will not show this enhanced response, and may even show reduced amygdala activation to negative stimuli. Alternatively, if well-being entails appropriate sensitivity to information, happy people may process any relevant cues—positive or negative—to facilitate appropriate responding. This would mean that happiness is associated with increased amygdala activation to both positive and negative stimuli. Forty-two participants viewed affective stimuli during functional magnetic resonance imaging scanning. Happier participants showed greater amygdala responses to positive stimuli. Moreover, no significant relationships were found between happiness and responses to negative stimuli. In other words, for happy people, a tuning toward positive did not come at the cost of losing sensitivity to negativity. This work suggests that trait happiness is associated with a balanced amygdala response to positivity and negativity. PMID:23563851
Parker, Karen J.; Hyde, Shellie A.; Buckmaster, Christine L.; Tanaka, Serena M.; Brewster, Katharine K.; Schatzberg, Alan F.; Lyons, David M.; Woodward, Steven H.
2010-01-01
SUMMARY The startle response, a simple defensive response to a sudden stimulus signaling proximal threat, has been well studied in rodents and humans, but has been rarely examined in monkeys. The first goal of the present studies was to develop a minimally immobilizing startle measurement paradigm and validate its usefulness by testing two core features of the startle response (habituation and graded responsivity) in squirrel monkey subjects. Two different types of startle stimuli were used: standard broad-band noise bursts, and species-specific alarm vocalizations (“yaps”) which are elicited in response to threat in both wild and captive animals. The second goal of the present studies was to test whether yaps produce enhanced startle responsivity due to their increased biological salience compared to simple, non-biologically relevant noise bursts. The third goal of the present studies was to evaluate the hypothalamic pituitary-adrenal (HPA) axis response to startle stimuli, as little is known about the stress-activating role of startle stimuli in any species. These experiments determined that the whole-body startle response in relatively unrestrained squirrel monkeys habituates across repeated stimulus presentations and is proportional to stimulus intensity. In addition, differential habituation was observed across biologically salient vs. standard acoustic startle stimuli. Responses to “yaps” were larger initially but attenuated more rapidly over trials. Responses to “yaps” were also larger in the early subepochs of the response window but then achieved a lower level than responses to noise bursts in the later subepochs. Finally, adrenocorticotropic hormone and cortisol concentrations were significantly elevated above baseline after startle stimuli presentation, though monkeys did not exhibit differential HPA axis responses to the two types of startle stimuli. The development of monkey startle methodology may further enhance the utility of this paradigm in translational studies of human stress-related psychiatric disorders. PMID:20869176
ERIC Educational Resources Information Center
Benning, Stephen D.; Kovac, Megan; Campbell, Alana; Miller, Stephanie; Hanna, Eleanor K.; Damiano, Cara R.; Sabatino-DiCriscio, Antoinette; Turner-Brown, Lauren; Sasson, Noah J.; Aaron, Rachel V.; Kinard, Jessica; Dichter, Gabriel S.
2016-01-01
We examined the late positive potential (LPP) event related potential in response to social and nonsocial stimuli from youths 9 to 19 years old with (n = 35) and without (n = 34) ASD. Social stimuli were faces with positive expressions and nonsocial stimuli were related to common restricted interests in ASD (e.g., electronics, vehicles, etc.). The…
Inter-synaptic learning of combination rules in a cortical network model
Lavigne, Frédéric; Avnaïm, Francis; Dumercy, Laurent
2014-01-01
Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS) learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons. Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network. PMID:25221529
Wang, Pengyun; Li, Juan; Li, Huijie; Li, Bing; Jiang, Yang; Bao, Feng; Zhang, Shouzi
2013-11-01
This study investigated whether the observed absence of emotional memory enhancement in recognition tasks in patients with amnestic mild cognitive impairment (aMCI) could be related to their greater proportion of familiarity-based responses for all stimuli, and whether recognition tests with emotional items had better discriminative power for aMCI patients than those with neutral items. In total, 31 aMCI patients and 30 healthy older adults participated in a recognition test followed by remember/know judgments. Positive, neutral, and negative faces were used as stimuli. For overall recognition performance, emotional memory enhancement was found only in healthy controls; they remembered more negative and positive stimuli than neutral ones. For "remember" responses, we found equivalent emotional memory enhancement in both groups, though a greater proportion of "remember" responses was observed in normal controls. For "know" responses, aMCI patients presented a larger proportion than normal controls did, and their "know" responses were not affected by emotion. A negative correlation was found between emotional enhancement effect and the memory performance related to "know" responses. In addition, receiver operating characteristic curve analysis revealed higher diagnostic accuracy for recognition test with emotional stimuli than with neutral stimuli. The present results implied that the absence of the emotional memory enhancement effect in aMCI patients might be related to their tendency to rely more on familiarity-based "know" responses for all stimuli. Furthermore, recognition memory tests using emotional stimuli may be better able than neutral stimuli to differentiate people with aMCI from cognitively normal older adults. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Shock-like haemodynamic responses induced in the primary visual cortex by moving visual stimuli
Robinson, P. A.
2016-01-01
It is shown that recently discovered haemodynamic waves can form shock-like fronts when driven by stimuli that excite the cortex in a patch that moves faster than the haemodynamic wave velocity. If stimuli are chosen in order to induce shock-like behaviour, the resulting blood oxygen level-dependent (BOLD) response is enhanced, thereby improving the signal to noise ratio of measurements made with functional magnetic resonance imaging. A spatio-temporal haemodynamic model is extended to calculate the BOLD response and determine the main properties of waves induced by moving stimuli. From this, the optimal conditions for stimulating shock-like responses are determined, and ways of inducing these responses in experiments are demonstrated in a pilot study. PMID:27974572
Bell, Brittany A; Phan, Mimi L; Vicario, David S
2015-03-01
How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. Copyright © 2015 the American Physiological Society.
Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.
Freed, Karl F
2009-02-14
A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.
NASA Astrophysics Data System (ADS)
Senden, R. J.; DeJean, P.; McAuley, K. B.; Schreiner, L. J.
2006-07-01
In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.
NASA Astrophysics Data System (ADS)
Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.
2016-09-01
Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks.
Cunningham, Corbin A; Drew, Trafton; Wolfe, Jeremy M
2017-02-01
In socially important visual search tasks, such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer-aided detection (CAD) programs have been developed specifically to improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false-positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be "binary," giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system presents an analog signal that reflects strength of the signal at a location. In the experiments reported, we compare analog and binary CAD presentations using nonexpert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher.
Penrod, Becky; Wallace, Michele D; Dyer, Edwin J
2008-01-01
Previous research has suggested that the availability of high-preference stimuli may override the reinforcing efficacy of concurrently available low-preference stimuli under relatively low schedule requirements (e.g., fixed-ratio 1 schedule). It is unknown if similar effects would be obtained under higher schedule requirements. Thus, the current study compared high-preference and low-preference reinforcers under progressively increasing schedule requirements. Results for 3 of the 4 participants indicated that high-preference stimuli maintained responding under higher schedule requirements relative to low-preference stimuli. For 1 participant, high-preference and low-preference stimuli were demonstrated to be equally effective reinforcers under increasing schedule requirements. Implications with respect to rate of performance and response patterns are discussed.
Valle, Aisel; Pérez-Socas, Luis Benito; Canet, Liem; Hervis, Yadira de la Patria; de Armas-Guitart, German; Martins-de-Sa, Diogo; Lima, Jônatas Cunha Barbosa; Souza, Adolfo Carlos Barros; Barbosa, João Alexandre Ribeiro Gonçalves; de Freitas, Sonia Maria; Pazos, Isabel Fabiola
2018-04-26
The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.
Skene, Williams G.; Lehn, Jean-Marie P.
2004-01-01
Component exchange in reversible polymers allows the generation of dynamic constitutional diversity. The polycondensation of dihydrazides with dialdehydes generates polyacylhydrazones, to which the acylhydrazone functionality formed confers both hydrogen-bonding and reversibility features through the amide and imine groups, respectively. Polyacylhydrazones are thus dynamic polyamides. They are able to reversibly exchange either one or both of their repeating monomer units in the presence of different monomers, thus presenting constitutional dynamic diversity. The polymers subjected to monomer exchange/interchange may be brought to exhibit physical properties vastly different from those of the original polymer. The principle may be extended to other important classes of polymers, giving access, for instance, to dynamic polyureas or polycarbamates. These reversible polymers are therefore able to incorporate, decorporate, or reshuffle their constituting monomers, namely in response to environmental physical or chemical factors, an adaptability feature central to constitutional dynamic chemistry. PMID:15150411
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
Maternal bonding in childhood moderates autonomic responses to distress stimuli in adult males.
Dalsant, Arianna; Truzzi, Anna; Setoh, Peipei; Esposito, Gianluca
2015-10-01
Mother-child bonding influences the development of cognitive and social skills. In this study we investigate how maternal attachment, developed in early childhood, modulates physiological responses to social stimuli later in life. Our results suggest that the autonomic nervous system's responses to vocal distress are moderated by the quality of participants' maternal bonding. In particular, participants with optimal maternal bonding showed a greater calming response to distressful stimuli whereas participants with non-optimal maternal bonding showed a heightened distress response. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of sleep deprivation and auditory intensity on reaction time and response force.
Włodarczyk, Dariusz; Jaśkowski, Piotr; Nowik, Agnieszka
2002-06-01
Arousal and activation are two variables supposed to underlie change in response force. This study was undertaken to explain these roles, specifically, for strong auditory stimuli and sleep deficit. Loud auditory stimuli can evoke phasic overarousal whereas sleep deficit leads to general underarousal. Moreover, Van der Molen and Keuss (1979, 1981) showed that paradoxically long reaction times occurred with extremely strong auditory stimuli when the task was difficult, e.g., choice reaction or Simon paradigm. It was argued that this paradoxical behavior related to reaction time is due to active disconnecting of the coupling between arousal and activation to prevent false responses. If so, we predicted that for extremely loud stimuli and for difficult tasks, the lengthening of reaction time should be associated with reduction of response force. The effects of loudness and sleep deficit on response time and force were investigated in three different tasks: simple response, choice response, and Simon paradigm. According to our expectation, we found a detrimental effect of sleep deficit on reaction time and on response force. In contrast to Van der Molen and Keuss, we found no increase in reaction time for loud stimuli (up to 110 dB) even on the Simon task.
Vibhute, Amol M.; Pushpanandan, Poornenth; Varghese, Maria; Koniecnzy, Vera; Taylor, Colin W.
2016-01-01
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP3R. Adenophostin A (AdA) is a potent agonist of IP3R and since some dimeric analogs of IP3R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca2+ through type 1 IP3R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin. PMID:28066549
A bio-injectable algin-aminocaproic acid thixogel with tri-stimuli responsiveness.
Chejara, Dharmesh R; Mabrouk, Mostafa; Badhe, Ravindra V; Mulla, Jameel A S; Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Pillay, Viness
2016-01-01
In this article a novel bio-injectable algin-aminocaproic acid (Alg-ACA) tri-stimuli responsive thixogel system is reported. The designed soft thixotrophic hydrogel (thixogel) was characterized using various analytical techniques such as FT-IR, NMR, SEM, AFM and DSC. The soft thixogel system was further investigated for stress responsiveness using different rheological studies which confirmed the thixotropic nature of the gel [Thixotropic area (Ar) of Alg-ACA (1:0.5), Alg-ACA (1:1) and Alg-ACA (1:2), were 23.5%, 43.1%, and 27.59%, respectively, which were higher than that of Na-Alg (2.08%)]. The thixogel also demonstrated temperature and ultrasonication responsiveness. This tri-stimuli responsive soft thixogel system was rendered flowable (fluid) on applying the described physical stimuli and recovered its "rigid" gel structure upon removal of the applied stimuli. This approach of synthesizing a thixogels may be applicable to a broad variety of other natural polymers and has the potential for use in biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali
2016-12-02
Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.
Enhanced emotion-induced amnesia in borderline personality disorder
HURLEMANN, RENÉ; HAWELLEK, BARBARA; MAIER, WOLFGANG; DOLAN, RAYMOND J.
2009-01-01
Background Current biological concepts of borderline personality disorder (BPD) emphasize the interference of emotional hyperarousal and cognitive functions. A prototypical example is episodic memory. Pre-clinical investigations of emotion–episodic memory interactions have shown specific retrograde and anterograde episodic memory changes in response to emotional stimuli. These changes are amygdala dependent and vary as a function of emotional arousal and valence. Method To determine whether there is amygdala hyper-responsiveness to emotional stimuli as the underlying pathological substrate of cognitive dysfunction in BPD, 16 unmedicated female patients with BPD were tested on the behavioural indices of emotion-induced amnesia and hypermnesia established in 16 healthy controls. Results BPD patients displayed enhanced retrograde and anterograde amnesia in response to presentation of negative stimuli, while positive stimuli elicited no episodic memory-modulating effects. Conclusion These findings suggest that an amygdala hyper-responsiveness to negative stimuli may serve as a crucial aetiological contributor to emotion-induced cognitive dysfunction in BPD. PMID:17224096
Sex Differences in Response to Visual Sexual Stimuli: A Review
Rupp, Heather A.; Wallen, Kim
2009-01-01
This article reviews what is currently known about how men and women respond to the presentation of visual sexual stimuli. While the assumption that men respond more to visual sexual stimuli is generally empirically supported, previous reports of sex differences are confounded by the variable content of the stimuli presented and measurement techniques. We propose that the cognitive processing stage of responding to sexual stimuli is the first stage in which sex differences occur. The divergence between men and women is proposed to occur at this time, reflected in differences in neural activation, and contribute to previously reported sex differences in downstream peripheral physiological responses and subjective reports of sexual arousal. Additionally, this review discusses factors that may contribute to the variability in sex differences observed in response to visual sexual stimuli. Factors include participant variables, such as hormonal state and socialized sexual attitudes, as well as variables specific to the content presented in the stimuli. Based on the literature reviewed, we conclude that content characteristics may differentially produce higher levels of sexual arousal in men and women. Specifically, men appear more influenced by the sex of the actors depicted in the stimuli while women’s response may differ with the context presented. Sexual motivation, perceived gender role expectations, and sexual attitudes are possible influences. These differences are of practical importance to future research on sexual arousal that aims to use experimental stimuli comparably appealing to men and women and also for general understanding of cognitive sex differences. PMID:17668311
ERIC Educational Resources Information Center
O'Reilly, Anthony; Roche, Bryan; Ruiz, Maria; Tyndall, Ian; Gavin, Amanda
2012-01-01
Subjects completed a baseline stimulus matching procedure designed to produce two symmetrical stimulus relations; A1-B1 and A2-B2. Using A1, B1, and two novel stimuli, subjects were then trained to produce a common key-press response for two stimuli and a second key-press response for two further stimuli across two blocks of response training.…
Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex.
Bednařík, Petr; Tkáč, Ivan; Giove, Federico; Eberly, Lynn E; Deelchand, Dinesh K; Barreto, Felipe R; Mangia, Silvia
2018-02-01
In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1 H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.
Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
Arehart, Kathryn; Souza, Pamela; Kates, James; Lunner, Thomas; Pedersen, Michael Syskind
2015-01-01
This study considered speech modified by additive babble combined with noise-suppression processing. The purpose was to determine the relative importance of the signal modifications, individual peripheral hearing loss, and individual cognitive capacity on speech intelligibility and speech quality. The participant group consisted of 31 individuals with moderate high-frequency hearing loss ranging in age from 51 to 89 years (mean = 69.6 years). Speech intelligibility and speech quality were measured using low-context sentences presented in babble at several signal-to-noise ratios. Speech stimuli were processed with a binary mask noise-suppression strategy with systematic manipulations of two parameters (error rate and attenuation values). The cumulative effects of signal modification produced by babble and signal processing were quantified using an envelope-distortion metric. Working memory capacity was assessed with a reading span test. Analysis of variance was used to determine the effects of signal processing parameters on perceptual scores. Hierarchical linear modeling was used to determine the role of degree of hearing loss and working memory capacity in individual listener response to the processed noisy speech. The model also considered improvements in envelope fidelity caused by the binary mask and the degradations to envelope caused by error and noise. The participants showed significant benefits in terms of intelligibility scores and quality ratings for noisy speech processed by the ideal binary mask noise-suppression strategy. This benefit was observed across a range of signal-to-noise ratios and persisted when up to a 30% error rate was introduced into the processing. Average intelligibility scores and average quality ratings were well predicted by an objective metric of envelope fidelity. Degree of hearing loss and working memory capacity were significant factors in explaining individual listener's intelligibility scores for binary mask processing applied to speech in babble. Degree of hearing loss and working memory capacity did not predict listeners' quality ratings. The results indicate that envelope fidelity is a primary factor in determining the combined effects of noise and binary mask processing for intelligibility and quality of speech presented in babble noise. Degree of hearing loss and working memory capacity are significant factors in explaining variability in listeners' speech intelligibility scores but not in quality ratings.
Xin, Zhao; Ting, Liu X.; Yi, Zan X.; Li, Dai; Bao, Zhou A.
2015-01-01
Behavioral inhibitory control has been shown to play an important role in a variety of addictive behaviors. A number of studies involving the use of Go/NoGo and stop-signal paradigms have shown that smokers have reduced response inhibition for cigarette-related cues. However, it is not known whether male light smokers’ response inhibition for cigarette-related cues is lower than that of non-smokers in the two-choice oddball paradigm. The objective of the current study was to provide further behavioral evidence of male light smokers’ impaired response inhibition for cigarette-related cues, using the two-choice oddball paradigm. Sixty-two male students (31 smokers, 31 non-smokers), who were recruited via an advertisement, took part in this two-choice oddball experiment. Cigarette-related pictures (deviant stimuli) and pictures unrelated to cigarettes (standard stimuli) were used. Response inhibition for cigarette-related cues was measured by comparing accuracy (ACC) and reaction time (RT) for deviant and standard stimuli in the two groups of subjects. An analysis of variance (ANOVA) showed that in all the participants, ACC was significantly lower for deviant stimuli than for standard stimuli. For deviant stimuli, the RTs were significantly longer for male light smokers than for male non-smokers; however, there was no significant difference in RTs for standard stimuli. Compared to male non-smokers, male light smokers seem to have a reduced ability to inhibit responses to cigarette-related cues. PMID:26528200
Influence of auditory and audiovisual stimuli on the right-left prevalence effect.
Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim
2014-01-01
When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.
Tannenbaum, Pamela L.; Stevens, Joanne; Binns, Jacquelyn; Savitz, Alan T.; Garson, Susan L.; Fox, Steven V.; Coleman, Paul; Kuduk, Scott D.; Gotter, Anthony L.; Marino, Michael; Tye, Spencer J.; Uslaner, Jason M.; Winrow, Christopher J.; Renger, John J.
2014-01-01
The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs) effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem) and antihistamine (diphenhydramine) administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram (EMG), electrooculogram (EOG), and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night) and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus) or presented randomly (neutral stimulus). Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic) loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in the dog thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli. PMID:24904334
Auditory motion processing after early blindness
Jiang, Fang; Stecker, G. Christopher; Fine, Ione
2014-01-01
Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368
Yang, Mingfeng; Lei, Ming; Huo, Shuanghong
2003-01-01
Transthyretin (TTR) is one of the known human amyloidogenic proteins. Its native state is a homotetramer with each monomer having a β-sandwich structure. Strong experimental evidence suggests that TTR dissociates into monomeric intermediates and that the monomers subsequently self-assemble to form amyloid deposits and insoluble fibrils. However, details on the early steps along the pathway of TTR amyloid formation are unclear, although various experimental approaches with resolutions at the molecular or residue level have provided some clues. It is highly likely that the stability and flexibility of monomeric TTR play crucial roles in the early steps of amyloid formation; thereby, it is essential to characterize initial conformational changes of TTR monomers. In this article we probe the possibility that the differences in the monomeric forms of wild-type (WT) TTR and its variants are responsible for differential amyloidogenesis. We begin with the simulations of WT, Val30→Met (V30M), and Leu55→Pro (L55P) TTR monomers. Nanosecond time scale molecular dynamics simulations at 300 K were performed using AMBER. The results indicate that the L55P-TTR monomer undergoes substantial structural changes relative to fluctuations observed in the WT and V30M TTR monomers. The observation supports earlier speculation that the L55P mutation may lead to disruption of the β-sheet structure through the disorder of the “edge strands” that might facilitate amyloidogenesis. PMID:12761393
Kinetics of the monomer-dimer reaction of yeast hexokinase PI.
Hoggett, J G; Kellett, G L
1992-10-15
Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.
Kinetics of the monomer-dimer reaction of yeast hexokinase PI.
Hoggett, J G; Kellett, G L
1992-01-01
Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. Images Fig. 1. PMID:1445216
2013-01-01
Background Adrenal Cushing’s syndrome caused by ACTH-independent macronodular adrenocortical hyperplasia (AIMAH) can be accompanied by aberrant responses to hormonal stimuli. We investigated the prevalence of adrenocortical reactions to these stimuli in a large cohort of AIMAH patients, both in vivo and in vitro. Methods In vivo cortisol responses to hormonal stimuli were studied in 35 patients with ACTH-independent bilateral adrenal enlargement and (sub-)clinical hypercortisolism. In vitro, the effects of these stimuli on cortisol secretion and steroidogenic enzyme mRNA expression were evaluated in cultured AIMAH and other adrenocortical cells. Arginine-vasopressin (AVP) receptor mRNA levels were determined in the adrenal tissues. Results Positive serum cortisol responses to stimuli were detected in 27/35 AIMAH patients tested, with multiple responses within individual patients occurring for up to four stimuli. AVP and metoclopramide were the most prevalent hormonal stimuli triggering positive responses in vivo. Catecholamines induced short-term cortisol production more often in AIMAH cultures compared to other adrenal cells. Short- and long-term incubation with AVP increased cortisol secretion in cultures of AIMAH cells. AVP also increased steroidogenic enzyme mRNA expression, among which an aberrant induction of CYP11B1. AVP type 1a receptor was the only AVPR expressed and levels were high in the AIMAH tissues. AVPR1A expression was related to the AVP-induced stimulation of CYP11B1. Conclusions Multiple hormonal signals can simultaneously induce hypercortisolism in AIMAH. AVP is the most prevalent eutopic signal and expression of its type 1a receptor was aberrantly linked to CYP11B1 expression. PMID:24034279
Hill, N J; Schölkopf, B
2012-01-01
We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135
NASA Astrophysics Data System (ADS)
Hill, N. J.; Schölkopf, B.
2012-04-01
We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.
Cunningham, William A; Kirkland, Tabitha
2014-06-01
Although much is known about the neural dynamics of maladaptive affective styles, the mechanisms of happiness and well-being are less clear. One possibility is that the neural processes of trait happiness are the opposite of those involved in depression/anxiety: 'rose-colored glasses' cause happy people to focus on positive cues while remaining oblivious to threats. Specifically, because negative affective styles have been associated with increased amygdala activation to negative stimuli, it may be happy people will not show this enhanced response, and may even show reduced amygdala activation to negative stimuli. Alternatively, if well-being entails appropriate sensitivity to information, happy people may process any relevant cues-positive or negative-to facilitate appropriate responding. This would mean that happiness is associated with increased amygdala activation to both positive and negative stimuli. Forty-two participants viewed affective stimuli during functional magnetic resonance imaging scanning. Happier participants showed greater amygdala responses to positive stimuli. Moreover, no significant relationships were found between happiness and responses to negative stimuli. In other words, for happy people, a tuning toward positive did not come at the cost of losing sensitivity to negativity. This work suggests that trait happiness is associated with a balanced amygdala response to positivity and negativity. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Ferrey, Anne E.; Frischen, Alexandra; Fenske, Mark J.
2012-01-01
The motivational incentive of reward-related stimuli can become so salient that it drives behavior at the cost of other needs. Here we show that response inhibition applied during a Go/No-go task not only impacts hedonic evaluations but also reduces the behavioral incentive of motivationally relevant stimuli. We first examined the impact of response inhibition on the hedonic value of sex stimuli associated with strong behavioral-approach responses (Experiment 1). Sexually appealing and non-appealing images were both rated as less attractive when previously encountered as No-go (inhibited) than as Go (non-inhibited) items. We then discovered that inhibition reduces the motivational incentive of sexual appealing stimuli (Experiment 2). Prior Go/No-go status affected the number of key-presses by heterosexual males to view erotic-female (sexually appealing) but not erotic-male or scrambled-control (non-appealing) images. These findings may provide a foundation for developing inhibition-based interventions to reduce the hedonic value and motivational incentive of stimuli associated with disorders of self-control. PMID:23272002
Use of 64-channel electroencephalography to study neural otolith-evoked responses.
McNerney, Kathleen M; Lockwood, Alan H; Coad, Mary Lou; Wack, David S; Burkard, Robert F
2011-03-01
The vestibular evoked myogenic potential (VEMP) is a myogenic response that can be used clinically to evaluate the function of the saccule. However, to date, little is known about the thalamo-cortical representation of saccular activation. It is important to understand all aspects of the VEMP, as this test is currently used clinically in the evaluation of saccular function. To identify the areas of the brain that are activated in response to stimuli used clinically to evoke the VEMP. Electroencephalography (EEG) recordings combined with current density analyses were used to identify the areas of the brain that are activated in response to stimuli presented above VEMP threshold (500 Hz, 120 dB peak SPL [pSPL] tone bursts), as compared to stimuli presented below VEMP threshold (90 dB pSPL, 500 Hz tone bursts). Ten subjects without any history of balance or hearing impairment participated in the study. The neural otolith-evoked responses (NOERs) recorded in response to stimuli presented below VEMP threshold were absent or smaller than NOERs that were recorded in response to stimuli presented above VEMP threshold. Subsequent analyses with source localization techniques, followed by statistical analysis with SPM5 (Statistical Parametric Mapping), revealed several areas that were activated in response to the 120 dB pSPL tone bursts. These areas included the primary visual cortex, the precuneus, the precentral gyrus, the medial temporal gyrus, and the superior temporal gyrus. The present study found a number of specific brain areas that may be activated by otolith stimulation. Given the findings and source localization techniques (which required limited input from the investigator as to where the sources are believed to be located in the brain) used in the present study as well as the similarity in findings between studies employing galvanic stimuli, fMRI (functional magnetic resonance imaging), and scalp-recorded potentials in response to VEMP-eliciting stimuli, our study provides additional evidence that these brain regions are activated in response to stimuli that can be used clinically to evoke the VEMP. American Academy of Audiology.
Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide
2015-12-01
This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
A role for recency of response conflict in producing the bivalency effect.
Grundy, John G; Shedden, Judith M
2014-09-01
The bivalency effect is a block-wise response slowing that is observed during task-switching when rare stimuli that cue two tasks (bivalent stimuli) are encountered. This adjustment in response style affects all trials that follow bivalent stimuli, including those trials that do not share any features with bivalent stimuli. However, the specific stimulus and response properties that trigger the bivalency effect are not well understood. In typical bivalency effect experiments, bivalent stimuli can be congruent or incongruent with respect to the response afforded by the irrelevant stimulus feature, and this distinction has never been examined. In the present study, we show that cognitive load defined by the response incongruence on bivalent trials plays a critical role in producing the subsequent response slowing observed in the bivalency effect, as well as maintaining the magnitude of the bivalency effect across practice. We propose that the bivalency effect reflects a process involved in predicting future cognitive load based on recent cognitive load experience. This is in line with a recent proposal for a role of the ACC in monitoring ongoing changes in the environment to optimize future performance (Sheth et al., in Nature 488:218-221, 2012).
Egorov, Vladimir V
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
2017-01-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984
NASA Astrophysics Data System (ADS)
Egorov, Vladimir V.
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
Laituri, Tony R; Henry, Scott; El-Jawahri, Raed; Muralidharan, Nirmal; Li, Guosong; Nutt, Marvin
2015-11-01
A provisional, age-dependent thoracic risk equation (or, "risk curve") was derived to estimate moderate-to-fatal injury potential (AIS2+), pertaining to men with responses gaged by the advanced mid-sized male test dummy (THOR50). The derivation involved two distinct data sources: cases from real-world crashes (e.g., the National Automotive Sampling System, NASS) and cases involving post-mortem human subjects (PMHS). The derivation was therefore more comprehensive, as NASS datasets generally skew towards younger occupants, and PMHS datasets generally skew towards older occupants. However, known deficiencies had to be addressed (e.g., the NASS cases had unknown stimuli, and the PMHS tests required transformation of known stimuli into THOR50 stimuli). For the NASS portion of the analysis, chest-injury outcomes for adult male drivers about the size of the THOR50 were collected from real-world, 11-1 o'clock, full-engagement frontal crashes (NASS, 1995-2012 calendar years, 1985-2012 model-year light passenger vehicles). The screening for THOR50-sized men involved application of a set of newly-derived "correction" equations for self-reported height and weight data in NASS. Finally, THOR50 stimuli were estimated via field simulations involving attendant representative restraint systems, and those stimuli were then assigned to corresponding NASS cases (n=508). For the PMHS portion of the analysis, simulation-based closure equations were developed to convert PMHS stimuli into THOR50 stimuli. Specifically, closure equations were derived for the four measurement locations on the THOR50 chest by cross-correlating the results of matched-loading simulations between the test dummy and the age-dependent, Ford Human Body Model. The resulting closure equations demonstrated acceptable fidelity (n=75 matched simulations, R2≥0.99). These equations were applied to the THOR50-sized men in the PMHS dataset (n=20). The NASS and PMHS datasets were combined and subjected to survival analysis with event-frequency weighting and arbitrary censoring. The resulting risk curve--a function of peak THOR50 chest compression and age--demonstrated acceptable fidelity for recovering the AIS2+ chest injury rate of the combined dataset (i.e., IR_dataset=1.97% vs. curve-based IR_dataset=1.98%). Additional sensitivity analyses showed that (a) binary logistic regression yielded a risk curve with nearly-identical fidelity, (b) there was only a slight advantage of combining the small-sample PMHS dataset with the large-sample NASS dataset, (c) use of the PMHS-based risk curve for risk estimation of the combined dataset yielded relatively poor performance (194% difference), and (d) when controlling for the type of contact (lab-consistent or not), the resulting risk curves were similar.
Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang
2017-01-25
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.
Mirror me: Imitative responses in adults with autism.
Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander
2016-02-01
Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum disorder participants and 20 healthy controls matched for age, gender and education. Participants performed simple finger-lifting movements in response to (1) biological finger and non-biological dot movement stimuli, (2) acoustic stimuli and (3) combined visual-acoustic stimuli with different contextual (compatible/incompatible) and temporal (simultaneous/asynchronous) relation. Mixed model analyses revealed slower reaction times in autism spectrum disorder. Both groups responded faster to biological compared to non-biological stimuli (Experiment 1) implying intact processing advantage for biological stimuli in autism spectrum disorder. In Experiment 3, both groups had similar 'interference effects' when stimuli were presented simultaneously. However, autism spectrum disorder participants had abnormally slow responses particularly when incompatible stimuli were presented consecutively. Our results suggest imitative control deficits rather than global imitative system impairments. © The Author(s) 2015.
Analysis of discriminative control by social behavioral stimuli
Hake, Don F.; Donaldson, Tom; Hyten, Cloyd
1983-01-01
Visual discriminative control of the behavior of one rat by the behavior of another was studied in a two-compartment chamber. Each rat's compartment had a food cup and two response keys arranged vertically next to the clear partition that separated the two rats. Illumination of the leader's key lights signaled a “search” period when a response by the leader on the unsignaled and randomly selected correct key for that trial illuminated the follower's keys. Then, a response by the follower on the corresponding key was reinforced, or a response on the incorrect key terminated the trial without reinforcement. Accuracy of following the leader increased to 85% within 15 sessions. Blocking the view of the leader reduced accuracy but not to chance levels. Apparent control by visual behavioral stimuli was also affected by auditory stimuli and a correction procedure. When white noise eliminated auditory cues, social learning was not acquired as fast nor as completely. A reductionistic position holds that behavioral stimuli are the same as nonsocial stimuli; however, that does not mean that they do not require any separate treatment. Behavioral stimuli are usually more variable than nonsocial stimuli, and further study is required to disentangle behavioral and nonsocial contributions to the stimulus control of social interactions. PMID:16812313
Delays in using chromatic and luminance information to correct rapid reaches.
Kane, Adam; Wade, Alex; Ma-Wyatt, Anna
2011-09-07
People can use feedback to make online corrections to movements but only if there is sufficient time to integrate the new information and make the correction. A key variable in this process is therefore the speed at which the new information about the target location is coded. Conduction velocities for chromatic signals are lower than for achromatic signals so it may take longer to correct reaches to chromatic stimuli. In addition to this delay, the sensorimotor system may prefer achromatic information over the chromatic information as delayed information may be less valuable when movements are made under time pressure. A down-weighting of chromatic information may result in additional latencies for chromatically directed reaches. In our study, participants made online corrections to reaches to achromatic, (L-M)-cone, and S-cone stimuli. Our chromatic stimuli were carefully adjusted to minimize stimulation of achromatic pathways, and we equated stimuli both in terms of detection thresholds and also by their estimated neural responses. Similar stimuli were used throughout the subjective adjustments and final reaching experiment. Using this paradigm, we found that responses to achromatic stimuli were only slightly faster than responses to (L-M)-cone and S-cone stimuli. We conclude that the sensorimotor system treats chromatic and achromatic information similarly and that the delayed chromatic responses primarily reflect early conduction delays.
Child Maltreatment and Neural Systems Underlying Emotion Regulation.
McLaughlin, Katie A; Peverill, Matthew; Gold, Andrea L; Alves, Sonia; Sheridan, Margaret A
2015-09-01
The strong associations between child maltreatment and psychopathology have generated interest in identifying neurodevelopmental processes that are disrupted following maltreatment. Previous research has focused largely on neural response to negative facial emotion. We determined whether child maltreatment was associated with neural responses during passive viewing of negative and positive emotional stimuli and effortful attempts to regulate emotional responses. A total of 42 adolescents aged 13 to 19 years, half with exposure to physical and/or sexual abuse, participated. Blood oxygen level-dependent (BOLD) response was measured during passive viewing of negative and positive emotional stimuli and attempts to modulate emotional responses using cognitive reappraisal. Maltreated adolescents exhibited heightened response in multiple nodes of the salience network, including amygdala, putamen, and anterior insula, to negative relative to neutral stimuli. During attempts to decrease responses to negative stimuli relative to passive viewing, maltreatment was associated with greater recruitment of superior frontal gyrus, dorsal anterior cingulate cortex, and frontal pole; adolescents with and without maltreatment down-regulated amygdala response to a similar degree. No associations were observed between maltreatment and neural response to positive emotional stimuli during passive viewing or effortful regulation. Child maltreatment heightens the salience of negative emotional stimuli. Although maltreated adolescents modulate amygdala responses to negative cues to a degree similar to that of non-maltreated youths, they use regions involved in effortful control to a greater degree to do so, potentially because greater effort is required to modulate heightened amygdala responses. These findings are promising, given the centrality of cognitive restructuring in trauma-focused treatments for children. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Rebreikina, A B; Larionova, E B; Varlamov, A A
2015-01-01
The aim of this investigation is to study neurophysiologic mechanisms of processing of relevant words and unknown words. Event-related synchronization/desynchronization during categorization of three types of stimuli (known targets, known no targets and unknown words) was examined. The main difference between known targets and unknown stimuli was revealed in the thetal and theta2 bands at the early stage after stimuli onset (150-300 ms) and in the delta band (400-700 ms). In the late time window at about 800-1500 ms thetal ERS in response to the target stimuli was smaller than to other stimuli, but theta2 and alpha ERD in response to the target stimuli was larger than to known nontarget words.
Honeybees in a virtual reality environment learn unique combinations of colour and shape.
Rusch, Claire; Roth, Eatai; Vinauger, Clément; Riffell, Jeffrey A
2017-10-01
Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. In this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being crucial for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli was reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicit learned responses as well as elucidating how visual information is processed in the honeybee brain. © 2017. Published by The Company of Biologists Ltd.
Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability
Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang
2016-01-01
Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations. PMID:27411464
Artes, Paul H; McLeod, David; Henson, David B
2002-01-01
To report on differences between the latency distributions of responses to stimuli and to false-positive catch trials in suprathreshold perimetry. To describe an algorithm for defining response time windows and to report on its performance in discriminating between true- and false-positive responses on the basis of response time (RT). A sample of 435 largely inexperienced patients underwent suprathreshold visual field examination on a perimeter that was modified to record RTs. Data were analyzed from 60,500 responses to suprathreshold stimuli and from 523 false-positive responses to catch trials. False-positive responses had much more variable latencies than responses to suprathreshold stimuli. An algorithm defining RT windows on the basis of z-transformed individual latency samples correctly identified more than 70% of false-positive responses to catch trials, whereas fewer than 3% of responses to suprathreshold stimuli were classified as false-positive responses. Latency analysis can be used to detect a substantial proportion of false-positive responses in suprathreshold perimetry. Rejection of such responses may increase the reliability of visual field screening by reducing variability and bias in a small but clinically important proportion of patients.
Coherence across consciousness levels: Symmetric visual displays spare working memory resources.
Dumitru, Magda L
2015-12-15
Two studies demonstrate that the need for coherence could nudge individuals to use structural similarities between binary visual displays and two concurrent cognitive tasks to unduly solve the latter in similar fashion. In an overt truth-judgement task, participants decided whether symmetric colourful displays matched conjunction or disjunction descriptions (e.g., "the black and/or the orange"). In the simultaneous covert categorisation task, they decided whether a colour name (e.g., "black") described a two-colour object or half of a single-colour object. Two response patterns emerged as follows. Participants either acknowledged or rejected matches between disjunction descriptions and two visual stimuli and, similarly, either acknowledged or rejected matches between single colour names and two-colour objects or between single colour names and half of single-colour objects. These findings confirm the coherence hypothesis, highlight the role of coherence in preserving working-memory resources, and demonstrate an interaction between high-level and low-level consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.
A poroplastic model of structural reorganisation in porous media of biomechanical interest
NASA Astrophysics Data System (ADS)
Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel
2016-03-01
We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.
Jacobsen, Thomas; Höfel, Lea
2003-12-01
Descriptive symmetry and evaluative aesthetic judgment processes were compared using identical stimuli in both judgment tasks. Electrophysiological activity was recorded while participants judged novel formal graphic patterns in a trial-by-trial cuing setting using binary responses (symmetric, not symmetric; beautiful, not beautiful). Judgment analyses of a Phase 1 test and main experiment performance resulted in individual models, as well as group models, of the participants' judgment systems. Symmetry showed a strong positive correlation with beautiful judgments and was the most important cue. Descriptive judgments were performed faster than evaluative judgments. The ERPs revealed a phasic, early frontal negativity for the not-beautiful judgments. A sustained posterior negativity was observed in the symmetric condition. All conditions showed late positive potentials (LPPs). Evaluative judgment LPPs revealed a more pronounced right lateralization. It is argued that the present aesthetic judgments engage a two-stage process consisting of early, anterior frontomedian impression formation after 300 msec and right-hemisphere evaluative categorization around 600 msec after onset of the graphic patterns.
Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum.
Filosa, Alessandro; Barker, Alison J; Dal Maschio, Marco; Baier, Herwig
2016-05-04
Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Roberts, James S.; Laughlin, James E.
1996-01-01
A parametric item response theory model for unfolding binary or graded responses is developed. The graded unfolding model (GUM) is a generalization of the hyperbolic cosine model for binary data of D. Andrich and G. Luo (1993). Applicability of the GUM to attitude testing is illustrated with real data. (SLD)
Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.
Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti
2017-05-10
Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping. SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two stimuli increases the interaction component that is a hallmark for perceptual integration of stimuli. Furthermore, this stimulus-specific interaction is represented in prefrontal and parietal cortex in a task-dependent manner. Copyright © 2017 the authors 0270-6474/17/374942-12$15.00/0.
NASA Astrophysics Data System (ADS)
Church, Derek C.
Stimuli-responsive materials is an area of significant research with a broad scope of applications in fields such as drug delivery, self-healing materials, and lithography. The ideal stimuli-responsive polymer construct is engineered in such a way that the desired activation occurs only when the proper stimuli is spatially and temporally applied. Light-, pH-, redox-, thermal-, mechanical- and enzymatic-stimuli have successfully been harnessed to trigger various responses in polymeric materials. The continued growth of this field relies upon the development of new stimuli-responsive chemical motifs. To this end, my research has focused on the potential of 1,2-oxazines as a new stimuli-responsive moiety within the context of polymer systems. These compounds have been demonstrated to undergo a thermally induced [4 + 2] cycloreversion to release a diene and nitrosocarbonyl dienophile. My research has sought to study and harness the thermal reversibility of this adduct and the subsequent breakdown of the dienophile component to trigger processes such as depolymerization of a polymer chain as well as releasing the therapeutically relevant gaseous small molecule, nitroxyl (HNO). Collectively, these constructs can achieve slow, sustained activation at physiologically relevant temperatures or rapid activation at higher temperatures by exogenous means such as the use of photothermal dyes. I have also looked at the propensity of 1,2-oxazines to undergo mechanochemical activation in solution under strong elongational fields. A fundamental understanding of not only how polymer topology may affect mechanophore activation in general but also the regiochemical application of force across the oxazine itself was explored.
Victor, Teresa A; Furey, Maura L; Fromm, Stephen J; Bellgowan, Patrick S F; Öhman, Arne; Drevets, Wayne C
2012-01-01
Major depressive disorder (MDD) is associated with a mood-congruent processing bias in the amygdala toward face stimuli portraying sad expressions that is evident even when such stimuli are presented below the level of conscious awareness. The extended functional anatomical network that maintains this response bias has not been established, however. To identify neural network differences in the hemodynamic response to implicitly presented facial expressions between depressed and healthy control participants. Unmedicated-depressed participants with MDD (n=22) and healthy controls (HC; n=25) underwent functional MRI as they viewed face stimuli showing sad, happy or neutral face expressions, presented using a backward masking design. The blood-oxygen-level dependent (BOLD) signal was measured to identify regions where the hemodynamic response to the emotionally valenced stimuli differed between groups. The MDD subjects showed greater BOLD responses than the controls to masked-sad versus masked-happy faces in the hippocampus, amygdala and anterior inferotemporal cortex. While viewing both masked-sad and masked-happy faces relative to masked-neutral faces, the depressed subjects showed greater hemodynamic responses than the controls in a network that included the medial and orbital prefrontal cortices and anterior temporal cortex. Depressed and healthy participants showed distinct hemodynamic responses to masked-sad and masked-happy faces in neural circuits known to support the processing of emotionally valenced stimuli and to integrate the sensory and visceromotor aspects of emotional behavior. Altered function within these networks in MDD may establish and maintain illness-associated differences in the salience of sensory/social stimuli, such that attention is biased toward negative and away from positive stimuli.
Xu, Yifang; Collins, Leslie M
2007-08-01
Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.
Yourdkhani, Sirous; Korona, Tatiana; Hadipour, Nasser L
2015-12-15
Intermolecular ternary complexes composed of: (1) the centrally placed trifluoroacetonitrile or its higher analogs with central carbon exchanged by silicon or germanium (M = C, Si, Ge), (2) the benzonitrile molecule or its para derivatives on one side, and (3) the boron trifluoride of trichloride molecule (X = F, Cl) on the opposite side as well as the corresponding intermolecular tetrel- and triel-bonded binary complexes, were investigated by symmetry-adapted perturbation theory (SAPT) and the supermolecular Møller-Plesset method (MP2) at the complete basis set limit for optimized geometries. A character of interactions was studied by quantum theory of atoms-in-molecules (QTAIM). A comparison of interaction energies and QTAIM bond descriptors for dimers and trimers reveals that tetrel and triel bonds increase in their strength if present together in the trimer. For the triel-bonded complex, this growth leads to a change of the bond character from closed-shell to partly covalent for Si or Ge tetrel atoms, so the resulting bonding scheme corresponds to a preliminary stage of the SN2 reaction. Limitations of the Lewis theory of acids and bases were shown by its failure in predicting the stability order of the triel complexes. The necessity of including interaction energy terms beyond the electrostatic component for an elucidation of the nature of σ- and π-holes was presented by a SAPT energy decomposition and by a study of differences in monomer electrostatic potentials obtained either from isolated monomer densities, or from densities resulting from a perturbation with the effective field of another monomer. © 2015 Wiley Periodicals, Inc.
Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka
2016-01-01
The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.
The Mere Exposure Effect: Relationship to Response Competition and Imagery Ability.
ERIC Educational Resources Information Center
Vrana, Scott R.
Exposure to novel stimuli increases one's liking for such stimuli. Response competition is one theory attempting to account for this effect: as a stimulus becomes more familiar, competing responses drop out in favor of one dominant response and the stimulus becomes better liked. Imagery ability refers to the regeneration of responses during…
Effects of aircraft noise on human sleep.
NASA Technical Reports Server (NTRS)
Lukas, J. S.
1972-01-01
Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.
Sarlo, Michela; Buodo, Giulia
2017-03-15
A large body of research on gender differences in response to erotic stimuli has focused on genital and/or subjective sexual arousal. On the other hand, studies assessing gender differences in emotional psychophysiological responding to sexual stimuli have only employed erotic pictures of male-female couples or female/male nudes. The present study aimed at investigating differences between gynephilic men and androphilic women in emotional responding to visual sexual stimuli depicting female-male, female-female and male-male couples. Affective responses were explored in multiple response systems, including autonomic indices of emotional activation, i.e., heart rate and skin conductance, along with standardized measures of valence and arousal. Blood pressure was measured as an index of autonomic activation associated with sexual arousal, and free viewing times as an index of interest/avoidance. Overall, men showed gender-specific activation characterized by clearly appetitive reactions to the target of their sexual attraction (i.e., women), with physiological arousal discriminating female-female stimuli as the most effective sexual cues. In contrast, women's emotional activation to sexual stimuli was clearly non-specific in most of the considered variables, with the notable exception of the self-report measures. Overall, affective responses replicate patterns of gender-specific and gender-nonspecific sexual responses in gynephilic men and androphilic women. Copyright © 2017 Elsevier Inc. All rights reserved.
Stone, David B.; Coffman, Brian A.; Bustillo, Juan R.; Aine, Cheryl J.; Stephen, Julia M.
2014-01-01
Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652
NASA Astrophysics Data System (ADS)
Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di
2016-03-01
When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials.
Human brain spots emotion in non humanoid robots
Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline
2011-01-01
The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513
Malinina, E S; Andreeva, I G
2013-01-01
The perceptual peculiarities of sound source withdrawing and approaching and their influence on auditory aftereffects were studied in the free field. The radial movement of the auditory adapting stimuli was imitated by two methods: (1) by oppositely directed simultaneous amplitude change of the wideband signals at two loudspeakers placed at 1.1 and 4.5 m from a listener; (2) by an increase or a decrease of the wideband noise amplitude of the impulses at one of the loudspeakers--whether close or distant. The radial auditory movement of test stimuli was imitated by using the first method of imitation of adapting stimuli movement. Nine listeners estimated the direction of test stimuli movement without adaptation (control) and after adaptation. Adapting stimuli were stationary, slowly moving with sound level variation of 2 dB and rapidly moving with variation of 12 dB. The percentage of "withdrawing" responses was used for psychometric curve construction. Three perceptual phenomena were found. The growing louder effect was shown in control series without adaptation. The effect was characterized by a decrease of the number of "withdrawing" responses and overestimation of test stimuli as approaching. The position-dependent aftereffects were noticed after adaptation to the stationary and slowly moving sound stimuli. The aftereffect was manifested as an increase of the number of "withdrawing" responses and overestimation of test stimuli as withdrawal. The effect was reduced with increase of the distance between the listener and the loudspeaker. Movement aftereffects were revealed after adaptation to the rapidly moving stimuli. Aftereffects were direction-dependent: the number of "withdrawal" responses after adaptation to approach increased, whereas after adaptation to withdrawal it decreased relative to control. The movement aftereffects were more pronounced at imitation of movement of adapting stimuli by the first method. In this case the listener could determine the starting and the finishing points of movement trajectory. Interaction of movement aftereffects with the growing louder effect was absent in all ways of presentation of adapting stimuli. With increase of distance to the source of adapting stimuli, there was observed a tendency for a decrease of aftereffect of approach and for an increase of aftereffect of withdrawal.
McNamee, Daniel; Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P
2015-03-04
While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. Copyright © 2015 the authors 0270-6474/15/353764-08$15.00/0.
NASA Technical Reports Server (NTRS)
Golub, Morton A.; Wydeven, Theodore; Kliss, Mark (Technical Monitor)
1996-01-01
The relative rates of plasma (co)polymerizations of ethylene, vinyl fluoride, vinylidene fluoride, trifluoroethylene and tetrafluoroethylene (VF(sub x); x = 0-4, respectively) were determined in an rf, capacitively coupled, tubular reactor with external electrodes using identical plasma parameters. The averages of deposition rates obtained by both microgravimetry and ellipsometry were plotted versus the F/C ratios of the monomers or monomer blends. The deposition rates for VF(sub x)(x = 1-3) and 20 monomer blends were all located above a straight line joining the rates for VF(sub 0) and VF(sub 4), following a concave-downward plot of deposition rate versus F/C ratio similar to that reported previously for VF(sub 0)/VF(sub 4) blends. The deposition rates for VF(sub m)/VF(sub n) blends (m = 3 or 4; n = 0-2) were all greater than expected for non-interacting monomers; those for VF(sub 0)/VF(sub 2) and VF(sub 1)/VF(sub 2) blends were all lower than expected; while those for VF(sub 0)/VF(sub 1) and VF(sub 3)/VF(sub 4) blends fen on a straightline plot versus F/C ratio, indicative of apparent non-interaction between monomers. The mechanisms for plasma (co)polymerizations of VF(sub x) monomers responsible for the wide range of relative deposition rates remain to be elucidated.
Marijuana's acute effects on cognitive bias for affective and marijuana cues.
Metrik, Jane; Aston, Elizabeth R; Kahler, Christopher W; Rohsenow, Damaris J; McGeary, John E; Knopik, Valerie S
2015-10-01
Marijuana produces acute increases in positive subjective effects and decreased reactivity to negative affective stimuli, though may also acutely induce anxiety. Implicit attentional and evaluative processes may explicate marijuana's ability to acutely increase positive and negative emotions. This within-subjects study examined whether smoked marijuana with 2.7-3.0% delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed attentional processing of rewarding and negative affective stimuli as well as marijuana-specific stimuli. On 2 separate days, regular marijuana users (N = 89) smoked placebo or active THC cigarette and completed subjective ratings of mood, intoxication, urge to smoke marijuana, and 2 experimental tasks: pleasantness rating (response latency and perceived pleasantness of affective and marijuana-related stimuli) and emotional Stroop (attentional bias to affective stimuli). On the pleasantness rating task, active marijuana increased response latency to negatively valenced and marijuana-related (vs. neutral) visual stimuli, beyond a general slowing of response. Active marijuana also increased pleasantness ratings of marijuana images, although to a lesser extent than placebo due to reduced marijuana urge after smoking. Overall, active marijuana did not acutely change processing of positive emotional stimuli. There was no evidence of attentional bias to affective word stimuli on the emotional Stroop task with the exception of attentional bias to positive word stimuli in the subgroup of marijuana users with cannabis dependence. Marijuana may increase allocation of attentional resources toward marijuana-specific and negatively valenced visual stimuli without altering processing of positively valenced stimuli. Marijuana-specific cues may be more attractive with higher levels of marijuana craving and less wanted with low craving levels. (c) 2015 APA, all rights reserved).
Marijuana’s Acute Effects on Cognitive Bias for Affective and Marijuana Cues
Metrik, Jane; Aston, Elizabeth R.; Kahler, Christopher W.; Rohsenow, Damaris J.; McGeary, John E.; Knopik, Valerie S.
2015-01-01
Marijuana produces acute increases in positive subjective effects and decreased reactivity to negative affective stimuli, though may also acutely induce anxiety. Implicit attentional and evaluative processes may explicate marijuana’s ability to acutely increase positive and negative emotions. This within-subjects study examined whether smoked marijuana with 2.7–3.0 % delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed attentional processing of rewarding and negative affective stimuli as well as marijuana-specific stimuli. On two separate days, regular marijuana users (N=89) smoked placebo or active THC cigarette and completed subjective ratings of mood, intoxication, urge to smoke marijuana, and two experimental tasks: Pleasantness Rating (response latency and perceived pleasantness of affective and marijuana-related stimuli) and Emotional Stroop (attentional bias to affective stimuli). On the Pleasantness Rating task, active marijuana increased response latency to negatively-valenced and marijuana-related (vs. neutral) visual stimuli, beyond a general slowing of response. Active marijuana also increased pleasantness ratings of marijuana images, although to a lesser extent than placebo due to reduced marijuana urge after smoking. Overall, active marijuana did not acutely change processing of positive emotional stimuli. There was no evidence of attentional bias to affective word stimuli on the Emotional Stroop task with the exception of attentional bias to positive word stimuli in the subgroup of marijuana users with cannabis dependence. Marijuana may increase allocation of attentional resources towards marijuana-specific and negatively-valenced visual stimuli without altering processing of positively-valenced stimuli. Marijuana-specific cues may be more attractive with higher levels of marijuana craving and less wanted with low craving levels. PMID:26167716
Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals.
Liu, Feng; Liu, Nannan
2016-01-18
The insect olfactory system plays an important role in detecting semiochemicals in the environment. In particular, the antennal sensilla which house single or multiple neurons inside, are considered to make the major contribution in responding to the chemical stimuli. By directly recording action potential in the olfactory sensillum after exposure to stimuli, single sensillum recording (SSR) technique provides a powerful approach for investigating the neural responses of insects to chemical stimuli. For the bed bug, which is a notorious human parasite, multiple types of olfactory sensillum have been characterized. In this study, we demonstrated neural responses of bed bug olfactory sensilla to two chemical stimuli and the dose-dependent responses to one of them using the SSR method. This approach enables researchers to conduct early screening for individual chemical stimuli on the bed bug olfactory sensilla, which would provide valuable information for the development of new bed bug attractants or repellents and benefits the bed bug control efforts.
Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals
Liu, Feng; Liu, Nannan
2016-01-01
The insect olfactory system plays an important role in detecting semiochemicals in the environment. In particular, the antennal sensilla which house single or multiple neurons inside, are considered to make the major contribution in responding to the chemical stimuli. By directly recording action potential in the olfactory sensillum after exposure to stimuli, single sensillum recording (SSR) technique provides a powerful approach for investigating the neural responses of insects to chemical stimuli. For the bed bug, which is a notorious human parasite, multiple types of olfactory sensillum have been characterized. In this study, we demonstrated neural responses of bed bug olfactory sensilla to two chemical stimuli and the dose-dependent responses to one of them using the SSR method. This approach enables researchers to conduct early screening for individual chemical stimuli on the bed bug olfactory sensilla, which would provide valuable information for the development of new bed bug attractants or repellents and benefits the bed bug control efforts. PMID:26862929
Blake, Khandis R; Yih, Jennifer; Zhao, Kun; Sung, Billy; Harmon-Jones, Cindy
2017-09-01
Skin-transmitted pathogens have threatened humans since ancient times. We investigated whether skin-transmitted pathogens were a subclass of disgust stimuli that evoked an emotional response that was related to, but distinct from, disgust and fear. We labelled this response "the heebie jeebies". In Study 1, coding of 76 participants' experiences of disgust, fear, and the heebie jeebies showed that the heebie jeebies was elicited by unique stimuli which produced skin-crawling sensations and an urge to protect the skin. In Experiment 2,350 participants' responses to skin-transmitted pathogen, fear-inducing, and disgust-inducing vignettes showed that the vignettes elicited sensations and urges which loaded onto heebie jeebies, fear, and disgust factors, respectively. Experiment 3 largely replicated findings from Experiment 2 using video stimuli (178 participants). Results are consistent with the notion that skin-transmitted pathogens are a subclass of disgust stimuli which motivate behaviours that are functionally consistent with disgust yet qualitatively distinct.
Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators
NASA Astrophysics Data System (ADS)
Sahin, Ozgur; Chen, Xi
2014-03-01
Materials that mechanically respond to external chemical stimuli have applications in a wide range of fields. Inspired by biological systems, stimuli-responsive materials that can oscillate, transport fluid, mimic homeostasis, and undergo complex changes in shape have been previously demonstrated. However, the effectiveness of synthetic stimuli-responsive materials in generating work is limited when compared to mechanical actuators. During studies of bacterial sporulation, we have found that the mechanical response of Bacillus spores to water gradients exhibits an energy density of more than 10 MJ/m3, which is two orders of magnitude higher than synthetic water-responsive materials. We also identified mutations that can approximately double the energy density of the spores, and found that spores can self-assemble into dense, submicron-thick monolayers on substrates such as silicon microcantilevers and elastomer sheets, creating self-assembled actuators that can remotely generate electrical power from an evaporating body of water. The energy conversion mechanism of Bacillus spores may facilitate synthetic stimuli-responsive materials with significantly higher energy densities. We acknowledge support from the U.S. Dept. of Energy Early Career Research Program, the Wyss Institute for Biologically Inspired Engineering, and the Rowland Institute at Harvard.
TRPV4 antagonist GSK2193874 does not modulate cough response to osmotic stimuli.
Buday, Tomas; Kovacikova, Lea; Ruzinak, Robert; Plevkova, Jana
2017-02-01
Osmolarity changes of airway superficial fluid are associated with cough and are used in research. TRPV4 is calcium channel initially described as osmosensor. In the airways, it can play role in increasing cough reflex sensitivity. The aim of our study was to test whether cough to osmotic stimuli is mediated via TRPV4 channel. Cough response was measured in 12 male guinea pigs by inhalation of saline, distilled water, hypertonic solution and citric acid for 10min in whole-body plethysmograph. Data were obtained in naïve animals and after pre-treatment with selective TRPV4 antagonist GSK2193874 in doses 300μg/kg (GSK300) and 900μg/kg (GSK900). Cough response to all tested aerosols was significantly higher than to saline. Pre-treatment with GSK300 did not influence response to osmotic stimuli - only reduced cough to citric acid. GSK900 reduced cough response to hypotonic stimuli and citric acid. TRPV4 mediated activation of airway afferents does not seem to be the exclusive mechanism responsible for cough to osmotic stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
Michal, Matthias; Koechel, Ansgar; Canterino, Marco; Adler, Julia; Reiner, Iris; Vossel, Gerhard; Beutel, Manfred E.; Gamer, Matthias
2013-01-01
Background Patients with depersonalization disorder (DPD) typically complain about emotional detachment. Previous studies found reduced autonomic responsiveness to emotional stimuli for DPD patients as compared to patients with anxiety disorders. We aimed to investigate autonomic responsiveness to emotional auditory stimuli of DPD patients as compared to patient controls. Furthermore, we examined the modulatory effect of mindful breathing on these responses as well as on depersonalization intensity. Methods 22 DPD patients and 15 patient controls balanced for severity of depression and anxiety, age, sex and education, were compared regarding 1) electrodermal and heart rate data during a resting period, and 2) autonomic responses and cognitive appraisal of standardized acoustic affective stimuli in two conditions (normal listening and mindful breathing). Results DPD patients rated the emotional sounds as significantly more neutral as compared to patient controls and standardized norm ratings. At the same time, however, they responded more strongly to acoustic emotional stimuli and their electrodermal response pattern was more modulated by valence and arousal as compared to patient controls. Mindful breathing reduced severity of depersonalization in DPD patients and increased the arousal modulation of electrodermal responses in the whole sample. Finally, DPD patients showed an increased electrodermal lability in the rest period as compared to patient controls. Conclusions These findings demonstrated that the cognitive evaluation of emotional sounds in DPD patients is disconnected from their autonomic responses to those emotional stimuli. The increased electrodermal lability in DPD may reflect increased introversion and cognitive control of emotional impulses. The findings have important psychotherapeutic implications. PMID:24058547
ERIC Educational Resources Information Center
Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert
2012-01-01
The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…
Woodcock, Kate A.; Yu, Dian; Liu, Yi; Han, Shihui
2013-01-01
Background Emotional responding is sensitive to social context; however, little emphasis has been placed on the mechanisms by which social context effects changes in emotional responding. Objective We aimed to investigate the effects of social context on neural responses to emotional stimuli to inform on the mechanisms underpinning context-linked changes in emotional responding. Design We measured event-related potential (ERP) components known to index specific emotion processes and self-reports of explicit emotion regulation strategies and emotional arousal. Female Chinese university students observed positive, negative, and neutral photographs, whilst alone or accompanied by a culturally similar (Chinese) or dissimilar researcher (British). Results There was a reduction in the positive versus neutral differential N1 amplitude (indexing attentional capture by positive stimuli) in the dissimilar relative to alone context. In this context, there was also a corresponding increase in amplitude of a frontal late positive potential (LPP) component (indexing engagement of cognitive control resources). In the similar relative to alone context, these effects on differential N1 and frontal LPP amplitudes were less pronounced, but there was an additional decrease in the amplitude of a parietal LPP component (indexing motivational relevance) in response to positive stimuli. In response to negative stimuli, the differential N1 component was increased in the similar relative to dissimilar and alone (trend) context. Conclusion These data suggest that neural processes engaged in response to emotional stimuli are modulated by social context. Possible mechanisms for the social-context-linked changes in attentional capture by emotional stimuli include a context-directed modulation of the focus of attention, or an altered interpretation of the emotional stimuli based on additional information proportioned by the context. PMID:24693352
Timofeev, Igor; Grenier, François; Bazhenov, Maxim; Houweling, Arthur R; Sejnowski, Terrence J; Steriade, Mircea
2002-01-01
Plastic changes in the synaptic responsiveness of neocortical neurones, which occur after rhythmic stimuli within the frequency range of sleep spindles (10 Hz), were investigated in isolated neocortical slabs and intact cortex of anaesthetized cats by means of single, dual and triple simultaneous intracellular recordings in conjunction with recordings of local field potential responses. In isolated cortical slabs (10 mm long, 6 mm wide and 4–5 mm deep), augmenting responses to pulse-trains at 10 Hz (responses with growing amplitudes from the second stimulus in a train) were elicited only by relatively high-intensity stimuli. At low intensities, responses were decremental. The largest augmenting responses were evoked in neurones located close to the stimulation site. Quantitative analyses of the number of action potentials and the amplitude and area of depolarization during augmenting responses in a population of neurones recorded from slabs showed that the most dramatic increases in the number of spikes with successive stimuli, and the greatest increase in depolarization amplitude, were found in conventional fast-spiking (FS) neurones. The largest increase in the area of depolarization was found in regular-spiking (RS) neurones. Dual intracellular recordings from a pair of FS and RS neurones in the slab revealed more action potentials in the FS neurone during augmenting responses and a significant increase in the depolarization area of the RS neurone that was dependent on the firing of the FS neurone. Self-sustained seizures could occur in the slab after rhythmic stimuli at 10 Hz. In the intact cortex, repeated sequences of stimuli generating augmenting responses or spontaneous spindles could induce an increased synaptic responsiveness to single stimuli, which lasted for several minutes. A similar time course of increased responsiveness was obtained with induction of cellular plasticity. These data suggest that augmenting responses elicited by stimulation, as well as spontaneously occurring spindles, may induce short- and medium-term plasticity of neuronal responses. PMID:12122155
Predicting Flory-Huggins χ from Simulations
NASA Astrophysics Data System (ADS)
Zhang, Wenlin; Gomez, Enrique D.; Milner, Scott T.
2017-07-01
We introduce a method, based on a novel thermodynamic integration scheme, to extract the Flory-Huggins χ parameter as small as 10-3k T for polymer blends from molecular dynamics (MD) simulations. We obtain χ for the archetypical coarse-grained model of nonpolar polymer blends: flexible bead-spring chains with different Lennard-Jones interactions between A and B monomers. Using these χ values and a lattice version of self-consistent field theory (SCFT), we predict the shape of planar interfaces for phase-separated binary blends. Our SCFT results agree with MD simulations, validating both the predicted χ values and our thermodynamic integration method. Combined with atomistic simulations, our method can be applied to predict χ for new polymers from their chemical structures.
The N170 component is sensitive to face-like stimuli: a study of Chinese Peking opera makeup.
Liu, Tiantian; Mu, Shoukuan; He, Huamin; Zhang, Lingcong; Fan, Cong; Ren, Jie; Zhang, Mingming; He, Weiqi; Luo, Wenbo
2016-12-01
The N170 component is considered a neural marker of face-sensitive processing. In the present study, the face-sensitive N170 component of event-related potentials (ERPs) was investigated with a modified oddball paradigm using a natural face (the standard stimulus), human- and animal-like makeup stimuli, scrambled control images that mixed human- and animal-like makeup pieces, and a grey control image. Nineteen participants were instructed to respond within 1000 ms by pressing the ' F ' or ' J ' key in response to the standard or deviant stimuli, respectively. We simultaneously recorded ERPs, response accuracy, and reaction times. The behavioral results showed that the main effect of stimulus type was significant for reaction time, whereas there were no significant differences in response accuracies among stimulus types. In relation to the ERPs, N170 amplitudes elicited by human-like makeup stimuli, animal-like makeup stimuli, scrambled control images, and a grey control image progressively decreased. A right hemisphere advantage was observed in the N170 amplitudes for human-like makeup stimuli, animal-like makeup stimuli, and scrambled control images but not for grey control image. These results indicate that the N170 component is sensitive to face-like stimuli and reflect configural processing in face recognition.
Threshold units: A correct metric for reaction time?
Zele, Andrew J.; Cao, Dingcai; Pokorny, Joel
2007-01-01
Purpose To compare reaction time (RT) to rod incremental and decremental stimuli expressed in physical contrast units or psychophysical threshold units. Methods Rod contrast detection thresholds and suprathreshold RTs were measured for Rapid-On and Rapid-Off ramp stimuli. Results Threshold sensitivity to Rapid-Off stimuli was higher than to Rapid-On stimuli. Suprathreshold RTs specified in Weber contrast for Rapid-Off stimuli were shorter than for Rapid-On stimuli. Reaction time data expressed in multiples of threshold reversed the outcomes: Reaction times for Rapid-On stimuli were shorter than those for Rapid-Off stimuli. The use of alternative contrast metrics also failed to equate RTs. Conclusions A case is made that the interpretation of RT data may be confounded when expressed in threshold units. Stimulus energy or contrast is the only metric common to the response characteristics of the cells underlying speeded responses. The use of threshold metrics for RT can confuse the interpretation of an underlying physiological process. PMID:17240416
Value-based attentional capture influences context-dependent decision-making
Cha, Kexin; Rangsipat, Napat; Serences, John T.
2015-01-01
Normative theories posit that value-based decision-making is context independent. However, decisions between two high-value options can be suboptimally biased by the introduction of a third low-value option. This context-dependent modulation is consistent with the divisive normalization of the value of each stimulus by the total value of all stimuli. In addition, an independent line of research demonstrates that pairing a stimulus with a high-value outcome can lead to attentional capture that can mediate the efficiency of visual information processing. Here we tested the hypothesis that value-based attentional capture interacts with value-based normalization to influence the optimality of decision-making. We used a binary-choice paradigm in which observers selected between two targets and the color of each target indicated the magnitude of their reward potential. Observers also had to simultaneously ignore a task-irrelevant distractor rendered in a color that was previously associated with a specific reward magnitude. When the color of the task-irrelevant distractor was previously associated with a high reward, observers responded more slowly and less optimally. Moreover, as the learned value of the distractor increased, electrophysiological data revealed an attenuation of the lateralized N1 and N2Pc responses evoked by the relevant choice stimuli and an attenuation of the late positive deflection (LPD). Collectively, these behavioral and electrophysiological data suggest that value-based attentional capture and value-based normalization jointly mediate the influence of context on free-choice decision-making. PMID:25995350
Value-based attentional capture influences context-dependent decision-making.
Itthipuripat, Sirawaj; Cha, Kexin; Rangsipat, Napat; Serences, John T
2015-07-01
Normative theories posit that value-based decision-making is context independent. However, decisions between two high-value options can be suboptimally biased by the introduction of a third low-value option. This context-dependent modulation is consistent with the divisive normalization of the value of each stimulus by the total value of all stimuli. In addition, an independent line of research demonstrates that pairing a stimulus with a high-value outcome can lead to attentional capture that can mediate the efficiency of visual information processing. Here we tested the hypothesis that value-based attentional capture interacts with value-based normalization to influence the optimality of decision-making. We used a binary-choice paradigm in which observers selected between two targets and the color of each target indicated the magnitude of their reward potential. Observers also had to simultaneously ignore a task-irrelevant distractor rendered in a color that was previously associated with a specific reward magnitude. When the color of the task-irrelevant distractor was previously associated with a high reward, observers responded more slowly and less optimally. Moreover, as the learned value of the distractor increased, electrophysiological data revealed an attenuation of the lateralized N1 and N2Pc responses evoked by the relevant choice stimuli and an attenuation of the late positive deflection (LPD). Collectively, these behavioral and electrophysiological data suggest that value-based attentional capture and value-based normalization jointly mediate the influence of context on free-choice decision-making. Copyright © 2015 the American Physiological Society.
Orbital cortex neuronal responses during an odor-based conditioned associative task in rats.
Yonemori, M; Nishijo, H; Uwano, T; Tamura, R; Furuta, I; Kawasaki, M; Takashima, Y; Ono, T
2000-01-01
Neuronal activity in the rat orbital cortex during discrimination of various odors [five volatile organic compounds (acetophenone, isoamyl acetate, cyclohexanone, p-cymene and 1,8-cineole), and food- and cosmetic-related odorants (black pepper, cheese, rose and perfume)] and other conditioned sensory stimuli (tones, light and air puff) was recorded and compared with behavioral responses to the same odors (black pepper, cheese, rose and perfume). In a neurophysiological study, the rats were trained to lick a spout that protruded close to its mouth to obtain sucrose or intracranial self-stimulation reward after presentation of conditioned stimuli. Of 150 orbital cortex neurons recorded during the task, 65 responded to one or more types of sensory stimuli. Of these, 73.8% (48/65) responded during presentation of an odor. Although the mean breadth of responsiveness (entropy) of the olfactory neurons based on the responses to five volatile organic compounds and air (control) was rather high (0.795), these stimuli were well discriminated in an odor space resulting from multidimensional scaling using Pearson's correlation coefficients between the stimuli. In a behavioral study, a rat was housed in an equilateral octagonal cage, with free access to food and choice among eight levers, four of which elicited only water (no odor, controls), and four of which elicited both water and one of four odors (black pepper, cheese, rose or perfume). Lever presses for each odor and control were counted. Distributions of these five stimuli (four odors and air) in an odor space derived from the multidimensional scaling using Pearson's correlation coefficients based on behavioral responses were very similar to those based on neuronal responses to the same five stimuli. Furthermore, Pearson's correlation coefficients between the same five stimuli based on the neuronal responses and those based on behavioral responses were significantly correlated. The results demonstrated a pivotal role of the rat orbital cortex in olfactory sensory processing and suggest that the orbital cortex is important in the manifestation of various motivated behaviors of the animals, including odor-guided motivational behaviors (odor preference).
Face-Likeness and Image Variability Drive Responses in Human Face-Selective Ventral Regions
Davidenko, Nicolas; Remus, David A.; Grill-Spector, Kalanit
2012-01-01
The human ventral visual stream contains regions that respond selectively to faces over objects. However, it is unknown whether responses in these regions correlate with how face-like stimuli appear. Here, we use parameterized face silhouettes to manipulate the perceived face-likeness of stimuli and measure responses in face- and object-selective ventral regions with high-resolution fMRI. We first use “concentric hyper-sphere” (CH) sampling to define face silhouettes at different distances from the prototype face. Observers rate the stimuli as progressively more face-like the closer they are to the prototype face. Paradoxically, responses in both face- and object-selective regions decrease as face-likeness ratings increase. Because CH sampling produces blocks of stimuli whose variability is negatively correlated with face-likeness, this effect may be driven by more adaptation during high face-likeness (low-variability) blocks than during low face-likeness (high-variability) blocks. We tested this hypothesis by measuring responses to matched-variability (MV) blocks of stimuli with similar face-likeness ratings as with CH sampling. Critically, under MV sampling, we find a face-specific effect: responses in face-selective regions gradually increase with perceived face-likeness, but responses in object-selective regions are unchanged. Our studies provide novel evidence that face-selective responses correlate with the perceived face-likeness of stimuli, but this effect is revealed only when image variability is controlled across conditions. Finally, our data show that variability is a powerful factor that drives responses across the ventral stream. This indicates that controlling variability across conditions should be a critical tool in future neuroimaging studies of face and object representation. PMID:21823208
NASA Astrophysics Data System (ADS)
Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan
2013-04-01
Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.
Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan
2013-04-01
Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min(-1). A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our 'eyes-closed' SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.
Iskandar, S M; Elias, S; Jumiah, H; Asri, M T M; Masrianis, A; Ab Rahman, M Z; Taiman, K; Abdul Rashid, M Y
2004-05-01
The radiation-response characteristics of polymetharylic acid gel dosimeter prepared with different concentrations of monomer and cross-linker is described in these studies. The dosimeters were prepared under the hypoxic condition in a glove box and were then irradiated with gamma-rays produced by Co-60 radionuclide that was generated at 1.25MeV energy. The irradiation took place at different doses ranged from 0Gy to 19Gy. Due to the radiation activities, chain-reaction polymerisation processes had taken place in the formation of polymethacrylic acid (PMAA) gel, which cause the dose response mechanism increased in the NMR relaxation rates of protons. It has been observed that for higher concentration of monomer and cross-linker, the polymerization rate was increased.
An algorithm that improves speech intelligibility in noise for normal-hearing listeners.
Kim, Gibak; Lu, Yang; Hu, Yi; Loizou, Philipos C
2009-09-01
Traditional noise-suppression algorithms have been shown to improve speech quality, but not speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal binary mask, an algorithm is proposed that decomposes the input signal into time-frequency (T-F) units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio (SNR) levels (-5 and 0 dB) using different types of maskers is synthesized by this algorithm and presented to normal-hearing listeners for identification. Results indicated substantial improvements in intelligibility (over 60% points in -5 dB babble) over that attained by human listeners with unprocessed stimuli. The findings from this study suggest that algorithms that can estimate reliably the SNR in each T-F unit can improve speech intelligibility.
Aher, Avinash J; McKeefry, Declan J; Parry, Neil R A; Maguire, John; Murray, I J; Tsai, Tina I; Huchzermeyer, Cord; Kremers, Jan
2018-02-01
To study how rod- and cone-driven responses depend on stimulus size in normal subjects and patients with retinitis pigmentosa (RP), and to show that comparisons between responses to full-field (FF) and smaller stimuli can be useful in diagnosing and monitoring disorders of the peripheral retina without the need for lengthy dark adaptation periods. The triple silent substitution technique was used to isolate L-cone-, M-cone- and rod-driven ERGs with 19, 18 and 33% photoreceptor contrasts, respectively, under identical mean luminance conditions. Experiments were conducted on five normal subjects and three RP patients. ERGs on control subjects were recorded at nine different temporal frequencies (between 2 and 60 Hz) for five different stimulus sizes: FF, 70°, 60°, 50° and 40° diameter circular stimuli. Experiments on RP patients involved rod- and L-cone-driven ERG measurements with FF and 40° stimuli at 8 and 48 Hz. Response amplitudes were defined as those of the first harmonic component after Fourier analysis. In normal subjects, rod-driven responses displayed a fundamentally different behavior than cone-driven responses, particularly at low temporal frequencies. At low and intermediate temporal frequencies (≤ 12 Hz), rod-driven signals increased by a factor of about four when measured with smaller stimuli. In contrast, L- and M-cone-driven responses in this frequency region did not change substantially with stimulus size. At high temporal frequencies (≥ 24 Hz), both rod- and cone-driven response amplitudes decreased with decreasing stimulus size. Signals obtained from rod-isolating stimuli under these conditions are likely artefactual. Interestingly, in RP patients, both rod-driven and L-cone-driven ERGs were similar using 40° and FF stimuli. The increased responses with smaller stimuli in normal subjects to rod-isolating stimuli indicate that a fundamentally different mechanism drives the ERGs in comparison with the cone-driven responses. We propose that the increased responses are caused by stray light stimulating the peripheral retina, thereby allowing peripheral rod-driven function to be studied using the triple silent substitution technique at photopic luminances. The method is effective in studying impaired peripheral rod- and cone- function in RP patients.
Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy
2008-09-16
Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.
Multivariate Models for Normal and Binary Responses in Intervention Studies
ERIC Educational Resources Information Center
Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen
2016-01-01
Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…
Singleton, Clarence J; Ashwin, Chris; Brosnan, Mark
2014-12-01
Researchers have suggested that the two primary cognitive features of autism spectrum disorder (ASD), a drive toward nonsocial processing and a reduced drive toward social processing, may be unrelated to each other in the neurotypical (NT) population and may therefore require separate explanations. Drive toward types of processing may be related to physiological arousal to categories of stimuli, such as social (e.g., faces) or nonsocial (e.g., trains). This study investigated how autistic traits in an NT population might relate to differences in physiological responses to nonsocial compared with social stimuli. NT participants were recruited to examine these differences in those with high vs. low degrees of ASD traits. Forty-six participants (21 male, 25 female) completed the Autism Spectrum Quotient (AQ) to measure ASD traits before viewing a series of 24 images while skin conductance response (SCR) was recorded. Images included six nonsocial, six social, six face-like cartoons, and six nonsocial (relating to participants' personal interests). Analysis revealed that those with a higher AQ had significantly greater SCR arousal to nonsocial stimuli than those with a low AQ, and the higher the AQ, the greater the difference between SCR arousal to nonsocial and social stimuli. This is the first study to identify the relationship between AQ and physiological response to nonsocial stimuli, and a relationship between physiological response to both social and nonsocial stimuli, suggesting that physiological response may underlie the atypical drive toward nonsocial processing seen in ASD, and that at the physiological level at least the social and nonsocial in ASD may be related to one another. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
Haiman, Guy; Pratt, Hillel; Miller, Ariel
2009-10-01
The purpose of this study was to characterize the brain activity and associated cortical structures involved in pseudobulbar affect (PBA), a condition characterized by uncontrollable episodes of laughing and/or crying in patients with multiple sclerosis before and after treatment with dextromethorphan/quinidine (DM/Q). Behavioral responses and event-related potentials (ERPs) in response to subjectively significant and neutral verbal stimuli were recorded from 2 groups: 6 multiple sclerosis patients with PBA before (PBA-preTx) and after (PBA-DM/Q) treatment with DM/Q and 6 healthy control (HC) subjects. Statistical nonparametric mapping comparisons of ERP source current density distributions between groups were conducted for subjectively significant and neutral stimuli separately before and after treatment with DM/Q. Treatment with DM/Q had a normalizing effect on the behavioral responses of PBA patients. Event-related potential waveform comparisons of PBA-preTx and PBA-DM/Q with HC, for both neutral and subjectively significant stimuli, revealed effects on early ERP components. Comparisons between PBA-preTx and HC, in response to subjectively significant stimuli, revealed both early and late effects. Source analysis comparisons between PBA-preTx and PBA-DM/Q indicated distinct activations in areas involved in emotional processing and high-level and associative visual processing in response to neutral stimuli and in areas involved in emotional, somatosensory, primary, and premotor processing in response to subjectively significant stimuli. In most cases, stimuli evoked higher current density in PBA-DM/Q compared with the other groups. In conclusion, differences in brain activity were observed before and after medication. Also, DM/Q administration resulted in normalization of behavioral and electrophysiological measures.
The orbitofrontal cortex and beyond: from affect to decision-making.
Rolls, Edmund T; Grabenhorst, Fabian
2008-11-01
The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.
The specificity of cortical region KO to depth structure.
Tyler, Christopher W; Likova, Lora T; Kontsevich, Leonid L; Wade, Alex R
2006-03-01
Functional MRI studies have identified a cortical region designated as KO between retinotopic areas V3A/B and motion area V5 in human cortex as particularly responsive to motion-defined or kinetic borders. To determine the response of the KO region to more general aspects of structure, we used stereoscopic depth borders and disparate planes with no borders, together with three stimulus types that evoked no depth percept: luminance borders, line contours and illusory phase borders. Responses to these stimuli in the KO region were compared with the responses in retinotopically defined areas that have been variously associated with disparity processing in neurophysiological and fMRI studies. The strongest responses in the KO region were to stimuli evoking perceived depth structure from either disparity or motion cues, but it showed negligible responses either to luminance-based contour stimuli or to edgeless disparity stimuli. We conclude that the region designated as KO is best regarded as a primary center for the generic representation of depth structure rather than any kind of contour specificity.
Tritt, Shona M; Peterson, Jordan B; Page-Gould, Elizabeth; Inzlicht, Michael
2016-12-01
Conservatives are often thought to have a negativity bias-responding more intensely to negative than positive information. Yet, recent research has found that greater endorsement of conservative beliefs follows from both positive and negative emotion inductions. This suggests that the role of affect in political thought may not be restricted to negative valence, and more attention should be given to how conservatives and liberals respond to a wider range of stimulation. In this vein, we examined neural responses to a full range of affective stimuli, allowing us to examine how self-reported ideology moderated these responses. Specifically, we explored the relationship between political orientation and 2 event-related potentials (1 late and 1 early) previously shown to covary with the subjective motivational salience of stimuli-in response to photographs with standardized ratings of arousal and valence. At late time points, conservatives exhibited sustained heightened reactivity, compared with liberals, specifically in response to relatively unarousing and neutral stimuli. At early time points, conservatives exhibited somewhat enhanced neural activity in response to all stimulus types compared with liberals. These results may suggest that conservatives experience a wide variety of stimuli in their environment with increased motivational salience, including positive, neutral, and low-arousal stimuli. No effects of valence were found in this investigation. Such findings have implications for the development and refinement of psychological conceptions of political orientation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Artifactual responses when recording auditory steady-state responses.
Small, Susan A; Stapells, David R
2004-12-01
The goal of this study was to investigate, in hearing-impaired participants who could not hear the stimuli, the possibility of artifactual auditory steady-state responses (ASSRs) when stimuli are presented at high intensities. ASSRs to single (60 dB HL) and multiple (20 to 50 dB HL; 500 to 4000 Hz) bone-conduction stimuli as well as single 114 to 120 dB HL air-conduction stimuli, were obtained using the Rotman MASTER system, using analog-to-digital (A/D) conversion rates of 500, 1000, and 1250 Hz. Responses (p < 0.05) were considered artifactual when their numbers exceeded that expected by chance. In some conditions, we also obtained ASSRs to "alternated" stimuli (stimuli inverted and ASSRs to the two polarities averaged). A total of 17 subjects were tested. Bone conduction results: 500 Hz A/D rate: Large-amplitude (43 to 1558 nV) artifactual ASSRs were seen at 40 and 50 dB HL for the 500 Hz carrier frequency. Smaller responses (28 to 53 nV) were also recorded at 20 dB HL for the 500 Hz carrier frequency. Artifactual ASSRs (17 to 62 nV) were seen at 40 dB HL and above for the 1000 Hz carrier frequency and at 50 dB HL for the 2000 Hz carrier frequency. Alternating the stimulus polarity decreased the amplitude and occurrence of these artifactual responses but did not eliminate responses for the 500 Hz carrier frequency at 40 dB HL and above. No artifactual responses were recorded for 4000 Hz stimuli for any condition. 1000 Hz A/D rate: Artifactual ASSRs (15 to 523 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 40 dB HL and above for the 1000 Hz carrier frequency. Artifactual responses were also obtained at 50 dB HL for a 2000 Hz carrier frequency but not at lower levels. Artifactual responses were not seen for the 4000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 and 2000 Hz carrier frequencies but did not change the results for the 500 Hz carrier frequency. 1250 Hz A/D rate: Artifactual ASSRs (16 to 220 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 60 dB HL and above for the 1000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 Hz carrier frequency but did not change the results for the 500 Hz carrier frequency. There were no artifactual responses at 2000 and 4000 Hz. Air conduction results: 500 Hz A/D rate: Artifactual ASSRs (49 to 153 nV) were seen for 114 to 120 dB HL stimuli for 500 and 1000 Hz carrier frequencies. Alternating the stimulus polarity removed these responses. There were no artifactual responses at 2000 and 4000 Hz. 1000 and 1250 Hz A/D rates: Artifactual ASSRs (19 to 55 nV) were seen for a 120 dB HL stimulus for a 1000 Hz carrier. Alternating the stimulus polarity removed these responses. High-intensity air- or bone-conduction stimuli can produce spurious ASSRs, especially for 500 and 1000 Hz carrier frequencies. High-amplitude stimulus artifact can result in energy that is aliased to exactly the modulation frequency. Choice of signal conditioning (electroencephalogram filter slope and low-pass cutoff) and processing (A/D rate) can avoid spurious responses due to aliasing. However, artifactual responses due to other causes may still occur for bone-conduction stimuli 50 dB HL and higher (and possibly for high-level air conduction). Because the phases of these spurious responses do not invert with inversion of stimulus, the possibility of nonauditory physiologic responses cannot be ruled out. The clinical implications of these results are that artifactual responses may occur for any patient for bone-conduction stimuli at levels greater than 40 dB HL and for high-intensity air-conduction stimuli used to assess patients with profound hearing loss.
PAN, FEI; SWANSON, WILLIAM H.; DUL, MITCHELL W.
2006-01-01
Purpose. The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. Methods. The two-stage neural model of Swanson et al.1 was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43° in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco’s areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10° to 21° selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. Results. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Conclusions. Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect. PMID:16840874
Pan, Fei; Swanson, William H; Dul, Mitchell W
2006-07-01
The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. The two-stage neural model of Swanson et al. was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43 degrees in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco's areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10 degrees to 21 degrees selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect.
Extinction of Conditioned Responses to Methamphetamine-Associated Stimuli in Healthy Humans.
Cavallo, Joel S; Ruiz, Nicholas A; de Wit, Harriet
2016-07-01
Contextual stimuli present during drug experiences become associated with the drug through Pavlovian conditioning and are thought to sustain drug-seeking behavior. Thus, extinction of conditioned responses is an important target for treatment. To date, acquisition and extinction to drug-paired cues have been studied in animal models or drug-dependent individuals, but rarely in non-drug users. We have recently developed a procedure to study acquisition of conditioned responses after single doses of methamphetamine (MA) in healthy volunteers. Here, we examined extinction of these responses and their persistence after conditioning. Healthy adults (18-35 years; N = 20) received two pairings of audio-visual stimuli with MA (20 mg oral) or placebo. Responses to stimuli were assessed before and after conditioning, using three tasks: behavioral preference, attentional bias, and subjective "liking." Subjects exhibited behavioral preference for the drug-paired stimuli at the first post-conditioning test, but this declined rapidly on subsequent extinction tests. They also exhibited a bias to initially look towards the drug-paired stimuli at the first post-test session, but not thereafter. Subjects who experienced more positive subjective drug effects during conditioning exhibited a smaller decline in preference during the extinction phase. Further, longer inter-session intervals during the extinction phase were associated with less extinction of the behavioral preference measure. Conditioned responses after two pairings with MA extinguish quickly, and are influenced by both subjective drug effects and the extinction interval. Characterizing and refining this conditioning procedure will aid in understanding the acquisition and extinction processes of drug-related conditioned responses in humans.
Extinction of Conditioned Responses to Methamphetamine-Associated Stimuli in Healthy Humans
Cavallo, Joel S.; Ruiz, Nicholas A.; de Wit, Harriet
2016-01-01
Rationale Contextual stimuli present during drug experiences become associated with the drug through Pavlovian conditioning, and are thought to sustain drug-seeking behavior. Thus, extinction of conditioned responses is an important target for treatment. To date, acquisition and extinction to drug-paired cues have been studied in animal models or drug-dependent individuals, but rarely in non drug-users. Objective We have recently developed a procedure to study acquisition of conditioned responses after single doses of methamphetamine (MA) in healthy volunteers. Here we examined extinction of these responses and their persistence after conditioning. Methods Healthy adults (18–35 yrs; N=20) received two pairings of audio-visual stimuli with MA (20 mg oral) or placebo. Responses to stimuli were assessed before and after conditioning, using three tasks: behavioral preference, attentional bias, and subjective ‘liking.’ Results Subjects exhibited behavioral preference for the drug-paired stimuli at the first post-conditioning test, but this declined rapidly on subsequent extinction tests. They also exhibited a bias to initially look towards the drug-paired stimuli at the first post-test session, but not thereafter. Subjects who experienced more positive subjective drug effects during conditioning exhibited a smaller decline in preference during the extinction phase. Further, longer inter-session intervals during the extinction phase were associated with less extinction of the behavioral preference measure. Conclusions Conditioned responses after two pairings with MA extinguish quickly, and are influenced by both subjective drug effects and the extinction interval. Characterizing and refining this conditioning procedure will aid in understanding the acquisition and extinction processes of drug-related conditioned responses in humans. PMID:27113223
Raksin, Jonathan N; Glaze, Christopher M; Smith, Sarah; Schmidt, Marc F
2012-04-01
Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVC(IN)) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which "self" (here BOS) is used as a referent to judge "other" (here CON).
Abstract representations of associated emotions in the human brain.
Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H
2015-04-08
Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. Copyright © 2015 the authors 0270-6474/15/355655-09$15.00/0.
Guo, Hongwei; Wan, Hui; Chen, Hongwen; Fang, Fang; Liu, Song; Zhou, Jingwen
2016-10-01
During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.
Temperature responses of individual soil organic matter components
NASA Astrophysics Data System (ADS)
Feng, Xiaojuan; Simpson, Myrna J.
2008-09-01
Temperature responses of soil organic matter (SOM) remain unclear partly due to its chemical and compositional heterogeneity. In this study, the decomposition of SOM from two grassland soils was investigated in a 1-year laboratory incubation at six different temperatures. SOM was separated into solvent extractable compounds, suberin- and cutin-derived compounds, and lignin-derived monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components have distinct chemical structures and stabilities and their decomposition patterns over the course of the experiment were fitted with a two-pool exponential decay model. The stability of SOM components was also assessed using geochemical parameters and kinetic parameters derived from model fitting. Compared with the solvent extractable compounds, a low percentage of lignin monomers partitioned into the labile SOM pool. Suberin- and cutin-derived compounds were poorly fitted by the decay model, and their recalcitrance was shown by the geochemical degradation parameter (ω - C16/∑C16), which was observed to stabilize during the incubation. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of lignin monomers exhibited higher Q10 values than the decomposition of solvent extractable compounds. Our study shows that Q10 values derived from soil respiration measurements may not be reliable indicators of temperature responses of individual SOM components.
Halliwell, Emily R; Jones, Linor L; Fraser, Matthew; Lockley, Morag; Hill-Feltham, Penelope; McKay, Colette M
2015-06-01
A study was conducted to determine whether modifications to input compression and input frequency response characteristics can improve music-listening satisfaction in cochlear implant users. Experiment 1 compared three pre-processed versions of music and speech stimuli in a laboratory setting: original, compressed, and flattened frequency response. Music excerpts comprised three music genres (classical, country, and jazz), and a running speech excerpt was compared. Experiment 2 implemented a flattened input frequency response in the speech processor program. In a take-home trial, participants compared unaltered and flattened frequency responses. Ten and twelve adult Nucleus Freedom cochlear implant users participated in Experiments 1 and 2, respectively. Experiment 1 revealed a significant preference for music stimuli with a flattened frequency response compared to both original and compressed stimuli, whereas there was a significant preference for the original (rising) frequency response for speech stimuli. Experiment 2 revealed no significant mean preference for the flattened frequency response, with 9 of 11 subjects preferring the rising frequency response. Input compression did not alter music enjoyment. Comparison of the two experiments indicated that individual frequency response preferences may depend on the genre or familiarity, and particularly whether the music contained lyrics.
Brinkhus, H B; Klinkenborg, H; Estorf, R; Weber, R
1983-01-01
A new programming language SORCA has been defined and a compiler has been written for Z80-based microcomputer systems with CP/M operating system. The language was developed to control behavioral experiments by external stimuli and by time schedule in real-time. Eight binary hardware input lines are sampled cyclically by the computer and can be used to sense switches, level detectors and other binary information, while 8 binary hardware output lines, that are cyclically updated, can be used to control relays, lamps, generate tones or for other purposes. The typical reaction time (cycle time) of a SORCA-program is 500 microseconds to 1 ms. All functions can be programmed as often as necessary. Included are the basic logic functions, counters, timers, majority gates and other complex functions. Parameters can be given as constants or as a result of a step function or of a random process (with Gaussian or equal distribution). Several tasks can be performed simultaneously. In addition, results of an experiment (e.g., number of reactions or latencies) can be measured and printed out on request or automatically. The language is easy to learn and can also be used for many other control purposes.
Stuhrmann, Anja; Dohm, Katharina; Kugel, Harald; Zwanzger, Peter; Redlich, Ronny; Grotegerd, Dominik; Rauch, Astrid Veronika; Arolt, Volker; Heindel, Walter; Suslow, Thomas; Zwitserlood, Pienie; Dannlowski, Udo
2013-01-01
Background Anhedonia has long been recognized as a key feature of major depressive disorders, but little is known about the association between hedonic symptoms and neurobiological processes in depressed patients. We investigated whether amygdala mood-congruent responses to emotional stimuli in depressed patients are correlated with anhedonic symptoms at automatic levels of processing. Methods We measured amygdala responsiveness to subliminally presented sad and happy facial expressions in depressed patients and matched healthy controls using functional magnetic resonance imaging. Amygdala responsiveness was compared between patients and healthy controls within a 2 (group) × 2 (emotion) design. In addition, we correlated patients’ amygdala responsiveness to sad and happy facial stimuli with self-report questionnaire measures of anhedonia. Results We included 35 patients and 35 controls in our study. As in previous studies, we observed a strong emotion × group interaction in the bilateral amygdala: depressed patients showed greater amygdala responses to sad than happy faces, whereas healthy controls responded more strongly to happy than sad faces. The lack of automatic right amygdala responsiveness to happy faces in depressed patients was associated with higher physical anhedonia scores. Limitations Almost all depressed patients were taking antidepressant medications. Conclusion We replicated our previous finding of depressed patients showing automatic amygdala mood-congruent biases in terms of enhanced reactivity to negative emotional stimuli and reduced activity to positive emotional stimuli. The altered amygdala processing of positive stimuli in patients was associated with anhedonia scores. The results indicate that reduced amygdala responsiveness to positive stimuli may contribute to an-hedonic symptoms due to reduced/inappropriate salience attribution to positive information at very early processing levels. PMID:23171695
Burklund, Lisa J; Torre, Jared B; Lieberman, Matthew D; Taylor, Shelley E; Craske, Michelle G
2017-03-30
Previous research has often highlighted hyperactivity in emotion regions to simple, static social threat cues in social anxiety disorder (SAD). Investigation of the neurobiology of SAD using more naturalistic paradigms can further reveal underlying mechanisms and how these relate to clinical outcomes. We used fMRI to investigate responses to novel dynamic rejection stimuli in individuals with SAD (N=70) and healthy controls (HC; N=17), and whether these responses predicted treatment outcomes following cognitive behavioral therapy (CBT) or acceptance and commitment therapy (ACT). Both HC and SAD groups reported greater distress to rejection compared to neutral social stimuli. At the neural level, HCs exhibited greater activations in social pain/rejection regions, including dorsal anterior cingulate cortex and anterior insula, to rejection stimuli. The SAD group evidenced a different pattern, with no differences in these rejection regions and relatively greater activations in the amygdala and other regions to neutral stimuli. Greater responses in anterior cingulate cortex and the amygdala to rejection vs. neutral stimuli predicted better CBT outcomes. In contrast, enhanced activity in sensory-focused posterior insula predicted ACT responses. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Haertzen, C A; Ross, F E
1980-08-01
Male prisoners who were opiate addicts (N = 47) were given three Process Association Tests of Addiction containing stimuli which evoked responses characteristic of three levels of drug habits: beginning and ending stage of addiction, intermediate stage of addiction, and an advanced level of addiction. Each test required subjects to associate 278 word stimuli with one of five options which were randomly selected from among 20 options covering the stages of addiction, steps in drug taking, and drug effects. The purpose of the study was to determine whether responses to particular options suppressed or enhanced responses to other options. A strong interaction was found between the classes of stimuli and the response options which produced suppression or enhancement. This interaction made it possible to develop a suppression scale to measure the effect of each class of stimulus. Popular responses most frequently suppressed responses of other options. Thus, when the stimuli were clean, responses of "to be clean" and "to live a normal life," which are sensitive indicators of the beginning or ending stages of addiction , suppressed responses of other stages. The response of "to be high," a prime indicator of an intermediate habit, suppressed responses of other options when the stimuli were drug names. Responses of "to be hooked" and "to fix," which are specific indicators of a strong habit, and "to be high," which is a nonspecific indicator of a strong habit, suppressed responses of many other options. In the development of new association tests the analysis of suppression could provide a basis for selectively varying option groupings in order to increase or decrease the frequently of certain responses.
Flory-type theories of polymer chains under different external stimuli
NASA Astrophysics Data System (ADS)
Budkov, Yu A.; Kiselev, M. G.
2018-01-01
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
A Multidimensional Ideal Point Item Response Theory Model for Binary Data
ERIC Educational Resources Information Center
Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P.
2006-01-01
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…
Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A
2014-07-15
CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments. We begin by reviewing the current state of stimuli-responsive supramolecular assemblies formed by host-guest interactions, discussing how to transfer host-guest chemistry from solution onto surfaces required for fabricating multifunctional biosurfaces and biointerfaces. Then, we present different stimuli-responsive biosurfaces and biointerfaces, which have been prepared through a combination of cyclodextrin- or cucurbituril-based host-guest chemistry and various surface technologies such as self-assembled monolayers or layer-by-layer assembly. Moreover, we discuss the applications of these biointerfaces and biosurfaces in the fields of drug release, reversible adsorption and release of some organic molecules, peptides, proteins, and cells, and photoswitchable bioelectrocatalysis. In addition, we summarize the merits and current limitations of these methods for fabricating multifunctional stimuli-responsive biointerfaces in a dynamic noncovalent manner. Finally, we present possible strategies for future designs of stimuli-responsive multifunctional biointerfaces and biosurfaces by combining host-guest chemistry with surface science, which will lead to further critical development of supramolecular chemistry at interfaces.
The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor
2013-01-01
Background To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. Results ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. Conclusion C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor. PMID:24341457
The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor.
Sanders, Jarred; Nagy, Stanislav; Fetterman, Graham; Wright, Charles; Treinin, Millet; Biron, David
2013-12-17
To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.
DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha
2012-01-01
The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258
ERIC Educational Resources Information Center
Dodge, Kenneth A.
1989-01-01
Provides an overview of research on infant and child emotion regulation, beginning with consideration of emotion as a set of responses to particular stimuli. Emotion regulation is the process through which activation in one response domain serves to alter, titrate, or modulate activation in another response domain. (RH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.
The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor requiredmore » for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.« less
Changing CS Features Alters Evaluative Responses in Evaluative Conditioning
ERIC Educational Resources Information Center
Unkelbach, Christian; Stahl, Christoph; Forderer, Sabine
2012-01-01
Evaluative conditioning (EC) refers to changes in people's evaluative responses toward initially neutral stimuli (CSs) by mere spatial and temporal contiguity with other positive or negative stimuli (USs). We investigate whether changing CS features from conditioning to evaluation also changes people's evaluative response toward these CSs. We used…
Interactions and aggregation of apoferritin molecules in solution: effects of added electrolytes.
Petsev, D N; Thomas, B R; Yau, S; Vekilov, P G
2000-01-01
We have studied the structure of the protein species and the protein-protein interactions in solutions containing two apoferritin molecular forms, monomers and dimers, in the presence of Na(+) and Cd(2+) ions. We used chromatographic, and static and dynamic light scattering techniques, and atomic force microscopy (AFM). Size-exclusion chromatography was used to isolate these two protein fractions. The sizes and shapes of the monomers and dimers were determined by dynamic light scattering and AFM. Although the monomer is an apparent sphere with a diameter corresponding to previous x-ray crystallography determinations, the dimer shape corresponds to two, bound monomer spheres. Static light scattering was applied to characterize the interactions between solute molecules of monomers and dimers in terms of the second osmotic virial coefficients. The results for the monomers indicate that Na(+) ions cause strong intermolecular repulsion even at concentrations higher than 0.15 M, contrary to the predictions of the commonly applied Derjaguin-Landau-Verwey-Overbeek theory. We argue that the reason for such behavior is hydration force due to the formation of a water shell around the protein molecules with the help of the sodium ions. The addition of even small amounts of Cd(2+) changes the repulsive interactions to attractive but does not lead to oligomer formation, at least at the protein concentrations used. Thus, the two ions provide examples of strong specificity of their interactions with the protein molecules. In solutions of the apoferritin dimer, the molecules attract even in the presence of Na(+) only, indicating a change in the surface of the apoferritin molecule. In view of the strong repulsion between the monomers, this indicates that the dimers and higher oligomers form only after partial denaturation of some of the apoferritin monomers. These observations suggest that aggregation and self-assembly of protein molecules or molecular subunits may be driven by forces other than those responsible for crystallization and other phase transitions in the protein solution. PMID:10733984
The structure of distractor-response bindings: Conditions for configural and elemental integration.
Moeller, Birte; Frings, Christian; Pfister, Roland
2016-04-01
Human action control is influenced by bindings between perceived stimuli and responses carried out in their presence. Notably, responses given to a target stimulus can also be integrated with additional response-irrelevant distractor stimuli that accompany the target (distractor-response binding). Subsequently reencountering such a distractor then retrieves the associated response. Although a large body of evidence supports the existence of this effect, the specific structure of distractor-response bindings is still unclear. Here, we test the predictions derived from 2 possible assumptions about the structure of bindings between distractors and responses. According to a configural approach, the entire distractor object is integrated with a response, and only upon repetition of the entire distractor object the associated response would be retrieved. According to an elemental approach, one would predict integration of individual distractor features with the response and retrieval due to the repetition of an individual distractor feature. Four experiments indicate that both, configural and elemental bindings exist and specify boundary conditions for each type of binding. These findings provide detailed insights into the architecture of bindings between response-irrelevant stimuli and actions and thus allow for specifying how distractor stimuli influence human behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Physiological reactivity to phobic stimuli in people with fear of flying.
Busscher, Bert; van Gerwen, Lucas J; Spinhoven, Philip; de Geus, Eco J C
2010-09-01
The nature of the relationship between physiological and subjective responses in phobic subjects remains unclear. Phobics have been thought to be characterized by a heightened physiological response (physiological perspective) or by a heightened perception of a normal physiological response (psychological perspective). In this study, we examined subjective measures of anxiety, heart rate (HR), and cardiac autonomic responses to flight-related stimuli in 127 people who applied for fear-of-flying therapy at a specialized treatment center and in 36 controls without aviophobia. In keeping with the psychological perspective, we found a large increase in subjective distress (eta(2)=.43) during exposure to flight-related stimuli in the phobics and no change in subjective distress in the controls, whereas the physiological responses of both groups were indiscriminate. However, in keeping with the physiological perspective, we found that, within the group of phobics, increases in subjective fear during exposure were moderately strong coupled to HR (r =.208, P=.022) and cardiac vagal (r =.199, P=.028) reactivity. In contrast to predictions by the psychological perspective, anxiety sensitivity did not modulate this coupling. We conclude that subjective fear responses and autonomic responses are only loosely coupled during mildly threatening exposure to flight-related stimuli. More ecologically valid exposure to phobic stimuli may be needed to test the predictions from the physiological and psychological perspectives. Copyright (c) 2010 Elsevier Inc. All rights reserved.
The influence of tone inventory on ERP without focal attention: a cross-language study.
Zheng, Hong-Ying; Peng, Gang; Chen, Jian-Yong; Zhang, Caicai; Minett, James W; Wang, William S-Y
2014-01-01
This study investigates the effect of tone inventories on brain activities underlying pitch without focal attention. We find that the electrophysiological responses to across-category stimuli are larger than those to within-category stimuli when the pitch contours are superimposed on nonspeech stimuli; however, there is no electrophysiological response difference associated with category status in speech stimuli. Moreover, this category effect in nonspeech stimuli is stronger for Cantonese speakers. Results of previous and present studies lead us to conclude that brain activities to the same native lexical tone contrasts are modulated by speakers' language experiences not only in active phonological processing but also in automatic feature detection without focal attention. In contrast to the condition with focal attention, where phonological processing is stronger for speech stimuli, the feature detection (pitch contours in this study) without focal attention as shaped by language background is superior in relatively regular stimuli, that is, the nonspeech stimuli. The results suggest that Cantonese listeners outperform Mandarin listeners in automatic detection of pitch features because of the denser Cantonese tone system.
Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance
NASA Astrophysics Data System (ADS)
Simpson, M. J.; Feng, X.
2007-12-01
The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global warming.
Xu, Xiaojing; Feng, Jinchao; Lü, Shiyou; Lohrey, Greg T; An, Huiling; Zhou, Yijun; Jenks, Matthew A
2014-08-01
The impact of water-deficit stress on leaf cuticular waxes and cutin monomers, and traits associated with cuticle permeability were examined in Shandong and Yukon ecotypes of Eutrema salsugineum (syn. Thellungiella salsuginea). Although Shandong exhibits glaucous leaves, and Yukon is non-glaucous, wax amounts on non-stressed Yukon leaves were 4.6-fold higher than on Shandong, due mainly to Yukon's eightfold higher wax fatty acids, especially the C22 and C24 acid homologues. Water deficit caused a 26.9% increase in total waxes on Shandong leaves, due mainly to increased C22 and C24 acids; and caused 10.2% more wax on Yukon, due mainly to an increase in wax alkanes. Total cutin monomers on non-stressed leaves of Yukon were 58.3% higher than on Shandong. Water deficit caused a 28.2% increase in total cutin monomers on Shandong, whereas total cutin monomers were not induced on Yukon. With or without stress, more abundant cuticle lipids were generally associated with lower water loss rates, lower chlorophyll efflux rates and an extended time before water deficit-induced wilting. In response to water deficit, Shandong showed elevated transcription of genes encoding elongase subunits, consistent with the higher stress induction of acids by Shandong. Yukon's higher induction of CER1 and CER3 transcripts may explain why alkanes increased most on Yukon after water deficit. Eutrema, with its diverse cuticle lipids and responsiveness, provides a valuable genetic resource for identifying new genes and alleles effecting cuticle metabolism, and lays groundwork for studies of the cuticle's role in extreme stress tolerance. Published 2013. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Taste Receptor Cells That Discriminate Between Bitter Stimuli
Caicedo, Alejandro; Roper, Stephen D.
2013-01-01
Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863
Differential coactivation in a redundant signals task with weak and strong go/no-go stimuli.
Minakata, Katsumi; Gondan, Matthias
2018-05-01
When participants respond to stimuli of two sources, response times (RTs) are often faster when both stimuli are presented together relative to the RTs obtained when presented separately (redundant signals effect [RSE]). Race models and coactivation models can explain the RSE. In race models, separate channels process the two stimulus components, and the faster processing time determines the overall RT. In audiovisual experiments, the RSE is often higher than predicted by race models, and coactivation models have been proposed that assume integrated processing of the two stimuli. Where does coactivation occur? We implemented a go/no-go task with randomly intermixed weak and strong auditory, visual, and audiovisual stimuli. In one experimental session, participants had to respond to strong stimuli and withhold their response to weak stimuli. In the other session, these roles were reversed. Interestingly, coactivation was only observed in the experimental session in which participants had to respond to strong stimuli. If weak stimuli served as targets, results were widely consistent with the race model prediction. The pattern of results contradicts the inverse effectiveness law. We present two models that explain the result in terms of absolute and relative thresholds.
A sLORETA study for gaze-independent BCI speller.
Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming
2017-07-01
EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.
Probing the influence of unconscious fear-conditioned visual stimuli on eye movements.
Madipakkam, Apoorva Rajiv; Rothkirch, Marcus; Wilbertz, Gregor; Sterzer, Philipp
2016-11-01
Efficient threat detection from the environment is critical for survival. Accordingly, fear-conditioned stimuli receive prioritized processing and capture overt and covert attention. However, it is unknown whether eye movements are influenced by unconscious fear-conditioned stimuli. We performed a classical fear-conditioning procedure and subsequently recorded participants' eye movements while they were exposed to fear-conditioned stimuli that were rendered invisible using interocular suppression. Chance-level performance in a forced-choice-task demonstrated unawareness of the stimuli. Differential skin conductance responses and a change in participants' fearfulness ratings of the stimuli indicated the effectiveness of conditioning. However, eye movements were not biased towards the fear-conditioned stimulus. Preliminary evidence suggests a relation between the strength of conditioning and the saccadic bias to the fear-conditioned stimulus. Our findings provide no strong evidence for a saccadic bias towards unconscious fear-conditioned stimuli but tentative evidence suggests that such an effect may depend on the strength of the conditioned response. Copyright © 2016 Elsevier Inc. All rights reserved.
The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.
van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R
2018-05-04
Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Okano, Teruo; Kikuchi, Akihiko
1996-04-01
Considerable research attention has been focused recently on materials which change their structure and properties in response to external stimuli. These materials, termed `intelligent materials', sense a stimulus as a signal (sensor function), judge the magnitude of this signal (processor function), and then alter their function in direct response (effector function). Introduction of stimuli-responsive polymers as switching sequences into both artificial materials and bioactive molecules would permit external, stimuli-induced modulation of their structures and `on-off' switching of their respective functions at molecular levels. Intelligent materials embodying these concepts would contribute to the establishment of basic principles for fabricating novel systems which modulate their structural changes and functional changes in response to external stimuli. These materials are attractive not only as new, sophisticated biomaterials but also for utilization in protein biotechnology, medical diagnosis and advanced site-specific drug delivery system.
VEP Responses to Op-Art Stimuli
O’Hare, Louise; Clarke, Alasdair D. F.; Pollux, Petra M. J.
2015-01-01
Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast. PMID:26422207
VEP Responses to Op-Art Stimuli.
O'Hare, Louise; Clarke, Alasdair D F; Pollux, Petra M J
2015-01-01
Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.
Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit
2014-07-01
Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.
Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain
Wilson, David M.; Boughter, John D.; Lemon, Christian H.
2012-01-01
A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505
The pupillary response discriminates between subjective and objective familiarity and novelty.
Kafkas, Alexandros; Montaldi, Daniela
2015-10-01
The pupil response discriminates between old and new stimuli, with old stimuli characterized by larger pupil dilation patterns than new stimuli. We sought to explore the cause of the pupil old/new effect and discount the effect of targetness, effort, recollection retrieval, and complexity of the recognition decision. Two experiments are reported in which the pupil response and the eye fixation patterns were measured, while participants identified novel and familiar object stimuli, in two separate tasks, emphasizing either novelty or familiarity detection. In Experiment 1, familiarity and novelty decisions were taken using a rating scale, while in Experiment 2 a simpler yes/no decision was used. In both experiments, we found that detection of target familiar stimuli resulted in greater pupil dilation than the detection of target novel stimuli, while the duration of the first fixation discriminated between familiar and novel stimuli as early as within 320 ms after stimulus onset. Importantly, the pupil response distinguished between the objective (during an earlier temporal component) and the subjective (during a later temporal component) status of the stimulus for misses and false alarms. In the light of previous findings, we suggest that the pupil and fixation old/new effects reflect the distinct neural and cognitive mechanisms involved in the familiarity and novelty decisions. The findings also have important implications for the use of pupil dilation and eye movement patterns to explore explicit and implicit memory processes. © 2015 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Porpiglia, Ermelinda; Hidalgo, Daniel; Koulnis, Miroslav; Tzafriri, Abraham R.; Socolovsky, Merav
2012-01-01
Erythropoietin (Epo)-induced Stat5 phosphorylation (p-Stat5) is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic) erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital) p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog) p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a “knocked-in” EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the binary and graded modalities combine to generate high-fidelity Stat5 signaling over the entire basal and stress Epo range. They suggest that dynamic behavior may encode information during STAT signal transduction. PMID:22969412
Anxiety and autonomic response to social-affective stimuli in individuals with Williams syndrome.
Ng, Rowena; Bellugi, Ursula; Järvinen, Anna
2016-12-01
Williams syndrome (WS) is a genetic condition characterized by an unusual "hypersocial" personality juxtaposed by high anxiety. Recent evidence suggests that autonomic reactivity to affective face stimuli is disorganised in WS, which may contribute to emotion dysregulation and/or social disinhibition. Electrodermal activity (EDA) and mean interbeat interval (IBI) of 25 participants with WS (19 - 57 years old) and 16 typically developing (TD; 17-43 years old) adults were measured during a passive presentation of affective face and voice stimuli. The Beck Anxiety Inventory was administered to examine associations between autonomic reactivity to social-affective stimuli and anxiety symptomatology. The WS group was characterized by higher overall anxiety symptomatology, and poorer anger recognition in social visual and aural stimuli relative to the TD group. No between-group differences emerged in autonomic response patterns. Notably, for participants with WS, increased anxiety was uniquely associated with diminished arousal to angry faces and voices. In contrast, for the TD group, no associations emerged between anxiety and physiological responsivity to social-emotional stimuli. The anxiety associated with WS appears to be intimately related to reduced autonomic arousal to angry social stimuli, which may also be linked to the characteristic social disinhibition. Copyright © 2016. Published by Elsevier Ltd.
Tan, Jiajia; Deng, Zhengyu; Liu, Guhuan; Hu, Jinming; Liu, Shiyong
2018-03-21
Inflammation serves as a natural defense mechanism to protect living organisms from infectious diseases. Nonsteroidal anti-inflammatory drugs (NSAIDs) can help relieve inflammatory reactions and are clinically used to treat pain, fever, and inflammation, whereas long-term use of NSAIDs may lead to severe side effects including gastrointestinal damage and cardiovascular toxicity. Therefore, it is of increasing importance to configure new dosing strategies and alleviate the side effects of NSAIDs. Towards this goal, glutathione (GSH)-responsive disulfide bonds and hydrogen peroxide (H 2 O 2 )-reactive phenylboronic ester linkages were utilized as triggering moieties in this work to design redox-responsive prodrug monomers and polyprodrug amphiphiles based on indomethacin (IND) drug. Note that IND is a widely prescribed NSAID in the clinic. Starting from three types of redox-reactive IND prodrug monomers, redox-responsive polyprodrug amphiphiles were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerizations of prodrug monomers using poly(ethylene oxide) (PEO)-based macroRAFT agent. The resultant polyprodrug amphiphiles with high IND loading contents (>33 wt%) could self-assemble into polymersomes with PEO shielding coronas and redox-responsive bilayer membranes composed of IND prodrugs. Upon incubation with GSH or H 2 O 2 , controlled release of intact IND in the active form from polyprodrug polymersomes was actuated by GSH-mediated disulfide cleavage reaction and H 2 O 2 -mediated oxidation of phenylboronic ester moieties, respectively, followed by self-immolative degradation events. Furthermore, in vitro studies at the cellular level revealed that redox-responsive polymersomes could efficiently relieve inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells. Copyright © 2018. Published by Elsevier Ltd.
A circuit-based mechanism underlying familiarity signaling and the preference for novelty
Molas, Susanna; Zhao-Shea, Rubing; Liu, Liwang; DeGroot, Steven R.; Gardner, Paul D.; Tapper, Andrew R.
2017-01-01
Novelty preference (NP) is an evolutionarily conserved, essential survival mechanism often dysregulated in neuropsychiatric disorders. NP is mediated by a motivational dopamine signal that increases in response to novel stimuli thereby driving exploration. However, the mechanism by which once novel stimuli transitions to familiar stimuli is unknown. Here we describe a neuroanatomical substrate for familiarity signaling, the interpeduncular nucleus (IPN) of the midbrain, which is activated as novel stimuli become familiar with multiple exposures. Optogenetic silencing of IPN neurons increases salience of and interaction with familiar stimuli without affecting novelty responses; whereas, photo-activation of the same neurons reduces exploration of novel stimuli mimicking familiarity. Bi-directional control of NP by the IPN depends on familiarity- and novelty-signals arising from excitatory habenula and dopaminergic ventral tegmental area inputs, which activate and reduce IPN activity, respectively. These results demonstrate that familiarity signals through unique IPN circuitry that opposes novelty seeking to control NP. PMID:28714952
A circuit-based mechanism underlying familiarity signaling and the preference for novelty.
Molas, Susanna; Zhao-Shea, Rubing; Liu, Liwang; DeGroot, Steven R; Gardner, Paul D; Tapper, Andrew R
2017-09-01
Novelty preference (NP) is an evolutionarily conserved, essential survival mechanism often dysregulated in neuropsychiatric disorders. NP is mediated by a motivational dopamine signal that increases in response to novel stimuli, thereby driving exploration. However, the mechanism by which once-novel stimuli transition to familiar stimuli is unknown. Here we describe a neuroanatomical substrate for familiarity signaling, the interpeduncular nucleus (IPN) of the midbrain, which is activated as novel stimuli become familiar with multiple exposures. In mice, optogenetic silencing of IPN neurons increases salience of and interaction with familiar stimuli without affecting novelty responses, whereas photoactivation of the same neurons reduces exploration of novel stimuli mimicking familiarity. Bidirectional control of NP by the IPN depends on familiarity signals and novelty signals arising from excitatory habenula and dopaminergic ventral tegmentum inputs, which activate and reduce IPN activity, respectively. These results demonstrate that familiarity signals through unique IPN circuitry that opposes novelty seeking to control NP.
Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire
2009-01-01
This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional preload. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli. PMID:19007893
Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire
2009-02-01
This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional pre-load. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli.
Salavitabar, Arash; Haidet, Kim Kopenhaver; Adkins, Cherie S; Susman, Elizabeth J; Palmer, Charles; Storm, Hanne
2010-06-01
To evaluate the utility of skin conductance (SC) as a measure of autonomic arousal to sound stimuli in preterm infants. A pilot cross-sectional, correlations study. Eleven preterm infants with a mean gestational age of 31.6 weeks without anomalies or conditions associated with neurodevelopmental delay composed the sample. On days 5-7 of life, the following infant responses were simultaneously recorded in response to naturally occurring sound stimuli in the NICU: real-time measurements of heart rate, respiratory rate, and oxygen saturations; sympathetic-mediated sweating via SC; and behavioral responses using the Newborn Individualized Developmental Care and Assessment Program naturalistic observation. Baseline sound levels (BSL, <55 dBA) and high sound levels (HSL, >65 dBA) were measured to index patterns of response during a nonhandling period preceding care. Mean heart rate during precare was directly associated with higher SC increases to sound stimuli (r[10] = 0.697, P = .017). The SC during HSL was significantly higher than that during BSL (P < .0001). Males demonstrated higher SC increases to sound stimuli than females (P = .030). Changes in SC induced by increases in sound intensity were associated with lower attention responses (r[10] = -0.92, P < .0001) and lower summated behavioral responses (r[10] = -0.59, P = .054). SC provides a noninvasive, sensitive measure of sympathetic arousal that may not be apparent in behavioral cues or states, or determined by standard physiological responses alone.
Neurobiological mechanisms underlying the blocking effect in aversive learning.
Eippert, Falk; Gamer, Matthias; Büchel, Christian
2012-09-19
Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.
Mareckova, Klara; Holsen, Laura M; Admon, Roee; Makris, Nikos; Seidman, Larry; Buka, Stephen; Whitfield-Gabrieli, Susan; Goldstein, Jill M
2016-11-01
Negative affective stimuli elicit behavioral and neural responses which vary on a continuum from adaptive to maladaptive, yet are typically investigated in a dichotomous manner (healthy controls vs. psychiatric diagnoses). This practice may limit our ability to fully capture variance from acute responses to negative affective stimuli to psychopathology at the extreme end. To address this, we conducted a functional magnetic resonance imaging study to examine the neural responses to negative valence/high arousal and neutral valence/low arousal images as a function of dysphoric mood and sex across individuals (n = 99) who represented traditional categories of healthy controls, major depressive disorder, bipolar psychosis, and schizophrenia. Observation of negative (vs. neutral) stimuli elicited blood oxygen-level dependent responses in the following circuitry: periaqueductal gray, hypothalamus (HYPO), amygdala (AMYG), hippocampus (HIPP), orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and greater connectivity between AMYG and mPFC. Across all subjects, severity of dysphoric mood was associated with hyperactivity of HYPO, and, among females, right (R) AMYG. Females also demonstrated inverse relationships between severity of dysphoric mood and connectivity between HYPO - R OFC, R AMYG - R OFC, and R AMYG - R HIPP. Overall, our findings demonstrated sex-dependent deficits in response to negative affective stimuli increasing as a function of dysphoric mood state. Females demonstrated greater inability to regulate arousal as mood became more dysphoric. These findings contribute to elucidating biosignatures associated with response to negative stimuli across disorders and suggest the importance of a sex-dependent lens in determining these biosignatures. Hum Brain Mapp 37:3733-3744, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
AUDITORY NUCLEI: DISTINCTIVE RESPONSE PATTERNS TO WHITE NOISE AND TONES IN UNANESTHETIZED CATS.
GALIN, D
1964-10-09
Electrical responses to "white" noise and tonal stimuli were recorded from unanesthetized cats with permanently implanted bipolar electrodes. The cochlear nucleus, inferior colliculus, and medial geniculate each showed distinctive patterns of evoked activity. White noise and tones produced qualitatively different types of response. A decrease in activity characterized the response of the inferior colliculus to tonal stimuli.
Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A
1996-09-01
To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.
Verhoef, Bram-Ernst; Bohon, Kaitlin S.
2015-01-01
Binocular disparity is a powerful depth cue for object perception. The computations for object vision culminate in inferior temporal cortex (IT), but the functional organization for disparity in IT is unknown. Here we addressed this question by measuring fMRI responses in alert monkeys to stimuli that appeared in front of (near), behind (far), or at the fixation plane. We discovered three regions that showed preferential responses for near and far stimuli, relative to zero-disparity stimuli at the fixation plane. These “near/far” disparity-biased regions were located within dorsal IT, as predicted by microelectrode studies, and on the posterior inferotemporal gyrus. In a second analysis, we instead compared responses to near stimuli with responses to far stimuli and discovered a separate network of “near” disparity-biased regions that extended along the crest of the superior temporal sulcus. We also measured in the same animals fMRI responses to faces, scenes, color, and checkerboard annuli at different visual field eccentricities. Disparity-biased regions defined in either analysis did not show a color bias, suggesting that disparity and color contribute to different computations within IT. Scene-biased regions responded preferentially to near and far stimuli (compared with stimuli without disparity) and had a peripheral visual field bias, whereas face patches had a marked near bias and a central visual field bias. These results support the idea that IT is organized by a coarse eccentricity map, and show that disparity likely contributes to computations associated with both central (face processing) and peripheral (scene processing) visual field biases, but likely does not contribute much to computations within IT that are implicated in processing color. PMID:25926470
Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Kulikov, M A; Mikhaĭlova, E S
2013-01-01
In 38 healthy subjects accuracy and response time were examined during recognition of two categories of images--animals andnonliving objects--under forward masking. We revealed new data that masking effects depended of categorical similarity of target and masking stimuli. The recognition accuracy was the lowest and the response time was the most slow, when the target and masking stimuli belongs to the same category, that was combined with high dispersion of response times. The revealed effects were more clear in the task of animal recognition in comparison with the recognition of nonliving objects. We supposed that the revealed effects connected with interference between cortical representations of the target and masking stimuli and discussed our results in context of cortical interference and negative priming.
Neural responses to salient visual stimuli.
Morris, J S; Friston, K J; Dolan, R J
1997-01-01
The neural mechanisms involved in the selective processing of salient or behaviourally important stimuli are uncertain. We used an aversive conditioning paradigm in human volunteer subjects to manipulate the salience of visual stimuli (emotionally expressive faces) presented during positron emission tomography (PET) neuroimaging. Increases in salience, and conflicts between the innate and acquired value of the stimuli, produced augmented activation of the pulvinar nucleus of the right thalamus. Furthermore, this pulvinar activity correlated positively with responses in structures hypothesized to mediate value in the brain right amygdala and basal forebrain (including the cholinergic nucleus basalis of Meynert). The results provide evidence that the pulvinar nucleus of the thalamus plays a crucial modulatory role in selective visual processing, and that changes in perceptual salience are mediated by value-dependent plasticity in pulvinar responses. PMID:9178546
Smart drug release systems based on stimuli-responsive polymers.
Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei
2013-07-01
Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.
Xiao, Jianbo
2015-01-01
Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869
Zhang, Yue; Ye, Fangmao; Sun, Wei; Yu, Jiangbo; Wu, I-Che; Rong, Yu; Zhang, Yong
2015-01-01
This paper describes a synthetic approach for photocrosslinkable polyfluorene (pc-PFO) semiconducting polymer dots, and demonstrates their superior ability to crosslink and form 3-D intermolecular polymer networks. The crosslinked pc-PFO Pdots are equipped with excellent encapsulating ability of functional small molecules. Optimum conditions of light irradiation on pc-PFO Pdots were investigated and clarified by using polymer thin films as a model. By employing the optimal light irradiation conditions, we successfully crosslinked pc-PFO Pdots and studied their particle sizes, photophysical, and colloidal properties. Single-particle imaging and dynamic-light-scattering measurements were conducted to understand the behaviors of photocrosslinked Pdots. Our results indicate pc-PFO Pdots can be easily photocrosslinked and the crosslinked species have excellent colloidal stability, physical and chemical stability, fluorescence brightness, and specific binding properties for cellular labeling. Considering that optical stimulus can work remotely, cleanly, and non-invasively, this study should pave the way for a promising approach to further develop stimuli-responsive ultrabright and versatile Pdot probes for biomedical imaging. PMID:25709806
Acute glucocorticoid effects on response inhibition in borderline personality disorder.
Carvalho Fernando, Silvia; Beblo, Thomas; Schlosser, Nicole; Terfehr, Kirsten; Wolf, Oliver Tobias; Otte, Christian; Löwe, Bernd; Spitzer, Carsten; Driessen, Martin; Wingenfeld, Katja
2013-11-01
Growing evidence suggests inhibition dysfunctions in borderline personality disorder (BPD). Moreover, abnormalities in hypothalamic-pituitary-adrenal (HPA) axis functioning have also been found in BPD patients. In healthy individuals, response inhibition has been sensitive to acute stress, and previous research indicates that effects mediated by the HPA axis become particularly apparent when emotional stimuli are processed. This study aimed to explore the influence of acute hydrocortisone administration on response inhibition of emotional stimuli in BPD patients compared to healthy control participants. After a single administration of 10mg hydrocortisone or placebo, 32 female BPD patients and 32 healthy female participants performed an adapted emotional go/no-go paradigm to assess response inhibition for emotional face stimuli in a cross-over study. Acute cortisol elevations decreased the reaction times to target stimuli in both BPD patients and healthy controls. Patients and controls did not differ in task performance; however, BPD patients with comorbid posttraumatic stress disorder (PTSD) displayed longer reaction times than patients without PTSD. In contrast, the occurrence of comorbid eating disorder had no significant impact on go/no-go performance. No significant interaction effect between the treatment condition and the emotional valence of the face stimuli was found. Acute hydrocortisone administration enhances response inhibition of face stimuli in BPD patients and healthy controls, regardless of their emotional valence. Our results agree with the suggestion that moderate cortisol enhancement increases the inhibition of task-irrelevant distracters. Copyright © 2013 Elsevier Ltd. All rights reserved.
The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies.
Kirwan, John D; Bok, Michael J; Smolka, Jochen; Foster, James J; Hernández, José Carlos; Nilsson, Dan-Eric
2018-05-08
Many sea urchins can detect light on their body surface and some species are reported to possess image-resolving vision. Here we measure the spatial resolution of vision in the long-spined sea urchin Diadema africanum , using two different visual responses: a taxis towards dark objects and an alarm response of spine-pointing towards looming stimuli. For the taxis response we used visual stimuli, which were isoluminant to the background, to discriminate spatial vision from phototaxis. Individual animals were placed in the centre of a cylindrical arena under bright down-welling light, with stimuli of varying angular width placed on the arena wall at pseudorandom directions from the centre. We tracked the direction of movement of individual animals in relation to the stimuli to determine whether the animals oriented towards the stimulus. We found that D. africanum responds by taxis towards isoluminant stimuli with a spatial resolution in the range 29°-69°. This corresponds to a theoretical acceptance angle of 38°-89°, assuming a contrast threshold of 10%. The visual acuity of the alarm response of D. africanum was tested by exposing animals to different sized dark looming and appearing stimuli on a monitor. We found that D. africanum displays a spine-pointing response to appearing black circles of 13°-25° angular width, corresponding to an acceptance angle of 60°-116°, assuming the same contrast threshold as above. © 2018. Published by The Company of Biologists Ltd.
Enhanced visuomotor processing of phobic images in blood-injury-injection fear.
Haberkamp, Anke; Schmidt, Thomas
2014-04-01
Numerous studies have identified attentional biases and processing enhancements for fear-relevant stimuli in individuals with specific phobias. However, this has not been conclusively shown in blood-injury-injection (BII) phobia, which has rarely been investigated even though it has features distinct from all other specific phobias. The present study aims to fill that gap and compares the time-course of visuomotor processing of phobic stimuli (i.e., pictures of small injuries) in BII-fearful (n=19) and non-anxious control participants (n=23) by using a response priming paradigm. In BII-fearful participants, phobic stimuli produced larger priming effects and lower response times compared to neutral stimuli, whereas non-anxious control participants showed no such differences. Because these effects are fully present in the fastest responses, they indicate an enhancement in early visuomotor processing of injury pictures in BII-fearful participants. These results are comparable to the enhanced processing of phobic stimuli in other specific phobias (i.e., spider phobia). Copyright © 2014 Elsevier Ltd. All rights reserved.
Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA
2015-01-01
Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184
Hietanen, Jari K; Kirjavainen, Ilkka; Nummenmaa, Lauri
2014-12-01
The early visual event-related 'N170 response' is sensitive to human body configuration and it is enhanced to nude versus clothed bodies. We tested whether the N170 response as well as later EPN and P3/LPP responses to nude bodies reflect the effect of increased arousal elicited by these stimuli, or top-down allocation of object-based attention to the nude bodies. Participants saw pictures of clothed and nude bodies and faces. In each block, participants were asked to direct their attention towards stimuli from a specified target category while ignoring others. Object-based attention did not modulate the N170 amplitudes towards attended stimuli; instead N170 response was larger to nude bodies compared to stimuli from other categories. Top-down attention and affective arousal had additive effects on the EPN and P3/LPP responses reflecting later processing stages. We conclude that nude human bodies have a privileged status in the visual processing system due to the affective arousal they trigger. Copyright © 2014 Elsevier B.V. All rights reserved.
Sharma, Aman; Torres-Moreno, Ricardo; Zabjek, Karl; Andrysek, Jan
2014-01-01
People with lower-limb amputation have reduced mobility due to loss of sensory information, which may be restored by artificial sensory feedback systems built into prostheses. For an effective system, it is important to understand how humans sense, interpret, and respond to the feedback that would be provided. The goal of this study was to examine sensorimotor responses to mobility-relevant stimuli. Three experiments were performed to examine the effects of location of stimuli, frequency of stimuli, and means for providing the response. Stimuli, given as vibrations, were applied to the thigh region, and responses involved leg movements. Sensorimotor reaction time (RT) was measured as the duration between application of the stimulus and initiation of the response. Accuracy of response was also measured. Overall average RTs for one response option were 0.808 +/- 0.142 s, and response accuracies were >90%. Higher frequencies (220 vs 140 Hz) of vibration stimulus provided in anterior regions of the thigh produced the fastest RTs. When participants were presented with more than one stimulus and response option, RTs increased. Findings suggest that long sensorimotor responses may be a limiting factor in the development of an artificial feedback system for mobility rehabilitation applications; however, feed-forward techniques could potentially help to address these limitations.
Perdue, Katherine L; Edwards, Laura A; Tager-Flusberg, Helen; Nelson, Charles A
2017-08-01
We investigated heart rate (HR) in infants at 3, 6, 9, and 12 months of age, at high (HRA) and low (LRC) familial risk for ASD, to identify potential endophenotypes of ASD risk related to attentional responses. HR was extracted from functional near-infrared spectroscopy recordings while infants listened to speech stimuli. Longitudinal analysis revealed that HRA infants and males generally had lower baseline HR than LRC infants and females. HRA infants showed decreased HR responses to early trials over development, while LRC infants showed increased responses. These findings suggest altered developmental trajectories in physiological responses to speech stimuli over the first year of life, with HRA infants showing less social orienting over time.
R package to estimate intracluster correlation coefficient with confidence interval for binary data.
Chakraborty, Hrishikesh; Hossain, Akhtar
2018-03-01
The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia
Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.
2015-01-01
Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895
Napadow, Vitaly; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Maeda, Yumi; Barbieri, Riccardo; Harris, Richard E.; Kettner, Norman; Park, Kyungmo
2013-01-01
Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event-related fMRI (er-fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid-cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR–) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter-subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture-induced HR– was associated with greater DMN deactivation. Between-event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR–. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR–, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er-fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. PMID:22504841
Giargiari, Tracie D; Mahaffey, Amanda L; Craighead, W Edward; Hutchison, Kent E
2005-10-01
Despite the high prevalence of sexual desire disorders, little is known about their biological underpinnings in humans. Animal studies suggest that dopamine is involved in appetitive sexual behavior; thus, one aim of this study was to elucidate that relationship in humans. This study used measurement of the acoustic startle response (ASR) and prepulse inhibition of the startle response (PPI) as psychophysiological indicators of changes in motivational states to assess the potential relation between sexual desire and appetitive motivation in humans. Responses to sexually provocative stimuli consisting of single nude men and single nude women in a sample of 153 participants (77 men, 76 women) were assessed. The results indicated that ASR was attenuated after exposure to appetitive stimuli (i.e., sexually provocative pictures of attractive individuals) to a greater extent among participants with higher levels of sexual desire, as measured by the Sexual Desire Inventory-2 (Spector, I. P., Carey, M. P., & Steinberg, L. (1996). Journal of Sex & Marital Therapy, 22, 175-190). In addition, PPI was inversely associated with subjective ratings across stimuli such that greater subjective levels of desire were correlated with lower levels of PPI. In general, these results suggest that individuals with lower levels of sexual desire may have a diminished physiological response to appetitive sexual stimuli.
Naltrexone alters the processing of social and emotional stimuli in healthy adults.
Wardle, Margaret C; Bershad, Anya K; de Wit, Harriet
2016-12-01
Endogenous opioids have complex social effects that may depend on specific receptor actions and vary depending on the "stage" of social behavior (e.g., seeking vs. responding to social stimuli). We tested the effects of a nonspecific opioid antagonist, naltrexone (NTX), on social processing in humans. NTX is used to treat alcohol and opiate dependence, and may affect both mu and kappa-opioid systems. We assessed attention ("seeking"), and subjective and psychophysiological responses ("responding") to positive and negative social stimuli. Based on literature suggesting mu-opioid blockade impairs positive social responses, we hypothesized that NTX would decrease responses to positive social stimuli. We also tested responses to negative stimuli, which might be either increased by NTX's mu-opioid effects or decreased by its kappa-opioid effects. Thirty-four healthy volunteers received placebo, 25 mg, or 50 mg NTX across three sessions under double-blind conditions. At each session, participants completed measures of attention, identification, and emotional responses for emotional faces and scenes. NTX increased attention to emotional expressions, slowed identification of sadness and fear, and decreased ratings of arousal for social and nonsocial emotional scenes. These findings are more consistent with anxiolytic kappa-antagonist than mu-blocking effects, suggesting effects on kappa receptors may contribute to the clinical effects of NTX.
Accessory stimulus modulates executive function during stepping task
Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo
2015-01-01
When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321
Myosin-II sets the optimal response time scale of chemotactic amoeba
NASA Astrophysics Data System (ADS)
Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Bodenschatz, Eberhard; Beta, Carsten
2014-03-01
The response dynamics of the actin cytoskeleton to external chemical stimuli plays a fundamental role in numerous cellular functions. One of the key players that governs the dynamics of the actin network is the motor protein myosin-II. Here we investigate the role of myosin-II in the response of the actin system to external stimuli. We used a microfluidic device in combination with a photoactivatable chemoattractant to apply stimuli to individual cells with high temporal resolution. We directly compare the actin dynamics in Dictyostelium discodelium wild type (WT) cells to a knockout mutant that is deficient in myosin-II (MNL). Similar to the WT a small population of MNL cells showed self-sustained oscillations even in absence of external stimuli. The actin response of MNL cells to a short pulse of chemoattractant resembles WT during the first 15 sec but is significantly delayed afterward. The amplitude of the dominant peak in the power spectrum from the response time series of MNL cells to periodic stimuli with varying period showed a clear resonance peak at a forcing period of 36 sec, which is significantly delayed as compared to the resonance at 20 sec found for the WT. This shift indicates an important role of myosin-II in setting the response time scale of motile amoeba. Institute of Physics und Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery
Lu, Yue; Sun, Wujin; Gu, Zhen
2014-01-01
Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad
2014-01-01
Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.
Investigation of the neurological correlates of information reception
NASA Technical Reports Server (NTRS)
1971-01-01
Animals trained to respond to a given pattern of electrical stimuli applied to pathways or centers of the auditory nervous system respond also to certain patterns of acoustic stimuli without additional training. Likewise, only certain electrical stimuli elicit responses after training to a given acoustic signal. In most instances, if a response has been learned to a given electrical stimulus applied to one center of the auditory nervous system, the same stimulus applied to another auditory center at either a higher or lower level will also elicit the response. This kind of transfer of response does not take place when a stimulus is applied through electrodes implanted in neural tissue outside of the auditory system.
You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin
2014-08-08
Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Mi; Lu, Shengfu; Wang, Gang; Feng, Lei; Fu, Bingbing; Zhong, Ning
2016-06-01
To explore working memory and the ability to process different emotional stimuli in patients with first-onset and untreated minor (mild or moderate) depression. Patients with first-onset and previously untreated minor depression, and healthy controls, were enrolled. Using a modified Sternberg working memory paradigm to investigate the combined effects of emotional stimuli with working memory, participants were exposed to experimental stimuli comprising pictures that represented positive, neutral and negative emotions. Working memory ability was measured using reaction time and accuracy, and emotion-processing ability was measured using pupil diameter. Out of 36 participants (18 patients with minor depression and 18 controls), there were no statistically significant between-group differences in response time and accuracy. Positive stimuli evoked changes in pupil diameter that were significantly smaller in patients with minor depression versus controls, but changes in pupil diameter evoked by negative stimuli were not significantly different between the two groups. Healthy subjects showed a stronger emotional response to positive emotional stimuli than patients with first onset and previously untreated minor depression, but there were no differences in response to negative emotions. There were no statistically significant between-group differences in terms of speed of cognitive response, but this may have been due to the relatively small samples sizes assessed. Studies with larger sample populations are required to further investigate these results. © The Author(s) 2016.
Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-07-30
Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.
Theodoridou, Angeliki; Penton-Voak, Ian S.; Rowe, Angela C.
2013-01-01
Oxytocin has been shown to promote a host of social behaviors in humans but the exact mechanisms by which it exerts its effects are unspecified. One prominent theory suggests that oxytocin increases approach and decreases avoidance to social stimuli. Another dominant theory posits that oxytocin increases the salience of social stimuli. Herein, we report a direct test of these hypotheses. In a double-blind, placebo-controlled study we examined approach-avoidance motor responses to social and non-social emotional stimuli. One hundred and twenty participants self-administered either 24 IU oxytocin or placebo and moved a lever toward or away from pictures of faces depicting emotional expressions or from natural scenes appearing before them on a computer screen. Lever movements toward stimuli decreased and movements away increased stimuli size producing the illusion that stimuli moved away from or approached participants. Reaction time data were recorded. The task produced the effects that were anticipated on the basis of the approach-avoidance literature in relation to emotional stimuli, yet the anticipated speeded approach and slowed avoidance responses to emotional faces by the oxytocin group were not observed. Interestingly, the oxytocin treatment group was faster to approach and avoid faces depicting disgust relative to the placebo group, suggesting a salience of disgust for the former group. Results also showed that within the oxytocin group women's reaction times to all emotional faces were faster than those of men, suggesting sex specific effects of oxytocin. The present findings provide the first direct evidence that intranasal oxytocin administration does not enhance approach/avoidance to social stimuli and does not exert a stronger effect on social vs. non-social stimuli in the context of processing of emotional expressions and scenes. Instead, our data suggest that oxytocin administration increases the salience of certain social stimuli and point to a possible role for oxytocin in behavioral prophylaxis. PMID:23469148
Theodoridou, Angeliki; Penton-Voak, Ian S; Rowe, Angela C
2013-01-01
Oxytocin has been shown to promote a host of social behaviors in humans but the exact mechanisms by which it exerts its effects are unspecified. One prominent theory suggests that oxytocin increases approach and decreases avoidance to social stimuli. Another dominant theory posits that oxytocin increases the salience of social stimuli. Herein, we report a direct test of these hypotheses. In a double-blind, placebo-controlled study we examined approach-avoidance motor responses to social and non-social emotional stimuli. One hundred and twenty participants self-administered either 24 IU oxytocin or placebo and moved a lever toward or away from pictures of faces depicting emotional expressions or from natural scenes appearing before them on a computer screen. Lever movements toward stimuli decreased and movements away increased stimuli size producing the illusion that stimuli moved away from or approached participants. Reaction time data were recorded. The task produced the effects that were anticipated on the basis of the approach-avoidance literature in relation to emotional stimuli, yet the anticipated speeded approach and slowed avoidance responses to emotional faces by the oxytocin group were not observed. Interestingly, the oxytocin treatment group was faster to approach and avoid faces depicting disgust relative to the placebo group, suggesting a salience of disgust for the former group. Results also showed that within the oxytocin group women's reaction times to all emotional faces were faster than those of men, suggesting sex specific effects of oxytocin. The present findings provide the first direct evidence that intranasal oxytocin administration does not enhance approach/avoidance to social stimuli and does not exert a stronger effect on social vs. non-social stimuli in the context of processing of emotional expressions and scenes. Instead, our data suggest that oxytocin administration increases the salience of certain social stimuli and point to a possible role for oxytocin in behavioral prophylaxis.
In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying
2015-01-01
Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464
Imbir, Kamil Konrad; Jarymowicz, Maria Teresa; Spustek, Tomasz; Kuś, Rafał; Żygierewicz, Jarosław
2015-01-01
We distinguish two evaluative systems which evoke automatic and reflective emotions. Automatic emotions are direct reactions to stimuli whereas reflective emotions are always based on verbalized (and often abstract) criteria of evaluation. We conducted an electroencephalography (EEG) study in which 25 women were required to read and respond to emotional words which engaged either the automatic or reflective system. Stimulus words were emotional (positive or negative) and neutral. We found an effect of valence on an early response with dipolar fronto-occipital topography; positive words evoked a higher amplitude response than negative words. We also found that topographically specific differences in the amplitude of the late positive complex were related to the system involved in processing. Emotional stimuli engaging the automatic system were associated with significantly higher amplitudes in the left-parietal region; the response to neutral words was similar regardless of the system engaged. A different pattern of effects was observed in the central region, neutral stimuli engaging the reflective system evoked a higher amplitudes response whereas there was no system effect for emotional stimuli. These differences could not be reduced to effects of differences between the arousing properties and concreteness of the words used as stimuli.
Imbir, Kamil Konrad; Jarymowicz, Maria Teresa; Spustek, Tomasz; Kuś, Rafał; Żygierewicz, Jarosław
2015-01-01
We distinguish two evaluative systems which evoke automatic and reflective emotions. Automatic emotions are direct reactions to stimuli whereas reflective emotions are always based on verbalized (and often abstract) criteria of evaluation. We conducted an electroencephalography (EEG) study in which 25 women were required to read and respond to emotional words which engaged either the automatic or reflective system. Stimulus words were emotional (positive or negative) and neutral. We found an effect of valence on an early response with dipolar fronto-occipital topography; positive words evoked a higher amplitude response than negative words. We also found that topographically specific differences in the amplitude of the late positive complex were related to the system involved in processing. Emotional stimuli engaging the automatic system were associated with significantly higher amplitudes in the left-parietal region; the response to neutral words was similar regardless of the system engaged. A different pattern of effects was observed in the central region, neutral stimuli engaging the reflective system evoked a higher amplitudes response whereas there was no system effect for emotional stimuli. These differences could not be reduced to effects of differences between the arousing properties and concreteness of the words used as stimuli. PMID:25955719
In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.
Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine
2015-02-25
Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.
Influence of emotional processing on working memory in schizophrenia.
Becerril, Karla; Barch, Deanna
2011-09-01
Research on emotional processing in schizophrenia suggests relatively intact subjective responses to affective stimuli "in the moment." However, neuroimaging evidence suggests diminished activation in brain regions associated with emotional processing in schizophrenia. We asked whether given a more vulnerable cognitive system in schizophrenia, individuals with this disorder would show increased or decreased modulation of working memory (WM) as a function of the emotional content of stimuli compared with healthy control subjects. In addition, we examined whether higher anhedonia levels were associated with a diminished impact of emotion on behavioral and brain activation responses. In the present study, 38 individuals with schizophrenia and 32 healthy individuals completed blocks of a 2-back WM task in a functional magnetic resonance imaging scanning session. Blocks contained faces displaying either only neutral stimuli or neutral and emotional stimuli (happy or fearful faces), randomly intermixed and occurring both as targets and non-targets. Both groups showed higher accuracy but slower reaction time for negative compared to neutral stimuli. Individuals with schizophrenia showed intact amygdala activity in response to emotionally evocative stimuli, but demonstrated altered dorsolateral prefrontal cortex (DLPFC) and hippocampal activity while performing an emotionally loaded WM-task. Higher levels of social anhedonia were associated with diminished amygdala responses to emotional stimuli and increased DLPFC activity in individuals with schizophrenia. Emotional arousal may challenge dorsal-frontal control systems, which may have both beneficial and detrimental influences. Our findings suggest that disturbances in emotional processing in schizophrenia relate to alterations in emotion-cognition interactions rather than to the perception and subjective experience of emotion per se.
Structural colored gels for tunable soft photonic crystals.
Harun-Ur-Rashid, Mohammad; Seki, Takahiro; Takeoka, Yukikazu
2009-01-01
A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest-packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well-known thermosensitive monomer, N-isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. (c) 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink
NASA Astrophysics Data System (ADS)
Su, Ming; Aslam, Mohammed; Fu, Lei; Wu, Nianqiang; Dravid, Vinayak P.
2004-05-01
Controlled patterning of conducting polymers at a micro- or nanoscale is the first step towards the fabrication of miniaturized functional devices. Here, we introduce an approach for the nanopatterning of conducting polymers using an improved monomer "ink" in dip-pen nanolithography (DPN). The nominal monomer "ink" is converted, in situ, to its conducting solid-state polymeric form after patterned. Proof-of-concept experiments have been performed with acid-promoted polymerization of pyrrole in a less reactive environment (tetrahydrofuran). The ratios of reactants are optimized to give an appropriate rate to match the operation of DPN. A similar synthesis process for the same polymer in its bulk form shows a high conductance and crystalline structure. The miniaturized conducting polymer sensors with light detection ability are fabricated by DPN using the improved ink formula, and exhibit excellent response, recovery, and sensitivity parameters.
Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers.
Wang, Qiuming; Zhao, Jun; Yu, Xiang; Zhao, Chao; Li, Lingyan; Zheng, Jie
2010-08-03
Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.
A high-throughput method to measure NaCl and acid taste thresholds in mice.
Ishiwatari, Yutaka; Bachmanov, Alexander A
2009-05-01
To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.
Testing the Race Model Inequality in Redundant Stimuli with Variable Onset Asynchrony
ERIC Educational Resources Information Center
Gondan, Matthias
2009-01-01
In speeded response tasks with redundant signals, parallel processing of the signals is tested by the race model inequality. This inequality states that given a race of two signals, the cumulative distribution of response times for redundant stimuli never exceeds the sum of the cumulative distributions of response times for the single-modality…
Predispositions to approach and avoid are contextually sensitive and goal dependent.
Bamford, Susan; Ward, Robert
2008-04-01
The authors show that predispositions to approach and avoid do not consist simply of specific motor patterns but are more abstract functions that produce a desired environmental effect. It has been claimed that evaluating a visual stimulus as positive or negative evokes a specific motor response, extending the arm to negative stimuli, and contracting to positive stimuli. The authors showed that a large congruency effect (participants were faster to approach pleasant and avoid unpleasant stimuli, than to approach unpleasant and avoid pleasant stimuli) could be produced on a novel touchscreen paradigm (Experiment 1), and that the congruency effect could be reversed by spatial (Experiment 2) and nonspatial (Experiment 3) response effects. Thus, involuntary approach and avoid response activations are not fixed, but sensitive to context, and are specifically based on the desired goal. (Copyright) 2008 APA.
Inverse target- and cue-priming effects of masked stimuli.
Mattler, Uwe
2007-02-01
The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses are facilitated after dissimilar primes. Previous studies on inverse priming effects examined target-priming effects, which arise when the prime and the target stimuli share features that are critical for the response decision. In contrast, 3 experiments of the present study demonstrate inverse priming effects in a nonmotor cue-priming paradigm. Inverse cue-priming effects exhibited time courses comparable to inverse target-priming effects. Results suggest that inverse priming effects do not arise from specific processes of the response system but follow from operations that are more general.
Lithari, C; Frantzidis, C A; Papadelis, C; Vivas, Ana B; Klados, M A; Kourtidou-Papadeli, C; Pappas, C; Ioannides, A A; Bamidis, P D
2010-03-01
Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional pictures selected from the International Affective Picture System (IAPS). The arousal and valence dimension of the stimuli were manipulated orthogonally. The peak amplitude and peak latency of ERP components and SCR were analyzed separately, and the scalp topographies of significant ERP differences were documented. Females responded with enhanced negative components (N100 and N200), in comparison to males, especially to the unpleasant visual stimuli, whereas both genders responded faster to high arousing or unpleasant stimuli. Scalp topographies revealed more pronounced gender differences on central and left hemisphere areas. Our results suggest a difference in the way emotional stimuli are processed by genders: unpleasant and high arousing stimuli evoke greater ERP amplitudes in women relatively to men. It also seems that unpleasant or high arousing stimuli are temporally prioritized during visual processing by both genders.
Classification of stimuli-responsive polymers as anticancer drug delivery systems.
Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab
2015-02-01
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
NASA Astrophysics Data System (ADS)
Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka
2017-02-01
Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.
Effect of relevance on amygdala activation and association with the ventral striatum.
Ousdal, Olga Therese; Reckless, Greg E; Server, Andres; Andreassen, Ole A; Jensen, Jimmy
2012-08-01
While the amygdala historically has been implicated in emotional stimuli processing, recent data suggest a general role in parceling out the relevance of stimuli, regardless of their emotional properties. Using functional magnetic resonance imaging, we tested the relevance hypothesis by investigating human amygdala responses to emotionally neutral stimuli while manipulating their relevance. The task was operationalized as highly relevant if a subsequent opportunity to respond for a reward depended on response accuracy of the task, and less relevant if the reward opportunity was independent of task performance. A region of interest analysis revealed bilateral amygdala activations in response to the high relevance condition compared to the low relevance condition. An exploratory whole-brain analysis yielded robust similar results in bilateral ventral striatum. A subsequent functional connectivity analysis demonstrated increased connectivity between amygdala and ventral striatum for the highly relevant stimuli compared to the less relevant stimuli. These findings suggest that the amygdala's processing profile goes beyond detection of emotions per se, and directly support the proposed role in relevance detection. In addition, the findings suggest a close relationship between amygdala and ventral striatal activity when processing relevant stimuli. Thus, the results may indicate that human amygdala modulates ventral striatum activity and subsequent behaviors beyond that observed for emotional cues, to encompass a broader range of relevant stimuli. Copyright © 2012 Elsevier Inc. All rights reserved.
Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa.
Cowdrey, Felicity A; Park, Rebecca J; Harmer, Catherine J; McCabe, Ciara
2011-10-15
Recent evidence has shown that individuals with acute anorexia nervosa and those recovered have aberrant physiological responses to rewarding stimuli. We hypothesized that women recovered from anorexia nervosa would show aberrant neural responses to both rewarding and aversive disorder-relevant stimuli. Using functional magnetic resonance imaging (fMRI), the neural response to the sight and flavor of chocolate, and their combination, in 15 women recovered from restricting-type anorexia nervosa and 16 healthy control subjects matched for age and body mass index was investigated. The neural response to a control aversive condition, consisting of the sight of moldy strawberries and a corresponding unpleasant taste, was also measured. Participants simultaneously recorded subjective ratings of "pleasantness," "intensity," and "wanting." Despite no differences between the groups in subjective ratings, individuals recovered from anorexia nervosa showed increased neural response to the pleasant chocolate taste in the ventral striatum and pleasant chocolate sight in the occipital cortex. The recovered participants also showed increased neural response to the aversive strawberry taste in the insula and putamen and to the aversive strawberry sight in the anterior cingulate cortex and caudate. Individuals recovered from anorexia nervosa have increased neural responses to both rewarding and aversive food stimuli. These findings suggest that even after recovery, women with anorexia nervosa have increased salience attribution to food stimuli. These results aid our neurobiological understanding and support the view that the neural response to reward may constitute a neural biomarker for anorexia nervosa. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François
2010-01-12
Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metalmore » ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.« less
Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina
2012-01-01
Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803
Smith, Kiersten S.; Morrell, Joan I.
2010-01-01
The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli. PMID:21056059
Muir, Dylan R; Kampa, Björn M
2014-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.
Muir, Dylan R.; Kampa, Björn M.
2015-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614
Experimental analysis of coding processes.
Postman, L; Burns, S
1973-12-01
The first part of the paper reports an investigation of the effects of the concreteness-imagery (C-I) value of stimuli and responses on the long-term retention of paired-associate lists. With degree of learning equated, the measures of retention after a 1-week interval showed a significant interaction of Stimulus by Response C-I: When the responses had a high value, recall was substantially better with low than with high stimuli; when the responses were low, there was no reliable difference as a function of stimulus value. Recall was best when abstract stimuli were paired with concrete responses. The second part of the paper is addressed to some current issues in the analysis of coding processes. Major emphasis is placed on the experimental and theoretical differentiation of encoding and decoding processes.
NASA Astrophysics Data System (ADS)
Nicolescu, F. Adriana; Jerca, Victor V.; Albu, Ana M.; Vasilescu, D. Sorin; Vuluga, D. Mircea
2009-09-01
We report the synthesis of five new hybrid polymeric structures obtained by free radical copolymerization of some organic azo-based methacrylate monomers and 3-methacryloxypropyl trimethoxysilane (MEMO). The copolymers are soluble in common solvents like methylene chloride, chloroform, dichlorbenzene, dimethylsulfoxide, dimethylformamide. The copolymeric structures might be interesting from the point of view of nonlinear optical response due to a rich content in chromophoric units determined by H-NMR spectroscopy. The structures were also characterized by FT-IR spectroscopy, TGA and SEC analysis.
Response Times to Stimuli of Increasing Complexity as a Function of Aging
ERIC Educational Resources Information Center
Jordan, T. C.; Rabbitt, P. M. A.
1977-01-01
These experiments consider the effects of aging on response times to stimuli of increasing complexity in serial choice RT tasks, whether age differences were reduced or abolished on such tasks, and examines repetition effects of a particular coding rule. (Author/RK)
A leptin-regulated circuit controls glucose mobilization during noxious stimuli.
Flak, Jonathan N; Arble, Deanna; Pan, Warren; Patterson, Christa; Lanigan, Thomas; Goforth, Paulette B; Sacksner, Jamie; Joosten, Maja; Morgan, Donald A; Allison, Margaret B; Hayes, John; Feldman, Eva; Seeley, Randy J; Olson, David P; Rahmouni, Kamal; Myers, Martin G
2017-08-01
Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.
Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment.
Ding, Chendi; Tong, Ling; Feng, Jing; Fu, Jiajun
2016-12-20
Benefiting from the development of nanotechnology, drug delivery systems (DDSs) with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs), quantum dots (QDs) and carbon nanotubes (CNTs). The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules) and extrinsic (temperature, light irradiation, magnetic field and ultrasound) ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.
Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.
Thrasher, Cat; LoBue, Vanessa
2016-02-01
In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.
Inverted-U Function Relating Cortical Plasticity and Task Difficulty
Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.
2012-01-01
Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158
Eslahi, Niloofar; Abdorahim, Marjan; Simchi, Abdolreza
2016-11-14
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Visual evoked potential assessment of the effects of glaucoma on visual subsystems.
Greenstein, V C; Seliger, S; Zemon, V; Ritch, R
1998-06-01
The purpose of this study is to test the hypothesis that glaucoma leads to selective deficits in parallel pathways or channels. Sweep VEPs were obtained to isolated-check stimuli that were modulated sinusoidally in either isoluminant chromatic contrast or in positive and negative luminance contrast. Response functions were obtained from 14 control subjects, 15 patients with open-angle glaucoma, and seven glaucoma suspects. For all three groups of subjects we found characteristic differences between the VEP response functions to isoluminant chromatic contrast stimuli and to luminance contrast stimuli. The isoluminant chromatic stimulus conditions appeared to favor activity of the P-pathway, whereas the luminance contrast stimuli at low depths of modulation favored M-pathway activity. VEP responses for patients with OAG were significantly reduced for chromatic contrast and luminance contrast conditions, whereas VEP responses for glaucoma suspects were significantly reduced only for the 15-Hz positive luminance contrast condition. Our results suggest that both M- and P-pathways are affected by glaucoma.
Pupillary Response as an Age-Specific Measure of Sexual Interest.
Attard-Johnson, Janice; Bindemann, Markus; Ó Ciardha, Caoilte
2016-05-01
In the visual processing of sexual content, pupil dilation is an indicator of arousal that has been linked to observers' sexual orientation. This study investigated whether this measure can be extended to determine age-specific sexual interest. In two experiments, the pupillary responses of heterosexual adults to images of males and females of different ages were related to self-reported sexual interest, sexual appeal to the stimuli, and a child molestation proclivity scale. In both experiments, the pupils of male observers dilated to photographs of women but not men, children, or neutral stimuli. These pupillary responses corresponded with observer's self-reported sexual interests and their sexual appeal ratings of the stimuli. Female observers showed pupil dilation to photographs of men and women but not children. In women, pupillary responses also correlated poorly with sexual appeal ratings of the stimuli. These experiments provide initial evidence that eye-tracking could be used as a measure of sex-specific interest in male observers, and as an age-specific index in male and female observers.
Louage, Benoit; Zhang, Qilu; Vanparijs, Nane; Voorhaar, Lenny; Vande Casteele, Sofie; Shi, Yang; Hennink, Wim E; Van Bocxlaer, Jan; Hoogenboom, Richard; De Geest, Bruno G
2015-01-12
Low solubility of potent (anticancer) drugs is a major driving force for the development of noncytotoxic, stimuli-responsive nanocarriers, including systems based on amphiphilic block copolymers. In this regard, we investigated the potential of block copolymers based on 2-hydroxyethyl acrylate (HEA) and the acid-sensitive ketal-containing monomer (2,2-dimethyl-1,3-dioxolane-4-yl)methyl acrylate (DMDMA) to form responsive drug nanocarriers. Block copolymers were successfully synthesized by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, in which we combined a hydrophilic poly(HEA)x block with a (responsive) hydrophobic poly(HEAm-co-DMDMAn)y copolymer block. The DMDMA content of the hydrophobic block was systematically varied to investigate the influence of polymer design on physicochemical properties and in vitro biological performance. We found that a DMDMA content higher than 11 mol % is required for self-assembly behavior in aqueous medium. All particles showed colloidal stability in PBS at 37 °C for at least 4 days, with sizes ranging from 23 to 338 nm, proportional to the block copolymer DMDMA content. Under acidic conditions, the nanoparticles decomposed into soluble unimers, of which the decomposition rate was inversely proportional to the block copolymer DMDMA content. Flow cytometry and confocal microscopy showed dose-dependent, active in vitro cellular uptake of the particles loaded with hydrophobic octadecyl rhodamine B chloride (R18). The block copolymers showed no intrinsic in vitro cytotoxicity, while loaded with paclitaxel (PTX), a significant decrease in cell viability was observed comparable or better than the two commercial PTX nanoformulations Abraxane and Genexol-PM at equal PTX dose. This systematic approach evaluated and showed the potential of these block copolymers as nanocarriers for hydrophobic drugs.
Dynamic expansion of alert responses to incoming painful stimuli following tool use.
Rossetti, Angela; Romano, Daniele; Bolognini, Nadia; Maravita, Angelo
2015-04-01
Peripersonal space is the region closely surrounding our bodies. Within its boundaries, avoidance of threatening objects is crucial for surviving. Here we explored autonomic responses to painful stimuli with respect to the dynamic properties of the peripersonal space in healthy individuals. To this aim, in a series of experiments, we measured the Skin Conductance Response (SCR) to a noxious stimulus approaching and touching the hand, or stopping at different distances (far, near) from it. Results showed that the anticipatory response to an incoming threat is reduced if the stimulus targets a spatial position far away from the body, as compared to a near or bodily location. However, responses to far stimuli change if the boundaries of reachable space are extended further away by active tool use. Noteworthy, SCR is not influenced by a training consisting of a spatial attention task, without active tool use. This evidence sheds novel light on the adaptive role of peripersonal space, showing its importance for the coding of incoming threatening stimuli and its plasticity induced by contingent experience, such as tool use. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W
2013-11-01
Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.
A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.
Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei
2014-09-19
Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini; Gnanadhas, Divya P.; Chakravortty, Dipshikha; Raichur, Ashok M.
2015-08-01
Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.
Studies of Horst's Procedure for Binary Data Analysis.
ERIC Educational Resources Information Center
Gray, William M.; Hofmann, Richard J.
Most responses to educational and psychological test items may be represented in binary form. However, such dichotomously scored items present special problems when an analysis of correlational interrelationships among the items is attempted. Two general methods of analyzing binary data are proposed by Horst to partial out the effects of…
Activation of the mesocortical dopamine system by feeding: lack of a selective response to stress.
Taber, M T; Fibiger, H C
1997-03-01
There is wide agreement that catecholamine systems in the prefrontal cortex are activated by stressful stimuli. To date, however, the extent to which other stimuli can increase the activity of these systems has received little attention. In the present study, the effects of tail pinch stress and feeding on dopamine and noradrenaline release in the prefrontal cortex of rats were examined using in vivo brain microdialysis. Both stimuli increased dopamine release, with peak effects reaching 212% above baseline for tail pinch and 165% above baseline for feeding. The effects of the two stimuli on peak dopamine release were not significantly different. Both stimuli also significantly increased noradrenaline release, with peak effects reaching 128% above baseline for tail pinch and 98% above baseline for feeding. The effects of the two stimuli on peak noradrenaline release were not significantly different. These results indicate that activation of catecholaminergic afferents to the prefrontal cortex is not specific to stress, but also occurs in response to non-stressors with positive motivational valence.
A computational model of pupil dilation
NASA Astrophysics Data System (ADS)
Johansson, Birger; Balkenius, Christian
2018-01-01
We present a system-level connectionist model of pupil control that includes brain regions believed to influence the size of the pupil. It includes parts of the sympathetic and parasympathetic nervous system together with the hypothalamus, amygdala, locus coeruleus, and cerebellum. Computer simulations show that the model is able to reproduce a number of important aspects of how the pupil reacts to different stimuli: (1) It reproduces the characteristic shape and latency of the light-reflex. (2) It elicits pupil dilation as a response to novel stimuli. (3) It produces pupil dilation when shown emotionally charged stimuli, and can be trained to respond to initially neutral stimuli through classical conditioning. (4) The model can learn to expect light changes for particular stimuli, such as images of the sun, and produces a "light-response" to such stimuli even when there is no change in light intensity. (5) It also reproduces the fear-inhibited light reflex effect where reactions to light increase is weaker after presentation of a conditioned stimulus that predicts punishment.
Miltner, Wolfgang H R; Trippe, Ralf H; Krieschel, Silke; Gutberlet, Ingmar; Hecht, Holger; Weiss, Thomas
2005-07-01
We investigated cortical responses and valence/arousal ratings of spider phobic, snake phobic, and healthy subjects while they were processing feared, fear-relevant, emotional neutral, and pleasant stimuli. Results revealed significantly larger amplitudes of late ERP components (P3 and late positive complex, LPC) but not of early components (N1, P2, N2) in phobics when subjects were processing feared stimuli. This fear-associated increase of amplitudes of late ERP components in phobic subjects was maximal at centro-parietal and occipital brain sites. Furthermore, phobics but not controls rated feared stimuli to be more negative and arousing than fear-relevant, emotional neutral, and pleasant stimuli. Since late ERP components and valence/arousal ratings were only significantly increased when phobic subjects but not when healthy controls were processing feared stimuli, the present data suggest that P3 and LPC amplitudes represent useful neural correlates of the emotional significance and meaning of stimuli.
A new EEG measure using the 1D cluster variation method
NASA Astrophysics Data System (ADS)
Maren, Alianna J.; Szu, Harold H.
2015-05-01
A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.
Automated annotation of functional imaging experiments via multi-label classification
Turner, Matthew D.; Chakrabarti, Chayan; Jones, Thomas B.; Xu, Jiawei F.; Fox, Peter T.; Luger, George F.; Laird, Angela R.; Turner, Jessica A.
2013-01-01
Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text. PMID:24409112
Emerging applications of stimuli-responsive polymer materials
NASA Astrophysics Data System (ADS)
Stuart, Martien A. Cohen; Huck, Wilhelm T. S.; Genzer, Jan; Müller, Marcus; Ober, Christopher; Stamm, Manfred; Sukhorukov, Gleb B.; Szleifer, Igal; Tsukruk, Vladimir V.; Urban, Marek; Winnik, Françoise; Zauscher, Stefan; Luzinov, Igor; Minko, Sergiy
2010-02-01
Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.
Stimuli-responsive nanomaterials for therapeutic protein delivery.
Lu, Yue; Sun, Wujin; Gu, Zhen
2014-11-28
Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Binaural segregation in multisource reverberant environments.
Roman, Nicoleta; Srinivasan, Soundararajan; Wang, DeLiang
2006-12-01
In a natural environment, speech signals are degraded by both reverberation and concurrent noise sources. While human listening is robust under these conditions using only two ears, current two-microphone algorithms perform poorly. The psychological process of figure-ground segregation suggests that the target signal is perceived as a foreground while the remaining stimuli are perceived as a background. Accordingly, the goal is to estimate an ideal time-frequency (T-F) binary mask, which selects the target if it is stronger than the interference in a local T-F unit. In this paper, a binaural segregation system that extracts the reverberant target signal from multisource reverberant mixtures by utilizing only the location information of target source is proposed. The proposed system combines target cancellation through adaptive filtering and a binary decision rule to estimate the ideal T-F binary mask. The main observation in this work is that the target attenuation in a T-F unit resulting from adaptive filtering is correlated with the relative strength of target to mixture. A comprehensive evaluation shows that the proposed system results in large SNR gains. In addition, comparisons using SNR as well as automatic speech recognition measures show that this system outperforms standard two-microphone beamforming approaches and a recent binaural processor.
A novel multi-stimuli responsive gelator based on D-gluconic acetal and its potential applications.
Guan, Xidong; Fan, Kaiqi; Gao, Tongyang; Ma, Anping; Zhang, Bao; Song, Jian
2016-01-18
We construct a simple-structured super gelator with multi-stimuli responsive properties, among which anion responsiveness follows the Hofmeister series in a non-aqueous system. Versatile applications such as being rheological and self-healing agents, waste water treatment, spilled oil recovery and flexible optical device manufacture are integrated into a single organogelator, which was rarely reported.
International Conference on Nanoscience - Young Giants of Nanoscience, 2016
2017-10-12
Nanoelectronics • Nanoptics • Catalysis • Sense and Response Systems • Energy Conversion and Storage • Stimuli-responsive materials • Molecular motors...This issue will address the following topics: advanced nanointerfaces research in energy , medicine, optics, flexible electronics and nanofabrication...Methods • Nanomedicine • Nanoelectronics • Nanoptics • Catalysis • Sense and Response Systems • Energy Conversion and Storage • Stimuli
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Oliva, Doretta; Gatti, Michela; Manfredi, Francesco; Megna, Gianfranco; La Martire, Maria L.; Tota, Alessia; Smaldone, Angela; Groeneweg, Jop
2008-01-01
A program relying on microswitch clusters (i.e., combinations of microswitches) and preferred stimuli was recently developed to foster adaptive responses and head control in persons with multiple disabilities. In the last version of this program, preferred stimuli (a) are scheduled for adaptive responses occurring in combination with head control…
Steele, Vaughn R.; Staley, Cameron; Fong, Timothy; Prause, Nicole
2013-01-01
Background Modulation of sexual desires is, in some cases, necessary to avoid inappropriate or illegal sexual behavior (downregulation of sexual desire) or to engage with a romantic partner (upregulation of sexual desire). Some have suggested that those who have difficulty downregulating their sexual desires be diagnosed as having a sexual ‘addiction’. This diagnosis is thought to be associated with sexual urges that feel out of control, high-frequency sexual behavior, consequences due to those behaviors, and poor ability to reduce those behaviors. However, such symptoms also may be better understood as a non-pathological variation of high sexual desire. Hypersexuals are thought to be relatively sexual reward sensitized, but also to have high exposure to visual sexual stimuli. Thus, the direction of neural responsivity to sexual stimuli expected was unclear. If these individuals exhibit habituation, their P300 amplitude to sexual stimuli should be diminished; if they merely have high sexual desire, their P300 amplitude to sexual stimuli should be increased. Neural responsivity to sexual stimuli in a sample of hypersexuals could differentiate these two competing explanations of symptoms. Methods Fifty-two (13 female) individuals who self-identified as having problems regulating their viewing of visual sexual stimuli viewed emotional (pleasant sexual, pleasant-non-sexual, neutral, and unpleasant) photographs while electroencephalography was collected. Results Larger P300 amplitude differences to pleasant sexual stimuli, relative to neutral stimuli, was negatively related to measures of sexual desire, but not related to measures of hypersexuality. Conclusion Implications for understanding hypersexuality as high desire, rather than disordered, are discussed. PMID:24693355
Rueda, P; Fominaya, J; Langeveld, J P; Bruschke, C; Vela, C; Casal, J I
2000-11-22
We have demonstrated earlier the usefulness of recombinant porcine parvovirus (PPV) virus-like particles (VLPs) as an efficient recombinant vaccine for PPV. Here, we have demonstrated that preparations of PPV VLPs could be contaminated by recombinant baculoviruses. Since these baculoviruses can be a problem for the registration and safety requirements of the recombinant vaccine, we have tested different baculovirus inactivation strategies, studying simultaneously the integrity and immunogenicity of the VLPs. These methods were pasteurization, treatment with detergents and alkylation with binary ethylenimine (BEI). The structural and functional integrity of the PPV VLPs after the inactivation treatments were analyzed by electron microscopy, hemagglutination, double antibody sandwich (DAS)-ELISA and immunogenicity studies. Binary ethylenimine and Triton X-100 inactivated particles maintained all the original structural and antigenic properties. In addition, PPV VLPs were subjected to size-exclusion chromatography to analyze the presence of VP2 monomers or any other contaminant. The resulting highly purified material was used as the standard of reference to quantify PPV VLPs in order to determine the dose of vaccine by DAS-ELISA. After immunization experiments in guinea pigs, the antibody titers obtained with all the inactivation procedures were very similar. Triton X-100 treatment was selected for further testing in animals because of the speed, simplicity and safety of the overall procedure.
New paradigms in type 2 immunity.
Pulendran, Bali; Artis, David
2012-07-27
Nearly half of the world's population harbors helminth infections or suffers from allergic disorders. A common feature of this population is the so-called "type 2 immune response," which confers protection against helminths, but also promotes pathologic responses associated with allergic inflammation. However, the mechanisms that initiate and control type 2 responses remain enigmatic. Recent advances have revealed a role for the innate immune system in orchestrating type 2 responses against a bewildering array of stimuli, from nanometer-sized allergens to 20-meter-long helminth parasites. Here, we review these advances and suggest that the human immune system has evolved multiple mechanisms of sensing such stimuli, from recognition of molecular patterns via innate immune receptors to detecting metabolic changes and tissue damage caused by these stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Badri; Sasikumar, Kiran; Mei, Zhi-Gang
2016-07-07
Zirconium nitride (ZrN) exhibits exceptional mechanical, chemical, and electrical properties, which make it attractive for a wide range of technological applications, including wear-resistant coatings, protection from corrosion, cutting/shaping tools, and nuclear breeder reactors. Despite its broad usability, an atomic scale understanding of the superior performance of ZrN, and its response to external stimuli, for example, temperature, applied strain, and so on, is not well understood. This is mainly due to the lack of interatomic potential models that accurately describe the interactions between Zr and N atoms. To address this challenge, we develop a modified embedded atom method (MEAM) interatomic potentialmore » for the Zr–N binary system by training against formation enthalpies, lattice parameters, elastic properties, and surface energies of ZrN (and, in some cases, also Zr3N4) obtained from density functional theory (DFT) calculations. The best set of MEAM parameters are determined by employing a multiobjective global optimization scheme driven by genetic algorithms. Our newly developed MEAM potential accurately reproduces structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of Zr–N compounds, in excellent agreement with DFT calculations and experiments. As a representative application, we employed molecular dynamics simulations based on this MEAM potential to investigate the atomic scale mechanisms underlying fracture of bulk and nanopillar ZrN under applied uniaxial strains, as well as the impact of strain rate on their mechanical behavior. These simulations indicate that bulk ZrN undergoes brittle fracture irrespective of the strain rate, while ZrN nanopillars show quasi-plasticity owing to amorphization at the crack front. The MEAM potential for Zr–N developed in this work is an invaluable tool to investigate atomic-scale mechanisms underlying the response of ZrN to external stimuli (e.g, temperature, pressure etc.), as well as other interesting phenomena such as precipitation.« less
USDA-ARS?s Scientific Manuscript database
By increasing the speed of stridulatory movements and the rates of stridulation pulses, individuals and groups of Leptogenys kitteli (Hymenoptera: Formicidae) produce graded stridulatory responses to increasingly excitatory stimuli ranging from social interactions within a nest to prey items placed ...
Brodbeck, Christian; Presacco, Alessandro; Simon, Jonathan Z
2018-05-15
Human experience often involves continuous sensory information that unfolds over time. This is true in particular for speech comprehension, where continuous acoustic signals are processed over seconds or even minutes. We show that brain responses to such continuous stimuli can be investigated in detail, for magnetoencephalography (MEG) data, by combining linear kernel estimation with minimum norm source localization. Previous research has shown that the requirement to average data over many trials can be overcome by modeling the brain response as a linear convolution of the stimulus and a kernel, or response function, and estimating a kernel that predicts the response from the stimulus. However, such analysis has been typically restricted to sensor space. Here we demonstrate that this analysis can also be performed in neural source space. We first computed distributed minimum norm current source estimates for continuous MEG recordings, and then computed response functions for the current estimate at each source element, using the boosting algorithm with cross-validation. Permutation tests can then assess the significance of individual predictor variables, as well as features of the corresponding spatio-temporal response functions. We demonstrate the viability of this technique by computing spatio-temporal response functions for speech stimuli, using predictor variables reflecting acoustic, lexical and semantic processing. Results indicate that processes related to comprehension of continuous speech can be differentiated anatomically as well as temporally: acoustic information engaged auditory cortex at short latencies, followed by responses over the central sulcus and inferior frontal gyrus, possibly related to somatosensory/motor cortex involvement in speech perception; lexical frequency was associated with a left-lateralized response in auditory cortex and subsequent bilateral frontal activity; and semantic composition was associated with bilateral temporal and frontal brain activity. We conclude that this technique can be used to study the neural processing of continuous stimuli in time and anatomical space with the millisecond temporal resolution of MEG. This suggests new avenues for analyzing neural processing of naturalistic stimuli, without the necessity of averaging over artificially short or truncated stimuli. Copyright © 2018 Elsevier Inc. All rights reserved.
Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study.
Cain, D M; Khasabov, S G; Simone, D A
2001-04-01
The increasing use of transgenic mice for the study of pain mechanisms necessitates comprehensive understanding of the murine somatosensory system. Using an in vivo mouse preparation, we studied response properties of tibial nerve afferent fibers innervating glabrous skin. Recordings were obtained from 225 fibers identified by mechanical stimulation of the skin. Of these, 106 were classed as A beta mechanoreceptors, 51 as A delta fibers, and 68 as C fibers. A beta mechanoreceptors had a mean conduction velocity of 22.2 +/- 0.7 (SE) m/s (13.8--40.0 m/s) and a median mechanical threshold of 2.1 mN (0.4--56.6 mN) and were subclassed as rapidly adapting (RA, n = 75) or slowly adapting (SA, n = 31) based on responses to constant force mechanical stimuli. Conduction velocities ranged from 1.4 to 13.6 m/s (mean 7.1 +/- 0.6 m/s) for A delta fibers and 0.21 to 1.3 m/s (0.7 +/- 0.1 m/s) for C fibers. Median mechanical thresholds were 10.4 and 24.4 mN for A delta and C fibers, respectively. Responses of A delta and C fibers evoked by heat (35--51 degrees C) and by cold (28 to -12 degrees C) stimuli were determined. Mean response thresholds of A delta fibers were 42.0 +/- 3.1 degrees C for heat and 7.6 +/- 3.8 degrees C for cold, whereas mean response thresholds of C fibers were 40.3 +/- 0.4 degrees C for heat and 10.1 +/- 1.9 degrees C for cold. Responses evoked by heat and cold stimuli increased monotonically with stimulus intensity. Although only 12% of tested A delta fibers were heat sensitive, 50% responded to cold. Only one A delta nociceptor responded to both heat and cold stimuli. In addition, 40% of A delta fibers were only mechanosensitive since they responded neither to heat nor to cold stimuli. Thermal stimuli evoked responses from the majority of C fibers: 82% were heat sensitive, while 77% of C fibers were excited by cold, and 68% were excited by both heat and cold stimuli. Only 11% of C fibers were insensitive to heat and/or cold. This in vivo study provides an analysis of mouse primary afferent fibers innervating glabrous skin including new information on encoding of noxious thermal stimuli within the peripheral somatosensory system of the mouse. These results will be useful for future comparative studies with transgenic mice.
Anterior cingulate serotonin 1B receptor binding is associated with emotional response inhibition.
da Cunha-Bang, Sofi; Hjordt, Liv Vadskjær; Dam, Vibeke Høyrup; Stenbæk, Dea Siggaard; Sestoft, Dorte; Knudsen, Gitte M
2017-09-01
Serotonin has a well-established role in emotional processing and is a key neurotransmitter in impulsive aggression, presumably by facilitating response inhibition and regulating subcortical reactivity to aversive stimuli. In this study 44 men, of whom 19 were violent offenders and 25 were non-offender controls, completed an emotional Go/NoGo task requiring inhibition of prepotent motor responses to emotional facial expressions. We also measured cerebral serotonin 1B receptor (5-HT 1B R) binding with [ 11 C]AZ10419369 positron emission tomography within regions of the frontal cortex. We hypothesized that 5-HT 1B R would be positively associated with false alarms (failures to inhibit nogo responses) in the context of aversive (angry and fearful) facial expressions. Across groups, we found that frontal cortex 5-HT 1B R binding was positively correlated with false alarms when angry faces were go stimuli and neutral faces were nogo stimuli (p = 0.05, corrected alpha = 0.0125), but not with false alarms for non-emotional stimuli (failures to inhibit geometric figures). A posthoc analysis revealed the strongest association in anterior cingulate cortex (p = 0.006). In summary, 5-HT 1B Rs in the anterior cingulate are involved in withholding a prepotent response in the context of angry faces. Our findings suggest that serotonin modulates response inhibition in the context of certain emotional stimuli. Copyright © 2017. Published by Elsevier Ltd.
Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.
Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor
2015-04-01
Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.
Prefrontal consolidation supports the attainment of fear memory accuracy
Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.
2014-01-01
The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive. PMID:25031365
Selective attention determines emotional responses to novel visual stimuli.
Raymond, Jane E; Fenske, Mark J; Tavassoli, Nader T
2003-11-01
Distinct complex brain systems support selective attention and emotion, but connections between them suggest that human behavior should reflect reciprocal interactions of these systems. Although there is ample evidence that emotional stimuli modulate attentional processes, it is not known whether attention influences emotional behavior. Here we show that evaluation of the emotional tone (cheery/dreary) of complex but meaningless visual patterns can be modulated by the prior attentional state (attending vs. ignoring) used to process each pattern in a visual selection task. Previously ignored patterns were evaluated more negatively than either previously attended or novel patterns. Furthermore, this emotional devaluation of distracting stimuli was robust across different emotional contexts and response scales. Finding that negative affective responses are specifically generated for ignored stimuli points to a new functional role for attention and elaborates the link between attention and emotion. This finding also casts doubt on the conventional marketing wisdom that any exposure is good exposure.
Body ownership: When feeling and knowing diverge.
Romano, Daniele; Sedda, Anna; Brugger, Peter; Bottini, Gabriella
2015-07-01
Individuals with the peculiar disturbance of 'overcompleteness' experience an intense desire to amputate one of their healthy limbs, describing a sense of disownership for it (Body Integrity Identity Disorder - BIID). This condition is similar to somatoparaphrenia, the acquired delusion that one's own limb belongs to someone else. In ten individuals with BIID, we measured skin conductance response to noxious stimuli, delivered to the accepted and non-accepted limb, touching the body part or simulating the contact (stimuli approach the body without contacting it), hypothesizing that these individuals have responses like somatoparaphrenic patients, who previously showed reduced pain anticipation, when the threat was directed to the disowned limb. We found reduced anticipatory response to stimuli approaching, but not contacting, the unwanted limb. Conversely, stimuli contacting the non-accepted body-part, induced stronger SCR than those contacting the healthy parts, suggesting that feeling of ownership is critically related to a proper processing of incoming threats. Copyright © 2015. Published by Elsevier Inc.
Lateral eye-movement responses to visual stimuli.
Wilbur, M P; Roberts-Wilbur, J
1985-08-01
The association of left lateral eye-movement with emotionality or arousal of affect and of right lateral eye-movement with cognitive/interpretive operations and functions was investigated. Participants were junior and senior students enrolled in an undergraduate course in developmental psychology. There were 37 women and 13 men, ranging from 19 to 45 yr. of age. Using videotaped lateral eye-movements of 50 participants' responses to 15 visually presented stimuli (precategorized as neutral, emotional, or intellectual), content and statistical analyses supported the association between left lateral eye-movement and emotional arousal and between right lateral eye-movement and cognitive functions. Precategorized visual stimuli included items such as a ball (neutral), gun (emotional), and calculator (intellectual). The findings are congruent with existing lateral eye-movement literature and also are additive by using visual stimuli that do not require the explicit response or implicit processing of verbal questioning.
Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers
Li, Yuanpei; Xiao, Kai; Zhu, Wei; Deng, Wenbin; Lam, Kit S.
2013-01-01
Stimuli-responsive cross-linked micelles (SCMs) represent an ideal nanocarrier system for drug delivery against cancers. SCMs exhibit superior structural stability compared to their non-crosslinked counterpart. Therefore, these nanocarriers are able to minimize the premature drug release during blood circulation. The introduction of environmentally sensitive crosslinkers or assembly units makes SCMs responsive to single or multiple stimuli present in tumor local microenvironment or exogenously applied stimuli. In these instances, the payload drug is released almost exclusively in cancerous tissue or cancer cells upon accumulation via enhanced permeability and retention effect or receptor mediated endocytosis. In this review, we highlight recent advances in the development of SCMs for cancer therapy. We also introduce the latest biophysical techniques, such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence resonance energy transfer (FRET), for the characterization of the interactions between SCMs and blood proteins. PMID:24060922
[Changes in emotional response to visual stimuli with sexual content in drug abusers].
Aguilar de Arcos, Francisco; Verdejo Garcia, Antonio; Lopez Jimenez, Angeles; Montañez Pareja, Matilde; Gomez Juarez, Encarnacion; Arraez Sanchez, Francisco; Perez Garcia, Miguel
2008-01-01
In a phenomenon as complex as drug dependence there is no doubt that affective and emotional aspects are involved. However, there has been little research to date on these emotional aspects, especially in specific relation to everyday affective stimuli, unrelated to drug use. In this work we investigate whether the consumption of narcotic substances causes changes in the emotional response to powerful unconditional natural stimuli, such as those of a sexual nature. To this end, I.A.P.S. images with explicit erotic content were shown to 84 drug-dependent males, in separate groups according to preferred substance. These groups' results were compared with each other and with the values obtained by non-consumers. The results indicate that drug abusers respond differently to visual stimuli with erotic content compared to non-consumers, and that there are also differences in response among consumers according to preferred substance.
Nostril Advantage in Trigeminal/Olfactory Perception and Its Relation to Handedness.
Manescu, Simona; Daniel, Benjhyna; Filiou, Renée-Pier; Lepore, Franco; Frasnelli, Johannes
2017-01-01
Introduction Few studies investigated nostril-advantage in chemosensory perception, particularly, in relation to handedness. The aim of the present article was therefore to assess whether trigeminal/olfactory perception is altered by handedness. Methods We tested 50 (all right-handed) and 43 (22 left-handed) participants in Studies 1 and 2, respectively. We used binary mixtures of cinnamaldehyde and eucalyptol, in different proportions presented as physical mixtures (the same exact mixture presented birhinally to each nostril) or as a dichorhinic mixtures (different mixtures presented to each nostril). Presenting dichorhinic mixtures allowed us to assess nostril dominance based on participants' report on whether the mixture smelled more like cinnamon or eucalyptus. Participants also evaluated whether the stimuli were "painful," "warm," "cold," and "intense" on visual scales. Results In Study 1, we find that in right handers, stimuli presented to the right nostril dominated over those presented to the left nostril. These stimuli were also rated as more "painful" and "intense." In Study 2, we could not corroborate the findings in the right-handed individuals, and we found limited support for a nostril advantage left-handed individuals. Conclusion Although our data points toward a certain nostril advantage in chemosensory perception, the finding is not systematic, we discuss possible underlying factors.
Absent Audiovisual Integration Elicited by Peripheral Stimuli in Parkinson's Disease.
Ren, Yanna; Suzuki, Keisuke; Yang, Weiping; Ren, Yanling; Wu, Fengxia; Yang, Jiajia; Takahashi, Satoshi; Ejima, Yoshimichi; Wu, Jinglong; Hirata, Koichi
2018-01-01
The basal ganglia, which have been shown to be a significant multisensory hub, are disordered in Parkinson's disease (PD). This study was to investigate the audiovisual integration of peripheral stimuli in PD patients with/without sleep disturbances. Thirty-six age-matched normal controls (NC) and 30 PD patients were recruited for an auditory/visual discrimination experiment. The mean response times for each participant were analyzed using repeated measures ANOVA and race model. The results showed that the response to all stimuli was significantly delayed for PD compared to NC (all p < 0.01). The response to audiovisual stimuli was significantly faster than that to unimodal stimuli in both NC and PD ( p < 0.001). Additionally, audiovisual integration was absent in PD; however, it did occur in NC. Further analysis showed that there was no significant audiovisual integration in PD with/without cognitive impairment or in PD with/without sleep disturbances. Furthermore, audiovisual facilitation was not associated with Hoehn and Yahr stage, disease duration, or the presence of sleep disturbances (all p > 0.05). The current results showed that audiovisual multisensory integration for peripheral stimuli is absent in PD regardless of sleep disturbances and further suggested the abnormal audiovisual integration might be a potential early manifestation of PD.
Absent Audiovisual Integration Elicited by Peripheral Stimuli in Parkinson's Disease
Yang, Weiping; Ren, Yanling; Yang, Jiajia; Takahashi, Satoshi; Ejima, Yoshimichi
2018-01-01
The basal ganglia, which have been shown to be a significant multisensory hub, are disordered in Parkinson's disease (PD). This study was to investigate the audiovisual integration of peripheral stimuli in PD patients with/without sleep disturbances. Thirty-six age-matched normal controls (NC) and 30 PD patients were recruited for an auditory/visual discrimination experiment. The mean response times for each participant were analyzed using repeated measures ANOVA and race model. The results showed that the response to all stimuli was significantly delayed for PD compared to NC (all p < 0.01). The response to audiovisual stimuli was significantly faster than that to unimodal stimuli in both NC and PD (p < 0.001). Additionally, audiovisual integration was absent in PD; however, it did occur in NC. Further analysis showed that there was no significant audiovisual integration in PD with/without cognitive impairment or in PD with/without sleep disturbances. Furthermore, audiovisual facilitation was not associated with Hoehn and Yahr stage, disease duration, or the presence of sleep disturbances (all p > 0.05). The current results showed that audiovisual multisensory integration for peripheral stimuli is absent in PD regardless of sleep disturbances and further suggested the abnormal audiovisual integration might be a potential early manifestation of PD. PMID:29850014
Ionic signaling in plant gravity and touch responses
NASA Technical Reports Server (NTRS)
Massa, Gioia D.; Fasano, Jeremiah M.; Gilroy, Simon
2003-01-01
Plant roots are optimized to exploit resources from the soil and as each root explores this environment it will encounter a range of biotic and abiotic stimuli to which it must respond. Therefore, each root must possess a sensory array capable of monitoring and integrating these diverse stimuli to direct the appropriate growth response. Touch and gravity represent two of the biophysical stimuli that plants must integrate. As sensing both of these signals requires mechano-transduction of biophysical forces to biochemical signaling events, it is likely that they share signal transduction elements. These common signaling components may allow for cross-talk and so integration of thigmotropic and gravitropic responses. Indeed, signal transduction events in both plant touch and gravity sensing are thought to include Ca(2+)- and pH-dependent events. Additionally, it seems clear that the systems responsible for root touch and gravity response interact to generate an integrated growth response. Thus, primary and lateral roots of Arabidopsis respond to mechanical stimuli by eliciting tropic growth that is likely part of a growth strategy employed by the root to circumvent obstacles in the soil. Also, the mechano-signaling induced by encountering an obstacle apparently down-regulates the graviperception machinery to allow this kind of avoidance response. The challenge for future research will be to define how the cellular signaling events in the root cap facilitate this signal integration and growth regulation. In addition, whether other stimuli are likewise integrated with the graviresponse via signal transduction system cross-talk is an important question that remains to be answered.
Rosanova, Mario; Timofeev, Igor
2005-01-01
The slow oscillation (SO) generated within the corticothalamic system is composed of active and silent states. The studies of response variability during active versus silent network states within thalamocortical system of human and animals provided inconsistent results. To investigate this inconsistency, we used electrophysiological recordings from the main structures of the somatosensory system in anaesthetized cats. Stimulation of the median nerve (MN) elicited cortical responses during all phases of SO. Cortical responses to stimulation of the medial lemniscus (ML) were virtually absent during silent periods. At the ventral-posterior lateral (VPL) level, ML stimuli elicited either EPSPs in isolation or EPSPs crowned by spikes, as a function of membrane potential. Response to MN stimuli elicited compound synaptic responses and spiked at any physiological level of membrane potential. The responses of dorsal column nuclei neurones to MN stimuli were of similar latency, but the latencies of antidromic responses to ML stimuli were variable. Thus, the variable conductance velocity of ascending prethalamic axons was the most likely cause of the barrages of synaptic events in VPL neurones mediating their firing at different level of the membrane potential. We conclude that the preserved ability of the somatosensory system to transmit the peripheral stimuli to the cerebral cortex during all the phases of sleep slow oscillation is based on the functional properties of the medial lemniscus and on the intrinsic properties of the thalamocortical cells. However the reduced firing ability of the cortical neurones during the silent state may contribute to impair sensory processing during sleep. PMID:15528249
Combat PTSD and Implicit Behavioral Tendencies for Positive Affective Stimuli: A Brief Report
Clausen, Ashley N.; Youngren, Westley; Sisante, Jason-Flor V.; Billinger, Sandra A.; Taylor, Charles; Aupperle, Robin L.
2016-01-01
Background: Prior cognitive research in posttraumatic stress disorder (PTSD) has focused on automatic responses to negative affective stimuli, including attentional facilitation or disengagement and avoidance action tendencies. More recent research suggests PTSD may also relate to differences in reward processing, which has lead to theories of PTSD relating to approach-avoidance imbalances. The current pilot study assessed how combat-PTSD symptoms relate to automatic behavioral tendencies to both positive and negative affective stimuli. Method: Twenty male combat veterans completed the approach-avoidance task (AAT), Clinician Administered PTSD Scale, Beck Depression Inventory-II, and State-Trait Anger Expression Inventory-II. During the AAT, subjects pulled (approach) or pushed (avoid) a joystick in response to neutral, happy, disgust, and angry faces based on border color. Bias scores were calculated for each emotion type (avoid-approach response latency differences). Main and interaction effects for psychological symptom severity and emotion type on bias score were assessed using linear mixed models. Results: There was a significant interaction between PTSD symptoms and emotion type, driven primarily by worse symptoms relating to a greater bias to avoid happy faces. Post hoc tests revealed that veterans with worse PTSD symptoms were slower to approach as well as quicker to avoid happy faces. Neither depressive nor anger symptoms related to avoid or approach tendencies of emotional stimuli. Conclusion: Posttraumatic stress disorder severity was associated with a bias for avoiding positive affective stimuli. These results provide further evidence that PTSD may relate to aberrant processing of positively valenced, or rewarding stimuli. Implicit responses to rewarding stimuli could be an important factor in PTSD pathology and treatment. Specifically, these findings have implications for recent endeavors in using computer-based interventions to influence automatic approach-avoidance tendencies. PMID:27252673
Binocular coordination in response to stereoscopic stimuli
NASA Astrophysics Data System (ADS)
Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.
2009-02-01
Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.
Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas
2018-05-02
Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b . First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing chain conformations and liquid structure in backmapped blends with the reference data. Possible directions for further methodological developments are discussed.
NASA Astrophysics Data System (ADS)
Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas
2018-05-01
Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b. First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing chain conformations and liquid structure in backmapped blends with the reference data. Possible directions for further methodological developments are discussed.
Sequencing the Cortical Processing of Pitch-Evoking Stimuli using EEG Analysis and Source Estimation
Butler, Blake E.; Trainor, Laurel J.
2012-01-01
Cues to pitch include spectral cues that arise from tonotopic organization and temporal cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common pitch center is located just beyond primary auditory cortex along the lateral aspect of Heschl’s gyrus, but little work has examined the stages of processing for the integration of pitch cues. Using electroencephalography, we recorded cortical responses to high-pass filtered iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ in temporal and spectral content. The two stimulus types were matched for pitch saliency, and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary and secondary auditory areas, respectively, and to result from simple feature extraction. MMN is generated in secondary auditory cortex and is thought to act on feature-integrated auditory objects. We found that peak latencies of both P1 and N1 occur later in response to IRN stimuli than to complex harmonic stimuli, but found no latency differences between stimulus types for MMN. The location of each ERP component was estimated based on iterative fitting of regional sources in the auditory cortices. The sources of both the P1 and N1 components elicited by IRN stimuli were located dorsal to those elicited by complex harmonic stimuli, whereas no differences were observed for MMN sources across stimuli. Furthermore, the MMN component was located between the P1 and N1 components, consistent with fMRI studies indicating a common pitch region in lateral Heschl’s gyrus. These results suggest that while the spectral and temporal processing of different pitch-evoking stimuli involves different cortical areas during early processing, by the time the object-related MMN response is formed, these cues have been integrated into a common representation of pitch. PMID:22740836
Contextual control using a go/no-go procedure with compound abstract stimuli.
Modenesi, Rafael Diego; Debert, Paula
2015-05-01
Contextual control has been described as (1) a five-term contingency, in which the contextual stimulus exerts conditional control over conditional discriminations, and (2) allowing one stimulus to be a member of different equivalence classes without merging them into one. Matching-to-sample is the most commonly employed procedure to produce and study contextual control. The present study evaluated whether the go/no-go procedure with compound stimuli produces equivalence classes that share stimuli. This procedure does not allow the identification of specific stimulus functions (e.g., contextual, conditional, or discriminative functions). If equivalence classes were established with this procedure, then only the latter part of the contextual control definition (2) would be met. Six undergraduate students participated in the present study. In the training phases, responses to AC, BD, and XY compounds with stimuli from the same classes were reinforced, and responses to AC, BD, and XY compounds with stimuli from different classes were not. In addition, responses to X1A1B1, X1A2B2, X2A1B2, and X2A2B1 compounds were reinforced and responses to the other combinations were not. During the tests, the participants had to respond to new combinations of stimuli compounds YCD to indicate the formation of four equivalence classes that share stimuli: X1A1B1Y1C1D1, X1A2B2Y1C2D2, X2A1B2Y2C1D2, and X2A2B1Y2C2D1. Four of the six participants showed the establishment of these classes. These results indicate that establishing contextual stimulus functions is unnecessary to produce equivalence classes that share stimuli. Therefore, these results are inconsistent with the first part of the definition of contextual control. © Society for the Experimental Analysis of Behavior.
Maltoni, C; Lefemine, G; Ciliberti, A; Cotti, G; Carretti, D
1981-01-01
Data are presented regarding the final results of the Bentivoglio (Bologna) project on long-term carcinogenicity bioassays of vinyl chloride (VC). The experimental project studied the effects of the monomer, administered by different routes, concentrations and schedules of treatment, to animals (near 7000) of different species, strains, sex and age. To our knowledge this is the largest experimental carcinogenicity study performed on a single compound by a single institution. The results indicate that VC is a multipotential carcinogen, affecting a variety of organs and tissues. In the experimental conditions studied, the neoplastic effects of the monomer were also detected at low doses. The experimental and biological factors greatly affect the neoplastic response to VC. Long-term carcinogenicity bioassays are, at present, a unique tool for the identification and quantification of environmental and occupational risks. Precise and highly standardized experimental procedures are needed to obtain data for risk assessment. PMID:6800782
Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.
Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree
2015-10-22
Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.
Psychophysiological responses and restorative values of wilderness environments
Chun-Yen Chang; Ping-Kun Chen; William E. Hammitt; Lisa Machnik
2007-01-01
Scenes of natural areas were used as stimuli to analyze the psychological and physiological responses of subjects while viewing wildland scenes. Attention Restoration Theory (Kaplan 1995) and theorized components of restorative environments were used as an orientation for selection of the visual stimuli. Conducted in Taiwan, the studies recorded the psychophysiological...
Protection from Premature Habituation Requires Functional Mushroom Bodies in "Drosophila"
ERIC Educational Resources Information Center
Acevedo, Summer F.; Froudarakis, Emmanuil I.; Kanellopoulos, Alexandros; Skoulakis, Efthimios M. C.
2007-01-01
Diminished responses to stimuli defined as habituation can serve as a gating mechanism for repetitive environmental cues with little predictive value and importance. We demonstrate that wild-type animals diminish their responses to electric shock stimuli with properties characteristic of short- and long-term habituation. We used spatially…
Incidental Learning in Young Children Tested with Words or Words Plus Pictures As Stimuli.
ERIC Educational Resources Information Center
Kau, Alice S. M.; Winer, Gerald A.
1987-01-01
The incidental memory of young children was tested for words or words plus pictures that were initially presented under orienting conditions. These conditions required responses to acoustic or semantic qualities of the stimuli and an affirmative or negative response to the orienting questions. (PCB)
Neural Events in the Reinforcement Contingency
ERIC Educational Resources Information Center
Silva, Maria Teresa Araujo; Goncalves, Fabio Leyser; Garcia-Mijares, Miriam
2007-01-01
When neural events are analyzed as stimuli and responses, functional relations among them and among overt stimuli and responses can be unveiled. The integration of neuroscience and the experimental analysis of behavior is beginning to provide empirical evidence of involvement of neural events in the three-term contingency relating discriminative…
The Development of Behavior before Birth.
ERIC Educational Resources Information Center
Smotherman, William P.; Robinson, Scott R.
1996-01-01
Summarizes research on the development of behavior before birth, focusing on studies where fetuses were exposed to stimuli that mimic features of the neonatal environment, such as milk and an artificial nipple. Notes that these stimuli reliably evoke responses from fetal subjects, including behavior such as the stretch response and the oral…
Karageorgiou, Elissaios; Koutlas, Ioannis G; Alonso, Aurelio A; Leuthold, Arthur C; Lewis, Scott M; Georgopoulos, Apostolos P
2008-08-01
We used magnetoencephalography (MEG) in 10 healthy human subjects to study cortical responses to tactile stimuli applied to the fingertips of digits 2-5 of the right hand. Each stimulus lasted 50 ms and was produced by air-driven elastic membranes. Four-hundred stimuli were delivered on each finger in three temporal patterns (conditions). In the "Discrete" condition, stimuli were applied to each finger repetitively with an interstimulus interval (ISI) of 1-2 s. In the "Continuous" condition, stimuli were applied to the fingers sequentially as four-stimulus trains with zero ISI and 1-2 s intervening between trains. Finally, in the "Gap" condition, stimuli were applied as in the Continuous condition but with an ISI of 50 ms. A sensation of tactile motion across fingers (digit 2 --> digit 5) was reported by all subjects in the Continuous and Gap conditions. Cortical responses were extracted as single equivalent current dipoles over a period of 1 s following stimulus onset. In all three conditions, initial responses in left primary somatosensory cortex (SI) were observed ~20 to 50 ms after stimulus onset and were followed by additional left SI responses and bilateral responses in the secondary somatosensory cortex (SII). In addition, in the Continuous and Gap conditions, there was an activation of the precentral gyrus, the temporal aspects of which depended on the temporal relation of the administered stimuli, as follows. An ISI of 0 ms led to activation of the precentral gyrus shortly after the second stimulation, whereas an ISI of 50 ms led to activation of the precentral gyrus after the third stimulation. The current findings support results from previous studies on temporal activity patterns in SI and SII, verify the participation of the precentral gyrus during tactile motion perception and, in addition, reveal aspects of integration of sequential sensory stimulations over nonadjacent areas as well as temporal activity patterns in the postcentral and precentral gyri.
Carbine, Kaylie A; Christensen, Edward; LeCheminant, James D; Bailey, Bruce W; Tucker, Larry A; Larson, Michael J
2017-07-01
Maintaining a healthy diet has important implications for physical and mental health. One factor that may influence diet and food consumption is inhibitory control-the ability to withhold a dominant response in order to correctly respond to environmental demands. We examined how N2 amplitude, an ERP that reflects inhibitory control processes, differed toward high- and low-calorie food stimuli and related to food intake. A total of 159 participants (81 female; M age = 23.5 years; SD = 7.6) completed two food-based go/no-go tasks (one with high-calorie and one with low-calorie food pictures as no-go stimuli) while N2 amplitude was recorded. Participants recorded food intake using the Automated Self-Administered 24-hour Dietary Recall system. Inhibiting responses toward high-calorie stimuli elicited a larger (i.e., more negative) no-go N2 amplitude; inhibiting responses toward low-calorie stimuli elicited a smaller no-go N2 amplitude. Participants were more accurate during the high-calorie than low-calorie task, but took longer to respond on go trials toward high-calorie rather than low-calorie stimuli. When controlling for age, gender, and BMI, larger high-calorie N2 difference amplitude predicted lower caloric intake (β = 0.17); low-calorie N2 difference amplitude was not related to caloric intake (β = -0.03). Exploratory analyses revealed larger high-calorie N2 difference amplitude predicted carbohydrate intake (β = 0.22), but not protein (β = 0.08) or fat (β = 0.11) intake. Results suggest that withholding responses from high-calorie foods requires increased recruitment of inhibitory control processes, which may be necessary to regulate food consumption, particularly for foods high in calories and carbohydrates. © 2017 Society for Psychophysiological Research.
Kreusch, Fanny; Vilenne, Aurélie; Quertemont, Etienne
2013-10-01
Previous results suggested that alcohol abusers and alcohol dependent patients show cognitive biases in the treatment of alcohol-related cues, especially approach and inhibition deficit biases. Response inhibition was often tested using the go/no-go task in which the participants had to respond as quickly as possible to a class of stimuli (go stimuli) while refraining from responding to another class of stimuli (no-go stimuli). Previous studies assessing specific response inhibition deficits in the process of alcohol-related cues obtained conflicting results. The aims of the present study were to clarify response inhibition for alcohol cues in problem and non-problem drinkers, male and female and to test the effect of alcohol brand logos. Thirty-six non-problem drinker and thirty-five problem drinker undergraduate students completed a modified alcohol go/no-go task using alcohol and neutral object pictures, with or without brand logos, as stimuli. An additional control experiment was carried out to check whether participants' awareness that the study tested their response to alcohol might have biased the results. All participants, whether problem or non-problem drinkers, showed significantly shorter mean reaction times when alcohol pictures are used as go stimuli and significantly higher percentages of commission errors (false alarms) when alcohol pictures are used as no-go stimuli. Identical effects were obtained in the control experiment when participants were unaware that the study focused on alcohol. Shorter reaction times to alcohol-related cues were observed in problem drinkers relative to non-problem drinkers but only in the experimental condition with no brand logos on alcohol pictures. The addition of alcohol brand logos further reduced reaction times in light drinkers, thereby masking group differences. There was a tendency for female problem drinkers to show higher rates of false alarms for alcohol no-go stimuli, although this effect was only very close to statistical significance. All participants exhibited a cognitive bias in the treatment of alcohol cues that might be related to the positive emotional value of such alcohol-related cues. Stronger cognitive biases in the treatment of alcohol cues were observed in problem drinkers, although differences between problem and non-problem drinkers were relatively small-scale and required specific experimental parameters to be uncovered. In particular, the presence of alcohol brand logos on visual alcohol cues was an important experimental parameter that significantly affected behavioral responses to such stimuli. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.
1987-06-01
Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.
Mental Effort in Binary Categorization Aided by Binary Cues
ERIC Educational Resources Information Center
Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael
2013-01-01
Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…
Distinctive amygdala subregions involved in emotion-modulated Stroop interference
Han, Hyun Jung; Lee, Kanghee; Kim, Hyun Taek; Kim, Hackjin
2014-01-01
Despite the well-known role of the amygdala in mediating emotional interference during tasks requiring cognitive resources, no definite conclusion has yet been reached regarding the differential roles of functionally and anatomically distinctive subcomponents of the amygdala in such processes. In this study, we examined female participants and attempted to separate the neural processes for the detection of emotional information from those for the regulation of cognitive interference from emotional distractors by adding a temporal gap between emotional stimuli and a subsequent cognitive Stroop task. Reaction time data showed a significantly increased Stroop interference effect following emotionally negative stimuli compared with neutral stimuli, and functional magnetic resonance imaging data revealed that the anterior ventral amygdala (avAMYG) showed greater responses to negative stimuli compared with neutral stimuli. In addition, individuals who scored high in neuroticism showed greater posterior dorsal amygdala (pdAMYG) responses to incongruent compared with congruent Stroop trials following negative stimuli, but not following neutral stimuli. Taken together, the findings of this study demonstrated functionally distinctive contributions of the avAMYG and pdAMYG to the emotion-modulated Stroop interference effect and suggested that the avAMYG encodes associative values of emotional stimuli whereas the pdAMYG resolves cognitive interference from emotional distractors. PMID:23543193
Andresen, V; Bach, D R; Poellinger, A; Tsrouya, C; Stroh, A; Foerschler, A; Georgiewa, P; Zimmer, C; Mönnikes, H
2005-12-01
Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.
The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex.
Petroni, Agustin; Cohen, Samantha S; Ai, Lei; Langer, Nicolas; Henin, Simon; Vanderwal, Tamara; Milham, Michael P; Parra, Lucas C
2018-01-01
Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.